
SECOND

H
ib

e
rn

a
te

this print for content only—size & color not accurate

US $44.99

www.apress.com
SOURCE CODE ONLINE

7.5 x 9.25 spine = 0.75" 400 page count

Beginning

Hibernate

SECOND EDITION

Jeff Linwood and Dave Minter

An introduction to persistence

using Hibernate 3.5

Covers

Hibernate

3.5

THE EXPERT’S VOICE® IN JAVATM TECHNOLOGY

www.allitebooks.com

http://
http://www.allitebooks.org

www.allitebooks.com

http://
http://www.allitebooks.org

Beginning Hibernate
Second Edition

■ ■ ■

Jeff Linwood and Dave Minter

www.allitebooks.com

http://
http://www.allitebooks.org

Beginning Hibernate, Second Edition

Copyright © 2010 by Jeff Linwood and Dave Minter

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2850-9

ISBN-13 (electronic): 978-1-4302-2851-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Sumit Pal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Debra Kelly
Copy Editor: Sharon Terdeman
Production Support: Patrick Cunningham
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ... xv

About the Technical Reviewer ... xvi

Acknowledgments .. xvii

Introduction ... xviii

■Chapter 1: An Introduction to Hibernate 3.5 .. 1

■Chapter 2: Integrating and Configuring Hibernate... 9

■Chapter 3: Building a Simple Application .. 27

■Chapter 4: The Persistence Life Cycle ... 61

■Chapter 5: An Overview of Mapping .. 77

■Chapter 6: Mapping with Annotations ... 91

■Chapter 7: Creating Mappings with Hibernate XML Files 133

■Chapter 8: Using the Session ... 177

■Chapter 9: Searches and Queries .. 193

■Chapter 10: Advanced Queries Using Criteria.. 215

■Chapter 11: Filtering the Results of Searches ... 227

■Chapter 12: Case Study – Using Hibernate with an Existing Database 235

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS AT A GLANCE

iv

■Appendix A: More Advanced Features ... 263

■Appendix B: Hibernate Tools.. 287

■Appendix C: Hibernate and Spring ... 327

■Appendix D: Upgrading from Hibernate 2 .. 337

Index ... 343

www.allitebooks.com

http://
http://www.allitebooks.org

v

Contents

About the Authors ... xv

About the Technical Reviewer ... xvi

Acknowledgments .. xvii

Introduction ... xviii

■Chapter 1: An Introduction to Hibernate 3.5 .. 1

Plain Old Java Objects (POJOs) .. 1

Origins of Hibernate and Object-Relational Mapping .. 3

Hibernate As a Persistence Solution .. 4

A Hibernate Hello World Example .. 5

Mappings ... 6

Summary ... 7

■Chapter 2: Integrating and Configuring Hibernate... 9

The Steps Needed to Integrate and Configure Hibernate .. 9

Understanding Where Hibernate Fits in Your Java Application 10

Deploying Hibernate .. 11

Required Libraries for Running Hibernate 3.5 .. 11

JMX and Hibernate ... 12

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vi

Hibernate Configuration ... 12

Hibernate Properties ... 14

XML Configuration .. 18

Annotated Classes .. 19

Naming Strategy ... 20

Using a Container-Managed Data Source... 21

The Session Factory .. 21

SQL Dialects ... 22

Summary ... 25

■Chapter 3: Building a Simple Application .. 27

Installing the Tools ... 27

Hibernate and Hibernate Tools ... 27

Simple Logging Facade for Java (SLF4J) 1.5.11 .. 28

HSQLDB 2.0.0 ... 28

Ant 1.8.0 ... 29

The Ant Tasks ... 32

Creating a Hibernate Configuration File ... 33

Running the Message Example ... 35

Persisting Multiple Objects .. 38

Creating Persistence Classes .. 39

Creating the Object Mappings ... 42

Creating the Tables .. 48

Sessions .. 50

The Session and Related Objects ... 50

Using the Session ... 52

The Example Client .. 54

Summary ... 59

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

vii

■Chapter 4: The Persistence Life Cycle ... 61

Introduction to the Life Cycle ... 61

Entities, Classes, and Names .. 62

Identifiers ... 63

Entities and Associations ... 63

Saving Entities ... 67

Object Equality and Identity ... 68

Loading Entities ... 69

Refreshing Entities... 70

Updating Entities .. 71

Deleting Entities ... 72

Cascading Operations .. 72

Lazy Loading, Proxies, and Collection Wrappers ... 74

Querying Objects ... 75

Summary ... 75

■Chapter 5: An Overview of Mapping .. 77

Why Mapping Cannot Be Automated ... 78

Primary Keys .. 80

Lazy Loading .. 82

Associations ... 82

The One-to-One Association ... 84

The One-to-Many and Many-to-One Association ... 86

The Many-to-Many Association .. 88

Applying Mappings to Associations .. 89

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

viii

Other Information Represented in Mappings ... 89

Specification of (Database) Column Types and Sizes ... 89

The Mapping of Inheritance Relationships to the Database ... 89

Primary Key .. 90

The Use of SQL Formula–Based Properties .. 90

Mandatory and Unique Constraints .. 90

Cascading of Operations ... 90

Summary ... 90

■Chapter 6: Mapping with Annotations ... 91

Creating Hibernate Mappings with Annotations .. 91

Cons of Annotations .. 91

Pros of Annotations .. 91

Choosing Which to Use ... 93

Using Annotations in Your Application .. 93

JPA 2 Persistence Annotations ... 93

Entity Beans with @Entity .. 95

Primary Keys with @Id and @GeneratedValue ... 95

Generating Primary Key Values with @SequenceGenerator .. 97

Generating Primary Key Values with @TableGenerator.. 98

Compound Primary Keys with @Id, @IdClass, or @EmbeddedId ... 99

Database Table Mapping with @Table and @SecondaryTable .. 103

Persisting Basic Types with @Basic... 105

Omitting Persistence with @Transient ... 105

Mapping Properties and Fields with @Column .. 106

Modeling Entity Relationships .. 107

Inheritance .. 114

Other JPA 2 Persistence Annotations ... 117

Ordering Collections with @OrderColumn .. 119

Configuring the Annotated Classes .. 121

www.allitebooks.com

http://
http://www.allitebooks.org

■ CONTENTS

ix

Hibernate 3–Specific Persistence Annotations .. 122

@Entity ... 123

Sorting Collections with @Sort ... 123

Applying Indexes with @Table and @Index ... 124

Restricting Collections with @Where ... 124

Alternative Key Generation Strategies with @GenericGenerator .. 124

Using Ant with Annotation-Based Mappings ... 125

Code Listings ... 126

Summary ... 131

■Chapter 7: Creating Mappings with Hibernate XML Files 133

Hibernate Types ... 133

Entities .. 133

Components .. 134

Values ... 134

The Anatomy of a Mapping File ... 136

The <hibernate-mapping> Element ... 136

The <class> Element ... 138

The <id> Element ... 141

The <property> Element .. 144

The <component> Element .. 146

The <one-to-one> Element .. 147

The <many-to-one> Element ... 149

The Collection Elements ... 152

Mapping Simple Classes.. 160

Mapping Composition .. 162

Mapping Other Associations .. 165

Mapping Collections .. 168

http://

■ CONTENTS

x

Mapping Inheritance Relationships ... 171

One Table per Concrete Class .. 171

One Table per Subclass .. 172

One Table per Class Hierarchy ... 174

More Exotic Mappings ... 175

The any Tag .. 175

The array Tag .. 176

The <dynamic-component> Element ... 176

Summary ... 176

■Chapter 8: Using the Session ... 177

Sessions .. 177

Transactions and Locking .. 181

Transactions ... 181

Locking ... 184

Deadlocks ... 185

Caching .. 189

Threads .. 191

Summary ... 192

■Chapter 9: Searches and Queries .. 193

Hibernate Query Language (HQL) ... 193

Syntax Basics .. 194

UPDATE ... 194

DELETE ... 194

INSERT .. 195

SELECT ... 195

The First Example with HQL ... 196

http://

■ CONTENTS

xi

Logging and Commenting the Underlying SQL .. 200

Logging the SQL ... 200

Commenting the Generated SQL .. 201

The from Clause and Aliases ... 202

The select Clause and Projection ... 202

Using Restrictions with HQL .. 203

Using Named Parameters .. 204

Paging Through the Result Set .. 205

Obtaining a Unique Result ... 205

Sorting Results with the order by Clause .. 206

Associations ... 206

Aggregate Methods ... 207

Bulk Updates and Deletes with HQL .. 208

Named Queries for HQL and SQL ... 209

Using Native SQL ... 211

Summary ... 213

■Chapter 10: Advanced Queries Using Criteria.. 215

Using the Criteria API ... 215

Using Restrictions with Criteria ... 215

Paging Through the Result Set .. 219

Obtaining a Unique Result ... 219

Sorting the Query’s Results ... 220

Associations ... 220

Distinct Results .. 221

Projections and Aggregates ... 221

http://

■ CONTENTS

xii

Query By Example (QBE) .. 223

Summary ... 225

■Chapter 11: Filtering the Results of Searches ... 227

When to Use Filters .. 227

Defining and Attaching Filters ... 228

Filters with Annotations .. 228

Filters with XML Mapping Documents .. 229

Using Filters in Your Application .. 229

A Basic Filtering Example .. 230

Summary ... 234

■Chapter 12: Case Study – Using Hibernate with an Existing Database 235

Setting up the Database .. 235

Downloading the Data .. 235

Understanding the Data .. 236

Creating the Database Schema .. 240

Loading the Data .. 242

Creating a Java Object Model .. 243

Creating the Admin1Code Class ... 244

Creating the Admin2Code Class ... 247

Creating the Feature Codes Class .. 250

Creating the Place Class ... 253

Configuring Hibernate .. 257

Building the List of High Points .. 259

Developing the HQL Query .. 259

Running the Query .. 260

Moving Forward with the Example .. 262

Summary ... 262

http://

■ CONTENTS

xiii

■Appendix A: More Advanced Features ... 263

Managed Versioning and Optimistic Locking... 263

Maps .. 264

Limitations of Hibernate .. 265

Hand-Rolled SQL .. 266

Using a Direct Mapping .. 266

Using a View ... 267

Putting SQL into an Annotation or Mapping .. 269

Invoking Stored Procedures ... 271

Events .. 272

An Example Event Listener ... 275

Interceptors ... 276

An Example Interceptor .. 279

Overriding the Default Constructor .. 284

Hibernate Search ... 285

Summary ... 286

■Appendix B: Hibernate Tools.. 287

The Eclipse Plug-In .. 287

Downloading the Hibernate Tools Plug-in .. 288

Installing the Plug-In .. 288

The Boilerplate Project Configuration ... 291

Using the Hibernate Console .. 293

http://

■ CONTENTS

xiv

The Ant Tasks .. 313

How the Ant Tasks Work .. 313

Reverse Engineering ... 319

Templates ... 323

Configuring the Classpath .. 324

Summary ... 325

■Appendix C: Hibernate and Spring ... 327

Configuring Hibernate from a Spring Application .. 327

Configuring Spring .. 328

Using Hibernate in Your Spring Beans ... 330

Declarative Transaction Management ... 331

Managing the Session ... 332

The Sample Configuration File ... 333

Summary ... 336

■Appendix D: Upgrading from Hibernate 2 .. 337

Package and DTD Changes .. 337

New Features and Support for Old Ones ... 338

Changes and Deprecated Features .. 339

Additions ... 340

Changes to Tools and Libraries ... 340

Changes with Java 5 ... 341

Summary ... 341

Index ... 343

http://

xv

About the Authors

■Jeff Linwood has been involved in software programming since he had a
286 in high school. He got caught up with the Internet when he got access
to a UNIX shell account, and it has been downhill ever since.

When he’s not playing on the computer, his hobby is running
ultramarathons. Jeff is based in Austin, Texas and helps large companies
solve tough problems with content management, search engines, and web
application development. Jeff also co-authored Professional Struts
Applications (Apress), Building Portals with the Java Portlet API (Apress),
and Pro Hibernate 3 (Apress).

■Dave Minter has adored computers since he was small enough to play in
the boxes they came in. He built his first PC from discarded, faulty, and
obsolete components; and he considers that to be the foundation of his
career as an integration consultant. Dave is based in London, where he
helps large and small companies build systems that “just work.” He wrote
Beginning Spring 2: From Novice to Professional (Apress) and co-authored
Building Portals with the Java Portlet API (Apress) and Pro Hibernate 3
(Apress).

http://

xvi

About the Technical Reviewer

■Sumit Pal has about 16 years of experience with Software Architecture,
Design & Development on a variety of platforms, including Java, J2EE.
Sumit has worked in SQLServer Replication group while with Microsoft for
two years and with Oracle’s OLAP Server group while with Oracle for seven
years.

Apart from Certifications like IEEE-CSDP and J2EE Architect, Sumit
also has an MS in Computer Science from Asian Institute of Technology,
Thailand.

Sumit has keen interest in database internals, algorithms, search
engine technology, data mining, and machine learning.

Sumit has invented some basic generalized algorithms to find
divisibility between numbers and also invented divisibility rules for prime
numbers less than 100.

Sumit loves to play badminton and swim. He is also an amateur
astrophysicist and is incorporating green habits into his daily life.

http://

xvii

Acknowledgments

Jeff and Dave would like to thank the staff of Apress for their consistent good humor in the face of
looming deadlines. Particular thanks are due to Debra Kelly, our ever-present project manager, for
keeping this book on the rails; and to Patrick Meader, for correcting our dodgy spelling and grammar.
Thanks to Fran Parnell, as well, for managing the project in its early stages. Special thanks to Jonathan
Gennick for his contributions and particularly for his help directing the new edition. Thanks also to
Steve Anglin for letting us write for Apress and to Sumit Pal for his contributions as technical reviewer.
Finally, thanks are due to the Hibernate team for producing an awesome piece of software.

Jeff would like to thank Cheri for putting up with endless late nights to meet chapter deadlines; he
would also like to thank Rocky for giving him a reason to put the laptop away on a sunny day. He would
also like to thank his friends Roman and Jason for reviewing parts of the book.

http://

xviii

Introduction

Hibernate is an amazing piece of software. With a little experience and the power of annotations, you
can build a complex, database-backed system with disturbing ease. Once you have built a system using
Hibernate, you will never want to go back to the traditional approaches.

While Hibernate is incredibly powerful, it presents a steep learning curve when you first encounter
it—steep learning curves are actually a good thing because they impart profound insight once you have
scaled them. Yet gaining that insight takes some perseverance and assistance.

Our aim in this book is to help you scale that learning curve by presenting you with the minimal
requirements of a discrete Hibernate application, explaining the basis of those requirements, and
walking you through an example application built using to them. We then provide additional material to
be digested once the fundamentals are firmly understood. Throughout, we provide examples, rather
than relying upon pure discourse. We hope that you will continue to find this book useful as a reference
text long after you have become an expert on the subject.

Who This Book Is For
This book assumes a good understanding of Java fundamentals and some familiarity with database
programming using the Java Database Connectivity (JDBC) API. We don’t expect you to know anything
about Hibernate—but if you buy this book, it will probably be because you have some exposure to the
painful process of building a large database-based system.

All of our examples use open source software—primarily the Hibernate API itself—so you will not
need to purchase any software to get started with Hibernate development. This book is not an academic
text. Our focus is instead on providing extensive examples and taking a pragmatic approach to the
technology that it covers.

To true newcomers to the Hibernate API, we recommend that you read at least the first three
chapters in order before diving into the juicy subjects of later chapters. Very experienced developers or
those with experience with tools similar to Hibernate will want to skim through the latter half of the book
for interesting chapters. Readers familiar with Hibernate will want to turn to the appendixes for
discussion of more arcane topics.

How This Book Is Structured
This book is informally divided into three parts. Chapters 1 through 8 describe the fundamentals of
Hibernate, including configuration, the creation of mapping files, and the basic APIs. Chapters 9 through
11 describe the use of queries, criteria, and filters to access the persistent information in more
sophisticated ways. Chapter 12 is a case study that starts with an existing database, and then shows you
how to map that database to a Java application using Hibernate.

www.allitebooks.com

http://
http://www.allitebooks.org

■ INTRODUCTION

xix

Finally, the appendixes discuss features that you will use less often, or that are peripheral to the core
Hibernate functionality. The following list describes more fully the contents of each chapter:

Chapter 1 outlines the purpose of persistence tools and presents excerpts from
a simple example application to show how Hibernate can be applied. It also
introduces core terminology and concepts.

Chapter 2 discusses the fundamentals of configuring a Hibernate application. It
presents the basic architecture of Hibernate and discusses how a Hibernate
application is integrated into an application.

Chapter 3 presents the example application from Chapter 1 in its entirety,
walking you through the complete process of creating and running the
application. It then looks at a slightly more complex example and introduces
the notion of generating the database schema directly from Hibernate
annotations.

Chapter 4 covers the Hibernate life cycle in depth. It discusses the life cycle in
the context of the methods available on the core interfaces. It also introduces
key terminology and discusses the need for cascading and lazy loading.

Chapter 5 explains why mapping information must be retained by Hibernate
and demonstrates the various types of associations that can be represented by a
relational database. It briefly discusses the other information that can be
maintained within a Hibernate mapping.

Chapter 6 explains how Hibernate lets you use the annotations to represent
mapping information. It provides detailed examples for the most important
annotations, and discusses the distinctions between the standard JPA 2
annotations and the proprietary Hibernate ones.

Chapter 7 explains how the XML-based mapping files can be used to represent
mapping information in Hibernate. It provides examples for all of the most
common mapping types and reference notes for the more obscure ones.

Chapter 8 revisits the Hibernate Session object in detail, explaining the various
methods that it provides. The chapter also discusses the use of transactions,
locking, and caching, as well as how to use Hibernate in a multithreaded
environment.

Chapter 9 discusses how Hibernate can be used to make sophisticated queries
against the underlying relational database using the built-in Hibernate Query
Language (HQL).

Chapter 10 introduces the Criteria API, which is a programmatic analog of the
query language discussed in Chapter 9.

Chapter 11 discusses how the Filter API can be used to restrict the results of the
queries introduced in Chapters 9 and 10.

Chapter 12 is a case study chapter that illustrates how to use Hibernate with an
existing database. This chapter draws on topics covered in the previous 11
chapters to demonstrate a common use case.

Appendix A presents a large number of peripheral features that do not warrant
more extensive coverage in a beginner-level text. The chapter discusses the

http://

■ INTRODUCTION

xx

basics, with examples, of the support for versioning and optimistic locking, the
provision for persisting and retrieving maps of information, and some of the
obscure limitations of Hibernate and various ways that these can be worked
around. It also discusses the use of events and interceptors. The chapter briefly
touches on Hibernate Search, which bridges Lucene and Hibernate.

Appendix B discusses how the Hibernate Tools toolset can be used to enhance
development with the Eclipse development environment and the Ant build
tool. It also explains how the Ant code-generation tasks can be customized.

Appendix C discusses how Hibernate can be integrated into the Spring API. The
integration of Hibernate as the persistence layer of a Spring application is
complex, so we present a working example, including the entire bean definition
file, with discussions of the appropriate way to manage the session in the
Spring MVC environment. This chapter also discusses how Spring can enforce
the proper transactional boundaries when using Hibernate.

Appendix D discusses some topics of interest to developers who are working
with a preexisting base of code that was built using version 2 of Hibernate. We
present the various approaches for coexisting with Hibernate 3 code, as well as
for migrating a Hibernate 2 code base to the Hibernate 3 API.

Downloading the Code
The source code for this book is available to readers from www.apress.com, in the Source Code/Download
section. Please feel free to visit the Apress web site and download all the code from there.

Contacting the Authors
We welcome feedback from our readers. If you have any queries or suggestions about this book, or
technical questions about Hibernate, or if you just want to share a really good joke, you can e-mail Dave
Minter at dave@paperstack.com and Jeff Linwood at jlinwood@gmail.com.

http://www.apress.com
mailto:dave@paperstack.com
mailto:jlinwood@gmail.com
http://

C H A P T E R 1

■ ■ ■

1

An Introduction to Hibernate 3.5

Most significant development projects involve a relational database. The mainstay of most commercial
applications is the large-scale storage of ordered information, such as catalogs, customer lists, contract
details, published text, and architectural designs.

With the advent of the World Wide Web, the demand for databases has increased. Though they may
not know it, the customers of online bookshops and newspapers are using databases. Somewhere in the
guts of the application a database is being queried and a response is offered.

While the demand for such applications has grown, their creation has not become noticeably
simpler. Some standardization has occurred around the Java Persistence API with the release of
Enterprise Java Beans 3.0. Hibernate 3.5 is an implementation of the Java Persistence API standard,
which replaced older Java persistence solutions such as the entity beans from Enterprise Java Beans 2.

There are solutions for which some sort of object-relational mapping (ORM) like Hibernate is
appropriate, and some for which the traditional approach of direct access via the Java Database
Connectivity (JDBC) API is appropriate. We think that Hibernate represents a good first choice, as it does
not preclude the simultaneous use of these alternative approaches.

To illustrate some of Hibernate’s strengths, in this chapter we will show you a brief example using
Hibernate and contrast this with the traditional JDBC approach.

Plain Old Java Objects (POJOs)
In our ideal world, it would be trivial to take any Java object and persist it to the database. No special
coding would be required to achieve this, no performance penalty would ensue, and the result would be
totally portable.

In this ideal world, we would perhaps perform such an operation in a manner like that shown in
Listing 1-1.

Listing 1-1. A Rose-Tinted View of Object Persistence

POJO pojo = new POJO();
ORMSolution magic = ORMSolution.getInstance();
magic.save(pojo);

There would be no nasty surprises, no additional work to correlate the class with tables in the
database, and no performance problems.

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

2

Hibernate comes remarkably close to this, at least when compared with the alternatives—but alas,
there are configuration files to create and subtle performance issues to consider. Hibernate does,
however, achieve its fundamental aim—it allows you to store POJOs in the database. Figure 1-1 shows
how Hibernate fits into your application between the client code and the database.

Figure 1-1. The role of Hibernate in a Java application

The common term for the direct persistence of traditional Java objects is object-relational
mapping—that is, mapping the objects in Java to the relational entities in a database.

POJOs can be any Java object at all. Hibernate allows you to persist POJOs with very few constraints.
Listing 1-2 is an example of a simple POJO to represent a message.

Listing 1-2. The POJO Used in this Chapter’s Examples

public class Message {
 private Message() {
 }

 public Message(String messageText) {
 this.messageText = messageText;
 }

 public String getMessageText() {
 return messageText;
 }

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

3

 public void setMessageText(String messageText) {
 this.messageText = messageText;
 }

 private String messageText;
}

The sole condescension to Hibernate here is the provision of a private default constructor.
Hibernate demands that all POJOs to be stored should provide a default constructor; but even that can
be worked around when third-party classes fail to satisfy this limited requirement (we will demonstrate
this in Appendix A).

Origins of Hibernate and Object-Relational Mapping
If Hibernate is the solution, what was the problem? One answer is that doing things the right way when
using JDBC requires a considerable body of code, and careful observation of various rules (such as those
governing connection management) to ensure that your application does not leak resources. The
gargantuan body of code in Listing 1-3 is required to populate the example Motd object from the
database even when you know the appropriate message identifier.

Listing 1-3. The JDBC Approach to Retrieving the POJO

 public static List getMessages(int messageId) throws MessageException {
 Connection c = null;
 PreparedStatement p = null;
 List list = new ArrayList();

 try {

 Class.forName("org.postgresql.Driver");
 c = DriverManager.getConnection(
 "jdbc:hsqldb:testdb;shutdown=true",
 "hibernate",
 "hibernate");
 p = c.prepareStatement(
 "select message from motd");

 ResultSet rs = p.executeQuery();

 while(rs.next()) {
 String text = rs.getString(1);
 list.add(new Message(text));
 }
 return list;

 } catch (Exception e) {
 log.log(Level.SEVERE, "Could not acquire message", e);
 throw new MotdException(
 "Failed to retrieve message from the database.", e);

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

4

 } finally {
 if (p != null) {
 try {
 p.close();
 } catch (SQLException e) {
 log.log(Level.WARNING,
 "Could not close ostensibly open statement.", e);
 }
 }

 if (c != null) {
 try {
 c.close();
 } catch (SQLException e) {
 log.log(Level.WARNING,
 "Could not close ostensibly open connection.", e);
 }
 }
 }
 }

Some of this can be trimmed down; there are various techniques that allow you to reduce the
boilerplate code for opening connections and logging problems, but the basic logic that pulls the object
instance from the ResultSet becomes more complex as the object itself does. Once the object includes
references to other objects—or worse yet, other collections of objects—these “manual” techniques start
to look more and more flawed.

Hibernate As a Persistence Solution
Hibernate addresses a lot of these points, or alleviates some of the pain where it can’t, so we’ll address
the points in turn.

Hibernate does not require you to map one POJO to one table. A POJO can be constructed out of a
selection of table columns, or several POJOs can be persisted into a single table.

Hibernate directly supports inheritance relationships and the various other relationships between
classes.

Though there is some performance overhead while Hibernate starts up and processes its
configuration files, it is generally perceived as being a fast tool. This is very hard to quantify, and, to
some extent, the poor reputation of entity beans may have been earned less from their own faults than
from the mistakes of those designing and deploying such applications. As with all performance
questions, you should carry out tests rather than relying on anecdotal evidence.

In Hibernate it is possible, but not necessary, to specify the mappings at deployment time.
Hibernate persistence has no requirement for a J2EE application server or any other special

environment. It is, therefore, a much more suitable solution for stand-alone applications, command-line
tools, client-side application storage, and other environments in which a J2EE server is not immediately
available.

Hibernate uses POJOs that can very easily and naturally be generalized for use in other applications.
There is no direct dependency upon the Hibernate libraries, so POJOs can be put to any use that does
not require persistence; or they can be persisted using any other “POJO-friendly” mechanism.

Hibernate presents no problems when handling serializable POJOs.

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

5

 Any Java object capable of being persisted to a database is a candidate for Hibernate persistence.
Therefore, Hibernate is a natural replacement for ad hoc solutions, or as the persistence engine for an
application that has not yet had database persistence incorporated into it. Furthermore, by choosing
Hibernate persistence, you are not tying yourself to any particular design decisions for the business
objects in your application.

A Hibernate Hello World Example
Listing 1-4 shows how much less boilerplate is required with Hibernate than with the JDBC approach
from Listing 1-3.

Listing 1-4. The Hibernate Approach to Retrieving the POJO

 public static List getMessages(int messageId)
 throws MessageException
 {
 SessionFactory sessions =
 new AnnotationConfiguration().configure().buildSessionFactory();
 Session session = sessions.openSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();

 List list = session.createQuery("from Message").list();

 tx.commit();
 tx = null;
 return list;

 } catch (HibernateException e) {
 if (tx != null) tx.rollback();
 log.log(Level.SEVERE, "Could not acquire message", e);
 throw new MotdException(
 "Failed to retrieve message from the database.",e);
 } finally {
 session.close();
 }
 }

Even for this trivial example there would be a further reduction in the amount of code required in a
real deployment—particularly in an application-server environment. For example, the SessionFactory
would normally be created elsewhere and made available to the application as a Java Native Directory
Interface (JNDI) resource.

Note that the manual coding to populate the message object has not been eradicated—rather, it has
been moved into an external configuration file that isolates this implementation detail from the main
logic.

Some of the additional code in the Hibernate 3 example given in Listing 1-4 actually provides
functionality (particularly transactionality and caching) beyond that of the JDBC example.

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

6

Mappings
As we have intimated, Hibernate needs something to tell it which tables relate to which objects. In
Hibernate parlance, this is called a mapping. Mappings can either be provided through Java
annotations, or through an XML mapping file. In this book, we will focus on using annotations, as we
can mark up the POJO Java classes directly. We find that using annotations gives us a clear picture of the
code and what we are trying to accomplish. Hibernate also takes a configuration-by-exception approach
for annotations – if we are satisfied with the default values that Hibernate provides for us, we do not
need to explicitly provide them as annotations. For instance, Hibernate uses the name of the POJO class
as the default value of the database table the object maps to. In our example, if we are satisfied with
using a database table named message, we do not need to define it in the source code.

Listing 1-5 shows the Message POJO with annotations for mapping the Java object into the database.

Listing 1-5. The POJO with mapping annotations

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Message {
 private Message() {
 }

 public Message(String messageText) {
 this.messageText = messageText;
 }

 public String getMessageText() {
 return messageText;
 }

 public void setMessageText(String messageText) {
 this.messageText = messageText;
 }

@Id
 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }
 private String messageText;
 private Integer id;

}

http://

CHAPTER 1 ■ AN INTRODUCTION TO HIBERNATE 3.5

7

Summary
In this chapter, we have considered the problems and requirements that have driven the development of
Hibernate. We have looked at some of the details of a trivial example application written with and
without the aid of Hibernate. We have glossed over some of the implementation details, but we will
discuss these in depth in Chapter 3.

In the next chapter, we will look at the architecture of Hibernate and how it is integrated into your
applications.

http://

www.allitebooks.com

http://
http://www.allitebooks.org

C H A P T E R 2

■ ■ ■

9

Integrating and Configuring
Hibernate

Compared to other Java persistence solutions, integrating Hibernate into a Java application is easy. The
designers of Hibernate avoided some of the more common pitfalls and problems with the existing Java
persistence solutions, and created a clean but powerful architecture. In practice, this means that you do
not have to run Hibernate inside any particular J2EE container or framework—Hibernate 3.5 only
requires Java 2 Standard Edition (J2SE), version 5.0 (or later).

At first, adding Hibernate to your Java project looks intimidating—the distribution includes a large
set of libraries. To get your first Hibernate application to work, you have to set up the database, the
mapping files or annotations, the configuration, and your plain old Java objects (POJOs). After you have
done all that, you need to write the logic in your application that uses the Hibernate session to actually
do something! But once you learn how to integrate Hibernate with your application, the basics apply for
any project that uses Hibernate.

If you already have an application that uses Hibernate 2, the migration path from Hibernate 2 to
Hibernate 3.5 is easy. While Hibernate 3.5 is not completely backward-compatible, most of the changes
are additional features that you can integrate into your existing application as you see fit. The Hibernate
developers provided implementations of the core Hibernate 2 objects in Hibernate 3.5 with the
Hibernate 2 methods for backward compatibility. We discuss the differences between Hibernate 2 and
Hibernate 3.5 in more depth in Appendix D.

One of the key features of Hibernate’s design is the principle of least intrusiveness—the Hibernate
developers did not want Hibernate to intrude into your application more than was necessary. This led to
several of the architectural decisions made for Hibernate. In Chapter 1 you saw how Hibernate can be
applied to solve persistence problems using conventional Java objects. In this chapter, we explain some
of the configuration details needed to support this behavior.

The Steps Needed to Integrate and Configure Hibernate
This chapter explains configuration and integration in detail, but for a quick overview, refer to the
following bulleted list to determine what you need to do to get your first Hibernate application up and
running. Chapter 3 leads you through the building of a pair of small example applications that use
Hibernate. The first of these is as simple as we could make it, so it is an excellent introduction to the
following necessary steps:

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

10

1. Identify the POJOs that have a database representation.

2. Identify which properties of those POJOs need to be persisted.

3. Annotate each of the POJOs to map your Java object's properties to columns in
a database table (covered in more detail in Chapter 7).

4. Create the database schema using the schema export tool, use an existing
database, or create your own database schema.

5. Add the Hibernate Java libraries to your application’s classpath (covered in
this chapter).

6. Create a Hibernate XML configuration file that points to your database and
your mapped classes (covered in this chapter).

7. In your Java application, create a Hibernate Configuration object that
references your XML configuration file (covered in this chapter).

8. Also in your Java application, build a Hibernate SessionFactory object from
the Configuration object (covered in this chapter).

9. Finally, retrieve Hibernate Session objects from the SessionFactory, and write
your data access logic for your application (create, retrieve, update, and
delete).

Don’t worry if you don’t understand every term or concept in the preceding list. After reading this
chapter, and then going through the example in the next chapter, you will know what these terms mean
and how they fit together.

Understanding Where Hibernate Fits in Your Java Application
You can call Hibernate from your Java application directly, or you can access Hibernate through another
framework. You can call Hibernate from a Swing application, a servlet, a portlet, a JSP page, or any other
Java application that has access to a database. Typically, you would use Hibernate to either create a data
access layer for an application or replace an existing data access layer.

Hibernate supports Java Management Extensions (JMX), J2EE Connector Architecture (JCA), and
Java Naming and Directory Interface (JNDI) Java language standards. Using JMX, you can configure
Hibernate while it is running. Hibernate may be deployed as a JCA connector, and you can use JNDI to
obtain a Hibernate session factory in your application. In addition, Hibernate uses standard Java
Database Connectivity (JDBC) database drivers to access the relational database. Hibernate does not
replace JDBC as a database connectivity layer—Hibernate sits on a level above JDBC.

In addition to the standard Java APIs, many Java web and application frameworks now integrate
with Hibernate. Hibernate’s simple, clean API makes it easy for these frameworks to support Hibernate
in one way or another. The Spring framework provides excellent Hibernate integration, including
generic support for persistence objects, a generic set of persistence exceptions, and transaction
management. Appendix C explains how Hibernate can be configured within a Spring application.

Regardless of the environment that you are integrating Hibernate into, certain requirements remain
constant. You will need to define the configuration details that apply—these are then represented by a
Configuration object. From the Configuration object, a single SessionFactory object is created; and
from this, Session objects are instantiated, through which your application accesses Hibernate’s
representation of the database.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

11

Deploying Hibernate
To integrate Hibernate with your Java application, you will need to use several Java libraries. The first
library is the Java Archive (JAR) file for your JDBC driver, which you will need to find for your specific
relational database. The Hibernate download does not include any JDBC drivers. You must obtain these
yourself—typically, the database provider will offer them as a separate download, or they may be
bundled with your database installation.

Because every relational database—and hence every JDBC driver—behaves slightly differently, the
Hibernate team created dialects to abstract away the differences. These dialects define the SQL variant
and the specific database features to use for each vendor’s database. Every project that uses Hibernate
must specify one dialect in the Hibernate configuration file. We discuss dialects in more detail further on
in the chapter. The Hibernate web site also contains a platform-specific FAQ that offers some solutions
to several vendor-specific questions.

If you encounter problems getting Hibernate to work with older JDBC versions, disable the
following two JDBC 2–specific features: batch update and scrollable result sets. Use the following
configuration values for Hibernate (we discuss the specifics of this configuration later in this chapter):

hibernate.jdbc.batch_size=0
hibernate.jdbc.use_scrollable_resultsets=false

Once you have configured the JDBC driver, your next step is to deploy hibernate3.jar with your
application. This JAR file is provided with the Hibernate 3.5 binary distribution. The file contains the
classes in the org.hibernate package, along with several DTD and XML Schema files. You will then need
to deploy the other required libraries.

Required Libraries for Running Hibernate 3.5

Hibernate requires several libraries beyond hibernate3.jar. These libraries are included in the
lib/required directory of your Hibernate 3.5 installation. Besides the libraries in lib/required,
Hibernate also uses a JPA library, which is included in the lib/jpa directory.

Hibernate 3.5 also requires a bytecode library to function. There are two bytecode libraries shipped
with the Hibernate distribution – javassist and CGLib. With Hibernate 3.5, you need to use one or the
other. In this book, we will use javassist, as it is the default library.

■ Note If you are already using CGlib in your application, or if you would like to try it for performance or memory

usage testing, you will need to set a JVM level property or a property in hibernate.properties (not the Hibernate

configuration XML file). The property's name is org.hibernate.bytecode.provider, and the new value should

be cglib. To change this in an application server environment, you will probably need to specify it as a system

property for the application server's JVM. If everything is working well, use the default Hibernate bytecode library,

javassist, as it is likely to be better supported in future versions of Hibernate.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

12

There are several optional libraries included with the Hibernate 3.5 distribution. If you build
Hibernate from source, a few of these are necessary for Hibernate to compile. Other libraries provide
connection pools, additional caching functionality (the Session cache is mandatory), and the JCA API.

JMX and Hibernate

JMX is a standard API for managing Java applications and components—mostly accessed through
MBeans, which represent wrappers for services and resources. Hibernate provides two MBeans for JMX:
HibernateServiceMBean and StatisticsServiceMBean. Both of these are interfaces that reside in the
org.hibernate.jmx package. The HibernateService and StatisticsService classes implement the
interfaces and reside within the same package. The HibernateServiceMBean provides getter and setter
methods for many of the Hibernate configuration properties, including the data source, transaction
strategy, caching, dialect, and other database options. It also provides a mechanism for adding mapping
files to the configuration. When the HibernateServiceMBean starts, it creates a Configuration object from
its properties and mapping files, and then builds a SessionFactory object. The SessionFactory object
binds to the JNDI location specified on the JMX MBean, and your Java application can then use standard
JNDI calls to obtain the session factory.

The other MBean supplies statistics. Hibernate can log statistics about the performance of query
execution, caching, and object entity operations. Using a JMX console, an administrator can enable
statistics and then access up-to-date performance indicators through the console.

The advantage of JMX over programmatic access to these features is that administrators or other
non-developers may change properties at run time through a standardized JMX console that is
independent of Hibernate and applies to a range of other frameworks and components.

Hibernate Configuration
Before you create a session factory, you must tell Hibernate where to find the mapping information that
defines how your Java classes relate to the database tables. Hibernate also requires a set of configuration
settings, which are usually supplied as a standard Java properties file called hibernate.properties, or as
an XML file named hibernate.cfg.xml.

We recommend using the XML format. This allows you to specify the location of the mapping
information from the configuration files—the alternative (when using properties files) being to
programmatically supply this information to Hibernate through the Configuration class.

Listing 2-1 is a reprint of Listing 1-4 from the previous chapter, which shows a complete usage of
Hibernate from within an application. The parts of this listing that deal with configuration and
integration are highlighted.

Listing 2-1. The Hibernate Approach to Retrieving the POJO

 public static List getMessages(int messageId)
 throws MessageException
 {
 SessionFactory sessions =
 new AnnotationConfiguration().configure().buildSessionFactory();
 Session session = sessions.openSession();

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

13

 try {
 session.beginTransaction();
 List list = session.createQuery("from Message").list();
 session.getTransaction().commit();
 return list;

 } catch (HibernateException e) {
 if (session.getTransaction() != null)
 session.getTransaction().rollback();

 log.log(Level.SEVERE, "Could not acquire message", e);
 throw new MotdException(
 "Failed to retrieve message from the database.",e);
 } finally {
 session.close();
 }
 }

As you can see, we called the configure() method on the org.hibernate.cfg.
AnnotationConfiguration class without any arguments. This tells Hibernate to look in the classpath for
the configuration file. The default name for the configuration file is hibernate.cfg.xml—if you change it,
you will need to pass that name explicitly as an argument to the configure() method. We discuss the
configure() method and XML configuration in more detail later in this chapter.

The configure() method returns an instance of AnnotationConfiguration, which can be used to
obtain a Hibernate SessionFactory instance by calling the buildSessionFactory() method, as follows:
public SessionFactory buildSessionFactory() throws HibernateException

The SessionFactory is a heavyweight object, and your application should use one Hibernate
SessionFactory object for each discrete database instance that it interacts with. The SessionFactory
relies on the Hibernate configuration properties, which we detail in the next section of this chapter The
SessionFactory object is thread-safe, so you can reuse the session factory in applications with multiple
threads – such as most web applications.

After you have obtained the SessionFactory, you can retrieve Hibernate org.hibernate.Session
objects. While the SessionFactory is a heavyweight object, the Session objects are lightweight. You
perform your persistence operations using Session objects. Each thread in your application should get a
separate Session object from the session factory.

To sum up, there are three classes that you need to use: AnnotationConfiguration, SessionFactory,
and Session.

• Use the AnnotationConfiguration class to read (and to set) configuration details.

• Use the AnnotationConfiguration object to create a SessionFactory object.

• Use the SessionFactory object to create Session objects as needed.

A typical application will have one AnnotationConfiguration object, which will only be used in
initialization. There will be one SessionFactory object that will exist throughout the life cycle of the
application. Your application will ask this SessionFactory object for a Session any time it needs to work
with the database. The application could retrieve an object, make some property changes, and then
persist it, all within one session, and then close down the Session object.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

14

Hibernate Properties

Typically, you will specify your Hibernate configuration in a properties file called hibernate.properties
in the root directory of your application’s classpath, or as identified values in a hibernate.cfg.xml file.
Hibernate has an extensive list of properties for configuration (see Table 2-1).

While the list of properties you can use for configuration is extensive, the number of properties you
will probably use in your Hibernate applications is a lot smaller. At its simplest, you just need to tell
Hibernate where to find a database to connect to and tell Hibernate what type of database it is (MySQL,
SQL Server, Oracle, etc.). Following is a simple example of a Hibernate properties file that configures a
database connection to an HSQL database and also turns on SQL logging statements for debugging:

hibernate.connection.driver_class = org.hsqldb.jdbcDriver
hibernate.connection.url = jdbc:hsqldb:file:exampledb;shutdown=true
hibernate.connection.username = admin
hibernate.connection.password = password
hibernate.dialect = org.hibernate.dialect.HSQLDialect
hibernate.show_sql = true

Unless you provide a JDBC connection programmatically in your application, you must either
configure a JDBC connection here or specify the JNDI name of a container-provided JDBC connection.
You must also configure the SQL dialect appropriate to the database that you are using. All the other
properties take sensible default values, so they do not need to be explicitly stated.

Table 2-1. Hibernate Configuration Property Names and Descriptions

Property Name Description

hibernate.c3p0.acquire_increment The C3P0 database connection pool improves
performance of Hibernate applications by managing
database connections. Instead of connecting to the
database every time a connection is asked for, the
connection pool keeps a collection of open database
connections for the application to use. There are several
C3P0 configuration properties for Hibernate. After the
connection pool is completely utilized, determines how
many new connections are added to the pool.

hibernate.c3p0.idle_test_period Determines how long to wait before a connection is
validated.

hibernate.c3p0.max_size The maximum size of the connection pool for C3PO.

hibernate.c3p0.max_statements The upper limit for the SQL statement cache for C3PO.

hibernate.c3p0.min_size The minimum size of the connection pool for C3PO.

hibernate.c3p0.timeout The timeout for C3PO (in seconds).

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

15

Property Name Description

hibernate.cache.provider_class Specifies a class that implements the
org.hibernate.cache.CacheProvider interface.

hibernate.cache.query_cache_factory Specifies a class that implements the
org.hibernate.cache.QueryCacheFactory interface for
getting QueryCache objects.

hibernate.cache.region_prefix The prefix to use for the name of the cache.

hibernate.cache.use_minimal_puts Configures the cache to favor minimal puts over
minimal gets.

hibernate.cache.use_query_cache Specifies whether to use the query cache.

hibernate.cache.use_second_level_cache Determines whether to use the Hibernate second-level
cache.

hibernate.cglib.use_reflection_optimizer Instead of using slower standard Java reflection, uses
the CGLib code generation library to optimize access to
business object properties. The application may be
slower at startup if this is enabled, but with faster
runtime performance.

hibernate.connection.autocommit Allows autocommit mode to be used for the JDBC
connection (not usually a good idea).

hibernate.connection.datasource The DataSource name for a container-managed data
source.

hibernate.connection.driver_class The JDBC driver class.

hibernate.connection.isolation The transaction isolation level for the JDBC connection.

hibernate.connection.................... Passes any JDBC property you like to the JDBC
connection—for instance,
hibernate.connection.debuglevel=info would pass a
JDBC property called debuglevel.

hibernate.connection.password The database password.

hibernate.connection.pool_size Limits the number of connections waiting in the
Hibernate database connection pool.

hibernate.connection.provider_class The class that implements Hibernate’s
ConnectionProvider interface.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

16

Continued

Property Name Description

hibernate.connection.url The JDBC URL to the database instance.

hibernate.connection.username The database username.

hibernate.default_catalog The default database catalog name that Hibernate uses
to generate SQL for unqualified table names.

hibernate.default_schema The default database owner name that Hibernate uses
to generate SQL for unqualified table names.

hibernate.dialect The SQL dialect to use for Hibernate; varies by database.
See this chapter’s “SQL Dialects” section.

hibernate.generate_statistics Determines whether statistics are collected.

hibernate.hbm2ddl.auto Automatically creates, updates, or drops the database
schema on startup and shut down. There are three
possible values: create, create-drop, and update. Be
careful with create-drop!

hibernate.jdbc.batch_size The maximum batch size for updates.

hibernate.jdbc.batch_versioned_data Determines whether Hibernate batches versioned data,
which depends on your JDBC driver properly
implementing row counts for batch updates. Hibernate
uses the row count to determine whether the update is
successful.

hibernate.jdbc.factory_class The class name of a custom implementation of the
org.hibernate.jdbc.Batcher interface for controlling
JDBC prepared statements.

hibernate.jdbc.fetch_size Determines how many rows the JDBC connection will
try to buffer with every fetch. This is a balance between
memory and minimizing database network traffic.

hibernate.jdbc.use_get_generated_keys Determines Hibernate’s behavior with respect to
generated keys. If this property is set to true, and if the
database driver supports the JDBC 3.0 generated keys
API, Hibernate will retrieve generated keys from the
statement after it executes an SQL query.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

17

Property Name Description

hibernate.jdbc.use_scrollable_resultset Determines whether Hibernate will use JDBC scrollable
result sets for a user-provided JDBC connection.

hibernate.jdbc.use_streams_for_binary Determines whether binary data is read or written over
JDBC as streams.

hibernate.jndi.class The InitialContext class for JNDI.

hibernate.jndi.<JNDIpropertyname> Passes any JNDI property you like to the JNDI
InitialContext.

hibernate.jndi.url Provides the URL for JNDI.

hibernate.max_fetch_depth Determines how deep Hibernate will go to fetch the
results of an outer join. Used by Hibernate’s outer join
loader.

hibernate.order_updates Orders SQL update statements by each primary key.

hibernate.proxool Prefix for the Proxool database connection pool.

hibernate.proxool.existing_pool Configures Proxool with an existing pool.

hibernate.proxool.pool_alias The alias to use for any of the configured Proxool pools
previously mentioned.

hibernate.proxool.properties Path to a Proxool properties file.

hibernate.proxool.xml Path to a Proxool XML configuration file.

hibernate.query.factory_class Specifies an HQL query factory class name.

hibernate.query.substitutions Any possible SQL token substitutions that Hibernate
should use.

hibernate.session_factory_name If set, causes the Hibernate session factory to bind to
this JNDI name.

hibernate.show_sql Logs the generated SQL commands.

hibernate.sql_exception_converter Specifies which SQLExceptionConverter to use to
convert SQLExceptions into JDBCExceptions.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

18

Continued

Property Name Description

hibernate.transaction.auto_close_session Automatically closes the session after a transaction.

hibernate.transaction.factory_class Specifies a class that implements the
org.hibernate.transaction.TransactionFactory
interface.

hibernate.transaction.flush_before_
completion

Automatically flushes before completion.

hibernate.transaction.manager_lookup_
class

Specifies a class that implements the
org.hibernate.transaction.TransactionManagerLookup
interface.

hibernate.use_identifier_rollback Determines whether Hibernate uses identifier rollback.

hibernate.use_sql_comments Generates SQL with comments.

hibernate.wrap_result_sets Turns on JDBC result set wrapping with column names.

hibernate.xml.output_stylesheet Specifies an XSLT stylesheet for Hibernate’s XML data
binder. Requires xalan.jar.

jta.UserTransaction The JNDI name for the UserTransaction object.

XML Configuration

As we have already mentioned, Hibernate offers XML configuration capabilities. To use them, you must
create an XML configuration file, normally called hibernate.cfg.xml, and place it in the root of your
application’s classpath. The XML configuration file must conform to the Hibernate 3 Configuration
DTD, which is available from http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd.

Listing 2-2 shows an example XML configuration for Hibernate.

Listing 2-2. An XML Configuration for Hibernate

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM ➥

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">org.hsqldb.jdbcDriver</property>
 <property

www.allitebooks.com

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://
http://www.allitebooks.org

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

19

name="hibernate.connection.url">jdbc:hsqldb:file:exampledb;shutdown=true</property>
 <property name="hibernate.connection.username">admin</property>
 <property name="hibernate.dialect">org.hibernate.dialect.HSQLDialect</property>
 <property name="connection.password">password</property>
 <property name="show_sql">true</property>

 <mapping jar="hibernate-mappings.jar"/>
 <mapping class="com.apress.hibernate.User"/>
 </session-factory>
</hibernate-configuration>

When you use the XML configuration file, you do not need to use the hibernate. prefix for
properties. As you can see in Listing 2-2, the dialect property is simply dialect, not hibernate.dialect.
However, we usually elect to include the prefix for the sake of consistency. If you are already using
hibernate.properties, hibernate.cfg.xml will override any settings in hibernate.properties. Both of
these files should be located in the root of your application’s classpath.

In addition to specifying the properties listed in Table 2-1 to configure a session factory, with the
<property> tag you can also configure mapping files, caching, listeners, and the JNDI name for the
session factory in the XML configuration. Listing 2-2 includes two <mapping> elements that identify a JAR
file containing mapping files and a specific class with Hibernate annotations that is available on the
classpath, respectively. We discuss mapping file configuration in the next section and caching in
Chapter 9.

After placing your XML configuration file in the root directory of the classpath, you will need to call
one of the configure() methods on your application’s AnnotationConfiguration object. With the default
file name (hibernate.cfg.xml), you can call configure() with no arguments. If you used a different file
name (for instance, because you have production, staging, user acceptance test, and development
environments, with different databases), use one of the following methods on a
AnnotationConfiguration object:

• public AnnotationConfiguration configure(String) throws
HibernateException: Loads the XML configuration from a resource accessible by
the current thread’s context class loader

• public AnnotationConfiguration configure(URL) throws HibernateException:
Retrieves the XML configuration from a valid URL

• public AnnotationConfiguration configure(File) throws HibernateException:
Uses an XML configuration file on the file system

Annotated Classes

Once you have created your annotated classes for Hibernate, it needs to know where to find them.
Before you create the session factory, add them to your AnnotationConfiguration object, or specify them
in the hibernate.cfg.xml XML configuration file. If you choose to add the annotated classes directly to
an instance of AnnotationConfiguration, use one of the following methods:

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

20

• addClass(Class): Takes a Java class name (such as
com.hibernatebook.config.Example), which is then inspected for Hibernate
annotations and added as a mapped class

• addJar(File): Adds any annotated classes in the specified JAR file to the
AnnotationConfiguration object

The addJar()method is the most convenient because it allows you to load all of your Hibernate
annotated classes at one time. This method simplifies code configuration, layout, and refactoring.

As an alternative to specifying the locations of the mapping information in the code, you can instead
use the <mapping> element in the hibernate.cfg.xml XML configuration file. For annotated classes, the
<mapping> element has two possible attributes—jar and class—which map to the addJar()and
addClass() methods on the AnnotationConfiguration object.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM ➥

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <mapping jar="hibernate-mappings.jar"/>
 <mapping class="com.apress.hibernate.User"/>
 </session-factory>
</hibernate-configuration>

We suggest using the XML configuration file to specify the mappings, as that way you can easily use
application frameworks such as Spring that will configure your Hibernate session factory for you.

Naming Strategy

If your project has an existing standard for naming database tables or columns, or you would like to
specify exactly how Hibernate maps Java class names to database table names, you can use Hibernate’s
naming strategy functionality. Custom naming strategies specify how Hibernate maps Java class names
to database table names, properties to column names, and the name of a table used to hold a collection
of properties for a Java class. A naming strategy may also override the table names and column names
specified in the Hibernate mapping documents—for instance, you might use this to enforce a consistent
application-wide prefix to table names.

Although you can explicitly specify the names of all of the tables and columns in the mapping
document, if you have clear and consistent rules for naming already, implementing a custom naming
strategy can save a lot of time and frustration. Equally, if you decide to add a prefix to all database table
names after the fact, it is easy to do so with a naming strategy, while it would be a pain to correct these in
every Hibernate mapping document.

■ Note Using Hibernate with an existing well-specified database often means creating a custom naming strategy

for Hibernate. If the database tables have a prefix, it may be cleaner to implement a naming strategy that adds that

prefix than to specify the full table name with a prefix in every Hibernate mapping document.

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

21

A custom naming strategy must implement the org.hibernate.cfg.NamingStrategy interface or
extend one of the two provided naming strategy classes, org.hibernate.cfg.DefaultNamingStrategy or
org.hibernate.cfg.ImprovedNamingStrategy. The default naming strategy simply returns the unqualified
Java class name as the database table name. For instance, the table name for the Java class
com.hibernatebook.AccessGroups would be AccessGroups. The column name would be the same as the
property name, and the collection table would have the same name as the property.

The improved naming strategy adds underscores in place of uppercase letters in mixed-case table
and column names, and then lowercases the name. For instance, the same
com.hibernatebook.AccessGroups Java class would correspond to a database table named access_groups.

Neither of these naming strategies takes into account the case in which you have two classes with
the same name in different packages in your application. For instance, if you had two classes,
com.hibernatebook.webcast.Group and com.hibernatebook.security.Group, both would default to a table
named Group, which is not what you want. You would have to explicitly set the table name in the
mapping of at least one class.

Once you have created a naming strategy, pass an instance of it to the AnnotationConfiguration
object’s setNamingStrategy() method, as follows:

public AnnotationConfiguration setNamingStrategy(NamingStrategy namingStrategy)

You must call this method before building the session factory from the AnnotationConfiguration.
For example, here’s the code for using the ImprovedNamingStrategy naming strategy:

AnnotationConfiguration conf = new AnnotationConfiguration()
conf.setNamingStrategy(ImprovedNamingStrategy.INSTANCE);

Using a Container-Managed Data Source

When running in an environment with a JNDI server, Hibernate can obtain a data source through a JNDI
lookup. You must use the hibernate.connection.datasource property to specify the JNDI name, and
then you may set the optional hibernate.jndi.url and hibernate.jndi.class properties to specify the
location of the container’s JNDI provider and the class name of the container’s implementation of the
JNDI InitialContextFactory interface. You may also use the hibernate.connection.username and
hibernate.connection.password properties to specify the database user your application uses. For
example, your hibernate.properties file might have these lines for a WebLogic 7.0 managed data
source:

hibernate.connection.datasource=java:/comp/env/jdbc/TestDB
hibernate.connection.username=dbuser
hibernate.connection.password=dbpassword
hibernate.jndi.url=t3://localhost:7001
hibernate.jndi.class=weblogic.jndi.WLInitialContextFactory

Typically only the mandatory datasource property is needed.

The Session Factory
You use the Hibernate session factory to create Session objects that manage connection data, caching,
and mappings. Your application is responsible for managing the session factory. You should only have

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

22

one session factory unless you are using Hibernate to connect to two or more database instances with
different settings, in which case you should still have one session factory for each database instance.

In order to maintain backward compatibility with Hibernate 2, the Hibernate 3 session factory can
also create org.hibernate.classic.Session session objects. These “classic” session objects implement
all of the Hibernate 3 session functionality in addition to the deprecated Hibernate 2 session methods.
We briefly discuss the changes in core functionality between Hibernate 2 and 3 in Appendix D.

You obtain a session from the SessionFactory object using one of the four openSession() methods.
The no-argument openSession() method opens a session, with the database connection and interceptor
specified in the SessionFactory’s original configuration. You can explicitly pass a JDBC connection to
use, a Hibernate interceptor, or both as arguments to the remaining openSession() methods.

public org.hibernate.classic.Session openSession()
 throws HibernateException

public org.hibernate.classic.Session openSession(Interceptor interceptor)
 throws HibernateException

public org.hibernate.classic.Session openSession(
 Connection connection,
 Interceptor interceptor)

public org.hibernate.classic.Session openSession()
 throws HibernateException

We discuss Hibernate interceptors in Appendix A. You can also retrieve metadata and statistics from
the SessionFactory.

The other important method on the session factory is close(). The close() method releases all the
resource information used by the session factory and made available to the Session objects. It is
therefore important that any related Session objects have been closed before invoking this to close the
session factory.

When the session factory closes, it destroys the cache for the entity persisters and collection
persisters, and also destroys the query cache and the timestamps cache. Then the session factory closes
the JDBC connection provider and removes the current instance from its JNDI object factory binding.

public void close() throws HibernateException

The Hibernate developers designed their implementation of the SessionFactory interface to be
scalable in a multithreaded application.

SQL Dialects
JDBC abstracts away many of the underlying connection details for each relational database, yet every
relational database supports a different set of features and uses a slightly different version of SQL.
Among the features that differ between relational databases are the syntax for marking identity columns,
column data types, available SQL functions, foreign key constraint syntax, limits, GUID support, and
support for cascade deletes.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

23

Hibernate abstracts away all of these changes into dialect classes. Each supported database has its
own dialect. When Hibernate constructs an SQL query, it obtains appropriate syntax information for the
current database from the dialect. Hibernate 3 comes with over 20 different dialects. All of these
standard dialects are supplied within the org.hibernate.dialect package. Table 2-2 shows the
supported databases in Hibernate 3 and their corresponding dialect classes.

Table 2-2. Supported Databases and Dialect Class Names for Hibernate 3.5

Database Name Dialect Class Name

DB2/390 DB2390Dialect

DB2/400 DB2400Dialect

DB2 DB2Dialect

Derby DerbyDialect

Firebird FirebirdDialect

FrontBase FrontBaseDialect

H2 H2Dialect

HSQLDB HSQLDialect

Informix InformixDialect

Ingres IngresDialect

InterBase InterbaseDialect

JDataStore JDataStoreDialect

Mimer SQL MimerSQLDialect

Mckoi MckoiDialect

MySQL 5 MySQL5Dialect

MySQL (< 5.x) MySQLDialect

MySQL with InnoDB tables MySQLInnoDBDialect

MySQL with MyISAM tables MySQLMyISAMDialect

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

24

Continued

Database Name Dialect Class Name

Oracle9i Oracle9Dialect

Oracle9i (DataDirect drivers) DataDirectOracle9Dialect

Oracle (< 9.x) OracleDialect

PointBase PointbaseDialect

PostgreSQL PostgreSQLDialect

Progress ProgressDialect

RDMS for Unisys OS2200 RDMSOS2200Dialect

SAP DB SAPDBDialect

SQL Server SQLServerDialect

Sybase SybaseDialect

Sybase 11 Sybase11Dialect

Sybase Anywhere SybaseAnywhereDialect

Times Ten 5.1 TimesTenDialect

Configure your chosen dialect by supplying the fully qualified dialect class name as the value for the

hibernate.dialect configuration property.
Through Hibernate Query Language (HQL), Hibernate provides object-querying functionality that is

database-independent. Hibernate translates the HQL queries into database-specific SQL using hints
provided by the SQL dialect classes. We discuss HQL in more detail in Chapter 9.

Hibernate also provides a native SQL facility, which is especially useful for porting existing JDBC
applications to Hibernate or for improving the performance of complicated queries.

http://

CHAPTER 2 ■ INTEGRATING AND CONFIGURING HIBERNATE

25

Summary
In this chapter, we explained how to integrate Hibernate into your Java applications. We also detailed
the configuration options for Hibernate, including the available Hibernate property settings. We
discussed how naming strategies aid in the creation of consistent company- or application-wide
database table-naming conventions, and how they help you to map your Hibernate classes to databases
with existing naming conventions. Finally, we discussed how Hibernate uses dialects to manage the
different behaviors of different database platforms.

In the next chapter, we build and configure a pair of simple Hibernate applications that illustrate
the core Hibernate concepts discussed in the first two chapters.

http://

http://

C H A P T E R 3

■ ■ ■

27

Building a Simple Application

In this chapter, you’ll take another look at some of the steps necessary to get the example from Chapter 1
up and running. You’ll also build a somewhat larger application from scratch. All of the code in this book
is available for download from the Apress site (www.apress.com).

Installing the Tools
To run the examples in this chapter, you will need to install a number of tools. You will require a JDK
(Java 6 or higher), the Hibernate and Hibernate Tools distributions, the Ant build tool, the Simple
Logging Facade for Java distribution, and the HSQLDB database. Table 3-1 lists the specific tools you will
need and where you can find them.

Table 3-1. The Tools Used in This Book

Tool Version Download Location

Hibernate 3.5.1 http://hibernate.org

Hibernate Tools 3.2.4 http://hibernate.org

Java JDK 6.0 http://java.sun.com

Ant 1.8.0 http://ant.apache.org

Simple Logging
Facade for Java

1.5.11 http://www.slf4j.org

HSQLDB 2.0.0 http://hsqldb.org

Hibernate and Hibernate Tools

The latest version of Hibernate is always available from http://hibernate.org, under the menu link
named “Download.” Various older versions and additional libraries are available from the resulting

http://www.apress.com
http://hibernate.org
http://hibernate.org
http://java.sun.com
http://ant.apache.org
http://www.slf4j.org
http://hsqldb.org
http://hibernate.org
http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

28

page, but you should select Hibernate Core 3.5.1 or a later version. Download the archive and unpack it
to a local directory. The unpacked archive contains all the source code for Hibernate itself, a JAR library
built from this source, and most of the library files that are necessary to run the sample.

You should then download Hibernate Tools from the same site. Hibernate Tools provides various
plug-ins for the Ant build tool and the free Eclipse IDE. In this chapter, we make use of the Ant plug-ins
only, but we discuss the Eclipse features in Appendix B. Again, the archive should be downloaded and
unpacked to a local directory. This archive does not include the source code (which is available
elsewhere on the www.hibernate.org site, if you decide to take a look at it). We use the Commons Logging
framework library and the Freemarker library (packaged with the distribution) for our schema export
task. They are added to the tools classpath in the Ant build file.

Simple Logging Facade for Java (SLF4J) 1.5.11

Hibernate relies on the Simple Logging Facade for Java (SLF4J) to allow you to pick your favorite logging
system and use it for your application and for Hibernate, rather than forcing you to use one just for
Hibernate. Typically, you might use the JDK logging, the open source Logback project, or the open
source Log4J project. In this case, we are keeping things simple, so we will use the SLF4J simple logging.
SLF4J works by figuring out which implementation of the SLF4J API is available on the classpath, and
then uses that. So we will need to unpack the SLF4J distribution and add the path of logging
implementation we plan to use to the build.properties file for our application.

Because we are using the simple logger, we do not need to include a logging properties file in our
classpath. You can use other loggers for your projects, however, by specifying the corresponding SLF4J
implementation to use.

HSQLDB 2.0.0

The database we will be using in our examples is the HSQL database. This is written in Java and is freely
available open source software. While we used version 2.0.0 for our examples, we expect that any later
version will be suitable. HSQL is derived from code originally released as “Hypersonic.” You may
encounter the term in some of the HSQL documentation and should treat it as synonymous with
“HSQL.” We may also refer to the product as HSQLDB when it might otherwise be mistaken for
Hibernate Query Language (HQL), whose acronym is distressingly similar!

Our examples are tailored to HSQL because HSQL will run on any of the platforms that Hibernate
will run on, and because HSQL is freely available with minimal installation requirements. However, if
you want to run the examples with your own database, then the differences should boil down to the
following:

• The Hibernate dialect class

• The JDBC driver

• The connection URL for the database

• The username for the database

• The password for the database

You will see where these can be specified later in this chapter. You will notice that where we specify
the URL for connection to the database, we often append a shutdown=true attribute. This fixes a minor
problem in which HSQLDB does not write its changes to disk until a Connection object is closed

www.allitebooks.com

http://www.hibernate.org
http://
http://www.allitebooks.org

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

29

(something that may never happen when a connection is being managed by Hibernate’s own
connection pooling logic). This is not necessary on non-embedded databases.

Ant 1.8.0

You will want to install the Ant build tool. We will not attempt to explain the build.xml format in detail; if
you are familiar with Ant, then the example build script provided in this chapter will be enough to get
you started—if not, then Ant is a topic in its own right. We would recommend Enterprise Java
Development on a Budget, by Christopher M. Judd and Brian Sam-Bodden (Apress, 2004), for good
coverage of open source tools such as Ant.

While Ant in general lies outside the scope of this book, we will discuss the use of the Hibernate
tasks used by our scripts.

Listing 3-1 provides the Ant script to build the example for this chapter.

Listing 3-1. An Ant Script to Build the Chapter 3 Examples

<project name="sample">

 <property file="build.properties"/>

 <property name="src" location="src"/>
 <property name="bin" location="bin"/>
 <property name="sql" location="sql"/>
 <property name="hibernate.tools"
 value="${hibernate.tools.home}${hibernate.tools.path}"/>

 <path id="classpath.base">
 <pathelement location="${src}"/>
 <pathelement location="${bin}"/>
 <pathelement location="${hibernate.home}/hibernate3.jar"/>
 <pathelement location="${slf4j.implementation.jar}"/>
 <fileset dir="${hibernate.home}/lib" includes="**/*.jar"/>
 <pathelement location="${hsql.home}/lib/hsqldb.jar"/>
 </path>

 <path id="classpath.tools">
 <path refid="classpath.base"/>
 <pathelement
 location="${hibernate.tools.lib}/commons-logging-1.0.4.jar"/>
 <pathelement
 location="${hibernate.tools}/freemarker.jar"/>
 <pathelement
 location="${hibernate.tools}/hibernate-tools.jar"/>
 </path>

 <taskdef name="htools"
 classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="classpath.tools"/>

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

30

 <target name="exportDDL" depends="compile">
 <mkdir dir="${sql}"/>
 <htools destdir="${sql}">
 <classpath refid="classpath.tools"/>
 <annotationconfiguration
 configurationfile="${src}/hibernate.cfg.xml"/>
 <hbm2ddl drop="true" outputfilename="sample.sql"/>
 </htools>
 </target>

 <target name="compile">
 <javac srcdir="${src}" destdir="${bin}" classpathref="classpath.base"/>
 </target>

 <target name="populateMessages" depends="compile">
 <java classname="sample.PopulateMessages" classpathref="classpath.base"/>
 </target>

 <target name="listMessages" depends="compile">
 <java classname="sample.ListMessages" classpathref="classpath.base"/>
 </target>

 <target name="createUsers" depends="compile">
 <java classname="sample.CreateUser" classpathref="classpath.base">
 <arg value="dave"/>
 <arg value="dodgy"/>
 </java>
 <java classname="sample.CreateUser" classpathref="classpath.base">
 <arg value="jeff"/>
 <arg value="jammy"/>
 </java>
 </target>

 <target name="createCategories" depends="compile">
 <java classname="sample.CreateCategory" classpathref="classpath.base">
 <arg value="retro"/>
 </java>
 <java classname="sample.CreateCategory" classpathref="classpath.base">
 <arg value="kitsch"/>
 </java>
 </target>

 <target name="postAdverts" depends="compile">
 <java classname="sample.PostAdvert" classpathref="classpath.base">
 <arg value="dave"/>
 <arg value="retro"/>
 <arg value="Sinclair Spectrum for sale"/>
 <arg value="48k original box and packaging"/>
 </java>

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

31

 <java classname="sample.PostAdvert" classpathref="classpath.base">
 <arg value="dave"/>
 <arg value="kitsch"/>
 <arg value="Commemorative Plates"/>
 <arg value="Kitten and puppies design"/>
 </java>
 <java classname="sample.PostAdvert" classpathref="classpath.base">
 <arg value="jeff"/>
 <arg value="retro"/>
 <arg value="Atari 2600 wanted"/>
 <arg value="Must have original joysticks."/>
 </java>
 <java classname="sample.PostAdvert" classpathref="classpath.base">
 <arg value="jeff"/>
 <arg value="kitsch"/>
 <arg value="Inflatable Sofa"/>
 <arg value="Leopard skin pattern. Nice."/>
 </java>
 </target>

 <target name="listAdverts" depends="compile">
 <java classname="sample.ListAdverts" classpathref="classpath.base"/>
 </target>

</project>

The properties file imported in the first line provides the paths to your installed libraries, and you
should adjust it as appropriate (as shown in Listing 3-2). If you unpack Hibernate 3.5.1, it will create a
directory called hibernate-distribution-3.5.1, which we have renamed to hibernate-3.5.1 and placed
in a directory called hibernate; we have done something similar with the HSQL database directory.

The Hibernate Tools archive currently unpacks to two directories (plugins and features). We have
created a parent directory to contain these called hibernate-tools-3.2.4. The path to the appropriate
JAR file (hibernate-tools.jar) within the unpacked directory is dependent upon the specific Hibernate
Tools version, so we have added the hibernate.tools.path property to point our build script at this. We
also added a path to the Hibernate libraries contained in the Hibernate Tools distribution so that we can
load the Commons Logging library for our Hibernate Tools to use.

Listing 3-2. The build.properties File to Configure the Ant Script

Path to the hibernate install directory
hibernate.home=/hibernate/hibernate-3.5.1

Path to the hibernate-tools install directory
hibernate.tools.home=/hibernate/hibernate-tools-3.2.4

Path to hibernate-tools.jar relative to hibernate.tools.home
hibernate.tools.path=/plugins/org.hibernate.eclipse_3.2.4.GA-R200905070146-H18/lib/tools

Path to hibernate-tools hibernate libraries relative to hibernate.tools.home
hibernate.tools.lib.path=/plugins/org.hibernate.eclipse_3.2.4.GA-R200905070146-
H18/lib/hibernate

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

32

Path to the SLF4J implementation JAR for the logging framework to use
slf4j.implementation.jar=/slf4j/slf4j-1.5.11/slf4j-simple-1.5.11.jar

Path to the HSQL DB install directory
hsql.home=/hsqldb/hsqldb_2.0.0

Aside from the configuration settings, the only oddity in the build.xml file is the configuration and
use of a Hibernate-specific Ant task. The taskdef (shown in Listing 3-3) makes this task available for use,
using the appropriate classes from the tools.jar file.

Listing 3-3. Defining the Hibernate Tools Ant Tasks

<taskdef name="htools"
 classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="classpath.tools"/>

This task provides several subtasks, but in this chapter we will only make use of the hbm2ddl subtask.
This reads in the mapped classes and configuration files and generates Data Definition Language (DDL)
scripts to create an appropriate schema in the database to represent our entities. This way we do not
need to maintain the database schema creation scripts ourselves, changing it every time we add, change,
or remove something from our Hibernate mappings. This is very useful when designing new
applications that use Hibernate.

Table 3-2 shows the basic directories that our build script assumes, relative to the example project’s
root.

Table 3-2. The Project Directories

Directory Contents

src Source code and configuration files (excluding those directly related to the build)

bin Compiled class files

sql Generated DDL scripts

The root of the project contains the build script and build configuration file; it will also contain the

database files generated by HSQL when the exportDDL task is run.

The Ant Tasks

Table 3-3 shows the tasks contained in the Ant build script.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

33

Table 3-3. The Tasks Available in the Example Ant Script

Task Action

exportDDL Creates the appropriate database objects. It also generates a script that can be run
against an HSQL database to re-create these objects if necessary.

compile Builds the class files. This task is a dependency of all the tasks except exportDDL
(which does not require the class files), so it is not necessary to invoke it directly.

populateMessages Populates the database with a sample message.

listMessages Lists all messages stored in the database by populateMessages.

createUsers Creates a pair of users in the database for the Advert example.

createCategories Creates a pair of categories in the database for the Advert example.

postAdverts Creates several adverts in the database for the Advert example.

listAdverts Lists the adverts in the database for the Advert example.

Creating a Hibernate Configuration File
There are several ways that Hibernate can be given all of the information that it needs to connect to the
database and determine its mappings. For our Message example, we used the configuration file
hibernate.cfg.xml placed in our project’s src directory and given in Listing 3-4.

Listing 3-4. The Message Application’s Configuration File

<<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

 <hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.url">
 jdbc:hsqldb:file:testdb;shutdown=true
 </property>
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"></property>
 <property name="hibernate.connection.pool_size">0</property>

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

34

 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>
 <property name="hibernate.show_sql">false</property>

 <!-- "Import" the mapping resources here -->
 <mapping class="sample.entity.Message"/>

 </session-factory>
</hibernate-configuration>

The various database-related fields (hibernate.connection.*) should look pretty familiar from
setting up JDBC connections, with the exception of the hibernate.connection.pool property, which is
used to disable a feature (connection pooling) that causes problems when using the HSQL database. The
show_sql value, set to false in our example, is extremely useful when debugging problems with your
programs—when set to true, all of the SQL prepared by Hibernate is logged to the standard output
stream (i.e., the console).

The SQL dialects, discussed in Chapter 2, allow you to select the database type that Hibernate will
be talking to. You must select a dialect, even if it is GenericDialect—most database platforms accept a
common subset of SQL, but there are inconsistencies and extensions specific to each. Hibernate uses the
dialect class to determine the appropriate SQL to use when creating and querying the database. If you
elect to use GenericDialect, then Hibernate will only be able to use a common subset of SQL to perform
its operations, and will be unable to take advantage of various database-specific features to improve
performance.

■ Caution Hibernate looks in the classpath for the configuration file. If you place it anywhere else, Hibernate will

complain that you haven’t provided necessary configuration details.

Hibernate does not require you to use an XML configuration file. You have two other options. First,
you can provide a normal Java properties file. The equivalent properties file to Listing 3-4 would be as
follows:

hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:file:testdb;shutdown=true
hibernate.connection.username=sa
hibernate.connection.password=
hibernate.connection.pool_size=0
hibernate.show_sql=false
hibernate.dialect=org.hibernate.dialect.HSQLDialect

As you’ll notice, this does not contain the resource mapping from the XML file—and in fact, you
cannot include this information in a properties file; if you want to configure Hibernate this way, you’ll
need to directly map your classes into the Hibernate Configuration at run time. Here’s how this can be
done:

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

35

Configuration config = new Configuration();
config.addClass(sample.entity.Message.class);
config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

Here, Message.class is the compiled output from the Message.java code given in Listing 3-5 (and
briefly discussed in Chapter 1). If you don’t want to provide the configuration properties in a file, you
can apply them directly using the -D flag. Here’s an example:

java -classpath ...
 -Dhibernate.connection.driver_class=org.hsqldb.jdbcDriver
 -Dhibernate.connection.url= jdbc:hsqldb:file:testdb;shutdown=true
 -Dhibernate.connection.username=sa
 -Dhibernate.connection.password=
 -Dhibernate.connection.pool_size=0
 -Dhibernate.show_sql=false
 -Dhibernate.dialect=org.hibernate.dialect.HSQLDialect
 ...

Given its verbosity, this is probably the least convenient of the three methods, but it is occasionally
useful when running tools and utilities on an ad hoc basis. For most other purposes, we think that the
XML configuration file is the best choice.

Running the Message Example
With Hibernate and a database installed, and our configuration file created, all we need to do now is
create the classes in full, and then build and run everything. Chapter 1 omitted the trivial parts of the
required classes, so we provide them in full in Listings 3-5 through 3-7, after which we’ll look at some of
the details of what’s being invoked.

Listing 3-5. The Message POJO Class

package sample.entity;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;

@Entity
public class Message {

 private Message() {

 }

 public Message(String messageText) {
 this.messageText = messageText;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

36

 public String getMessageText() {
 return messageText;
 }

 public void setMessageText(String messageText) {
 this.messageText = messageText;
 }

@Id
@GeneratedValue
 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }
 private String messageText;
 private Integer id;

}

Listing 3-6 shows a simple application to populate the messages table with examples.

Listing 3-6. The Code to Create a Sample Message

package sample;

import java.util.Date;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.AnnotationConfiguration;

import sample.entity.Message;

public class PopulateMessages {
 public static void main(String[] args) {
 SessionFactory factory =
 new AnnotationConfiguration().configure().buildSessionFactory();
 Session session = factory.openSession();
 session.beginTransaction();

 Message m1 = new Message(
 "Hibernated a message on " + new Date());

 session.save(m1);
 session.getTransaction().commit();
 session.close();
 }
}

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

37

Finally, Listing 3-7 shows the full text of the application to list all the messages in the database.

Listing 3-7. The Message Application

package sample;

import java.util.Iterator;
import java.util.List;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.AnnotationConfiguration;

import sample.entity.Message;

public class ListMessages {
 public static void main(String[] args)
 {
 SessionFactory factory =
 new AnnotationConfiguration().configure().buildSessionFactory();
 Session session = factory.openSession();

 List messages = session.createQuery("from Message").list();
 System.out.println("Found " + messages.size() + " message(s):");

 Iterator i = messages.iterator();
 while(i.hasNext()) {
 Message msg = (Message)i.next();
 System.out.println(msg.getMessageText());
 }

 session.close();
 }
}

The Ant target exportDDL will create an appropriate schema in the HSQLDB database files. Running
the populateMessages task will create a message entry (this can be invoked multiple times). Running the
listMessages task will list the messages that have been entered into the database so far.

■ Caution Because we have selected the drop="true" option for the hbm2ddl subtask of our exportDDL target,

running this script will effectively delete any data in the named tables. It is rarely a good idea to run such a script

from a machine that has database access to the production environment because of the risk of accidentally

deleting your production data!

The appropriate classpath entries have been set up in the Ant build script. To run a Hibernate
application, you need the hibernate.jar file from the root of the Hibernate distribution, and a subset of

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

38

the libraries provided in the lib subdirectory. You will need all of the libraries in the lib/required
subdirectory and the Javassist library in the lib/bytecode/javassist subdirectory. You will also need
the JPA 2 library in the lib/jpa subdirectory. The optional libraries aren’t needed for this example. The
ant build file for this example includes all of the libraries in the Hibernate distribution, both optional and
required.

Most of the work required to get this example running is the sort of basic configuration trivia that
any application requires (writing Ant scripts, setting classpaths, and so on). The real work consists of
these steps:

1. Creating the Hibernate configuration file

2. Writing the POJOs (introduced in Chapter 1)

3. Adding Hibernate mapping annotations to the POJOs

Persisting Multiple Objects
Our example in Chapter 1 was as simple a persistence scenario as you can imagine. In the next few
sections of this chapter, we will look at a slightly more complicated scenario.

Our example application will provide the persistence technology for an online billboard application,
as shown in Figure 3-1.

Figure 3-1. The online billboard classes

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

39

This is a gross simplification of the sort of classes that would be required in a production
application. For example, we make no distinction between the roles of users of the application, but it
should suffice to show some of the simpler relationships between classes.

Particularly interesting is the many-to-many relationship between categories and advertisements.
We would like to be able to have multiple categories and adverts, and place any given advert in more
than one category. For example, an electric piano should be listed in the “Instruments” category as well
as the “Electronics” category.

Creating Persistence Classes
We will begin by creating the POJOs for the application. From the class diagram, we know that three
classes will be persisted into the database (see Listings 3-8, 3-9, and 3-10). Each class that will be
persisted by Hibernate is required to have a default constructor with at least package scope. They should
have get and set methods for all of the attributes that are to be persisted. We will provide each with an id
field, allowing this to be the primary key in our database (we prefer the use of surrogate keys, as changes
to business rules can make the use of direct keys risky).

■ Note A surrogate key is an arbitrary value (usually numeric), with the data type depending on the number

of objects expected (e.g., 32-bit, 64-bit, etc.). The surrogate key has no meaning outside the database—it is

not a customer number, a phone number, or anything else. As such, if a business decision causes previously

unique business data to be duplicated, this will not cause problems since the business data does not form the

primary key.

As well as the default constructor for each class, we provide a constructor that allows the fields other
than the primary key to be assigned directly. This allows us to create and populate an object in one step
instead of several, but we let Hibernate take care of the allocation of our primary keys.

The classes shown in Figure 3-1 are our POJOs. Their implementation is shown in Listings 3-8, 3-9,
and 3-10.

Listing 3-8. The Class Representing Users

package sample.entity;

public class User {
 private long id;
 private String name;
 private String password;

 public User(String name, String password) {
 this.name = name;
 this.password = password;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

40

 User() {
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

Listing 3-9. The Class Representing Categories (Each Having an Associated Set of Advert Objects)

package sample.entity;

import java.util.HashSet;
import java.util.Set;

public class Category {
 private long id;
 private String title;
 private Set<Advert> adverts = new HashSet<Advert>();

 public Category(String title) {
 this.title = title;
 this.adverts = new HashSet<Advert>();
 }

 Category() {
 }

 public Set<Advert> getAdverts() {
 return adverts;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

41

 void setAdverts(Set<Advert> adverts) {
 this.adverts = adverts;
 }

 public void addAdvert(Advert advert) {
 getAdverts().add(advert);
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

Listing 3-10. The Class Representing Adverts (Each Instance Has an Associated User Who Placed the

Advert)

package sample.entity;

public class Advert {
 private long id;
 private String title;
 private String message;
 private User user;

 public Advert(String title, String message, User user) {
 this.title = title;
 this.message = message;
 this.user = user;
 }

 Advert() {
 }

 public String getMessage() {
 return message;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

42

 public void setMessage(String message) {
 this.message = message;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

We will have to add annotations to these POJOs to support Hibernate, as we will show in the next
section. We have also chosen to provide package-scoped default constructors to support use of the
(optional) lazy-loading feature of Hibernate. Most existing applications will contain POJOs “out of the
box” that are compatible with Hibernate.

Creating the Object Mappings
Now that we have our POJOs, we need to map them to the database, representing the fields of each
directly or indirectly as values in the columns of the associated tables. We take each in turn, starting with
the User class.

The first step is to tell Hibernate to map the class with the @Entity annotation. We also need to tell
Hibernate that we would like the database table that stores the User class to be named AdUser because
user is a reserved keyword in many databases. We do this with the @Table annotation, which we supply
with the name of the database table we would like to use instead of the default.

The next step is to map the fields on the class. The User class has three fields, as follows:

The id field: Corresponds to the surrogate key to be used in, and generated by,
the database. This special field is handled by the @Id annotation. We specify
that it should be generated by the database, rather than by the application, by
using the @GeneratedValue annotation. We can use the default, which is to use
the database's native generator.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

43

The name field: Represents the name of the user. It should be stored in a column
called name. It has type String. We do not permit duplicate names to be stored
in the table. To model this unique constraint, we use the @Column annotation
and set the unique attribute on the @Column annotation to true. When we
create the database schema from the annotated POJOs, the name column for the
aduser table will have a unique constraint that the database will enforce for us.

The password field: Represents a given user’s password. It should be stored in a
column called password. It has type String.

Bearing these features in mind, the updated Java class in Listing 3-11 should be extremely easy to
follow.

Listing 3-11. The Mapping of the User Class into the Database

package sample.entity;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name=”AdUser”)
public class User {
 private long id;
 private String name;
 private String password;

 public User(String name, String password) {
 this.name = name;
 this.password = password;
 }

 User() {
 }

 @Column(unique=true)
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getPassword() {
 return password;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

44

 public void setPassword(String password) {
 this.password = password;
 }

 @Id
 @GeneratedValue
 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

The Category mapping presents another type of relationship: many-to-many. Each Category object
is associated with a set of adverts, while any given advert can be associated with multiple categories. In
addition to the annotations we discussed in the previous example, we will need to use the @ManyToMany
and @JoinTable annotations. We used generics for the collections, so Hibernate will know which classes
are mapped on either end of the many-to-many relationship.

The @ManyToMany annotation indicates that the Category class has a many-to-many relationship with
the Advert class. This many-to-many relationship is bidirectional, which means that the Advert class
has a collection of Category objects, and the Category class has a collection of Advert objects. For many-
to-many relationships, we need to tell Hibernate which class is the owner of the relationship. For
bidirectional many-to-many relationships, either side can be designated as the owner. For this example,
the Category class will be the owner.

The details of the join table that contains the links between the two classes in a many-to-many
relationship go on the owner class. The Category class owns the relationship, so we add a @JoinTable
annotation. The @JoinTable annotation indicates that the relationship requires the creation of an
additional link table, so we specify the name of the table containing that information.

When we map the Advert class, we will also need to add a @ManyToMany annotation, but we will need
to point back to the Category class as the owner with the mappedBy attribute on the @ManyToMany
annotation. We do not need to specify the join table on the Advert class.

Again, this is complicated when described, but if you look at the example table from Listing 3-14, the
need for each field in the mapping becomes clear (see Listing 3-12).

Listing 3-12. The Mapping of the Category Class into the Database

package sample.entity;

import java.util.HashSet;
import java.util.Set;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

45

@Entity
public class Category {
 private long id;
 private String title;
 private Set<Advert> adverts = new HashSet<Advert>();

 public Category(String title) {
 this.title = title;
 this.adverts = new HashSet<Advert>();
 }

 Category() {
 }

 @ManyToMany
 @JoinTable(name="link_category_advert")
 public Set<Advert> getAdverts() {
 return adverts;
 }

 void setAdverts(Set<Advert> adverts) {
 this.adverts = adverts;
 }

 public void addAdvert(Advert advert) {
 getAdverts().add(advert);
 }

 @Column(unique=true)
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }

 @Id
 @GeneratedValue
 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

Finally, we represent the Advert class (see Listing 3-13). We add the @ManyToMany annotation to the
class to represent the bidirectional relationship with the Category class. As discussed, we will need to
point back to the Category class as the owner with the mappedBy attribute. The mappedBy attribute points
to the field on the Category class that contains the Advert classes (in this case, adverts).

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

46

This class also introduces the many-to-one association, in this case with the User class. Any given
advertisement must belong to a single user, but any given user can place many different advertisements.

Listing 3-13. The Mapping of the Advert Class into the Database

package sample.entity;

import java.util.HashSet;
import java.util.Set;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToMany;
import javax.persistence.ManyToOne;

@Entity
public class Advert {
 private long id;
 private String title;
 private String message;
 private User user;
 private Set<Category> categories;

 public Advert(String title, String message, User user) {
 this.title = title;
 this.message = message;
 this.user = user;
 this.categories = new HashSet<Category>();
 }

 Advert() {
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

47

 @ManyToOne
 @JoinColumn(name="aduser")
 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 @ManyToMany(mappedBy="adverts")
 public Set<Category> getCategories() {
 return categories;
 }

 public void setCategories(Set<Category> categories) {
 this.categories = categories;
 }

 @Id
 @GeneratedValue
 protected long getId() {
 return id;
 }

 protected void setId(long id) {
 this.id = id;
 }
}

Once you have mapped the classes, you need to tell Hibernate where to find them. The simplest way
to do this is to add them to a Hibernate configuration file, as we did in Listing 3-4. Because we haven’t
changed the way we connect to the database, we can reuse that configuration file and add mappings for
our classes.

For our example, take the configuration file described in Listing 3-4 and add the following three
mapping resource entries:

<mapping class="sample.entity.Advert"/>
<mapping class="sample.entity.Category"/>
<mapping class="sample.entity.User"/>

after the following line:

<mapping class="sample.entity.Message"/>

This section may seem confusing, as it is something of a flying visit to the subject of mappings and
some of their whys and wherefores. We provide a more in-depth discussion of mapping in later
chapters—specifically, general mapping concepts in Chapter 5, and mapping your Java objects with
annotations in Chapter 6. We also discuss how to use the older XML mapping documents in Chapter 7.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

48

Creating the Tables
With the object mapping in place and our Hibernate configuration file set up correctly, we have
everything we need to generate a script to create the database for our application by invoking the
exportDDL task. This builds the entities shown in Figure 3-2.

Even though we can generate the database directly, we also recommend taking some time to work
out what schema you would expect your mappings to generate. This allows you to “sanity check” the
script to make sure it corresponds with your expectations. If you and the tool both agree on what things
should look like, then all is well and good; if not, your mappings may be wrong or there may be a subtle
error in the way that you have related your data types.

Figure 3-2. The database entity relationships

The script in Listing 3-14 is generated by the exportDDL task. It could easily have been written by
hand, and it is easy to compare it against your prior expectations of the database schema (we have
changed the formatting slightly, but otherwise this is identical to the output of the task).

Listing 3-14. The Script Generated by the exportDDL Task

alter table Advert
 drop constraint FK74A35BF4F310D740;

alter table link_category_advert
 drop constraint FKA7C387F06613C4A3;

alter table link_category_advert
 drop constraint FKA7C387F07F2F2556;

drop table AdUser if exists;
drop table Advert if exists;
drop table Category if exists;
drop table Message if exists;
drop table link_category_advert if exists;

www.allitebooks.com

http://
http://www.allitebooks.org

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

49

create table AdUser (
 id bigint generated by default as identity (start with 1),
 name varchar(255),
 password varchar(255),
 primary key (id),
 unique (name)
);

create table Advert (
 id bigint generated by default as identity (start with 1),
 message varchar(255),
 title varchar(255),
 aduser bigint,
 primary key (id)
);

create table Category (
 id bigint generated by default as identity (start with 1),
 title varchar(255),
 primary key (id),
 unique (title)
);

create table Message (
 id integer generated by default as identity (start with 1),
 messageText varchar(255),
 primary key (id)
);

create table link_category_advert (
 categories_id bigint not null,
 adverts_id bigint not null,
 primary key (categories_id, adverts_id)
);

alter table Advert
 add constraint FK74A35BF4F310D740
 foreign key (aduser)
 references AdUser;

alter table link_category_advert
 add constraint FKA7C387F06613C4A3
 foreign key (categories_id)
 references Category;

alter table link_category_advert
 add constraint FKA7C387F07F2F2556
 foreign key (adverts_id)
 references Advert;

Note the foreign key constraints and the link table representing the many-to-many relationship.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

50

Sessions
Chapter 4 will discuss the full life cycle of persistence objects in detail—but you need to understand the
basics of the relationship between the session and the persistence objects if you are to build even a
trivial application in Hibernate.

The Session and Related Objects

The session is always created from a SessionFactory. The SessionFactory is a heavyweight object, and
there would normally be a single instance per application. In some ways, it is a little like a connection
pool in a connected application. In a J2EE application, it would typically be retrieved as a JNDI resource.
It is created from a Configuration object, which in turn acquires the Hibernate configuration
information and uses this to generate an appropriate SessionFactory instance.

The session itself has a certain amount in common with a JDBC Connection object. To read an object
from the database, you must use a session directly or indirectly. An example of a direct use of the session
to do this would be, as in Chapter 1, calling the session.get() method, or creating a Query object from
the session (a Query is very much like a PreparedStatement).

An indirect use of the session would be using an object itself associated with the session. For
example, if we have retrieved a Phone object from the database using a session directly, we can retrieve a
User object by calling Phone’s getUser() method, even if the associated User object has not yet been
loaded (as a result of lazy loading).

An object that has not been loaded via the session can be explicitly associated with the session in
several ways, the simplest of which is to call the session.update() method passing in the object in
question.

The session does a lot more than this, however, as it provides some caching functionality, manages
the lazy loading of objects, and watches for changes to associated objects (so that the changes can be
persisted to the database).

A Hibernate transaction is typically used in much the same way as a JDBC transaction. It is used to
batch together mutually dependent Hibernate operations, allowing them to be completed or rolled back
atomically, and to isolate operations from external changes to the database. Hibernate can also take
advantage of a transaction’s scope to limit unnecessary JDBC “chatter,” queuing SQL to be transmitted
in a batch at the end of the transaction when possible.

We will discuss all of this in much greater detail in Chapter 4, but for now it suffices that we need to
maintain a single SessionFactory for the entire application. However, a session should only be accessed
within a single thread of execution. Because a session also represents information cached from the
database, it is desirable to retain it for use within the thread until anything (specifically any Hibernate
exception) causes it to become invalid.

We present in Listing 3-15 a pattern from which Data Access Objects (DAOs) can be derived,
providing an efficient way for a thread to retrieve and (if necessary) create its sessions with a minimal
impact on the clarity of the code. In this case, we are using a base DAO to manage the session, but we
will not use individual DAOs for each entity. Our DAO encapsulates some of the Hibernate boilerplate
code you need to manage sessions and transactions.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

51

Listing 3-15. The Base Class Used to Manage the Session in the Example

package sample.dao;

import java.util.logging.Level;
import java.util.logging.Logger;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.AnnotationConfiguration;

public class DAO {

 protected DAO() {
 }

 public static Session getSession() {
 Session session = (Session) DAO.session.get();
 if (session == null) {
 session = sessionFactory.openSession();
 DAO.session.set(session);
 }
 return session;
 }

 protected void begin() {
 getSession().beginTransaction();
 }

 protected void commit() {
 getSession().getTransaction().commit();
 }

 protected void rollback() {
 try {
 getSession().getTransaction().rollback();
 } catch(HibernateException e) {
 log.log(Level.WARNING,"Cannot rollback",e);
 }

 try {
 getSession().close();
 } catch(HibernateException e) {
 log.log(Level.WARNING,"Cannot close",e);
 }
 DAO.session.set(null);
 }

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

52

 public static void close() {
 getSession().close();
 DAO.session.set(null);
 }

 private static final Logger log = Logger.getAnonymousLogger();

 private static final ThreadLocal session = new ThreadLocal();

 private static final SessionFactory sessionFactory =
 new AnnotationConfiguration().configure().buildSessionFactory();
}

Using the Session

The most common use cases for our POJOs will be to create them and delete them. In both cases, we
want the change to be reflected in the database.

For example, we want to be able to create a user, specifying the username and password, and have
this information stored in the database when we are done.

The logic to create a user (and reflect this in the database) is incredibly simple, as shown in Listing
3-16.

Listing 3-16. Creating a User Object and Reflecting This in the Database

try {
 begin();
 User user = new User(username,password);
 getSession().save(user);
 commit();
 return user;
} catch(HibernateException e) {
 rollback();
 throw new Exception("Could not create user " + username,e);
}

We begin a transaction, create the new User object, ask the session to save the object, and then
commit the transaction. If a problem is encountered (if, for example, a User entity with that username
has already been created in the database), then a Hibernate exception will be thrown, and the entire
transaction will be rolled back.

To retrieve the User object from the database, we will make our first excursion into HQL. HQL is
somewhat similar to SQL, but you should bear in mind that it refers to the names used in the mapping
files, rather than the table names and columns of the underlying database.

The appropriate HQL query to retrieve the users having a given name field is as follows:

from User where name= :username

where User is the class name and :username is the HQL named parameter that our code will populate
when we carry out the query. This is remarkably similar to the SQL for a prepared statement to achieve
the same end:

select * from user where name = ?

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

53

The complete code to retrieve a user for a specific username is shown in Listing 3-17.

Listing 3-17. Retrieving a User Object from the Database

try {
 begin();
 Query q = getSession().createQuery("from User where name = :username");
 q.setString("username",username);
 User user = (User)q.uniqueResult();
 commit();
 return user;
} catch(HibernateException e) {
 rollback();
 throw new Exception("Could not get user " + username,e);
}

We begin a transaction, create a Query object (similar in purpose to PreparedStatement in connected
applications), populate the parameter of the query with the appropriate username, and then list the
results of the query. We extract the user (if one has been retrieved successfully) and commit the
transaction. If there is a problem reading the data, the transaction will be rolled back.

The key line used to obtain the User entity is:

User user = (User)q.uniqueResult();

We use the uniqueResult()method because it is guaranteed to throw an exception if somehow our
query identifies more than one User object for the given username. In principle, this could happen if the
underlying database’s constraints don’t match our mapping constraint for a unique username field, and
an exception is an appropriate way to handle the failure.

The logic to delete a user from the database (Listing 3-18) is even more trivial than that required to
create one.

Listing 3-18. Deleting a User Object and Reflecting This in the Database

try {
 begin();
 getSession().delete(user);
 commit();
} catch(HibernateException e) {
 rollback();
 throw new Exception("Could not delete user " + user.getName(),e);
}

We simply instruct the session to delete the User object from the database, and commit the
transaction. The transaction will roll back if there is a problem—for example, if the user has already been
deleted.

You have now seen all the basic operations that we want to perform on our data, so we will now put
together an example application that uses our classes.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

54

The Example Client
Listing 3-19 shows the example code tying this together. Of course, this isn’t a full application, but this
example gives a flavor of how our annotated Java classes can be used with the base DAO.

The code should be run with the tasks in the Ant script delivered in Listing 3-1. After running the
exportDDL task to create the empty database, you should run the createUsers and createCategories
tasks to provide initial users and categories, and then the postAdverts task to place advertisements in the
database. Finally, run the listAdverts task to display the saved data.

The code invoking the annotated Java classes to perform the tasks in question is shown in Listing
3-19.

Listing 3-19. The Class to Create the Example Users

package sample;

import org.hibernate.HibernateException;
import sample.dao.DAO;
import sample.entity.User;

public class CreateUser extends DAO {

 public static void main(String[] args) {

 if (args.length != 2) {
 System.out.println("params required: username, password");
 return;
 }
 String username = args[0];
 String password = args[1];

 try {
 CreateUser self = new CreateUser();
 System.out.println("Creating user " + username);
 self.create(username,password);
 System.out.println("Created user");
 DAO.close();
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 }

 public User create(String username, String password)
 throws Exception
 {
 try
 {
 begin();
 User user = new User(username, password);
 getSession().save(user);

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

55

 commit();
 return user;
 }
 catch (HibernateException e)
 {
 throw new Exception("Could not create user " + username, e);
 }
 }
}

The CreateUser class uses the DAO class to create and persist an appropriate User object. The
specifics of the (two) users created are drawn from the command-line parameters provided in the
createUsers Ant task.

In Listing 3-20, we create Category objects via the DAO class with a similar pattern—and again we
draw the specific details from the command line provided by the Ant script.

Listing 3-20. The Class to Create the Example Categories

package sample;

import org.hibernate.HibernateException;
import sample.dao.DAO;
import sample.entity.Category;

public class CreateCategory extends DAO {

 public static void main(String[] args) {

 if (args.length != 1) {
 System.out.println("param required: categoryTitle");
 return;
 }

 CreateCategory self = new CreateCategory();
 String title = args[0];
 try {
 System.out.println("Creating category " + title);
 self.create(title);
 System.out.println("Created category");
 DAO.close();
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 }

 public Category create(String title)
 throws Exception {

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

56

 try {
 begin();
 Category category = new Category(title);
 getSession().save(category);
 commit();
 return category;
 } catch (HibernateException e) {
 throw new Exception("Could not create category " + title, e);
 }
 }
}

The code in Listing 3-21 allows us to create an advert for a preexisting user in a preexisting category.
Note our use of the Session to obtain User and Category objects from the database. As with the user and
category, the advert details are supplied by the Ant task.

Listing 3-21. The Class to Create the Example Adverts

package sample;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import sample.dao.DAO;
import sample.entity.Advert;
import sample.entity.Category;
import sample.entity.User;

public class PostAdvert extends DAO {

 public static void main(String[] args) {

 if (args.length != 4) {
 System.out.println("params required: username, categoryTitle, title, message");
 return;
 }

 String username = args[0];
 String categoryTitle = args[1];
 String title = args[2];
 String message = args[3];

 try {

 PostAdvert self = new PostAdvert();

 System.out.println("Creating advert");
 Advert advert = self.create(username,categoryTitle,title, message);
 System.out.println("Created advert");

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

57

 DAO.close();
 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 public Advert create(String username, String categoryTitle,
 String title, String message)
 throws Exception {
 try {
 begin();

 //get the user by username
 Query userQuery = getSession().createQuery(" from User where name = :username");
 userQuery.setString("username", username);
 User user = (User) userQuery.uniqueResult();

 //get the category by category title
 Query categoryQuery = getSession().createQuery(" from Category where title =
:categoryTitle");
 categoryQuery.setString("categoryTitle", categoryTitle);
 Category category = (Category) categoryQuery.uniqueResult();

 //create and save the new advert
 Advert advert = new Advert(title, message, user);
 getSession().save(advert);

 //add the advert to the category and save
 category.addAdvert(advert);
 getSession().save(category);

 commit();
 return advert;
 } catch (HibernateException e) {
 throw new Exception("Could not create advert " + title, e);
 }
 }
}

 Finally, in Listing 3-22, we make use of the Session to iterate over the categories, and within these,
the adverts drawn from the database. It is easy to see how this logic could now be incorporated into a
web application or web service.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

58

Listing 3-22. The Class to Display the Contents of the Database

package sample;

import java.util.Iterator;
import java.util.List;

import sample.dao.CategoryDAO;
import sample.dao.DAO;
import sample.entity.Advert;
import sample.entity.Category;

public class ListAdverts {
 public static void main(String[] args) {
 try {
 List categories = new CategoryDAO().list();

 Iterator ci = categories.iterator();
 while(ci.hasNext()) {
 Category category = (Category)ci.next();
 System.out.println("Category: " + category.getTitle());
 System.out.println();
 Iterator ai = category.getAdverts().iterator();
 while(ai.hasNext()) {
 Advert advert = (Advert)ai.next();
 System.out.println();
 System.out.println("Title: " + advert.getTitle());
 System.out.println(advert.getMessage());
 System.out.println(" posted by " + advert.getUser().getName());
 }
 }

 DAO.close();
 } catch(AdException e) {
 System.out.println(e.getMessage());
 }

 }
}

When you run the example applications, you will see a considerable amount of “chatter” from the
logging API, and from the Ant tool when you run these tasks, much of which can be controlled or
eliminated in a production application. If the tasks all run correctly in order (exportDDL, createUsers,
createCategories, postAdverts, and listAdverts), you should see output similar to Listing 3-23 in the
output of the listAdverts task.

http://

CHAPTER 3 ■ BUILDING A SIMPLE APPLICATION

59

Listing 3-23. The Results of Listing the Adverts in the database.

 [java] Category: retro
 [java]
 [java]
 [java] Title: Sinclair Spectrum for sale
 [java] 48k original box and packaging
 [java] posted by dave
 [java]
 [java] Title: Atari 2600 wanted
 [java] Must have original joysticks.
 [java] posted by jeff
 [java] Category: kitsch
 [java]
 [java]
 [java] Title: Commemorative Plates
 [java] Kitten and puppies design
 [java] posted by dave
 [java]
 [java] Title: Inflatable Sofa
 [java] Leopard skin pattern. Nice.
 [java] posted by jeff

You will also notice that because you are starting each of these applications as new tasks (several
times in the case of the tasks to create data), the tasks proceed relatively slowly. This is an artifact of the
repeated creation of SessionFactory—a heavyweight object—from each invocation of the JVM from the
Ant java task, and is not a problem in “real” applications.

Summary
In this chapter, we’ve shown how to acquire the Hibernate tools, how to create and run the example
from Chapter 1, and how to create a slightly larger application from scratch, driving the database table
generation from the hbm2ddl Ant task. All of the files described in this chapter and the others can be
downloaded from the Apress web site (www.apress.com).

In the next chapter, we will look at the architecture of Hibernate and the lifecycle of a Hibernate-
based application.

http://www.apress.com
http://

http://

C H A P T E R 4

■ ■ ■

61

The Persistence Life Cycle

In this chapter, we discuss the life cycle of persistent objects in Hibernate. These persistent objects are
POJOs without any special marker interfaces or inheritance related to Hibernate. Part of Hibernate’s
popularity comes from its ability to work with a normal object model.

We also discuss the methods of the Session interface that are used for creating, retrieving, updating,
and deleting persistent objects from Hibernate.

Introduction to the Life Cycle
After adding Hibernate to your application, you do not need to change your existing Java object model to
add persistence marker interfaces or any other type of hint for Hibernate. Instead, Hibernate works with
normal Java objects that your application creates with the new operator, or that other objects create. For
Hibernate’s purposes, these can be drawn up into two categories: objects for which Hibernate has entity
mappings, and objects that are not directly recognized by Hibernate. A correctly mapped entity object
will consist of fields and properties that are mapped, and that are themselves either references to
correctly mapped entities, references to collections of such entities, or “value” types (primitives,
primitive wrappers, strings, or arrays of these).

Given an instance of an object that is mapped to Hibernate, it can be in any one of three different
states: transient, persistent, or detached.

Transient objects exist in memory, as illustrated in Figure 4-1. Hibernate does not manage transient
objects or persist changes to transient objects.

Transient Object

POJO

Client

Figure 4-1. Transient objects are independent of Hibernate.

To persist the changes to a transient object, you would have to ask the session to save the transient
object to the database, at which point Hibernate assigns the object an identifier.

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

62

Persistent objects exist in the database, and Hibernate manages the persistence for persistent
objects. We show this relationship between the objects and the database in Figure 4-2. If fields or
properties change on a persistent object, Hibernate will keep the database representation up-to-date.

Persistent Object

POJO Session POJO Table

Client

Database

Figure 4-2. Persistent objects are maintained by Hibernate.

Detached objects have a representation in the database, but changes to the object will not be
reflected in the database, and vice versa. This temporary separation of the object and the database is
shown in Figure 4-3. A detached object can be created by closing the session that it was associated with,
or by evicting it from the session with a call to the session’s evict() method. One reason you might
consider doing this would be to read an object out of the database, modify the properties of the object in
memory, and then store the results some place other than your database. This would be an alternative to
doing a deep copy of the object.

Detached Object

POJO Database POJO Table

Client

Figure 4-3. Detached objects exist in the database but are not maintained by Hibernate.

In order to persist changes made to a detached object, the application must reattach it to a valid
Hibernate session. A detached instance can be associated with a new Hibernate session when your
application calls one of the load(), refresh(), merge(), update(), or save() methods on the new session
with a reference to the detached object. After the call, the detached object would be a persistent object
managed by the new Hibernate session.

Versions prior to Hibernate 3 had support for the Lifecycle and Validatable interfaces. These
allowed your objects to listen for save, update, delete, load, and validate events using methods on the
object. In Hibernate 3, this functionality moved into events and interceptors, and the old interfaces were
removed.

Entities, Classes, and Names
Entities represent Java objects with mappings that permit them to be stored in the database. The
mappings indicate how the fields and properties of the object should be stored in the database tables.
However, it is possible that you will want objects of a particular type to be represented in two different
ways in the database. For instance, we could have one Java class for users, but two different tables in the
database that store users. This may not be the best database design, but similar problems are common

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

63

in legacy systems. Other systems that can't be easily modified may depend on the existing database
design, and Hibernate is powerful enough to cover this scenario. In this case, how does Hibernate
choose which to use?

An object representing an entity will have a normal Java class type. It will also have an entity name.
By default, the name of the entity will be the same as the name of the class type. You have the option,
however, to change this via the mappings, and thus distinguish between objects of the same type that
are mapped to different tables. There are therefore methods in the Session API that require an entity
name to be provided to determine the appropriate mapping. If this is omitted, it will either be because
no such distinction is needed, or because, for convenience, the method assumes the most common
case—in which the entity name is the same as the class name—and duplicates the functionality of
another more specific method that permits the entity name to specified explicitly.

Identifiers
Hibernate requires all entities to have an identifier, which represents the primary key column(s) of
the table to which it will be persisted. When an entity is persisted, a suitable identifier can be assigned
to it automatically by Hibernate, or a suitable identifier may be explicitly assigned by the user (see
Listing 4-1).

Listing 4-1. A Typical Identifier Field

public int id;

Usually, the entity will provide a suitable identifier field or property, and Hibernate will use this
value to correlate entities in memory with those persisted to the tables of the database. However, if no
such field or property is available (as will likely be the case with legacy code), then Hibernate itself can
manage the identifier value internally. The type of the identifier must be defined in the mapping
information.

Entities and Associations
Entities can contain references to other entities—either directly as a property or field, or indirectly via a
collection of some sort (arrays, sets, lists, etc.). These associations are represented using foreign key
relationships in the underlying tables.

When only one of the pair of entities contains a reference to the other, the association is
unidirectional. If the association is mutual, then it is referred to as bidirectional.

■ Tip A common mistake when designing entity models using Hibernate is to try to make all associations

bidirectional. Associations that are not a natural part of the object model should not be forced into it. Hibernate

Query Language often presents a more natural way to access the same information.

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

64

If both ends of the association managed the foreign keys, then we would encounter a problem when
client code called the appropriate set method on both ends of the association. Should two foreign key
columns be maintained—one in each direction (risking circular dependencies)—or only one? (And if
only one, should altering either side affect it, or only one?)

Ideally, we would like to dictate that only changes to one end of the relationship will result in any
updates to the foreign key; and indeed, Hibernate allows us to do this by marking one end of the
association as being managed by the other (in the XML mapping files, this is known as the “inverse” of
the parent, whereas in the JPA terminology used by the annotation mappings, it is marked as being
“mappedBy” the parent in the @OneToMany annotation).

■ Caution inverse and mappedBy are purely about how the foreign key relationships between entities are saved.

They have nothing to do with saving the entities themselves. Despite this, they are often confused with the entirely

orthogonal cascade functionality (described in the “Cascading Operations” section of this chapter).

While Hibernate lets us specify that changes to one association will result in changes to the
database, it does not allow us to cause changes to one end of the association to be automatically
reflected in the other end in the Java POJOs. For example, in a one-to-one bidirectional association
between an Email class and a Message class, the code in Listing 4-2 is incomplete even if the Message
entity is the inverse of the Email entity:

Listing 4-2. A Common Misconception About Bidirectional Associations

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);
// Incorrectly managed
session.save(email);
session.save(message);
System.out.println(message.getEmail());

The final call to message.getEmail() will return null (assuming simple getters and setters are used).
To get the desired effect, both entities must be updated—If the Email entity owns the association, this
merely ensures the proper assignment of a foreign key column value. There is no implicit call of
message.setEmail(email). This must be explicitly given as in Listing 4-3.

Listing 4-3. The Correct Maintenance of a Bidirectional Association

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);
message.setEmail(email); // Correctly managed
session.save(email);
session.save(message);
System.out.println(message.getEmail());

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

65

It is common for users new to Hibernate to get confused about this point—the confusion arises
from two origins, which are described in the following paragraphs.

The EJB 2 container-managed persistence (CMP) does work in this way—when a reference is
assigned in one entity, the corresponding reference in the other entity will be updated to reflect this.
Hibernate does not take this approach because it was designed to work in other environments and with
POJOs from other bodies of code, where such behavior would be unexpected. If you pass a pair of
objects to some third-party API, mysterious side effects should not occur. Since Hibernate is precisely
that—a third-party API—from the perspective of most client code, Hibernate cannot safely cause their
references to become connected in this way!

Though Hibernate does not produce this behavior automatically, there is a side effect of persistence
to the database that can make it appear that it does (see Listing 4-4).

Listing 4-4. Misleading Behavior

openSession();
beginTransaction();

Email email = new Email("Test Email");
Message message = new Message("Test Message");
email.setMessage(message);

save(email,message);

System.out.println("Stored...");
System.out.println(email);
System.out.println(email.getMessage());
System.out.println(message);
System.out.println(message.getEmail());

Serializable emailPrimaryKey = session.getIdentifier(email);
Serializable messagePrimaryKey = session.getIdentifier(message);
endTransaction();

closeSession();

System.out.println();

openSession();

beginTransaction();

email = (Email)session.get(Email.class,emailPrimaryKey);
message = (Message)session.get(Message.class,messagePrimaryKey);

System.out.println("Retrieved...");
System.out.println(email);
System.out.println(email.getMessage());

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

66

System.out.println(message);
System.out.println(message.getEmail());
endTransaction();
closeSession();

If you run the code from Listing 4-4, you will see the following output:

Stored...
Test Email
Test Message
Test Message
null

Retrieved...
Test Email
Test Message
Test Message
Test Emails

When the entities are initially stored, the Message object’s reference to its associated Email is null,
even after Hibernate has stored the data. The entity in memory is not updated to reflect the change to
the Email entity. However, after we have closed the session, opened a new one, and loaded the entities
from the database, the entity has been updated.

Because the session has been closed, the session is forced to reload the entities from the database
when we request them by primary key. Because the Email entity is the owner of the association, the
association exists in the database purely in the form of a foreign key relationship from the Email table
onto the Message table’s primary key. When we altered the Email entity and saved it, this foreign key
relationship was therefore updated. So, when we reload the entities, the Message entity’s association
details are (correctly) obtained from the same foreign key.

If we alter this code to make the association in the Message entity instead of the Email entity, but
leave the Email entity the owner of the association, we will see the reverse effect, as follows:

Email email = new Email("Test Email");
Message message = new Message("Test Message");
//email.setMessage(message);
message.setEmail(email);

Because we have not made the association in the Email entity (the owner), the foreign key of the
Email table is not pointed at the Message table. When we reload the entities, we do not see the
“automatic” association behavior—quite the opposite:

Stored...
Test Email
null
Test Message
Test Email

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

67

Retrieved...
Test Email
null
Test Message
null

As you can see, although the two entities have been saved, the attempt to associate the Email with
the Message entity by calling a method on the Message entity has not been honored in the database,
because the Message entity does not own the association. The following list recaps the points made so
far:

• You must explicitly manage both ends of an association.

• Only changes to the owner of an association will be honored in the database.

• When you load a detached entity from the database, it will reflect the foreign key
relationships persisted into the database.

Table 4-1 shows how you can select the side of the relationship that should be made the owner of a
bidirectional association. Remember that to make an association the owner, you must mark the other
end as inverse="true" (the choice of terminology is poor, but entrenched).

Table 4-1. Marking the Owner of an Association

Type of Association Options

One-to-one Either end can be made the owner, but one (and only one) of them should
be—if you don’t specify this, you will end up with a circular dependency.

One-to-many The many end must be made the owner of the association.

Many-to-one This is the same as the one-to-many relationship, viewed from the opposite
perspective, so the same rule applies—the many end must be made the
owner of the association.

Many-to-many Either end of the association can be made the owner.

If this all seems rather confusing, just remember that association ownership is concerned

exclusively with the management of the foreign keys in the database, and things should become clearer
as you use Hibernate further. Associations and mappings are discussed in detail in the next three
chapters.

Saving Entities
Creating an instance of a class you mapped with a Hibernate mapping does not automatically persist the
object to the database. Until you explicitly save the object with a valid Hibernate session, the object is
transient, like any other Java object. In Hibernate, we use one of the save() methods on the Session
interface to store a transient object in the database, as follows:

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

68

public Serializable save(Object object) throws HibernateException

public Serializable save(String entityName,Object object) throws HibernateException

Both save() methods take a transient object reference (which must not be null) as an argument.
Hibernate expects to find a mapping (either annotations or an XML mapping) for the transient object’s
class—Hibernate cannot persist arbitrary unmapped objects. If you have mapped multiple entities to a
Java class, you can specify which entity you are saving (Hibernate wouldn't know from just the Java class
name) with the entityName argument.

The save() methods all create a new org.hibernate.event.SaveOrUpdateEvent event. We discuss
events in more detail in Appendix A, although you do not have to worry about these implementation
details to use Hibernate effectively.

At its simplest, we create a new object in Java, set a few of its properties, and then save it through the
session, as follows:

Supplier superCorp = new Supplier();
superCorp.setName("SuperCorp");
session.save(superCorp);

It is not appropriate to save an object that has already been persisted. Equally, it is not appropriate
to update a transient object. If it is impossible or inconvenient to determine the state of the object from
your application code, you may use the saveOrUpdate() method. Hibernate uses the identifier of the
object to determine whether to insert a new row into the database or update an existing row. The
method signature is as follows:

public void saveOrUpdate(Object object) throws HibernateException

Once an object is in a persistent state, Hibernate manages updates to the database itself as you
change the fields and properties of the object.

Object Equality and Identity
When we discuss persistent objects in Hibernate, we also need to consider the role that object equality
and identity plays with Hibernate. When we have a persistent object in Hibernate, that object represents
both an instance of a class in a particular Java virtual machine (JVM) and a row (or rows) in a database
table (or tables).

Requesting a persistent object again from the same Hibernate session returns the same Java
instance of a class, which means that you can compare the objects using the standard Java == equality
syntax. If, however, you request a persistent object from more than one Hibernate session, Hibernate
will provide distinct instances from each session, and the == operator will return false if you compare
these object instances.

Taking this into account, if you are comparing objects in two different sessions, you will need to
implement the equals() method on your Java persistence objects.

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

69

Loading Entities
Hibernate’s Session interface provides several load() methods for loading entities from your database.
Each load() method requires the object’s primary key as an identifier.

In addition to the id, Hibernate also needs to know which class or entity name to use to find the
object with that id. Last, you will need to cast the object returned by load() to the class you desire. The
basic load() methods are as follows:

public Object load(Class theClass, Serializable id) throws HibernateException
public Object load(String entityName, Serializable id) throws HibernateException
public void load(Object object, Serializable id) throws HibernateException

The last load() method takes an object as an argument. The object should be of the same class as
the object you would like loaded, and it should be empty. Hibernate will populate that object with the
object you requested. We find this syntax to be somewhat confusing when put into applications, so we
do not tend to use it ourselves.

The other load() methods take a lock mode as an argument. The lock mode specifies whether
Hibernate should look into the cache for the object, and which database lock level Hibernate should use
for the row (or rows) of data that represent this object. The Hibernate developers claim that Hibernate
will usually pick the correct lock mode for you, although we have seen situations in which it is important
to manually choose the correct lock. In addition, your database may choose its own locking strategy—for
instance, locking down an entire table rather than multiple rows within a table. In order of least
restrictive to most restrictive, the various lock modes you can use are as follows:

• NONE: Uses no row-level locking, and uses a cached object if available; this is the -
Hibernate default.

• READ: Prevents other SELECT queries from reading data that is in the middle of a
transaction (and thus possibly invalid) until it is committed.

• UPGRADE: Uses the SELECT FOR UPDATE SQL syntax to lock the data until the
transaction is finished.

• UPGRADE_NOWAIT: Uses the NOWAIT keyword (for Oracle), which returns an error
immediately if there is another thread using that row. Otherwise this is similar to
UPGRADE.

• FORCE: Similar to UPGRADE but increments the version for objects with automatic
versioning when loaded.

All of these lock modes are static fields on the org.hibernate.LockMode class. We discuss locking and
deadlocks with respect to transactions in more detail in Chapter 8. The load() methods that use lock
modes are as follows:

public Object load(Class theClass, Serializable id, LockMode lockMode)
 throws HibernateException

public Object load(String entityName, Serializable id, LockMode lockMode)
 throws HibernateException

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

70

You should not use a load() method unless you are sure that the object exists. If you are not certain,
then use one of the get() methods. The load() methods will throw an exception if the unique id is not
found in the database, whereas the get() methods will merely return a null reference.

Much like load(), the get() methods take an identifier and either an entity name or a class. There
are also two get() methods that take a lock mode as an argument. The get() methods are as follows:

public Object get(Class clazz, Serializable id)
 throws HibernateException

public Object get(String entityName, Serializable id)
 throws HibernateException

public Object get(Class clazz, Serializable id, LockMode lockMode)
 throws HibernateException

public Object get(String entityName, Serializable id, LockMode lockMode)
 throws HibernateException

If you need to determine the entity name for a given object (by default, this is the same as the class
name), you can call the getEntityName() method on the Session interface, as follows:

public String getEntityName(Object object) throws HibernateException

Using the get()and load() methods is straightforward. For the following code sample, we would be
getting the Supplier id from another Java class. For instance, through a web application, someone may
select a Supplier details page for the supplier with the id 1. If we are not sure that the supplier exists, we
use the get() method, with which we could check for null, as follows:

// get an id from some other Java class, for instance, through a web application
Supplier supplier = (Supplier) session.get(Supplier.class,id);
if (supplier == null) {
 System.out.println("Supplier not found for id " + id);
 return;
}

We can also retrieve the entity name from Hibernate and use it with either the get() or load()
method. The load() method will throw an exception if an object with that id cannot be found.

String entityName = session.getEntityName(supplier);
Supplier secondarySupplier = (Supplier) session.load(entityName,id);

Refreshing Entities
Hibernate provides a mechanism to refresh persistent objects from their database representation. Use
one of the refresh() methods on the Session interface to refresh an instance of a persistent object, as
follows:

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

71

public void refresh(Object object)
 throws HibernateException

public void refresh(Object object, LockMode lockMode)
 throws HibernateException

These methods will reload the properties of the object from the database, overwriting them.
Hibernate usually does a very good job of taking care of this for you, so you do not have to use the
refresh() method very often. There are instances where the Java object representation will be out of
sync with the database representation of an object, however. For instance, if you use SQL to update the
database, Hibernate will not be aware that the representation changed. You do not need to use this
method regularly, though. Similar to the load() method, the refresh() method can take a lock mode as
an argument. See the discussion of lock modes in the previous Loading Entities section.

Updating Entities
Hibernate automatically persists into the database changes made to persistent objects. If a property
changes on a persistent object, the associated Hibernate session will queue the change for persistence to
the database using SQL. From a developer’s perspective, you do not have to do any work to store these
changes, unless you would like to force Hibernate to commit all of its changes in the queue. You can also
determine whether the session is dirty and changes need to be committed. When you commit a
Hibernate transaction, Hibernate will take care of these details for you.

The flush() method forces Hibernate to flush the session, as follows:

public void flush() throws HibernateException

You can determine if the session is dirty with the isDirty() method, as follows:

public boolean isDirty() throws HibernateException

You can also instruct Hibernate to use a flushing mode for the session with the setFlushMode()
method. The getFlushMode() method returns the flush mode for the current session, as follows:

public void setFlushMode(FlushMode flushMode)
public FlushMode getFlushMode()

The possible flush modes are the following:

• ALWAYS: Every query flushes the session before the query is executed This is going
to be very slow.

• AUTO: Hibernate manages the query flushing to guarantee that the data returned by
a query is up-to-date.

• COMMIT: Hibernate flushes the session on transaction commits.

• MANUAL: Your application needs to manage the session flushing with the flush()
method. Hibernate never flushes the session itself.

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

72

By default, Hibernate uses the AUTO flush mode. Generally, you should use transaction boundaries to
ensure that appropriate flushing is taking place, rather than trying to “manually” flush at the appropriate
times.

Deleting Entities
In order to allow convenient removal of entities from the database, the Session interface provides a
delete() method, as follows:

public void delete(Object object) throws HibernateException

This method takes a persistent object as an argument. The argument can also be a transient object
with the identifier set to the id of the object that needs to be erased.

In the simplest form, in which you are simply deleting an object with no associations to other
objects, this is straightforward; but many objects do have associations with other objects. To allow for
this, Hibernate can be configured to allow deletes to cascade from one object to its associated objects.

For instance, consider the situation in which you have a parent with a collection of child objects,
and you would like to delete them all. The easiest way to handle this is to use the cascade attribute on the
collection’s element in the Hibernate mapping. If you set the cascade attribute to delete or all, the
delete will be cascaded to all of the associated objects. Hibernate will take care of deleting these for
you—deleting the parent erases the associated objects.

Hibernate also supports bulk deletes (see Listing 4-5), where your application executes a DELETE
HQL statement against the database. These are very useful for deleting more than one object at a time
because each object does not need to be loaded into memory just to be deleted.

Listing 4-5. A Bulk Delete Using a Hibernate Query

session.createQuery("delete from User").executeUpdate();

Network traffic is greatly reduced, as are the memory requirements compared to those for
individually issuing a delete() call against each entity identifier.

■ Caution Bulk deletes do not cause cascade operations to be carried out. If cascade behavior is needed, you will

need to carry out the appropriate deletions yourself, or use the session’s delete() method.

Cascading Operations
When you perform one of the operations described in this chapter on an entity, the operations will not
be performed on the associated entities unless you explicitly tell Hibernate to perform them.

For example, the following code will fail when we try to commit the transaction because the
message entity that is associated with the Email entity has not been persisted into the database—and so
the Email entity cannot be accurately represented (with its foreign key onto the appropriate message
row) in its table.

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

73

Session session = factory.openSession();
session.beginTransaction();

Email email = new Email("Email title");
Message message = new Message("Message content");
email.setMessage(message);
message.setEmail(email);

session.save(email);

session.getTransaction().commit();
session.close();

session = factory.openSession();
session.beginTransaction();

Ideally, we would like the save operation to be propagated from the Email entity to its associated
Message object. We do this by setting the cascade operations for the properties and fields of the entity (or
assigning an appropriate default value for the entity as a whole). So, the preceding code will perform
correctly if at least the save cascade operation is set for the Email entity’s message property. All of the
basic life cycle operations discussed in this chapter have associated cascade values, as follows:

• create

• merge

• delete

• save-update

• evict

• replicate

• lock

• refresh

These values can be concatenated in a comma-separated list to allow cascading for any
combination of these operations. When all operations should be cascaded, Hibernate provides a
shortcut value named all that tells Hibernate to cascade all of these operations from the parent to each
child object (for that relationship), except for delete-orphan, which we will discuss soon.

As part of the Hibernate mapping process, you can tell Hibernate to use one of these cascading
types for a relationship between two objects (the parent and the child). On the collection or property
element in the mapping file, set the cascade attribute to the type (or types) you would like to use.

By default, Hibernate does not cascade any operations—the default behavior can be overridden at
the entity level via the XML mapping files using the default-cascade attribute on the <hibernate-
mapping> XML element or in the annotated source files.

The last possible cascading type is delete-orphan. Use delete-orphan to remove a child object from
the database when you remove the child from the parent’s collection. This cascading type only works on
one-to-many associations. The all cascading type does not include delete-orphan—you will have to use
"all,delete-orphan", as in the following excerpt from a Hibernate mapping file:

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

74

<bag name="products" inverse="true" cascade="all,delete-orphan">
 <key column="supplierId"/>
 <one-to-many class="Product"/>
</bag>

Simply remove a child object from a parent object’s collection after you have added the delete-
orphan cascading type. Hibernate will remove the child object from the database itself, without any
additional calls. The following example removes a child object from the collection:

supplier.getProducts().remove(product);

Lazy Loading, Proxies, and Collection Wrappers
Consider the stereotypical Internet web application: the online store. The store maintains a catalog of
products. At the crudest level, this can be modeled as a catalog entity managing a series of product
entities. In a large store, there may be tens of thousands of products grouped into various overlapping
categories.

When a customer visits the store, the catalog must be loaded from the database. We probably don’t
want the implementation to load every single one of the entities representing the tens of thousands of
products to be loaded into memory. For a sufficiently large retailer, this might not even be possible given
the amount of physical memory available on the machine. Even if this were possible, it would probably
cripple the performance of the site.

Instead, we want only the catalog to load, possibly with the categories as well. Only when the user
drills down into the categories should a subset of the products in that category be loaded from the
database.

To manage this problem, Hibernate provides a facility called lazy loading. When enabled (this is the
default using XML mappings, but not when using annotations), an entity’s associated entities will only
be loaded when they are directly requested. For example, the following code loads only a single entity
from the database:

Email email = (Email)session.get(Email.class,new Integer(42));

whereas if an association of the class is accessed, and lazy loading is in effect, the associations are pulled
from the database as needed. For instance, in the following snippet, the associated Message object will be
loaded since it is explicitly referenced.

Email email = (Email)session.get(Email.class,new Integer(42));
String text = email.getMessage().getContent();

The simplest way that Hibernate can force this behavior upon our entities is by providing a proxy
implementation of them. Hibernate intercepts calls to the entity by substituting for it a proxy derived
from the entity’s class. Where the requested information is missing, it will be loaded from the database
before control is ceded to the parent entity’s implementation. Where the association is represented as a
collection class, a wrapper (essentially a proxy for the collection, rather than for the entities that it
contains) is created and substituted for the original collection.

Hibernate can only access the database via a session. If an entity is detached from the session when
we try to access an association (via a proxy or collection wrapper) that has not yet been loaded,
Hibernate throws an exception: the infamous LazyInitializationException. The cure is to either ensure

http://

CHAPTER 4 ■ THE PERSISTENCE LIFE CYCLE

75

that the entity is made persistent again by attaching it to a session or ensure that all of the fields that will
be required are accessed before the entity is detached from the session.

If you need to determine whether a proxy, a persistence collection, or an attribute has been lazy
loaded or not, you can call the isInitialized(Object proxy) and isPropertyInitialized(Object proxy,
String propertyName) methods on the org.hibernate.Hibernate class. You can also force a proxy or
collection to become fully populated by calling the initialize(Obect proxy) method on the
org.hibernate.Hibernate class. If you initialize a collection using this method, you will also need to
initialize each object contained in the collection, as only the collection is guaranteed to be initialized.

Querying Objects
Hibernate provides several different ways to query for objects stored in the database. The Criteria Query
API is a Java API for constructing a query as an object. HQL is an object-oriented query language, similar
to SQL, that you may use to retrieve objects that match the query. We discuss these further in Chapters 9
and 10. Hibernate provides a way to execute SQL directly against the database to retrieve objects—if you
have legacy applications that use SQL or if you need to use SQL features that are not supported through
HQL and the Criteria Query API (discussed in Chapter 11).

Summary
Hibernate provides a simple API for creating, retrieving, updating, and deleting objects from a relational
database through the Session interface. Understanding the difference between transient, persistent, and
detached objects in Hibernate will allow you to understand how changes to the objects update database
tables.

We have touched upon the need to create mappings to correlate the database tables with the fields
and properties of the Java objects that you want to persist. The next chapter covers these in detail, and
discusses why they are required and what they can contain.

http://

http://

C H A P T E R 5

■ ■ ■

77

An Overview of Mapping

The purpose of Hibernate is to allow you to treat your database as if it stores Java objects. However,
databases in practice do not store objects—they store data in tables and columns. Unfortunately, there
is no simple way to correlate the data stored in a database with the data represented by Java objects.

The difference between an object-oriented association and a relational one is fundamental.
Consider a simple class to represent a user, and another to represent an e-mail address, as shown in
Figure 5-1.

User

+name : String

+email : Email
Email

-address : String
11

Figure 5-1. An object-oriented association

User objects contain fields referring to Email objects. The association has a direction—given a User
object, you can determine its associated Email object. For example, consider Listing 5-1.

Listing 5-1. Acquiring the Email Object from the User Object

User user = ...
Email email = user.email;

The reverse, however, is not true. The natural way to represent this relationship in the database, as
illustrated in Figure 5-2, is superficially similar.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

78

User

PK id

name

Email

PK id

FK1 user

address

Figure 5-2. A relational association

Despite that similarity, the direction of the association is effectively reversed. Given an Email row,
you can immediately determine which User row it belongs to in the database; this relationship is
mandated by a foreign key constraint. It is possible to reverse the relationship in the database world
through suitable use of SQL—another difference.

Given the differences between the two worlds, it is necessary to manually intervene to determine
how your Java classes should be represented in database tables.

Why Mapping Cannot Be Automated
It is not immediately obvious why you cannot create simple rules for storing your Java objects in the
database so that they can be easily retrieved. For example, the most immediately obvious rule would be
that a Java class must correlate to a single table. For example, instances of the User class defined in
Listing 5-2 could surely be represented by a simple table like the one for a user shown in Figure 5-1.

Listing 5-2. A Simple User Class with a Password Field

public class User {
 String name;
 String password;
}

And indeed it could, but some questions present themselves:

• How many rows should you end up with if you save a user twice?

• Are you allowed to save a user without a name?

• Are you allowed to save a user without a password?

When you start to think about classes that refer to other classes, there are additional questions to
consider. Have a look at the Customer and Email classes defined in Listing 5-3.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

79

Listing 5-3. Customer and Email Classes

public class Customer {
 int customerId;
 int customerReference;
 String name;
 Email email;
}

public class Email {
 String address;
}

Based on this, the following questions arise:

• Is a unique customer identified by their customer ID, or their customer reference?

• Can an e-mail address be used by more than one customer?

• Should the relationship be represented in the Customer table?

• Should the relationship be represented in the Email table?

• Should the relationship be represented in some third (link) table?

Depending upon the answers to these questions, your database tables could vary considerably. You
could take a stab at a reasonable design, such as that given in Figure 5-3, based upon your intuition
about likely scenarios in the real world.

Customer

PK customerId

customerReference

name

email

Email

PK emailId

FK1

address

customerId

Figure 5-3. Tables in which the customer is identified by customerId. Here, e-mail address entities can

only be used by a single customer, and the relationship is maintained by the Email table.

As soon as you take away the context provided by the variable and class names, it becomes much
harder to form any useful decision about these classes (see Listing 5-4). It would be an impossible task to
design an automated tool that could make this sort of decision.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

80

Listing 5-4. A Class Identical in Structure to Listing 5-3, but with All Contextual Information Removed

public class Foo {
 int x;
 int y;
 String s;
 Bar bar;
}

public class Bar {
 String a;
}

Primary Keys
Most “relational” databases that provide SQL access are prepared to accept tables that have no
predefined primary key. Hibernate is not so tolerant—even if your table has been created without a
primary key, Hibernate will require you to specify one. This often seems perverse to users who are
familiar with SQL and databases, but who are not familiar with ORM tools. As such, we will examine in
more depth the problems that arise without a primary key.

Without a primary key, it is impossible to uniquely identify a row in a table. For example, consider
Table 5-1.

Table 5-1. A Table in Which the Rows Cannot Be Uniquely Identified

User Age

Dminter 35

Dminter 40

Dminter 55

Dminter 40

jlinwood 57

This table clearly contains information about users and their respective ages. However, there are

four users with the same name (Dave Minter, Denise Minter, Daniel Minter, and Dashiel Minter). There
is probably a way of distinguishing them somewhere else in the system—perhaps by an e-mail address
or a user number. But if, for example, you want to know the ages of Dashiel Minter with user ID 32, there
is no way to obtain it from Table 5-1.

While Hibernate will not let you omit the primary key, it will permit you to form the primary key
from a collection of columns. For example, Table 5-2 could be keyed by Usernumber and User.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

81

Table 5-2. A Table in Which the Rows Can Be Uniquely Identified

User Usernumber Age

Dminter 1 35

Dminter 2 40

Dminter 3 55

Dminter 32 42

Jlinwood 1 57

Neither User nor Usernumber contains unique entries, but in combination they uniquely identify the

age of a particular user, and so they are acceptable to Hibernate as a primary key.
Why does Hibernate need to uniquely identify entries when SQL doesn’t? Hibernate is representing

Java objects, which are always uniquely identifiable. This is why the classic mistake made by new Java
developers is to compare strings using the == operator instead of the equals() method. You can
distinguish between references to two String objects that represent the same text and two references to
the same String object. SQL has no such obligation, and there are arguably cases in which it is desirable
to give up the ability to make the distinction.

If Hibernate could not uniquely identify an object with a primary key, then the following code could
have several possible outcomes in the underlying table.

String customer = getCustomerFromHibernate("dcminter");
customer.setAge(10);
saveCustomerToHibernate(customer);

For example, let’s say the table originally contained the data shown in Table 5-3.

Table 5-3. Updating an Ambiguous Table

User Age

dcminter 30

dcminter 42

Which of the following should be contained in the resulting table?

• A single row for the user dcminter, with the age set to 10

• Two rows for the user, with both ages set to 10

• Two rows for the user, with one age set to 10 and the other to 42

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

82

• Two rows for the user, with one age set to 10 and the other to 30

• Three rows for the user, with one age set to 10 and the others to 30 and 42

In short, the Hibernate developers made a decision to enforce the use of primary keys when creating
mappings so that this problem does not arise. Hibernate does provide facilities that will allow you to
work around this if it is absolutely necessary (you can create views or stored procedures to “fake” the
appropriate key, or you can use conventional JDBC to access the table data), but when using Hibernate,
it is always more desirable to work with tables that have correctly specified primary keys if at all possible.

Lazy Loading
When you load classes into memory from the database, you don’t necessarily want all the information to
actually be loaded. To take an extreme example, loading a list of e-mails should not cause the full body
text and attachments of every e-mail to be loaded into memory. First, they might demand more memory
than is actually available. Second, even if they fit, it could take a long time for all of this information to be
obtained.

If you were to tackle this problem in SQL, you would probably select a subset of the appropriate
fields for the query to obtain the list; for example:

SELECT from, to, date, subject FROM email WHERE username = 'dcminter';

Hibernate will allow you to fashion queries that are rather similar to this, but it also offers a more
flexible approach, known as lazy loading. Certain relationships can be marked as being “lazy,” and they
will not be loaded from disk until they are actually required.

The default in Hibernate 3 is that classes (including collections like Set and Map) should be lazily
loaded. For example, when an instance of the User class given in the next listing is loaded from the
database, the only fields initialized will be userId and username.

public class User {
 int userId;
 String username;
 EmailAddress emailAddress;
 Set roles;
}

However, as long as the object is still associated with Hibernate in the appropriate way (see Chapter
9), the appropriate objects for emailAddress and roles will be loaded from the database if they are
accessed.

This is the default behavior only; the mapping file can be used to specify which classes and fields
should behave in this way.

Associations
When we looked at why the mapping process could not be automated, we discussed the following
example classes:

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

83

public class Customer {
 int customerId;
 int customerReference;
 String name;
 Email email;
}

public class Email {
 String address;
}

We also gave the following five questions that it raised:

• Is a unique customer identified by their customer ID, or their customer reference?

• Can a given e-mail address be used by more than one customer?

• Should the relationship be represented in the Customer table?

• Should the relationship be represented in the Email table?

• Should the relationship be represented in some third (link) table?

The first question can be answered simply—it depends on what column you specify as the primary
key. The remaining four questions are related, and their answers depend upon the object relationships.
Furthermore, if your Customer class represents the relationship with the EmailAddress using a Collection
class or an array, it would be possible for a user to have multiple e-mail addresses.

public class Customer {
 int customerId;
 int customerReference;
 String name;
 Set email;
}

So, you should add another question: can a customer have more than one e-mail address? The set
could contain a single entry, so you can’t automatically infer that this is the case.

The key questions from the previous options are as follows:

• Q1: Can an e-mail address belong to more than one user?

• Q2: Can a customer have more than one e-mail address?

The answers to these questions can be formed into a truth table, as in Table 5-4.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

84

Table 5-4. Deciding the Cardinality of an Entity Relationship

Q1 Answer Q2 Answer Relationship Between Customer and Email

No No One-to-one

Yes No Many-to-one

No Yes One-to-many

Yes Yes Many-to-many

These are the four ways in which the cardinality of the relationship between the objects can be

expressed. Each relationship can then be represented within the mapping table(s) in various ways.

The One-to-One Association

A one-to-one association between classes can be represented in a variety of ways. At its simplest, the
properties of both classes are maintained in the same table. For example, a one-to-one association
between a User and an Email class might be represented as a single table, as in Table 5-5.

Table 5-5. A Combined User/Email Table

ID Username Email

1 dcminter dcminter@example.com

2 jlinwood jlinwood@example.com

3 tjkitchen tjkitchen@example.com

The single database entity representing this combination of a User and an Email class is shown in

Figure 5-4.

User

PK id

username

email

Figure 5-4. A single entity representing a one-to-one relationship

mailto:dcminter@example.com
mailto:jlinwood@example.com
mailto:tjkitchen@example.com
http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

85

Alternatively, the entities can be maintained in distinct tables with identical primary keys, or with a
key maintained from one of the entities into the other, as in Tables 5-6 and 5-7.

Table 5-6. The User Table

ID Username

1 Dcminter

2 Jlinwood

3 Tjkitchen

Table 5-7. The Email Table

ID Username

1 dcminter@example.com

2 jlinwood@example.com

3 tjkitchen@example.com

It is possible to create a mandatory foreign key relationship from one of the entities to the other, but

this should not be applied in both directions because a circular dependency would be created. It is also
possible to omit the foreign key relationships entirely (as shown in Figure 5-5) and rely upon Hibernate
to manage the key selection and assignment.

User

PK id

username

Email

PK id

email

Figure 5-5. Entities related by primary keys

If it is not appropriate for the tables to share primary keys, then a foreign key relationship between
the two tables can be maintained, with a “unique” constraint applied to the foreign key column. For
example, reusing the User table from Table 5-6, the Email table can be suitably populated, as shown in
Table 5-8.

mailto:dcminter@example.com
mailto:jlinwood@example.com
mailto:tjkitchen@example.com
http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

86

Table 5-8. An Email Table with a Foreign Key to the User Table

ID Email UserID (Unique)

34 dcminter@example.com 1

35 jlinwood@example.com 2

36 tjkitchen@example.com 3

This has the advantage that the association can easily be changed from one-to-one to many-to-one

by removing the unique constraint. Figure 5-6 shows this type of relationship.

User

PK id

username

Email

PK

FK1

id

email

userId

Figure 5-6. Entities related by a foreign key relationship

The One-to-Many and Many-to-One Association

A one-to-many association (or from the perspective of the other class, a many-to-one association) can
most simply be represented by the use of a foreign key, with no additional constraints.

The relationship can also be maintained by the use of a link table. This will maintain a foreign key
into each of the associated tables, which will itself form the primary key of the link table. An example of
this is shown in Tables 5-9, 5-10, and 5-11.

Table 5-9. A Simple User Table

ID Username

1 Dcminter

2 Jlinwood

mailto:dcminter@example.com
mailto:jlinwood@example.com
mailto:tjkitchen@example.com
http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

87

Table 5-10. A Simple Email Table

ID Email

1 dcminter@example.com

2 dave@example.com

3 jlinwood@example.com

4 jeff@example.com

Table 5-11. A Link Table Joining User and Email in a One-to-Many Relationship

UserID EmailID

1 1

1 2

2 3

2 4

Additional columns can be added to the link table to maintain information on the ordering of the

entities in the association.
A unique constraint must be applied to the “one” side of the relationship (the userId column of the

UserEmailLink table in Figure 5-7); otherwise, the link table can represent the set of all possible
relationships between User and Email entities—a many-to-many set association.

User

PK id

username

Email

PK id

email

UserEmailLink

PK,FK1

PK,FK2

userId

emailId

Figure 5-7. A relationship represented by a link table (duplicates are not permitted because of the use of a

compound primary key)

mailto:dcminter@example.com
mailto:dave@example.com
mailto:jlinwood@example.com
mailto:jeff@example.com
http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

88

The Many-to-Many Association

As noted at the end of the previous section, if a unique constraint is not applied to the “one” end of the
relationship when using a link table, it becomes a limited sort of many-to-many relationship. All of the
possible combinations of User and Email can be represented, but it is not possible for the same User to
have the same e-mail address entity associated twice, because that would require the compound
primary key to be duplicated.

If instead of using the foreign keys together as a compound primary key, we give the link table its
own primary key (usually a surrogate key), the association between the two entities can be transformed
into a full many-to-many relationship, as shown in Table 5-12.

Table 5-12. A Many-to-Many User/Email Link Table

ID UserID EmailID

1 1 1

2 1 2

3 1 3

4 1 4

5 2 1

6 2 2

Table 5-12 might describe a situation in which the user dcminter receives all e-mail sent to any of

the four addresses, whereas jlinwood receives only e-mail sent to his own accounts.
When the link table has its own independent primary key, as with the association shown in Figure 5-

8, thought should be given to the possibility that a new class should be created to represent the contents
of the link table as an entity in its own right.

User

PK id

username

Email

PK id

email

UserEmailLink

PK

FK1

FK2

id

userId

emailId

Figure 5-8. A many-to-many relationship represented by a link table (duplicates are permitted because of

the use of a 0surrogate key)

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

89

Applying Mappings to Associations

The mappings are applied to express the various different ways of forming associations in the underlying
tables—there is no automatically correct way to represent them.

In addition to the basic choice of the approach to take, the mappings are used to specify the
minutiae of the tables’ representations. While Hibernate tends to use sensible default values when
possible, it is often desirable to override these. For example, the foreign key names generated
automatically by Hibernate will be effectively random—whereas an informed developer can apply a
name (e.g., FK_USER_EMAIL_LINK) to aid in the debugging of constraint violations at run time.

Other Information Represented in Mappings
While Hibernate can determine a lot of sensible default values for the mappings, most of these can be
overridden by one or both of the annotation- and XML-based approaches. Some apply directly to
mapping; others, such as the foreign key names, are really only pertinent when the mapping is used to
create the database schema. Lastly, some mappings can also provide a place to configure some features
that are perhaps not “mappings” in the purest sense. The final sections of this chapter discuss the
features that Hibernate supports in addition to those already mentioned.

Specification of (Database) Column Types and Sizes

Java provides the primitive types and allows user declaration of interfaces and classes to extend these.
Relational databases generally provide a small subset of “standard” types, and then provide additional
proprietary types.

Restricting yourself to the proprietary types will still cause problems, as there are only approximate
correspondences between these and the Java primitive types.

A typical example of a problematic type is java.lang.String (treated by Hibernate as if it were a
primitive type since it is used so frequently), which by default will be mapped to a fixed-size character
data database type. Typically, the database would perform poorly if a character field of unlimited size
were chosen—but lengthy String fields will be truncated as they are persisted into the database. In most
databases, you would choose to represent a lengthy String field as a VARCHAR type. This is one of the
reasons why Hibernate can't do all the mapping for you and why you still need to understand some
database fundamentals when you create an application that uses ORM.

By overriding the default type mappings, the developer can make appropriate trade-offs between
storage space, performance, and fidelity to the original Java representation.

The Mapping of Inheritance Relationships to the Database

There is no SQL standard for representing inheritance relationships for the data in tables; and while
some database implementations provide a proprietary syntax for this, not all do. Hibernate provides
several configurable ways in which to represent inheritance relationships, and the mapping file permits
users to select a suitable approach for their model.

http://

CHAPTER 5 ■ AN OVERVIEW OF MAPPING

90

Primary Key

Hibernate demands that a primary key be used to identify entities. The choice of a surrogate key, a key
chosen from the business data, and/or a compound primary key can be made via the mapping file.

When a surrogate key is used, Hibernate also permits the key-generation technique to be selected—
from a range of techniques that vary in portability and efficiency.

The Use of SQL Formula–Based Properties

It is sometimes desirable that a property of an entity should be maintained not as data directly stored in
the database, but rather as a function performed on that data—for example, a subtotal field should not
be managed directly by the Java logic, but instead maintained as an aggregate function of some other
property.

Mandatory and Unique Constraints

As well as the implicit constraints of a primary or foreign key relationship, you can specify that a field
must not be duplicated—for example, a username field should often be unique.

Fields can also be made mandatory—for example, requiring a message entity to have both a subject
and message text.

The generated database schema will contain corresponding NOT NULL and UNIQUE constraints so that
it is literally impossible to corrupt the table with invalid data (rather, the application logic will throw an
exception if any attempt to do so is made).

Note that primary keys are implicitly both mandatory and unique.

Cascading of Operations

As alterations are made to the object model, operations on some objects should cascade through to
related objects. For example, deleting a stocked item should perhaps cause any associated catalog
entries to be deleted. The reverse—deleting a single catalog entry—should not necessarily cause the
stocked item to be deleted from the database entirely!

It would be awkward to manage the appropriate cascading rules from code alone, so cascading rules
can be specified at a fine level of detail within the mappings.

Summary
This chapter has given you an overview of the reason why mappings are needed, and what features they
support beyond these absolute requirements. It has discussed the various types of associations, and the
circumstances under which you would choose to use them.

The next two chapters look at how mappings are specified using annotations and XML files
respectively.

http://

C H A P T E R 6

■ ■ ■

91

Mapping with Annotations

In Chapter 5, we discussed the need to create mappings between the database model and the object
model. Mappings can be created as separate XML files, or as annotations inline with the source code for
your POJOs. In this chapter, we discuss the use of annotations, and in the next chapter, we will discuss
the use of XML files.

Creating Hibernate Mappings with Annotations
Prior to annotations, the only way to create mappings was through XML files—although tools from
Hibernate and third-party projects allowed part or all of these to be generated from Java source code.
Although using annotations is the newest way to define mappings, it is not automatically the best way to
do so. We will briefly discuss the drawbacks and benefits of annotations before discussing when and
how to apply them.

Cons of Annotations

If you are migrating from a Hibernate 2 environment or an existing Hibernate 3 environment, you will
already have XML-based mapping files to support your code base. All else being equal, you will not want
to re-express these mappings using annotations just for the sake of it.

If you are migrating from a legacy environment, you may not want to alter the preexisting POJO
source code, in order to avoid contaminating known-good code with possible bugs.

If you do not have the source code to your POJOs (because it has been lost, or because it was
generated by an automated tool), you may prefer the use of external XML-based mappings to the
decompilation of class files to obtain Java source code for alteration.

Maintaining the mapping information as external XML files allows the mapping information to be
changed to reflect business changes or schema alterations without forcing you to rebuild the application
as a whole.

Pros of Annotations

Having considered the drawbacks, there are some powerful benefits to contrast against them.
First, and perhaps most persuasively, we find annotations-based mappings to be far more intuitive

than their XML-based alternatives, as they are immediately in the source code along with the properties
that they are associated with.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

92

Partly as a result of this, annotations are less verbose than their XML equivalents, as evidenced by
the contrast between Listings 6-1 and 6-2.

Listing 6-1. A Minimal Class Mapped Using Annotations

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Sample {
 @Id
 public Integer id;
 public String name;
}

Listing 6-2. A Minimal Class Mapped Using XML

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE
 hibernate-mapping
 PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping default-access="field">
 <class name="Sample">
 <id type="int" column="id">
 <generator class="native"/>
 </id>
 <property name="name" type="string"/>
 </class>
</hibernate-mapping>

Some of this verbosity is in the nature of XML itself (the tag names and the boilerplate document
type declaration), and some of it is due to the closer integration of annotations with the source code.
Here, for example, the XML file must explicitly declare that field access is used in place of property
access (i.e., the fields are accessed directly rather than through their get/set methods), but the
annotation infers this from the fact that it has been applied to the id field rather than the getId()
method.

Hibernate uses and supports the JPA 2 persistence annotations. If you elect not to use Hibernate-
specific features in your code and annotations, you will have the freedom to deploy your entities to
environments using other ORM tools that support JPA 2.

Finally—and perhaps a minor point—because the annotations are compiled directly into the
appropriate class files, there is less risk of a missing or stale mapping file causing problems at
deployment (this point will perhaps prove most persuasive to those who already have some experience
with this hazard of the XML technique).

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

93

Choosing Which to Use

When you are creating a Hibernate application that has complete or primary ownership of its database,
and that is a new project, we would generally recommend the use of annotations.

If you intend to make your application portable to other JPA 2–compliant ORM applications, you
must use annotations to represent the mapping information. Hibernate 3 XML file–based mapping is a
proprietary format. However, you may lose this benefit if you rely upon any of the Hibernate 3–specific
annotations (that is to say, annotations taken from the org.hibernate package tree rather than the
javax.persistence package tree).

If you are migrating an existing application to Hibernate, or creating a new project reliant upon a
database primarily owned by other applications, you can use the greater flexibility of XML-based
mappings to ensure that your project will not be unduly inconvenienced by changes to the database
schema.

Using Annotations in Your Application

Hibernate 3.5 now includes annotations as part of the core package; so unlike previous versions of
Hibernate 3, you will not need to install any additional libraries to make annotations work.

If you are using a hibernate.cfg.xml file to establish the mapping configuration, you will need to
provide the fully qualified name of the annotated class with the <mapping> element:

<mapping class="com.hibernatebook.annotations.Book"/>

When you are configuring the SessionFactory, you will need to make use of an -
AnnotationConfiguration object instead of the Configuration object used with XML mappings, as
follows:

SessionFactory factory =
 new AnnotationConfiguration().configure().buildSessionFactory();

If you prefer to configure the mappings manually rather than through the hibernate.cfg.xml file,
you can do this through the AnnotationConfiguration object, as follows:

AnnotationConfiguration config = new AnnotationConfiguration();
config.addAnnotatedClass(Book.class);
SessionFactory factory = config.configure().buildSessionFactory();

If you need to use your annotated entities from within an EJB 3 container, you must use the
standard EntityManager instead of the Hibernate-specific Session. Much like the annotations feature,
Hibernate’s EntityManager is now bundled with the core Hibernate package and is no longer an add on.

JPA 2 Persistence Annotations

When you develop using annotations, you start with a Java class, and then annotate the source code
listing with metadata notations. The Java Runtime Environment (JRE) parses these annotations.
Hibernate uses Java reflection to read the annotations and apply the mapping information. If you want
to use the Hibernate tools to generate your database schema, you must compile your entity classes
containing their annotations first.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

94

In this section, we are going to introduce the significant core of the JPA 2 annotations alongside a
simple set of classes to illustrate how they are applied.

The set of example classes represents a publisher’s catalog of books. You’ll start with a single class,
Book, which has no annotations or mapping information. For this example’s purposes, you do not have
an existing database schema to work with, so you need to define your relational database schema as
you go.

At the beginning of the example, the Book class is very simple. It has two fields, title and pages; and
an identifier, id, which is an integer. The title is a String object, and pages is an integer. As we go through
this example, we will add annotations, fields, and methods to the Book class. The complete source code
listing for the Book and Author classes is given at the end of this chapter—the source files for the rest are
available in the source code download for this chapter on the Apress web site (www.apress.com).

Listing 6-3 gives the source code of the Book class, in its unannotated form, as a starting point for the
example.

Listing 6-3. The Book Class, Unannotated

package com.hibernatebook.annotations;

public class Book {

 private String title;
 private int pages;
 private int id;

 // Getters...

 public int getId() {
 return id;
 }

 public String getTitle() {
 return title;
 }

 public int getPages() {
 return pages;
 }

 // Setters...

 public void setId(int id) {
 this.id = id;
 }

 public void setTitle(String title) {
 this.title = title;
 }

http://www.apress.com
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

95

 public void setPages(int pages) {
 this.pages = pages;
 }
}

As you can see, this is a POJO. We are going to annotate this class as we go along, explaining the
concepts behind annotation.

Entity Beans with @Entity

The first step is to annotate the Book class as a JPA 2 entity bean. We add the @Entity annotation to the
Book class, as follows:

package com.hibernatebook.annotations;
import javax.persistence.*;

@Entity
public class Book

The JPA 2 standard annotations are contained in the javax.persistence package, so we import the
appropriate annotations (here we will use wildcard imports to keep the listings short, but in the
downloadable source code accompanying this chapter, we use explicit imports such as import
javax.persistence.Entity;—annotations are imported in exactly the same way as the ordinary
interfaces that they resemble).

The @Entity annotation marks this class as an entity bean, so it must have a no-argument
constructor that is visible with at least protected scope. Hibernate supports package scope as the
minimum, but you lose portability to other containers if you take advantage of this. Other JPA 2 rules for
an entity bean class are that the class must not be final, and that the entity bean class must be concrete.
Many of the rules for JPA 2 entity bean classes and Hibernate 3 persistent objects are the same—partly
because the Hibernate team had much input into the JPA 2 design process, and partly because there are
only so many ways to design a relatively unobtrusive object-relational persistence solution.

As you can see, although we did have to add the import statement and the annotations, we have not
had to change the rest of the code. The POJO is essentially unchanged.

Primary Keys with @Id and @GeneratedValue

Each entity bean has to have a primary key, which you annotate on the class with the @Id annotation.
Typically, the primary key will be a single field, though it can also be a composite of multiple fields.

The placement of the @Id annotation determines the default access strategy that Hibernate will
use for the mapping. If the annotation is applied to a field as shown in Listing 6-4, then field access will
be used.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

96

Listing 6-4. A Class with Field Access

import javax.persistence.*;

@Entity
public class Sample {
 @Id
 int id;

 public int getId() {
 return this.id;
 }

 public void setId(int id) {
 this.id = id;
 }
}

If instead the annotation is applied to the getter for the field, as shown in Listing 6-5, then property
access will be used.

Listing 6-5. The Same Class with Property Access

import javax.persistence.*;

@Entity
public class Sample {
 int id;

 @Id
 public int getId() {
 return this.id;
 }

 public void setId(int id) {
 this.id = id;
 }
}

Here you can see one of the strengths of the annotations approach—because the annotations are
placed inline with the source code, information can be extracted from the context of the mapping in the
code, allowing many mapping decisions to be inferred rather than stated explicitly—which helps to
further reduce the verbosity of the annotations.

By default, the @Id annotation will automatically determine the most appropriate primary key
generation strategy to use—you can override this by also applying the @GeneratedValue annotation. This
takes a pair of attributes: strategy and generator. The strategy attribute must be a value from the
javax.persistence.GeneratorType enumeration. If you do not specify a generator type, the default is
AUTO. There are four different types of primary key generators on GeneratorType, as follows:

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

97

• AUTO: Hibernate decides which generator type to use, based on the database’s
support for primary key generation.

• IDENTITY: The database is responsible for determining and assigning the next
primary key.

• SEQUENCE: Some databases support a SEQUENCE column type. See the “Generating
Primary Key Values with @SequenceGenerator” section later in the chapter.

• TABLE: This type keeps a separate table with the primary key values. See the
“Generating Primary Key Values with @TableGenerator” section later in the
chapter.

You will notice that the available values for the strategy attribute do not exactly match the values
for Hibernate’s primary key generators for XML mapping. If you need to use Hibernate-specific primary
key generation strategies, you can use some of the Hibernate extensions described at the end of this
chapter—but as always, you risk forfeiting portability of your application to other JPA 2 environments
when taking advantage of Hibernate-specific features.

For the Book class, we are going to use the default key generation strategy. Letting Hibernate
determine which generator type to use makes your code portable between different databases. Because
we want Hibernate to use property access to our POJO, we must annotate the getter method for the
identifier, not the field that it accesses:

 @Id
 @GeneratedValue
 public int getId() {
 return id;
 }

Generating Primary Key Values with @SequenceGenerator

As noted in the section on the @Id tag, we can declare the primary key property as being generated by a
database sequence. A sequence is a database object that can be used as a source of primary key values. It
is similar to the use of an identity column type, except that a sequence is independent of any particular
table and can therefore be used by multiple tables.

To declare the specific sequence object to use and its properties, you must include an
@SequenceGenerator annotation on the annotated field. Here’s an example:

@Id
@SequenceGenerator(name="seq1",sequenceName="HIB_SEQ")
@GeneratedValue(strategy=SEQUENCE,generator="seq1")
public int getId() {
 return id;
}

Here, a sequence generation annotation named seq1 has been declared. This refers to the database
sequence object called HIB_SEQ. The name seq1 is then referenced as the generator attribute of the
@GeneratedValue annotation.

Only the sequence generator name is mandatory—the other attributes will take sensible default
values, but you should provide an explicit value for the sequenceName attribute as a matter of good
practice anyway. If not specified, the sequenceName value to be used is selected by the persistence

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

98

provider (i.e., Hibernate). The other (optional) attributes are initialValue (the generator starts with this
number) and allocationSize (the number of ids in the sequence reserved at a time); these default to
values of 1 and 50, respectively.

Generating Primary Key Values with @TableGenerator

The @TableGenerator annotation is used in a very similar way to the @SequenceGenerator annotation—
but because @TableGenerator manipulates a standard database table to obtain its primary key values,
instead of using a vendor-specific sequence object, it is guaranteed to be portable between database
platforms.

■ Note For optimal portability and optimal performance, you should not specify the use of a table generator, but

instead use the @GeneratorValue(strategy=GeneratorType.AUTO) configuration, which allows the persistence

provider to select the most appropriate strategy for the database in use.

As with the sequence generator, the name attributes of @TableGenerator are mandatory and the
other attributes are optional, with the table details being selected by the persistence provider.

@Id
@TableGenerator(name="tablegen",
 table="ID_TABLE",
 pkColumnName="ID",
 valueColumnName="NEXT_ID")
@GeneratedValue(strategy=TABLE,generator="tablegen")
public int getId() {
 return id;
}

The optional attributes are as follows:

• allocationSize: Allows the number of primary keys set aside at one time to be
tuned for performance.

• catalog: Allows the catalog that the table resides within to be specified.

• initialValue: Allows the starting primary key value to be specified.

• pkColumnName: Allows the primary key column of the table to be identified. The
table can contain the details necessary for generating primary key values for
multiple entities.

• pkColumnValue: Allows the primary key for the row containing the primary key
generation information to be identified.

• schema: Allows the schema that the table resides within to be specified.

• table: The name of the table containing the primary key values.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

99

• uniqueConstraints: Allows additional constraints to be applied to the table for
schema generation.

• valueColumnName: Allows the column containing the primary key generation
information for the current entity to be identified.

Because the table can be used to contain the primary key values for a variety of entries, it is likely
to contain a single row for each of the entities using it. It therefore needs its own primary key
(pkColumnName), as well as a column containing the next primary key value to be used (pkColumnValue) for
any of the entities obtaining their primary keys from it.

Compound Primary Keys with @Id, @IdClass, or @EmbeddedId

While the use of single column surrogate keys is advantageous for various reasons, you may sometimes
be forced to work with business keys. When these are contained in a single column, you can use @Id
without specifying a generation strategy (forcing the user to assign a primary key value before the entity
can be persisted). However, when the primary key consists of multiple columns, you need to take a
different strategy to group these together in a way that allows the persistence engine to manipulate the
key values as a single object.

You must create a class to represent this primary key. It will not require a primary key of its own, of
course, but it must be a public class, must have a default constructor, must be serializable, and must
implement hashCode() and equals() methods to allow the Hibernate code to test for primary key
collisions (i.e., they must be implemented with the appropriate database semantics for the primary key
values).

Your three strategies for using this primary key class once it has been created are as follows:

• Mark it as @Embeddable and add to your entity class a normal property for it,
marked with @Id.

• Add to your entity class a normal property for it, marked with @EmbeddableId.

• Add properties to your entity class for all of its fields, mark them with @Id, and
mark your entity class with @IdClass, supplying the class of your primary key class.

All these techniques require the use of an id class because Hibernate must be supplied with a
primary key object when various parts of its persistence API are invoked. For example, you can retrieve
an instance of an entity by invoking the Session object’s get() method, which takes as its parameter a
single serializable object representing the entity’s primary key.

The use of @Id with a class marked as @Embeddable, as shown in Listing 6-6, is the most natural
approach. The @Embeddable tag can be used for non–primary key embeddable values anyway
(@Embeddable is discussed in more detail later in the chapter). It allows you to treat the compound
primary key as a single property, and it permits the reuse of the @Embeddable class in other tables.

Listing 6-6. Using the @Id and @Embeddable Annotations to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
public class Account {

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

100

 private String description;
 private AccountPk id;

 public Account (String description) {
 this.description = description;
 }

 protected Account() {
 }

 @Id
 public AccountPk getId() {
 return this.id;
 }

 public String getDescription() {
 return this.description;
 }

 public void setId(AccountPk id) {
 this.id = id;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Embeddable
 public static class AccountPk {
 private String code;
 private Integer number;

 public AccountPk() {
 }

 public String getCode() {
 return this.code;
 }

 public Integer getNumber() {
 return this.number;
 }

 public void setNumber(Integer number) {
 this.number = number;
 }

 public void setCode(String code) {
 this.code = code;
 }

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

101

 public int hashCode() {
 int hashCode = 0;
 if(code != null) hashCode ^= code.hashCode();
 if(number != null) hashCode ^= number.hashCode();
 return hashCode;
 }

 public boolean equals(Object obj) {
 if(!(obj instanceof AccountPk)) return false;
 AccountPk target = (AccountPk)obj;
 return ((this.code == null) ?
 (target.code == null) :
 this.code.equals(target.code))
 && ((this.number == null) ?
 (target.number == null) :
 this.number.equals(target.number));
 }
 }
}

The next most natural approach is the use of the @EmbeddedId tag. Here, the primary key class cannot
be used in other tables since it is not an @Embeddable entity, but it does allow us to treat the key as a
single attribute of the Account class (in Listings 6-7 and 6-8, the implementation of AccountPk is identical
to that in Listing 6-6, and is thus omitted for brevity). Note that in Listings 6-7 and 6-8, the AccountPk
class is not marked as @Embeddable.

Listing 6-7. Using the @EmbeddedId Annotation to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
public class Account {
 private String description;
 private AccountPk id;

 public Account(String description) {
 this.description = description;
 }

 protected Account() {
 }

 @EmbeddedId
 public AccountPk getId() {
 return this.id;
 }

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

102

 public String getDescription() {
 return this.description;
 }

 public void setId(AccountPk id) {
 this.id = id;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public static class AccountPk {
 // ...
 }
}

Finally, the use of the @IdClass and @Id annotations allows us to map the compound primary key
class using properties of the entity itself corresponding to the names of the properties in the primary key
class. The names must correspond (there is no mechanism for overriding this), and the primary key class
must honor the same obligations as with the other two techniques. The only advantage to this approach
is its ability to “hide” the use of the primary key class from the interface of the enclosing entity. The
@IdClass annotation takes a value parameter of Class type, which must be the class to be used as the
compound primary key. The fields that correspond to the properties of the primary key class to be used
must all be annotated with @Id—note in Listing 6-8 that the getCode() and getNumber() methods of the
Account class are so annotated, and the AccountPk class is not mapped as @Embeddable, but it is supplied
as the value of the @IdClass annotation.

Listing 6-8. Using the @IdClass and @Id Annotations to Map a Compound Primary Key

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
@IdClass(Account.AccountPk.class)
public class Account {
 private String description;
 private String code;
 private Integer number;

 public Account(String description) {
 this.description = description;
 }

 protected Account() {
 }

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

103

 @Id
 public String getCode() {
 return this.code;
 }

 @Id
 public Integer getNumber() {
 return this.number;
 }

 public String getDescription() {
 return this.description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public void setNumber(Integer number) {
 this.number = number;
 }

 public void setCode(String code) {
 this.code = code;
 }

 public static class AccountPk {
 // ...
 }
}

Regardless of which of these approaches we take to declare our compound primary key, the table
that will be used to represent it will require the same set of columns. Listing 6-9 shows the DDL that will
be generated from any of Listings 6-6, 6-7, or 6-8.

Listing 6-9. The DDL Generated from the Annotated Account Class (Regardless of the Approach Used)

create table Account (
 code varchar(255) not null,
 number integer not null,
 description varchar(255),
 primary key (code, number)
);

Database Table Mapping with @Table and @SecondaryTable

The @Table annotation allows you to specify the details of the table that will be used to persist the entity
in the database. If you omit the annotation, Hibernate will default to using the class name for the table
name, so you only need to provide this annotation if you want to override that behavior. The @Table
annotation provides four attributes, allowing you to override the name of the table, its catalog, and its

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

104

schema, and enforce unique constraints on columns in the table. Typically, you would only provide a
substitute table name thus: @Table(name="ORDER_HISTORY"). The unique constraints will be applied if the
database schema is generated from the annotated classes, and will supplement any column-specific
constraints (see discussions of @Column and @JoinColumn later in this chapter). They are not otherwise
enforced.

The @SecondaryTable annotation provides a way to model an entity bean that is persisted across
several different database tables. Here, in addition to providing an @Table annotation for the primary
database table, your entity bean can have an @SecondaryTable annotation, or an @SecondaryTables
annotation in turn containing zero or more @SecondaryTable annotations. The @SecondaryTable
annotation takes the same basic attributes as the @Table annotation, with the addition of the join
attribute. The join attribute defines the join column for the primary database table. It accepts an array of
javax.persistence.PrimaryKeyJoinColumn objects. If you omit the join attribute, then it will be assumed
that the tables are joined on identically named primary key columns.

When an attribute in the entity is drawn from the secondary table, it must be marked with the
@Column annotation, with a table attribute identifying the appropriate table. Listing 6-10 shows how a
property of the Customer entity could be drawn from a second table mapped in this way.

Listing 6-10. An Example of a Field Access Entity Mapped Across Two Tables

package com.hibernatebook.annotations;

import javax.persistence.*;

@Entity
@Table(name="CUSTOMER")
@SecondaryTable(name="CUSTOMER_DETAILS")
public class Customer {

 @Id
 public int id;

 public String name;

 @Column(table="CUSTOMER_DETAILS")
 public String address;
}

Columns in the primary or secondary tables can be marked as having unique values within their
tables by adding one or more appropriate @UniqueConstraint annotations to @Table or @SecondaryTable’s
uniqueConstraints attribute. You may also set uniqueness at the field level with the unique attribute on
the @Column attribute. For example, to mark the name field in the preceding declaration as being unique,
use the following:

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

105

@Entity
@Table(
 name="CUSTOMER",
 uniqueConstraints={@UniqueConstraint(columnNames="name")}
)
@SecondaryTable(name="CUSTOMER_DETAILS")
public class Customer {
 ...
}

Persisting Basic Types with @Basic

By default, properties and instance variables in your POJO are persistent—Hibernate will store their
values for you. The simplest mappings are therefore for the “basic” types. These include primitives,
primitive wrappers, arrays of primitives or wrappers, enumerations, and any types that implement
Serializable but are not themselves mapped entities. These are all mapped implicitly—no annotation is
needed. By default, such fields are mapped to a single column, and eager fetching is used to retrieve
them (i.e., when the entity is retrieved from the database, all the basic fields and properties are
retrieved). Also, when the field or property is not a primitive, it can be stored and retrieved as a null
value.

This default behavior can be overridden by applying the @Basic annotation to the appropriate class
member. This annotation takes two optional attributes, and is itself entirely optional. The first attribute
is named optional and takes a boolean. Defaulting to true, this can be set to false to provide a hint to
schema generation that the associated column should be created NOT NULL. The second is named fetch
and takes a member of the enumeration FetchType. This is EAGER by default, but can be set to LAZY to
permit loading on access of the value.

The use of lazy loading is unlikely to be valuable, except when large serializable objects have been
mapped as basic types (rather than given entity mappings of their own) and retrieval time may become
significant. While the (default) EAGER value must be honored, the LAZY flag is considered to be a hint, and
can be ignored by the persistence engine.

The @Basic attribute is usually omitted, with the @Column attribute being used where the @Basic
annotation’s optional attribute might otherwise be used to provide the NOT NULL behavior.

Omitting Persistence with @Transient

Some fields, such as calculated values, may be used at run time only and they should be discarded from
objects as they are persisted into the database. The EJB 3 specification provides the @Transient
annotation for these transient fields. The @Transient annotation does not have any attributes—you just
add it to the instance variable or the getter method as appropriate for the entity bean’s property access
strategy.

The @Transient annotation highlights one of the more important differences between using
annotations with Hibernate and using XML mapping documents. With annotations, Hibernate will
default to persisting all of the fields on a mapped object. When using XML mapping documents,
Hibernate requires you to tell it explicitly which fields will be persisted.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

106

For our example, we contrive to add a Date field named publicationDate, which will not be stored in
the database to our Book class. We mark this field transient thus:

 @Transient
 public Date getPublicationDate() {
 return publicationDate;
 }

Because we are using a property access strategy for our Book class, we must put the @Transient
annotation on the getter method.

Mapping Properties and Fields with @Column

The @Column annotation is used to specify the details of the column to which a field or property will be
mapped. Some of the details are schema related, and therefore apply only if the schema is generated
from the annotated files. Others apply and are enforced at run time by Hibernate (or the JPA 2
persistence engine). It is optional, with an appropriate set of default behaviors, but is often useful when
overriding default behavior, or when you need to fit your object model into a preexisting schema. It is
more commonly used than the similar @Basic annotation, with the following attributes commonly being
overridden:

name permits the name of the column to be explicitly specified—by default, this
would be the name of the property. However, it is often necessary to override
the default behavior when it would otherwise result in an SQL keyword being
used as the column name (e.g., user).

length permits the size of the column used to map a value (particularly a String
value) to be explicitly defined. The column size defaults to 255, which might
otherwise result in truncated String data, for example.

nullable permits the column to be marked NOT NULL when the schema is
generated. The default is that fields should be permitted to be null; however, it
is common to override this when a field is, or ought to be, mandatory.

unique permits the column to be marked as containing only unique values. This
defaults to false, but commonly would be set for a value that might not be a
primary key but would still cause problems if duplicated (such as username).

We have marked up the title field of our Book entity using the @Column entity to show how three of
these attributes would be applied:

 @Column(name="working_title",length=200,nullable=false)
 public String getTitle() {
 return title;
 }

The remaining attributes, less commonly used, are as follows:

table is used when the owning entity has been mapped across one or more
secondary tables. By default, the value is assumed to be drawn from the
primary table, but the name of one of the secondary tables can be substituted
here (see the @SecondaryTable annotation example earlier in this chapter).

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

107

insertable defaults to true, but if set to false, the annotated field will be
omitted from insert statements generated by Hibernate (i.e., it won’t be
persisted).

updatable defaults to true, but if set to false, the annotated field will be
omitted from update statements generated by Hibernate (i.e., it won’t be
altered once it has been persisted).

columnDefinition can be set to an appropriate DDL fragment to be used when
generating the column in the database. This can only be used during schema
generation from the annotated entity, and should be avoided if possible, since it
is likely to reduce the portability of your application between database dialects.

precision permits the precision of decimal numeric columns to be specified for
schema generation, and will be ignored when a non-decimal value is persisted.
The value given represents the number of digits in the number (usually
requiring a minimum length of n+1, where n is the scale).

scale permits the scale of decimal numeric columns to be specified for schema
generation and will be ignored where a non-decimal value is persisted. The
value given represents the number of places after the decimal point.

Modeling Entity Relationships

Naturally, annotations also allow you to model associations between entities. JPA 2 supports one-to-one,
one-to-many, many-to-one, and many-to-many associations. Each of these has its corresponding
annotation.

We discussed the various ways in which these mappings can be established in the tables in Chapter
5. In this section, we will show how the various mappings are requested using the annotations.

Mapping an Embedded (Component) One-to-One Association

When all the fields of one entity are maintained within the same table as another, the enclosed entity is
referred to in Hibernate as a component. The JPA 2 standard refers to such an entity as being embedded.

The @Embedded and @Embeddable attributes are used to manage this relationship. In this book’s
database example, we associate an AuthorAddress class with an Author class in this way.

The AuthorAddress class is marked with the @Embeddable annotation. An embeddable entity must be
composed entirely of basic fields and attributes. An embeddable entity can only use the @Basic, @Column,
@Lob, @Temporal, and @Enumerated annotations. It cannot maintain its own primary key with the @Id tag
because its primary key is the primary key of the enclosing entity.

The @Embeddable annotation itself is purely a marker annotation, and takes no additional attributes,
as demonstrated in Listing 6-11. Typically, the fields and properties of the embeddable entity need no
further markup.

Listing 6-11. Marking an Entity for Embedding Within Other Entities

@Embeddable
public class AuthorAddress {
...
}

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

108

The enclosing entity then marks appropriate fields or getters in entities, making use of the
embeddable class with the @Embedded annotation, as shown in Listing 6-12.

Listing 6-12. Marking an Embedded Property

@Embedded
public AuthorAddress getAddress() {
 return this.address;
}

The @Embedded annotation draws its column information from the embedded type, but permits the
overriding of a specific column or columns with the @AttributeOverride and @AttributeOverrides tags
(the latter to enclose an array of the former if multiple columns are being overridden). For example,
Listing 6-13 shows how to override the default column names of the address and country attributes of
AuthorAddress with columns named ADDR and NATION.

Listing 6-13. Overriding Default Attributes of an Embedded Property

@Embedded
@AttributeOverrides({
 @AttributeOverride(name="address",column=@Column(name="ADDR")),
 @AttributeOverride(name="country",column=@Column(name="NATION"))
})
public AuthorAddress getAddress() {
 return this.address;
}

Neither Hibernate nor the JPA 2 standard supports mapping an embedded object across more than
one table. In practice, if you want this sort of persistence for your embedded entity, you will usually be
better off making it a first-class entity (i.e., not embedded) with its own @Entity marker and @Id
annotations, and then mapping it via a conventional one-to-one association, as explained in the next
section.

Mapping a Conventional One-to-One Association

There is nothing intrinsically wrong with mapping a one-to-one association between two entities where
one is not a component of (i.e., embedded into) the other. The relationship is often somewhat suspect,
however. You should give some thought to using the embedded technique described previously before
using the @OneToOne annotation.

You can have a bidirectional relationship with a one-to-one association. One side will need to own
the relationship and be responsible for updating a join column with a foreign key to the other side. The
non-owning side will need to use the mappedBy attribute to indicate the entity that owns the relationship.

Assuming that you are resolute on declaring the association in this way (perhaps because you
anticipate converting it to a one-to-many or many-to-one relationship in the foreseeable future),
applying the annotation is quite simple—all of the attributes are optional. Listing 6-14 shows how simply
a relationship like this might be declared.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

109

Listing 6-14. Declaring a Simple One-to-One Relationship

@OneToOne
public Address getAddress() {
 return this.address;
}

The @OneToOne annotation permits the following optional attributes to be specified:

targetEntity can be set to the class of an entity storing the association. If left
unset, the appropriate type will be inferred from the field type, or the return
type of the property’s getter.

cascade can be set to any of the members of the
javax.persistence.CascadeType enumeration. It defaults to none being set. See
the “Cascading Operations” sidebar for a discussion of these values.

fetch can be set to the EAGER or LAZY members of FetchType.

optional indicates whether the value being mapped can be null.

orphanRemoval indicates that if the value being mapped is deleted, this entity
will also be deleted.

mappedBy indicates that a bidirectional one-to-one relationship is owned by the

named entity.
1
 The owning entity contains the primary key of the subordinate

entity.

Mapping a Many-to-One or One-to-Many Association

A many-to-one association and a one-to-many association are the same association seen from the
perspective of the owning and subordinate entities, respectively.

1
 An association is bidirectional if each entity maintains a property or field representing its end of the same

relationship. For example, if our Address class maintained a reference to the Publisher located there, and the
Publisher class maintained a reference to its Address, then the association would be bidirectional.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

110

CASCADING OPERATIONS

When an association between two entities is established (such as a one-to-one association between

Human and Pet or a one-to-many association between Customer and Orders), it is common to want certain
persistence operations on one entity to also be applied to the entity that it is linked to. Take, for example,

the following code:

Human dave = new Human("dave");
Pet cat = new PetCat("Tibbles");
dave.setPet(cat);
session.save(dave);

In the last line, highlighted in bold, we are likely to want to save the Pet object associated with the Human

object. In a one-to-one relationship, we usually expect all operations on the owning entity to be propagated

through—that is, to be cascaded—to the dependent entity. In other associations this is not true, and even
in a one-to-one relationship we may have special reasons for wanting to spare the dependent entity from

delete operations (perhaps for auditing reasons).

We are therefore able to specify the types of operations that should be cascaded through an association to
another entity using the cascade annotation, which takes an array of members of the CascadeType

enumeration. The members correspond with the names of the key methods of the EntityManager class

used for EJB 3 persistence, and have the following rough correspondence with operations on entities:

• ALL requires all operations to be cascaded to dependent entities. This is the same

as including MERGE, PERSIST, REFRESH, DETACH, and REMOVE.

• MERGE cascades updates to the entity’s state in the database (i.e., UPDATE . .
.).

• PERSIST cascades the initial storing of the entity’s state in the database (i.e.,
INSERT. . .).

• REFRESH cascades the updating of the entity’s state from the database (i.e.,
SELECT . . .).

• DETACH cascades the removal of the entity from the managed persistence context.

• REMOVE cascades deletion of the entity from the database (i.e., DELETE . . .).

• If no cascade type is specified, no operations will be cascaded through the

association.

In the light of these options, the appropriate annotation for the relationship between a publisher and its
address would be as follows:

@OneToOne(cascade=CascadeType.ALL)
public Address getAddress() {
return this.address;
}

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

111

The simplest way to maintain a many-to-one relationship between two entities is by managing the
foreign key of the entity at the “one” end of the one-to-many relationship as a column in the “many”
entity’s table.

The @OneToMany annotation can be applied to a field or property value for a collection or an array
representing the mapped “many” end of the association.

COLLECTION ORDERING

 An ordered collection can be persisted in Hibernate or JPA 2 using the @OrderColumn annotation to

maintain the order of the collection. You can also order the collection at retrieval time by means of the

@OrderBy annotation. For example, if you were to retrieve a list ordered by the books’ names in ascending

order, you could annotate a suitable method.

The following code snippet specifies a retrieval order for an ordered collection:

@OneToMany(cascade = ALL, mappedBy = "publisher"
@OrderBy("name ASC")
public List<Book> getBooks() {
return books
}

The value of the @OrderBy annotation is an ordered list of the field names to sort by, each one optionally

appended with ASC (for ascending order, as in the preceding code) or DESC (for descending order). If
neither ASC nor DESC is appended to one of the field names, the order will default to ascending. @OrderBy
can be applied to any collection-valued association.

The mappedBy attribute is mandatory on a bidirectional association and optional (being implicit) on

a unidirectional association.
cascade is optional, taking a member of the javax.persistence.CascadeType enumeration and

dictating the cascade behavior of the mapped entity.
targetEntity is optional, as it can usually be deduced from the type of the field or property, as in

Listing 6-15, where the property represents a Set of Book entities, making the target entity implicitly Book.
However, if necessary (if generics are not being used, for example), the class of the target entity can be
provided here.

fetch is optional, allowing lazy or eager fetching to be specified as a member of the
javax.persistence.FetchType enumeration.

Listing 6-15. Mapping a One-to-Many Relationship from the Book Entity to the Publisher Entity

@OneToMany(cascade = ALL,mappedBy = "publisher")
public Set<Book> getBooks() {
 return books;
}

The many-to-one end of this relationship is expressed in similar terms to the one-to-many end, as
shown in Listing 6-16.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

112

Listing 6-16. Mapping a Many-to-One Relationship from the Publisher Entity to the Book Entity

@ManyToOne
@JoinColumn(name = "publisher_id")
public Publisher getPublisher() {
 return publisher;
}

The @ManyToOne annotation takes a similar set of attributes to @OneToMany. The following list
describes the attributes, all of which are optional.

cascade indicates the appropriate cascade policy for operations on the
association; it defaults to none.

fetch indicates the fetch strategy to use; it defaults to LAZY.

optional indicates whether the value can be null; it defaults to true.

targetEntity indicates the entity that stores the primary key—this is normally
inferred from the type of the field or property (Publisher in the preceding
example).

We have also supplied the optional @JoinColumn attribute to name the foreign key column required
by the association something other than the default (publisher)—this is not necessary, but it illustrates
the use of the annotation.

When a unidirectional one-to-many association is to be formed, it is possible to express the
relationship using a link table. This is achieved by adding the @JoinTable annotation as shown in Listing

6-17.
2

Listing 6-17. A Simple Unidirectional One-to-Many Association with a Join Table

@OneToMany(cascade = ALL)
@JoinTable
public Set<Book> getBooks() {
 return books;
}

2
 When a join table is being used, the foreign key relationship is maintained within the join table itself—it is therefore

not appropriate to combine the mappedBy attribute of the @OneToMany annotation with the use of an @JoinTable
annotation.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

113

The @JoinTable annotation provides attributes that allow various aspects of the link table to be
controlled. These attributes are as follows:

name is the name of the join table to be used to represent the association.

catalog is the name of the catalog containing the join table.

schema is the name of the schema containing the join table.

joinColumns is an array of @JoinColumn attributes representing the primary key
of the entity at the “one” end of the association.

inverseJoinColumns is an array of @JoinColumn attributes representing the
primary key of the entity at the “many” end of the association.

Listing 6-18 shows a fairly typical application of the @JoinTable annotation to specify the name of
the join table and its foreign keys into the associated entities.

Listing 6-18. A Unidirectional One-to-Many Association with a More Fully Specified Join Table

@OneToMany(cascade = ALL)
@JoinTable(
 name="PublishedBooks",
 joinColumns = { @JoinColumn(name = "publisher_id") },
 inverseJoinColumns = @JoinColumn(name = "book_id")
)
public Set<Book> getBooks() {
 return books;
}

Mapping a Many-to-Many Association

When a many-to-many association does not involve a first-class entity joining the two sides of the
relationship, a link table must be used to maintain the relationship. This can be generated automatically,
or the details can be established in much the same way as with the link table described in the “Mapping
a Many-to-One or One-to-Many Association” section of the chapter.

The appropriate annotation is naturally @ManyToMany, and takes the following attributes:

mappedBy is the field that owns the relationship—this is only required if the
association is bidirectional. If an entity provides this attribute, then the other
end of the association is the owner of the association, and the attribute must
name a field or property of that entity.

targetEntity is the entity class that is the target of the association. Again, this
may be inferred from the generic or array declaration, and only needs to be
specified if this is not possible.

cascade indicates the cascade behavior of the association, which defaults to
none.

fetch indicates the fetch behavior of the association, which defaults to LAZY.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

114

The example maintains a many-to-many association between the Book class and the Author class.
The Book entity owns the association, so its getAuthors() method must be marked with an appropriate
@ManyToMany attribute, as shown in Listing 6-19.

Listing 6-19. The Book Side of the Many-to-Many Association

@ManyToMany(cascade = ALL)
public Set<Author> getAuthors() {
 return authors;
}

The Author entity is managed by the Book entity. The link table is not explicitly managed, so, as
shown in Listing 6-20, we mark it with a @ManyToMany annotation and indicate that the foreign key is
managed by the authors attribute of the associated Book entity.

Listing 6-20. The Author Side of the Many-to-Many Association

@ManyToMany(mappedBy = "authors")
public Set<Book> getBooks() {
 return books;
}

Alternatively, we could specify the link table in full, as in Listing 6-21.

Listing 6-21. Specifying the Link Table in Full Using the Book Entity Annotations

@ManyToMany(cascade = ALL)
@JoinTable(
 name="Books_to_Author",
 joinColumns={@JoinColumn(name="book_ident")},
 inverseJoinColumns={@JoinColumn(name="author_ident")}
)
public Set<Author> getAuthors() {
 return authors;
}

Inheritance

The JPA 2 standard and Hibernate both support three approaches to mapping inheritance hierarchies
into the database. These are as follows:

• Single table (SINGLE_TABLE): One table for each class hierarchy

• Joined (JOINED): One table for each subclass (including interfaces and abstract
classes)

• Table-per-class (TABLE_PER_CLASS): One table for each concrete class
implementation

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

115

Persistent entities that are related by inheritance must be marked up with the @Inheritance
annotation. This takes a single strategy attribute, which is set to one of three javax.persistence.
InheritanceType enumeration values corresponding to these approaches (shown in brackets in the
preceding bulleted list).

Single Table

The single table approach manages one class for the superclass and all its subtypes. There are columns
for each mapped field or property of the superclass, and for each distinct field or property of the derived
types. When following this strategy, you will need to ensure that columns are appropriately renamed
when any field or property names collide in the hierarchy.

To determine the appropriate type to instantiate when retrieving entities from the database, an
@DiscriminatorColumn annotation should be provided in the root (and only in the root) of the persistent

hierarchy.
3
 This defines a column containing a value that distinguishes between each of the types used.

The attributes permitted by the @DiscriminatorColumn annotation are as follows:

name is the name of the discriminator column.

discriminatorType is the type of value to be stored in the column as selected
from the javax.persistence.DiscriminatorType enumeration of STRING, CHAR,
or INTEGER.

columnDefinition is a fragment of DDL defining the column type. Using this is
liable to reduce the portability of your code across databases.

length is the column length of STRING discriminator types. It is ignored for CHAR
and INTEGER types.

All of these (and the annotation itself) are optional, but we recommend supplying at least the name
attribute. If no @DiscriminatorColumn is specified in the hierarchy, a default column name of DTYPE and
type of STRING will be used.

Hibernate will supply an appropriate discriminator value for each of your entities. For example, if
the STRING discriminator type is used, the value this column contains will be the name of the entity
(which defaults to the class name). You can also override this behavior with specific values using the
@DiscriminatorValue annotation. If the discriminator type is INTEGER, any value provided via the
@DiscriminatorValue annotation must be convertible directly into an integer.

In Listing 6-22, we specify that an INTEGER discriminator type should be stored in the column named
DISCRIMINATOR. Rows representing Book entities will have a value of 1 in this column, whereas the
following mapping in Listing 6-23 requires that rows representing ComputerBook entities should have a
value of 2 in the same column.

3
 That is to say, the highest class in the hierarchy that is mapped to the database as an entity should be annotated in

this way.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

116

Listing 6-22. The Root of the Inheritance Hierarchy Mapped with the SINGLE_TABLE Strategy

@Entity
@Inheritance(strategy = SINGLE_TABLE)
@DiscriminatorColumn(
 name="DISCRIMINATOR",
 discriminatorType=INTEGER
)
@DiscriminatorValue("1")
public class Book {
...
}

Listing 6-23. A Derived Entity in the Inheritance Hierarchy

@Entity
@DiscriminatorValue("2")
public class ComputerBook extends Book {
...
}

Joined

An alternative to the monolithic single table approach is the otherwise similar joined table approach.
Here a discriminator column is used, but the fields of the various derived types are stored in distinct
tables. Other than the differing strategy, this inheritance type is specified in the same way (as shown in
Listing 6-24).

Listing 6-24. The Root of the Inheritance Hierarchy Mapped with the JOINED Strategy

@Entity
@Inheritance(strategy = JOINED)
@DiscriminatorColumn(
 name="DISCRIMINATOR"
)
public class Book {
...
}

Table per Class

Finally, there is the table-per-class approach, in which all of the fields of each type in the inheritance
hierarchy are stored in distinct tables. Because of the close correspondence between the entity and its
table, the @DiscriminatorColumn annotation is not applicable to this inheritance strategy. Listing 6-25
shows how our Book class could be mapped in this way.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

117

Listing 6-25. The Root of the Inheritance Hierarchy Mapped with the TABLE_PER_CLASS Strategy

@Entity
@Inheritance(strategy = TABLE_PER_CLASS)
public class Book {
...
}

Choosing Between Inheritance Types When Modeling Inheritance

Each of these different inheritance types has tradeoffs. When you create a database schema that models
a class hierarchy, you have to weigh performance and database maintainability to decide which
inheritance type to use.

It is easiest to maintain your database when using the joined table approach. If fields are added or
removed from any class in the class hierarchy, only one database table needs to be altered to reflect the
changes. In addition, adding new classes to the class hierarchy only requires that a new table be added,
eliminating the performance problems of adding database columns to large datasets. With the table-per-
class approach, a change to a column in a parent class requires that the column change be made in all
child tables. The single table approach can be messy, leading to many columns in the table that aren’t
used in every row, as well as a rapidly horizontally growing table.

Read performance will be best with the single table approach. A select query for any class in the
hierarchy will only read from one table, with no joins necessary. The table-per-class type has great
performance if you only work with the leaf nodes in the class hierarchy. Any queries related to the parent
classes will require joins on a number of tables to get results. The joined table approach will also require
joins for any select query, so this will affect performance. The number of joins will be related to the size
of the class hierarchy—large, deep class hierarchies may not be good candidates for the joined table
approach.

We recommend using the joined table approach unless performance could be a problem because of
the size of the dataset and the depth of the class hierarchy.

Other JPA 2 Persistence Annotations

Although we have now covered most of the core JPA 2 persistence annotations, there are a few others
that you will encounter fairly frequently. We cover some of these in passing in the following sections.

Temporal Data

Fields or properties of an entity that have java.util.Date or java.util.Calendar types represent
temporal data. By default, these will be stored in a column with the TIMESTAMP data type, but this default
behavior can be overridden with the @Temporal annotation.

The annotation accepts a single value attribute from the javax.persistence.TemporalType
enumeration. This offers three possible values: DATE, TIME, and TIMESTAMP. These correspond respectively
to java.sql.Date, java.sql.Time, and java.sql.Timestamp. The table column is given the appropriate
data type at schema generation time. Listing 6-26 shows an example mapping a java.util.Date property
as a TIME type—the java.sql.Date and java.sql.Time classes are both derived from the java.util.Date
class, so confusingly, both are capable of representing dates and times!

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

118

Listing 6-26. A Date Property Mapped as a Time Temporal Field

@Temporal(TIME)
public java.util.Date getStartingTime() {
 return this.startingTime;
}

Element Collections

In addition to mapping collections using one-to-many mappings, JPA 2 introduced an
@ElementCollection annotation for mapping collections of basic or embeddable classes. You can use the
@ElementCollection annotation to simplify your mappings. Listing 6-27 shows an example where you
use the @ElementCollection annotation to map a java.util.List collection of string objects.

Listing 6-27. An Example of ElementCollections

@ElementCollection
public List<String> getPasswordHints {
 return this.passwordHints;
}

There are two attributes on the @ElementCollection annotation: targetClass and fetch. The
targetClass attribute tells Hibernate which class is stored in the collection. If you use generics on your
collection, you do not need to specify targetClass because Hibernate will infer the correct class. The
fetch attribute takes a member of the enumeration, FetchType. This is EAGER by default, but can be set to
LAZY to permit loading when the value is accessed.

Large Objects

A persistent property or field can be marked for persistence as a database-supported large object type by
applying the @Lob annotation.

The annotation takes no attributes, but the underlying large object type to be used will be inferred
from the type of the field or parameter. String- and character-based types will be stored in an
appropriate character-based type. All other objects will be stored in a BLOB. Listing 6-28 maps a String
into a large object column type.

Listing 6-28. An Example of a Large Object Property

@Lob
public String getTitle() {
 return this.title;
}

The @Lob annotation can be used in combination with the @Basic or the @ElementCollection
annotation.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

119

Mapped Superclasses

A special case of inheritance occurs when the root of the hierarchy is not itself a persistent entity, but
various classes derived from it are. Such a class can be abstract or concrete. The @MappedSuperclass
annotation allows you to take advantage of this circumstance.

The class marked with @MappedSuperclass is not an entity, and is not queryable (it cannot be passed
to methods that expect an entity in the Session or EntityManager objects). It cannot be the target of an
association.

The mapping information for the columns of the superclass will be stored in the same table as the
details of the derived class (in this way, the annotation resembles the use of the an @Inheritance tag with
the SINGLE_TABLE strategy).

In other respects, the superclass can be mapped as a normal entity, but the mappings will apply to
the derived classes only (since the superclass itself does not have an associated table in the database).
When a derived class needs to deviate from the superclass’s behavior, the @AttributeOverride
annotation can be used (much as with the use of an embeddable entity).

For example, if in our example model Book was a superclass of ComputerBook, but Book objects
themselves were never persisted directly, then Book could be marked as @MappedSuperclass, as in Listing
6-29.

Listing 6-29. Marking the Book Class As a Mapped Superclass

@Entity
@MappedSuperclass
public class Book {
...
}

The fields of the ComputerBook entity derived from Book would then be stored in the ComputerBook
entity class’s table. Classes derived directly from Book but not mapped as entities in their own right, such
as a hypothetical MarketingBook class, would not be persistable. In this respect alone, the mapped
superclass approach behaves differently from the conventional @Inheritance approach with a
SINGLE_TABLE strategy.

Ordering Collections with @OrderColumn

While @OrderBy allows data to be ordered once it has been retrieved from the database, JPA 2 also
provides an annotation that allows the ordering of appropriate collection types (e.g., List) to be
maintained in the database; it does so by maintaining an order column to represent that order. Here’s an
example:

@OneToMany
@OrderColumn(
 name="employeeNumber"
)
public List<Employee> getEmployees() {
 return this.employees;
}

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

120

Here, we are declaring that an employeeNumber column will maintain a value, starting at 0 and
incrementing as each entry is added to the list. The default starting value can be overridden by the base
attribute. By default, the column can contain null (unordered) values. The nullability can be overridden
by setting the nullable attribute to false. By default, when the schema is generated from the
annotations, the column is assumed to be an integer type; however, this can be overridden by supplying
a columnDefinition attribute specifying a different column definition string.

Named Queries (HQL or JPQL)

@NamedQuery and @NamedQueries allow one or more Hibernate Query Language or Java Persistence Query
Language (JPQL) queries to be associated with an entity. The required attributes are as follows:

name is the name by which the query is retrieved.

query is the JPQL (or HQL) query associated with the name.

Listing 6-30 shows an example associating a named query with the Author entity. The query would
retrieve Author entities by name, so it is natural to associate it with that entity—however, there is no
actual requirement that a named query be associated in this way with the entity that it concerns.

Listing 6-30. A JPQL Named Query Annotation

@Entity
@NamedQuery(
 name="findAuthorsByName",
 query="from Author where name = :author"
)
public class Author {
...
}

There is also a hints attribute, taking a QueryHint annotation name/value pair, which allows caching
mode, timeout value, and a variety of other platform-specific tweaks to be applied (this can also be used
to comment the SQL generated by the query).

You do not need to directly associate the query with the entity against which it is declared, but it is
normal to do so. If a query has no natural association with any of the entity declarations, it is possible to
make the @NamedQuery annotation at the package level.

There is no natural place to put a package-level annotation, so Java annotations allow for a specific
file, called package-info.java, to contain them. Listing 6-31 gives an example of this.

Listing 6-31. A package-info.java File

@javax.annotations.NamedQuery(
 name="findAuthorsByName",
 query="from Author where name = :author"
)
package com.hibernatebook.annotations;

mailto:@javax.annotations.NamedQuery
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

121

Hibernate’s session allows named queries to be accessed directly, as shown in Listing 6-32.

Listing 6-32. Invoking a Named Query via the Session

Query query = session.getNamedQuery("findAuthorsByName");
query.setParameter("author", "Dave");
List booksByDave = query.list();
System.out.println("There is/are " + booksByDave.size()
 + " author(s) called Dave in the catalog");

If you have multiple @NamedQuery annotations to apply to an entity, they can be provided as an array
of values of the @NamedQueries annotation.

Named Native Queries (SQL)

Hibernatealso allows the database’s native query language (usually a dialect of SQL) to be used in place
of HQL or JPQL. You risk losing portability here if you use a database-specific feature, but as long as you
use reasonably generic SQL, you should be OK. The @NamedNativeQuery annotation is declared in almost
exactly the same manner as the @NamedQuery annotation. The following block of code shows a simple
example of the use of a named native query.

@NamedNativeQuery(
 name="nativeFindAuthorNames",
 query="select name from author"
)

Multiple @NamedNativeQuery annotations can be grouped with the @NamedNativeQueries annotation.

Configuring the Annotated Classes
Once you have an annotated class, you will need to provide the class to your application’s Hibernate
configuration, just as if it were an XML mapping. With annotations, you can use either the declarative
configuration in the hibernate.cfg.xml XML configuration document, or you can programmatically add
annotated classes to Hibernate’s org.hibernate.cfg.AnnotationConfiguration object. Your application
may use both annotated entities and XML mapped entities in the same configuration.

To provide declarative mapping, we use a normal hibernate.cfg.xml XML configuration file and
add the annotated classes to the mapping using the mapping element (see Listing 6-33). Notice that we
have specified the name of the annotated class as a mapping.

Listing 6-33. A Hibernate XML Configuration File with an Annotated Class

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

122

 <property name="connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="connection.url">
 jdbc:hsqldb:file:annotationsdb;shutdown=true
 </property>
 <property name="connection.username">sa</property>
 <property name="connection.password"></property>
 <property name="hibernate.connection.pool_size">0</property>
 <property name="show_sql">false</property>
 <property name="dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- Mapping files -->
 <mapping class="com.hibernatebook.annotations.Author"/>
 <mapping class="com.hibernatebook.annotations.AuthorAddress"/>
 <mapping class="com.hibernatebook.annotations.Book"/>
 <mapping class="com.hibernatebook.annotations.Address"/>
 <mapping class="com.hibernatebook.annotations.Publisher"/>
 <mapping class="com.hibernatebook.annotations.ComputerBook"/>

 </session-factory>
</hibernate-configuration>

You can also add an annotated class to your Hibernate configuration programmatically. The
annotations toolset comes with an org.hibernate.cfg.AnnotationConfiguration object that extends the
base Hibernate Configuration object for adding mappings. The methods on AnnotationConfiguration
for adding annotated classes to the configuration are as follows:

addAnnotatedClass(Class persistentClass) throws MappingException
addAnnotatedClasses(List<Class> classes)
addPackage(String packageName) throws MappingException

Using these methods, you can add one annotated class, a list of annotated classes, or an entire
package (by name) of annotated classes. As with the Hibernate XML configuration file, the annotated
entities are interoperable with XML mapped entities.

Hibernate 3–Specific Persistence Annotations
We will now look at some of these Hibernate-specific annotations in more detail—however, bear in
mind that using any of this functionality potentially reduces the portability of your application to other
JPA 2 solutions.

Annotations that are not recognized by an JPA 2 environment will be ignored, rather than causing a
runtime exception directly—however, this may result in different runtime application behavior that may
not be desirable. In some cases, Hibernate 3 annotations can be used to prepare resources that are
referenced by standard JPA 2 annotations, in which case the application will fail when the JPA 2
environment attempts to use the missing resource.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

123

■ Tip It is possible to overstate the importance of portability—most bespoke applications are never deployed to

an environment other than the one for which they were originally developed. As a mature product, Hibernate 3 has

numerous features to offer above and beyond the base JPA 2specification. You should not waste too much time

trying to achieve a portable solution in preference to these proprietary features unless you have a definite

requirement for portability.

@Entity

The Hibernate-specific @Entity annotation extends the basic details of the @javax.persistence.Entity
annotation, but is otherwise used in the same contexts. It allows the following additional attributes to be
specified:

dynamicInsert is used to flag that insert statements should be generated at run
time (not at startup), allowing only the altered columns to be inserted. By
default this is disabled.

dynamicUpdate is used to flag that update statements should be generated at run
time, allowing only the altered columns to be updated. By default this is
disabled.

mutable is true by default, but if set to false, it allows the persistence engine to
cache the values read from the database, and the persistence engine will make
no attempt to update them in response to changes (changes that should not be
made if this flag is set to false).

optimisticLock allows an optimistic lock strategy to be selected from the -
OptimisticLockType enumeration values of ALL, DIRTY, NONE, and VERSION. This
defaults to VERSION.

persister allows a persister class other than the default Hibernate one to be
selected for the entity (for example, allowing serialization to be used instead of
relational persistence).

polymorphism allows the polymorphism strategy to be selected from the
PolymorphismType enumeration values of EXPLICIT and IMPLICIT. This defaults
to IMPLICIT.

selectBeforeUpdate allows the user to request that a SELECT be performed to
retrieve the entity before any potential update.

Sorting Collections with @Sort

The Hibernate-specific @Sort annotation allows a collection managed by Hibernate to be sorted by a
standard Java comparator. The following code gives an example.

mailto:@javax.persistence.Entity
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

124

@javac.persistence.OneToMany
@org.hibernate.annotations.Sort(
 type=org.hibernate.annotations.SortType.COMPARATOR,
 comparator=EmployeeComparator.class
)
public Set<Employee> getEmployees() {
 return this.employees;
}

Applying Indexes with @Table and @Index

The Hibernate-specific @Table annotation supplements the standard table annotation and allows
additional index hints to be provided to Hibernate. These will be used at schema generation time to
apply indexes to the columns specified. The following code gives an example.

// Standard persistence annotations:
@javax.persistence.Entity
@javax.persistence.Table(name="FOO")

// Hibernate-specific table annotation:
@Table(
 appliesTo="FOO", indexes = {
 @Index(name="FOO_FROM_TO_IDX",columnNames={"FIRST","LAST"}),
 @Index(name="FOO_EMPLOYEE_IDX",columnNames={"EMPLOYEE_NUM"}))
public class Foo {
...
}

Restricting Collections with @Where

The contents of a collection that will be retrieved from the database can be restricted with a Hibernate-
specific @Where annotation from the @org.hibernate.annotations package. This simply adds a Where
clause to the query that will be used to obtain the entities contained within the collection. Here’s an
example:

@javax.persistence.OneToMany
@org.hibernate.annotations.Where(clause="grade > 2")
public Set<Employee> getEmployees() {
 return this.employees;
}

Alternative Key Generation Strategies with @GenericGenerator

As mentioned in the “Primary Keys with @Id and @GeneratedValue” section, the full gamut of Hibernate
primary key value generators is not supported by the standard set of annotations. Hibernate therefore
supplies the @GenericGenerator annotation to fill the void.

mailto:@javac.persistence.OneToMany
mailto:@org.hibernate.annotations.Sort
mailto:@javax.persistence.Entity
mailto:@javax.persistence.Table
mailto:@org.hibernate.annotations
mailto:@javax.persistence.OneToMany
mailto:@org.hibernate.annotations.Where
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

125

The attributes that can be supplied to the annotation are as follows:

name is mandatory, and is used to identify the generic generator in the
@GeneratedValue annotation.

strategy is mandatory, and determines the generator type to be used. This can
be a standard Hibernate generator type or the name of a class implementing
the org.hibernate.id.IdentifierGenerator interface.

parameters is a list of @Parameter annotations defining any parameter values
required by the generator strategy.

The available standard Hibernate strategies are increment, identity, sequence, hilo, seqhilo, uuid,
guid, native, assigned, select, and foreign. For example, the non-standard uuid strategy for a primary
key is configured as follows:

@Id
@GenericGenerator(name="unique_id",strategy="uuid")
@GeneratedValue(generator="unique_id")
public String getId() {
 return this.id;
}

Alternatively, to configure the sequence strategy (equivalent to specifying a strategy of SEQUENCE in
the @GeneratedValue annotation), you can supply the following parameters:

@Id
@GenericGenerator(name="seq_id",strategy="sequence",
 parameters= {
 @Parameter(name="sequence",value="HIB_SEQ")
 }
)
@GeneratedValue(generator="seq_id")
public Integer getId() {
 return this.id;
}

Using Ant with Annotation-Based Mappings
When using the Hibernate Ant tasks in conjunction with the annotation-based mappings, you operate
under one important constraint: the Ant task cannot read the mapping information from the raw source
files. The annotated files must be compiled before you can perform any operations on them (including
schema generation). You should therefore ensure that any Hibernate Ant tasks are granted a
dependency upon the compile task for the entities.

The Ant task will also need access to the classes via the configuration object—you will therefore
need to explicitly include any annotated classes in the hibernate.cfg.xml file as described in the first
part of the previous “Configuring the Annotated Classes” section. You cannot use programmatic
configuration of the classes in conjunction with tasks such as hbm2ddl, so this is an important step.

The various Hibernate JAR files, including hibernate-annotations.jar, will need to be in the
classpath of the task definition.

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

126

Finally, you will need to specify an <annotationconfiguration .../> element, rather than the usual
<configuration .../> element. An example Ant target to build a DDL script from annotated classes is
shown in Listing 6-34.

Listing 6-34. A Sample Excerpt from this Chapter’s Task to Perform Schema Generation

<target name="exportDDL" depends="compile">
 <mkdir dir="${sql}"/>
 <htools destdir="${sql}">
 <classpath refid="classpath.tools"/>
 <annotationconfiguration
 configurationfile="${src}/hibernate.cfg.xml"/>
 <hbm2ddl
 create="true"
 drop="true"
 format="true"
 export="true"
 outputfilename="${ant.project.name}.dll"/>
 </htools>
</target>

A full Ant script is provided with the online source code for this chapter (at www.apress.com).

Code Listings
Listings 6-35 and 6-36 contain the completed annotated source code for the Author and Book classes
described in this chapter. The database schema also follows in Listing 6-36.

Listing 6-35 illustrates use of the @Entity, @Inheritance, @Id, @GeneratedValue, @Column, @Transient,
@ManyToOne, @JoinColumn, and @ManyToMany annotations.

Listing 6-35. The Fully Annotated Book Class

package com.hibernatebook.annotations;

import static javax.persistence.CascadeType.ALL;
import static javax.persistence.InheritanceType.JOINED;

import java.util.*;
import javax.persistence.*;

@Entity
@Inheritance(strategy = JOINED)
public class Book {

 private String title;
 private Publisher publisher;
 private Set<Author> authors = new HashSet<Author>();
 private int pages;
 private int id;

http://www.apress.com
http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

127

 protected Date publicationDate;

 // Constructors...

 protected Book() {
 }

 public Book(String title, int pages) {
 this.title = title;
 this.pages = pages;
 }

 // Getters...

 @Id
 @GeneratedValue
 public int getId() {
 return id;
 }

 @Column(name = "working_title", length = 200, nullable = false)
 public String getTitle() {
 return title;
 }

 public int getPages() {
 return pages;
 }

 @Transient
 public Date getPublicationDate() {
 return publicationDate;
 }

 @ManyToOne
 @JoinColumn(name = "publisher_id")
 public Publisher getPublisher() {
 return publisher;
 }

 @ManyToMany(cascade = ALL)
 public Set<Author> getAuthors() {
 return authors;
 }

 // Setters...

 public void setId(int id) {
 this.id = id;
 }

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

128

 public void setTitle(String title) {
 this.title = title;
 }

 public void setPages(int pages) {
 this.pages = pages;
 }

 public void setPublicationDate(Date publicationDate) {
 this.publicationDate = publicationDate;
 }

 public void setPublisher(Publisher publisher) {
 this.publisher = publisher;
 }

 public void setAuthors(Set<Author> authors) {
 this.authors = authors;
 }

 // Helpers...
 public void addAuthor(Author author) {
 authors.add(author);
 }
}

Listing 6-36 demonstrates the use of the @NamedQuery, @Embedded, @AttributeOverrides, and
@AttributeOverride annotations.

Listing 6-36. The Fully Annotated Author Class

package com.hibernatebook.annotations;

import java.util.HashSet;
import java.util.Set;

import javax.persistence.*;

@Entity
@NamedQuery(
 name="findAuthorsByName",
 query="from Author where name = :author"
)
public class Author {

 private int id;
 private String name;
 private Set<Book> books = new HashSet<Book>();
 private AuthorAddress address;

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

129

 // Constructors...

 protected Author() {
 }

 public Author(String name, AuthorAddress address) {
 this.name = name;
 this.address = address;
 }

 // Getters...

 @Id
 @GeneratedValue
 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 @ManyToMany(mappedBy = "authors")
 public Set<Book> getBooks() {
 return books;
 }

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="address",column=@Column(name="ADDR")),
 @AttributeOverride(name="country",column=@Column(name="NATION"))
 })
 public AuthorAddress getAddress() {
 return this.address;
 }

 // Setters...

 public void setId(int id) {
 this.id = id;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setBooks(Set<Book> books) {
 this.books = books;
 }

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

130

 public void setAddress(AuthorAddress address) {
 this.address = address;
 }
}

Finally, Listing 6-37 shows the database schema for the classes supporting this chapter, as generated
by the Ant hbm2ddl export task for the HSQL database. You will note that we are unable to control the
names selected for the foreign key relationships. This is one area in which the Hibernate XML mapping
files are superior to the JPA 2 annotations.

Listing 6-37. The Database Schema for the Example

 create table Address (
 id integer not null,
 city varchar(255),
 country varchar(255),
 primary key (id)
);

 create table Author (
 id integer generated by default as identity (start with 1),
 ADDR varchar(255),
 NATION varchar(255),
 name varchar(255),
 primary key (id)
);

 create table Book (
 id integer generated by default as identity (start with 1),
 pages integer not null,
 working_title varchar(200) not null,
 publisher_id integer,
 primary key (id)
);

 create table Book_Author (
 books_id integer not null,
 authors_id integer not null,
 primary key (books_id, authors_id)
);

 create table ComputerBook (
 BOOK_ID integer not null,
 softwareName varchar(255),
 primary key (BOOK_ID)
);

http://

CHAPTER 6 ■ MAPPING WITH ANNOTATIONS

131

 create table Publisher (
 id integer generated by default as identity (start with 1),
 name varchar(255),
 address_id integer,
 primary key (id)
);

 alter table Book
 add constraint FK1FAF0990BF1C70
 foreign key (publisher_id)
 references Publisher;

 alter table Book_Author
 add constraint FK1A9A0FA1B629DD87
 foreign key (authors_id)
 references Author;

 alter table Book_Author
 add constraint FK1A9A0FA1D3BA8BC3
 foreign key (books_id)
 references Book;

 alter table ComputerBook
 add constraint FK98D97CC4600B1724
 foreign key (BOOK_ID)
 references Book;

 alter table Publisher
 add constraint FKCDB7C1DC158ECEF0
 foreign key (address_id)
 references Address;

Summary
In this chapter, we used JPA 2 annotations to add metadata to our POJOs for Hibernate, and we looked at
the Hibernate-specific annotations that can enhance these at the cost of reduced portability.

In the next chapter, we discuss the alternative approach of using XML mapping documents to
express the mapping requirements.

http://

http://

C H A P T E R 7

■ ■ ■

133

Creating Mappings with
Hibernate XML Files

In addition to annotations, Hibernate supports the use of XML mapping files to describe the relationship
between the object model and the database. A mapping file can map a single class or multiple classes to
the database. The mapping can also describe standard queries (in HQL and SQL) and filters.

If you are creating a new application that uses Hibernate, we recommend using annotations for
mapping relationships. However, there are many applications that use XML mapping files that are
already in existence, and XML mapping files are a perfectly valid way of organizing your application. We
have found that annotations lead to less cluttered applications. We have also found that annotations are
also easier to understand when we read other developers’ code, because we don't have to refer to two
different files to figure out how a Java class is mapped.

Hibernate Types
Although we have referred to the Hibernate types in passing, we have not discussed the terminology in
any depth. In order to express the behavior of the mapping file elements, we need to make these fine
distinctions explicit.

Hibernate types fall into three broad categories: entities, components, and values.

Entities

Generally, an entity is a POJO class that has been mapped into the database using the <class> or
<subclass> elements.

An entity can also be a dynamic map (actually a Map of Maps). These are mapped against the database
in the same way as a POJO, but with the default entity mode of the SessionFactory set to dynamic-map.

The advantage of POJOs over the dynamic-map approach is that compile-time type safety is retained.
Conversely, dynamic maps are a quick way to get up and running when building prototypes.

It is also possible to represent your entities as Dom4J Document objects. This is a useful feature when
importing and exporting data from a preexisting Hibernate database, but it is not really central to the
everyday use of Hibernate.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

134

We recommend that you use the standard entity mode unless you need to sacrifice accuracy for
timeliness, so the alternate approaches are not discussed in this chapter—however, we give some simple
examples of the Map-based mappings in Appendix A.

Components

Lying somewhere between entities and values are component types. When the class representation is
simple and its instances have a strong one-to-one relationship with instances of another class, then it is
a good candidate to become a component of that other class.

The component will normally be mapped as columns in the same table that represents most of the
other attributes of the owning class, so the strength of the relationship must justify this inclusion. In the
following code, the MacAddress class might a good candidate for a component relationship.

public class NetworkInterface {
 public int id;
 public String name;
 public String manufacturer;
 public MacAddress physicalAddress;
}

The advantage of this approach is that it allows you to dispense with the primary key of the
component and the join to its containing table. If a poor choice of component is made (for example,
when a many-to-one relationship actually holds), then data will be duplicated unnecessarily in the
component columns.

Values

Everything that is not an entity or a component is a value. Generally, these correspond to the data types
supported by your database, the collection types, and, optionally, some user-defined types.

The details of these mappings will be vendor-specific, so Hibernate provides its own value type
names; the Java types are defined in terms of these (see Table 7-1).

Table 7-1. The Standard Hibernate 3 Value Names

Hibernate 3 Type Corresponding Java Type

Primitives and Wrappers

integer int, java.lang.Integer

long long, java.lang.Long

short short, java.lang.Short

float float, java.lang.Float

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

135

Hibernate 3 Type Corresponding Java Type

double double, java.lang.Double

character char, java.lang.Character

byte byte, java.lang.Byte

boolean, yes_no, true_false boolean, java.lang.Boolean

Other Classes

string java.lang.String

date, time, timestamp java.util.Date

calendar, calendar_date java.util.Calendar

big_decimal java.math.BigDecimal

big_integer java.math.BigInteger

Locale java.util.Locale

timezone java.util.TimeZone

currency java.util.Currency

class java.lang.Class

Binary byte[]

text java.lang.String

serializable java.io.Serializable

clob java.sql.Clob

blob java.sql.Blob

In addition to these standard types, you can create your own. Your user type class should

implement either the org.hibernate.usertype.UserType interface or the org.hibernate.usertype.
CompositeUserType interface. Once implemented, a custom type can behave identically to the standard
types; though depending on your requirements, it may be necessary to specify multiple column names
to contain its values, or to provide initialization parameters for your implementation.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

136

For one-off cases, we recommend that you use components—these have similar behavior, but they
can be “created” in the mapping file without needing to write Hibernate-specific code. Unless you
propose to make substantial use of a custom type throughout your application, it will not be worth the
effort. We do not discuss this feature further in this book.

The Anatomy of a Mapping File
A mapping file is a normal XML file. It is validated against a DTD, which can be downloaded from
http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd.

The terminology used in the naming of elements and attributes is somewhat confusing at first
because it is the point of contact between the jargon of the object-oriented and relational worlds.

The <hibernate-mapping> Element

The root element of any mapping file is <hibernate-mapping>. As the top-level element, its attributes
mostly define default behaviors and settings to apply to the child elements (see Table 7-2).

Table 7-2. The <hibernate-mapping> Attributes

Attribute Values Default Description

auto-import true, false True By default, allows you to use the unqualified
class names in Hibernate queries. You would
normally only set this to false if the class name
would otherwise be ambiguous.

catalog The database catalog against which queries
should apply.

default-access Property The default access type. If set to property, then
get and set methods are used to access the data.
If set to field, then the data is accessed directly.
Alternatively, you can provide the class name of a
PropertyAccessor implementation defining any
other access mechanism.

default-cascade Defines how (and whether) direct changes to
data should affect dependent data by default.

default-lazy true, false True Defines whether lazy instantiation is used by
default. Generally, the performance benefits are
such that you will want to use lazy instantiation
whenever possible.

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

137

Attribute Values Default Description

package The package from which all implicit imports are
considered to occur.

schema The database schema against which queries
should apply.

The default cascade modes available for the default-cascade attribute (and for the cascade

attributes in all other elements) are as follows:

create, merge, delete, save-update, evict, replicate, lock, refresh

These correspond to the various possible changes in the lifestyle of the parent object. When set (you
can include combinations of them as comma-separated values), the relevant changes to the parent will
be cascaded to the relation. For example, you may want to apply the save-update cascade option to a
class that includes Set attributes, so that when new persistent classes are added to these, they will not
have to be saved explicitly in the session.

There are also three special options:

all, delete-orphan, none

all specifies that all changes to the parent should be propagated to the relation, and none specifies
that none should. delete-orphan applies only to one-to-many associations, and specifies that the
relation should be deleted when it is no longer referenced by the parent.

The required order and cardinality of the child elements of <hibernate-mapping> are as follows:

(meta*,
 typedef*,
 import*,
 (class | subclass | joined-subclass | union-subclass)*,
 (query | sql-query)*,
 filter-def*)

The Order and Cardinality Information from the DTD

The mapping files used by Hibernate have a great many elements and are somewhat self-referential. For

example, the <component> element permits you to include within it further <component> elements, and

within those further <component> elements—and so on, ad infinitum.

While we do not quote exhaustively from the mapping file’s DTD, we sometimes quote the part of it that

specifies the permitted ordering and cardinality (number of occurrences) of the child elements of a given

element.

The cardinality is expressed by a symbol after the end of the name of the element: * means “zero or more

occurrences,” ? means “zero or one occurrences,” and no trailing symbol means “exactly one

occurrence.”

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

138

The elements can be grouped using brackets, and where the elements are interchangeable, | (the pipe

symbol) means “or.”

In practical terms, this allows us to tell from the order and cardinality information quoted for the

hibernate-mapping file that all of the elements immediately below it are, in fact, optional. We can also

see that there is no limit to the number of <class> elements that can be included.

You can look up this ordering and cardinality information in the DTD for the mapping file for all the

elements, including the ones that we have omitted from this chapter. You will also find within the DTD

the specification of which attributes are permitted to each element, the values they may take (when
they are constrained), and their default values when provided. We recommend that you look at the DTD

for enlightenment whenever you are trying to work out whether a specific mapping file should be

syntactically valid.

Throughout this book, we have assumed that the mappings are defined in one mapping file for each

significant class that is to be mapped to the database. We suggest that you follow this practice in general,
but there are some exceptions to this rule. You may, for instance, find it useful to place query and sql-
query entries into an independent mapping file, particularly when they do not fall clearly into the
context of a single class.

The <class> Element

The child element that you will use most often—indeed, in nearly all of your mapping files—is <class>.
As you have seen in earlier chapters, we generally describe the relationships between Java objects and
database entities in the body of the <class> element. The <class> element permits the following
attributes to be defined (see Table 7-3).

Table 7-3. The <class> Attributes

Attribute Values Default Description

abstract true, false false The flag that should be set if the class being mapped is
abstract.

batch-size 1 Specifies the number of items that can be batched together
when retrieving instances of the class by identifier.

catalog The database catalog against which the queries should
apply.

check Defines an additional row-level check constraint,
effectively adding this as a SQL CHECK(...) clause during
table generation (for example, check="salary < 1000000").

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

139

Attribute Values Default Description

discriminator-
value

 A value used to distinguish between otherwise identical
subclasses of a common type persisted to the same table.
is null and is not null are permissible values. To
distinguish between a Cat and a Dog derivative of the Mammal
abstract class, for example, you might use discriminator
values of C and D, respectively.

dynamic-insert true, false false Indicates whether all columns should appear in INSERT
statements. If the attribute is set to true, null columns will
not appear in generated INSERT commands. On very wide
tables, this may improve performance; but because insert
statements are cached, dynamic-insert can easily produce
a performance hit.

dynamic-update true, false false Indicates whether all columns should appear in UPDATE
statements. If the attribute is set to true, unchanged
columns will not appear in generated UPDATE commands.
As with dynamic-insert, this can be tweaked for
performance reasons. You must enable dynamic-update if
you want to use version-based optimistic locking
(discussed in Appendix A).

entity-name The name of the entity to use in place of the class name
(therefore required if dynamic mapping is used).

lazy true, false Used to disable or enable lazy fetching against the
enclosing mapping’s default.

mutable true, false true Used to flag that a class is immutable (allowing Hibernate
to make some performance optimizations when dealing
with these classes).

name The fully qualified Java name, or optionally unqualified if
the <hibernate-mapping> element declares a package
attribute, of the class (or interface) that is to be made
persistent.

node If using XML relational persistence (in place of or in
addition to relational database persistence), specifies the
name of the XML element or attribute that maps to this
class.

optimistic-
lock

none,
version

version Specifies the optimistic locking dirty, all strategy to use.
The strategy applies at a class level, but in Hibernate 3 can
also be specified (or overridden) at an attribute level.
Optimistic locking is discussed in Appendix A.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

140

Continued

Attribute Values Default Description

persister Allows a custom ClassPersister object to be used when
persisting the entity.

polymorphism implicit,
explicit

implicit Determines how polymorphism is to be used. The default
implicit behavior will return instances of the class if
superclasses or implemented interfaces are named in the
query, and will return subclasses if the class itself is named
in the query.

proxy Specifies a class or an interface to use as the proxy for lazy
initialization. Hibernate uses runtime-generated proxies by
default, but you can specify your own implementation of
org.hibernate.HibernateProxy in their place.

rowid Flags that row IDs should be used (a database-
implementation detail allowing Hibernate to optimize
updates).

schema Optionally overrides the schema specified by the
<hibernate-mapping> element.

select-before-
update

true, false false Flags that Hibernate should carry out extra work to avoid
issuing unnecessary UPDATE statements. If set to true,
Hibernate issues a SELECT statement before attempting to
issue an UPDATE statement in order to ensure that the UPDATE
statement is actually required (i.e., that columns have been
modified). While this is likely to be less efficient, it can
prevent database triggers from being invoked
unnecessarily.

subselect A subselection of the contents of the underlying table. A
class can only use a subselect if it is immutable and read-
only (because the SQL defined here cannot be reversed).
Generally, the use of a database view is preferable.

table The table name associated with the class (if unspecified,
the unqualified class name will be used).

where An arbitrary SQL where condition to be used when
retrieving objects of this class from the table.

Many of these attributes in the <class> element are designed to support preexisting database

schemas. In practice, the name attribute is very often the only one set.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

141

In addition to the attributes on the <class> element, the <class> element also has several child
elements, which we discuss throughout the rest of this chapter. The required order and cardinality of the
child elements of <class> are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 tuplizer*,
 (id | composite-id),
 discriminator?,
 (version | timestamp)?,
 (property | many-to-one | one-to-one | component | dynamic-component |
 properties | any | map | set | list | bag | idbag |
 array | primitive-array)*,
 ((join*, subclass*) | joined-subclass* | union-subclass*),
 loader?,
 sql-insert?,
 sql-update?,
 sql-delete?,
 filter*
 resultset,
 (query | sql-query)
)

The <id> Element

All entities need to define their primary key in some way. Any class directly defined by the <class>
element (not a derived or component class) must therefore have an <id> or a <composite-id> element to
define this (see Table 7-4). Note that while it is not a requirement that your class implementation itself
should implement the primary key attribute, it is certainly advisable. If you cannot alter your class
design to accommodate this, you can instead use the getIdentifier() method on the Session object to
determine the identifier of a persistent class independently.

Table 7-4. The <id> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed: through field
(directly), through property (calling the get/set methods), or
through the name of a PropertyAccessor class to be used. The
value from the <hibernate-mapping> element will be inherited if
this is not specified.

column The name of the column in the table containing the primary key.
The value given in the name attribute will be used if this is not
specified.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

142

Continued

Attribute Values Default Description

length The column length to be used.

name The name of the attribute in the class representing this primary
key. If this is omitted, it is assumed that the class does not have an
attribute directly representing this primary key. Naturally, the
column attribute must be provided if the name attribute is omitted.

node Specifies the name of the XML element or attribute that should be
used by the XML relational persistence features.

type The Hibernate type of the column.

unsaved-
value

 The value that the attribute should take when an instance of the
class has been created but not yet persisted to the database. This
attribute is mandatory.

The <id> element requires a <generator> element to be specified, which defines how to generate a

new primary key for a new instance of the class. The generator takes a class attribute, which defines the
mechanism to be used. The class should be an implementation of org.hibernate.id.
IdentifierGenerator. Optional <param> elements can be provided if the identifier needs additional
configuration information, each having the following form:

<param name="parameter name">parameter value</param>

Hibernate provides several default IdentifierGenerator implementations, which can be referenced
by convenient short names, as shown in Table 7-5. These are fairly comprehensive, so you are unlikely to
need to implement your own IdentifierGenerator.

Table 7-5. The Default IdentifierGenerator Implementations

Short Name Description

guid Uses a database-generated “globally” unique identifier. This is not portable to
databases that do not have a guid type. The specific implementation, and hence the
quality of the uniqueness of this key, may vary from vendor to vendor.

hilo Uses a database table and column to efficiently and portably maintain and generate
identifiers that are unique to that database. The Hibernate int, short, and long types
are supported.

identity Supports the identity column type available in some, but not all, databases. This is
therefore not a fully portable option. The Hibernate int, short, and long types are
supported.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

143

Short Name Description

increment Generates a suitable key by adding 1 to the current highest key value. Can apply to
int, short, or long hibernate types. This only works if other processes are not
permitted to update the table at the same time. If multiple processes are running,
then depending on the constraints enforced by the database, the result may be an
error in the application(s) or data corruption.

native Selects one of sequence, identity, or hilo, as appropriate. This is a good compromise
option since it uses the innate features of the database and is portable to most
platforms. This is particularly appropriate if your code is likely to be deployed to a
number of database implementations with differing capabilities.

seqhilo Uses a sequence to efficiently generate identifiers that are unique to that database.
The Hibernate int, short, and long types are supported. This is not a portable
technique (see sequence, following).

sequence Supports the sequence column type (essentially a database-enforced increment)
available in some, but not all, databases. This is, therefore, not a fully portable option.
The Hibernate int, short, and long types are supported.

uuid Attempts to portably generate a (cross-database) unique primary key. The key is
composed of the local IP address, the startup time of the JVM (accurate to ¼ of a
second), the system time, and a counter value (unique within the JVM). This cannot
guarantee absolutely that a given key is unique, but it will be good enough for most
clustering purposes.

The child elements of the <id> element are as follows:

(meta*, column*, type?, generator?)

While this is all rather complex, Listing 7-1 shows a typical <id> element from Chapter 3, which
illustrates the simplicity of the usual case.

Listing 7-1. A Typical <id> Element

<id name="id" type="long" column="id">
 <generator class="native"/>
</id>

■ Note When the <id> element cannot be defined, a compound key can instead be defined using the

<composite-id> element. This is provided purely to support existing database schemas. A new Hibernate project

with a clean database design does not require this.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

144

In addition to using the standard and custom generator types, you have the option of using the
special assigned generator type. This allows you to explicitly set the identifier for the entities that you
will be persisting—Hibernate will not then attempt to assign any identifier value to such an entity. If you
use this technique, you will not be able to use the saveOrUpdate() method on a transient entity—instead,
you will have to call the appropriate save() or update() method explicitly.

The <property> Element

While it is not absolutely essential, almost all classes will also maintain a set of properties in the database
in addition to the primary key. These must be defined by a <property> element (see Table 7-6).

Table 7-6. The <property> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed: through field
(directly), through property (calling the get/set methods), or
through the name of a PropertyAccessor class to be used. The
value from the <class> element or <hibernate-mapping> element
will be inherited if this is not specified.

column The column in which the property will be maintained. If omitted,
this will default to the name of the attribute; or it can be
specified with nested <column> elements (see Listing 7-2).

formula An arbitrary SQL query representing a computed property (i.e.,
one that is calculated dynamically, rather than represented in a
column).

index The name of an index to be maintained for the column.

insert true, false true Specifies whether creation of an instance of the class should
result in the column associated with this attribute being
included in insert statements.

lazy true, false false Defines whether lazy instantiation is used by default for this
column.

length The column length to be used.

name The (mandatory) name of the attribute. This should start with a
lowercase letter.

node Specifies the name of the XML element or attribute that should
be used by the XML relational persistence features.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

145

Attribute Values Default Description

not-null true, false false Specifies whether the column is permitted to contain null
values.

optimistic
-lock

true, false true Determines whether optimistic locking should be used when the
attribute has been updated.

precision Allows the precision (the number of digits) to be specified for
numeric data.

scale Allows the scale (the number of digits to the right of the decimal
point) to be specified for numeric data.

type The Hibernate type of the column.

unique true, false false Indicates whether duplicate values are permitted for this
column/attribute.

unique-key Groups the columns together by this attribute value. Represents
columns across which a unique key constraint should be
generated (not yet supported in the schema generation).

update true, false true Specifies whether changes to this attribute in instances of the
class should result in the column associated with this attribute
being included in update statements.

The child elements of the <property> element are as follows:

(meta*, (column | formula)*, type?)

Any element accepting a column attribute, as is the case for the <property> element, will also accept
<column> elements in its place. For an example, see Listing 7-2.

Listing 7-2. Using the <column> Element

<property name="message"/>
 <column name="message" type="string"/>
</property>

This particular example does not really give us anything beyond the use of the column attribute
directly; but the <column> element comes into its own with custom types and some of the more complex
mappings that we will be looking into later in the chapter.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

146

The <component> Element

The <component> element is used to map classes that will be represented as extra columns within a table
describing some other class. We have already discussed how components fit in as a compromise
between full entity types and mere value types.

The <component> element can take the attributes listed in Table 7-7.

Table 7-7. The <component> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed: through
field (directly), through property (calling the get/set
methods), or through the name of a PropertyAccessor class
to be used

class The class that the parent class incorporates by composition

insert true, false True Specifies whether creation of an instance of the class should
result in the column associated with this attribute being
included in insert statements

lazy true, false False Defines whether lazy instantiation is used by default for this
mapped entity

name The name of the attribute (component) to be persisted

node Specifies the name of the XML element or attribute that
should be used by the XML relational persistence features

optimistic-
lock

true, false true Specifies the optimistic locking strategy to use

unique true, false False Indicates that the values that represent the component must
be unique within the table

update true, false True Specifies whether changes to this attribute in instances of
the class should result in the column associated with this
attribute being included in update statements

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

147

The child elements of the <component> element are as follows:

(meta*,
 tuplizer*,
 parent?,
 (property | many-to-one | one-to-one |
 component | dynamic-component | any |
 map | set | list | bag |
 array | primitive-array)*)

We provide a full example of the use of the <component> element in the “Mapping Composition”
section later in this chapter.

The <one-to-one> Element

The <one-to-one> element expresses the relationship between two classes, where each instance of the
first class is related to a single instance of the second, and vice versa. Such a one-to-one relationship can
be expressed either by giving each of the respective tables the same primary key values, or by using a
foreign key constraint from one table onto a unique identifier column of the other. Table 7-8 shows the
attributes that apply to the <one-to-one> element.

Table 7-8. The <one-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed: field
for direct field access or attribute for access via the get and
set methods.

cascade Determines how changes to the parent entity will affect the
linked relation.

check The SQL to create a multirow check constraint for schema
generation.

class The property type of the attribute or field (if omitted, this
will be determined by reflection).

constrained true, false Indicates that a foreign key constraint on the primary key of
this class references the table of the associated class.

embed-xml true, false When using XML relational persistence, indicates whether
the XML tree for the associated entity itself, or only its
identifier, will appear in the generated XML tree.

entity-name The entity name of the associated class.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

148

Continued

Attribute Values Default Description

fetch join, select The mode in which the element will be retrieved (outer
join, a series of selects, or a series of subselects). Only one
member of the enclosing class can be retrieved by outer
join.

foreign-key The name to assign to the foreign key enforcing the
relationship.

formula Allows the value to which the associated class maps its
foreign key to be overridden using an SQL formula.

lazy true, false Overrides the entity-loading mode.

name Assigns a name to the entity (required in dynamic
mappings).

node Specifies the name of the XML element or attribute that
should be used by the XML relational persistence features.

outer join true, false, Specifies whether an outer join should be used.

 auto

property-
ref

 Specifies the column in the target entity’s table that the
foreign key references. If the referenced table’s foreign key
does not reference the primary key of the “many” end of the
relationship, then property-ref can be used to specify the
column that it references. This should only be the case for
legacy designs—when creating a new schema, your foreign
keys should always reference the primary key of the related
table.

You would select a primary key association when you do not want an additional table column to

relate the two entities. The master of the two entities takes a normal primary key generator, and its one-
to-one mapping entry will typically have the attribute name and associated class specified only. The
slave entity will be mapped similarly, but must have the constrained attribute setting applied to ensure
that the relationship is recognized.

Because the slave class’s primary key must be identical to that allocated to the master, it is given the
special id generator type of foreign. On the slave end, the <id> and <one-to-one> elements will
therefore look like this:

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

149

<id name="id" column="product">
 <generator class="foreign">
 <param name="property">campaign</param>
 </generator>
</id>

<one-to-one name="campaign"
 class="com.hibernatebook.xmlmapping.Campaign"
 constrained="true"/>

There are some limitations to this approach: it cannot be used on the receiving end of a many-to-
one relationship (even when the “many” end of the association is limited by a unique constraint), and
the slave entity cannot be the slave of more than one entity.

In these circumstances, you will need to declare the master end of the association as a uniquely
constrained one-to-many association. The slave entity’s table will then need to take a foreign key
column associating it with the master’s primary key. The property-ref attribute setting is used to declare
this relationship, like so:

<one-to-one
 name="campaign"
 class="com.hibernatebook.xmlmapping.Campaign"
 property-ref="product"/>

The format used in this example is the most common. The body of the element consists of an
infrequently used optional element:

(meta* | formula*)

We discuss the <many-to-many> element and the alternative approach of composition in some detail
in the “Mapping Collections” section later in this chapter.

The <many-to-one> Element

The many-to-one association describes the relationship in which multiple instances of one class can
reference a single instance of another class. This enforces a relational rule for which the “many” class
has a foreign key into the (usually primary) unique key of the “one” class. Table 7-9 shows the attributes
permissible for the <many-to-one> element.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

150

Table 7-9. The <many-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed:
field for direct field access, or attribute for access via
the get and set methods.

cascade Determines how changes to the parent entity will affect
the linked relation.

class The property type of the attribute or field (if omitted, this
will be determined by reflection).

column The column containing the identifier of the target entity
(i.e., the foreign key from this entity into the mapped
one).

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity itself, or
only its identifier, will appear in the generated XML tree.

entity-name The name of the associated entity.

fetch join, select The mode in which the element will be retrieved (outer
join, a series of selects, or a series of subselects). Only
one member of the enclosing class can be retrieved by
outer join.

foreign-key The name of the foreign key constraint to generate for
this association.

formula An arbitrary SQL expression to use in place of the normal
primary key relationship between the entities.

index The name of the index to be applied to the foreign key
column in the parent table representing the “many” side
of the association.

insert true, false true Indicates whether the field can be persisted. When set to
false, this prevents inserts if the field has already been
mapped as part of a composite identifier or some other
attribute.

lazy false,
proxy,
noproxy

 Overrides the entity-loading mode.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

151

Attribute Values Default Description

name The (mandatory) name of the attribute. This should start
with a lowercase letter.

node Specifies the name of the XML element or attribute that
should be used by the XML relational persistence
features.

not-found exception,
ignore

exception The behavior to exhibit if the related entity does not exist
(either throw an exception or ignore the problem).

not-null true, false false Specifies whether a not-null constraint should be applied
to this column.

optimistic-
lock

true, false true Specifies whether optimistic locking should be used.

outer-join true, false,
auto

 Specifies whether an outer join should be used.

property-ref Specifies the column in the target entity’s table that the
foreign key references. If the referenced table’s foreign
key does not reference the primary key of the “many” end
of the relationship, then property-ref can be used to
specify the column that it references. This should only be
the case for legacy designs—when creating a new
schema, your foreign keys should always reference the
primary key of the related table.

unique true, false false Specifies whether a unique constraint should be applied
to the column.

unique-key Groups the columns together by this attribute value.
Represents columns across which a unique key constraint
should be generated (not yet supported in the schema
generation).

update true, false true When set to false, prevents updates if the field has
already been mapped elsewhere.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

152

If a unique constraint is specified on a many-to-one relationship, it is effectively converted into a
one-to-one relationship. This approach is preferred over creating a one-to-one association, both
because it results in a simpler mapping and because it requires less intrusive changes to the database
should it become desirable to relax the one-to-one association into a many-to-one.

This element has a small number of optional daughter elements—the <column> element will be
required when a composite key has to be specified:

(meta*, (column | formula)*)

The following mapping from the User class XML file illustrates the creation of a simple many-to-one
association between a User class and an Email class: each user can have only one e-mail address—but an
e-mail address can belong to more than one user.

<many-to-one
 name="email"
 class="com.hibernatebook.xmlmapping.Email"
 column="email"
 cascade="all" unique="true"/>

The simplest approach to creating a many-to-one relationship, as shown in the previous example,
requires two tables and a foreign key dependency. An alternative is to use a link table to combine the two
entities. The link table contains the appropriate foreign keys referencing the two tables associated with
both of the entities in the association. The following code shows the mapping of a many-to-one
relationship via a link table.

<join table="link_email_user" inverse="true" optional="false">
 <key column="user_id"/>
 <many-to-one name="email" column="email_id" not-null="true"/>
</join>

The disadvantage of the link table approach is its slightly poorer performance (it requires a join of
three tables to retrieve the associations, rather than one). Its benefit is that it requires less extreme
changes to the schema if the relationship is modified—typically, changes would be made to the link
table, rather than to one of the entity tables.

The Collection Elements

These are the elements that are required for you to include an attribute in your class that represents any
of the collection classes. For example, if you have an attribute of type Set, then you will need to use a
<bag> or <set> element to represent its relationship with the database.

Because of the simplicity of the object-oriented relationship involved, where one object has an
attribute capable of containing many objects, it is a common fallacy to assume that the relationship
must be expressed as a one-to-many. In practice, however, this will almost always be easiest to express
as a many-to-many relationship, where an additional link table closely corresponds with the role of the
collection itself. See the “Mapping Collections” section later in this chapter for a more detailed
illustration of this.

All the collection mapping elements share the attributes shown in Table 7-10.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

153

Table 7-10. The Attributes Common to the Collection Elements

Attribute Values Default Description

Access Specifies how the class member should be
accessed: field for direct field access or attribute
for access via the get and set methods.

batch-size Specifies the number of items that can be batched
together when retrieving instances of the class by
identifier.

cascade Determines how changes to the parent entity will
affect the linked relation.

catalog The database catalog against which the queries
should apply.

collection-type When using a collection class other than one of the
standard Java collection classes, specify an
implementation of the UserCollectionType class
describing the collection type to be used in place of
the defaults.

check The SQL to create a multirow check constraint for
schema generation.

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity
itself, or only its identifier, will appear in the
generated XML tree.

fetch join, select The mode in which the element will be retrieved
(outer-join, a series of selects, or a series of
subselects). Only one member of the enclosing
class can be retrieved by outer-join.

lazy true, false Can be used to disable or enable lazy fetching
against the enclosing mapping’s default.

mutable true, false true Can be used to flag that a class is mutable (allowing
Hibernate to make some performance
optimizations when dealing with these classes).

name The (mandatory) name of the attribute. This
should start with a lowercase letter.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

154

Continued

Attribute Values Default Description

node Specifies the name of the XML element or attribute
that should be used by the XML relational
persistence features.

optimistic-lock true, false true Specifies the optimistic locking strategy to use.

outer-join true, false,
auto

 Specifies whether an outer join should be used.

persister Allows a custom ClassPersister object to be used
when persisting this class.

schema The database schema against which queries should
apply.

subselect A query to enforce a subselection of the contents of
the underlying table. A class can only use a
subselect if it is immutable and read-only
(because the SQL defined here cannot be reversed).
Generally, the use of a database view is preferable.

table The name of the table in which the associated
entity is stored.

where An arbitrary SQL where clause limiting the linked
entities.

The set Collection

A set collection allows collection attributes derived from the Set interface to be persisted.
In addition to the common collection mappings, the <set> element offers the inverse, order-by, and

sort attributes, as shown in Table 7-11.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

155

Table 7-11. The Additional <set> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of a
relationship expressed in another entity’s mapping.

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
set collection.

sort Specifies the collection class sorting to be used. The
value can be unsorted, natural, or any Comparator class.

The child elements of the <set> element are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 key,
 (element | one-to-many | many-to-many |
 composite-element | many-to-any),
 loader?,
 sql-insert?,
 sql-update?,
 sql-delete?,
 sql-delete-all?,
 filter*)

The following code shows an implementation of mapping a set of strings into a property called
titles:

<set name="titles" table="nameset">
 <key column="titleid"/>
 <element type="string" column="name" not-null="true"/>
</set>

A typical implementation, however, also maps other entity model classes from your application
into the collection. Here we map Phone entities from the “many” side of a one-to-many association into a
Set property, called phoneNumbers, that belongs to a User entity:

 <set name="phoneNumbers">
 <key column="aduser"/>
 <one-to-many class="sample.Phone"/>
 </set>

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

156

If the Phone class contains a reference to a User object, it is not automatically clear whether this
constitutes a pair of unrelated associations or two halves of the same association—a bidirectional
association. When a bidirectional association is to be established, one side must be selected as the
owner (in a one-to-many or many-to-one association, it must always be the “many” side), and the other
will be marked as being the inverse half of the relationship. See the discussion of unidirectional and
bidirectional associations at the end of Chapter 4. The following code shows a mapping of a one-to-
many relationship as a reverse association.

 <set name="phoneNumbers" inverse="true">
 <key column="aduser"/>
 <one-to-many class="sample.Phone"/>
 </set>

The list Collection

A list collection allows collection attributes derived from the List interface to be persisted.
In addition to the common collection mappings, the <list> element offers the inverse attribute, as

shown in Table 7-12.

Table 7-12. The Additional <list> Attribute

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of a
relationship expressed in another entity’s mapping

The child elements of the <list> element are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 key,
 (index | list-index),
 (element | one-to-many | many-to-many |
 composite-element | many-to-any),
 loader?,
 sql-insert?,
 sql-update?,
 sql-delete?,
 sql-delete-all?,
 filter*)

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

157

A typical implementation of a list mapping is as follows:

<list name="list" table="namelist">
 <key column="fooid"/>
 <index column="position"/>
 <element type="string" column="name" not-null="true"/>
</list>

The idbag Collection

An idbag collection allows for appropriate use of collection attributes derived from the List interface. A
bag data structure permits unordered storage of unordered items, and permits duplicates. Because the
collection classes do not provide a native bag implementation, classes derived from the List interface
tend to be used as a substitute. The imposition of ordering imposed by a list is not itself a problem, but
the implementation code can become dependent upon the ordering information.

idbag usually maps to a List. However, by managing its database representation with a surrogate
key, you can make the performance of updates and deletions of items in a collection defined with idbag
dramatically better than with an unkeyed bag (described at the end of this section). Hibernate does not
provide a mechanism for obtaining the identifier of a row in the bag.

In addition to the common collection mappings, the <idbag> element offers the order-by element,
as shown in Table 7-13.

Table 7-13. The Additional <idbag> Attribute

Attribute Values Default Description

order-by Specifies an arbitrary SQL order by clause to constrain the
results returned by the SQL query that populates the
collection

The child elements of the <idbag> element are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 collection-id,
 key,
 (element | many-to-many |
 composite-element | many-to-any),
 loader?,
 sql-insert?,
 sql-update?,
 sql-delete?,
 sql-delete-all?,
 filter*)

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

158

A typical implementation of an idbag mapping is as follows:

<idbag name="idbag" table="nameidbag">
 <collection-id column="id" type="int">
 <generator class="native"/>
 </collection-id>

 <key column="fooid"/>
 <element type="string" column="name" not-null="true"/>
</idbag>

The map Collection

A map collection allows collection attributes derived from the Map interface to be persisted.
In addition to the common collection mappings, the <map> element offers the inverse, order-by, and

sort attributes, as shown in Table 7-14.

Table 7-14. The Additional <map> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end of a
relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain the
results returned by the SQL query that populates the map

sort unsorted Specifies the collection class sorting to be used. The value
can be unsorted, natural, or any Comparator class

The child elements of the <map> element are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 key,
 (map-key | composite-map-key | map-key-many-to-many |
 index | composite-index | index-many-to-many |
 index-many-to-any),
 (element | one-to-many | many-to-many | composite-element |
 many-to-any),
 loader?,
 sql-insert?,
 sql-update?,

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

159

 sql-delete?,
 sql-delete-all?,
 filter*)

A typical implementation of the mapping is as follows:

<map name="map" table="namemap">
 <key column="fooid"/>
 <index column="name" type="string"/>
 <element column="value" type="string" not-null="true"/>
</map>

The bag Collection

If your class represents data using a class derived from the List interface, but you do not want to
maintain an index column to keep track of the order of items, you can optionally use the bag collection
mapping to achieve this. The order in which the items are stored and retrieved from a bag is completely
ignored.

Although the bag’s table does not contain enough information to determine the order of its contents
prior to persistence into the table, it is possible to apply an order by clause to the SQL used to obtain the
contents of the bag so that it has a natural sorted order as it is acquired. This will not be honored at other
times during the lifetime of the object.

If the <bag> elements lack a proper key, there will be a performance impact that will manifest itself
when update or delete operations are performed on the contents of the bag.

In addition to the common collection mappings, the <bag> element therefore offers the order-by as
well as the inverse attribute, as shown in Table 7-15.

Table 7-15. The Additional <bag> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of a
relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain the
results returned by the SQL query that populates the
collection

The child elements of the <bag> element are as follows:

(meta*,
 subselect?,
 cache?,
 synchronize*,
 comment?,
 key,
 (element | one-to-many | many-to-many |
 composite-element | many-to-any),

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

160

 loader?,
 sql-insert?,
 sql-update?,
 sql-delete?,
 sql-delete-all?,
 filter*)

A typical implementation of a bag mapping is as f is as follows:

<bag name="bag" table="namebag">
 <key column="fooid"/>
 <element column="value" type="string" not-null="true"/>
</bag>

Mapping Simple Classes
Figure 7-1 shows the class diagram and entity relationship diagram for a simple class. They are as
straightforward as you would expect.

Figure 7-1. Representing a simple class

The elements discussed so far are sufficient to map a basic class into a single table, as shown in
Listing 7-3.

Listing 7-3. A Simple Class to Represent a User

package com.hibernatebook.xmlmapping;

public class User {

 public User(String username) {
 this.username = username;
 }

 User() {
 }

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

161

 public int getId() {
 return id;
 }

 public String getUsername() {
 return username;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 // We will map the id to the table's primary key
 private int id = -1;

 // We will map the username into a column in the table
 private String username;
}

It’s pretty easy to see that we might want to represent the class in Listing 7-3 in a table with the
format shown in Table 7-16.

Table 7-16. Mapping a Simple Class to a Simple Table

Column Type

Id Integer

Username Varchar(32)

The mapping between the two is, thus, similarly straightforward:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="book.hibernatebook.chapter06.User">

 <id name="id" type="int">
 <generator class="native"/>
 </id>

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

162

 <property name="username" type="string" length="32"/>

 </class>
</hibernate-mapping>

Aside from the very limited number of properties maintained by the class, this is a pretty common
mapping type, so it is reassuring to see that it can be managed with a minimal number of elements
(<hibernate-mapping>, <class>, <id>, <generator>, and <property>).

Mapping Composition
Figure 7-2 shows the class diagram and the entity relationship diagram for a composition relationship
between two classes. Here, the Advert class is composed of a Picture class in addition to its normal value
types.

Figure 7-2. Representing composition

Composition is the strongest form of aggregation—in which the life cycle of each object is
dependent upon the life cycle of the whole. Although Java does not make the distinction between other
types of aggregation and composition, it becomes relevant when we choose to store the components in
the database, because the most efficient and natural way to do this is to store them in the same table.

In our example, we will look at an Advert class that has this relationship with a Picture class. The
idea is that our advert is always going to be associated with a picture (see Listings 7-4 and 7-5). In these
circumstances, there is a clear one-to-one relationship that could be represented between two distinct
tables, but which is more efficiently represented with one.

Listing 7-4. The Class Representing the Picture

package com.hibernatebook.xmlmapping;

public class Picture {
 public Picture(String caption, String filename) {
 this.caption = caption;
 this.filename = filename;
 }

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

163

 Picture() {
 }

 public String getCaption() {
 return this.caption;
 }

 public String getFilename() {
 return this.filename;
 }

 public void setCaption(String title) {
 this.caption = title;
 }

 public void setFilename(String filename) {
 this.filename = filename;
 }

 private String caption;
 private String filename;
}

Listing 7-5. The Class Representing the Advert

package com.hibernatebook.xmlmapping;

public class Advert {
 public Advert(String title, String content, Picture picture) {
 this.title = title;
 this.content = content;
 this.picture = picture;
 }

 Advert() {
 }

 public int getId() {
 return id;
 }

 public String getTitle() {
 return this.title;
 }

 public String getContent() {
 return this.content;
 }

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

164

 public Picture getPicture() {
 return this.picture;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public void setContent(String content) {
 this.content = content;
 }

 public void setPicture(Picture picture) {
 this.picture = picture;
 }

 private int id = -1;
 private String title;
 private String content;
 private Picture picture;
}

Again, Hibernate manages to express this simple relationship with a correspondingly simple
mapping file. We introduce the component entity for this association. Here it is in use:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
 <id name="id" type="int">
 <generator class="native"/>
 </id>
 <property name="title" type="string" length="255"/>
 <property name="content" type="text"/>
 <component name="picture" class="com.hibernatebook.xmlmapping.Picture">
 <property name="caption" type="string" length="255"/>
 <property name="filename" type="string" length="32"/>
 </component>
</class>

In this example, we use the <property> element to describe the relationship between Picture and its
attributes. In fact, this is true of all of the rest of the elements of <class>—a <component> element can
even contain more <component> elements. Of course, this makes perfect sense, since a component
usually corresponds with a Java class.

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

165

Mapping Other Associations
In Figure 7-3, the Advert class includes an instance of a Picture class. The relationship in the tables is
represented with the Picture table having a foreign key onto the Advert table.

Figure 7-3.Mapping an aggregation or composition relationship

A one-to-one correspondence does not absolutely require you to incorporate both parties into the
same table. There are often good reasons not to. For instance, in the Picture example, it is entirely
possible that while the initial implementation will permit only one Picture per Advert, a future
implementation will relax this relationship. Consider this scenario from the perspective of the database
for a moment (see Table 7-17).

Table 7-17. The Advert Table

Id Title Contents PictureCaption PictureFilename

1 Bike Bicycle for sale My bike (you can ride it if you like) advert001.jpg

2 Sofa Sofa, comfy but used Chesterfield sofa advert002.jpg

3 Car Shabby MGF for sale MGF VVC (BRG) advert003.jpg

If we want to allow the advert for the sofa to include another picture, we would have to duplicate

some of the data, or include null columns. It would probably be preferable to set up a pair of tables: one
to represent the adverts, and one to represent the distinct tables (as shown in Tables 7-18 and 7-19).

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

166

Table 7-18. The Refined Advert Table

Id Title Contents

1 Bike Bicycle for sale

2 Sofa Sofa, comfy but used

3 Car Shabby MGF for sale

Table 7-19. The Picture Table

Id Advert Caption Filename

1 1 My bike (you can ride it if you
like)

advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 3 MGF VVC (BRG) advert003.jpg

If we decide (considering the database only) to allow additional pictures, we can then include extra

rows in the Picture table without duplicating any data unnecessarily (see Table 7-20).

Table 7-20. The Picture Table with Multiple Pictures per Advert

Id Advert Caption Filename

1 1 My bike (you can ride it if you
like)

advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 2 Back of sofa advert003.jpg

4 3 MGF VVC (BRG) advert004.jpg

With the single Advert table, the query to extract the data necessary to materialize an instance of the

Advert consists of something like this:

select id,title,contents,picturecaption,picturefilename from advert where id = 1

It is obvious here that a single row will be returned, since we are carrying out the selection on the
primary key.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

167

Once we split things into two tables, we have a slightly more ambiguous pair of queries:

select id,title,contents from advert where id = 1
select id,caption,filename from picture where advert = 1

While Hibernate is not under any particular obligation to use this pair of SQL instructions to retrieve
the data (it could reduce it to a join on the table pair), it is the easiest way of thinking about the data we
are going to retrieve. While the first query of the two is required to return a single row, this is not true for
the second query—if we have added multiple pictures, we will get multiple rows back.

In these circumstances, there is very little difference between a one-to-one relationship and a one-
to-many relationship, except from a business perspective. That is to say, we choose not to associate an
advert with multiple pictures, even though we have that option.

This, perhaps, explains why the expression of a one-to-one relationship in Hibernate is usually
carried out via a many-to-one mapping. If you do not find that persuasive, remember that a foreign key
relationship, which is the relationship that the advert column in the Picture table has with the id
column in the Advert table, is a many-to-one relationship between the entities.

In our example, the Picture table will be maintaining the advert column as a foreign key into the
Advert table, so this must be expressed as a many-to-one relationship with the Advert object (see Listing
7-6).

Listing 7-6. The New Picture Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Picture">
 <id name="id" type="int">
 <generator class="native"/>
 </id>
 <many-to-one
 name="advert"
 class="com.hibernatebook.xmlmapping.Advert"
 column="advert"/>
 <property name="caption" type="string" length="255"/>
 <property name="filename" type="string" length="32"/>
</class>

If you still object to the many-to-one relationship, you will probably find it cathartic to note that we
have explicitly constrained this relationship with the unique attribute. You will also find it reassuring that
in order to make navigation possible directly from the Advert to its associated Picture, we can in fact use
a one-to-one mapping entry. We need to be able to navigate in this direction because we expect to
retrieve adverts from the database, and then display their associated pictures (see Listing 7-7).

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

168

Listing 7-7. The Revised Advert Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
 <id name="id" type="int">
 <generator class="native"/>
 </id>
 <property name="title" type="string" length="255"/>
 <property name="content" type="text"/>
 <one-to-one name="picture"
 class="com.hibernatebook.xmlmapping.Picture"
 property-ref="picture">
</class>

Now that we have seen how one-to-one and many-to-one relationships are expressed, we will see
how a many-to-many relationship can be expressed.

Mapping Collections
In Figure 7-4, we show the User objects as having an unknown number of Advert instances. In the
database, this is then represented with three tables, one of which is a link table between the two entity
tables.

Figure 7-4.Mapping collections

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

169

The Java collection classes provide the most elegant mechanism for expressing the “many” end of a
many-to-many relationship in our own classes:

public Set getAdverts();

If we use generics, we can give an even more precise specification:

public Set<Advert> getAdverts();

■ Note A lot of legacy code will not use generics. However, if you have the opportunity you should do so, as it

allows you to make this sort of distinction clear at the API level, instead of at the documentation level. Hibernate 3

is compatible with generics.

Of course, we can place values (of Object type) into collections as well as entities, and Java 5
introduced autoboxing so that we have the illusion of being able to place primitives into them as well.

List<Integer> ages = getAges();
int first = ages.get(0);

The only catch with collection mapping is that an additional table may be required to correctly
express the relationship between the owning table and the collection. Table 7-21 shows how it should be
done; the entity table contains only its own attributes.

Table 7-21. The Entity Table

Id Name

1 Entity 1

A separate collection table, on the other hand, contains the actual values (see Table 7-22). In this

case, we are linking a List to the owning entity, so we need to include a column to represent the position
of the values in the list, as well as the foreign key into the owning entity and the column for the actual
values that are contained within the collection.

Table 7-22. ListTable

entityid positionInList listValue

1 1 Good

1 2 Bad

1 3 Indifferent

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

170

In a legacy schema, you may quite often encounter a situation in which all the values have been
retained within a single table (see Table 7-23).

Table 7-23. EntityTable

Id Name positionInList listValue

1 Entity 1 1 Good

1 Entity 1 2 Bad

1 Entity 1 3 Indifferent

It should be obvious that this is not just poor design from Hibernate’s perspective—it’s also bad

relational design. The values in the entity’s name attribute have been duplicated needlessly, so this is not
a properly normalized table. We also break the foreign key of the table, and need to form a compound
key of id and positionInList. Overall, this is a poor design, and we encourage you to use a second table
if at all possible. If you must work with such an existing design, see Chapter 13 for some techniques for
approaching this type of problem.

If your collection is going to contain entity types instead of value types, the approach is essentially
the same, but your second table will contain keys into the second entity table instead of value types. This
changes the combination of tables into the situation shown in the entity relationship diagram (see
Figure 7-4), in which we have a link table joining two major tables into a many-to-many relationship.
This is a very familiar pattern in properly normalized relational schemas.

The following code shows a mapping of a Set attribute representing the adverts with which the User
class is associated:

<set name="adverts"
 table="user_advert_link"
 cascade="save-update">
 <key column="userid"/>
 <many-to-many
 class="com.hibernatebook.xmlmapping.Advert"
 column="advertid"/>
</set>

Hibernate’s use of collections tends to expose the lazy loading issues more than most other
mappings. If you enable lazy loading, the collection that you retrieve from the session will be a proxy
implementing the relevant collection interface (in our example, Set), rather than one of the usual Java
concrete collection implementations.

This allows Hibernate to retrieve the contents of the collection only as they are required by the user.
If you load an entity, consult a single item from the collection, and then discard it, often only a handful
of SQL operations will be required. If the collection in question represents hundreds of entity instances,
the performance advantages of lazy loading (compared with the massive task of reading in all of the
entities concerned) are massive.

However, you will need to ensure that you do not try to access the contents of a lazily loaded
collection at a time when it is no longer associated with the session, unless you can be certain that the
contents of the collection that you are accessing have already been loaded.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

171

Mapping Inheritance Relationships
Figure 7-5 shows a simple class hierarchy. The superclass is Advert, and there are two classes derived
from this: a Personal class to represent personal advertisements and a Property class to represent
property advertisements.

Figure 7-5. A simple inheritance hierarchy

Hibernate can represent inheritance relationships in a relational schema in three ways, each
mapped in a slightly different way. These are as follows:

• One table for each concrete class implementation

• One table for each subclass (including interfaces and abstract classes)

• One table for each class hierarchy

Each of these techniques has different costs and benefits, so we will show you an example mapping
from each and discuss some of these issues.

One Table per Concrete Class

This approach is the easiest to implement. You map each of the concrete classes as normal, writing
mapping elements for each of its persistent properties (including those that are inherited). No mapping
files are required for interfaces and abstract classes.

Figure 7-6 shows the schema required to represent the hierarchy from Figure 7-5 using this
technique.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

172

Figure 7-6.Mapping one table per concrete class

While this is easy to create, there are several disadvantages; the data belonging to a parent class is
scattered across a number of different tables, so a query couched in terms of the parent class is likely to
cause a large number of select operations. It also means that changes to a parent class can touch an
awful lot of tables. We suggest that you file this approach under “quick-and-dirty solutions.”

Listing 7-8 demonstrates how a derived class (Property) can be mapped to a single table
independently of its superclass ((Advert).

Listing 7-8. Mapping a Property Advert with the One-Table-per-Concrete-Class Approach

<hibernate-mapping>
 <class name="com.hibernatebook.xmlmapping.Property">
 <id name="id" type="int">
 <generator class="native"/>
 </id>
 <property name="title" type="string" length="255"/>
 <property name="state" type="string"/>
 <property name="zipCode" type="string"/>
 <property name="description" type="string"/>
 </class>
</hibernate-mapping>

One Table per Subclass

A slightly more complex mapping is to provide one table for each class in the hierarchy, including the
abstract and interface classes. The pure “is a” relationship of our class hierarchy is then converted into a
“has a” relationship for each entity in the schema.

Figure 7-7 shows the schema required to represent the hierarchy from Figure 7-5 using this
technique.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

173

Figure 7-7.Mapping one table per subclass

We like this approach, as it is conceptually easy to manage, does not require complex changes to the
schema when a single parent class is modified, and is similar to how most JVMs manage the same data
behind the scenes.

The disadvantage of this approach is that while it works well from an object-oriented point of view,
and is correct from a relational point of view, it can result in poor performance. As the hierarchy grows,
the number of joins required to construct a leaf class also grows.

The technique works well for shallow inheritance hierarchies. Deep inheritance hierarchies are
often a symptom of poorly designed code, so you may want to reconsider your application architecture
before abandoning this technique. In our opinion, it should be preferred until performance issues are
substantially proven to be an issue.

Listing 7-9 shows how you can map a derived class (Property) as a table joined to another
representing the superclass (Advert).

Listing 7-9. Mapping a Property Advert with the One-Table-per-Subclass Approach

<hibernate-mapping>
 <joined-subclass
 name="com.hibernatebook.xmlmapping.Property"
 extends="com.hibernatebook.xmlmapping.Advert">

 <key column="advertid"/>

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

174

 <property name="state" type="string"/>
 <property name="zipCode" type="string"/>
 <property name="description" type="string"/>
 </joined-subclass>
</hibernate-mapping>

Note in the mapping that we replace class with joined-subclass to associate our mapping explicitly
with the parent. You specify the entity that is being extended and replace the id and title classes from
the subclass with a single key element that maps the foreign key column to the parent class table’s
primary key. Otherwise, the <joined-subclass> element is virtually identical to the <class> element.
Note, however, that a <joined-subclass> cannot contain <subclass> elements and vice versa—the two
strategies are not compatible.

One Table per Class Hierarchy

The last of the inheritance mapping strategies is to place each inheritance hierarchy in its own table. The
fields from each of the child classes are added to this table, and a discriminator column contains a key to
identify the base type represented by each row in the table.

Figure 7-8 shows the schema required to represent the hierarchy from Figure 7-5 using this
technique.

Figure 7-8.Mapping one table per hierarchy

This technique offers the best performance—for simple queries on simple classes even in the
deepest of inheritance hierarchies, a single select may suffice to gather all the fields to populate the
entity.

Conversely, this is not a satisfying representation of the attribute. Changes to members of the
hierarchy will usually require a column to be altered, added, or deleted from the table. This will often be
a very slow operation. As the hierarchy grows (horizontally as well as vertically), so too will the number
of columns required by this table.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

175

Each mapped subclass must specify the class that it extends and a value that can be used to
discriminate this subclass from the other classes held in the same table. Thus, this is known as the
discriminator value, and is mapped with a discriminator-value attribute in the <subclass> element (see
Listing 7-10).

Listing 7-10. Mapping a Property Advert with the One-Table-per-Class-Hierarchy Approach

<hibernate-mapping>
 <subclass
 name="com.hibernatebook.xmlmapping.Property"
 extends="com.hibernatebook.xmlmapping.Advert"
 discriminator-value="property">

 <property name="state" type="string"/>
 <property name="zipCode" type="string"/>
 <property name="description" type="string"/>
 </subclass>
</hibernate-mapping>

Note that this also requires the specification of a discriminator column for the root of the class
hierarchy, from which the discriminator values identifying the types of the child classes can be obtained
(see Listing 7-11).

Listing 7-11. The Addition to Advert.hbm.xml Required to Support a One-Table-per-Class-Hierarchy

Approach

<discriminator column="advertType" type="string"/>

A subclass mapping cannot contain <joined-subclass> elements and vice versa—the two strategies
are not compatible.

More Exotic Mappings
The Hibernate mapping DTD is large. We have discussed the core set of mappings that you will use on a
day-to-day basis; but before we move on, we will take a very quick tour around four of the more
interesting remaining mapping types.

The any Tag

The any tag represents a polymorphic association between the attribute and several entity classes. The
mapping is expressed in the schema with a column to specify the type of the related entity, and then
columns for the identifier of the related entity.

Because a proper foreign key cannot be specified (being dependent upon multiple tables), this is not
the generally recommended technique for making polymorphic associations. When possible, use the
techniques described in the previous “Mapping Inheritance Relationships” section.

http://

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES

176

The array Tag

The array tag represents the innate array feature of the Java language. The syntax of this is virtually
identical to that used for the List collection class, and we recommend the use of List except when
primitive values are to be stored, or when you are constrained by an existing application architecture to
work with arrays.

The <dynamic-component> Element

While the full-blown dynamic class approach (discussed briefly in the “Entities” section at the beginning
of the chapter) is really only suitable for prototyping exercises, the dynamic component technique
allows some of that flexibility in a package that reflects some legitimate techniques.

The <dynamic-component> element permits you to place any of the items that can be mapped with
the normal <component> element into a map with a given key. For example, we could obtain and
combine several items of information relating to an entity’s ownership into a single Map with named
elements, as follows:

<dynamic-component name="ownership">
 <property name="user" type="string" column="user"/>
 <many-to-one
 name="person"
 class="com.hibernatebook.xmlmapping.Person"
 column="person_id"/>
</dynamic-component>

The code to access this information in the entity is then very familiar:

Map map = entity.getOwnership();
System.out.println(map.get("user"));
System.out.println(map.get("person"));

The output would then be as follows:

dcminter
person: { "Dave Minter", 33, "5'10" }

Summary
This chapter has covered the data types supported by Hibernate 3: entities, values, and components.
You have seen how all three can be expressed in a mapping file, and how each relates to the underlying
database schema. We have listed the attributes available to the major mapping elements, and we have
discussed some detailed examples of the elements that you will use most frequently when working with
Hibernate.

In the next chapter, we will look at how a client application communicates with the database
representation of the entities by using the Session object.

http://

C H A P T E R 8

■ ■ ■

177

Using the Session

You may have noticed that the Session object is the central point of access to Hibernate functionality.
We will now look at what it embodies and what that implies about how you should use it.

Sessions
From the examples in the earlier chapters, you will have noticed that a small number of classes
dominate our interactions with Hibernate. Of these, Session is the linchpin.

The Session object is used to create new database entities, read in objects from the database, update
objects in the database, and delete objects from the database. It allows you to manage the transaction
boundaries of database access, and (in a pinch) it allows you to obtain a traditional JDBC connection
object so that you can do things to the database that the Hibernate developers have not already
considered in their existing design (precious little).

If you are familiar with the JDBC approach, it helps to think of a Session object as being somewhat
like a JDBC connection, and the SessionFactory, which provides Session objects, as being somewhat
like a ConnectionPool, which provides Connection objects. These similarities in roles are illustrated in
Figure 8-1.

Figure 8-1. Similarities between Hibernate and JDBC objects

http://

CHAPTER 8 ■ USING THE SESSION

178

SessionFactory objects are expensive objects—needlessly duplicating them will cause problems
quickly, and creating them is a relatively time-consuming process. Ideally, you should have a single
SessionFactory for each database your application will access. SessionFactory objects are threadsafe, so
it is not necessary to obtain one for each thread. However, you will create numerous Session objects—at
least one for each thread using Hibernate. Sessions in Hibernate are not threadsafe, so sharing Session
objects between threads could cause data loss or deadlock. In fact, you will often want to create multiple
Session instances even during the lifetime of a specific thread (see the “Threads” section for
concurrency issues).

■ Caution The analogy between a Hibernate session and a JDBC connection only goes so far. One important

difference is that if a Hibernate Session object throws an exception of any sort, you must discard it and obtain a

new one. This prevents data in the session’s cache from becoming inconsistent with the database.

We’ve already covered the core methods in Chapter 4, so we won’t discuss all the methods available
to you through the Session interface. For an exhaustive look at what’s available, you should read the API
documentation on the Hibernate web site or in the Hibernate 3 download. Table 8-1 gives an overview of
the various categories of methods available to you.

Table 8-1. Hibernate Method Summary

Method Description

Create, Read, Update, and Delete

save() Saves an object to the database. This should not be called for an
object that has already been saved to the database.

saveOrUpdate() Saves an object to the database, or updates the database if the
object already exists. This method is slightly less efficient than
the save() method since it may need to perform a SELECT
statement to check whether the object already exists, but it will
not fail if the object has already been saved.

merge() Merges the fields of a nonpersistent object into the appropriate
persistent object (determined by ID). If no such object exists in
the database, then one is created and saved.

persist() Reassociates an object with the session so that changes made to
the object will be persisted.

get() Retrieves a specific object from the database by the object’s
identifier.

http://

CHAPTER 8 ■ USING THE SESSION

179

Method Description

getEntityName() Retrieves the entity name (this will usually be the same as the
fully qualified class name of the POJO).

getIdentifier() Determines the identifier—the object(s) representing the
primary key—for a specific object associated with the session.

load() Loads an object from the database by the object’s identifier (you
should use the get() methods if you are not certain that the
object is in the database).

refresh() Refreshes the state of an associated object from the database.

update() Updates the database with changes to an object.

delete() Deletes an object from the database.

createFilter() Creates a filter (query) to narrow operations on the database.

enableFilter() Enables a named filter in queries produced by createFilter().

disableFilter() Disables a named filter.

getEnabledFilter() Retrieves a currently enabled filter object.

createQuery() Creates a Hibernate query to be applied to the database.

getNamedQuery() Retrieves a query from the mapping file.

cancelQuery() Cancels execution of any query currently in progress from
another thread.

createCriteria() Creates a criteria object for narrowing search results.

Transactions and Locking

beginTransaction() Begins a transaction.

getTransaction() Retrieves the current transaction object. This does not return
null when no transaction is in progress. Instead, the active
property of the returned object is false.

lock() Gets a database lock for an object (or can be used like persist()
if LockMode.NONE is given).

http://

CHAPTER 8 ■ USING THE SESSION

180

Continued

Method Description

Managing Resources

contains() Determines whether a specific object is associated with the
database.

clear() Clears the session of all loaded instances and cancels any saves,
updates, or deletions that have not been completed. Retains any
iterators that are in use.

evict() Disassociates an object from the session so that subsequent
changes to it will not be persisted.

flush() Flushes all pending changes into the database—all saves,
updates, and deletions will be carried out; essentially, this
synchronizes the session with the database.

isOpen() Determines whether the session has been closed.

isDirty() Determines whether the session is synchronized with the
database.

getCacheMode() Determines the caching mode currently employed.

setCacheMode() Changes the caching mode currently employed.

getCurrentLockMode() Determines the locking mode currently employed.

setFlushMode() Determines the approach to flushing currently used. The
options are to flush after every operation, flush when needed,
never flush, or flush only on commit.

setReadOnly() Marks a persistent object as read-only (or as writable). There are
minor performance benefits from marking an object as read-
only, but changes to its state will be ignored until it is marked as
writable.

close() Closes the session, and hence, the underlying database
connection; releases other resources (such as the cache). You
must not perform operations on the Session object after calling
close().

getSessionFactory() Retrieves a reference to the SessionFactory object that created
the current Session instance.

http://

CHAPTER 8 ■ USING THE SESSION

181

Method Description

The JDBC Connection

connection() Retrieves a reference to the underlying database connection.

disconnect() Disconnects the underlying database connection.

reconnect() Reconnects the underlying database connection.

isConnected() Determines whether the underlying database connection is
connected.

Transactions and Locking
Transactions and locking are intimately related—the locking techniques chosen to enforce a transaction
can determine both the performance and likelihood of success of the transaction. The type of
transaction selected dictates, to some extent, the type of locking that it must use.

You are not obliged to use transactions if they do not suit your needs, but there is rarely a good
reason to avoid them. If you decide to avoid them, you will need to invoke the flush() method on the
session at appropriate points to ensure that your changes are persisted to the database.

Transactions

A transaction is a unit of work guaranteed to behave as if you have exclusive use of the database. If you
wrap your work in a transaction, the behavior of other system users will not affect your data. A
transaction can be started, committed to write data to the database, or rolled back to remove all changes
from the beginning onward (usually as the result of an error). To achieve this, you obtain a Transaction
object from the database (beginning the transaction) and manipulate the session as shown in the
following code:

Session session = factory.openSession();
try {
 session.beginTransaction();

 // Normal session usage here...

 session.getTransaction().commit();
} catch (HibernateException e) {
 Transaction tx = session.getTransaction();
 if (tx.isActive()) tx.rollback();
} finally {
 session.close();
}

http://

CHAPTER 8 ■ USING THE SESSION

182

In the real world, it’s not actually desirable for all transactions to be fully ACID (see the sidebar
entitled “The ACID Tests”) because of the performance problems that this can cause.

Different database suppliers support and permit you to break the ACID rules to a lesser or greater
extent, but the degree of control over the isolation rule is actually mandated by the SQL-92 standard.
There are important reasons that you might want to break this rule, so both JDBC and Hibernate also
make explicit allowances for it.

The Acid Tests

• Atomicity: A transaction should be all or nothing. If it fails to complete, the
database will be left as if none of the operations had ever been performed—this is

known as a rollback.

• Consistency: A transaction should be incapable of breaking any rules defined for

the database. For example, foreign keys must be obeyed. If for some reason this is
impossible, the transaction will be rolled back.

• Isolation: The effects of the transaction will be completely invisible to all other

transactions until it has completed successfully. This guarantees that the

transaction will always see the data in a sensible state. For example, an update to
a user’s address should only contain a correct address (i.e., it will never have the

house name for one location but the ZIP code for another); without this rule, a

transaction could easily see when another transaction had updated the first part
but had not yet completed.

• Durability: The data should be retained intact. If the system fails for any reason, it

should always be possible to retrieve the database up to the moment of the

failure.

The isolation levels permitted by JDBC and Hibernate are listed in Table 8-2.

Table 8-2. JDBC Isolation Levels

Level Name Transactional Behavior

0 None Anything is permitted; the database or driver does not support
transactions.

1 Read Uncommitted Dirty, nonrepeatable, and phantom reads are permitted.

2 Read Committed Nonrepeatable reads and phantom reads are permitted.

4 Repeatable Read Phantom reads are permitted.

8 Serializable The rule must be obeyed absolutely.

http://

CHAPTER 8 ■ USING THE SESSION

183

A dirty read may see the in-progress changes of an uncommitted transaction. As with the isolation
example discussed in the preceding sidebar, it could see the wrong ZIP code for an address.

A nonrepeatable read sees different data for the same query. For example, it might determine a
specific user’s ZIP code at the beginning of the transaction and again at the end, and get a different
answer both times without making any updates.

A phantom read sees different numbers of rows for the same query. For example, it might see 100
users in the database at the beginning of the query and 105 at the end without making any updates.

Hibernate treats the isolation as a global setting—you apply the configuration option
hibernate.connection.isolation in the usual manner, setting it to one of the values permitted in Table
8-2. This is not always ideal. You will sometimes want to treat one particular transaction at a high level of
isolation (usually Serializable), while permitting lower degrees of isolation for others. To do so, you will
need to obtain the JDBC connection directly, alter the isolation level, begin the transaction, roll back or
clean up the transaction as appropriate, and reset the isolation level back to its original value before
releasing the connection for general usage. Hibernate does not provide a more direct way to alter the
isolation level of the connection in a localized way. The implementation of the createUser() method,
shown in Listing 8-1, demonstrates the additional complexity that the connection-specific transaction
isolation involves.

Listing 8-1. Using a Specific Isolation Level

 public static void createUser(String username)
 throws HibernateException
 {
 Session session = factory.openSession();
 int isolation = -1;
 try {
 isolation = session.connection().getTransactionIsolation();
 session.connection().setTransactionIsolation(
 Connection.TRANSACTION_SERIALIZABLE);
 session.beginTransaction();

 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);

 // Commit the transaction
 session.getTransaction().commit();
 } catch (SQLException e1) {
 rollback(session);
 throw new HibernateException(e1);
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // reset isolation
 reset(session,isolation);

http://

CHAPTER 8 ■ USING THE SESSION

184

 // Close the session
 close(session);
 }
 }

Fortunately, the normal case for a transaction using the global isolation level is much simpler. We
provide a more standard implementation of the createUser() method for comparison in Listing 8-2.

Listing 8-2. Using the Global (Default) Isolation Level

 public static void createUser(String username) throws HibernateException {
 Session session = factory.openSession();
 try {
 session.beginTransaction();

 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);

 // Commit the transaction
 session.getTransaction().commit();
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // Close the session
 close(session);
 }
 }

Locking

A database can conform to these various levels of isolation in a number of ways, and you will need a
working knowledge of locking to elicit the desired behavior and performance from your application in all
circumstances.

To prevent simultaneous access to data, the database itself will acquire a lock on that data. This can
be acquired for the momentary operation on the data only, or it can be retained until the end of the
transaction. The former is called optimistic locking and the latter is called pessimistic locking.

The Read Uncommitted isolation level always acquires optimistic locks, whereas the Serializable
isolation level will only acquire pessimistic locks. Some databases offer a feature that allows you to
append the FOR UPDATE query to a select operation, which requires the database to acquire a pessimistic
lock even in the lower isolation levels.

Hibernate provides some support for this feature when it is available, and takes it somewhat further
by adding facilities that describe additional degrees of isolation obtainable from Hibernate’s own cache.

The LockMode object controls this fine-grained isolation (see Table 8-3). It is only applicable to the
get() methods, so it is limited—however, when possible, it is preferable to the direct control of isolation
mentioned previously.

http://

CHAPTER 8 ■ USING THE SESSION

185

Table 8-3. Lock Modes

Mode Description

NONE Reads from the database only if the object is not available from the caches.

READ Reads from the database regardless of the contents of the caches.

UPGRADE Obtains a dialect-specific upgrade lock for the data to be accessed (if this is available
from your database).

UPGRADE_NOWAIT Behaves like UPGRADE, but when support is available from the database and dialect,
the method will fail with a locking exception immediately. Without this option, or on
databases for which it is not supported, the query must wait for a lock to be granted
(or for a timeout to occur).

An additional lock mode, WRITE, is acquired by Hibernate automatically when it has written to a row

within the current transaction. This mode cannot be set explicitly, but calls to getLockMode may return it.
Having discussed locking in general, we need to touch on some of the problems that locks can

cause.

Deadlocks

Even if you have not encountered a deadlock (sometimes given the rather louche name of “deadly
embrace”) in databases, you have probably encountered the problem in multithreaded Java code. The
problem arises from similar origins.

Two threads of execution can get into a situation in which each is waiting for the other to release
a resource that it needs. The most common way to create this situation in a database is shown in Figure
8-2.

Each thread obtains a lock on its table when the update begins. Each thread proceeds until the table
held by the other user is required. Neither thread can release the lock on its own table until the
transaction completes—so something has to give.

A deadlock can also occur when a single thread of execution is carrying out an equivalent sequence
of operations using two Session objects connected to the same database. In practice, the multiple-
thread scenario is more common.

Fortunately, a database management system (DBMS) can detect this situation automatically, at
which point the transaction of one or more of the offending processes will be aborted by the database.
The resulting deadlock error will be received and handled by Hibernate as a normal HibernateException.
Now you must roll back your transaction, close the session, and then (optionally) try again.

Listing 8-3 demonstrates how four updates from a pair of sessions can cause a deadlock. If you look
at the output from the threads, you will see that one of them completes while the other fails with a
deadlock error.

http://

CHAPTER 8 ■ USING THE SESSION

186

Figure 8-2. The anatomy of a deadlock

Looking at the database after completion, you will see that the test user has been replaced with
either jeff or dave in both tables (you will never see dave from one thread and jeff from the other).
Though it is not necessary here, because we close the session regardless, in a more extensive application
it is important to ensure that the session associated with a deadlock or any other Hibernate exception is
closed and never used again because the cache may be left in a corrupted state.

It is worth building and running Listing 8-3 to ensure that you are familiar with the symptoms of a
deadlock when they occur.

Listing 8-3. Code to Generate a Deadlock

package com.hibernatebook.session.deadlock;

import java.sql.Connection;
import java.sql.SQLException;

import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;

public class GenerateDeadlock {

 private static SessionFactory factory = new Configuration().configure()
 .buildSessionFactory();

 public static void createUser(String username) throws HibernateException {
 Session session = factory.openSession();
 try {

http://

CHAPTER 8 ■ USING THE SESSION

187

 session.beginTransaction();

 // Normal usage of the Session here...
 Publisher p = new Publisher(username);
 Subscriber s = new Subscriber(username);
 session.saveOrUpdate(p);
 session.saveOrUpdate(s);

 // Commit the transaction
 session.getTransaction().commit();
 } catch (HibernateException e1) {
 rollback(session);
 throw e1;
 } finally {
 // Close the session
 close(session);
 }
 }

 public static void reset(Session session, int isolation) {
 if (isolation >= 0) {
 try {
 session.connection().setTransactionIsolation(isolation);
 } catch (SQLException e) {
 System.err.println("Could not reset the isolation level: " + e);
 } catch (HibernateException e) {
 System.err.println("Could not reset the isolation level: " + e);
 }
 }
 }

 public static void close(Session session) {
 try {
 session.close();
 } catch (HibernateException e) {
 System.err.println("Could not close the session: " + e);
 }
 }

 public static void rollback(Session session) {
 try {
 Transaction tx = session.getTransaction();
 if (tx.isActive())
 tx.rollback();
 } catch (HibernateException e) {
 System.err.println("Could not rollback the session: " + e);
 }
 }

 public static void main(String[] argv) {

http://

CHAPTER 8 ■ USING THE SESSION

188

 System.out.println("Creating test user...");
 createUser("test");

 System.out.println("Proceeding to main test...");
 Session s1 = factory.openSession();
 Session s2 = factory.openSession();

 try {
 s1.beginTransaction();
 s2.beginTransaction();

 System.out.println("Update 1");
 Query q1 = s1.createQuery("from Publisher");
 Publisher pub1 = (Publisher) q1.uniqueResult();
 pub1.setUsername("jeff");
 s1.flush();

 System.out.println("Update 2");
 Query q2 = s2.createQuery("from Subscriber");
 Subscriber sub1 = (Subscriber) q2.uniqueResult();
 sub1.setUsername("dave");
 s2.flush();

 System.out.println("Update 3");
 Query q3 = s1.createQuery("from Subscriber");
 Subscriber sub2 = (Subscriber) q3.uniqueResult();
 sub2.setUsername("jeff");
 s1.flush();

 System.out.println("Update 4");
 Query q4 = s2.createQuery("from Publisher");
 Publisher pub2 = (Publisher) q4.uniqueResult();
 pub2.setUsername("dave");
 s2.flush();

 s1.getTransaction().commit();
 s2.getTransaction().commit();

 } catch (RuntimeException e1) {
 e1.printStackTrace();
 // Run the boilerplate to roll back the sessions
 rollback(s1);
 rollback(s2);
 throw e1;
 } finally {
 // Run the boilerplate to close the sessions
 close(s1);
 close(s2);
 }
 }
}

http://

CHAPTER 8 ■ USING THE SESSION

189

Caching
Accessing a database is an expensive operation, even for a simple query. The request has to be sent
(usually over the network) to the server. The database server may have to compile the SQL into a query
plan. The query plan has to be run and is limited largely by disk performance. The resulting data has to
be shuttled back (again, usually across the network) to the client, and only then can the application
program begin to process the results.

Most good databases will cache the results of a query if it is run multiple times, eliminating the disk
I/O and query compilation time; but this will be of limited value if there are large numbers of clients
making substantially different requests. Even if the cache generally holds the results, the time taken to
transmit the information across the network is often the larger part of the delay.

Some applications will be able to take advantage of in-process databases, but this is the exception
rather than the rule—and such databases have their own limitations.

The natural and obvious answer is to have a cache at the client end of the database connection. This
is not a feature provided or supported by JDBC directly, but Hibernate provides one cache (the first-
level, or L1, cache) through which all requests must pass. A second-level cache is optional and
configurable.

The L1 cache ensures that within a session, requests for a given object from a database will always
return the same object instance, thus preventing data from conflicting and preventing Hibernate from
trying to load an object multiple times.

Items in the L1 cache can be individually discarded by invoking the evict() method on the session
for the object that you wish to discard. To discard all items in the L1 cache, invoke the clear() method.

In this way, Hibernate has a major advantage over the traditional JDBC approach: with no
additional effort from the developer, a Hibernate application gains the benefits of a client-side database
cache.

Figure 8-3 shows the two caches available to the session: the compulsory L1 cache, through which
all requests must pass, and the optional level-two (L2) cache. The L1 cache will always be consulted
before any attempt is made to locate an object in the L2 cache. You will notice that the L2 cache is
external to Hibernate; and although it is accessed via the session in a way that is transparent to
Hibernate users, it is a pluggable interface to any one of a variety of caches that are maintained on the
same JVM as your Hibernate application or on an external JVM. This allows a cache to be shared
between applications on the same machine, or even between multiple applications on multiple
machines.

In principle, any third-party cache can be used with Hibernate. An org.hibernate.cache.
CacheProvider interface is provided, which must be implemented to provide Hibernate with a handle to
the cache implementation. The cache provider is then specified by giving the implementation class
name as the value of the hibernate.cache.provider_class property.

http://

CHAPTER 8 ■ USING THE SESSION

190

Figure 8-3. The session’s relationship to the caches

In practice, the four production-ready caches, which are already supported, will be adequate for
most users (see Table 8-4).

Table 8-4. L2 Cache Implementations Supported by Hibernate Out of the Box

Cache Name Description

EHCache An in-process cache

Infinispan Open source successor to JBossCache that provides distributed cache support

OSCache An alternative in-process cache

SwarmCache A multicast distributed cache

The type of access to the L2 cache can be configured on a per-session basis by selecting a CacheMode

option (see Table 8-5) and applying it with the setCacheMode() method.

http://

CHAPTER 8 ■ USING THE SESSION

191

Table 8-5. CacheMode Options

Mode Description

NORMAL Data is read from and written to the cache as necessary.

GET Data is never added to the cache (although cache entries are invalidated when updated by
the session).

PUT Data is never read from the cache, but cache entries will be updated as they are read from
the database by the session.

REFRESH This is the same as PUT, but the use_minimal_puts Hibernate configuration option will be
ignored if it has been set.

IGNORE Data is never read from or written to the cache (except that cache entries will still be
invalidated when they are updated by the session).

The CacheMode setting does not affect the way in which the L1 cache is accessed.
The decision to use an L2 cache is not clear-cut. Although it has the potential to greatly reduce

access to the database, the benefits depend on the type of cache and the way in which it will be accessed.
A distributed cache will cause additional network traffic. Some types of database access may result

in the contents of the cache being flushed before they are used—in which case, it will be adding
unnecessary overhead to the transactions.

The L2 cache cannot account for the changes in the underlying data, which are the result of actions
by an external program that is not cache-aware. This could potentially lead to problems with stale data,
which is not an issue with the L1 cache.

In practice, as with most optimization problems, it is best to carry out performance testing under
realistic load conditions. This will let you determine if a cache is necessary and help you select which
one will offer the greatest improvement.

Threads
Having considered the caches available to a Hibernate application, you may now be concerned about
the risk of a conventional Java deadlock if two threads of execution were to contend for the same object
in the Hibernate session cache.

In principle, this is possible—and unlike database deadlocks, Java thread deadlocks do not time out
with an error message. Fortunately, there is a very simple solution:

Patient: Doctor, it hurts when I do this.
Doctor: Don’t do that then.

Do not share the Session object between threads. This will eliminate any risk of deadlocking on

objects contained within the session cache.

http://

CHAPTER 8 ■ USING THE SESSION

192

The easiest way to ensure that you do not use the same Session object outside the current thread is
to use an instance local to the current method. If you absolutely must maintain an instance for a longer
duration, maintain the instance within a ThreadLocal object. For most purposes, however, the
lightweight nature of the Session object makes it practical to construct, use, and destroy an instance,
rather than to store a session.

Summary
In this chapter, we have discussed the nature of Session objects and how they can be used to obtain and
manage transactions. We have looked at the two levels of caching that are available to applications, and
how concurrent threads should manage sessions.

In the next chapter, we discuss the various ways in which you can retrieve objects from the
database. We also show you how to perform more complicated queries against the database using HQL.

http://

C H A P T E R 9

■ ■ ■

193

Searches and Queries

In the last chapter, we discussed how the Hibernate session is used to interact with the database. Some
of the session’s methods take query strings in their parameter lists or return Query objects. These
methods are used to request arbitrary information from the database. In order to fully show how they’re
used, we must introduce you to the Hibernate Query Language (HQL) used to phrase these requests. As
well as extracting information (with SELECT), HQL can be used to alter the information in the database
(with INSERT, UPDATE, and DELETE). We cover all of this basic functionality in this chapter. Hibernate’s
query facilities do not allow you to alter the database structure.

HQL is an object-oriented query language, similar to SQL, but instead of operating on tables and
columns, HQL works with persistent objects and their properties.

HQL is a language with its own syntax and grammar. HQL is written as strings, like from Product p,
as opposed to Hibernate’s criteria queries (discussed in the next chapter), which take the form of a
conventional Java API. Ultimately, your HQL queries are translated by Hibernate into conventional SQL
queries, and Hibernate also provides an API that allows you to directly issue SQL queries.

Hibernate Query Language (HQL)
While most ORM tools and object databases offer an object query language, Hibernate’s HQL stands out
as being complete and easy to use. Although you can use SQL statements directly with Hibernate (which
is covered in detail in the “Using Native SQL” section of this chapter), we recommend that you use HQL
(or criteria) whenever possible to avoid database portability hassles, and to take advantage of
Hibernate’s SQL-generation and caching strategies. In addition to its technical advantages over
traditional SQL, HQL is a more compact query language than SQL because it can make use of the
relationship information defined in the Hibernate mappings.

We realize that not every developer trusts Hibernate’s generated SQL to be perfectly optimized. If
you do encounter a performance bottleneck in your queries, we recommend that you use SQL tracing on
your database during performance testing of your critical components. If you see an area that needs
optimization, we suggest trying first to optimize using HQL, and only later dropping into native SQL.
Hibernate 3 provides statistics information through a JMX MBean, which you can use for analyzing
Hibernate’s performance. Hibernate’s statistics also give you insight into how caching is performing.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

194

■ Note If you would like to execute HQL statements through a GUI-based tool, the Hibernate team provides a

Hibernate console for Eclipse in the Hibernate Tools subproject. This console is a plug-in for recent versions of

Eclipse. This tool is described in detail in Appendix B.

Syntax Basics
HQL is inspired by SQL and is the inspiration for the Java Persistence Query Language (JPQL). The JPQL
specification is included in the standard for JPA available from the Java Community Process web site
(www.jcp.org/en/jsr/detail?id=220). HQL’s syntax is defined as an ANTLR grammar; the grammar files
are included in the grammar directory of the Hibernate core download (ANTLR is a tool for building
language parsers).

As the ANTLR grammar files are somewhat cryptic, and as not every statement that is permissible
according to the ANTLR grammar’s rules can be used in Hibernate, we outline the syntax for the four
fundamental HQL operations in this section. Note that the following descriptions of syntax are not
comprehensive—there are some deprecated or more obscure usages (particularly for SELECT statements)
that are not covered here.

UPDATE

UPDATE alters the details of existing objects in the database. In-memory entities will not be updated to
reflect changes resulting from issuing UPDATE statements. Here’s the syntax of the UPDATE statement:

UPDATE [VERSIONED]
 [FROM] path [[AS] alias] [, ...]
 SET property = value [, ...]
 [WHERE logicalExpression]

path is the fully qualified name of the entity or entities. The alias names may be used to abbreviate
references to specific entities or their properties, and must be used when property names used in the
query would otherwise be ambiguous.

The property names are the names of properties of entities listed in the FROM path.
The syntax of logical expressions is discussed later, in the “Using Restrictions with HQL” section.

DELETE

DELETE removes the details of existing objects from the database. In-memory entities will not be updated
to reflect changes resulting from DELETE statements. This also means that Hibernate’s cascade rules will
not be followed for deletions carried out using HQL. However, if you have specified cascading deletes at
the database level (either directly or through Hibernate using the @OnDelete annotation), the database
will still remove the child rows. This approach to deletion is commonly referred to as “bulk deletion”
since it is the most efficient way to remove large numbers of entities from the database. Here’s the
syntax of the DELETE statement:

http://www.jcp.org/en/jsr/detail?id=220
http://

CHAPTER 9 ■ SEARCHES AND QUERIES

195

DELETE
 [FROM] path [[AS] alias]
 [WHERE logicalExpression]

path is the fully qualified name of an entity. The alias names may be used to abbreviate references
to specific entities or their properties, and must be used when property names used in the query would
otherwise be ambiguous.

INSERT

An HQL INSERT cannot be used to directly insert arbitrary entities—it can only be used to insert entities
constructed from information obtained from SELECT queries (unlike ordinary SQL, in which an INSERT
command can be used to insert arbitrary data into a table, as well as insert values selected from other
tables). Here’s the syntax of the INSERT statement:

INSERT
 INTO path (property [, ...])
 select

path is the name of an entity. The property names are the names of properties of entities listed in
the FROM path of the incorporated SELECT query.

The select query is an HQL SELECT query (as described in the next section).

SELECT

An HQL SELECT is used to query the database for classes and their properties. As noted previously, this is
very much a summary of the full expressive power of HQL SELECT queries—however, for more complex
joins and the like, you may find that the use of the Criteria API described in the next chapter is more
appropriate. Here’s the syntax of the SELECT statement:

[SELECT [DISTINCT] property [, ...]]
 FROM path [[AS] alias] [, ...] [FETCH ALL PROPERTIES]
 WHERE logicalExpression
 GROUP BY property [, ...]
 HAVING logicalExpression
 ORDER BY property [ASC | DESC] [, ...]

path is the fully qualified name of an entity. The alias names may be used to abbreviate references
to specific entities or their properties, and must be used when property names used in the query would
otherwise be ambiguous.

The property names are the names of properties of entities listed in the FROM path.
If FETCH ALL PROPERTIES is used, then lazy loading semantics will be ignored, and all the immediate

properties of the retrieved object(s) will be actively loaded (this does not apply recursively).
When the properties listed consist only of the names of aliases in the FROM clause, the SELECT clause

can be omitted in HQL. If you are using the JPA with JPQL, one of the differences between HQL and JPQL
is that the SELECT clause is required in JPQL.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

196

The First Example with HQL
The simplest HQL query returns all objects for a given class in the database. In a syntax similar to that of
SQL, we use the HQL clause from. As noted, when retrieving objects with HQL, you do not have to use the
leading select clause for this query—instead, you can use the following simple shortcut query to select
all objects from the Product table:
from Product

■ Note Like all SQL syntax, you can write from in lowercase or uppercase (or mixed case). However, any Java

classes or properties that you reference in an HQL query have to be specified in the proper case. For example,

when you query for instances of a Java class named Product, the HQL query from Product is the equivalent of

FROM Product. However, the HQL query from product is not the same as the HQL query from Product. Because

Java class names are case-sensitive, Hibernate is case-sensitive about class names as well.

Embedding the following HQL statement into our application is straightforward. The
org.hibernate.Session object contains a method named createQuery():

public Query createQuery(String queryString) throws HibernateException

The createQuery() method takes a valid HQL statement, and returns an org.hibernate.Query
object. The Query class provides methods for returning the query results as a Java List, as an Iterator, or
as a unique result. Other functionality includes named parameters, results scrolling, JDBC fetch sizes,
and JDBC timeouts. You can also add a comment to the SQL that Hibernate creates, which is useful for
tracing which HQL statements correspond to which SQL statements.

In order to fully illustrate our examples, we must first introduce the sample application that we are
using in this chapter and the next (which discusses criteria). The sample application has three classes:
Supplier, Product, and Software. The Supplier class, shown in Listing 9-1, has a name property and a List
collection of Product objects.

Listing 9-1. The Supplier Class

package com.hibernatebook.queries;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import org.hibernate.annotations.Cascade;

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

197

@Entity
public class Supplier implements Serializable
{
 private int id;
 private String name;
 private List<Product> products = new ArrayList<Product>();

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @OneToMany(cascade=CascadeType.ALL)
 @Cascade(org.hibernate.annotations.CascadeType.DELETE_ORPHAN)

 public List<Product> getProducts() {
 return products;
 }

 public void setProducts(List<Product> products) {
 this.products = products;
 }
}

The Product class, shown in Listing 9-2, has name, price, and description properties, along with a
reference to its parent supplier.

Listing 9-2. The Product Class

package com.hibernatebook.queries;

import java.io.Serializable;
import javax.persistence.ColumnResult;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

198

import javax.persistence.InheritanceType;
import javax.persistence.ManyToOne;
import javax.persistence.NamedNativeQuery;
import javax.persistence.NamedQuery;
import javax.persistence.SqlResultSetMapping;

@Entity
@NamedQuery(name="com.hibernatebook.queries.Product.HQLpricing",
query=" select product.price from Product product where product.price > 25.0")
@NamedNativeQuery(name="com.hibernatebook.queries.Product.SQLpricing",
query="select product.price from Product as product where product.price > 25.0",
 resultSetMapping="SQLPricingMapping")
@SqlResultSetMapping(name="SQLPricingMapping", columns=@ColumnResult(name="price"))
@Inheritance(
 strategy=InheritanceType.JOINED
)

public class Product implements Serializable
{
 private int id;
 private Supplier supplier;

 private String name;
 private String description;
 private double price;

 public Product() {
 }

 public Product(String name, String description, double price) {
 this.name = name;
 this.description = description;
 this.price = price;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 public int getId() { return id;
 }

 public void setId(int id) {
 this.id = id;
 }

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

199

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @ManyToOne
 public Supplier getSupplier() {
 return supplier;
 }

 public void setSupplier(Supplier supplier) {
 this.supplier = supplier;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }
}

The Software class, shown in Listing 9-3, extends the Product class and adds a version property—we
added this subclass so that we could demonstrate polymorphism with Hibernate’s queries.

Listing 9-3. The Software Class

package com.hibernatebook.queries;

import java.io.Serializable;
import javax.persistence.Entity;

@Entity
public class Software extends Product implements Serializable
{
 private String version;

 public Software() {
 }

 public Software(String name, String description,
 double price, String version)
 { super(name, description, price);
 this.setVersion(version);
 }

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

200

 public String getVersion() {
 return version;
 }

 public void setVersion(String version) {
 this.version = version;
 }
}

The Hibernate configuration XML file is in the source directory for the book, along with a test
harness for populating the database and running the examples in this chapter and the next.

The first example executes our HQL statement, from Product, and then retrieves a List of Product
objects.

Query query = session.createQuery("from Product");
List results = query.list();

Many of the other examples in this chapter use the same supporting Java code as this example. We
are going to provide just the HQL for these examples—you can execute them the same way we did here,
substituting that HQL for the from Product HQL statement. This should make each example clearer as to
what you should be looking at. You could also execute these HQL statements in the Hibernate Tools
scratch pad.

Logging and Commenting the Underlying SQL
Hibernate can output the underlying SQL behind your HQL queries into your application’s log file. This
is especially useful if the HQL query does not give the results you expect, or the query takes longer than
you wanted. You can run the SQL that Hibernate generates directly against your database in the
database’s query analyzer at a later date to determine the causes of the problem. This is not a feature you
will have to use frequently, but it is useful should you need to turn to your database administrators for
help in tuning your Hibernate application.

Logging the SQL

The easiest way to see the SQL for a Hibernate HQL query is to enable SQL output in the logs with the
hibernate.show_sql property. Set this property to true in your hibernate.properties or
hibernate.cfg.xml configuration files, and Hibernate will output the SQL into the logs. You do not need
to enable any other logging settings—although setting logging for Hibernate to debug also outputs the
generated SQL statements, along with a lot of other verbiage.

After enabling SQL output in Hibernate, you should rerun the previous example. Here is the
generated SQL statement for the HQL statement from Product:

select product0_.id as id, product0_.name as name0_, product0_.description ➥

as descript3_0_, product0_.price as price0_, product0_.supplierId ➥

as supplierId0_, product0_1_.version as version1_, ➥

case when product0_1_.productId is not null then 1 ➥

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

201

when product0_.id is not null then 0 end ➥

as clazz_ from Product product0_ left outer join Software product0_1_ ➥

on product0_.id=product0_1_.productId

As an aside, remember that the Software class inherits from Product, which complicates Hibernate’s
generated SQL for this simple query. When we select all objects from our simple Supplier class, the
generated SQL for the HQL query from Supplier is much simpler:

select supplier0_.id as id, supplier0_.name as name2_ from Supplier supplier0_

When you look in your application’s output for the Hibernate SQL statements, they will be prefixed
with Hibernate:. The previous SQL statement would look like this:

Hibernate: select supplier0_.id as id, supplier0_.name as name2_ ➥

from Supplier supplier0_

If you turn your log4j logging up to debug for the Hibernate classes, you will see SQL statements in
your log files, along with lots of information about how Hibernate parsed your HQL query and translated
it into SQL.

Commenting the Generated SQL

Tracing your HQL statements through to the generated SQL can be difficult, so Hibernate provides a
commenting facility on the Query object that lets you apply a comment to a specific query. The Query
interface has a setComment() method that takes a String object as an argument, as follows:

public Query setComment(String comment)

Hibernate will not add comments to your SQL statements without some additional configuration,
even if you use the setComment() method. You will also need to set a Hibernate property,
hibernate.use_sql_comments, to true in your Hibernate configuration. If you set this property but do not
set a comment on the query programmatically, Hibernate will include the HQL used to generate the SQL
call in the comment. We find this to be very useful for debugging HQL.

Use commenting to identify the SQL output in your application’s logs if SQL logging is enabled. For
instance, if we add a comment to this example, the Java code would look like this:

String hql = "from Supplier";
Query query = session.createQuery(hql);
query.setComment("My HQL: " + hql);
List results = query.list();

The output in your application’s log will have the comment in a Java-style comment before the SQL:

Hibernate: /*My HQL: from Supplier*/ select supplier0_.id as id, supplier0_.name ➥

as name2_ from Supplier supplier0_

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

202

We have found this useful for identifying SQL in our logs, especially because the generated SQL is a
little difficult to follow when you are scanning large quantities of it in logs.

The from Clause and Aliases
We have already discussed the basics of the from clause in HQL in the earlier section, “The First Example
with HQL.” The most important feature to note is the alias. Hibernate allows you to assign aliases to the
classes in your query with the as clause. Use the aliases to refer back to the class inside the query. For
instance, our previous simple example would be the following:

from Product as p

or the following:

from Product as product

You’ll see either alias-naming convention in applications. The as keyword is optional—you can also
specify the alias directly after the class name, as follows:

from Product product

If you need to fully qualify a class name in HQL, just specify the package and class name. Hibernate
will take care of most of this behind the scenes, so you only really need this if you have classes with
duplicate names in your application. If you need to do this in Hibernate, use syntax such as the
following:

from com.hibernatebook.criteria.Product

The from clause is very basic and useful for working directly with objects. However, if you want to

work with the object’s properties without loading the full objects into memory, you must use the select
clause.

The select Clause and Projection
The select clause provides more control over the result set than the from clause. If you want to obtain
the properties of objects in the result set, use the select clause. For instance, we could run a projection
query on the products in the database that only returned the names, instead of loading the full object
into memory, as follows:

select product.name from Product product

The result set for this query will contain a List of Java String objects. Additionally, we can retrieve
the prices and the names for each product in the database, like so:

select product.name, product.price from Product product

This result set contains a List of Object arrays—each array represents one set of properties (in this
case, a name and price pair).

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

203

If you’re only interested in a few properties, this approach can allow you to reduce network traffic to
the database server and save memory on the application’s machine.

Using Restrictions with HQL
As with SQL, you use the where clause to select results that match your query’s expressions. HQL
provides many different expressions that you can use to construct a query. In the HQL language
grammar, there are the following possible expressions:

• Logic operators: OR, AND, NOT

• Equality operators: =, <>, !=, ^=

• Comparison operators: <, >, <=, >=, like, not like, between, not between

• Math operators: +, -, *, /

• Concatenation operator: ||

• Cases: Case when <logical expression> then <unary expression> else _<unary
expression> end

• Collection expressions: some, exists, all, any

In addition, you may also use the following expressions in the where clause:

• HQL named parameters: :date, :quantity

• JDBC query parameter: ?

• Date and time SQL-92 functional operators: current_time(), current_date(),
current_timestamp()

• SQL functions (supported by the database): length(), upper(), lower(), ltrim(),
rtrim(), etc.

Using these restrictions, you can build a where clause in HQL that is as powerful as an SQL query.
For many queries, HQL syntax is more compact and elegant than the Criteria Query API syntax
(discussed in Chapter 10). For instance, here is an example of a criteria query that uses logical
expressions:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description","blocks%"));
List results = crit.list();

The equivalent HQL would be the following:

from Product where price > 25.0 and name like 'Mou%'

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

204

We would have to wrap that HQL in a couple of lines of Java code, but even so, we find this
particular example to be clearer in HQL. In the previous HQL example, you can see that we used the
where clause with a > (greater than) comparison operator, an and logical operator, and a like comparison
operator. You do have to enclose literal strings in quotes in HQL. To find names that have the literal Mou
at the beginning of the string, we used % in the query.

Using Named Parameters
Hibernate supports named parameters in its HQL queries. This makes writing queries that accept input
from the user easy—and you do not have to defend against SQL injection attacks.

■ Note SQL injection is an attack against applications that create SQL directly from user input with string

concatenation. For instance, if we accept a name from the user through a web application form, then it would be

very bad form to construct an SQL (or HQL) query like this:

String sql = "select p from products where name = '" + name + "'";

A malicious user could pass a name to the application that contained a terminating quote and semicolon, followed

by another SQL command (such as delete from products) that would let them do whatever they wanted. They

would just need to end with another command that matched the SQL statement’s ending quote. This is a very

common attack, especially if the malicious user can guess details of your database structure.

You could escape the user’s input yourself for every query, but it is much less of a security risk if you
let Hibernate manage all of your input with named parameters. Hibernate’s named parameters are
similar to the JDBC query parameters (?) you may already be familiar with, but Hibernate’s parameters
are less confusing. It is also more straightforward to use Hibernate’s named parameters if you have a
query that uses the same parameter in multiple places.

When you use JDBC query parameters, any time you add, change, or delete parts of the SQL
statement, you need to update your Java code that sets its parameters, because the parameters are
indexed based on the order they appear in the statement. Hibernate lets you provide names for the
parameters in the HQL query, so you do not have to worry about accidentally moving parameters further
up or back in the query.

The simplest example of named parameters uses regular SQL types for the parameters:

String hql = "from Product where price > :price";
Query query = session.createQuery(hql);
query.setDouble("price",25.0);
List results = query.list();

Normally, you do not know the values that are to be substituted for the named parameters—and if
you did, you would probably encode them directly into the query string. When the value to be provided
will be known only at run time, you can use some of HQL’s object-oriented features to provide objects as
values for named parameters. The Query interface has a setEntity() method that takes the name of a

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

205

parameter and an object. Using this functionality, we could retrieve all the products that have a supplier
whose object we already have:

String supplierHQL = "from Supplier where name='MegaInc'";
Query supplierQuery = session.createQuery(supplierHQL);
Supplier supplier = (Supplier) supplierQuery.list().get(0);

String hql = "from Product as product where product.supplier=:supplier";
Query query = session.createQuery(hql);
query.setEntity("supplier",supplier);
List results = query.list();

You can also use regular JDBC query parameters in your HQL queries. We do not particularly see
any reason why you would want to, but they do work.

Paging Through the Result Set
Pagination through the result set of a database query is a very common application pattern. Typically,
you would use pagination for a web application that returned a large set of data for a query. The web
application would page through the database query result set to build the appropriate page for the user.
The application would be very slow if the web application loaded all of the data into memory for each
user. Instead, you can page through the result set and retrieve the results you are going to display one
chunk at a time.

There are two methods on the Query interface for paging: setFirstResult() and setMaxResults(),
just as with the Criteria interface. The setFirstResult() method takes an integer that represents the
first row in your result set, starting with row 0. You can tell Hibernate to only retrieve a fixed number of
objects with the setMaxResults() method. Your HQL is unchanged—you only need to modify the Java
code that executes the query. Excuse our tiny dataset for this trivial example of pagination:

Query query = session.createQuery("from Product");
query.setFirstResult(1);
query.setMaxResults(2);
List results = query.list();
displayProductsList(results);

You can change the numbers around and play with the pagination. If you turn on SQL logging, you
can see which SQL commands Hibernate uses for pagination. For the open source HSQLDB database,
Hibernate uses top and limit. For other databases, Hibernate uses the appropriate commands for
pagination. For instance, Microsoft SQL Server does not support the limit command, so Hibernate only
uses the top command. If your application is having performance problems with pagination, this can be
very helpful for debugging.

If you only have one result in your HQL result set, Hibernate has a shortcut method for obtaining
just that object.

Obtaining a Unique Result
HQL’s Query interface provides a uniqueResult() method for obtaining just one object from an HQL
query. Although your query may only yield one object, you may also use the uniqueResult() method

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

206

with other result sets if you limit the results to just the first result. You could use the setMaxResults()
method discussed in the previous section. The uniqueResult() method on the Query object returns a
single object, or null if there are zero results. If there is more than one result, the uniqueResult()
method throws a NonUniqueResultException.

The following short example demonstrates having a result set that would have included more than
one result, except that it was limited with the setMaxResults() method:

String hql = "from Product where price>25.0";
Query query = session.createQuery(hql);
query.setMaxResults(1);
Product product = (Product) query.uniqueResult();
//test for null here if needed

Unless your query returns one or zero results, the uniqueResult() method will throw a
NonUniqueResultException exception. Do not expect Hibernate just to pick off the first result and return
it—either set the maximum results of the HQL query to 1, or obtain the first object from the result list.

Sorting Results with the order by Clause
To sort your HQL query’s results, you will need to use the order by clause. You can order the results by
any property on the objects in the result set: either ascending (asc) or descending (desc). You can use
ordering on more than one property in the query if you need to. A typical HQL query for sorting results
looks like this:

from Product p where p.price>25.0 order by p.price desc

If you wanted to sort by more than one property, you would just add the additional properties to the
end of the order by clause, separated by commas. For instance, you could sort by product price and the
supplier’s name, as follows:

from Product p order by p.supplier.name asc, p.price asc

HQL is more straightforward for ordering than the equivalent approach using the Criteria Query
API.

Associations
Associations allow you to use more than one class in an HQL query, just as SQL allows you to use joins
between tables in a relational database. Add an association to an HQL query with the join clause.
Hibernate supports five different types of joins: inner join, cross join, left outer join, right outer
join, and full outer join. If you use cross join, just specify both classes in the from clause (from
Product p, Supplier s). For the other joins, use a join clause after the from clause. Specify the type of
join, the object property to join on, and an alias for the other class.

You can use inner join to obtain the supplier for each product, and then retrieve the supplier
name, product name, and product price, as so:

select s.name, p.name, p.price from Product p inner join p.supplier as s

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

207

You can retrieve the objects using similar syntax:

from Product p inner join p.supplier as s

We used aliases in these HQL statements to refer to the entities in our query expressions. These are
particularly important in queries with associations that refer to two different entities with the same
class—for instance, if we are doing a join from a table back to itself. Commonly, these types of joins are
used to organize tree data structures.

Notice that Hibernate does not return Object objects in the result set; instead, Hibernate returns
Object arrays in the results. You will have to access the contents of the Object arrays to get the Supplier
and the Product objects.

If you would like to start optimizing performance, you can ask Hibernate to fetch the associated
objects and collections for an object in one query. If you were using lazy loading with Hibernate, the
objects in the collection would not be initialized until you accessed them. If you use fetch on a join in
your query, you can ask Hibernate to retrieve the objects in the collection at the time the query executes.
Add the fetch keyword after the join in the query, like so:

from Supplier s inner join fetch s.products as p

When you use fetch for a query like this, Hibernate will return only the Supplier objects, not the
Product objects. This is because you are specifying the join, so Hibernate knows which objects to fetch
(instead of using lazy loading). If you need to get the Product objects, you can access them through the
associated Supplier object. You cannot use the properties of the Product objects in expressions in the
where clause. Use of the fetch keyword overrides any settings you have in the mapping file for object
initialization.

Aggregate Methods
HQL supports a range of aggregate methods, similar to SQL. They work the same way in HQL as in SQL,
so you do not have to learn any specific Hibernate terminology. The difference is that in HQL, aggregate
methods apply to the properties of persistent objects. The count(...) method returns the number of
times the given column name appears in the result set. You may use the count(*) syntax to count all the
objects in the result set, or count(product.name) to count the number of objects in the result set with a
name property. Here is an example using the count(*) method to count all products:

select count(*) from Product product

The distinct keyword only counts the unique values in the row set—for instance, if there are 100
products, but 10 have the same price as another product in the results, then a select count(distinct
product.price) from Product product query would return 90. In our database, the following query will
return 2, one for each supplier:

select count(distinct product.supplier.name) from Product product

If we removed the distinct keyword, it would return 5, one for each product.
All of these queries return a Long object in the list. You could use the uniqueResult() method here to

obtain the result.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

208

The aggregate functions available through HQL include the following:

• avg(property name): The average of a property’s value

• count(property name or *): The number of times a property occurs in the results

• max(property name): The maximum value of the property values

• min(property name): The minimum value of the property values

• sum(property name): The sum total of the property values

If you have more than one aggregate method, the result set List will contain an Object array with
each of the aggregates you requested. Adding another aggregate to the select clause is straightforward:

select min(product.price), max(product.price) from Product product

You can also combine these with other projection properties in the result set.

Bulk Updates and Deletes with HQL
Bulk updates are new to HQL with Hibernate 3, and deletes work differently in Hibernate 3 than they did
in Hibernate 2. The Query interface now contains a method called executeUpdate() for executing HQL
UPDATE or DELETE statements. The executeUpdate() method returns an int that contains the number of
rows affected by the update or delete, as follows:

public int executeUpdate() throws HibernateException

HQL updates look like you would expect them to, being based on SQL UPDATE statements. Do not

include an alias with the update; instead, put the set keyword right after the class name, as follows:

String hql = "update Supplier set name = :newName ➥

where name = :name";

Query query = session.createQuery(hql);
query.setString("name","SuperCorp");
query.setString("newName","MegaCorp");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);

//See the results of the update
query = session.createQuery("from Supplier");
List results = query.list();

After carrying out this query, any supplier previously named SuperCorp will be named MegaCorp.
You may use a where clause with updates to control which rows get updated, or you may leave it off to
update all rows. Notice that we printed out the number of rows affected by the query. We also used
named parameters in our HQL for this bulk update.

Bulk deletes work in a similar way. Use the delete from clause with the class name you would like to
delete from. Then use the where clause to narrow down which entries in the table you would like to
delete. Use the executeUpdate() method to execute deletes against the database as well.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

209

Be careful when you use bulk delete with objects that are in relationships. Hibernate will not know
that you removed the underlying data in the database, and you can get foreign key integrity errors. To
get around this, you could set the not-found attribute to ignore on your one-to-many and many-to-one
mappings, which will make ids that are not in the database resolve to null references. The default value
for the not-found attribute is exception. Setting the not-found attribute to ignore also has the side-
effect of causing your associations to load eagerly and fetch all related records instead of using lazy
loading. This can cause serious performance problems.

Our code surrounding the HQL DELETE statement is basically the same—we use named parameters,
and we print out the number of rows affected by the delete:

String hql = "delete from Product where name = :name";
Query query = session.createQuery(hql);
query.setString("name","Mouse");
int rowCount = query.executeUpdate();
System.out.println("Rows affected: " + rowCount);

//See the results of the update
query = session.createQuery("from Product");
List results = query.list();

■ Caution Using bulk updates and deletes in HQL works almost the same as in SQL, so keep in mind that these

are powerful and can erase the data in your tables if you make a mistake with the where clause.

Named Queries for HQL and SQL
One of Hibernate’s best features is the named query, in which your application can store its HQL queries
outside the application in the mapping file or in an annotation on the class. This has many benefits for
application maintenance. The first benefit is that many objects can share queries—you could set up
static final strings on classes with the HQL queries, but Hibernate already provides a nice facility for the
same thing. The next benefit is that named queries could also contain native SQL queries—the
application calling the named query does not need to know if the named query is SQL or HQL. This
has enormous benefits for migrating SQL-based applications to Hibernate. The last benefit is that
you can provide your HQL and SQL queries in a configuration file to your database administrators,
who will probably find it easier to work with an XML mapping file than with HQL statements embedded
in Java code.

You can add named queries in the appropriate Hibernate mapping file. HQL queries use the XML
<query> element, and SQL queries use the XML <sql-query> element. Both of these XML elements
require a name attribute that uniquely identifies the query in the application. With one simple HQL
named query, and one simple SQL query that does the same thing, we have the Hibernate mapping file
shown in Listing 9-4: Product.hbm.xml.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

210

Listing 9-4. Product.hbm.xml

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.hibernatebook.criteria">
 <class name="Product">
 <id name="id" type="int">
 <generator class="native"/>
 </id>

 <property name="name" type="string"/>
 <property name="description" type="string"/>
 <property name="price" type="double"/>
 <many-to-one name="supplier" class="Supplier" column="supplierId"/>

 </class>

 <query name="com.hibernatebook.criteria.Product.HQLpricing"><![CDATA[
 select product.price from Product product where product.price > 25.0]]>
 </query>
 <sql-query name="com.hibernatebook.criteria.Product.SQLpricing">
 <return-scalar column="price" type="double"/>
 <![CDATA[
 select product.price from Product as product where product.price > 25.0]]>
 </sql-query>
</hibernate-mapping>

Notice that we embedded the SQL and HQL queries in CDATA regions. This protects our SQL queries
from interfering with the XML parser—we don’t have to worry about special characters breaking the
XML. For the native SQL query, we also had to specify a return type, so Hibernate knows what type of
result data to expect from the database. When you use HQL, Hibernate handles that mapping behind the
scenes, because it knows which objects went in. With SQL, you have to specify the return types yourself.
In this case, we used the <return-scalar> XML element to define our return type as a column named
price, with a type of double. Hibernate converts the JDBC result set into an array of objects, just like the
previous HQL query. Functionally, they are identical. We discuss native SQL in more detail in the next
section of the chapter.

You may also specify the flush mode, whether the query is cacheable, the cache region, the fetch
size, and the timeout for the HQL and SQL queries. For the SQL query, you may additionally specify
whether the SQL query is callable.

In addition to specifying a named HQL query in an XML mapping file, you can provide HQL named
queries as annotations on classes. It doesn’t matter where you specify the query – from your Java code,
the way you call the query is the same. The HQL named query annotation is @NamedQuery and goes after
the @Entity annotation. The equivalent annotation for the previous HQL query would go on the Product
class:

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 9 ■ SEARCHES AND QUERIES

211

@NamedQuery(name="com.hibernatebook.queries.Product.HQLpricing",
query=" select product.price from Product product where product.price > 25.0")

Notice that there is no CDATA region because we are not using XML. We can also use parameters in
our named HQL queries. Whether the HQL is specified in Java code or in named queries doesn’t make a
difference. Here is the previous example, but with the price as a parameter:

@NamedQuery(name="com.hibernatebook.queries.Product.HQLpricing",
query=" select product.price from Product product where product.price >:price")

Similar to HQL named queries, we can embed the SQL query into annotations as well. For the
equivalent SQL query, we used two annotations, @NamedNativeQuery and @SqlResultSetMapping:

@NamedNativeQuery(name="com.hibernatebook.queries.Product.SQLpricing",
query="select product.price from Product as product where product.price > 25.0",
 resultSetMapping="SQLPricingMapping")
@SqlResultSetMapping(name="SQLPricingMapping", columns=@ColumnResult(name="price"))

You will need to reference the result set mapping name in the @NamedNativeQuery annotation. Our
mapping retrieved the price, which we referenced as a scalar with the @ColumnResult annotation. You
can have more than one column in your SQL result set; however you will have to select them in your SQL
query and include them in your annotation as a list:

@SqlResultSetMapping(name="SQLPriceAndNameMapping",
columns={@ColumnResult(name="price"),@ColumnResult(name="name")})

To use HQL or SQL named queries inside your application, you will need to retrieve the named
query as a Query object from a Session object using the getNamedQuery() method. For example:

Query hqlPricing = session.getNamedQuery("com.hibernatebook.queries.Product.HQLpricing”)

This example will return a Query object that you would use inside your application the same way
you would as if you had specified the query in Java code.

Using Native SQL
Although you should probably use HQL whenever possible, Hibernate does provide a way to use native
SQL statements directly through Hibernate. One reason to use native SQL is that your database supports
some special features through its dialect of SQL that are not supported in HQL. Another reason is that
you may want to call stored procedures from your Hibernate application. We discuss stored procedures
and other database-specific integration solutions in Appendix A. Rather than just providing an interface
to the underlying JDBC connection, like other Java ORM tools, Hibernate provides a way to define the
entity (or join) that the query uses. This makes integration with the rest of your ORM-oriented
application easy.

You can modify your SQL statements to make them work with Hibernate’s ORM layer. You do need
to modify your SQL to include Hibernate aliases that correspond to objects or object properties. You can
specify all properties on an object with {objectname.*}, or you can specify the aliases directly with
{objectname.property}. Hibernate uses the mappings to translate your object property names into their
underlying SQL columns. This may not be the exact way you expect Hibernate to work, so be aware that

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

212

you do need to modify your SQL statements for full ORM support. You will especially run into problems
with native SQL on classes with subclasses—be sure you understand how you mapped the inheritance
across either a single table or multiple tables, in order that you select the right properties off of the table.

Underlying Hibernate’s native SQL support is the org.hibernate.SQLQuery interface, which extends
the org.hibernate.Query interface already discussed. Your application will create a native SQL query
from the session with the createSQLQuery() method on the Session interface.

public SQLQuery createSQLQuery(String queryString) throws HibernateException

After you pass a string containing the SQL query to the createSQLQuery() method, you should

associate the SQL result with an existing Hibernate entity, a join, or a scalar result. The SQLQuery
interface has addEntity(), addJoin(), and addScalar() methods. For the entities and joins, you can
specify a lock mode, which we discuss in Chapter 8. The addEntity() methods take an alias argument
and either a class name or an entity name. The addJoin() methods take an alias argument and a path

to join.
Using native SQL with scalar results is the simplest way to get started with native SQL. Our Java code

looks like this:

String sql = "select avg(product.price) as avgPrice from Product product";
 SQLQuery query = session.createSQLQuery(sql);
 query.addScalar("avgPrice",Hibernate.DOUBLE);
 List results = query.list();

Because we did not specify any entity aliases, Hibernate executes exactly the same SQL that we
passed through:

select avg(product.price) as avgPrice from Product product

The SQL is regular SQL (we did not have to do any aliasing here). We created an SQLQuery object, and
then added a scalar mapping with the built-in double type (from the org.hibernate._Hibernate class).
We needed to map the avgPrice SQL alias to the object type. The results are a List with one object—a
Double.

A bit more complicated than the previous example is the native SQL that returns a result set of
objects. In this case, we will need to map an entity to the SQL query. The entity consists of the alias we
used for the object in the SQL query and its class. For this example, we used our Supplier class:

String sql = "select {supplier.*} from Supplier supplier";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("supplier", Supplier.class);
List results = query.list();

Hibernate modifies the SQL and executes the following command against the database:

select Supplier.id as id0_, Supplier.name as name2_0_ from Supplier supplier

The special aliases allow Hibernate to map the database columns back to the object properties.

http://

CHAPTER 9 ■ SEARCHES AND QUERIES

213

Summary
HQL is a powerful object-oriented query language that provides the power of SQL while taking
advantage of Hibernate’s object-relational mapping and caching. If you are porting an existing
application to Hibernate, you can use Hibernate’s native SQL facilities to execute SQL against the
database. The SQL functionality is also useful for executing SQL statements that are specific to a given
database and have no equivalents in HQL.

You may turn on SQL logging for Hibernate, and Hibernate will log the generated SQL that it
executes against the database. If you add a comment to your HQL query object, Hibernate will display a
comment in the log next to the SQL statement—this helps with tracing SQL statements back to HQL in
your application.

http://

http://

C H A P T E R 10

■ ■ ■

215

Advanced Queries Using Criteria

Hibernate provides three different ways to retrieve data. We have already discussed HQL and the use of
native SQL queries—now we add criteria.

The Criteria Query API lets you build nested, structured query expressions in Java, providing a
compile-time syntax-checking that is not possible with a query language like HQL or SQL. The Criteria
API also includes query by example (QBE) functionality—this lets you supply example objects that
contain the properties you would like to retrieve instead of having to spell the components of the query
out step by step. It also includes projection and aggregation methods, including counts.

In this chapter, we explore the use of the Criteria API using the sample database established in the
previous chapter.

Using the Criteria API
The Criteria API allows you to build up a criteria query object programmatically—the
org.hibernate.Criteria interface defines the available methods for one of these objects. The Hibernate
Session interface contains several createCriteria() methods. Pass the persistent object’s class or its
entity name to the createCriteria() method, and Hibernate will create a Criteria object that returns
instances of the persistence object’s class when your application executes a criteria query.

The simplest example of a criteria query is one with no optional parameters or restrictions—the
criteria query will simply return every object that corresponds to the class.

Criteria crit = session.createCriteria(Product.class);
List results = crit.list();

When you run this example with our sample data, you will get all objects that are instances of the
Product class—note that this includes any instances of the Software class because they are derived from
Product.

Moving on from this simple example, we will add constraints to our criteria queries so we can
winnow down the result set.

Using Restrictions with Criteria
The Criteria API makes it easy to use restrictions in your queries to selectively retrieve objects; for
instance, your application could retrieve only products with a price over $30. You may add these

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

216

restrictions to a Criteria object with the add() method. The add() method takes an
org.hibernate.criterion.Criterion object that represents an individual restriction. You can have more
than one restriction for a criteria query.

Although you could create your own objects implementing the Criterion object, or extend an
existing Criterion object, we recommend that you use Hibernate’s built-in Criterion objects from your
application’s business logic. For instance, you could create your own factory class that returns instances
of Hibernate’s Criterion objects appropriately set up for your application’s restrictions.

Use the factory methods on the org.hibernate.criterion.Restrictions class to obtain instances of
the Criterion objects. To retrieve objects that have a property value that equals your restriction, use the
eq() method on Restrictions, as follows:

public static SimpleExpression eq(String propertyName, Object value)

We would typically nest the eq() method in the add() method on the Criteria object. Here is an
example of how this would look if we were searching for products with the name “Mouse”:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.eq("name","Mouse"));
List results = crit.list()

Next, we search for products that do not have the name “Mouse.” For this, we would use the ne()
method on the Restrictions class to obtain a not-equal restriction:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ne("name","Mouse"));
List results = crit.list();

■ Tip You cannot use the not-equal restriction to retrieve records with a NULL value in the database for that

property (in SQL, and therefore in Hibernate, NULL represents the absence of data, and so cannot be compared

with data). If you need to retrieve objects with NULL properties, you will have to use the isNull() restriction,

which we discuss further on in the chapter. You can combine the two with an OR logical expression, which we also

discuss later in the chapter.

Instead of searching for exact matches, we can also retrieve all objects that have a property
matching part of a given pattern. To do this, we need to create an SQL LIKE clause, with either the like()
or the ilike() method. The ilike() method is case-insensitive. In either case, we have two different
ways to call the method:

public static SimpleExpression like(String propertyName, Object value)

or

public static SimpleExpression like(String propertyName,
 String value,
 MatchMode matchMode)

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

217

The first like() or ilike() method takes a pattern for matching. Use the % character as a wildcard to
match parts of the string, like so:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.like("name","Mou%"));
List results = crit.list();

The second like() or ilike() method uses an org.hibernate.criterion.MatchMode object to specify
how to match the specified value to the stored data. The MatchMode object (a type-safe enumeration) has
four different matches:

• ANYWHERE: Anyplace in the string

• END: The end of the string

• EXACT: An exact match

• START: The beginning of the string

Here is an example that uses the ilike() method to search for case-insensitive matches at the end
of the string:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.ilike("name","browser", MatchMode.END));
List results = crit.list();

The isNull() and isNotNull() restrictions allow you to do a search for objects that have (or do not
have) null property values. This is easy to demonstrate:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.isNull("name"));
List results = crit.list();

Several of the restrictions are useful for doing math comparisons. The greater-than comparison is
gt(), the greater-than-or-equal-to comparison is ge(), the less-than comparison is lt(), and the less-
than-or-equal-to comparison is le(). We can do a quick retrieval of all products with prices over $25 like
this:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

Moving on, we can start to do more complicated queries with the Criteria API. For example, we can
combine AND and OR restrictions in logical expressions. When you add more than one constraint to a
criteria query, it is interpreted as an AND, like so:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.add(Restrictions.like("name","K%"));
List results = crit.list();

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

218

If we want to have two restrictions that return objects that satisfy either or both of the restrictions,
we need to use the or() method on the Restrictions class, as follows:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
List results = crit.list();

The orExp logical expression that we have created here will be treated like any other criterion. We
can therefore add another restriction to the criteria:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
LogicalExpression orExp = Restrictions.or(price,name);
crit.add(orExp);
crit.add(Restrictions.ilike("description","blocks%"));
List results = crit.list();

If we wanted to create an OR expression with more than two different criteria (for example, price >
25.0 OR name like Mou% OR description not like blocks%), we would use an org.hibernate.
criterion.Disjunction object to represent a disjunction. You can obtain this object from the
disjunction() factory method on the Restrictions class. The disjunction is more convenient than
building a tree of OR expressions in code. To represent an AND expression with more than two criteria, you
can use the conjunction() method—although you can easily just add those to the Criteria object. The
conjunction is also more convenient than building a tree of AND expressions in code. Here is an example
that uses the disjunction:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
Criterion name = Restrictions.like("name","Mou%");
Criterion desc = Restrictions.ilike("description","blocks%");
Disjunction disjunction = Restrictions.disjunction();
disjunction.add(price);
disjunction.add(name);
disjunction.add(desc);
crit.add(disjunction);
List results = crit.list();

The last type of restriction is the SQL restriction sqlRestriction(). This restriction allows you to
directly specify SQL in the Criteria API. This is useful if you need to use SQL clauses that Hibernate does
not support through the Criteria API. Your application’s code does not need to know the name of the
table your class uses—use {alias} to signify the class’s table, as follows:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.sqlRestriction("{alias}.name like 'Mou%'"));
List results = crit.list()

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

219

The other two sqlRestriction() methods permit you to pass JDBC parameters and values into the
SQL statement. Use the standard JDBC parameter placeholder (?) in your SQL fragment.

Paging Through the Result Set
One common application pattern that criteria can address is pagination through the result set of a
database query. When we say pagination, we mean an interface in which the user sees part of the result
set at a time, with navigation to go forward and backward through the results. A naive pagination
implementation might load the entire result set into memory for each navigation action, and would
usually lead to atrocious performance. Both of us have worked on improving performance for separate
projects suffering from exactly this problem. The problem appeared late in testing because the sample
dataset that developers were working with was trivial, and they did not notice any performance
problems until the first test data load.

If you are programming directly to the database, you will typically use proprietary database SQL or
database cursors to support paging. Hibernate abstracts this away for you—behind the scenes,
Hibernate uses the appropriate method for your database.

There are two methods on the Criteria interface for paging: setFirstResult() and -
setMaxResults(). The setFirstResult() method takes an integer that represents the first row in your
result set, starting with row 0. You can tell Hibernate to retrieve a fixed number of objects with the
setMaxResults() method. Using both of these together, we can construct a paging component in our
web or Swing application. We have a very small dataset in our sample application, so here is an
admittedly trivial example:

Criteria crit = session.createCriteria(Product.class);
crit.setFirstResult(1);
crit.setMaxResults(2);
List results = crit.list();

As you can see, this makes paging through the result set easy. You can increase the first result you
return (for example, from 1, to 21, to 41, etc.) to page through the result set. If you only have one result in
your result set, Hibernate has a shortcut method for obtaining just that object.

Obtaining a Unique Result
Sometimes you know you are only going to return zero or one objects from a given query. This could be
because you are calculating an aggregate (like COUNT, which we discuss later), or because your
restrictions naturally lead to a unique result—when selecting upon a property under a unique
constraint, for example. You may also limit the results of any result set to just the first result, using the
setMaxResults() method discussed earlier. In any of these circumstances, if you want obtain a single
Object reference instead of a List, the uniqueResult() method on the Criteria object returns an object
or null. If there is more than one result, the uniqueResult() method throws a HibernateException.

The following short example demonstrates having a result set that would have included more than
one result, except that it was limited with the setMaxResults() method:

Criteria crit = session.createCriteria(Product.class);
Criterion price = Restrictions.gt("price",new Double(25.0));
crit.setMaxResults(1);
Product product = (Product) crit.uniqueResult();

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

220

Again, we stress that you need to make sure that your query only returns one or zero results if you
use the uniqueResult() method. Otherwise, Hibernate will throw a NonUniqueResultException exception,
which may not be what you would expect—Hibernate does not just pick the first result and return it.

Sorting the Query’s Results
Sorting the query’s results works much the same way with criteria as it would with HQL or SQL. The
Criteria API provides the org.hibernate.criterion.Order class to sort your result set in either ascending
or descending order, according to one of your object’s properties.

Create an Order object with either of the two static factory methods on the Order class: asc() for
ascending or desc() for descending. Both methods take the name of the property as their only argument.
After you create an Order, use the addOrder() method on the Criteria object to add it to the query.

This example demonstrates how you would use the Order class:

Criteria crit = session.createCriteria(Product.class);
crit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder(Order.desc("price"));
List results = crit.list();

You may add more than one Order object to the Criteria object. Hibernate will pass them through
to the underlying SQL query. Your results will be sorted by the first order, then any identical matches
within the first sort will be sorted by the second order, and so on. Beneath the covers, Hibernate passes
this on to an SQL ORDER BY clause after substituting the proper database column name for the property.

Associations
To add a restriction on a class that is associated with your criteria’s class, you will need to create another
Criteria object. Pass the property name of the associated class to the createCriteria() method, and
you will have another Criteria object. You can get the results from either Criteria object, although you
should pick one style and be consistent for readability’s sake. We find that getting the results from the
top-level Criteria object (the one that takes a class as a parameter) makes it clear what type of object is
expected in the results.

The association works going from one-to-many as well as from many-to-one. First, we will
demonstrate how to use one-to-many associations to obtain suppliers who sell products with a price
over $25. Notice that we create a new Criteria object for the products property, add restrictions to the
products’ criteria we just created, and then obtain the results from the supplier Criteria object:

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
List results = crit.list();

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

221

Going the other way, we obtain all the products from the supplier MegaInc using many-to-one
associations:

Criteria crit = session.createCriteria(Product.class);
Criteria suppCrit = crit.createCriteria("supplier");
suppCrit.add(Restrictions.eq("name","MegaInc"));
List results = crit.list();

Although we can use either Criteria object to obtain the results, it makes a difference which criteria
we use for ordering the results. In the following example, we are ordering the supplier results by the
supplier names:

Criteria crit = session.createCriteria(Supplier.class);
Criteria prdCrit = crit.createCriteria("products");
prdCrit.add(Restrictions.gt("price",new Double(25.0)));
crit.addOrder(Order.desc("name"));
List results = prdCrit.list();

If we wanted to sort the suppliers by the descending price of their products, we would use the
following line of code. This code would have to replace the previous addOrder() call on the supplier
Criteria object.

prdCrit.addOrder(Order.desc("price"));

Although the products are not in the result set, SQL still allows you to order by those results. If you
get mixed up with which Criteria object you are using and pass the wrong property name for the sort-
by order, Hibernate will throw an exception.

Distinct Results
If you would like to work with distinct results from a criteria query, Hibernate provides a result
transformer for distinct entities, org.hibernate.transform.DistinctRootEntityResultTransformer,
which ensures that no duplicates will be in your query’s result set. Rather than using SELECT DISTINCT
with SQL, the distinct result transformer compares each of your results using their default hashCode()
methods, and only adds those results with unique hash codes to your result set. This may or may not be
the result you would expect from an otherwise equivalent SQL DISTINCT query, so be careful with this. An
additional performance note: the comparison is done in Hibernate’s Java code, not at the database, so
non-unique results will still be transported across the network.

Projections and Aggregates
Instead of working with objects from the result set, you can treat the results from the result set as a set of
rows and columns, also known as a projection of the data. This is similar to how you would use data from
a SELECT query with JDBC; also, Hibernate supports properties, aggregate functions, and the GROUP BY
clause.

To use projections, start by getting the org.hibernate.criterion.Projection object you need from
the org.hibernate.criterion.Projections factory class. The Projections class is similar to the
Restrictions class in that it provides several static factory methods for obtaining Projection instances.

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

222

After you get a Projection object, add it to your Criteria object with the setProjection() method. When
the Criteria object executes, the list contains object references that you can cast to the appropriate
type.

The row-counting functionality provides a simple example of applying projections. The code looks
similar to the restrictions examples we were working with earlier in the chapter:

Criteria crit = session.createCriteria(Product.class);
crit.setProjection(Projections.rowCount());
List results = crit.list();

The results list will contain one object, an Integer that contains the results of executing the COUNT
SQL statement. Other aggregate functions available through the Projections factory class include the
following:

• avg(String propertyName): Gives the average of a property’s value

• count(String propertyName): Counts the number of times a property occurs

• countDistinct(String propertyName): Counts the number of unique values the -
property contains

• max(String propertyName): Calculates the maximum value of the property values

• min(String propertyName): Calculates the minimum value of the property values

• sum(String propertyName): Calculates the sum total of the property values

We can apply more than one projection to a given Criteria object. To add multiple projections, get
a projection list from the projectionList() method on the Projections class. The
org.hibernate.criterion.ProjectionList object has an add() method that takes a Projection object.
You can pass the projections list to the setProjection() method on the Criteria object because
ProjectionList implements the Projection interface. The following example demonstrates some of the
aggregate functions, along with the projection list:

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.max("price"));
projList.add(Projections.min("price"));
projList.add(Projections.avg("price"));
projList.add(Projections.countDistinct("description"));
crit.setProjection(projList);
List results = crit.list();

When you execute multiple aggregate projections, you get a List with an Object array as the first
element. The Object array contains all of your values, in order.

Another use of projections is to retrieve individual properties, rather than entities. For instance, we
can retrieve just the name and description from our product table, instead of faulting the classes into
memory. Use the property() method on the Projections class to create a Projection for a property.
When you execute this form of query, the list() method returns a List of Object arrays. Each Object
array contains the projected properties for that row. The following example returns just the contents of
the name and description columns from the Product data. Remember, Hibernate is polymorphic, so this
also returns the name and description from the Software objects that inherit from Product.

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

223

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.property("name"));
projList.add(Projections.property("description"));
crit.setProjection(projList);
List results = crit.list();

Use this query style when you want to cut down on network traffic between your application servers
and your database servers. For instance, if your table has a large number of columns, this can slim down
your results. In other cases, you may have a large set of joins that would return a very wide result set, but
you are only interested in a few columns. Lastly, if your clients have limited memory, this can save you
trouble with large datasets. But make sure you don’t have to retrieve additional columns for the entire
result set later, or your optimizations may actually decrease performance.

You can group your results (using SQL’s GROUP BY clause) with the groupProperty projection. The
following example groups the products by name and price:

Criteria crit = session.createCriteria(Product.class);
ProjectionList projList = Projections.projectionList();
projList.add(Projections.groupProperty("name"));
projList.add(Projections.groupProperty("price"));
crit.setProjection(projList);
List results = crit.list();

As you can see, projections open up aggregates to the Criteria API, which means that developers do
not have to drop into HQL for aggregates. Projections offer a way to work with data that is closer to the
JDBC result set style, which may be appropriate for some parts of your application.

Query By Example (QBE)
In this section, because of the confusing terminology, we will refer to excerpts from our demonstration
code as “samples” rather than “examples,” reserving “example” for its peculiar technical meaning in the
context of QBE.

In QBE, instead of programmatically building a Criteria object with Criterion objects and logical
expressions, you can partially populate an instance of the object. You use this instance as a template and
have Hibernate build the criteria for you based upon its values. This keeps your code clean and makes
your project easier to test. The org.hibernate.criterion.Example class contains the QBE functionality.
Note that the Example class implements the Criterion interface, so you can use it like any other
restriction on a criteria query.

For instance, if we have a user database, we can construct an instance of a user object, set the
property values for type and creation date, and then use the Criteria API to run a QBE query. Hibernate
will return a result set containing all user objects that match the property values that were set. Behind
the scenes, Hibernate inspects the Example object and constructs an SQL fragment that corresponds to
the properties on the Example object.

To use QBE, we need to construct an Example object first. Then we need to create an instance of the
Example object, using the static create() method on the Example class. The create() method takes the
Example object as its argument. You add the Example object to a Criteria object just like any other
Criterion object.

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

224

The following basic example searches for suppliers that match the name on the example Supplier
object:

Criteria crit = session.createCriteria(Supplier.class);
Supplier supplier = new Supplier();
supplier.setName("MegaInc");
crit.add(Example.create(supplier));
List results = crit.list();

When Hibernate translates our Example object into an SQL query, all the properties on our Example
objects get examined. We can tell Hibernate which properties to ignore; the default is to ignore null-
valued properties. To search our products or software in the sample database with QBE, we need to
either specify a price or tell Hibernate to ignore properties with a value of zero, because we used a
double primitive for storage instead of a Double object. The double primitive initializes to zero, while a
Double would have been null; and so, left to its own devices, the QBE logic will assume that we are
specifically searching for prices of zero, whereas we want it to ignore this default value.

We can make the Hibernate Example object exclude zero-valued properties with the excludeZeroes()
method. We can exclude properties by name with the excludeProperty() method, or exclude nothing
(compare for null values and zeroes exactly as they appear in the Example object) with the excludeNone()
method. This sample applies the excludeZeroes() method to ignore the default zero prices:

Criteria crit = session.createCriteria(Product.class);
Product exampleProduct = new Product();
exampleProduct.setName("Mouse");
Example example = Example.create(exampleProduct);
example.excludeZeroes();
crit.add(example);
List results = crit.list();

Other options on the Example object include ignoring the case for strings with the ignoreCase()
method, and enabling use of SQL’s LIKE for comparing strings, instead of just using equals().

We can also use associations for QBE. In the following sample, we create two examples: one for the
product and one for the supplier. We use the technique explained in the “Associations” section of this
chapter to retrieve objects that match both criteria.

Criteria prdCrit = session.createCriteria(Product.class);
Product product = new Product();
product.setName("M%");
Example prdExample = Example.create(product);
prdExample.excludeProperty("price");
prdExample.enableLike();
Criteria suppCrit = prdCrit.createCriteria("supplier");
Supplier supplier = new Supplier();
supplier.setName("SuperCorp");
suppCrit.add(Example.create(supplier));
prdCrit.add(prdExample);
List results = prdCrit.list();

We also ignore the price property for our product, and we use LIKE for object comparison, instead of
equals.

http://

CHAPTER 10 ■ ADVANCED QUERIES USING CRITERIA

225

The QBE API works best for searches in which you are building the search from user input. The
Hibernate team recommends using QBE for advanced searches with multiple fields, because it’s easier
to set values on business objects than to manipulate restrictions with the Criteria API.

JPA 2 and the Type-safe Criteria API

In addition to the Hibernate Criteria API described in this chapter, Hibernate 3.5 now includes a new type-

safe Criteria API based on the JPA 2 standard. The advantage of this new API is that if you use it, you will

not have any errors related to typos in the Criteria restrictions – such as “prduct”. Rather than relying on
strings in Criteria, there is a new metamodel class for each JPA entity. You would use the references to

properties in these metamodel classes in your criteria restrictions, but you would use the javax.persistence

criteria classes. Hibernate can generate the metamodel classes for you from the annotations in your
existing classes.

The JPA 2 type-safe criteria does not replace the Hibernate Criteria API covered in this chapter. Both

criteria APIs will accomplish the same thing for building a query. In this book, we covered the Hibernate
way of doing things – which you will see in existing applications, as the JPA 2 criteria API is new for

Hibernate 3.5. Using the JPA 2 Criteria API is similar to the Hibernate Criteria API, but references to fields

as strings are replaced with references to fields on generated metamodel classes.

In our example for this chapter, we would run the Hibernate Static Metamodel Generator against our

annotated classes to generate the metamodel class files. The Metamodel Generator is a Java 6 annotation

processor, so your existing build tools should automatically create the generated metamodel classes.
Depending on how you have your source repository and project layout arranged, you will have to decide

where to put the generated classes.

Summary
Using the Criteria API is an excellent way to get started developing with HQL. The developers of
Hibernate have provided a clean API for adding restrictions to queries with Java objects. Although HQL
isn’t too difficult to learn, some developers prefer the Criteria Query API, as it offers compile-time syntax
checking—although column names and other schema-dependent information cannot be checked until
run time.

In the next chapter, we discuss the use of Hibernate filters to restrict the range of data against which
queries are applied.

http://

http://

C H A P T E R 11

■ ■ ■

227

Filtering the Results of Searches

Your application will often need to process only a subset of the data in the database tables. In these
cases, you can create a Hibernate filter to eliminate the unwanted data. Filters provide a way for your
application to limit the results of a query to data that passes the filter’s criteria. Filters are not a new
concept—you can achieve much the same effect using SQL database views—but Hibernate offers a
centralized management system for them.

Unlike database views, Hibernate filters can be enabled or disabled during a Hibernate session. In
addition, Hibernate filters can be parameterized, which is particularly useful when you are building
applications on top of Hibernate that use security roles or personalization.

When to Use Filters
As an example, consider a web application that manages user profiles. Currently, your application
presents a list of all users through a single web interface, but you receive a change request from your end
user to manage active users and expired users separately. For this example, assume that the status is
stored as a column on the user table.

One way to solve this problem is to rewrite every HQL SELECT query in your application, adding a
WHERE clause that restricts the result by the user’s status. Depending on how you built your application,
this could be an easy undertaking or it could be complex, but you still end up modifying code that you
have already tested thoroughly, potentially changing it in many different places.

With Hibernate 3, you can create a filter restriction for the user status. When your end user selects
the user type (active or expired), your application activates the user status filter (with the proper status)
for the end user’s Hibernate session. Now, any SELECT queries will return the correct subset of results,
and the relevant code for the user status is limited to two locations: the Hibernate session and the user
status filter.

The advantage of using Hibernate filters is that you can programmatically turn filters on or off in
your application code, and your filters are defined in your Hibernate mapping documents for easy
maintainability. The major disadvantage of filters is that you cannot create new filters at run time.
Instead, any filters your application requires need to be specified in the proper Hibernate annotations or
mapping documents. Although this may sound somewhat limiting, the fact that filters can be
parameterized makes them pretty flexible. For our user status filter example, only one filter would need
to be defined in the mapping document (albeit in two parts). That filter would specify that the status
column must match a named parameter. You would not need to define the possible values of the status
column in the Hibernate annotations or mapping documents—the application can specify those
parameters at run time.

http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

228

Although it is certainly possible to write applications with Hibernate that do not use filters, we find
them to be an excellent solution to certain types of problems—notably security and personalization.

Defining and Attaching Filters
Your first step is to define filters for your application. You can either use annotations or XML mapping
documents to define filters. The basic concepts are the same no matter where you put the filter
definition. You will need a filter definition, which has the name of the filter and the name and type of
each of the parameters the filter uses. Filter parameters are similar to named parameters for HQL
queries. Both require a : before the parameter name. Each class or collection that you want to filter
needs to have a filter attached to it through an annotation or an XML element.

You may have more than one filter for each filter definition, and each class can have more than one
filter. This is a little confusing—the extra level of abstraction allows you to define all the filter parameters
in one place and then refer to them in the individual filter conditions. To illustrate filters, we will show
examples of defining filters through annotations and through XML mapping documents.

Filters with Annotations

To use filters with annotations, you will need to use the @FilterDef, @ParamDef, and @Filter annotations.
The @FilterDef annotation defines the filter and belongs to either the class or the package. To define a
filter on a class, add an @FilterDef annotation after the @Entity annotation. For example:

@Entity
@FilterDef(name="latePaymentFilter", parameters=@ParamDef(name="dueDate", type="date"))

After you have defined your filters, you can attach them to classes or collections with the @Filter
annotation. The @Filter annotation takes two parameters: name and condition. The name references a
filter definition that we have previously described in an annotation. The condition parameter is an HQL
WHERE clause. The parameters in the condition are denoted with colons, similar to named parameters in
HQL. The parameters have to be defined on the filter definition. Here is an example of the filter
annotation:

@Filter(name="latePaymentFilter", condition=":dueDate = paymentDate")

■ Note Defining filters on each class is simple, but if you use filters in multiple classes, you will have a lot of

duplication. To define any annotation at a package level, you will need to create a Java source file named

package-info.java in the package. The package-info.java class should only include the package-level

annotations and then declare the package immediately afterward. It is not meant to be a Java class. You will also

need to tell Hibernate to map the package when you configure Hibernate, either through the addPackage()

method on AnnotationConfiguration or in your Hibernate configuration XML.

http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

229

Filters with XML Mapping Documents

For the XML mapping documents, use the <filter-def> XML element. These filter definitions must
contain the name of the filter and the names and types of any filter parameters. Specify filter parameters
with the <filter-param> XML element. Here is an excerpt from a mapping document with a filter called
latePaymentFilter defined:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class ...

 </class>
 <filter-def name="latePaymentFilter">
 <filter-param name="dueDate" type="date"/>
 </filter-def>
</hibernate-mapping>

Once you have created the filter definitions, you need to attach the filters to class or collection
mapping elements. You can attach a single filter to more than one class or collection. To do this, you add
a <filter> XML element to each class and/or collection. The <filter> XML element has two attributes:
name and condition. The name references a filter definition (for instance: latePaymentFilter). The
condition represents a WHERE clause in HQL. Here’s an example:

 <class ...
 <filter name="latePaymentFilter" condition=":dueDate = paymentDate"/>
 </class>

Each <filter> XML element must correspond to a <filter-def> element.

Using Filters in Your Application
Your application programmatically determines which filters to activate or deactivate for a given
Hibernate session. Each session can have a different set of filters with different parameter values. By
default, sessions do not have any active filters—you must explicitly enable filters programmatically for
each session. The Session interface contains several methods for working with filters, as follows:

• public Filter enableFilter(String filterName)

• public Filter getEnabledFilter(String filterName)

• public void disableFilter(String filterName)

These are pretty self-explanatory—the enableFilter(String filterName) method activates the
specified filter, the disableFilter(String filterName) method deactivates the method, and if you have
already activated a named filter, getEnabledFilter(String filterName) retrieves that filter.

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

230

The org.hibernate.Filter interface has six methods. You are unlikely to use validate(); Hibernate
uses that method when it processes the filters. The other five methods are as follows:

• public Filter setParameter(String name, Object value)

• public Filter setParameterList(String name, Collection values)

• public Filter setParameterList(String name, Object[] values)

• public String getName()

• public FilterDefinition getFilterDefinition()

The setParameter() method is the most useful. You can substitute any Java object for the
parameter, although its type should match the type you specified for the parameter when you defined
the filter. The two setParameterList() methods are useful for using IN clauses in your filters. If you want
to use BETWEEN clauses, use two different filter parameters with different names. Finally, the
getFilterDefinition() method allows you to retrieve a FilterDefinition object representing the filter
metadata (its name, its parameters’ names, and the parameter types).

Once you have enabled a particular filter on the session, you do not have to do anything else to your
application to take advantage of filters, as we demonstrate in the following example.

A Basic Filtering Example
Because filters are very straightforward, a basic example allows us to demonstrate most of the filter
functionality, including activating filters and defining filters in mapping documents.

In the following Hibernate XML mapping document (User.hbm.xml), we created a filter definition
called activatedFilter. The parameters for the filter must be specified with <filter-param> XML
elements (as shown in Listing 11-1), which use the <activatedParam> XML element. You need to specify a
type for the filter parameter so that Hibernate knows how to map values to parameters. Once you have
defined your filter, you need to attach the filter definition to a class. At the end of our User class
definition, we specify that it uses a filter named activatedFilter. We then need to set a condition
corresponding to an HQL WHERE clause for the attached filter. In our case, we used :activatedParam =
activated, where :activatedParam is the named parameter specified on the filter definition, and
activated is the column name from the user table. You should ensure that the named parameter goes on
the left-hand side so that Hibernate’s generated SQL doesn’t interfere with any joins.

Listing 11-1. Hibernate XML Mapping for User

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="com.hibernatebook.filters.User">
 <id name="id" type="int">
 <generator class="native"/>
 </id>

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

231

 <property name="username" type="string" length="32"/>
 <property name="activated" type="boolean"/>
 <filter name="activatedFilter" condition=":activatedParam = activated"/>
 </class>
 <filter-def name="activatedFilter">
 <filter-param name="activatedParam" type="boolean"/>
 </filter-def>
</hibernate-mapping>

With the filter definition created and attached to a class with a suitable condition, we need to
activate the filter. The next class, SimpleFilterExample, inserts several user records into the database,
and then immediately displays them to the screen. The class uses a very simple HQL query (from User)
to obtain the result set from Hibernate. The displayUsers() method writes the usernames and activation
status out to the console. Before you have enabled any filters on the database, this method will return
the full list of users. Once you have enabled the first filter (activatedFilter) to show only activated users,
call the same displayUsers() method—the results of the query are the same as if you had added a WHERE
clause containing an "activated=true" clause. You can just as easily change the filter’s parameter value
to show inactive users, as shown in Listing 11-2.

Listing 11-2. Invoking Filters from Code

package com.hibernatebook.filters;

import java.util.Iterator;

import org.hibernate.Filter;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

public class SimpleFilterExample {
 public static void main (String args[]) {
 SessionFactory factory =
 new Configuration().configure().buildSessionFactory();
 Session session = factory.openSession();

 //insert the users
 insertUser("ray",true,session);
 insertUser("jason",true,session);
 insertUser("beth",false,session);
 insertUser("judy",false,session);
 insertUser("rob",false,session);

 //Show all users
 System.out.println("===ALL USERS===");
 displayUsers(session);

http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

232

 //Show activated users
 Filter filter = session.enableFilter("activatedFilter");
 filter.setParameter("activatedParam",new Boolean(true));
 System.out.println("===ACTIVATED USERS===");
 displayUsers(session);

 //Show nonactivated users
 filter.setParameter("activatedParam",new Boolean(false));
 System.out.println("===NON-ACTIVATED USERS===");
 displayUsers(session);

 session.close();
 }

 public static void displayUsers(Session session) {
 session.beginTransaction();
 Query query = session.createQuery("from User");
 Iterator results = query.iterate();
 while (results.hasNext())
 {
 User user = (User) results.next();
 System.out.print(user.getUsername() + " is ");
 if (user.isActivated())
 {
 System.out.println("activated.");
 }
 else
 {
 System.out.println("not activated.");
 }
 }

 session.getTransaction().commit();
 }

 public static void insertUser(String name, boolean activated, Session session) {
 session.beginTransaction();

 User user = new User();
 user.setUsername(name);
 user.setActivated(activated);
 session.save(user);

 session.getTransaction().commit();
 }
}

The output of SimpleFilterExample is as follows:

http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

233

===ALL USERS===
ray is activated.
jason is activated.
beth is not activated.
judy is not activated.
rob is not activated.
===ACTIVATED USERS===
ray is activated.
jason is activated.
===NON-ACTIVATED USERS===
beth is not activated.
judy is not activated.
rob is not activated.

Listing 11-3 gives the User class used for this chapter’s examples. The only fields it contains are id,
username, and activated.

Listing 11-3. The Source Code for the User Class

package com.hibernatebook.filters;

public class User {
 private int id;
 private String username;
 private boolean activated;

 public boolean isActivated() {
 return activated;
 }

 public void setActivated(boolean activated) {
 this.activated = activated;
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }
}

http://

CHAPTER 11 ■ FILTERING THE RESULTS OF SEARCHES

234

Because filters do not use any database-specific functionality beyond the Hibernate configuration,
you should not encounter any difficulty running this example on databases other than HSQLDB. The
Hibernate configuration file defines the database configuration and connection information, along with
the XML mapping document for the User class (see Listing 11-4).

Listing 11-4. The Hibernate XML Configuration File for the Example

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.url">
 jdbc:hsqldb:file:filterdb;SHUTDOWN=true
 </property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"></property>
 <property name="hibernate.connection.pool_size">0</property>
 <property name="dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- Mapping files -->
 <mapping resource="com/hibernatebook/filters/User.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The source code for this chapter includes the schema we used for the HSQL database to create the
table for the filterdb database.

Summary
Filters are a useful way to separate some database concerns from the rest of your code. A set of filters can
cut back on the complexity of the HQL queries used in the rest of your application, at the expense of
some runtime flexibility. Instead of using views (which must be created at the database level), your
applications can take advantage of dynamic filters that can be activated as and when they are required.

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

C H A P T E R 12

■ ■ ■

235

Case Study – Using Hibernate with
an Existing Database

Many projects you work on with Hibernate will be with existing databases. In contrast to some of the
examples we have shown so far where we have created our database from the Java object model, this
example project starts with a database that already has a schema. In our example in this chapter, we are
going to create a new Java object model for the database, using annotations for our Hibernate mappings,
and then run some queries that use the Hibernate Query Language.

Our example application will find the highest point (in meters) of every state in the United States,
and then list them out. To do this, we will need to have a set of data that contains the elevation of various
geographic points. The GeoNames group at http://www.geonames.org provides a freely available data set
of geographic places for download. The data is licensed under a Creative Commons Attribution 3.0
License.

We are not going to create a web application or another user interface for this case study to avoid
bringing more technologies into the example than we have to, so the example is somewhat limited. At
the end of the chapter, we will discuss ways to improve the case study example if you want to learn more
about Hibernate.

Setting up the Database
The first step for our example is setting up a database. For the example, we are going to use MySQL,
although you can certainly use another database. We will need to download the data from the
GeoNames web site, create the database schema, and then load the data into the database. After creating
the database, we can start to explore the data and determine what we will need to do to create a Java
object model that maps to the database.

Downloading the Data

The GeoNames data download page is at http://download.geonames.org/export/dump/. The bulk of the
data is organized by country, by the International Standards Organization (ISO) code. The ISO code for
the United States is US. At the time of this writing, the US.zip file at http://download.geonames.org/
export/dump/US.zip was 53 megabytes. Data for other countries is also available at the same download

http://www.geonames.org
http://download.geonames.org/export/dump
http://download.geonames.org
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

236

page, or you can download data for all countries in the allCountries.zip file, which was 176 megabytes at
the time of writing.

In addition to the US.zip main data file, you will also need the following auxiliary data files, all much
smaller, also available from the same download page:

• admin1Codes.txt

• admin2Codes.txt

• featureCodes_en.txt

Unzip the US.zip file to get a text file that you will import into the database. But first, take some time
to review and understand the data.

Understanding the Data

Before we can create an application that uses the GeoNames data, we have to understand what data we
have and how it is organized. The following subsections describe each of the four files that you have
downloaded.

■ Note The GeoNames web site has a README file available at http://download.geonames.org/export/dump/

readme.txt. The README explains what data is available from GeoNames and how it is organized if you want to

read in more detail than this chapter provides about the data formats and the other available data on the web site.

Geographic Names

For our example, the most important information is the list of geographic names, latitudes, longitudes,
elevations, and other information in the geonames table. In order, the columns in the geonames table are
as shown in Table 12-1. You can review the data by looking at the contents of US.zip, which contains a
README file named readme.txt and a data file named US.txt.

Table 12-1. The Columns in the geonames Database Table

Name Type Description

geonameid integer Primary key for geonames database

name varchar(200) Name of this location in UTF-8

asciiname varchar(200) Name of this location in ASCII

alternatenames varchar(5000) Other names this location has, as a comma separated list. This
information also exists in another table called alternatenames
in denormalized form.

http://download.geonames.org/export/dump
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

237

Name Type Description

latitude double In decimal degrees

longitude double In decimal degrees

feature_class char(1) General type of place this location is. Refer to
http://www.geonames.org/export/codes.html

feature_code varchar(10) Description of what specific type of place this location is. Refer
to http://www.geonames.org/export/codes.html

country_code char(2) Two-letter ISO country codes, such as US for United States or
GB for United Kingdom

cc2 varchar(60) Other country codes that may correspond to place – comma
separated

admin1_code varchar(20) Code corresponding to first administrative division within a
country (State for the USA). Can be looked up in admin1Codes
table.

admin2_code varchar(80) Code corresponding to second administrative division within a
country (County for the USA). Can be looked up in
admin2Codes table.

admin3_code varchar(20) Code corresponding to third administrative division within a
country.

admin4_code varchar(20) Code corresponding to fourth administrative division within a
country.

population bigint (equivalent
of Java long)

Human population of the location

elevation integer The height of the place (in meters)

gtopo30 integer Average elevation of a 1 kilometer by 1 kilometer area (in
meters)

timezone varchar(40) The timezone id, which can be looked up in the timezone table

modification_date date The last time the record was modified in yyyy-MM-dd format

For our purposes, the most important fields in the table are geonameid, name, elevation, admin1_code,

and admin2_code. The geonameid field is the primary key, and it will satisfy Hibernate’s requirements for a
primary key for each record. We will use the name field for display, and the elevation field is how we will

http://www.geonames.org/export/codes.html
http://www.geonames.org/export/codes.html
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

238

determine heights. The admin1_code and admin2_code fields correspond to states and counties (for the
United States), and we will need these to determine what the names of these geographic units are.

Country Subdivision Codes

The next data file we will examine is the admin1Codes.txt data file. It only has two columns – one
contains the country code and the first level administrative subdivision code, and the other column
contains the name of the subdivision. For instance:

US.AK Alaska

If we imported this directly into a table with two columns, using the first column as a primary key,
we would have to create a new column that concatenated the country_code and the admin1_code on the
geonames table to use as the foreign key for the many-to-one relationship between geonames and
admin1Codes.

It would be much better if we could split the data up into three columns, and then use the first two
columns as a composite primary key. For instance:

US AK Alaska

We can take advantage of the fact that the data is delimited with both the tab character (the
whitespace between US.AK and Alaska in our first example) and a period character. When we load the
data into MySQL, we will split the first field up as we load the data. This approach is very MySQL specific,
but is the sort of problem that can be common when you work with sources of data you don't control.
The result will be the three-column database table described in Table 12-2.

Table 12-2. The Columns in the admin1Codes Database Table

Name Type Description

country_code char(2) Two-letter ISO country codes, such as US for United States or GB for
United Kingdom. Forms composite primary key with admin1_code.

admin1_code varchar(20) Code corresponding to first administrative division within a country
(State for the USA). Forms composite primary key with country_code.

name varchar(200) Name of this location in UTF-8

Second-Level Subdivisions

The admin2Codes.txt file contains similar information to admin1Codes, but it is more complicated. The
data in this file contains second level political subdivision names. For instance, in the United States our
states are subdivided into counties, so the admin2Codes.txt file contains county names. Here is an
example line for Travis County in the state of Texas in the United States:

US.TX.453 Travis County Travis County 4737316

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

239

The first field in this file is the identifier, <country code>.<admin 1 code>.<admin 2 code>. Similar to
what we did for the previous file, we will have to split this first field apart during the data loading
process. The next field is the name in UTF-8, followed by the name in ASCII. After both names is a
number signifying the geonameId. We are going to keep this number in the database but not use it as an
identifier, as we don't have that information in the geonames table to use as a foreign key. Table 12-3
shows the resulting database columns.

Table 12-3. The Columns in the admin2Codes Database Table

Name Type Description

country_code char(2) Two-letter ISO country codes, such as US for United States or GB for
United Kingdom. Forms composite primary key with admin1_code and
admin2_code

admin1_code varchar(20) Code corresponding to first administrative division within a country
(State for the USA). Forms composite primary key with country_code
and admin2_code

admin2_code varchar(20) Code corresponding to second administrative division within a country
(County for the USA). Forms composite primary key with country_code
and admin1_code

name varchar(200) Name of this location in UTF-8

asciiname varchar(200) Name of this location in ASCII

geonameid int Identifier as a unique place

Feature Codes

The last file we will load is the feature codes. The feature codes describe the type of location each place
is. The descriptions are somewhat generic, but could be useful for determining whether a highpoint is an
actual mountain. The feature codes are located in featurecodes_en.txt. Other versions of this file are
available for other languages. Here is a sample line from the feature codes download:

T.MESA mesa(s) a flat-topped, isolated elevation with steep slopes on all sides, less
extensive than a plateau

Similar to the last two files we discussed, the unique id for each feature code is identified with a
concatenation of the feature class with the feature code, using a period as the separator. The next field is
the name, and the last field is the description. Table 12-4 describes these fields as columns in a database
table.

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

240

Table 12-4. The Columns in the featurecodes Database Table

Name Type Description

feature_class char(1) One letter Feature code. Forms composite primary key with feature_code

feature_code varchar(10) Code corresponding to a type of geographic feature. Forms composite
primary key with feature_class

name varchar(200) Name of this feature in UTF-8

Creating the Database Schema

From the names and data types, we can construct a table definition for the MySQL database for the
geonames table. Most of the work is already done for us – the GeoNames README includes the data types
for each column, saving us the trouble of inspecting the tab-delimited file for maximum field lengths
and whether a column is nullable.

In addition to the README, we used information provided in the Frequently Asked Questions (FAQ)
section of the GeoNames forum to create a script to create the database and tables. We also placed
indexes on the elevation, admin1_code and admin2_code fields on the geonames table to speed up our
searches. In our experiments with MySQL, we found that adding the indexes before loading the data
took about the same amount of total time as loading the data and then adding the indexes. Depending
on the database, your experience will vary.

Listing 12-1 shows our script for creating the database, the tables, and indexes.

Listing 12-1. MySQL Script for Creating the Geonames Database

set character-set to utf8
SET NAMES 'utf8';

create the database
CREATE DATABASE IF NOT EXISTS `geonames` ;

use the database
USE `geonames`;

drop the geonames table
DROP TABLE IF EXISTS `geonames`.`geonames`;

create the geonames table
CREATE TABLE `geonames`.`geonames` (
`geonameId` int(10) unsigned NOT NULL default '0',
`name` varchar(200) NOT NULL default '',
`asciiname` varchar(200) NOT NULL default '',
`alternatenames` varchar(5000) NOT NULL default '',
`latitude` double NOT NULL default '0',
`longitude` double NOT NULL default '0',

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

241

`feature_class` char(1) ,
`feature_code` varchar(10) ,
`country_code` char(2),
`cc2` varchar(60),
`admin1_code` varchar(20),
`admin2_code` varchar(80),
`admin3_code` varchar(20),
`admin4_code` varchar(20),
`population` bigint(11),
`elevation` int(11),
`gtopo30` int(11),
`timezone` varchar(40),
`modification_date` date,
PRIMARY KEY (`geonameid`)
) CHARACTER SET utf8 ;

create the geonames indexes
CREATE INDEX elevation_index ON geonames (elevation);
CREATE INDEX admin1_code_index ON geonames (admin1_code);
CREATE INDEX admin2_code ON geonames (admin2_code);

drop the admin1codes table
DROP TABLE IF EXISTS `geonames`.`admin1codes`;

#create the admin1codes table
CREATE TABLE `geonames`.`admin1codes` (
`country_code` char(2) NOT NULL,
`admin1_code` varchar(20),
`name` varchar(200) NOT NULL default '',
PRIMARY KEY (`country_code`,`admin1_code`)
) CHARACTER SET utf8 ;

drop the admin2codes table
DROP TABLE IF EXISTS `geonames`.`admin2codes`;

#create the admin2codes table
CREATE TABLE `geonames`.`admin2codes` (
`country_code` char(2) NOT NULL,
`admin1_code` varchar(20),
`admin2_code` varchar(20),
`name` varchar(200) NOT NULL default '',
`asciiname` varchar(200) NOT NULL default '',
`geonameid` int,
PRIMARY KEY (`country_code`,`admin1_code`,`admin2_code`)
) CHARACTER SET utf8 ;

drop the featurecodes table
DROP TABLE IF EXISTS `geonames`.`featurecodes`;

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

242

#create the featurecodes table
CREATE TABLE `geonames`.`featurecodes` (
`feature_class` char(1) NOT NULL,
`feature_code` varchar(10) NOT NULL,
`name` varchar(200) NOT NULL default '',
`description` varchar(200) NOT NULL default '',
PRIMARY KEY (`feature_class`,`feature_code`)
) CHARACTER SET utf8 ;

From the database script, you can see that we have set up composite primary keys on the
admin1codes, admin2codes and featurecodes tables.

Loading the Data

Loading the data directly into the database using a native import tool is usually the best way to bulk load
very large data sets. You will need to have created the table in the database first, then run the import tool
against the tab-delimited file. Unfortunately, the details of this process differ greatly from database to
database. Some have a nice graphical user interface to the database management. Others only offer
command line tools.

For the MySQL database, we can use a simple command named LOAD DATA INFILE to do a bulk
import. You will need to tell MySQL the name of the file to be imported, the table to import it into, the
character set of the import, and the names of the columns within the file. We also used information from
the FAQ section of the GeoNames forum to develop this script.

The geonames table import is straightforward, although it can take a while on a slower computer. The
concatenated ids for the other three tables have to be split up, however, so we could join the geonames
table to the other tables with many-to-one relationships. To do this requires some MySQL string
manipulation of the values in the tab-delimited import files before they are inserted into the database.
The two MySQL functions we use are SET and SUBSTRING_INDEX . The SET function assigns the right-hand
side of an expression to the variable on the left-hand side (signified with an @ sign). The SUBSTRING_INDEX
function is a clever piece of functionality that can split any string that has regular field delimiters such as
“.” or “|” into subsections. We use it to split the concatenated ids apart by the “.”. Tell the
SUBSTRING_INDEX function which string you want to split, which delimiter you want to split it with, and
which piece you want as an integer (counting from the left if positive, from the right if negative).

From the below Listing 12-2, here is a piece of code that illustrates what we did:

SET country_code=SUBSTRING_INDEX(@concatid,'.',1),
admin1_code=SUBSTRING_INDEX(SUBSTRING_INDEX(@concatid,'.',2),'.',-1),
admin2_code=SUBSTRING_INDEX(@concatid,'.',-1);

The @concatid variable would be something similar to

US.DE.003

The result would be that the country_code would be US, the admin1_code would be DE, and the
admin2_code would be 003.

mailto:INDEX(@concatid,'.',-1
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

243

Listing 12-2. MySQL Script for Loading the Geonames Database

set character-set to utf8
SET NAMES 'utf8';

use the database
USE `geonames`;

#load data into the admin1codes table
LOAD DATA LOCAL INFILE '../admin1Codes.txt' INTO TABLE `geonames`.`admin1Codes` CHARACTER
SET utf8 (@concatid,name)
SET country_code=SUBSTRING_INDEX(@concatid,'.',1),
admin1_code=SUBSTRING_INDEX(@concatid,'.',-1);

#load data into the admin2codes table
LOAD DATA LOCAL INFILE '../admin2Codes.txt' INTO TABLE `geonames`.`admin2Codes` CHARACTER
SET utf8 (@concatid,name,asciiname,geonameid)
SET country_code=SUBSTRING_INDEX(@concatid,'.',1),
admin1_code=SUBSTRING_INDEX(SUBSTRING_INDEX(@concatid,'.',2),'.',-1),
admin2_code=SUBSTRING_INDEX(@concatid,'.',-1);

#load data into the featurecodes table
LOAD DATA LOCAL INFILE '../featureCodes_en.txt' INTO TABLE `geonames`.`featurecodes`
CHARACTER SET utf8 (@concatid,name,description)
SET feature_class=SUBSTRING_INDEX(@concatid,'.',1),
feature_code=SUBSTRING_INDEX(@concatid,'.',-1);

LOAD DATA LOCAL INFILE '../US/US.txt' INTO TABLE `geonames`.`geonames` CHARACTER SET utf8
(geonameId,name,asciiname,alternatenames,latitude,longitude,feature_class,feature_code,count
ry_code,cc2,admin1_code,admin2_code,admin3_code,admin4_code,population,elevation,gtopo30,tim
ezone,modification_date);

Creating a Java Object Model
Now that we have a populated database, we can create a Java object model that corresponds to our
tables. In some cases, we will not want to have a direct correspondence between Java objects and
database tables, but because we are building a new application, it will make our code easier to
understand and easier to develop if we map Java objects directly to database tables.

That said, we do not need and do not necessarily want to have a Java class that has every field in the
database table as it is stored in the database. For instance, a very basic translation of the geonames table
to a class might look like (without getters and setters or Hibernate mappings) that shown in Listing 12-3.

mailto:INDEX(@concatid,'.',-1
mailto:INDEX(@concatid,'.',-1
mailto:INDEX(@concatid,'.',-1
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

244

Listing 12-3. Very Basic Java Object for the Geonames Table

package com.hibernatebook.highpoint.entity;

import java.util.Date;

public class BasicGeoName {

 private int geonameId;
 private String name;
 private String asciiName;
 private String alternateNames;
 private double latitude;
 private double longitude;
 private String featureClass;
 private String featureCode;
 private String countryCode;
 private String cc2;
 private String admin1Code;
 private String admin2Code;
 private String admin3Code;
 private String admin4Code;
 private long population;
 private int elevation;
 private int gtopo30;
 private String timezone;
 private Date modificationDate;
}

The class in Listing 12-3 would be alright, but we can do much better with Hibernate. For instance,
rather than have a String admin1Code field, we should have an object reference. The same goes for the
admin2Code field and the featureCode field. We will keep the door open for future expansion to other
countries, where the names of the political subdivisions aren't necessarily state and county.

We will come back to mapping the geonames table to a Java class (which we will name Place instead
of BasicGeoName). Our Place class has many-to-one relationships with the other three classes (from the
other three tables), so we create those first.

Creating the Admin1Code Class

The three auxiliary classes all share common traits – composite primary keys and only string or integers
for fields. Modeling composite primary keys with Hibernate annotations is discussed in Chapter 6,
where we describe three different approaches. For each of these auxiliary classes, we chose to use the
@IdClass annotation. In some cases, the composite primary keys for a database table actually have some
coherent structure. For instance, some legacy databases use a first name and last name with a birth date.
A case like this calls for creating a new business object with the primary key fields and marking it as an
@Embeddable annotation.

For these three tables, the structure of the composite primary key is basically the structure we are
trying to model – a hierarchy. Moving the data to an embedded object wouldn't make a lot of sense
when we go to use the class.

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

245

Before we can use the @IdClass annotation on the entity class, we need to create a primary key class
that is not part of the structure of our Admin1Code class. The primary key class has to follow several rules.
The class must

• be a public class

• have a default constructor

• be serializable

• allow public access to fields or getter/setter methods for setting each field in the
composite primary key

• implement equals() and hashCode() properly (Most IDEs, including NetBeans and
Eclipse will generate those methods for you)

The two fields we use for the primary key are countryCode and admin1_code. We create a new class
called @com.hibernatebook.highpoint.entity.Admin1CodePK and add those two fields to it along with
getters and setters. We mark the class as Serializable and generate equals() and hashCode() methods
from NetBeans. Listing 12-4 shows the class. Notice that there are no Hibernate or JPA imports.

Listing 12-4. Primary Key Class for the Admin1Code Class

package com.hibernatebook.highpoint.entity;

import java.io.Serializable;

public class Admin1CodePK implements Serializable {

 public Admin1CodePK() {
 }
 private String countryCode;
 private String admin1Code;

 public String getCountryCode() {
 return countryCode;
 }

 public void setCountryCode(String countryCode) {
 this.countryCode = countryCode;
 }

 public String getAdmin1Code() {
 return admin1Code;
 }

 public void setAdmin1Code(String admin1Code) {
 this.admin1Code = admin1Code;
 }

mailto:@com.hibernatebook.highpoint.entity.Admin1CodePK
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

246

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Admin1CodePK other = (Admin1CodePK) obj;
 if ((this.countryCode == null) ? (other.countryCode != null) :
!this.countryCode.equals(other.countryCode)) {
 return false;
 }
 if ((this.admin1Code == null) ? (other.admin1Code != null) :
!this.admin1Code.equals(other.admin1Code)) {
 return false;
 }
 return true;
 }

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 71 * hash + (this.countryCode != null ? this.countryCode.hashCode() : 0);
 return hash;
 }
}

After creating the primary key class, we can create the Admin1Code class shown in Listing 12-5. We
model the fields like any other Java class we use for Hibernate. The name of our class is a little different
from the name of the database table, so we used the @Table annotation We also changed some of the
property names to have a camel case style, so to map those to the database field names, we use the
@Column annotation. More interesting is the way we set up the class to use a composite primary key. On
the class, we put the @IdClass annotation with the name of our primary key class, and on the two
composite primary key getter methods, we put the @Id annotation.

Listing 12-5. The Admin1Code Class

package com.hibernatebook.highpoint.entity;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;

@IdClass(com.hibernatebook.highpoint.entity.Admin1CodePK.class)
@Entity
@Table(name = "Admin1Codes")
public class Admin1Code {

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

247

 @Id
 @Column(name = "country_code")
 private String countryCode;
 @Id
 @Column(name = "admin1_code")
 private String admin1Code;
 private String name;

 public String getCountryCode() {
 return countryCode;
 }

 public void setCountryCode(String countryCode) {
 this.countryCode = countryCode;
 }

 public String getAdmin1Code() {
 return admin1Code;
 }

 public void setAdmin1Code(String admin1Code) {
 this.admin1Code = admin1Code;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Creating the Admin2Code Class

The Admin2Code class is very similar to the Admin1Code class. The major difference is that the composite
primary key has three fields instead of two. We develop the class in a similar manner. For the primary
key class, Admin2CodePK, we choose not to use inheritance from the Admin1CodePK class because that
would imply a relationship that does not really exist between the two composite primary keys – they are
related but not interdependent. Listing 12-6 shows the Admin2CodePK class. Listing 12-7 shows the
Admin2Code class.

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

248

Listing 12-6. Primary Key Class for the Admin2Code Class

package com.hibernatebook.highpoint.entity;

import java.io.Serializable;

public class Admin2CodePK implements Serializable {

 public Admin2CodePK() {
 }
 private String countryCode;
 private String admin1Code;
 private String admin2Code;

 public String getCountryCode() {
 return countryCode;
 }

 public void setCountryCode(String countryCode) {
 this.countryCode = countryCode;
 }

 public String getAdmin1Code() {
 return admin1Code;
 }

 public void setAdmin1Code(String admin1Code) {
 this.admin1Code = admin1Code;
 }

 public String getAdmin2Code() {
 return admin2Code;
 }

 public void setAdmin2Code(String admin2Code) {
 this.admin2Code = admin2Code;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Admin2CodePK other = (Admin2CodePK) obj;
 if ((this.countryCode == null) ? (other.countryCode != null) :
!this.countryCode.equals(other.countryCode)) {
 return false;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

249

 if ((this.admin1Code == null) ? (other.admin1Code != null) :
!this.admin1Code.equals(other.admin1Code)) {
 return false;
 }
 if ((this.admin2Code == null) ? (other.admin2Code != null) :
!this.admin2Code.equals(other.admin2Code)) {
 return false;
 }
 return true;
 }

 @Override
 public int hashCode() {
 int hash = 7;
 hash = 67 * hash + (this.countryCode != null ? this.countryCode.hashCode() : 0);
 hash = 67 * hash + (this.admin1Code != null ? this.admin1Code.hashCode() : 0);
 hash = 67 * hash + (this.admin2Code != null ? this.admin2Code.hashCode() : 0);
 return hash;
 }
}

Listing 12-7. The Admin2Code Class

package com.hibernatebook.highpoint.entity;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;

@IdClass(com.hibernatebook.highpoint.entity.Admin2CodePK.class)
@Entity
@Table(name = "Admin2Codes")
public class Admin2Code {

 @Id
 @Column(name = "country_code")
 public String getCountryCode() {
 return countryCode;
 }

 public void setCountryCode(String countryCode) {
 this.countryCode = countryCode;
 }

 @Id
 @Column(name = "admin1_code")
 public String getAdmin1Code() {
 return admin1Code;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

250

 public void setAdmin1Code(String admin1Code) {
 this.admin1Code = admin1Code;
 }

 @Id
 @Column(name = "admin2_code")
 public String getAdmin2Code() {
 return admin2Code;
 }

 public void setAdmin2Code(String admin2Code) {
 this.admin2Code = admin2Code;
 }

 public String getAsciiName() {
 return asciiName;
 }

 public void setAsciiName(String asciiName) {
 this.asciiName = asciiName;
 }

 public int getGeonameid() {
 return geonameid;
 }

 public void setGeonameid(int geonameid) {
 this.geonameid = geonameid;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 private String countryCode;
 private String admin1Code;
 private String admin2Code;
 private String name;
 private String asciiName;
 private int geonameid;
}

Creating the Feature Codes Class

The feature codes classes are similar to the classes just shown in the preceding section. You must create
a composite primary key and a name and description. Listing 12-8 shows the primary key class, while

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

251

Listing 12-9 shows the main class. After these two classes, we discuss the Place class that maps to the
main geonames table, which is the most interesting part of the mapping.

Listing 12-8. Primary Key Class for the FeatureCode Class

package com.hibernatebook.highpoint.entity;

import java.io.Serializable;

public class FeatureCodePK implements Serializable {

 public String getFeatureClass() {
 return featureClass;
 }

 public void setFeatureClass(String featureClass) {
 this.featureClass = featureClass;
 }

 public String getFeatureCode() {
 return featureCode;
 }

 public void setFeatureCode(String featureCode) {
 this.featureCode = featureCode;
 }
 private String featureClass;
 private String featureCode;

 @Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final FeatureCodePK other = (FeatureCodePK) obj;
 if ((this.featureClass == null) ? (other.featureClass != null) :
!this.featureClass.equals(other.featureClass)) {
 return false;
 }
 if ((this.featureCode == null) ? (other.featureCode != null) :
!this.featureCode.equals(other.featureCode)) {
 return false;
 }
 return true;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

252

 @Override
 public int hashCode() {
 int hash = 5;
 hash = 53 * hash + (this.featureClass != null ? this.featureClass.hashCode() : 0);
 hash = 53 * hash + (this.featureCode != null ? this.featureCode.hashCode() : 0);
 return hash;
 }
}

Listing 12-9. The FeatureCode Class

package com.hibernatebook.highpoint.entity;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;
import javax.persistence.Table;

@IdClass(com.hibernatebook.highpoint.entity.FeatureCodePK.class)
@Entity
@Table(name = "featurecodes")
public class FeatureCode {

 @Id
 @Column(name = "feature_class")
 public String getFeatureClass() {
 return featureClass;
 }

 public void setFeatureClass(String featureClass) {
 this.featureClass = featureClass;
 }

 @Id
 @Column(name = "feature_code")
 public String getFeatureCode() {
 return featureCode;
 }

 public void setFeatureCode(String featureCode) {
 this.featureCode = featureCode;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

253

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }
 private String featureClass;
 private String featureCode;
 private String name;
 private String description;
}

Creating the Place Class

Rather than naming our main Java class GeoName, like our database table, we name it Place, to make it
more generic. This way we could add data from other sources in the future and not mislead ourselves
into thinking that all of the data came from the GeoNames database. We also choose not to build on our
BasicGeoName class from earlier in the chapter, which we used to illustrate a naïve mapping of the
database table to a Java class.

We'll start by creating a Java class named Place in the com.hibernatebook.highpoint.entity
package. Because we named our Java class something other than the name of the database table, we
need to use the @Table annotation as well as the @Entity annotation. Listing 12-10 shows the final code
for the class.

Unlike the three previous classes, the Place class has a simple primary key, the geonameid that we
mark with the @Id annotation. We don't put a @GeneratedValue annotation on the id because it is
assigned. If we add more data to the table, we will need to assign our own ids – as these could clash with
ids that GeoNames uses later, it would be better to create a new table. This will also make it easy to drop
the data in the table and get a fresh import of data from the GeoNames web site.

More interesting is the way we create many-to-one relationships with the state, county, and feature
code tables. In each case, we add a @ManyToOne annotation to our getter method for each of the three
objects. Because they use composite primary keys, we have to tell Hibernate to specifically use more
than one column when Hibernate does a join between the two tables using the @JoinColumns annotation
and @JoinColumn annotation. Each @JoinColumn annotation has to contain a reference to the column on
the geonames table and to a column on the other table. We also have to tell Hibernate not to allow inserts
or updates to those columns because we are using admin1_code and country_code for two relationships.

Finally, our data is not perfect. Some places are missing admin1_code, admin2_code or feature_code
values. This data isn't critical for our project, so we don't want our application to crash if it can't find an
object on the other side of the relationship. By default, Hibernate will throw an exception if you load a
value that doesn't exist in a many-to-one relationship and then try and use it. Hibernate will create a
proxy object to represent that value, and if it doesn't exist, it will throw an exception.

You can override this default behavior with the @NotFound annotation on the many-to-one
relationship, on the same getter method as the @ManyToOne annotation. It has two possible values –
exception (the default) and ignore. The downside of telling Hibernate to ignore values that aren't found
is that Hibernate now has to query the database to determine if the other end of the many-to-one
relationship should be a null value (instead of a proxy object that will throw an exception if you create it
with nothing on the other end of a many-to-one relationship). We decided to use the @NotFound
annotation, but we need to check for null values before using the Admin1Code, Admin2Code or FeatureCode
objects. If you use this annotation, and your application is experiencing performance problems, turn
SQL debugging on (in your Hibernate configuration, hibernate.show_sql=true) and trace the SQL

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

254

statements Hibernate uses. You may need to clean up your data or rethink the usage of a many-to-one
relationship.

We also mapped the modification date using the @Temporal annotation to tell Hibernate to use
java.sql.Date to represent the modification date, as we are interested in the year, month, and day, not
the time. See Chapter 6 for more information about the @Temporal annotation.

One last note – we did not include the alternatenames column in the Place class. The reason for this
is that the field is a comma-delimited list of alternative place names that can also be downloaded as a
text file and placed in its own table.

Listing 12-10. The Place Class for the Geonames Table

package com.hibernatebook.highpoint.entity;

import java.util.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinColumns;
import javax.persistence.ManyToOne;
import javax.persistence.Table;
import javax.persistence.Temporal;
import org.hibernate.annotations.NotFound;
import org.hibernate.annotations.NotFoundAction;

@Entity
@Table(name = "geonames")
public class Place {

 @Id
 public int getGeonameId() {
 return geonameId;
 }

 public void setGeonameId(int geonameId) {
 this.geonameId = geonameId;
 }

 @ManyToOne
 @NotFound(action = NotFoundAction.IGNORE)
 @JoinColumns({
 @JoinColumn(name = "country_code", referencedColumnName = "country_code", insertable
= false, updatable = false),
 @JoinColumn(name = "admin1_code", referencedColumnName = "admin1_code", insertable =
false, updatable = false)
 })
 public Admin1Code getAdmin1Code() {
 return admin1Code;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

255

 public void setAdmin1Code(Admin1Code admin1Code) {
 this.admin1Code = admin1Code;
 }

 @ManyToOne
 @NotFound(action = NotFoundAction.IGNORE)
 @JoinColumns({
 @JoinColumn(name = "country_code", referencedColumnName = "country_code", insertable
= false, updatable = false),
 @JoinColumn(name = "admin1_code", referencedColumnName = "admin1_code", insertable =
false, updatable = false),
 @JoinColumn(name = "admin2_code", referencedColumnName = "admin2_code", insertable =
false, updatable = false)
 })
 public Admin2Code getAdmin2Code() {
 return admin2Code;
 }

 public void setAdmin2Code(Admin2Code admin2Code) {
 this.admin2Code = admin2Code;
 }

 @ManyToOne
 @NotFound(action = NotFoundAction.IGNORE)
 @JoinColumns({
 @JoinColumn(name = "feature_code", referencedColumnName = "feature_code"),
 @JoinColumn(name = "feature_class", referencedColumnName = "feature_class")
 })
 public FeatureCode getFeatureCode() {
 return featureCode;
 }

 public void setFeatureCode(FeatureCode featureCode) {
 this.featureCode = featureCode;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getAsciiName() {
 return asciiName;
 }

 public void setAsciiName(String asciiName) {
 this.asciiName = asciiName;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

256

 public double getLatitude() {
 return latitude;
 }

 public void setLatitude(double latitude) {
 this.latitude = latitude;
 }

 public double getLongitude() {
 return longitude;
 }

 public void setLongitude(double longitude) {
 this.longitude = longitude;
 }

 public long getPopulation() {
 return population;
 }

 public void setPopulation(long population) {
 this.population = population;
 }

 public int getElevation() {
 return elevation;
 }

 public void setElevation(int elevation) {
 this.elevation = elevation;
 }

 public int getGtopo30() {
 return gtopo30;
 }

 public void setGtopo30(int gtopo30) {
 this.gtopo30 = gtopo30;
 }

 public String getTimezone() {
 return timezone;
 }

 public void setTimezone(String timezone) {
 this.timezone = timezone;
 }

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

257

 @Column(name = "modification_date")
 @Temporal(javax.persistence.TemporalType.DATE)
 public Date getModificationDate() {
 return modificationDate;
 }

 public void setModificationDate(Date modificationDate) {
 this.modificationDate = modificationDate;
 }
 private int geonameId;
 private String name;
 private String asciiName;
 private double latitude;
 private double longitude;
 private long population;
 private int elevation;
 private int gtopo30;
 private String timezone;
 private Date modificationDate;
 private Admin1Code admin1Code;
 private Admin2Code admin2Code;
 private FeatureCode featureCode;
}

Configuring Hibernate
To get our application to run, we re-used some of the Ant harness from Chapter 3. You will need a copy
of the hibernate.cfg.xml file (shown in Listing 12-11) that points to the MySQL database with your
GeoNames data. It also needs to map our four entity classes.

Listing 12-11. The Hibernate.cfg.xml configuration file

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost/geonames?characterEncoding=utf-8
 </property>
 <property name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="hibernate.connection.username">root</property>
 <property name="hibernate.connection.password"></property>
 <property name="hibernate.connection.pool_size">0</property>

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
mysql://localhost/geonames?characterEncoding=utf-8
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

258

 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <property name="hibernate.show_sql">false</property>

 <!-- "Import" the mapping resources here -->
 <mapping class="com.hibernatebook.highpoint.entity.Place"/>
 <mapping class="com.hibernatebook.highpoint.entity.Admin1Code"/>
 <mapping class="com.hibernatebook.highpoint.entity.Admin2Code"/>
 <mapping class="com.hibernatebook.highpoint.entity.FeatureCode"/>

 </session-factory>
</hibernate-configuration>

The Ant harness just runs a class that lists the highpoints. We don't do anything with the Hibernate
tools for this chapter, as we started with a database. Listing 12-12 shows the code for the harness.

Listing 12-12. The build.xml Ant Harness

<project name="highpoint">

 <property file="build.properties"/>

 <property name="src" location="src"/>
 <property name="bin" location="bin"/>
 <property name="sql" location="sql"/>
 <property name="hibernate.tools"
 value="${hibernate.tools.home}${hibernate.tools.path}"/>
 <property name="hibernate.tools.lib"
 value="${hibernate.tools.home}${hibernate.tools.lib.path}"/>

 <path id="classpath.base">
 <pathelement location="${src}"/>
 <pathelement location="${bin}"/>
 <pathelement location="${slf4j.implementation.jar}"/>
 <pathelement location="${hibernate.home}/hibernate3.jar"/>
 <fileset dir="${hibernate.home}/lib" includes="**/*.jar"/>
 <pathelement location="${mysql.jdbc.jar}"/>
 </path>

 <target name="compile">
 <mkdir dir="${bin}"/>
 <javac srcdir="${src}" destdir="${bin}" classpathref="classpath.base"/>
 </target>

 <target name="showHighpoints" depends="compile">
 <java classname="com.hibernatebook.highpoint.ShowHighpoints"
classpathref="classpath.base"/>
 </target>
</project>

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

259

We will also need a build.properties file that points to the location of our MySQL JDBC Driver jar
(downloadable from www.mysql.com). Listing 12-13 shows this file. Edit this file to point to the correct
directories for your development environment.

Listing 12-13 The build.properties file for Ant

Path to the hibernate install directory
hibernate.home=/hibernate/hibernate-3.5.0

Path to the SLF4J implementation JAR for the logging framework to use
slf4j.implementation.jar=/slf4j/slf4j-1.5.11/slf4j-simple-1.5.11.jar

Path to the MySQL JDBC Driver JAR
mysql.jdbc.jar=../mysql-connector-java-5.1.12-bin.jar

Building the List of High Points
After doing all the data importing and object mapping, actually creating a list of high points will be
straightforward. Our basic algorithm will be to ask the database what the highest elevation is for each
state, and then ask the database for all of the locations in that state with that elevation. Because the data
isn't perfectly sanitized, and because there could certainly be more than one point in a geographic area
with the same elevation as another, we ask for a list of locations. We will then print them nicely to
standard output.

Developing the HQL Query

HQL supports standard SQL aggregate methods – in particular the Max() method. The Max() method will
return the maximum value from a numerical column in a results set. For instance, you could ask for the
highest population of a city in the dataset with a query like:

select max(population) from Place

For our example, we are going to ask for the maximum elevation by state (admin1Code). There are
several ways to go about this – we could use a GROUP BY clause, for instance to limit database traffic. In
this case, we want to get more than one highpoint if they exist, so we should break up our queries.

The first query we will use just asks for the highest elevation in the state:

select max(elevation) from Place where admin1_code = :state

After that runs, we can use the elevation to get a list of Place objects from Hibernate. This saves us
the trouble of loading them ourselves. We may be trading off a little performance, with one extra query
per state.

from Place where admin1_code = :state and elevation = :highpointElevation

Using these Place objects, we can perform any standard operations we want to.

http://www.mysql.com
http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

260

Running the Query

Our code is very simple – it asks for a list of states, then it executes the two HQL queries for each state.
After retrieving the list of highpoints for each state, it creates nicely formatted output for the list. Listing
12-14 shows our solution.

Listing 12-14. The Application that Finds and Shows the Highpoints.

package com.hibernatebook.highpoint;

import com.hibernatebook.highpoint.entity.Admin1Code;
import com.hibernatebook.highpoint.entity.Place;
import java.util.List;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.AnnotationConfiguration;

public class ShowHighpoints {
public static void main(String[] args) {
 SessionFactory factory =
 new AnnotationConfiguration().configure().buildSessionFactory();
 Session session = factory.openSession();

 Query statesQuery = session.createQuery("from Admin1Code where country_code =
'US'");
 List<Admin1Code> states = statesQuery.list();
 for (Admin1Code state : states) {
 Query elevationQuery = session.createQuery(
 "select max(elevation) from Place where admin1_code = :state");
 elevationQuery.setString("state", state.getAdmin1Code());
 Integer highpointElevation = (Integer) elevationQuery.uniqueResult();

 Query stateHighpointsQuery = session.createQuery(
 "from Place where admin1_code = :state and elevation =
:highpointElevation");
 stateHighpointsQuery.setString("state", state.getAdmin1Code());
 stateHighpointsQuery.setInteger("highpointElevation", highpointElevation);

 List<Place> highpoints = stateHighpointsQuery.list();
 for (Place highpoint : highpoints)
 {
 highpointElevation = highpoint.getElevation();
 String output = state.getName() + ":" + highpoint.getName() + ":" +
highpointElevation + ":";

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

261

 if (highpoint.getFeatureCode() != null)
 {
 output = output + highpoint.getFeatureCode().getName() + ":";
 }
 else
 {
 output = output + "N/A:";
 }

 if (highpoint.getAdmin2Code() != null)
 {
 output = output + highpoint.getAdmin2Code().getName();
 }
 else
 {
 output = output + "N/A";
 }

 System.out.println(output);

 }
 }

 session.close();
 }
}

We can run this basic example with:

ant showHighpoints

Just a heads-up: the elevations are in meters, not feet.. You can easily enough add the math to the
solution in Listing 12-14 if you want to show feet in your output. Listing 12-15 shows some partial results
from running the application.

Listing 12-15. Partial Results from running ant showHighpoints

 [java] Alaska:Churchill Peaks:6105:mountain:Denali Borough
 [java] Alaska:Mount McKinley:6105:mountain:Denali Borough
 [java] Alaska:South Peak:6105:mountain:Denali Borough
 [java] Alabama:WCIQ-TV (Mount Cheaha):731:tower:Cleburne County
 [java] Arkansas:Magazine Mountain:837:mountain:Logan County
 [java] Arkansas:Magazine Mountain:837:ridge(s):Logan County
 [java] Arkansas:Signal Hill:837:mountain:Logan County
 [java] Arizona:Humphreys Peak:3829:mountain:Coconino County
 [java] California:Mount Whitney:4405:mountain:Tulare County
 [java] Colorado:Mount Elbert:4397:mountain:Lake County

http://

CHAPTER 12 ■ CASE STUDY - USING HIBERNATE WITH AN EXISTING DATABASE

262

Moving Forward with the Example
There are several things you could do to get more out of this example. The first would be to port it to
whatever database you usually use – SQL Server, Oracle, PostgreSQL, or anything else supported by
Hibernate. Another idea would be to add support for alternative names using the downloadable text file
from GeoNames. This example was not interactive – if you are a web or Swing programmer, build a
simple front end to the GeoNames database that lets users search for high points. You could also try
writing a bulk importer using Hibernate that would load the large US.txt data import file.

Summary
This example started with a real world existing database with a number of issues that made it interesting
to adapt to Hibernate – composite primary keys and missing data on one side of a relationship. We also
created a database schema and loaded our data into MySQL after extracting the primary keys for some of
the tables. We built a small client that used our Java classes and some HQL to find the highest point in
every state. There is certainly plenty of room to expand on our very simple example and do some
interesting projects!

http://

APPENDIX A

■ ■ ■

263

More Advanced Features

In this appendix, we discuss some of the features that, strictly speaking, lie outside the scope of this
book, but that you should be aware of if you go on to use Hibernate in more depth.

Managed Versioning and Optimistic Locking
While we have saved versioning for this appendix’s discussion of advanced features, it is actually quite
straightforward to understand and apply. Consider the following scenario:

• Client A loads and edits a record.

• Client B loads and edits the same record.

• Client A commits its edited record data.

• Client B commits its differently edited record data.

While the scenario is simple, the problems it presents are not. If Client A establishes a transaction,
then Client B may not be able to load and edit the same record. Yet in a web environment, it is not
unlikely that Client A will close a browser window on the open record, never committing or canceling
the transaction, so that the record remains locked until the session times out. Clearly this is not a
satisfactory solution. Usually, you will not want to permit the alternative scenario, in which no locking is
used, and the last person to save a record wins!

The solution, versioning, is essentially a type of optimistic locking (see Chapter 8). When any
changes to an entity are stored, a version column is updated to reflect the fact that the entity has
changed. When a subsequent user tries to commit changes to the same entity, the original version
number will be compared against the current value—if they differ, the commit will be rejected.

The Hibernate/JPA 2 annotation mappings and the Hibernate XML-based mappings both provide a
simple syntax for indicating which field should be used for storing the managed version information.
The annotation for this field is shown in Listing A-1.

Listing A-1. Marking the Version Attribute Using Annotations

@Version
protected int getVersionNum() {
 return versionNum;
}

http://

APPENDIX A ■ MORE ADVANCED FEATURES

264

The default optimistic locking strategy for Hibernate is versioning, so if you provide a <version>
element in your XML configuration, this will be used as long as you have enabled dynamic updates (as
shown in Listing A-2).

Listing A-2. Marking the Version Attribute Using XML Mappings

<class dynamic-update="version" optimistic-lock="version" ... >
 ...
 <version name="versionNum"/>
</class>

The version attribute is defined in a very similar way to the normal property attribute configuration.
The version can be of type long, integer, short, timestamp, or calendar (note that using the <timestamp
... /> element is an equivalent alternative to the use of the <version type="timestamp" ... /> element
syntax).

The <class> element’s optimistic-lock attribute can be used to override the default versioning-
based optimistic locking strategy. You can disable it entirely (despite the presence of a version field)
using a value of none. You can explicitly state that versioning should be used with a value of version. You
can elect to use dirty checking, with the dirty and all options.

If you elect not to use versioning, dirty checking offers an alternative form of optimistic locking.
Here, the values of the entities are themselves checked to see if they have changed since the entity was
originally obtained. As with versioning-based optimistic locking, the check against the database is
carried out when the changes are committed. If an optimistic lock type of dirty is selected, then only
those fields that have changed since the persistent entity was obtained will be checked (the Session
keeps track of the appropriate state information). If an optimistic lock type of all is selected, then all the
fields comprising the entity will be checked for changes. If the fields being checked have changed prior
to the commit, then the commit will fail.

Versioning is generally a simpler and more reliable approach, so we suggest that you use this
whenever you need optimistic locking features.

Maps
In addition to the default mode (POJO) and the XML mode (Dom4J) described previously, the Hibernate
session can be accessed in one more way: as a map of name/value pairs. This mode is accessed by
calling the getSession() method with a parameter of EntityMode.MAP (see Listing A-3).

Listing A-3. Accessing a Hibernate Session in Map Mode

package sample.map;

import java.util.*;
import org.hibernate.EntityMode;
import org.hibernate.*;
import org.hibernate.cfg.Configuration;

public class AccessAsMap {
 private static final SessionFactory sessionFactory = new Configuration()
 .configure().buildSessionFactory();

http://

APPENDIX A ■ MORE ADVANCED FEATURES

265

 public static void main(String[] args) throws Exception {

 System.out.println("Preparing the Session objects");
 Session session = sessionFactory.openSession();
 Session mapSession = session.getSession(EntityMode.MAP);

 System.out.println("Reading the map entries for XXX");
 session.beginTransaction();

 Map entity = (Map)mapSession.get("sample.entity.Category",new Long(2));
 System.out.println("Category Title: " + entity.get("title"));

 System.out.println("Contains Adverts:");
 Set adverts = (Set)entity.get("adverts");
 Iterator adIt = adverts.iterator();
 while(adIt.hasNext()) {
 Map advert = (Map)adIt.next();
 System.out.println(advert.get("title"));
 }

 session.getTransaction().commit();
 session.close();

 System.out.println("Done.");
 }
}

Changes written to the Map objects will be persisted exactly as if a normal persistent POJO object had
been updated. Note that only the entities themselves will be represented as Maps—not any of their
attributes having a value type, or associations using Collection types. For example, in Listing A-3, the
Category entity is represented as a Map, but its title attribute is represented as a String and its adverts
attribute is represented as a Set—however, the Set itself contains Advert entities represented as Maps.

■ Note You may find problems in edge cases where Hibernate expects certain objects to be POJOs and not

hashmaps, such as composite primary key id classes.

Limitations of Hibernate
First and foremost, Hibernate wants every entity to be identifiable with a primary key. Ideally, it would
like this to be a surrogate key (a single column distinct from the fields of the table). Hibernate will accept
a primary key that is not a surrogate key. For example, the username column might be used to uniquely
identify an entry in the user table. Hibernate will also accept a composite key as its primary key, so that
the username and hostname might be used to form the primary key if the username alone does not serve
to identify the row.

In the real world, things do not really work like that. Any database that has been around the block a
few times is likely to have at least one table for which the primary key has been omitted. For instance,

http://

APPENDIX A ■ MORE ADVANCED FEATURES

266

the contents of the table may not have needed to be involved in any relations with other tables. While
this is still bad database design, the error is only exposed when Hibernate tries to map objects to data. It
may be that adding a suitable surrogate key column is an option—when this is the case, we urge you to
do so. In practice, however, the fundamental schema may not be under the developer’s control, or other
applications may break if the schema is radically changed.

In most scenarios, a developer will be able to arrange the creation of views or stored procedures. It
may be possible to create the appearance of a suitable primary key using these if no other options
present themselves, but you should consult with your database administrators, since a table for which
no true primary key can be obtained is likely to cause long-term corruption of your data.

Finally, if you can neither change a broken schema nor add views or stored procedures to
ameliorate its effects, you have the option of obtaining a pure JDBC connection (see Listing A-4) from
the session to the database, and carrying out traditional connected database access. This is the option of
last resort, and is only truly of value when you anticipate being able to correct the faulty schema at some
future time.

Listing A-4. Obtaining a JDBC Connection from Hibernate

SessionFactory factory =
 new Configuration().configure().buildSessionFactory();
Session session = factory.openSession();
Connection connection = session.getConnection();

Hand-Rolled SQL
While Hibernate cannot operate upon entities that lack primary keys, it is also extremely awkward to use
Hibernate when there is a poor correspondence between the tables and the classes of your object model.

Using a Direct Mapping

Figure A-1 presents a fairly typical example of a valid database model that may be painful to represent in
our mapping files.

Figure A-1. A problematic but legal schema

Here, the product table represents a product (for example, a flashlight). The color table represents
the colors in which it is sold. The link table named product_color then allows us to identify a product by
stock keeping unit (SKU), and identify the colors in which it is available.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

267

If we do not mind the Product object retaining a set of colors (representing the colors in which it can
be sold), then we have no problem; but if we want to distinguish between a red flashlight and a green
one, things become more difficult (see Listing A-5).

Listing A-5. A Fairly Direct Representation of the Product as an XML mapping

 <class name="com.hibernatebook.legacy.Product" table="product_color">

 <composite-id
 class="com.hibernatebook.legacy.ProductKey"
 name="key">

 <key-property type="int" name="id" column="product_id"/>
 <key-property type="int" name="colorId" column="color_id"/>

 </composite-id>

 <many-to-one
 name="color"
 class="com.hibernatebook.legacy.Color"
 column="color_id"
 insert="false"
 update="false"/>

 <many-to-one
 name="data"
 class="com.hibernatebook.legacy.ProductData"
 column="product_id"
 insert="false"
 update="false"/>

 </class>

There are several dissatisfying aspects to the mapping in Listing A-5. First, rather than mapping our
product table, we have mapped the link table. This makes sense when you consider that the primary key
formed from the two columns of this table uniquely identifies a “colored product,” which the product
table alone cannot do.

Second, we are obliged to create a number of distinct objects to represent the class: the Product
class itself, a class to represent the primary key (inevitable where a composite id occurs), a class to
represent the other attributes of the product, and the Color class.

Last, the use of the columns more than once within the mapping requires us to flag them so that
they cannot be written—this is a read-only mapping.

Using a View

Fortunately, most databases provide a simple mechanism for manipulating a schema so that it better
matches the business requirements. A database view will allow you to put together a join that appears to
be a table. By a suitable choice of columns from the existing tables, you can construct a view that is
much easier to map (see Listing A-6).

http://

APPENDIX A ■ MORE ADVANCED FEATURES

268

Listing A-6. A View on the Product Tables

create view vwProduct (ProductKey,ColorKey,Id,SKU,ColorId)
AS
 select
 p.id as ProductKey,
 c.id as ColorKey,
 p.id as Id,
 p.sku as SKU,
 c.id as ColorId
 from
 product p,
 product_color pc,
 color c
 where
 p.id = pc.product_id
 and
 pc.color_id = c.id;

This view effectively reformats our table so that it has a correct (composite) primary key formed
from the link table’s two columns. It makes the SKU data available directly, and it retains the foreign key
into the color table.

Listing A-7 is a much more natural mapping.

Listing A-7. The Revised Mapping

<class name="com.hibernatebook.legacy.Product" table="vwProduct">
 <composite-id
 class="com.hibernatebook.legacy.ProductKey"
 name="key">
 <key-property
 type="int"
 name="id"
 column="ProductKey"/>
 <key-property
 type="int"
 name="colorId"
 column="ColorKey" />
 </composite-id>

 <property
 name="id"
 type="int"
 column="id"
 insert="false"
 update="false"
 unique="true"/>

http://

APPENDIX A ■ MORE ADVANCED FEATURES

269

 <property
 name="SKU"
 type="int"
 column="sku"
 insert="false"/>

 <many-to-one
 name="color"
 class="com.hibernatebook.legacy.Color"
 column="ColorId"/>
</class>

The behavior of the composite primary key is unchanged, but the SKU now becomes a simple
property. The color entity is mapped as before.

The caveat for this approach is the problem of writing data to the mapping. Some databases (for
example, versions 4 and lower of MySQL) do not support writable views, and others may have only
limited support for them. To avoid views in these circumstances, we must abandon complete portability
in favor of database-specific SQL inserted directly into the mapping file.

Putting SQL into an Annotation or Mapping

Hibernate provides three annotations and several XML tags that can be used to override the default
behavior when writing to the database. Instead of accepting the SQL generated by Hibernate from the
information in the mapping file, you can dictate exactly how changes to an entity should be enforced.
The disadvantage is that you will lose Hibernate’s guarantee of cross-database platform portability. The
advantage is that you can carry out operations that are not explicitly described in the mapping, such as
calculating and inserting values in the process of carrying out an insert.

The annotations are @SQLInsert, @SQLUpdate, and @SQLDelete; while the XML mapping elements are
<sql-insert>, <sql-update>, and <sql-delete>. All of these work in the same way.

If you take a look at the DDL script for this example, you will see that our client table includes seven
fields, the last of which is the country field, as shown in Listing A-8.

Listing A-8. The DDL Script to Create the Client Table

create table client (
 id int not null primary key,
 name varchar(32) not null,
 number varchar(10),
 streetname varchar(128),
 town varchar(32),
 city varchar(32),
 country varchar(32)
);

We will, however, ignore the country field in our mapping file. We would like this to be
automatically set to UK whenever a client entity is persisted.

Depending on the database, this could be implemented as part of the view’s support for writing
operations, or as a trigger invoked when the other fields are written—but we use the @SQLInsert
annotation or <sql-insert> tag to specify the operation to perform.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

270

The necessary ordering of the parameters can be determined by running Hibernate with logging
enabled for the org.hibernate.persister.entity level. You must do this before you add the mapping.
Listing A-9 shows a suitably formatted <sql-insert> element with the parameters suitably ordered. Note
that the identifier field id is in the last position—not the first, as you might have expected.

Listing A-9. The Mapping File Using Explicit SQL to Update the Tables

<class name="com.hibernatebook.legacy.Client" table="Client">
 <id type="int" name="id" column="id">
 <generator class="native"/>
 </id>
 <property type="text" name="name" column="name"/>
 <property type="text" name="number" column="number"/>
 <property type="text" name="streetname" column="streetname"/>
 <property type="text" name="town" column="town"/>
 <property type="text" name="city" column="city"/>

 <sql-insert>
 insert into client(name,number,streetname,town,city,id,country)
 values (?,?,?,?,?,?,'UK');
 </sql-insert>
</class>

In addition to the three SQL terms for writing to the database, you can specify hand-rolled SQL for
reading. This is appended as <sql-query> tags outside the class tag (see Listing A-10). They are not
intrinsically a part of the mapping. However, you can specify that one of them should be used as the
default loader for your class.

Listing A-10. An Alternative Mapping File Defining a Default Loader

...
<hibernate-mapping>
 <class name="com.hibernatebook.legacy.Client"
 table="Client">
 <id type="int" name="id" column="id">
 <generator class="native"/>
 </id>
 <property name="name"/>
 <property name="number"/>
 <property name="streetname"/>
 <property name="town"/>
 <property name="city"/>

 <loader query-ref="DefaultQuery"/>
 </class>

http://

APPENDIX A ■ MORE ADVANCED FEATURES

271

<sql-query name="DefaultQuery">
 <return alias="c"
 class="com.hibernatebook.legacy.Client"/>
 SELECT
 id as {c.id},
 'NOT SPECIFIED' as {c.name},
 number as {c.number},
 streetname as {c.streetname},
 town as {c.town},
 city as {c.city}
 FROM
 Client
 WHERE
 id = ?
</sql-query>

</hibernate-mapping>

■ Tip Unfortunately, this technique is not quite as sophisticated as you might hope—the custom SQL will not be

invoked in general terms. Only if the id is explicitly supplied, as is the case when calling the Session class’s

get() method, will the default handling be overridden in favor of the loader query.

Invoking Stored Procedures
Data outlives application logic. This is a general rule of thumb, and as we can attest, it holds true in
practice. The natural lifespan of a database will tend to see multiple applications. The lifespan of some of
these applications will, in turn, tend to overlap, so that at any one time we expect substantially different
code bases to be accessing the same data.

To resolve such issues, databases usually provide their own programming language to allow
complex business rules to be expressed and enforced within the boundary of the database itself. These
languages are expressed in stored procedures—essentially an API to the database. Often, free-form SQL
access to such a database is denied, and only access through stored procedures is permitted. Barring
errors in the code of the stored procedures themselves, this removes any risk of corruption.

One final advantage of using stored procedures is that when a substantial calculation is required,
the use of a stored procedure can reduce the network traffic involved. For example, if you invoke a stored
procedure to calculate the grand total of a table of accounts, only the request and the result figure would
need to traverse the network. The equivalent client-side implementation would need to acquire the
value to be totaled from every row!

Taking the client example from the “Putting SQL into a Mapping” section, we could replace the SQL
logic in the <sql-insert> tag with a call to a suitable stored procedure. The callable attribute is set to
true to indicate that Hibernate needs to issue a call to a stored procedure instead of a standard query
(see Listing A-11).

http://

APPENDIX A ■ MORE ADVANCED FEATURES

272

Listing A-11. Mapping a Call to the Stored Procedure

<sql-insert callable="true">
 {call insertClient(?,?,?,?,?,?)}
</sql-insert>

In the stored procedure definition (see Listing A-12), you will note that the order of the parameters
to be passed in has been tailored to match the order in which they will be provided by Hibernate.

Listing A-12. The Logic of the Stored Procedure

CREATE PROCEDURE
 insertClient(p_name varchar(32),
 p_number varchar(10),
 p_streetname varchar(128),
 p_town varchar(32),
 p_city varchar(32),
 p_id int)
AS
BEGIN
 INSERT INTO client
 (id,name,number,streetname,town,city,country)
 VALUES
 (:p_id,:p_name,:p_number,:p_streetname,:p_town,:p_city,'UK');
END

By obtaining a JDBC connection from the session, it is of course possible to invoke stored
procedures directly; however, you must be aware that the Hibernate session cache cannot track these
updates.

Events
Hibernate 3 actually implements most of its functionality as event listeners. When you register a listener
with Hibernate, the listener entirely supplants the default functionality.

If you look at the methods of the SessionImpl class, which is the internal Hibernate implementation
of the Session interface, you’ll see why this is the case. Most of the methods have a form very similar to
that shown in Listing A-13.

Listing A-13. The Implementation of a Typical Method in SessionImpl

 private void fireSaveOrUpdate(SaveOrUpdateEvent event) {
 errorIfClosed();
 checkTransactionSynchStatus();
 SaveOrUpdateEventListener[] saveOrUpdateEventListener =

http://

APPENDIX A ■ MORE ADVANCED FEATURES

273

listeners.getSaveOrUpdateEventListeners();
 for (int i = 0; i < saveOrUpdateEventListener.length; i++) {
 saveOrUpdateEventListener[i].onSaveOrUpdate(event);
 }
 }

The listeners field is an instance of SessionEventListenerConfig, which provides the requested
event listener, or the default if none is specified. So, if your event listener is provided and doesn’t call the
default one, nothing else can.

Event listeners are always registered globally for the event that they handle. You can register them in
the configuration file or programmatically. Either way, you will need to map your implementation of one
of the interfaces to the associated types, which you can look up in Table A-1. (The names are almost—
but not quite—standardized.)

Table A-1. The Listener Names and Their Corresponding Interfaces

Type Name Listener

auto-flush AutoFlushEventListener

delete DeleteEventListener

dirty-check DirtyCheckEventListener

evict EvictEventListener

flush FlushEventListener

flush-entity FlushEntityEventListener

load LoadEventListener

load-collection InitializeCollectionEventListener

lock LockEventListener

merge MergeEventListener

persist PersistEventListener

post-delete PostDeleteEventListener

post-insert PostInsertEventListener

post-load PostLoadEventListener

post-update PostUpdateEventListener

http://

APPENDIX A ■ MORE ADVANCED FEATURES

274

Continued

Type Name Listener

pre-delete PreDeleteEventListener

pre-insert PreInsertEventListener

pre-load PreLoadEventListener

pre-update PreUpdateEventListener

refresh RefreshEventListener

replicate ReplicateEventListener

save-update SaveOrUpdateEventListener

So, for example, your listener for the SaveOrUpdateEvent is mapped to the type name save-update,

must implement the SaveOrUpdateEventListener interface, and would normally have been implemented
by the DefaultSaveOrUpdateEventListener class. It is wise to follow a similar convention with your own
naming, so your mapping file listener entry might read like this:

<listener type="save-or-update"
 class="com.hibernatebook.advanced.BookingSaveOrUpdateEventListener"/>

Alternatively, a programmatic registration of the same event would be given thus:

Configuration config = new Configuration();
config.setListener("save-update", new BookingSaveOrUpdateEventListener());

Because they override the default behavior, events are suitable for situations in which you want to
fundamentally change the Session’s behavior—particularly if you want to prevent a certain event from
being processed. Probably the best example of this requirement is in authorizing access to the database,
and, in fact, Hibernate provides a set of event listeners for just this purpose. The four events listeners in
question override the PreDelete, PreUpdate, PreInsert, and PreLoad listeners. The logic in each case (in
pseudocode) runs something like this:

if(user does not have permission) throw RuntimeException
Invoke default listener…

Because events are invoked in the same thread as the user’s call to the session, the result of an
exception in the first step will be an exception (actually a security exception) as the unprivileged user
carries out the relevant operation.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

275

To enable policy configuration of security, you would add the following:

<listener type="pre-delete"
 class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update"
 class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert"
 class="org.hibernate.secure.JACCPreInsertEventListener"/>
<listener type="pre-load"
 class="org.hibernate.secure.JACCPreLoadEventListener"/>

An Example Event Listener

Before we get stuck in a simple example, a word of caution: events are very much an exposed part of the
inner workings of the Session. While this is ideal for something requiring the level of interference of a
security tool, you will not need this for most purposes. Listing A-14 is more in the nature of an illustrative
“hack” than a real solution. In a real application, you would probably solve this particular problem either
within the body of the application, by using interceptors, or by using triggers.

Listing A-14 shows how an event listener could be used to prevent the booking of certain seats from
being persisted to the database in a concert hall ticket booking application (we revisit this example
application in a little more detail with a slightly more realistic scenario in the later section,
“Interceptors”).

Listing A-14. Programmatically Installing an Event Listener

public class EventExample {
 public static void main(String[] args) {
 Configuration config = new Configuration();

 // Apply this event listener (programmatically)
 config.setListener("save-update", new BookingSaveOrUpdateEventListener());

 SessionFactory factory = config.configure().buildSessionFactory();
 Session session = factory.openSession();

 Transaction tx = session.beginTransaction();

 // Make our bookings... seat R1 is NOT to be saved.
 session.saveOrUpdate(new Booking("charles","R1"));
 session.saveOrUpdate(new Booking("camilla","R2"));

 // The confirmation letters should not be sent
 // out until AFTER the commit completes.
 tx.commit();
 }
}

Our example is only going to implement the SaveOrUpdateEventListener interface. You will notice
that in Listing A-14, the original calls to save() have been replaced with calls to saveOrUpdate(). There is
a close correspondence between the methods on the Session interface and the event listeners with

http://

APPENDIX A ■ MORE ADVANCED FEATURES

276

similar names. A call to save() will not invoke saveOrUpdate(), and vice versa. Try using the save()
method in the EventExample, and you will see that the BookingSaveOrUpdateListener is not invoked. In
Listing A-15, we present the logic of the listener registered in Listing A-14.

Listing A-15. The Implementation of an Event Listener

package com.hibernatebook.advanced.events;

import java.io.Serializable;

import org.hibernate.HibernateException;
import org.hibernate.event.SaveOrUpdateEvent;
import org.hibernate.event.def.DefaultSaveOrUpdateEventListener;

public class BookingSaveOrUpdateEventListener
 extends DefaultSaveOrUpdateEventListener
{
 public Serializable onSaveOrUpdate(SaveOrUpdateEvent event)
 throws HibernateException {
 if(event.getObject() instanceof Booking) {
 Booking booking = (Booking)event.getObject();
 System.out.println("Preparing to book seat " + booking.getSeat());

 if(booking.getSeat().equalsIgnoreCase("R1")) {
 System.out.println("Royal box booked");
 System.out.println("Conventional booking not recorded.");

 // By returning null instead of invoking the
 // default behavior‚ we prevent the invocation
 // of saveOrUpdate on the Session from having
 // any effect on the database!
 return null;
 }
 }

 // The default behavior:
 return super.onSaveOrUpdate(event);
 }
}

Interceptors
Interceptors are privy to a blow-by-blow account of what is going on as Hibernate carries out its duties.
While you can listen in, you can only make limited changes to the way in which Hibernate actually
behaves. This is the common requirement; unless you are making substantial changes to the persistence
behavior, you will usually want only to track what is going on.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

277

Financial packages often require considerable auditing information to be maintained to prevent
fraud and aid accountability. Auditing is a natural candidate for implementation as an interceptor, as it
would normally require that no changes be made to the persistence process at all.

The question that usually arises when discussing interceptors is “why not use triggers?” Triggers
should never embody application logic, only business logic. If any application is going to have audit-free
access to the database, you cannot implement the auditing in triggers. Worse, the triggers may not have
access to the user information that’s needed. In most multi-tier situations, the need to pool the database
connections precludes establishing individual user logins to the database. So, for example, the trigger
would only know that a user with the login “MonolithicApplication” carried out an update of last year’s
sales figures—not that it was carried out by, say, Jim from accounts, which is who the auditors are likely
to be interested in! Table A-2 summarizes the points in the application life cycle at which the various
methods will be invoked.

Table A-2. The Interceptor Methods

Name When Invoked Comments

afterTransactionBegin() Invoked immediately after a call
to begin() on a Transaction
object retrieved from the
Session object.

This method can change the
state of the transaction—for
example, it can call
rollback().

afterTransactionCompletion() Invoked immediately after the
completion of a transaction.

beforeTransactionCompletion() Invoked immediately prior to
the completion of a transaction.
This method can change the
state of the transaction—for
example, it can call rollback().

findDirty() Invoked during calls to flush(). This allows the saving of
changes to attributes to be
prevented or forced.

getEntity() Invoked when an entity not in
the Session object’s own cache
is requested by its identifier.

getEntityName() Invoked when the Session
object needs to determine the
name of a given entity.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

278

Continued

Name When Invoked Comments

instantiate() Invoked when the Session object needs to
create an entity instance. Because the
“empty” object can be created here, this
allows Hibernate (in legacy applications,
for example) to use entities that do not
have a default constructor.

isTransient() Invoked when the Session object needs to
determine whether an entity it has been
asked to persist is transient—for example,
during calls to saveOrUpdate().

onDelete() Invoked before an object is deleted. The object’s state should not be
tampered with at this point.

onFlushDirty() Invoked during a call to flush() after
entities have been determined to be dirty.
(If the entities are not dirty, then there are
no changes to be persisted and Hibernate
has no actions to perform—therefore, there
is no general case interceptor, and this
interceptor will not be invoked if the
entities are clean.)

onLoad() Invoked immediately before an entity
object is populated from the database.

The loading can be overridden
(by returning false), and the
instantiated but uninitialized
object is available if
supplementary initialization
from the listener is needed.

onSave() Invoked before an object is saved. This permits the state of the
object to be changed
immediately before it is saved.

postFlush() Invoked after the Session object is flushed,
if and only if the Session object had to
carry out SQL opera-tions to synchronize
state with the database.

preFlush() Invoked immediately before the Session
object is flushed.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

279

An Example Interceptor

To illustrate how all this works in practice, we will create a simple interceptor from scratch. While the
auditing example is a good one, it is rather too involved for our demonstration. Instead, we will consider
a concert hall seat-booking system (the entity to represent an entity is shown in Listing A-16) for which
the details of bookings will be sent out to customers as they are pushed into the database.

Listing A-16. The Booking POJO

package com.hibernatebook.advanced.events;

public class Booking {
 public Booking(String name, String seat) {
 this.name = name;
 this.seat = seat;
 }

 Booking() {
 }

 protected String getName() {
 return name;
 }

 protected void setName(String name) {
 this.name = name;
 }

 protected String getSeat() {
 return seat;
 }

 protected void setSeat(String seat) {
 this.seat = seat;
 }

 private String seat;
 private String name;
}

Interceptors have to override the org.hibernate.Interceptor interface. You can set a global
interceptor for the configuration (see Listing A-17), or you can apply interceptors on a per-session basis.
You have to install the interceptor programmatically—there is no syntax for specifying this in the
Hibernate configuration file.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

280

Listing A-17. Installing a Global Interceptor

package com.hibernatebook.advanced.events;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;

public class MailingExample {
 public static void main(String[] argv) {
 Configuration config = new Configuration();

 // Apply this interceptor at a global level...
 config.setInterceptor(new BookingInterceptor());

 SessionFactory factory = config.configure().buildSessionFactory();
 Session session = factory.openSession();

 // A local interceptor could alternatively
 // be applied here:
 // session.setInterceptor(new BookingInterceptor());

 Transaction tx = session.beginTransaction();

 // Make our bookings...
 session.save(new Booking("dave","F1"));
 session.save(new Booking("jeff","C3"));

 // The confirmation letters should not be sent
 // out until AFTER the commit completes.
 tx.commit();
 }
}

The interceptor that we are applying is going to capture the information from the Booking objects
that we are storing in the database. Listing A-18 demonstrates the basic mechanism, but it is only a toy
example. We will discuss some of its deficiencies in a moment.

Listing A-18. An Interceptor Implementation

package com.hibernatebook.advanced.events;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;

import org.hibernate.CallbackException;
import org.hibernate.EntityMode;

http://

APPENDIX A ■ MORE ADVANCED FEATURES

281

import org.hibernate.Interceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;

public class BookingInterceptor implements Interceptor {

 public BookingInterceptor() {
 }

 private ThreadLocal stored = new ThreadLocal();

 public void afterTransactionBegin(Transaction tx) {
 stored.set(new HashSet());
 }

 public void afterTransactionCompletion(Transaction tx) {
 if (tx.wasCommitted()) {
 Iterator i = ((Collection) stored.get()).iterator();
 while (i.hasNext()) {
 Booking b = (Booking) i.next();
 sendMail(b);
 }
 }
 stored.set(null);
 }

 public boolean onSave(Object entity, Serializable id,
 Object[] state, String[] propertyNames, Type[] types)
 throws CallbackException {
 ((Collection) stored.get()).add(entity);
 return false;
 }

 private void sendMail(Booking b) {
 // Here we would actually send out the e-mail
 System.out.print("Name: " + b.getName());
 System.out.println(", Seat: " + b.getSeat());
 }

 public void beforeTransactionCompletion(Transaction tx) {
 }

 public int[] findDirty(Object entity, Serializable id,
 Object[] currentState, Object[] previousState,
 String[] propertyNames, Type[] types) {
 return null;
 }

 public Object getEntity(String entityName, Serializable id)
 throws CallbackException {
 return null;
 }

http://

APPENDIX A ■ MORE ADVANCED FEATURES

282

 public String getEntityName(Object object) throws CallbackException {
 return null;
 }

 public Object instantiate(String entityName, EntityMode entityMode,
 Serializable id) throws CallbackException {
 return null;
 }

 public Boolean isTransient(Object object) {
 return null;
 }

 public void onDelete(Object entity, Serializable id, Object[] state,
 String[] propertyNames, Type[] types) throws CallbackException {
 }

 public boolean onFlushDirty(Object entity, Serializable id,
 Object[] currentState, Object[] previousState,
 String[] propertyNames, Type[] types) throws CallbackException {
 return false;
 }

 public boolean onLoad(Object entity, Serializable id,
 Object[] state, String[] propertyNames, Type[] types)
 throws CallbackException {
 return false;
 }

 public void postFlush(Iterator entities) throws CallbackException {
 }

 public void preFlush(Iterator entities) throws CallbackException {
 }
}

Our interceptor makes use of the afterTransactionBegin() method to prepare to collect booking
details, the onSave() method to collect them, and the afterTransactionCompletion() method to report
the successful bookings. This sequence guarantees that bookings will not be reported to the users until
after we are confident that they have been retained in the database.

A minor deficiency of this implementation is that the e-mail is sent outside the transaction—a
system failure immediately after the commit completes could cause the e-mail not to be sent. In our
scenario, this is unimportant, because e-mail is already an unreliable transport mechanism; but there
are other situations, such as the auditing example discussed earlier, in which this may be unacceptable.
In these cases, interception may not be appropriate, and an integrated solution tied into a two-phase
commit transaction may be required.

More importantly, our example assumes that the Booking object will not be altered between its
addition to the set of e-mails to be sent and their transmission. This is an extremely dangerous
assumption! A safer approach would be to create copies of the Booking objects or, better yet, to copy
their data into a more appropriate object, as shown in Listing A-19.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

283

Listing A-19. A Better Approach to Preparing the Mailshot

 public boolean onSave(Object entity, Serializable id,
 Object[] state, String[] propertyNames, Type[] types)
 throws CallbackException
 {
 if(entity instanceof Booking) {
 Booking booking = (Booking)entity.
 Mailshot mailshot = new Mailshot(booking.getName(), booking.getSeat());
 ((Collection) stored.get()).add(mailshot);
 }
 return false;
 }

Finally, we don’t necessarily have enough information to prepare our mailshot—the e-mail address
may be missing. If the name field actually represents the e-mail address, then we are fine; but if it
represents a key into other objects, and hence tables in the database, then we have to be careful. It is
possible to write database logic from within an interceptor, but the risk of accidentally recursing back
into your interceptor logic is high, so we don’t recommend it. It’s slightly less tricky if you are only using
a session-scoped interceptor, but there are probably safer ways to achieve the same end result.

In this example, the methods that we are not using have been given a default implementation. You
will note that some of these methods return null or false. These methods are permitted to change the
data that is preserved or returned by the session. Returning to the onSave() method, we will consider
another possible implementation, shown in Listing A-20.

Listing A-20. Changing the Data from Within an Interceptor

 public boolean onSave(Object entity, Serializable id,
 Object[] state, String[] propertyNames, Type[] types)
 throws CallbackException
 {
 if(entity instanceof Booking) {
 state[1] = "unknown";
 }
 return true;
 }

Here we are altering the state array. This contains the values of each of the objects’ fields that are to
be stored (in the order defined in the mapping file). In our Booking class, field 0 is the id, field 1 is the
name, and field 2 is the seat—so here we have changed the name value to be preserved in the database.
Returning true causes Hibernate to reflect this change when it saves the data. If we left the return flag as
false, nothing would happen when the method was called.

The temptation is to assume that returning false guarantees the safety of the data to be preserved,
but, in fact, this is not the case. The state array represents copies of the data to be preserved—but we
have also been given access to the actual object (entity) that contains the original values. If you amend
the fields of the entity before returning, the flag will not prevent your changes from being made. Listing
A-21 illustrates how this might occur.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

284

Listing A-21. Changing the Data in an Unorthodox Way

public boolean onSave(Object entity, Serializable id,
 Object[] state, String[] propertyNames, Type[] types)
 throws CallbackException
 {
 if(entity instanceof Booking) {
 Booking booking = (Booking)entity;
 booking.setName("unknown");
 }
 // The flag can't save us from ourselves here!
 return false;
 }

Again, this is probably not the best way to make the changes, but it can be useful when you already
have a considerable body of logic prepared to process the entity type.

Overriding the Default Constructor
Occasionally, you will find that it is necessary to persist a POJO that has no default constructor. Usually
you will have access to the source code, and should just make the change directly. Occasionally,
however, you may find that you are working with classes for which the source code is not available—or
that you are working with large bodies of generated objects for which it is extremely inconvenient to
manage changes made to the source code. In these circumstances, it is possible to use an interceptor to
replace the default object-creation logic.

This technique can be used as long as you have some way of obtaining or applying default values for
the parameters of the POJO’s non-default constructor. Listing A-22 shows an example of the use of this
technique to instantiate a POJO whose only constructor demands a String parameter.

Listing A-22. Invoking a non-Default Constructor

private static class OverrideCtor implements Interceptor {

 public Object instantiate(
 String entityName,
 EntityMode entityMode,
 Serializable id)
 throws CallbackException
 {
 if(entityName.equals(MissingDefaultCtorClass.class.getName())) {
 // My call to CTor
 return new MissingDefaultCtorClass("NOT SET");
 } else {

http://

APPENDIX A ■ MORE ADVANCED FEATURES

285

 // Some other class - continue to default handling
 return null;
 }
 }

 // ... the remaining default method declarations...
}

Hibernate Search
Hibernate Search allows you to easily use the Apache Lucene search engine with your Hibernate object
model. Lucene is a freely available open source search engine that was built for the text world; it analyzes
large quantities of text and creates a search index. Lucene itself is a component that provides core search
functionality, including analyzing, indexing, and querying. Your application integrates with Lucene to
provide content to index and queries to run against the index. This could be frustrating when working
with Hibernate because there is a mismatch between Lucene and Java objects that use Hibernate,
similar to the object/relational mismatch.

The Hibernate Search project attempts to bridge that gap by working with your Java object model
directly. You can add Hibernate Search annotations to your POJOs to tell Lucene which object fields
should be indexed. As you update the database through Hibernate transactions, Lucene will receive
events telling it to update its search index.

Although you could use your database’s native full-text search functionality to provide a small
fraction of what Lucene does, Lucene excels in its query parsing and field weighting—features that can’t
be easily built on top of full-text search.

If you want to get started with Hibernate Search, take the time to read Lucene’s excellent
documentation first; this will help you understand the concepts behind Lucene, such as the query
parser, analyzers, and indexing. After you configure your application to use Hibernate Search and add
search-specific annotations to your entities, the API for querying your data with Hibernate Search is
straightforward:

1. Get a FullTextSession from the Search class, which is similar to retrieving a
Session object from the SessionFactory.

2. Issue Lucene-syntax query string to create a Lucene query object.

3. Use Hibernate Search’s FullTextSession object to create a Hibernate query
object from the Lucene query.

You end up with the same Hibernate query object that you can create with HQL or Criteria; in
essence, Lucene is now on the same level as HQL or Criteria for search and retrieval. The major
difference is that Lucene maintains an index, and you have to tell Lucene which entities to index. You do
that with the @Indexed annotation on a class. Similarly, you indicate which fields to index with the @Field
annotation.

Listing A-23 shows how simple search can be once the database is properly indexed; this listing
presents some example code that searches our geonames database from Chapter 12 for places where the
names contain either “McKinley” or “Denali”.

http://

APPENDIX A ■ MORE ADVANCED FEATURES

286

Listing A-23. A Lucene Search Example

 SessionFactory factory =
 new AnnotationConfiguration().configure(
 "hibernate.search.cfg.xml").buildSessionFactory();
 Session session = factory.openSession();

 FullTextSession fullTextSession =
 Search.getFullTextSession(session);
 Transaction tx = fullTextSession.beginTransaction();

 QueryParser queryParser = new QueryParser("name",
 new StandardAnalyzer());
 org.apache.lucene.search.Query luceneQuery =
 queryParser.parse("name:Denali OR McKinley");
 org.hibernate.Query hibernateQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Place.class);

 List<Place> results = (List<Place>) hibernateQuery.list();
 for (Place place : results)
 {
 System.out.println(place.getName());
 }

 tx.commit();
 session.close();

Summary
In this appendix, we have looked at alternative mechanisms for accessing Hibernate entities. We have
shown how SQL and stored procedures can be integrated into the Hibernate environment, and we have
discussed how events and listeners provide internal access to Hibernate’s persistence mechanism.

http://

APPENDIX B

■ ■ ■

287

Hibernate Tools

The Hibernate Tools toolset really consists of two quite distinct tools: a set of plug-ins to enhance the
Eclipse integrated development environment (IDE), and a set of tasks for the Ant build tool. They are
packaged together because they share significant chunks of implementation despite their very different
façades. We have already used one of the Ant tasks from Hibernate Tools in earlier chapters to generate
our database schemas. In this appendix, we will discuss the other available tasks. First, however, we will
discuss the use of the toolset as a plug-in for Eclipse.

It is beyond the scope of this book to attempt to teach you how to use Ant or Eclipse (although we
do walk you through some of the less common configuration details). To get the most from this
appendix, you should be familiar with both Ant and Eclipse—although it is possible to use both parts of
the plug-in independently.

General information on the latest versions of Hibernate Tools, any changes or new features, the
online documentation, and the locations of the various downloads are available from the Hibernate web
site under the Hibernate Tools heading (www.hibernate.org).

The Eclipse Plug-In
Eclipse is one of the best-known and liked Java development environments to emerge in recent years.
Eclipse evolved originally as a proprietary component of IBM’s WebSphere Application Developer
(WSAD) environment. IBM chose to release Eclipse, the IDE, as an open source application. Thus, the
open source Eclipse IDE emerged as a mature product virtually overnight.

Eclipse is designed as a core application, the Eclipse platform, extended by various plug-ins,
typically including Java Development Tools (JDT). For our purposes, we assume that you will start out
with this combination (known rather confusingly as the Software Development Kit, or SDK) as the basis
for installing Hibernate Tools. At the time of writing, the latest version of the SDK is 3.5.2.

■ Note Eclipse can be downloaded from the Eclipse Foundation web site (www.eclipse.org).

The Hibernate team is now employed by JBoss, which provides a branded version of Eclipse that
includes the Hibernate plug-ins, including several JBoss-specific ones. This can be purchased and
downloaded from the JBoss web site (www.jboss.com). If you choose to use this version of Eclipse, then
you can omit the installation steps described in the next section. You have two choices for installing the

http://www.hibernate.org
http://www.eclipse.org
http://www.jboss.com
http://

APPENDIX B ■ HIBERNATE TOOLS

288

Eclipse plug-in: you can either download the Hibernate Tools plug-in and install it manually into
Eclipse; or you can use Eclipse’s software installer to have Eclipse download the plug-in and install it.

Downloading the Hibernate Tools Plug-in

At the time of writing, Hibernate Tools is at version 3.3.0. However, the version of Hibernate Tools for
download at www.hibernate.org is 3.2.4. We had to download the latest version of Hibernate Tools from
the JBoss Tools 3.1 Download Page (www.jboss.org/tools/download/stable/3_1_GA.html). These tools
target version 3.5 of the Eclipse IDE.

Installing the Plug-In

We will now walk you through the process of installing the plug-in using Eclipse’s standard updates
feature. Here are the steps to follow:

1. Select the Install New Software... menu option from the Help menu, and you
will see the Available Software dialog.

2. Click the Add... button shown in the upper right of the Available Software
dialog (see Figure B-1) to add the site from which you will obtain the Hibernate
Tools plug-in.

Figure B-1. Adding a plug-in update site to Eclipse

http://www.hibernate.org
http://www.jboss.org/tools/download/stable/3_1_GA.html
http://

APPENDIX B ■ HIBERNATE TOOLS

289

3. You will now need to enter the URL for the site from which Eclipse will obtain
the plug-in and an informal name for the site into the dialog shown in Figure
B-2. You will use the JBoss Tools site (http://download.jboss.org/jbosstools/
updates/JBossTools-3.1.0.GA); note that this URL is subject to change as new
versions are released.

Figure B-2. Specifying the new download site

4. You will then be returned to the Available Software dialog shown in Figure B-3,
where you can see which plug-ins are available from the JBoss Tools web site.

Figure B-3. The available plug-ins for the JBoss Tools 3.1

http://download.jboss.org/jbosstools/updates/JBossTools-3.1.0.GA
http://download.jboss.org/jbosstools/updates/JBossTools-3.1.0.GA
http://

APPENDIX B ■ HIBERNATE TOOLS

290

5. The Hibernate Tools plug-in is available in several different categories. Expand
the “All JBoss Tools” option and select the check box next to Hibernate Tools.
You can also take a shortcut and type Hibernate into the box that says “type
filter text”; and the Hibernate Tools plug-in will show up under several
categories. You only need to select the Hibernate Tools check box once.

6. Click Next. Eclipse will calculate dependencies and requirements. You will see
a list of features similar to that in Figure B-4 showing what is to be installed.

Figure B-4. Reviewing the install details for the Hibernate Tools plug-in

7. Click Next, and Eclipse prompts you to accept the license that applies to the
plug-in features. You must accept the terms and conditions of the license to
proceed beyond this step.

8. Once you have checked the Accept radio button, click the Finish button to
proceed. Eclipse will download and install the plug-ins. This process can run
in the background while you use Eclipse; note that it can take a while on a slow
connection.

http://

APPENDIX B ■ HIBERNATE TOOLS

291

■ Note Currently, the Hibernate Tools plug-in is not digitally signed. Eclipse warns you of this. In principle, it is

possible that a malicious third party with access to servers between you and the Eclipse download site could

substitute their own code for the Eclipse tools. In practice this is unlikely, but it is to be hoped that the Hibernate or

JBoss teams will start code signing their final releases. To proceed with the plug-in installation, you must accept

the verification prompt.

9. Finally, Eclipse prompts you to restart or apply the changes directly. Generally
when installing Eclipse plug-ins, it is safest to select the restart option. Though
we know of no specific problems with the Hibernate Tools, we recommend
choosing restart here anyway—it won’t be necessary to reboot the PC, though!

At this point, you will have successfully completed the installation of the Hibernate Tools plug-in.
There will be no immediate visible change to the layout of the workbench—however, as you will see in
the next step, there should be some new options for you, accessible via the various menus—including a
new Eclipse perspective onto some of the Hibernate workbench views.

The Eclipse plug-in installation process is now quite streamlined, so it is unlikely that you will
encounter any serious problems. However, if you do have problems, first check that you have the correct
versions of the downloads described here, and check that you have followed the installation steps as
given previously. If you are still encountering problems, you should search the Tools forum on the
Hibernate Forums page (www.hibernate.org) to see if other users have encountered the same problems.
You should also check the Hibernate bug database (www.hibernate.org/) to see if there are known
problems that match yours.

The Boilerplate Project Configuration

Now that the tools plug-in has been installed, you are ready to set up a project that will take advantage of
it. As a first step, we recommend configuring a user library to make adding the appropriate JAR files to
new projects more straightforward and to make the resulting project view less cluttered.

You should be aware that Eclipse user libraries are not a Java standard, and do not exist as
independent entities. They are merely a grouping of paths to JAR files to make configuring Eclipse
projects more convenient. The user library will not reflect changes made to the underlying JAR files
themselves (moving or deleting them, for instance).

Because user libraries belong to the Eclipse workspace, rather than to the individual projects, you
can create a library from the Preferences menu before you have created any projects.

You should then drill down through the tree view to select the Java Build Path User Libraries node.
Initially there are no user libraries configured. You will need to click the New button to create

your own.
You will be prompted for a name for the library. The first library will contain the JAR files for the

Hibernate core. We recommend including the full version number in the library name so that you will be
able to readily distinguish between versions if you are managing more than one Eclipse project in the
same workspace over an extended period of time. (Hibernate updates come thick and fast!)

The library name will be added to the list of libraries, but it does not yet contain any JAR files. You
should select the library name in the list, and then click the Add JARs button.

You now want to add all the core Hibernate JAR files to the library. You can add multiple files, but
not directories, so this must be carried out in a few steps.

http://www.hibernate.org
http://www.hibernate.org
http://

APPENDIX B ■ HIBERNATE TOOLS

292

You will be presented with a normal file-selection dialog. You should navigate to your core
Hibernate install directory and select the hibernate3.jar file.

You should select the library name and again click Add Jars, but now navigate to each subdirectory
under the lib subdirectory beneath the core Hibernate install directory. Select all the JAR files in each
directory and add them to the library.

Figure B-5 shows part of an exploded view of the resulting user library.

Figure B-5. The Hibernate user library

Having created it initially, Hibernate allows you to export your user library configuration so that it
does not need to be created afresh on each machine that you work on, or when creating a new Eclipse
workspace.

http://

APPENDIX B ■ HIBERNATE TOOLS

293

You should now create a new Java project called ToolsExample. The source code for the example is
available from the Apress web site (www.apress.com). Copy the files into the ToolsExample folder in the
workspace directory, and refresh the project.

You now need to add your Hibernate user library to the project. Select the Build Path ➤ Add
Libraries context menu option on the project. You will be presented with a list of library types. Select the
User Library option from the list, and click Next.

This will in turn present you with a list of the available user libraries. Check the box next to the
Hibernate library that you configured previously, and click Finish.

The libraries will be added to the list in the Libraries tab of the Java Build Path dialog; you should
click OK to accept the changes to the path.

You will also need to add your JDBC driver and the Simple Logging Facade for Java (SLF4J)
implementation to your Java project; do this using the Add External Archives... command under the
Build Path item on the project’s context menu.

So far in this section, we have configured a Java project in a conventional way. None of the steps we
have taken so far would be unusual in preparing to use a third-party library such as the Spring
Framework. The next few steps open a Hibernate Console perspective that will allow you to manage the
Hibernate-specific aspects of your project.

To open a new Eclipse perspective, you can either select the Window ➤ Open Perspective menu
option or click the Open Perspective icon.

Select the Other option from the resulting menu. This will present you with the list of available
perspectives. Select the Hibernate option from the resulting dialog.

Much as when entering the Eclipse debugging perspective, the layout of Eclipse will change, with
various Hibernate-specific views being opened (although you will still have access to the Package
Explorer as one of the tabbed options behind the new Hibernate configuration view).

To switch between the perspectives, you can select the Java or Hibernate perspective icons on the
top right of the main Eclipse window (you may need to adjust the menu layout slightly if these are
obscured). Figure B-6 shows the icons for the Hibernate, Java, and Java EE perspectives, with the
Hibernate perspective selected.

Figure B-6. The Eclipse perspective icons

Using the Hibernate Console

With the project set up and the Hibernate perspective added to Eclipse, you can now start using some of
the Hibernate Tools plug-in features more directly.

http://www.apress.com
http://

APPENDIX B ■ HIBERNATE TOOLS

294

Creating a Hibernate Console Configuration

The Hibernate Console represents a view onto the Hibernate object store. It therefore needs the same
basic configuration information as any other client of Hibernate. You will need a Hibernate XML
configuration file and/or a properties file (see Listing B-1).

Listing B-1. The Configuration File Used in Our Example: hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!-- The database settings -->
 <property name="hibernate.connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="hibernate.connection.url">
jdbc:hsqldb:file:/workspace/ToolsExample/db/annotationsdb;shutdown=true
 </property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"/>
 <property name="hibernate.connection.pool_size">0</property>
 <property name="show_sql">false</property>

 <!-- The class mappings for our example -->
 <mapping class="com.hibernatebook.tools.Note"/>
 <mapping class="com.hibernatebook.tools.Notepad"/>
 </session-factory>
</hibernate-configuration>

If you are using the HSQLDB database in conjunction with Hibernate Tools, we recommend that
you use fully qualified path names (shown in bold in the preceding code) to avoid possible clashes
between the working directories and classpaths used by Ant, the Eclipse IDE, and the Hibernate
Console. In our example, we will be working with the annotations-based mappings, so we use the
mapping element with a class attribute to determine the mapped classes. However, the console
configuration will automatically find any correctly annotated entity classes using reflection, so it is
possible to omit these entries.

If you choose to use XML-based mappings, you can use the file attribute to specify the mapping
file instead, or specify the paths to the mapping files in the Hibernate configuration entry used by the
Hibernate Console.

Hibernate Tools provides a wizard to create the Hibernate configuration entry. To use the wizard,
select the File ➤ New ➤ Hibernate Console Configuration menu option.

This will bring up the Create Hibernate Console Configuration dialog page. In the first part of the
form shown in Figure B-7, set a suitable name for this configuration, choose the ToolsExample project as

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

APPENDIX B ■ HIBERNATE TOOLS

295

the project, and also set the path to the Hibernate configuration file. You should also choose
Annotations as the type, as you will be using annotations for your mappings.

After filling in the form, you should see the error message about the classpath disappear.

Figure B-7. The Main Hibernate Console Configuration settings

The middle section of the form shown in Figure B-8 allows you to specify mapping files for inclusion
in the console configuration that are not explicitly included in the configuration file. You would add
entries here if your application added these options to the configuration at run time instead of drawing
the information from the configuration file (for example, if it only used the properties file for its other
configuration settings).

http://

APPENDIX B ■ HIBERNATE TOOLS

296

Figure B-8. The additional mapping file settings

The other pieces of the form allow you to specify settings that are also contained in your
hibernate.cfg.xml file, so you do not need to set them through the form. For example, you do not need
to set the database dialect to use through the form.

Click the Finish button, and you should now be able to see the console configuration Name (we
used ToolsExample). You will need to ensure that the Note and Notebook Java class files exist in your
source directory before using the Hibernate Console. They are included in the source code for this book,
which you can download from the Apress web site (www.apress.com).

■ Warning You may run into problems with Eclipse/Hibernate Tools not being able to find classes in your

classpath that are in your project. The most likely problem is that the compiler is set up to use a more recent

version of Java (such as Java 6), while the Eclipse IDE is running on an older version of Java (such as Java 5). To

fix the problem, you can either change the Java version to compile to in your Eclipse Project settings, or you can

tell Eclipse to run on a more recent version of Java (consult the Eclipse Documentation for your platform).

http://www.apress.com
http://

APPENDIX B ■ HIBERNATE TOOLS

297

Generating the Schema

Expand the ToolsExample entry that you created in the console configuration window. There will be
three nodes beneath it: Configuration, Session Factory, and Database (see Figure B-9).

Figure B-9. The three nodes beneath ToolsExample

The third of these is a view of the tables in the database that correspond to the entities mapped in
your console configuration (either explicitly or via the hibernate.cfg.xml file). Unless your database
contains preexisting tables, the database view will be empty when you attempt to drill down into it, as
shown previously in Figure B-9.

The Hibernate Console now has all of the entity mapping and database connection information. It
therefore offers a Run SchemaExport context menu option (accessed from the ToolsExample node) to
generate the appropriate tables.

■ Caution There are currently no safeguards built in here. If the configured database user has table deletion

privileges, running SchemaExport in this way will drop and re-create all of your tables with no further warning!

If you select Run SchemaExport from this menu, the database view will be updated to reflect the
changes, and you will be able to drill down to view the individual table column names and data types, as
shown in Figure B-10.

http://

APPENDIX B ■ HIBERNATE TOOLS

298

Figure B-10. A column-level view of the newly generated database

This view does not offer the sort of comprehensive access to the database metadata that is available
from some tools, and it does not permit you to directly change any of the features. It does, however, offer
a useful visual confirmation that the appropriate tables and columns have been created.

Running the Test Program

For the purpose of generating some test data for manipulation in the remainder of this section, we have
created a test application (available with the other source code for this book on the Apress web site) to
populate the database with some suitable records. Now that you have created an appropriate database
schema, it is possible to run this application.

Switch back to the Java perspective and add a new Java Application run configuration for the
PopulateNotes class.

Now run the application. You should see the following output, which confirms that a Notepad entity
and 100 associated Note entities have been persisted to the database:

Creating test notepad...
Test notepad created.

You can now switch back to the Hibernate Console perspective in order to browse this data.

Browsing the Model

Back in the Hibernate Console perspective, you can access the contents of the object model using the
Session Factory node of the console configuration view. This node is named after the SessionFactory
object created and maintained internally by the Hibernate Eclipse plug-in tools when you drill down
into the console configuration view.

■ Tip If you manage to put the internal SessionFactory object into a bad state, it is possible to close and re-

create it from the configuration view’s context menu when the configuration view is collapsed to a single node.

http://

APPENDIX B ■ HIBERNATE TOOLS

299

Opening the Session factory node, you will see nodes representing each of the mapped classes.
Drilling down further, you can see a representation of the mapped fields and attributes (along with a
graphical representation of the association rules, primary keys, and so on, where appropriate).

If you double-click the mapped class, and then click the Run button in the resulting query window,
all the instances of the class in the database will be retrieved, and a toString representation will be
displayed in the Hibernate Query Result view.

As you can see from Figure B-11, the generated HQL query to produce this information is shown in a
second tabbed pane (further queries will be added as new tabs within this window). The column is
numbered, as no column name can be specified. Note that we have overridden the Note class’s
toString() method to ensure that a human-readable representation of the class contents is displayed in
this view.

Figure B-11. The Hibernate Query Result view of the mapped Noteclass

All results of queries generated manually or automatically through the Hibernate Console
perspective will be displayed in the Hibernate Query Result view.

http://

APPENDIX B ■ HIBERNATE TOOLS

300

Testing HQL Queries

HQL is a powerful way to interact with the database; but traditionally, debugging errors in these queries
has been a long-winded process. Typically, a developer would end up creating a unit test for the query
and then spending considerable time tweaking it into working correctly. Hibernate Tools now provides a
query editor that allows you to prototype your HQL queries and run them against the database without
needing to write any code.

To run an HQL query, select HQL Editor from the context menu for the project in the configuration
view (by default, this is to the left of the main window in the Hibernate Console perspective).

A new HQL editor window will be created. This is an HQL editor with some context sensitivity.
Context sensitivity is activated with the Ctrl+Space key combination, as is usual for Eclipse editors. For
example, enter the following query in the scratch pad editor and press Ctrl+Space:

from Note

This will display a context menu offering the two class names that are legal at this point in the query.
Figure B-12 shows an example of this menu.

Figure B-12. The context-sensitive scratch pad

As you create the query, the corresponding SQL query against the underlying relational database is
updated in the Hibernate Dynamic SQL Preview window shown in Figure B-13.

http://

APPENDIX B ■ HIBERNATE TOOLS

301

Figure B-13. The Hibernate Dynamic SQL Preview window

The generated SQL will be visible whenever the HQL query is syntactically valid, allowing you to
confirm the basic correctness of the HQL and confirm the sanity of the underlying query at the same
time.

Once you have a satisfactory HQL query, it can be executed against the database to validate the
returned results. Enter the following query in the scratch pad window, and then click the green Run
button above the editor window:

select note as Note_Entry
from Note
where id > 10 and id < 20

The view shown in Figure B-14 will list the results of the query. Note that the results have been given
the correct column heading.

Figure B-14. The output from the query

http://

APPENDIX B ■ HIBERNATE TOOLS

302

Query Parameters

While the scratch pad alone is adequate for running stand-alone queries, much of the HQL that you will
use in practice in your applications will be parameterized. Consider the following typical query:

select owner from Notepad where owner = :username

This query uses a named parameter, username, as a placeholder for the actual value. When converted
to SQL, this will become a parameter in a prepared statement, and will not be specified until the
application is actually running.

The Hibernate Console provides the novel feature of allowing you to specify the values of

parameters in Hibernate queries of this type.
1
 This means that you can cut and paste an HQL query from

your code into the scratch pad, and test it there without having to edit any of the parameters themselves.
If you paste the preceding query into a scratch pad window and try to run it as is, the console will log

an appropriate error, warning you that the query parameters have not all been set (currently this appears
in the Hibernate Query Result view). On the right-hand side of the perspective’s default layout, there is a
view called Query Parameters. Adjust the layout so that you can see the three columns within this view,
labeled Name, Type, and Value.

With the query still in the scratch pad, click the icon shaped like the letter P (shown in Figure B-15,
just to the right of the Outline tab). A new row will be added to the view, representing the parameter in
the query. By editing the values in this row, you can change the details of the parameter (both the value
assigned to it and the type of that value).

Figure B-15. Assigning a typed value to the username query parameter

1
 If you’ve ever encountered problems debugging complex SQL queries, in which the process of manually substituting

in parameters disguised the cause of the problem during testing, you will understand why we are extremely
enthusiastic about this ingenious feature!

http://

APPENDIX B ■ HIBERNATE TOOLS

303

Now assume that you edit the query parameter row so that it contains the value “Dave Minter”;
running the query will return results equivalent to those produced by the following code fragment:

Query query = session.createQuery(
 "select owner from Notepad where owner = :username");
query.setString("username","Dave Minter");
List results = query.list();

All the standard Hibernate types are available to you, and the console will log appropriate errors
when you try to execute queries that combine types in inappropriate ways for the object model.

Creating a Mapping Diagram

You can create professional-looking mapping diagrams of your classes and database tables from within
Hibernate Tools. These diagrams are much improved over previous versions of the Hibernate Tools. To
create a mapping diagram, select Mapping Diagram from the context menu of the ToolsExample
console configuration. The mapping diagram may appear a little jumbled at first, but you can drag the
boxes in the diagram around. There are a few options under the View menu to help you create a more
presentable diagram, including a ruler and a grid. There is also an option to use straight lines instead of
routed lines; however, the lines will quickly become confusing in any kind of diagram with more than a
few entities.

After creating a Mapping Diagram from our ToolsExample project and rearranging the boxes, you
have a graphical representation of the classes and database tables in the model (see Figure B-16).

Figure B-16. The Mapping Diagram view of our model

http://

APPENDIX B ■ HIBERNATE TOOLS

304

Generating a Configuration File

Hibernate Tools provides a wizard to aid in the creation of a Hibernate configuration XML file. This
wizard is accessed from the File ➤ New ➤ Hibernate Configuration File menu option from within the
Hibernate Console perspective.

This wizard prompts you to specify a path and file name for the generated configuration file. You
don’t want to overwrite the configuration file used by our sample application, so for this exercise, specify
a file name of hibernate-wizard.cfg.xml in the root of the project directory, as shown in Figure B-17.

Figure B-17. The Create Hibernate Configuration file wizard

Clicking the Next button will then take you to the dialog shown in Figure B-18, in which all the basic
configuration properties can be specified. When possible, a set of default options are provided as combo
box lists. The “Database dialect” field presents the dialects in a more human-readable format, and also
filters the Driver class and Connection URL fields to the likely options.

http://

APPENDIX B ■ HIBERNATE TOOLS

305

Figure B-18. Selecting default values for the configuration file

All the values selected in the drop-down menus can be overtyped if the option you need is not listed.
You can also type in the fully qualified dialect class name instead of choosing from the short names
available from the drop-down list.

At this point, you also have the option of selecting the Create a console configuration check box. If
you do so, the Hibernate Configuration File wizard will pass you to the Hibernate Console Configuration
wizard (and will automatically populate the configuration file field). However, since we’ve already
discussed this earlier in the chapter, leave the check box empty and click Finish.

The Reverse Engineering and Code Generation Tools

The last Hibernate Tools wizard is for the reverse engineering tool. This allows you to extract the schema
information from the database into an XML file. Additional information can be added to this file using a

http://

APPENDIX B ■ HIBERNATE TOOLS

306

tabbed control panel, which allows it to be used in the generation of source code using the Hibernate
Code Generation tool (accessed separately from the wizard).

This wizard is accessed from the File New Hibernate Reverse Engineering File menu option from
within the Hibernate Console perspective.

This then prompts you to specify a path and file name for the generated reverse engineering file.
Select the default file name and location within the ToolsExample project.

When you are done, you have the option of selecting either Finish or Next. If you select Finish, the
wizard will assume that you want to use the details of all the tables in your database when creating the
reverse engineering file. Alternatively, if you click Next, you have the opportunity to specify the
individual tables and columns that should be included.

To choose tables, select ToolsExample from the Console configuration dropdown, and then click
the Refresh button in the lower left-hand corner. We have chosen to include all of the tables (as shown
in Figure B-19) by selecting the PUBLIC schema in the Database tree, and then clicking the Include...
button.

Figure B-19. Selecting the tables to reverse engineer

http://

APPENDIX B ■ HIBERNATE TOOLS

307

Once you click Finish, the reverse engineering file will be generated, and an editor will be opened for
it. This is a tabbed view of the XML file (the last tab shows the XML source code). This allows you to
change the default mappings between the database and Hibernate types, to alter the table and column
details, and to apply additional filters to the file itself that dictate which details will be ignored when
generating output from the reverse engineering file.

We would not recommend trying to get to grips too closely with the reverse engineering tool until
you have some experience in creating mappings manually—the various settings will seem quite opaque
when taken out of context. Once you have created a few simple entity models from scratch, however, the
need for the various options should become clearer.

In order to actually generate output from the tool, you will need to first select a Hibernate Console
Configuration, as shown in Figure B-20.

Figure B-20. Selecting a Hibernate Console configuration

The next step is to create a Hibernate code generation configuration by selecting the Hibernate
Code Generation... submenu from the Run menu, and then selecting a Hibernate Code Generation...
configuration, as shown in Figure B-21.

http://

APPENDIX B ■ HIBERNATE TOOLS

308

Figure B-21. Selecting a HibernateCode Generation... configuration

Press the New button on the toolbar and a new configuration will be created. We will need to make
some changes to the defaults for our code-generation process.

http://

APPENDIX B ■ HIBERNATE TOOLS

309

Figure B-22. The Hibernate Code Generation... configuration defaults

We need to enter a lot of information into this window:

• Change the name to ToolsExampleGenerator.

• Choose ToolsExample for the Console configuration.

• Choose the output directory. Earlier, you created a new directory under the
project root called generated-src.

• Check Reverse engineer the code from JDBC connection.

• Use com.hibernatebook.generated for the Package name.

• Choose the reveng.xml reverse engineering configuration file you just created.
You will add exporters on the next screen.

http://

APPENDIX B ■ HIBERNATE TOOLS

310

The tool does help you out; if it is not ready to run, there will be an error message in the upper-most
part of the window.

Figure B-23. The Hibernate Code Generation... configuration with our entries

Select the Exporters tab. The code generation tool offers several exporting options (for more
information about Hibernate reverse engineering and code generation, see the “Reverse Engineering”
section later in this chapter). The tool can output the following:

• Ordinary POJOs

• POJOs using generics

• POJOs using JPA 2/Hibernate annotations (with or without generics)

• DAO objects

http://

APPENDIX B ■ HIBERNATE TOOLS

311

• XML mapping files

• Generic export using user-defined template files

• Hibernate configuration files

• Database Schema export files

• HTML documentation of the database schema

You will then need to select the types of output to be generated, as shown in Figure B-24. After you
select Run, you will be able to switch to the Java perspective in Eclipse and view the generated source in
the generated-src directory.

Figure B-24. Selecting the types of output to be generated

http://

APPENDIX B ■ HIBERNATE TOOLS

312

Listing B-2. The Generated Notepad.java class file from the Reverse Engineering Tool

package com.hibernatebook.generated;

// Generated Apr 5, 2010 2:01:23 PM by Hibernate Tools 3.3.0.GA

import java.util.HashSet;
import java.util.Set;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import static javax.persistence.GenerationType.IDENTITY;
import javax.persistence.Id;
import javax.persistence.OneToMany;
import javax.persistence.Table;

/**
 * Notepad generated by hbm2java
 */
@Entity
@Table(name = "NOTEPAD", schema = "PUBLIC")
public class Notepad implements java.io.Serializable {

 private Integer id;
 private String owner;
 private Set<NotepadNote> notepadNotes = new HashSet<NotepadNote>(0);

 public Notepad() {
 }

 public Notepad(String owner, Set<NotepadNote> notepadNotes) {
 this.owner = owner;
 this.notepadNotes = notepadNotes;
 }

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID", unique = true, nullable = false)
 public Integer getId() {
 return this.id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 @Column(name = "OWNER")
 public String getOwner() {
 return this.owner;
 }

http://

APPENDIX B ■ HIBERNATE TOOLS

313

 public void setOwner(String owner) {
 this.owner = owner;
 }

 @OneToMany(fetch = FetchType.LAZY, mappedBy = "notepad")
 public Set<NotepadNote> getNotepadNotes() {
 return this.notepadNotes;
 }

 public void setNotepadNotes(Set<NotepadNote> notepadNotes) {
 this.notepadNotes = notepadNotes;
 }

}

After using the Eclipse-based Hibernate tools, such as the Reverse Engineering tool, you may want
to use some of these tools from a build file. Hibernate Tools provides a set of Ant tasks that share
common functionality with the Eclipse tasks.

The Ant Tasks
As you will have noticed if you followed through the Eclipse discussion, our example project for this
appendix includes build.xml and build.properties files. These are not strictly necessary when working
with Eclipse, but it is often desirable to be able to build all the components of a project outside the IDE.
This can be useful in maintaining automated builds for regression testing—and of course, not all Java
IDEs offer integrated support for Hibernate anyway, while most of them do offer support for the Ant
build tool. And besides, you might not be using an IDE in the first place!

The Ant tasks are part of the Hibernate Tools download, which is largely oriented toward use as an
Eclipse plug-in. The Ant tools themselves rely upon a set of four JAR files: hibernate-tools.jar, bsh-
2.0b1.jar, freemarker.jar, and jtidy-r8-20060801.jar. The hibernate-tools.jar file is currently only
available as a download with the rest of the plug-in files. You will find the JAR file within the ZIP file in a
directory called plugins\org.hibernate.eclipse_X.x.x.x\lib\tools, where the Xs are substituted for
the Hibernate Tools version number. The bsh, freemarker, and jtidy JAR files will also be available from
this directory. Since these JAR files have no dependencies upon the other parts of the plug-in, you can
copy them to a directory with a less unwieldy name without further consequences.

How the Ant Tasks Work

Despite their diverse set of outputs, the Hibernate tasks actually all work in the same way. The task is
imported into Ant using the standard TaskDef element. This makes the Hibernate tools libraries available
to Ant itself, and allows you to select an appropriate element representing the Hibernate tools to use in
your script.

<taskdef
 name="htools"
 classname="org.hibernate.tool.ant.HibernateToolTask"
 classpathref="classpath.tools"/>

http://

APPENDIX B ■ HIBERNATE TOOLS

314

The Hibernate Tools JAR file must be made available to Ant on the classpath—our example uses a
preexisting classpath declaration (referenced through its id of classpath.tools—see the “Configuring
the Classpath” subsection later in this section).

A standard Ant target is declared to contain the set of operations that you want to perform.

<target name="exportDDL" depends="compile">
...
</target>

Within the target with any other standard (or imported) Ant tasks, you can then include the element
that you declared using the <taskdef> element. The other Hibernate task elements are only applicable
within this task element.

<target name="exportDDL" depends="compile">
 <htools destdir="${sql}">
 ...
 </htools>
</target>

This outermost task element accepts three attributes, as listed in Table B-1.

Table B-1. The Daughter Elements of the Hibernate Tools Task

Attribute Description

classpath The path to use when locating libraries and configuration files.

destDir The base directory (relative to the build script’s own base directory) into which any
generated output will be written.

templatePath The path containing user-created template files (see the further discussion of
templates in the “Templates” section later in the chapter.)

Within the declared Hibernate task, a number of additional standard elements can be created,

consisting of a classpath declaration (an alternative to using the classpath attribute), a set of
configuration elements, and a set of exporter elements.

The classpath element and attribute are standard Ant features that allow you to bring in any
necessary resources used by the Hibernate tasks.

The clever bit of the Hibernate Ant task lies in the configuration elements. Declaring a configuration
task causes an appropriate configuration object to be built in memory. These in-memory configuration
objects all extend the standard org.hibernate.cfg.Configuration class. The Configuration class
represents the mapping relationships between entities (combined with information from any
configuration, properties, or reverse engineering files), and it is this information, the metamodel, that is
then used to generate the various output files. The provided configuration elements can conjure up a
Configuration object from the standard mapping files, from the metadata information gathered over a
JDBC connection, and from the annotations discussed in Chapter 6.

http://

APPENDIX B ■ HIBERNATE TOOLS

315

<target name="exportDDL" depends="compile">
 <htools destdir="${sql}">
 <annotationconfiguration
 configurationfile="${src}/hibernate.cfg.xml"/>
 …
 </htools>
</target>

Within any given Hibernate Tools task, you can only have one configuration element configured—
normally, you would not want to generate output from two distinct representations of the mapping
information, so the single declaration is shared between the generation tasks enclosed within the toolset
task elements. The following list describes the configuration tasks and the attributes of each:

• <configuration>: Mapping relationships are generated from conventional XML-
based mapping files and information in a *.cfg.xml or *.properties file.

• configurationfile: The name of the XML configuration file being used.

• propertyfile: The name of the properties file being used.

• entityresolver: The name of the SAX EntityResolver to use when resolving
“external” XML entities (rarely used).

• namingstrategy: A naming strategy to use (see Chapter 3) to establish table
names from entity names.

• <annotationconfiguration>: Mapping relationships are generated from the
Hibernate 3 annotations in conjunction with a *.cfg.xml or *.properties file.

• Identical to <configuration>.

• <jdbcconfiguration>: Mapping relationships are generated from the schema
metadata obtained over a JDBC connection. The connection details are
configured from a properties file.

• All those from <configuration>, plus the following:

• packagename: The name of the package that entities should belong to.

• reversestrategy: The fully qualified name of a class implementing the -
org.hibernate.cfg.reveng.ReverseEngineeringStrategy interface. This is
the programmatic equivalent of the reveng.xml file approach.

• revengfile: The name of a reverse engineering file to use when processing
metadata information. See the discussion later in this section.

• <jpaconfiguration>: Mapping relationships are generated from JPA 2 and
Hibernate annotations in conjunction with an EJB 3–compliant persistence.xml
file.

• persistenceunit: The JPA configuration will look for persistence units from
persistence.xml on the classpath, or you can manually specify one.

http://

APPENDIX B ■ HIBERNATE TOOLS

316

The <configuration> element also allows you to specify a standard Ant <fileset> of *.hbm.xml
mapping files. If you use this in conjunction with a *.cfg.xml configuration file, you must not permit any
mapping resources to be duplicated, as this will result in duplicate import mapping exceptions.

Your choice of configuration element will be driven by the data sources that you have available to
you. For example, if you have created your XML mapping files, you will want to use the standard
configuration element, but if you have only a normalized database, you will want to generate the
mapping information from this using the JDBC configuration (although you may well choose to create a
reverse engineering file to control this).

Once you have correctly configured an annotation object, however, you can generate any of the
other resources that you might need using one or more exporter elements. These are listed in Table B-2.

Table B-2. The Available Exporter Elements

Element Description

<hbm2ddl> Generates tables from the metamodel

<hbm2cfgxml> Generates a *.cfg.xml configuration file from the metamodel

<hbm2java> Generates entity POJOs from the metamodel

<hbm2hbmxml> Generates Hibernate *.hbm.xml mapping files from the metamodel

<hbm2doc> Generates HTML documentation for the database schema from the metamodel

<hbmtemplate> Generates arbitrary user-defined output from the metamodel

<query> Runs arbitrary HQL queries against the database using the mapping information
in the metamodel

You may notice that the exporters available as Ant tasks correspond fairly closely to the exporters

available in the Hibernate Code Generation tool—largely because they rely upon the same underlying
implementations.

The two most commonly used tasks are <hbm2ddl>, which can generate a database schema directly
from the mapping files or annotations, and <hbm2hbmxml>, which, conversely, can generate mapping files
directly from the database.

The <hbm2ddl> element generates DDL scripts from the metamodel. These can be written to a file—
or, if the configuration object is provided with database connection details, they can be run directly
against the database. Table B-3 shows the attributes that can be supplied.

http://

APPENDIX B ■ HIBERNATE TOOLS

317

Table B-3. The Attributes Available to the <hbm2ddl> Element

Property Default Description

create true If set to true, causes the generated DDL to include commands to create
database objects. This allows to distinct tasks to be created: one to drop
all relevant database objects (using the drop attribute) and the other to
create them.

delimiter ; Specifies the delimiter to be used to separate DDL statements.

drop false If set to true, causes the generated DDL to include commands to drop
preexisting database objects before it tries to create them. This may
cause warning messages, depending upon the preexisting state of the
database; and it of course has the potential to destroy existing data.

export true If set to true, causes the DDL to be run directly against the database (this
has the potential to delete data—do not use carelessly).

format false If set to true, causes the generated DDL to be formatted using
whitespace in a more readable fashion. We recommend using this
option if you will be writing the DDL to a file.

haltonerror false If set to true, causes the script to halt if an error is encountered while
generating the DDL (typically, this is used while exporting directly to the
database to increase the visibility of any problems encountered while
setting up the schema).

outputfilename Specifies the name of the file name that the generated DDL should be
stored in. If left unset, the generated DDL will not be stored.

update false Indicates that the tool should attempt to generate the appropriate
statements to bring the existing schema inline with the model. We don’t
recommend using this option.

The task shown in Listing B-3, which completes the simple example that we’ve been building up in

this section, creates a schema generation script from the annotation-based mappings referenced in the
project’s hibernate.cfg.xml file.

Listing B-3. A Complete Hibernate Mapping Target

<target name="exportDDL" depends="compile">
 <htools destdir="${sql}">
 <annotationconfiguration
 configurationfile="${src}/hibernate.cfg.xml"/>
 <hbm2ddl
 create="true"
 drop="true"

http://

APPENDIX B ■ HIBERNATE TOOLS

318

 format="true"
 export="true"
 outputfilename="${ant.project.name}.dll"/>
 </htools>
</target>

The <hbm2cfgxml> element generates a Hibernate XML configuration file from the metamodel
information. Table B-4 shows the attributes that can be supplied.

Table B-4. The Attributes Available to the <hbm2cfgxml> Element

Property Default Description

destdir If set, overrides, for this exporter only, the destination directory specified on
the tools task.

ejb3 false By default, causes entities to be mapped using <mapping resource="..."/>
entries in the configuration file. If set to true, the entities will be mapped
using the <mapping class="..."/> approach to pick up JPA/Hibernate
annotations in the mapped classes. This setting does not cause a
persistence.xml file to be generated!

Typically, the <hbm2cfgxml> element is used when the configuration task has been configured from a

properties file—for example, when using <jdbcconfiguration>, you would typically start with a
normalized database schema and a properties file containing the connection details, and use this
exporter to create a hibernate.cfg.xml file containing both the connection details and the details of the
mapped entities.

The <hbm2java> element generates the Java source code for POJOs for each of the entities held in the
metamodel. Table B-5 shows the attributes that can be supplied.

Table B-5. The Attributes Available to the <hbm2java> Element

Property Default Description

ejb3 false If set to true, causes the POJOs to be generated with EJB 3 annotations

jdk5 false If set to true, causes the POJOs to be generated with Java 5 constructs (generics,
enumerations, and so on.)

This exporter can be used to permit the mapping file–based creation of suitable classes or to create

classes from the database schema when <jdbcconfiguration> is used.
The <hbm2hbmxml> element generates the XML mapping files from the information contained in the

metamodel. There are no attributes for configuring this element.
This exporter is particularly terse because it only writes out the mapping information stored in the

metamodel. This is all handled by the appropriate configuration element. The <hbm2hbmxml> exporter just
needs to know which path to write the XML files into. And that is specified at the Hibernate tool level.

The <hbm2doc> element generates HTML documentation of the schema and entities in a style similar
to the familiar javadoc output.

http://

APPENDIX B ■ HIBERNATE TOOLS

319

■ Note Nothing in any of the exporters intrinsically stops you from generating “silly” combinations of output—but

this has its advantages; for example, it is possible to use an <annotationsconfiguration> configuration element

with the <hbm2java> exporter to generate POJOs. While that might seem pointless, given that you have to start

with POJOs to use an annotations-based configuration in the first place, it actually provides the useful ability to

generate Java 1.4–compatible source code from annotated Java 5 class files!

In principle, the <query> element allows you to specify an arbitrary HQL query that will be run
against the database using the configuration’s mapping information. Table B-6 shows the attribute that
can be supplied.

Table B-6. The Properties Available to the <query> Exporter Element

Property Default Description

destfile If set, specifies the file into which the output of the queries will be written. If
left unset, the query is carried out, but the output is not saved.

The HQL query itself is included as the body of the <query> element:

<query destdir="output" destfile="sql.log">
 select n.owner from Notepad n
</query>

If you want to include multiple HQL queries in the task, you can include multiple nested <hql>
elements thus:

<query destdir="output" destfile="sql.log">
 <hql>select n.owner from Notepad n</hql>
 <hql>select n.owner from Note n</hql>
</query>

Reverse Engineering

As we discussed in the previous section, the <jdbcconfiguration> task can be used to create a
configuration metamodel directly from a database schema. However, a database schema is not
necessarily an exact match for the entity mappings that we want to create. It may contain tables and
columns that we would prefer to omit from our entities. It may also lack some of the information that we
want to express. For example, database types such as VARCHAR do not map exactly to Java types such as
char[] and java.lang.String, and the tables will have names that do not conform to the Java naming
conventions.

Used as is, the <jdbcconfiguration> task will select sensible defaults for the type names, and will
assign the reverse-engineered tables suitable Java names derived from the table names. It also provides
an attribute to allow you to directly specify a suitable package name. Even so, we would really like more
control over the specifics of the reverse engineering process. Note that while it also provides a naming

http://

APPENDIX B ■ HIBERNATE TOOLS

320

strategy attribute, this has no effect during the reverse engineering process, as naming strategy classes
can only be used to determine schema names from mapping information, not vice versa.

Hibernate provides two ways in which this process can be controlled—you can specify one of two
attributes on the <jdbcconfiguration> task to override the default behavior.

The reversestrategy attribute allows you to specify the fully qualified class name of a custom
implementation of the org.hibernate.cfg.reveng.ReverseEngineeringStrategy interface. This interface
defines methods that can be used to select the following:

• Class names from table details

• Property names from column details

• One-to-many associations from foreign key relationships

• Many-to-one associations from foreign key relationships

• Inverse relationships from foreign key relationships

• Lazy loading details from foreign key relationships

• Collection attribute names from foreign key relationships

• Entity names from foreign key relationships

• Tables and columns to include and exclude

• Primary key columns from table details

• The column to use for optimistic locking strategies

• Composite ID details from table details

It also allows you to provide information about how schemas should be generated from the resulting
metamodel. This information is as follows:

• Additional foreign key relationships

• The table naming strategy to be used

The disadvantage of this approach to managing the reverse engineering process is that it is not
particularly flexible, and it requires a lot of coding. Reverse engineering is often carried out only once to
establish the mappings, with the schema thereafter being driven from the mappings, rather than being
used to create them. The Hibernate tools therefore provide a second mechanism for controlling the
reverse engineering process by specifying an XML configuration file using the revengfile attribute of the
<jdbcconfiguration> task. This provides nearly the same degree of control, but is much simpler to
create—especially if you intend to manipulate only minor details of the process.

The output of the reverse engineering tool described in the “The Reverse Engineering and Code
Generation Tools” section is actually a reverse engineering XML file following this format. A very simple
example reverse engineering file is shown in the following code:

http://

APPENDIX B ■ HIBERNATE TOOLS

321

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-reverse-engineering
PUBLIC "-//Hibernate/Hibernate Reverse Engineering DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd"
>

<hibernate-reverse-engineering>
 <table-filter match-schema="PUBLIC" match-name="NOTE"/>
 <table-filter match-schema="PUBLIC" match-name="NOTEPAD"/>
 <table-filter match-schema="PUBLIC" match-name="NOTEPAD_NOTE"/>
</hibernate-reverse-engineering>

The reverse engineering file in the preceding code limits the tables to be used when generating the
mapping information from the schema to the three explicitly named tables (NOTE, NOTEPAD, and
NOTEPAD_NOTE) in the database’s public schema.

A reverse engineering file always consists of a single top-level <hibernate-reverse-engineering>
element containing various additional elements. These daughter elements are given in order in Table
B-7:

Table B-7. The Elements Used in Configuring the Reverse Engineering File

Element Cardinality Description

<schema-selection> Zero or more Allows the reverse engineering process to be limited by
catalog, schema, and table name

<type-mapping> Zero or one Allows you to override the default mapping between database
types and Java types

<table-filter> Zero or more Allows you to include or exclude tables by catalog name,
schema name, and table name, and allows them to be
grouped into a particular package

<table> Zero or more Allows you to override the default mappings of tables into
entities

Rather than trying to exhaustively specify the syntax of a reverse engineering file, which is anyway

available through the DTD at http://hibernate.sourceforge.net/hibernate-reverse-engineering-
3.0.dtd, we think it is easier to follow the basic requirements of the file format with some examples of
valid <schema-selection>, <type-mapping>, <table-filter>, and <table> elements.

Our first example specifies the following rule: tables should only be used for reverse engineering if
they are in the public schema and their names begin with NOTE:

<schema-selection match-schema="PUBLIC" match-table="NOTE*"/>

Our next example enforces a rule that database INTEGER types for which the column is specified as
NOT NULL must be represented using Hibernate’s int type. It also enforces a rule that database VARCHAR
types that have a specified length of 250 should be treated as Hibernate string types:

http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd
http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd
http://hibernate.sourceforge.net/hibernate-reverse-engineering-3.0.dtd
http://

APPENDIX B ■ HIBERNATE TOOLS

322

<type-mapping>
 <sql-type jdbc-type="INTEGER" hibernate-type="int" not-null="true"/>
 <sql-type jdbc-type="VARCHAR" hibernate-type="string" length="250"/>
</type-mapping>

These type mappings apply throughout the reverse engineering process—you cannot specify them
on a per-table basis using the <type-mapping> element, but you can using the <table> element.

The <table-filter> element allows you to include and exclude groups of tables from the mapping
process on the basis of pattern matches on their names. Where the <schema-selection> element allows
you to specify a set of tables matching a single pattern to be reverse engineered, the <table-filter>
element operates within this and allows multiple patterns to be applied to include and exclude tables.
Here’s an example:

<table-filter match-name="NOTEPAD_ARCHIVE*" exclude="true"/>

Although the previous <schema-selection> element included all tables within the current schema
that matched the pattern NOTE*, this table filter excludes any tables that match the pattern
NOTEPAD_ARCHIVE* from reverse engineering. Table filters are applied in order, so using this technique,
you can build up a filter that only includes a specific set of tables.

The <table> task permits almost total control over the mapping details of the entity. You can select a
specific table by catalog, schema, and name. You can specify the class name that it should take, how the
primary key column(s) relate to that class’s properties, the primary key generator that it should use, the
column types and properties that they are associated with, and the details of the associations formed by
foreign key relationships. Our simple example places the generated entity into an appropriate class, with
a nonstandard primary key property name and a nonstandard type mapping for one of the columns
(note). It also excludes one of the columns (audit) from the entity model:

<table schema="PUBLIC"
 name="NOTEPAD"
 class="com.hibernatebook.tools.Notepad">
 <primary-key>
 <column name="id"
 jdbc-type="INTEGER"
 property="notepadPk"
 type="int"/>
 </primary-key>
 <column name="note" jdbc-type="VARCHAR" type="char" property="note"/>
 <column name="audit" exclude="true"/>
</table>

If it looks like you will have to manage the reverse engineering process to this level of detail, it may
in fact be more appropriate to create some or all of the mapping files manually, which gives you total
control over the specification of those entities. Complex specification of mapping information in the
reverse engineering file is really only appropriate if it is for exceptional classes when the general cases
are common; or if you expect to need to regenerate the model from the schema very frequently in
response to changes in the schema details.

http://

APPENDIX B ■ HIBERNATE TOOLS

323

Templates

With the exception of <hbmtemplate> and <query>, all the Ant exporter tasks take the metamodel
information from the configuration, pass it to a set of FreeMarker templates, and write the output to
files. For more information on the FreeMarker template scripting language, see the FreeMarker site at
http://freemarker.sourceforge.net.

If the existing exporters do not meet your needs, you can specify your own additional code
generation tasks using the <hbmtemplate> task. Table B-8 shows the attributes that can be supplied to
this task.

Table B-8. The Properties Available to the <hbmtemplate> Exporter Element

Property Default Description

exporterclass Specifies a class to use to generate output. It will be invoked once only,
and the configuration object, output directory, template path and prefix,
and any configuration properties will be passed into it.

filepattern When using templates, represents the FreeMarker macro that should be
used to determine the file name for the entity being processed.

template Specifies the template to use to generate output. It will be invoked for each
of the entities in the configuration metamodel.

Again, you have two options when carrying out this process. You can set the exporterclass attribute

to the name of the class to be used to carry out the export process. This class must implement the
org.hibernate.tool.hbm2x.Exporter interface. This is passed a reference to the current configuration
object and any other attributes that were set on the <hbmtemplate> task.

Alternatively, you can specify the name of a FreeMarker template to be used in processing the
configuration object and the name of a prefix:

<hbmtemplate
 destdir="generated_txt"
 templateprefix="foo"
 template="template/MyTemplate.ftl"
 filepattern="{package-name}/{class-name}.txt">

Note that filepattern contains FreeMarker macros that will be expanded at run time to determine
the appropriate file names for the tool’s output. The task will search for this file on the classpath, and
then as a file resource.

If the configuration object does not contain some of the information that you need in order to
produce the desired output, you can also specify additional arbitrary details using a standard Ant
property or property set. Here’s an example:

<hbmtemplate …>
 <property key="bar" value="BAR!"/>
</hbmtemplate>

http://freemarker.sourceforge.net
http://

APPENDIX B ■ HIBERNATE TOOLS

324

In addition to any properties you add to the template task yourself, you will have access to the
scripting variables listed in Table B-9.

Table B-9. The Standard Scripting Variables Available to a Template Task

Variable Description

artifacts An instance of org.hibernate.tool.hbm2x.ArtifactCollector that can be populated
with values to reflect the actions taken during output generation

c2h An instance of the org.hibernate.tool.hbm2x.Cfg2HbmTool class providing helper
methods for converting configuration object values into Hibernate mapping files

c2j An instance of the org.hibernate.tool.hbm2x.Cfg2JavaTool class providing helper
methods for converting configuration object values into Java class files

cfg A reference to the configuration object

outputdir The path specified as the <hbmtemplate> element’s destdir attribute

template_path A list of the paths to directories containing FreeMarker templates

The standard Hibernate Tools exporter tasks are implemented in much the same way. Although we

haven’t shown this when discussing their attributes earlier, all the exporter tasks support the
templatepath and templateprefix attributes, allowing you to override their default behavior by
instructing them to use a different set of FreeMarker macros than those included in the hibernate-
tools.jar file. All attributes also support the use of property sets to pass in information that is required
by your custom macros but isn’t available from the configuration object.

A very simple FreeMarker script is shown in the following code. This is not very useful in itself, as the
first four variables simply display their hashcode representations from the default toString()
implementation, but it provides you with a syntactically valid starting point for exploration of the code
generation tools:

Configuration object: ${cfg}
Artifacts object: ${artifacts}
Cfg2Hbm Helper: ${c2h}
Cfg2Java Helper: ${c2j}
Output Directory: ${outputdir}
Template path: ${template_path[0]}

Configuring the Classpath

There are two distinct classpaths to consider when setting up the Hibernate Tools Ant tasks: the
classpath of the task definition, and the classpath to be used by the tasks. The task definition needs to
have in its classpath the Hibernate Tools JAR file, the Hibernate libraries, and the JDBC driver that will be
used to access the database. A typical configuration of this classpath is as follows:

http://

APPENDIX B ■ HIBERNATE TOOLS

325

<path id="classpath.base">
 <pathelement location="${hibernate.path}"/>
 <fileset dir="${hibernate.lib}" includes="**/*.jar"/>

</path>
<path id="classpath.tools">
 <path refid="classpath.base"/>
 <pathelement location="${hibernate.tools.path}"/>
 <pathelement location="${jdbc.driver.path}"/>
</path>

The task definition (as shown earlier in this section) would use the classpath with the ID
classpath.tools.

The tasks themselves will need access to two additional sets of resources: the configuration file(s)
and the compiled classes.

<path id="classpath.apps">
 <path refid="classpath.base"/>
 <pathelement path="${src}"/>
 <pathelement path="${bin}"/>
 <pathelement location="${jdbc.driver.path}"/>
</path>

The configuration files will include the hibernate.cfg.xml and/or hibernate.properties files, along
with any log4j configuration files, cache configuration files, and applicable XML mapping files.

If you are using annotations in any of your tasks, you will need to ensure that the task is assigned a
dependency upon the compiled POJOs—annotations cannot be read at run time from Java source files,
only from compiled classes.

Summary
In this appendix, we have discussed the installation and use of Hibernate Tools, including the Eclipse
plug-in and the Ant tasks. Together, these remove most of the need to manually create boilerplate
configuration code.

In Appendix C, we discuss how Hibernate can be used as the data access layer within the Spring
Framework.

http://

http://

APPENDIX C

■ ■ ■

327

Hibernate and Spring

The Spring Application Framework offers developers an environment that ties together numerous APIs
into a coherent whole. Spring applies the philosophy of “dependency injection” by providing
appropriate configurable wrapper classes for all sorts of popular Java libraries.

The standard Spring API is immense, and its standardized approach to dependency management
means that any existing API can in principle become a “Spring” API. If you want a good introduction to
using Spring, then we recommend the excellent Pro Spring 2.5, by Jan Machacek, Jessica Ditt, Aleksa
Vukotic, and Anirvan Chakraborty (Apress, 2008). We also recommend Dave Minter’s Beginning Spring 2
(Apress, 2007). For an overview, visit the Spring web site at http://springsource.org.

In view of its scope, we cannot and do not make any attempt to teach you even the basics of the
Spring Framework in this appendix—instead, we assume that you are already familiar with Spring in
general, and offer a focused introduction to the Hibernate-related components.

Throughout this appendix, we refer to a simple sample application that represents a “newsstand” of
papers consisting of sets of articles. At the end of this appendix, we include the complete Spring bean
configuration file for the example application; and as with all the examples in this book, the entire
application itself can be downloaded from the Apress web site (www.apress.com).

 For this chapter, we are using Spring Framework 3.0 with Hibernate 3.5.

Configuring Hibernate from a Spring Application
A conventional Hibernate application needs access to its database and the entity mapping information.
The point of access to a fully configured Hibernate environment is the session factory, from which
Session objects are obtained. Spring provides a bean to represent the session factory, but provides a few
additional options in order to configure its resources.

In our example application, we take the line of least resistance and use a Hibernate configuration
file (hibernate.cfg.xml) to represent both the mapping information and the database configuration. For
easy reference when setting up a Spring application, we show a sample Hibernate configuration file in
Listing C-1.

Listing C-1. Familiar Territory: A Standard Hibernate Configuration File Used in Spring

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

http://springsource.org
http://www.apress.com
http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

APPENDIX C ■ HIBERNATE AND SPRING

328

<hibernate-configuration>
 <session-factory>
 <property name="connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="connection.url">
 jdbc:hsqldb:file:/spring/db/springdb;SHUTDOWN=true
 </property>
 <property name="connection.username">sa</property>
 <property name="connection.password"></property>
 <property name="hibernate.connection.pool_size">0</property>
 <property name="show_sql">true</property>
 <property name="dialect">org.hibernate.dialect.HSQLDialect</property>

 <mapping class="com.hibernatebook.spring.Paper"/>
 <mapping class="com.hibernatebook.spring.Article"/>
 </session-factory>
</hibernate-configuration>

Configuring Spring

The next step is to configure Spring to set up a Hibernate session factory. Spring represents the
configured session factory as an org.springframework.orm.hibernate3.LocalSessionFactoryBean. Our
example application uses annotations to manage the mappings, so we specify that the Hibernate
AnnotationConfiguration type should be used in our bean instead of the default Configuration.

We also specify the location and name of the configuration file relative to the classpath as indicated
by the classpath: prefix (see Listing C-2).

Listing C-2. Configuring a Session Factory Bean in Spring

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="configurationClass"
 value="org.hibernate.cfg.AnnotationConfiguration" />
 <property name="configLocation"
 value="classpath:hibernate.cfg.xml" />
</bean>

As noted, our simple web application derives its database connection details from the Hibernate
configuration file. However, a larger web application typically needs to provide database resources to
other applications, in which case a Hibernate-specific configuration file is not the appropriate location
for its details to be stored. Moreover, a well-behaved web application will draw its database
configuration from a JNDI-provided DataSource object so that connection details can be uniformly
managed at deployment time.

Spring allows data sources to be managed centrally as beans, and if a JndiObjectFactoryBean bean is
used, it can in turn draw its details from JNDI. The LocalSessionFactoryBean therefore provides a
dataSource property into which the appropriate Spring DataSource bean can be injected.

Typically, to manage a data source from within the Spring configuration, but without deferring the
details to a JNDI resource, you would use the DriverManagerDataSource bean (see Listing C-3).

http://

APPENDIX C ■ HIBERNATE AND SPRING

329

Listing C-3. Configuring a Typical BasicDataSource Bean

<bean id="sampleDataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 destroy-method="close">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>
 jdbc:hsqldb:file:/spring/db/springdb;SHUTDOWN=true
 </value>
 </property>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
</bean>

Alternatively, if the data source resources are to be drawn from an existing JNDI-accessible data source,
then the Spring JndiObjectFactoryBean should be used to represent the data source (see Listing C-4).

Listing C-4. Configuring a Typical JndiObjectFactoryBean

<bean id="sampleDataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="java:comp/env/jdbc/spring"/>
</bean>

It is not just the connection details that can be migrated from the Hibernate configuration file into
the Spring configuration. The property attributes and the mappings (class names or mapping file names)
can also be assigned during the configuration of a LocalSessionFactory bean (see Listing C-5).

Listing C-5. Configuring Hibernate Purely from Spring

<bean id="sampleSessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="sampleDataSource"/>
 <property name="mappingResources">
 <list>
 <value>com/hibernatebook/spring/Paper.hbm.xml</value>
 <value>com/hibernatebook/spring/Article.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.connection.pool_size">0</prop>
 <prop key="hibernate.show_sql">true</prop>
 <prop key="hibernate.dialect">org.hibernate.dialect.HSQLDialect</prop>
 </props>
 </property>
</bean>

http://

APPENDIX C ■ HIBERNATE AND SPRING

330

Note that in Listing C-5, purely in order to demonstrate the use of mapping files in a
LocalSessionFactoryBean configuration, we omit the specification of a Hibernate -
AnnotationConfiguration for the configurationClass property, causing it to default to the normal
(mapping file–based) Hibernate Configuration object.

Typically, the mappings themselves are specified in the conventional Hibernate manner through
XML mapping files or Java annotations. It would be entirely possible to arrange to configure these
externally, but no default Spring classes are provided to achieve this, and it is difficult to see any obvious
benefit that would accrue from such an approach.

Using Hibernate in Your Spring Beans
With your session factory configured as a Spring bean, you can now go on to create DAOs that take
advantage of Hibernate’s functionality. Previous versions of Spring and Hibernate required the use of
the HibernateDaoSupport class and/or HibernateTemplate class to form the basis of your DAOs; however,
recent versions of Spring and Hibernate have eliminated the need for these classes. Hibernate now
supports a getCurrentSession() method on the SessionFactory that returns a Session object that is
associated with the current transaction.

Ideally, you should define an interface to specify the methods that your DAO will contain. Our
sample application requires a single DAO with a few simple methods (see Listing C-6).

Listing C-6. Declaring the Interface for Our DAO

package com.hibernatebook.spring.dao;

import java.util.List;
import com.hibernatebook.spring.Article;
import com.hibernatebook.spring.Paper;

public interface PaperDao {
 public List<Paper> getAll();
 public void createPaper(final Paper paper);
 public Paper getPaper(final Integer paperId);
 public Paper createArticle(final Integer paperId,final Article article);
}

With the interface clearly specified, your DAO class should then have a getter and setter for the

SessionFactory class. Inside your DAO, get the current session and use it directly (without any Spring
classes), as shown in Listing C-7.

Listing C-7. Implementing getAll() Inside a Spring/Hibernate 3 DAO

@SuppressWarnings("unchecked")
public List<Paper> getAll() {
 Session session = this.sessionFactory.getCurrentSession();
 List<Paper> papers = (List<Paper>)session.createQuery("from Paper").list();

 return papers;
}

http://

APPENDIX C ■ HIBERNATE AND SPRING

331

Regardless of how you use it, configuring your Spring/Hibernate 3 DAO is extremely simple. The
basic requirement is that you provide its sessionFactory property with a session factory bean from
which to obtain Hibernate Session objects (see Listing C-8).

Listing C-8. Configuring a Spring/Hibernate 3 DAO

<bean id="sampleDao"
 class="com.hibernatebook.spring.dao.PaperDaoImpl">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>

In practice, however, this is usually made somewhat more complex by the need to declare the
transactional behavior that applies to the DAO’s methods.

Declarative Transaction Management
The getAll() method as implemented in Listing C-7 omits any explicit transaction management.
However, you do have access to the Hibernate objects, so you can manage transactions yourself. If you
are using Spring, you will most likely want to use Spring’s transaction management capabilities with
Hibernate, rather than Hibernate’s transaction API.

One of the advantages of the Spring framework is that it abstracts away transaction management to
a common base, no matter what type of programmatic transaction is used. As a developer, you can
either work with Spring transactions manually through code written to the Spring Framework API, or
you can declare transactional settings on the beans in the Spring configuration files. However, while
managing transactions manually is possible, it is not recommended—the use of Spring’s
OpenSessionInViewInterceptor or OpenSessionInViewFilter (both of which we will discuss later in this
Appendix) can prevent your programmatic transaction management code from behaving as you might
expect, as can various other indirectly applied beans.

Because of these risks, you should favor the use of declarative transaction management. With this
approach, the beans’ methods are marked as being the boundaries of transactions, and the appropriate
transaction isolation level and propagation behavior can be specified.

To support transactional behavior, a transaction manager bean must first be applied to the session
factory. Typically, this would be a HibernateTransactionManager in a self-contained application, or a
JtaTransactionManager in an environment in which the container is managing transactions. Our
application uses the Hibernate transaction manager. We show the HibernateTransactionManager bean
declaration from the Spring configuration file in Listing C-9.

Listing C-9. Declaring the HibernateTransactionManager Bean

<bean id="transactionManager"
 class="org.springframework.orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>

The transaction manager must be notified of the session factory in use so that it can manage the
transactions of the database connection configured in the session factory. If you want to be able to use
nested transactions so that multiple calls to transactional methods can be made from a method that is
itself enclosed in a transaction, you must set the nestedTransactionAllowed property on the

http://

APPENDIX C ■ HIBERNATE AND SPRING

332

HibernateTransactionManager bean. Note that Hibernate does not support the use of savepoints within
nested transactions because it is unable to rollback the session cache’s state.

The transaction boundaries are applied to a bean by wrapping it in a proxy class that then honors
the original bean’s API as declared in its interface(s). Typically, the basis of the proxy is therefore
declared as an abstract bean so that it can be applied to multiple DAO beans as required. For illustrative
purposes, our example application also uses this approach (see Listing C-10).

Listing C-10. Declaring the Default Transactionality for Our DAO Beans

<bean id="daoTxTemplate" abstract="true"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="create*">
 PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
 </prop>
 <prop key="get*">
 PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
 </prop>
 </props>
 </property>
</bean>

With the transaction manager’s template prepared, the declaration of any DAO objects must be
wrapped in a bean declaration derived from this template.

Our wrapped bean is shown in Listing C-11. The lines highlighted in bold are the wrapped bean’s
declaration—since it is only used as a property for the enclosing proxy, it does not need to be assigned
an id—instead, the id of the paperDao proxy is used when a DAO reference is required. The proxy will
honor the PaperDao interface declared earlier in Listing C-8.

Listing C-11. Wrapping the DAO Implementation Bean with Appropriate Transactionality

<bean id="paperDao" parent="daoTxTemplate">
 <property name="target">
 <bean class="com.hibernatebook.spring.dao.PaperDaoImpl">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>
 </property>
</bean>

Managing the Session
A familiar problem encountered when using Hibernate is the LazyInitializationException. This occurs
when you try to access the lazily loaded attributes of a detached entity—typically when the session that
loaded it has been closed. This causes problems in Spring when you want to use information obtained
from a DAO in a controller in the view to which it forwards the request.

http://

APPENDIX C ■ HIBERNATE AND SPRING

333

 Entities that have been retrieved from the DAO will therefore become detached from their session.
If they are then passed to a view—typically a JSP—your client code will produce a
LazyInitializationException when it tries to access any lazy properties of the entity that were not
accessed prior to completion of the original DAO method (or forced to load in some other way).

Clearly, marking all the properties of your entities as being eagerly loaded is not practical—and
typically, it is not possible to determine in advance exactly which properties of your entity should be
actively loaded.

Instead, Spring provides a mechanism to implement the OpenSessionInView pattern of behavior.
This ensures that the Session object is retained until processing of the view is complete. Only then is it
closed—it must be closed at some point to ensure that your web applications don’t leak a Session for
every user request!

The effect is that with either an OpenSessionInViewInterceptor in your Spring configuration file or
an OpenSessionInViewFilter configured in your web.xml file, you can access lazily loaded attributes of
entities acquired from your DAOs without any risk of the dreaded LazyInitializationException. Note
that only one of the two options is required—they differ only in their internal details, not the outcome of
applying them.

Generally, we use the OpenSessionInViewInterceptor, as it is configured like any other Spring bean.
Our example application makes use of this to ensure that the lazily loaded articles attribute of the Paper
entity can be accessed from the JSP view implementations (see Listing C-12).

Listing C-12. Declaring the OpenSessionInViewInterceptor for Use in the Spring View

<bean name="openSessionInViewInterceptor"
class="org.springframework.orm.hibernate3.support.OpenSessionInViewInterceptor">
 <property name="sessionFactory" ref="sessionFactory"/>
 <property name="singleSession" value="true"/>
</bean>

The interceptor needs to control the behavior of the session factory, so we must provide it with a
reference to the appropriate bean. We can also dictate whether a single Session object will be used for
the entire duration of the user request. Setting this to true is the most efficient approach, and therefore
the default; however, it has potential side effects, particularly if declarative transactions are not in use.
When set to false, individual sessions will be acquired for each DAO operation.

The Sample Configuration File
Listing C-13 shows the full Spring configuration file of our example application as a handy reference to
what’s required in creating a Hibernate-based Spring application.

Listing C-13. The Complete Spring Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
 "http://www.springframework.org/dtd/spring-beans.dtd">

http://www.springframework.org/dtd/spring-beans.dtd
http://

APPENDIX C ■ HIBERNATE AND SPRING

334

<beans>
 <!-- Hibernate configurations -->

 <bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="configurationClass"
 value="org.hibernate.cfg.AnnotationConfiguration" />
 <property name="configLocation"
 value="classpath:hibernate.cfg.xml" />
 </bean>

 <bean name="openSessionInViewInterceptor"
class="org.springframework.orm.hibernate3.support.OpenSessionInViewInterceptor">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
 </bean>

 <bean id="daoTxTemplate"
 abstract="true"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="create*">
 PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
 </prop>
 <prop key="get*">
 PROPAGATION_REQUIRED,ISOLATION_READ_COMMITTED
 </prop>
 </props>
 </property>
 </bean>

 <!-- DAO configurations (note use of template) -->

 <bean id="paperDao" parent="daoTxTemplate">
 <property name="target">
 <bean class="com.hibernatebook.spring.dao.PaperDaoImpl">
 <property name="sessionFactory" ref="sessionFactory" />
 </bean>
 </property>
 </bean>

 <!-- Basic Spring MVC configurations -->

http://

APPENDIX C ■ HIBERNATE AND SPRING

335

 <bean id="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView"/>
 </bean>

 <bean id="urlMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="interceptors">
 <list>
 <ref bean="openSessionInViewInterceptor" />
 </list>
 </property>

 <property name="mappings">
 <props>
 <prop key="/viewPapers.do">viewPapersController</prop>
 <prop key="/createPaper.do">createPaperController</prop>
 <prop key="/viewArticles.do">viewArticlesController</prop>
 <prop key="/createArticle.do">createArticleController</prop>
 </props>
 </property>
 </bean>

 <!-- Message resources -->

 <bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">
 <property name="basename" value="message"/>
 </bean>

 <!-- Validators -->

 <bean id="createPaperValidator"
class="com.hibernatebook.spring.validator.CreatePaperValidator"/>

 <bean id="createArticleValidator"
class="com.hibernatebook.spring.validator.CreateArticleValidator"/>

 <!-- Controller configurations -->

 <bean id="viewPapersController"
 class="com.hibernatebook.spring.controller.ViewPapersController">
 <property name="paperDao" ref="paperDao" />
 </bean>

http://

APPENDIX C ■ HIBERNATE AND SPRING

336

 <bean id="createPaperController"
class="com.hibernatebook.spring.controller.CreatePaperController">
 <property name="commandClass"
 value="com.hibernatebook.spring.form.CreatePaper"/>
 <property name="commandName" value="paperForm"/>
 <property name="formView" value="createPaper"/>
 <property name="successView" value="viewPapers"/>
 <property name="validator" ref="createPaperValidator"/>
 <property name="paperDao" ref="paperDao"/>
 </bean>

 <bean id="viewArticlesController"
class="com.hibernatebook.spring.controller.ViewArticlesController">
 <property name="paperDao" ref="paperDao"/>
 </bean>

 <bean id="createArticleController"
class="com.hibernatebook.spring.controller.CreateArticleController">
 <property name="commandClass"
value="com.hibernatebook.spring.form.CreateArticle"/>
 <property name="commandName" value="articleForm"/>
 <property name="formView" value="createArticle"/>
 <property name="successView" value="viewArticles"/>
 <property name="bindOnNewForm" value="true"/>
 <property name="validator" ref="createArticleValidator"/>
 <property name="paperDao" ref="paperDao"/>
 </bean>
</beans>

Summary
The Spring Framework offers excellent support for Hibernate as a persistence mechanism. It offers
excellent support for creating Hibernate-based DAOs and various convenient features to smooth over
the problems that you would otherwise encounter in building web applications based around Hibernate.

http://

APPENDIX D

■ ■ ■

337

Upgrading from Hibernate 2

Hibernate 3 represents a major change from the ways of doing things in Hibernate 2. On the whole, it is a
better product, and we applaud the Hibernate developers for their efforts. One particular group of users
will be made nervous by all the changes: the existing users of Hibernate 2.

Well, there is good news, and there is . . . no bad news! Hibernate 3 has gone the extra mile to allow
earlier users to get along. In this appendix, we will discuss the differences between the two versions and
explain how a Hibernate 2 user can take advantage of them without conducting a major code rewrite.

Hibernate 3 does make changes: the package names have changed, the DTDs have changed, the
required libraries are different, and some of the method names and signatures have been altered. Even
so, we don’t think that these differences will cause you much grief when upgrading to the new version.

Once you have read this appendix, we also recommend that you consult the Hibernate 3 Migration
Guide in the Documentation section of the Hibernate web site (http://hibernate.org). The Hibernate
team maintains and updates this section to reflect users’ experiences, so you can find hints and tips
gathered from developers at the cutting edge of just this sort of upgrade.

Package and DTD Changes
The package names for Hibernate 2 have changed with Hibernate 3. Hibernate 2 used a base package of
net.sf.hibernate, while Hibernate 3 uses a base package of org.hibernate.

This is, in itself, a completely trivial difference—you might imagine that it is purely the result of a
migration from Hibernate’s hosting from SourceForge (http://sf.net or http://sourceforge.net) to
their own web site (http://hibernate.org); but, in fact, there is another reason for the change.

Because of the package name change, it is possible for an application to use Hibernate 2 and
Hibernate 3 simultaneously, allowing legacy Hibernate 2 code to run unmodified within the same
application as more recent Hibernate 3–based components. If the same package name had been used,
then it would be nearly impossible to achieve this.

This is not a coincidence—in addition to the package name, there are now two versions of the DTDs
for the XML configuration files. Unchanged Hibernate 2 code should use the usual mapping DTD
reference of

http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd

And for your new Hibernate 3 code, you will use

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

http://hibernate.org
http://hibernate.org
http://sf.netorsourceforge.net
http://hibernate.org
http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd
http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://

APPENDIX D ■ UPGRADING FROM HIBERNATE 2

338

Similarly, for the Hibernate configuration file, your version 2 code will use

http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd

And your version 3 code will use

http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd

■ Caution If you do not update your mapping configuration from the Hibernate 2 form to the Hibernate 3 form, the

time it takes to create a configuration and session factory will increase from around 20 seconds to a matter of

minutes.

Obviously, it will not be possible for you to have two configuration files with the same (default)
name of hibernate.cfg.xml, but either version of Hibernate permits you to construct a Configuration
object and then specify an explicit location for the configuration file using the configure() methods (as
shown in Listing D-1). If you are using both versions of Hibernate simultaneously, you must make sure
that POJOs are not passed from one version’s Session object to another’s. If you need to persist your old
POJOs using the new version, you must update the older code to use Hibernate 3. For an explanation of
how this sort of upgrade is supported by Hibernate 3, see the description of the “classic” API in the
following section, “New Features and Support for Old Ones.”

Listing D-1. Using an Explicitly Named Configuration File in Hibernate 3

File configFile = new File("hibernate3.cfg.xml");
Configuration v3Config = new Configuration();
v3Config.configure(configFile);
SessionFactory sessionFactory =
 v3Config.buildSessionFactory();

Session session = sessionFactory.openSession();
// ...

You should be aware that in your Hibernate 3 logic, some of the defaults for entries in the mapping
file have changed. If you have logic that relies upon implicit settings, you should review your converted
mapping files against the version 3 DTD to check that they will behave as expected. The most significant
change is that all mappings now default to lazy loading.

New Features and Support for Old Ones
If you are a Hibernate 2 developer and you have browsed through the earlier chapters, you will have
realized that Hibernate 3 offers a lot of new features. You will have also realized that some of the
Hibernate 2 features that you rely on may no longer be supported in version 3. For the most part,
though, this is not the case.

http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd
http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd
http://

APPENDIX D ■ UPGRADING FROM HIBERNATE 2

339

Changes and Deprecated Features

If you do not plan to take advantage of the Hibernate 3 features in any of your existing code, you can, as
discussed, simply run the two versions side by side without concern. If you are prepared to make some
changes to your existing code, then it is better to take the opportunity to update your existing code to
use Hibernate 3 directly. In order to make this second choice a little easier, Hibernate 3 provides a
number of “deprecated” APIs that permit fewer changes than a full-blown conversion.

This reduces the immediate impact of the change, and allows you to conduct the rest of the
conversion at your leisure, while still allowing you to remove the legacy Hibernate 2 libraries from your
application.

■ Tip Hibernate exceptions are now thrown as unchecked exceptions. This will not impact existing code, but you

may want to revisit APIs that explicitly declare HibernateExceptions. This change is intended to increase the

clarity of API signatures by removing the need for the explicit throws clause in code, which uses Hibernate but

does not catch its exceptions. There are ongoing debates over the relative merits of the two approaches, but

certainly the change from checked to unchecked does not introduce any incompatibilities (whereas the reverse

would).

Some changes to HQL have occurred between versions 2 and 3. If you have a substantial body of
existing HQL syntax, you can elect to retain the old syntax. The selection is made with the
hibernate.query.factoryclass configuration attribute, which selects the class to load for translating
HQL into database queries. The options are listed in Table D-1.

Table D-1. The HQL Processing Classes

Query Factory Class HQL Version

org.hibernate.hql.ast.ASTQueryTranslatorFactory 3 (default)

org.hibernate.hql.classic.ClassicQueryTranslatorFactory 2

It is not possible to switch between the two query translators within a SessionFactory instance.

Because HQL queries are not parsed until run time
1
, you will need to run extensive tests to ensure that

your modified queries are correct if you decide to convert to the Hibernate 3 syntax.
The object retrieved from the session factory in Hibernate 3 implements both the pure Hibernate 3

org.hibernate.Session interface and a Hibernate 2–friendly org.hibernate.classic.Session interface.
By using a classic Session reference instead of the usual one, you will have access to the methods that
have now been deprecated. Despite their deprecated status, all of these methods are fully implemented
at the present time. Most of them are backward-compatible with their Hibernate 2 counterparts—but
the delete(String) method has changed slightly in that deletions are no longer cascaded to associated
entities.

A fully converted Hibernate 3 application will not need to invoke any of these methods, so you
should use a reference to the standard interface unless you’re absolutely compelled by existing logic.

http://

APPENDIX D ■ UPGRADING FROM HIBERNATE 2

340

Other deprecated features reside in the classic package and its subpackages. Notable examples are
listed in Table D-2.

Table D-2. Feature Replacements in Hibernate 3

Feature Location in Hibernate 3 Use in Preference

Life cycle org.hibernate.classic Interceptor or event

Validatable org.hibernate.classic Interceptor or event

Some of the changes to Hibernate 3 have not justified the creation of a replacement class. A few

methods will have been removed, replaced, or renamed. In these few cases, if you do not want to run
Hibernate 2 and 3 side by side, you will be forced to update your code. When compilation produces
errors, consult the javadoc API at http://hibernate.org to see whether the API has changed, and to
determine how to alter your code to work in the new environment. In practice, there are few changes in
the core API between versions 2 and 3, and the changes that do exist have well-signposted successors in
the new API documents.

Additions

The Event class is new to Hibernate 3. If you are familiar with the Interceptor class (which is retained),
you will have some idea of what to expect. This topic is discussed in Appendix A.

The Criteria and Filter APIs have been extended considerably. These are discussed in detail in
Chapter 11.

The flexibility of the mappings has been improved. For example, the join element permits a single
class to be represented by multiple tables. Support for stored procedures allows better integration with
legacy databases. The mapping file format is discussed in Chapter 8, and support for stored procedures
and other new features is discussed in Appendix A.

Changes to Tools and Libraries
As you may expect, the libraries upon which Hibernate is based have changed in version 3. Some have
been added and others have been brought up to date. Rather than enumerate these here, we refer you to
the lib/README.txt file in your Hibernate 3 distribution, which explains in detail whether or not
individual libraries are required, and what purpose each serves.

Hibernate 2 provided a number of aids to the generation of POJOs, mapping files, and database
schemas. Hibernate 3 has started a process of migrating to external support for these processes. Where
these tools are retained, they can be found in the org.hibernate.tool package and its subpackages. For
example, previously a facility provided by the CodeGenerator class to generate DDL from your mappings
existed in Hibernate 2. This is still provided in Hibernate 3, but the fully qualified name of the
SchemaExport class is now org.hibernate.tool.hbm2ddl.SchemaExport—but even though the tool still
exists, the generation of mapping files from POJOs in Hibernate 3 would usually be conducted by an
Eclipse plug-in, or the Hibernate Tools Ant tasks. See Appendix B for an extensive discussion of the use
of the Eclipse plug-ins and Ant tasks.

http://hibernate.org
http://

APPENDIX D ■ UPGRADING FROM HIBERNATE 2

341

Changes with Java 5
The release of Java 5 introduced some pretty substantial changes to the language. It also introduced
some incompatibilities with the previous class file format.

The only significant addition to Hibernate 3 that relies directly upon a Java 5–specific feature is the
annotations support. Otherwise, a 1.4 JVM will work fine. The use of annotation-based mapping in
Hibernate 3 is discussed in depth in Chapter 6.

Summary
In this appendix, we examined some of the changes that have been introduced with Hibernate 3, and
showed how code written for Hibernate 2 can be run in parallel with Hibernate 3, or be readily adapted
to run directly under Hibernate 3.

http://

http://

343

Index

■Special Characters
% character, 217

* symbol, 137

? symbol, 137

@Basic annotation, 105

@Column annotation, 106–107

@EmbeddedId annotation, 99–103

@Entity annotation, 95, 123

@GeneratedValue annotation, 95–97

@GenericGenerator annotation, 124–125

@Id annotation, 95–103

@IdClass annotation, 99–103

@Index annotation, 124

@OrderColumn annotation, 119–121

@SequenceGenerator annotation, 97–98

@Sort annotation, 123

@Table annotation, 124

@TableGenerator annotation, 98–99

@Transient annotation, 105–106

@Where annotation, 124

| symbol, 138

== operator, 68, 81

■A
abstract attribute, <class> element, 138

access attribute

<component> element, 146

<id> element, 141

<many-to-one> element, 150

<one-to-one> element, 147

<property> element, 144

access_groups table, 21

AccessGroups class, 21

Account class, 101–103

AccountPk class, 101–102

activated field, 233

activated=true clause, 231

activatedFilter filter, 230–231

<activatedParam> element, 230

ad hoc solutions, 5

Add button, Available Software dialog box,
288

Add External Archives command, Build
Path item context menu option,
293

Add JARs button, 291–292

Add Libraries context menu option, 293

add() method, 216, 222

http://

■ INDEX

344

addClass() method, 20

addEntity() method, 212

addJar()method, 20

addJoin() method, 212

addOrder() method, 220–221

addPackage() method, 228

address attribute, 108

addScalar() method, 212

admin1_code column

admin1Codes table, 238

admin2Codes table, 239

geonames table, 237

Admin1Code class, creating, 244–247

admin1Code field, 244

Admin1CodePK class, 247

admin1codes table, 242

admin1Codes.txt file, 238

admin2_code column

admin2Codes table, 239

geonames table, 237

Admin2Code class, creating, 247–250

admin2Code field, 244

admin2codes table, 242

admin2Codes.txt file, 238

admin3_code column, geonames table,
237

admin4_code column, geonames table,
237

aduser table, 43

advanced features

events, 272–276

hand-rolled SQLs

putting into annotations or
mappings, 269–270

using direct mappings, 266–267

using views, 267–269

Hibernate Search program, 285

interceptors, 276–284

invoking stored procedures, 271–272

limitations of Hibernate, 265–266

managed versioning and optimistic
locking, 263–264

maps, 264–265

overriding default constructor, 284

advanced queries, using Criteria API

associations, 220–221

distinct results, 221

obtaining unique result, 219–220

paging through result set, 219

projections and aggregates, 221–223

Query By Example (QBE), 223–225

restrictions with Criteria, 215–219

sorting query's results, 220

Advert class, 44–45, 162, 165, 171–173

advert column, Picture table, 167

Advert entities, 265

Advert mapping, 168

Advert objects, 44, 167

Advert table, 165–167

adverts attribute, 265

afterTransactionBegin() method, 277, 282

afterTransactionCompletion() method,
277, 282

http://

■ INDEX

345

aggregates

Criteria API, 221–223

methods, 207–208

aggregation relationships, mapping, 165–
168

aliases, 202

All JBoss Tools option, JBoss Tools web
site, 290

all option, save-update mode, 137

allocationSize attribute, 98

alternatenames column, 236, 254

ALWAYS flush mode, 71

AND expressions, 218

and operator, 204

annotated classes, 19–20

annotation mappings, 263, 317

AnnotationConfiguration class, 13, 21, 122

AnnotationConfiguration object, 13, 19–
21, 93

AnnotationConfiguration type, 328

<annotationconfiguration> configuration
element, 126, 315, 319

annotations

defining and attaching filters with, 228

mapping with

choosing which to use, 93

code listings, 126

compound primary keys with @Id,
@IdClass, or @EmbeddedId, 99–
103

configuring annotated classes, 121–
122

database table mapping with
@Table and @SecondaryTable,
103–104

entity beans with @Entity, 95

generating primary key values with
@SequenceGenerator, 97–98

generating primary key values with
@TableGenerator, 98–99

Hibernate 3-specific persistence
annotations, 122–125

inheritance, 114–117

JPA 2 persistence annotations, 93–95

mapping properties and fields with
@Column, 106–107

modeling entity relationships, 107–
114

omitting persistence with
@Transient, 105–106

ordering collections with
@OrderColumn, 119–121

other JPA 2 persistence annotations,
117–119

overview, 91

persisting basic types with @Basic,
105

primary keys with @Id and
@GeneratedValue, 95–97

pros and cons of annotations, 91–92

using annotations in application, 93

using Ant with annotation-based
mappings, 125–126

putting hand-rolled SQLs into, 269–270

annotations, Hibernate, 310, 315, 318

ANother Tool for Language Recognition
(ANTLR), 194

http://

■ INDEX

346

Ant

tasks, 314

configuring classpaths, 324–325

reverse engineering, 319–322

templates, 323–324

tools, 29–33

using with annotation-based
mappings, 125–126

Ant property set, 323

ANTLR (ANother Tool for Language
Recognition), 194

any tag, 175

ANYWHERE match, 217

API (Application Programming Interface),
193, 195, 203, 206, 338–340

applications, using filters in, 229–230

array tag, 176

articles attribute, 333

artifacts scripting variable, 324

as clause, 202

as keyword, 202

ASC (ascending order), 111, 206

asc() method, 220

ascending order (ASC), 111, 206

asciiname column

admin2Codes table, 239

geonames table, 236

assigned generator type, 144

assigned strategy, 125

associations, 82–89, 206–207

applying mappings to, 89

Criteria API, 220–221

many-to-many, 88

one-to-many and many-to-one, 86–87

one-to-one, 84–86

attaching filters, 228–229

Author class, 94, 107, 114, 126

AuthorAddress class, 107–108

authors attribute, 114

AUTO flush mode, 71–72

AUTO type, GeneratorType enumeration,
97

autocommit mode, 15

auto-flush listener, 273

AutoFlushEventListener interface, 273

auto-import attribute, <hibernate-
mapping> element, 136

Available Software dialog box, 288–289

available user libraries list, 293

avg() method, 208, 222

avgPrice alias, 212

■B
bag collection, 159–160

bag data structure, 157

bag implementation, 157

bag mapping, 160

<bag> element, 152, 159

base attribute, 120

BasicGeoName class, 244, 253

batch-size attribute, 138, 153

beforeTransactionCompletion() method,
277

begin() method, 277

http://

■ INDEX

347

beginTransaction() method, 179

BETWEEN clauses, 230

bidirectional associations, 63–64

big_decimal type, 135

big_integer type, 135

bin directory, 32

binary type, 135

blob type, 135

Bodden, Brian Sam, 29

Book class, 94–95, 97, 106, 114, 119, 126

Booking class, 283

Booking objects, 280, 282

bookings, 279

BookingSaveOrUpdateListener interface,
276

bsh-2.0b1.jar file, 313

bug database, Hibernate, 291

Build Path dialog box, Java, 293

Build Path item context menu option, 293

build.properties file, 259, 313

buildSessionFactory() method, 13

build.xml file, 29, 32, 313

bulk deletes, with Hibernate Query
Language (HQL), 208–209

byte types, 135

■C
c2h scripting variable, 324

c2j scripting variable, 324

cache configuration files, 325

CacheMode setting, 191

CacheProvider interface, 189

caching, 189–191

calendar_date type, 135

cancelQuery() method, 179

cascade attribute, 72–73, 109, 111–113,
147, 150, 153

cascade operations, 72, 110

CascadeType enumeration, 110

cascading of operations, 72–74, 90

catalog attribute, 98, 113, 136, 138, 153

Category class, 44–45

Category objects, 44, 55–56

cc2 column, geonames table, 237

cfg scripting variable, 324

*.cfg.xml file, 315–316

CGLib library, 11, 15

Chakraborty, Anirvan, 327

char type, 135, 319

character type, Hibernate 3, 135

check attribute, 138, 147, 153

class attribute

<component> element, 146

<many-to-one> element, 150

<one-to-one> element, 147

class tag, 270

<class> elements, 133, 138–141, 144, 164,
174, 264

classes

annotated, 19–20

dialect, 23

http://

■ INDEX

348

Java, 62–63

mapping, 160–162

persistence, creating, 39

classpaths

attributes, 314

configuring, 324–325

declaration of, 314

elements, 314

error message, 295

prefix, 328

ClassPersister object, 140, 154

clear() method, 180

clients, example of, 54–59

clob type, 135

close() method, 22, 180

CMP (container-managed persistence), 65

Code Generation tool, 305–313, 316

CodeGenerator class, 340

Collection attribute names, 320

Collection class, 83

collection elements

bag collection, 159–160

idbag collection, 157–158

list collection, 156–157

map collection, 158–159

overview, 152

set collection, 154–156

collection wrappers, 74–75

collections

mapping, 168–170

ordering with @OrderColumn, 119–121

restricting with @Where annotation,
124

sorting with @Sort annotation, 123

collection-type attribute, 153

Color class, 267

color table, 266, 268

column attribute

<id> element, 141

<many-to-one> element, 150

<property> element, 144

<column> elements, 144–145, 152

columnDefinition attribute, 107, 115, 120

columns, specification of types and sizes,
89

com.hibernatebook.AccessGroups class,
21

com.hibernatebook.generated package,
309, 312

com.hibernatebook.highpoint.entity
package, 253

com.hibernatebook.security.Group class,
21

com.hibernatebook.webcast.Group class,
21

comma-separated list, 73

commenting, Hibernate Query Language
(HQL), 201–202

COMMIT flush mode, 71

Commons Logging library, 31

compiled classes, 325

component entity, 164

<component> element, 137, 146–147, 164,
176

components, 134

http://

■ INDEX

349

Composite ID details, 320

composite key, 265

<composite-id> element, 126, 141, 143,
315–316

composition relationships, mapping, 162–
168

compound primary keys

with @EmbeddedId annotation, 99–102

with @Id annotation, 102–103

with @IdClass annotation, 102–103

ComputerBook class, 119

ComputerBook entities, 115, 119

condition attribute, 229

condition parameter, 228

configuration and session factory, 338

Configuration class, 12, 314

configuration, creating, 294–296

configuration elements, 314

Configuration File menu option,
Hibernate, 304

configuration files

generating, 304–305

Spring Framework, 333–336

configuration metamodel, 323

Configuration method, 34

Configuration node, console configuration
window ToolsExample entry, 297

configuration object, 10, 50, 93, 122, 314,
316, 323–324, 330, 338

configuration properties, 304, 323

configuration settings, 295

configuration view, 298, 300

configurationClass property, 330

configurationfile attribute, 315

configure() method, 13, 19, 338

configuring Hibernate

annotated classes, 19–20

naming strategy, 20–21

properties, 14

steps for, 9–10

using container-managed data source,
21

XML configuration, 18–19

conjunction() method, 218

connection() method, 181

Connection object, 28, 50

Connection URL field, Create Hibernate
Configuration file wizard, 304

ConnectionProvider interface, 15

Console configuration option, Hibernate
Code Generation... window, 309

console configuration window, 297–298

constrained attribute, 147–148

constraints, 90

constructor, overriding default, 284

container-managed data source, 21

container-managed persistence (CMP), 65

contains() method, 180

context-sensitive scratch pad, 300

conventional one-to-one association,
mapping, 108–109

core Hibernate install directory, 292

core Hibernate JAR files, 291

count() method, 207–208, 222

http://

■ INDEX

350

COUNT SQL statement, 222

countDistinct() method, 222

country subdivision codes, 238

country_code column

admin1Codes table, 238

admin2Codes table, 239

geonames table, 237

Create a console configuration check box,
305

Create Hibernate Configuration file
wizard, 304

Create Hibernate Console Configuration
dialog page, 294

create() method, 223

create mode, default-cascade attribute,
137

createCategories task, 33, 54, 58

createCriteria() method, 179, 215, 220

create-drop value, 16

createFilter() method, 179

createQuery() method, 179, 196

createSQLQuery() method, 212

CreateUser class, 55

createUser() method, 183–184

createUsers task, 33, 54–55, 58

Criteria interface, 205, 219

Criteria object, 215–216, 218–222

Criteria Query API, 75, 203, 206

Criterion interface, 223

Criterion objects, 216, 223

currency type, 135

Customer class, 78–79, 83

Customer entity, 104

Customer table, 79, 83

■D
DAO beans, 332

DAO class, 55, 330

Data Definition Language (DDL), 32, 316–
317, 340

database connection information, 297

Database dialect field, Create Hibernate
Configuration file wizard, 304

database INTEGER types, 321

database management system (DBMS),
185

Database node, console configuration
window ToolsExample entry, 297

Database Schema export files, 311

database table mapping, with @Table and
@SecondaryTable, 103–104

database VARCHAR types, 321

databases, using Hibernate with (case
study)

building list of high points

developing HQL query, 259

running query, 260–261

configuring Hibernate, 257–259

creating Java object model

creating Admin1Code class, 244–247

creating Admin2Code class, 247–250

creating feature codes class, 250–253

creating Place class, 253–257

overview, 243

http://

■ INDEX

351

setting up database

creating database schema, 240–242

downloading data, 235–236

loading data, 242

understanding data, 236–239

DataDirectOracle9Dialect class, 24

DataSource bean, 328

DataSource object, 328

datasource property, 21

dataSource property, 328

Date field, 106

date type, 135

DATE value, 117

Daughter Elements, Hibernate Tools Task,
314

DB2 database, 23

DB2/390 database, 23

DB2/400 database, 23

DB2Dialect class, 23

DB2390Dialect class, 23

DB2400Dialect class, 23

DBMS (database management system),
185

DDL (Data Definition Language), 32, 316–
317, 340

deadlocks, 185–186

debuglevel property, 15

declarative transaction management, 331–
332

default constructor, overriding, 284

default-access attribute, 136

default-cascade attribute, 73, 136–137

default-lazy attribute, 136

DefaultSaveOrUpdateEventListener class,
274

defining filters, 228–229

DELETE clause, 193

delete from clause, 208

delete from products command, 204

delete() method, 72, 179, 339

delete mode, default-cascade attribute,
137

DELETE statements, 72, 194–195, 208–209

DeleteEventListener interface, 273

delete-orphan option, 137

deletes, bulk with Hibernate Query
Language (HQL), 208–209

deleting entities, 72

delimiter property,, 317

deploying Hibernate, 11–12

Derby database, 23

DerbyDialect class, 23

DESC (descending order), 111, 206

desc() method, 220

descending order (DESC), 111, 206

description property, 197

destdir property

<hbm2cfgxml> element, 318

<hbmtemplate> element, 324

destfile property, 319

direct mappings, 266–267

dirty-check listener, 273

DirtyCheckEventListener interface, 273

disableFilter() method, 179, 229

http://

■ INDEX

352

disconnect() method, 181

DISCRIMINATOR column, 115

discriminatorType attribute, 115

discriminator-value attribute, 139, 175

disjunction() method, 218

displayUsers() method, 231

distinct keyword, 207

Ditt, Jessica, 327

Document Type Definition (DTD), 136–
138, 175, 321, 337–338

Dom4J Document objects, 133

Double object, 212, 224

double types, 135

downloading Hibernate Tools plug-in, 288

DriverManagerDataSource bean, 328

drop property,, 317

drop="true" option, 37

DTD (Document Type Definition), 136–
138, 175, 321, 337–338

dynamic class, 176

<dynamic-component> element, 176

dynamicInsert attribute, 123, 139

dynamic-map, 133

dynamicUpdate attribute, 123, 139

■E
Eclipse

debugging perspective, 293

download site, 291

editors for, 300

IDEs, 287–288, 290–291, 293–294, 296,
311, 313

installing plug-in, 288–291

plug-in, Hibernate Console

browsing models, 298–299

creating configuration, 294–296

creating Mapping Diagrams, 303

generating Configuration files, 304–
305

generating schema, 297–298

query parameters, 302–303

reverse engineering and Code
Generation tools, 305–313

running test programs, 298

testing HQL queries, 300–301

project configuration, 291–293

user libraries, 291

EHCache cache, 190

EJB 3 annotations, 318

ejb3 property, 318

element collections, 118

elevation column, geonames table, 237

Email class, 64, 66–67, 72–73, 78–79, 84,
152

Email entity, 87–88

Email table, 66, 79, 83, 85–87

embedded one-to-one association,
mapping, 107–108

embed-xml attribute

<many-to-one> element, 150

<one-to-one> element, 147

employeeNumber column, 120

enableFilter() method, 179, 229

END match, 217

http://

■ INDEX

353

entities

and associations, 63–67

deleting, 72

loading, 69–70

overview, 133–134

refreshing, 70–71

saving, 67–68

updating, 71–72

entity beans, 95

entity classes, 294

entity mapping, 297

entity relationships, modeling

mapping conventional one-to-one
association, 108–109

mapping embedded (component) one-
to-one association, 107–108

mapping many-to-many association,
113–114

mapping many-to-one or one-to-many
association, 109–113

EntityManager class, 110

EntityManager object, 119

EntityMode.MAP parameter, 264

entityName argument, 68

entity-name attribute

<class> element, 139

<many-to-one> element, 150

<one-to-one> element, 147

entityresolver attribute, 315

equals() method, 68, 81, 99, 216, 245

Event class, 340

events, 272–276

evict listener, 273

evict() method, 62, 180

evict mode, default-cascade attribute, 137

EvictEventListener interface, 273

EXACT match, 217

example client, 54–59

excludeNone() method, 224

excludeProperty() method, 224

excludeZeroes() method, 224

executeUpdate() method, 208

EXPLICIT value, 123

export property,, 317

exportDDL target, 37

exportDDL task, 32–33, 48, 54, 58

exporterclass attribute, 323

Exporters tab, 310

Extensible Markup Language (XML), 6,
133, 136, 147, 152

files

configuration, 18–19, 294, 315, 318,
320

mapping, 294, 316, 318, 325

mapping documents, 229

external XML entities, 315

■F
false value, auto import attribute, 136

FAQ (Frequently Asked Questions) section,
GeoNames, 240, 242

feature_class column, 237

http://

■ INDEX

354

feature_code column

featurecodes table, 240

geonames table, 237

featureCode field, 244

featurecodes table, 242

featurecodes_en.txt file, 239

features. See advanced features

features directory, 31

FETCH ALL PROPERTIES statement, 195

fetch attribute, 105, 109, 111–113, 118, 148,
150, 153

fetch keyword, 207

FetchType enumeration, 105

filepattern property, 323

files, tab-delimited, 242

file-selection dialog box, 292

<fileset> element, 316

Filter annotation, 228

Filter API, 340

<filter> element, 229

filterdb database, 234

FilterDefinition object, 230

filtering results of searches

basic example of, 230–234

defining and attaching fitlers, 228–229

using in application, 229–230

when to use, 227–228

<filter-param> element, 229–230

findDirty() method, 277

Firebird database, 23

FirebirdDialect class, 23

-flag, 35

float types, 134

flush() method, 71, 180–181, 277–278

flush modes, 71–72

flush-entity listener, 273

FlushEntityEventListener interface, 273

FlushEventListener interface, 273

FORCE lock mode, 69

foreign key names, 89

foreign key relationships, 85–86, 167, 320

foreign-key attribute

<many-to-one> element, 150

<one-to-one> element, 148

formula attribute

<many-to-one> element, 150

<one-to-one> element, 148

<property> element, 144

FreeMarker, 323–324

freemarker.jar file, 313

Frequently Asked Questions (FAQ) section,
GeoNames, 240

from clause, 195–196, 202, 206

FROM path, 194–195

FROM Product query, 196

from Product statement, 200

from Supplier query, 201

from User query, 231

FrontBase database, 23

FrontBaseDialect class, 23

FullTextSession method, 285

FullTextSession object, 285

http://

■ INDEX

355

fully qualified dialect class name, 305

fully qualified path names, 294

■G
generated-src directory, 309, 311

generating schema, 297–298

generator attribute, 96

<generator> element, 142

GenericDialect dialect, 34

geographic names, 236–238

geonameid column

admin2Codes table, 239

geonames table, 236

geonameid field, 237

geonames database, 236, 253, 285

geonames table, 236, 239–240, 242–244,
251, 253

GeoNames web site, 235–236

get() methods, 70, 99, 178, 271

GET option, 191

getAll() method, 330–331

getAuthors() method, 114

getCacheMode() method, 180

getCode() method, 102

getCurrentLockMode() method, 180

getCurrentSession() method, 330

getEnabledFilter() method, 179, 229

getEntity() method, 277

getEntityName() method, 70, 179, 277

getFilterDefinition() method, 230

getFlushMode() method, 71

getId() method, 92

getIdentifier() method, 141, 179

getNamedQuery() method, 179, 211

getNumber() method, 102

getSession() method, 264

getSessionFactory() method, 180

getTransaction() method, 179

getUser() method, Phone class, 50

global interceptor, 279

Graphical User Interface (GUI), 194

GROUP BY clause, 223, 259

groupProperty projection, 223

gtopo30 column, geonames table, 237

GUI (Graphical User Interface), 194

guid IdentifierGenerator implementation,
142

guid strategy, 125

■H
H2 database, 23

H2Dialect class, 23

haltonerror property,, 317

hand-rolled SQLs

putting into annotations or mappings,
269–270

using direct mappings, 266–267

using views, 267–269

hashCode() method, 99, 221, 245

hashmaps, 265

<hbm2cfgxml> element, 316, 318

<hbm2ddl> element, 316–317

http://

■ INDEX

356

<hbm2doc> element, 316, 318

<hbm2hbmxml> element, 316, 318

<hbm2java> element, 316, 318–319

<hbmtemplate> element, 316, 323–324

<hbmtemplate> task, 323

*.hbm.xml mapping file, 316

HIB_SEQ object, 97

Hibernate

configuring from Spring application,
327–330

declarative transaction management,
331–332

limitations of, 265–266

managing sessions, 332–333

sample configuration file, 333–336

using Hibernate in Spring beans, 330–
331

Hibernate 2, upgrading from

changes to tools and libraries, 340

changes with Java 5, 341

new features and support for old ones,
338–340

package and DTD changes, 337–338

Hibernate 3.5

Hibernate Hello World example, 5

mappings, 6

origins of and object-relational
mapping, 3–4

as persistence solution, 4–5

plain old Java objects (POJOs), 1–3

Hibernate Code Generation tool, 306, 316

Hibernate Configuration File menu
option, 304

Hibernate Console

browsing models, 298–299

creating configuration, 294–296

creating Mapping Diagram, 303

generating Configuration files, 304–305

generating schema, 297–298

overview, 293

query parameters, 302–303

reverse engineering and Code
Generation tools, 305–313

running test programs, 298

testing HQL queries, 300–301

Hibernate Query Language (HQL), 120–
121, 193

bulk deletes with, 208–209

bulk updates with, 208–209

commenting generated, 201–202

example with, 196–200

logging, 200–201

named queries for, 209–211

restrictions with, 203–204

testing queries, 300–301

Hibernate Query Result view, 299, 302

Hibernate Reverse Engineering File menu
option, 306

Hibernate Search program, 285

Hibernate Static Metamodel Generator,
225

http://

■ INDEX

357

Hibernate Tools toolset

Ant tasks, 313–325

configuring classpaths, 324–325

reverse engineering, 319–322

templates, 323–324

downloading plug-in, 288

Eclipse plug-in

Hibernate Console, 293–313

installing, 288–291

overview, 287

project configuration, 291–293

Hibernate user library, 292–293

Hibernate web site, 287, 337

Hibernate XML configuration file, 294, 318

hibernate-3.5.1 directory, 31

hibernate3.jar file, 11, 292

hibernate-annotations.jar file, 125

hibernate.c3p0.acquire_increment
property, 14

hibernate.c3p0.idle_test_period property,
14

hibernate.c3p0.max_size property, 14

hibernate.c3p0.max_statements property,
14

hibernate.c3p0.min_size property, 14

hibernate.c3p0.timeout property, 14

hibernate.cache.provider_class property,
15, 189

hibernate.cache.query_cache_factory
property, 15

hibernate.cache.region_prefix property, 15

hibernate.cache.use_minimal_puts
property, 15

hibernate.cache.use_query_cache
property, 15

hibernate.cache.use_second_level_cache
property, 15

hibernate.cfg.xml configuration file, 200,
294, 325

hibernate.cfg.xml file, 12–14, 19, 33, 121,
257, 296, 317–318

hibernate.cglib.use_reflection_optimizer
property, 15

hibernate.connection property, 15

hibernate.connection.autocommit
property, 15

hibernate.connection.datasource
property, 15, 21

hibernate.connection.driver_class
property, 15

hibernate.connection.isolation property,
15

hibernate.connection.password property,
15, 21

hibernate.connection.pool property, 34

hibernate.connection.pool_size property,
15

hibernate.connection.provider_class
property, 15

hibernate.connection.url property, 16

hibernate.connection.username property,
16, 21

HibernateDaoSupport class, 330

hibernate.default_catalog property, 16

hibernate.default_schema property, 16

hibernate.dialect property, 16, 24

hibernate-distribution-3.5.1 directory, 31

HibernateException class, 219, 339

http://

■ INDEX

358

hibernate.generate_statistics property, 16

hibernate.hbm2ddl.auto property, 16

hibernate.jar file, 37

hibernate.jdbc.batch_size property, 16

hibernate.jdbc.batch_versioned_data
property, 16

hibernate.jdbc.factory_class property, 16

hibernate.jdbc.fetch_size property, 16

hibernate.jdbc.use_get_generated_keys
property, 16

hibernate.jdbc.use_scrollable_resultset
property, 17

hibernate.jdbc.use_streams_for_binary
property, 17

hibernate.jndi.<JNDIpropertyname>
property, 17

hibernate.jndi.class property, 17, 21

hibernate.jndi.url property, 17, 21

<hibernate-mapping> element, 73, 136–
141, 144

hibernate.max_fetch_depth property, 17

hibernate.order_updates property, 17

hibernate.properties file, 12, 14, 21, 200,
325

hibernate.proxool property, 17

hibernate.proxool.existing_pool property,
17

hibernate.proxool.pool_alias property, 17

hibernate.proxool.properties property, 17

hibernate.proxool.xml property, 17

hibernate.query.factory_class property, 17

hibernate.query.factoryclass configuration
attribute, 339

hibernate.query.substitutions property, 17

HibernateService class, 12

HibernateServiceMBean interface, 12

hibernate.session_factory_name property,
17

hibernate.show_sql property, 17, 200

Hibernate-specific views, 293

hibernate.sql_exception_converter
property, 17

HibernateTemplate class, 330

hibernate-tools-3.2.4 directory, 31

hibernate-tools.jar file, 31, 313, 324

hibernate.tools.path property, 31

hibernate.transaction.auto_close_session
property, 18

hibernate.transaction.factory_class
property, 18

hibernate.transaction.flush_before_compl
etion property, 18

HibernateTransactionManager bean, 331–
332

hibernate.transaction.manager_lookup_cl
ass property, 18

hibernate.use_identifier_rollback
property, 18

hibernate.use_sql_comments property, 18,
201

hibernate-wizard.cfg.xml file, 304

hibernate.wrap_result_sets property, 18

hibernate.xml.output_stylesheet property,
18

hilo IdentifierGenerator implementation,
142

hilo strategy, 125

hints attribute, 120

http://

■ INDEX

359

HQL. See Hibernate Query Language
(HQL)

<hql> elements, 319

HSQLDB 2.0.0 tool, 28–29

HSQLDB database, 23

HSQLDialect class, 23

HTML documentation, 318

■I
id classes, 174, 265

ID classpath.tools class, 325

id column, Advert table, 167

id field, 39, 42, 233, 270

<id> element, 141–144, 148

idbag collection, 157–158

idbag mapping, 158

IdentifierGenerator implementations, 142

identifiers, 63

identity column type, 142

identity IdentifierGenerator
implementation, 142

identity strategy, 125

IDENTITY type, GeneratorType
enumeration, 97

IGNORE option, 191

ignoreCase() method, 224

ilike() method, 216–217

IMPLICIT value, 123

import javax.persistence.Entity, 95

ImprovedNamingStrategy naming
strategy, 21

IN clauses, 230

increment IdentifierGenerator
implementation, 143

increment strategy, 125

index attribute

<many-to-one> element, 150

<property> element, 144

indexes, applying, 124

Infinispan cache, 190

Informix database, 23

InformixDialect class, 23

Ingres database, 23

IngresDialect class, 23

inheritance

choosing between inheritance types
when modeling inheritance, 117

joined, 116

mapping relationships

one-table-per-class-hierarchy
approach, 174–175

one-table-per-concrete-class
approach, 171–172

one-table-per-subclass approach,
172–174

overview, 114

relationships to database, 89

single table, 115

table per class, 116

InitialContext class, 17

InitialContext property, 17

InitialContextFactory interface, 21

initialize() method, 75

InitializeCollectionEventListener interface,
273

http://

■ INDEX

360

initialValue attribute, 98

insert attribute

<component> element, 146

<many-to-one> element, 150

<property> element, 144

INSERT clause, 193

INSERT commands, 139

INSERT statements, 139, 195

insertable attribute, 107

Install New Software menu option, 288

installing Eclipse plug-in, 288–291

instantiate() method, 278

int class, 208

integer type, 134

integrating Hibernate, steps needed for, 9–
10

InterBase database, 23

InterbaseDialect class, 23

Interceptor class, 340

interceptors, 276–284

International Standards Organization
(ISO) code, 235

inverse attribute

<bag> element, 159

<list> element, 156

<map> element, 158

<set> element, 154–155

Inverse relationships, 320

inverseJoinColumns attribute, 113

invoking stored procedures, 271–272

is gt() method, 217

isConnected() method, 181

isDirty() method, 71, 180

isInitialized() method, 75

isNotNull() method, 217

isNull() method, 216–217

ISO (International Standards
Organization) code, 235

isolation levels, 182

isOpen() method, 180

isTransient() method, 278

Iterator class, 196

■J
J2EE (Java 2 Platform Enterprise Edition)

application server, 4

J2EE (Java 2 Platform Enterprise Edition)
server, 4

J2EE Connector Architecture (JCA), 10

JAR (Java Archive), 291–292, 313

jar attribute, 20

Java 1.4-compatible source code, 319

Java 2 Platform Enterprise Edition (J2EE)
application server, 4

Java 2 Platform Enterprise Edition (J2EE)
server, 4

Java 5

changes with, 341

class files, 319

constructs, 318

Java Application run configuration,
PopulateNotes class, 298

Java Archive (JAR), 291–292, 313

Java Build Path dialog box, 293

http://

■ INDEX

361

Java Community Process web site, 194

Java Database Connectivity (JDBC), 1, 3, 5,
10, 204–205, 211, 293

Java Development Tools (JDT), 287

Java EE perspective icon, 293

Java List collection, 196

Java Management Extensions (JMX), 10,
12, 193

Java Naming and Directory Interface
(JNDI), 10

Java naming convention, 319

Java Native Directory Interface (JNDI)
resource, 5

Java object model

creating Admin1Code class, 244–247

creating Admin2Code class, 247–250

creating feature codes class, 250–253

creating Place class, 253–257

overview, 243

Java Persistence API (JPA), 1, 194–195, 310

Java Persistence Query (JPQL), 120–121

Java Persistence Query Language (JPQL),
194–195

Java perspective icon, 293

Java Runtime Environment (JRE), 93

Java source files, 325

Java Virtual Machine (JVM), 68, 143, 341

javadoc API, 340

javadoc output, 318

java.io.Serializable type, 135

java.lang.Boolean type, 135

java.lang.Byte type, 135

java.lang.Character type, 135

java.lang.Class type, 135

java.lang.Double type, 135

java.lang.Float type, 134

java.lang.Integer type, 134

java.lang.Long type, 134

java.lang.Short type, 134

java.lang.String type, 89, 135, 319

java.math.BigDecimal type, 135

java.math.BigInteger type, 135

java.sql.Blob type, 135

java.sql.Clob type, 135

java.sql.Date class, 117

java.sql.Time class, 117

javassist library, 11

java.util.Calendar type, 117, 135

java.util.Currency type, 135

java.util.Date class, 117

java.util.Date property, 117

java.util.Date type, 117, 135

java.util.List collection, 118

java.util.Locale type, 135

java.util.TimeZone type, 135

javax.persistence package, 93, 95

javax.persistence.CascadeType
enumeration, 109, 111

javax.persistence.DiscriminatorType
enumeration, 115

javax.persistence.FetchType enumeration,
111

javax.persistence.GeneratorType
enumeration, 96

http://

■ INDEX

362

javax.persistence.InheritanceType
enumeration, 115

javax.persistence.PrimaryKeyJoinColumn
object, 104

javax.persistence.TemporalType
enumeration, 117

JBoss Tools 3.1, 288–289

JBoss Tools site, 289

JBoss-specific plug-ins, 287

JCA (J2EE Connector Architecture), 10

JDataStore database, 23

JDataStoreDialect class, 23

JDBC (Java Database Connectivity), 1, 3, 5,
10, 204–205, 211, 293

<jdbcconfiguration> task, 315, 318–320

jdk5 property, <hbm2java> element, 318

JDT (Java Development Tools), 287

JMX (Java Management Extensions), 10,
12, 193

JNDI (Java Naming and Directory
Interface), 10

JNDI (Java Native Directory Interface)
resource, 5

JNDI name, 14

JndiObjectFactoryBean bean, 328–329

join attribute, 104

join clause, 206

join element, 340

joinColumns attribute, 113

JOINED approach, 114

joined table inheritance, 116

<joined-subclass> elements, 174–175

JPA (Java Persistence API), 1, 194–195, 310

JPA 2 persistence annotations, 93–95, 117–
119

<jpaconfiguration> configuration task, 315

JPQL (Java Persistence Query), 120–121

JPQL (Java Persistence Query Language),
194–195

JRE (Java Runtime Environment), 93

JtaTransactionManager, 331

jta.UserTransaction property, 18

jtidy-r8-20060801.jar file, 313

Judd, Christopher M., 29

JVM (Java Virtual Machine), 68, 143, 341

■K
key-generation technique, 90

■L
L1 cache, 189

large object type, 118

latePaymentFilter filter, 229

latitude column, geonames table, 237

lazy attribute

<class> element, 139

<component> element, 146

<many-to-one> element, 150

<one-to-one> element, 148

<property> element, 144

LAZY flag, 105

lazy loading, 74–75, 82

LazyInitializationException, 74, 332–333

le() method, 217

left outer join, 206

http://

■ INDEX

363

length attribute, 106, 115, 142, 144

lib subdirectory, 38, 292

lib/bytecode/javassist subdirectory, 38

lib/jpa subdirectory, 38

libraries

changes to, 340

required for running Hibernate 3.5, 11–
12

Libraries tab, Java Build Path dialog box,
293

library types list, 293

lib/README.txt file, 340

lib/required directory, 11, 38

life cycle of persistent objects

cascading operations, 72–74

classes, 62–63

collection wrappers, 74–75

entities

and associations, 63–67

deleting, 72

loading, 69–70

refreshing, 70–71

saving, 67–68

updating, 71–72

identifiers, 63

lazy loading, 74–75

names, 62–63

object equality and identity, 68

overview, 61–62

proxies, 74–75

querying objects, 75

Lifecycle interface, 62

like() method, 216–217

like operator, 204

limit command, 205

list collection, 156–157

List interface, 156–157, 159

list mapping, 157

list() method, 222

<list> element attribute, 156

listAdverts task, 33, 54, 58

listeners

of events, 275–276

field, 273

listMessages task, 33, 37

LOAD DATA INFILE command, 242

load listener, 273

load() method, 62, 69–71, 179

load-collection listener, 273

LoadEventListener interface, 273

loading entities, 69–70

locale type, 135

LocalSessionFactoryBean bean, 328–330

lock listener, 273

lock() method, 179

lock mode, default-cascade attribute, 137

LockEventListener interface, 273

locking, 184–185

LockMode object, 184

log4j configuration files, 325

logging Hibernate Query Language (HQL),
200–201

http://

■ INDEX

364

Long object, 207

long type, 134

longitude column, geonames table, 237

lt() method, 217

Lucene search engine, Apache, 285

■M
MacAddress class, 134

Machacek, Jan, 327

Main Hibernate Console Configuration
settings, 295

Managed Bean (MBean), 193

managed versioning, 263–264

management, declarative transaction of,
331–332

mandatory constraints, 90

MANUAL flush mode, 71

many-to-many association, 67, 88, 113–
114, 169–170

<many-to-many> element, 149

many-to-one association, 67, 86–87, 109–
111, 320

many-to-one mapping, 167

<many-to-one> element, 149–152

map collection, 158–159

<map> element attributes, 158

mapped classes, 294, 299, 318

mapped superclasses, 119

mappedBy attribute, 44–45, 108–109, 111–
113

mapping

aggregation relationships, 165–168

associations

applying mappings to, 89

many-to-many association, 88

one-to-many and many-to-one
association, 86–87

one-to-one association, 84–86

overview, 82–83

cascading of operations, 90

classes, 160–162

collections, 168–170

composition relationships, 162–168

exotic, 175–176

files, anatomy of

<class> element, 138–141

collection elements, 152–160

<component> element, 136–138,
146–147

<id> element, 141–144

<many-to-one> element, 149–152

<one-to-one> element, 147–149

<property> element, 144–145

Hibernate types

components, 134

entities, 133–134

values, 134–136

inheritance relationships

one table per class hierarchy, 174–
175

one table per concrete class, 171–
172

one table per subclass, 172–174

http://

■ INDEX

365

of inheritance relationships to
database, 89

lazy loading, 82

mandatory and unique constraints, 90

primary keys, 80–82, 90

specification of (database) column
types and sizes, 89

use of SQL formula-based properties,
90

why cannot be automated, 78–79

<mapping class> approach, 318

mapping configuration, 338

Mapping Diagrams, creating, 303

mapping element, 19–20, 93, 121, 294

<mapping resource> entries, 318

mappings

annotations, 263

defined, 6

direct, 266–267

object, creating, 42–47

putting hand-rolled SQLs into, 269–270

maps, 264–265

MarketingBook class, 119

MatchMode object, 217

max() method, 208, 259

max(String propertyName) method, 222

MBean (Managed Bean), 193

Mckoi database, 23

MckoiDialect class, 23

merge listener, 273

merge() method, 62, 178

merge mode, default-cascade attribute,
137

MergeEventListener interface, 273

Message class, 35, 64, 66–67

message examples, running, 35–38

Message table, 66

message.getEmail() method, 64

Message.java code, 35

metadata database, 298

metadata information, 315

metamodel, 314, 316, 318–320

Metamodel Generator, Hibernate, 225

methods, aggregate, 207–208

Microsoft Structured Query Language
(SQL) Server, 205

Mimer SQL database, 23

MimerSQLDialect class, 23

min() method, 208

min(String propertyName) method, 222

Minter, Dave, 327

modeling entity relationships

mapping conventional one-to-one
association, 108–109

mapping embedded (component) one-
to-one association, 107–108

mapping many-to-many association,
113–114

mapping many-to-one or one-to-many
association, 109–113

models, browsing, 298–299

modification_date column, geonames
table, 237

Motd object, 3

http://

■ INDEX

366

multiple objects, persisting, 38–39

mutable attribute, 139, 153

mutual association, 63

MySQL with InnoDB tables database, 23

MySQL with MyISAM tables database, 23

MySQL5Dialect class, 23

MySQLDialect class, 23

MySQLInnoDBDialect class, 23

MySQLMyISAMDialect class, 23

■N
name attribute

<class> element, 139–140

<component> element, 146

<id> element, 142

<many-to-one> element, 151

<one-to-one> element, 148

<property> element, 144

name column

admin1Codes table, 238

admin2Codes table, 239

featurecodes table, 240

geonames table, 236

Query Parameters view, 302

name field

Hibernate Code Generation window,
309

User class, 43

name parameter, 228

name property, 196–197, 207

named native queries, 121

named parameters, 204–205

named queries, 120–121, 209–211

names, 62–63

naming convention, Java, 319

naming strategy attribute, 315, 320

naming strategy classes, 320

naming strategy function, 20–21

native IdentifierGenerator
implementation, 143

native SQL, 211–213

native strategy, 125

ne() method, 216

nestedTransactionAllowed property, 331

net.sf.hibernate base package, 337

new operator, 61

node attribute

<class> element, 139

<component> element, 146

<id> element, 142

<many-to-one> element, 151

<one-to-one> element, 148

<property> element, 144

NONE lock mode, 69, 185

none option, save-update mode, 137

nonrepeatable read, 183

NonUniqueResultException exception,
206, 220

NORMAL option, 191

NOT NULL constraint, 90

NOTEPAD table, 321

NOTEPAD_NOTE table, 321

http://

■ INDEX

367

Notepad.java class file, 312

not-found attribute, 151, 209

not-null attribute

<many-to-one> element, 151

<property> element, 145

not-null constraint, 151

NOWAIT keyword, 69

NULL value, 216

nullable attribute, 106, 120

■O
Object array, 202, 207–208, 222

object equality and identity, 68

object mappings, creating, 42–47

Object objects, 207

Object reference, 219

Object type, 169

object-oriented association, 77

Object-relational mapping (ORM), 1–4,
193, 211–212

objects

detached, 62

multiple, persisting, 38–39

persistent, 62

related to sessions, 50–52

transient, 61

onDelete() method, 278

one-to-many association, 67, 86–87, 112–
113, 167, 320

one-to-one association, 67, 84–86, 165, 167

<one-to-one> element, 147–149

onFlushDirty() method, 278

onLoad() method, 278

onSave() method, 278, 282–283

Open Perspective icon, 293

Open Perspective menu option, 293

openSession() method, 22

OpenSessionInView pattern, 333

OpenSessionInViewFilter, 331, 333

OpenSessionInViewInterceptor, 331, 333

operations

cascaded, 110

cascading of, 90

> operator, 204

optimistic locking, 184, 263–264, 320

optimistic-lock attribute

<class> element, 139

<component> element, 146

<many-to-one> element, 151

<property> element, 145

OptimisticLockType enumeration, 123

optional attribute, 105, 109

OR expressions, 218

or() method, 218

Oracle9Dialect class, 24

OracleDialect class, 24

order by clause, 155, 157–159, 206

Order class, 220

Order object, 220

order-by attribute

<bag> element, 159

<idbag> element, 157

http://

■ INDEX

368

<map> element, 158

<set> element, 154–155

orExp logical expression, 218

org.hibernate package, 11, 93, 337

org.hibernate._Hibernate class, 212

org.hibernate.bytecode.provider property,
11

org.hibernate.cache.CacheProvider
interface, 15

org.hibernate.cache.QueryCacheFactory
interface, 15

org.hibernate.cfg.AnnotationConfiguratio
n class, 13

org.hibernate.cfg.AnnotationConfiguratio
n object, 121–122

org.hibernate.cfg.Configuration class, 314

org.hibernate.cfg.DefaultNamingStrategy
class, 21

org.hibernate.cfg.ImprovedNamingStrateg
y class, 21

org.hibernate.cfg.NamingStrategy
interface, 21

org.hibernate.cfg.reveng.ReverseEngineeri
ngStrategy interface, 315, 320

org.hibernate.classic.Session interface, 339

org.hibernate.classic.Session object, 22

org.hibernate.Criteria interface, 215

org.hibernate.criterion.Criterion object,
216

org.hibernate.criterion.Disjunction object,
218

org.hibernate.criterion.Example class, 223

org.hibernate.criterion.MatchMode object,
217

org.hibernate.criterion.Order class, 220

org.hibernate.criterion.Projection object,
221

org.hibernate.criterion.ProjectionList
object, 222

org.hibernate.criterion.Projections class,
221

org.hibernate.criterion.Restrictions class,
216

org.hibernate.dialect package, 23

org.hibernate.event.SaveOrUpdateEvent
event, 68

org.hibernate.Filter interface, 230

org.hibernate.Hibernate class, 75

org.hibernate.hql.ast.ASTQueryTranslator
Factory class, 339

org.hibernate.hql.classic.ClassicQueryTra
nslatorFactory class, 339

org.hibernate.id.IdentifierGenerator
implementation, 142

org.hibernate.Interceptor interface, 279

org.hibernate.jdbc.Batcher interface, 16

org.hibernate.jmx package, 12

org.hibernate.LockMode class, 69

org.hibernate.persister.entity level, 270

org.hibernate.Query interface, 212

org.hibernate.Query object, 196

org.hibernate.Session interface, 339

org.hibernate.Session object, 13, 196

org.hibernate.SQLQuery interface, 212

org.hibernate.tool package, 340

org.hibernate.tool.hbm2ddl.SchemaExpor
t class, 340

org.hibernate.tool.hbm2x.ArtifactCollector
class, 324

http://

■ INDEX

369

org.hibernate.tool.hbm2x.Cfg2HbmTool
class, 324

org.hibernate.tool.hbm2x.Cfg2JavaTool
class, 324

org.hibernate.tool.hbm2x.Exporter
interface, 323

org.hibernate.transaction.TransactionFact
ory interface, 18

org.hibernate.transaction.TransactionMan
agerLookup interface, 18

org.hibernate.transform.DistinctRootEntit
yResultTransformer, 221

org.hibernate.usertype.CompositeUserTyp
e interface, 135

org.hibernate.usertype.UserType
interface, 135

origin of Hibernate, 3–4

ORM (object-relational mapping), 1–4,
193, 211–212

orphanRemoval attribute, 109

OSCache cache, 190

outer-join attribute, 148, 151, 154

Outline tab, scratch pad window, 302

output directory, 309, 323

outputdir scripting variable, 324

outputfilename property, 317

overriding default constructor, 284

■P
package attribute, <hibernate-mapping>

element, 137

package changes, 337–338

Package Explorer tabbed option, 293

Package name field, 309

package-info.java class, 228

package-info.java file, 120, 228

packagename attribute, 315

paging through result sets, 205, 219

Paper entity, 333

PaperDao interface, 332

paperDao proxy, 332

<param> elements, 142

parameter placeholder, JDBC, 219

parameters

named, 204–205

query, 204, 302–303

parameters attribute, 125

password field, User class, 43

path name, 194–195

persist listener, 273

persist() method, 178

persistence

creating classes, 39

Hibernate as solution, 4–5

omitting with @Transient annotation,
105–106

persisting basic types with, 105

persisting basic types with @Basic
annotation, 105

persistence.xml file, 315, 318

persistent objects, life cycle of

classes, 62–63

collection wrappers, 74–75

lazy loading, 75

names, 62–63

http://

■ INDEX

370

proxies, 74–75

querying objects, 75

persister attribute, 123, 140, 154

PersistEventListener interface, 273

persisting multiple objects, 38–39

Personal class, 171

phantom read, 183

Phone class, 50, 156

Phone entities, 155

Phone object, 50

phoneNumbers property, 155

Picture class, 162, 164–165

Picture mapping, 167

Picture table, 165–167

pipe symbol, 138

pkColumnName attribute, 98

pkColumnValue attribute, 98

Place class, 244, 251, 257

Place objects, 259

Plain Old Java Objects (POJO), 1–6, 284,
318–319

plugins directory, 31

PointBase database, 24

PointbaseDialect class, 24

POJO (Plain Old Java Objects), 1–6, 284,
318–319

polymorphism attribute, 123, 140, 199

PolymorphismType enumeration, 123

populateMessages task, 33, 37

PopulateNotes class, 298

population column, 237

postAdverts task, 33, 58

post-delete name, 273

PostDeleteEventListener interface, 273

postFlush() method, 278

PostgreSQL database, 24

PostgreSQLDialect class, 24

PostInsertEventListener interface, 273

PostLoadEventListener interface, 273

PostUpdateEventListener interface, 273

precision attribute, 107, 145

PreDelete listener, 274

PreDeleteEventListener interface, 274

Preferences menu, 291

preFlush() method, 278

PreInsert listener, 274

PreInsertEventListener interface, 274

PreLoad listener, 274

PreLoadEventListener interface, 274

PreparedStatement object, 50, 53

PreUpdate listener, 274

PreUpdateEventListener interface, 274

price property, 197

primary keys, 80–90

with @Id and @GeneratedValue, 95–97

compound, with @Id, @IdClass, or
@EmbeddedId, 99–103

values of

generating with
@SequenceGenerator, 97–98

generating with @TableGenerator,
98–99

http://

■ INDEX

371

Product class, 196–197, 199, 201, 210, 215,
267

Product objects, 196, 200, 207, 267

Product table, 196, 266–267

product_color table, 266

products property, 220

programs, running, 298

Progress database, 24

ProgressDialect class, 24

project configuration, 291–293

project directory, 304, 309

project view, 291

projection, 202–203

Projection interface, 222

Projection object, 222

projection query, 202

projectionList() method, 222

Projections class, 221–222

projections, Criteria API, 221–223

properties, 14, 90

properties file, 294–295, 315

*.properties file, 315

properties file, 318

Property class, 171–173

property element, 73

property() method, 222

property name, 194–195, 320

property value, default-access attribute,
136

<property> element, 19, 144–145, 164

PropertyAccessor class, 136, 141, 144, 146

propertyfile attribute, 315

property-ref attribute, 148–149, 151

proxies, 74–75

proxy attribute, <class> element, 140

PUBLIC schema, 306

PUT option, 191

■Q
QBE (Query By Example), 215, 223–225

queries, using Criteria API

associations, 220–221

distinct results, 221

obtaining unique result, 219–220

paging through result set, 219

projections and aggregates, 221–223

Query By Example (QBE), 223–225

restrictions with Criteria, 215–219

sorting query's results, 220

query attribute, 120

Query By Example (QBE), 215, 223–225

Query class, 196

query editor, 300

query entry, 138

Query interface, 201, 204–205, 208

Query object, 50, 53, 201, 206, 211

query parameters, 204, 302–303

Query Parameters view, 302

Query Result view, Hibernate, 299, 302

query window, 299

<query> element, 209, 316, 319

<query> task, 323

http://

■ INDEX

372

QueryCache objects, 15

QueryHint annotation, 120

querying objects, 75

■R
RDMS for Unisys OS2200 database, 24

RDMSOS2200Dialect class, 24

READ lock mode, 69, 185

Read Uncommitted isolation level, 184

README file, GeoNames, 236, 240

readme.txt file, 236

read-only mapping, 267

reconnect() method, 181

refresh listener, 274

refresh() method, 62, 70–71, 179

refresh mode, default-cascade attribute,
137

REFRESH option, 191

RefreshEventListener interface, 274

refreshing entities, 70–71

relational association, 77–78

relational databases, 80

relationships

entities, 84

foreign key, 85–86

one-to-one, 84

replicate listener, 274

replicate mode, default-cascade attribute,
137

ReplicateEventListener interface, 274

Restrictions class, 216, 218, 221

restrictions, with Hibernate Query
Language (HQL), 203–204

results

paging through, 205

sorting with order by clause, 206

ResultSet, 4

<return-scalar> element, 210

revengfile attribute, 315, 320

reveng.xml file, 309, 315

reverse engineering, 305–313, 319–322

reversestrategy attribute, 315, 320

right outer join, 206

roles object, 82

rollback() method, 277

routed lines option, View menu, 303

rowid attribute, <class> element, 140

Run SchemaExport context menu option,
297

■S
safe enumeration, 217

sanity check, 48

SAP DB database, 24

SAPDBDialect class, 24

save() method, 62, 67–68, 144, 178, 275–
276

saveOrUpdate() method, 68, 144, 178,
275–276, 278

SaveOrUpdateEventListener interface,
274–275

savepoints, 332

save-update cascade option, 137

http://

■ INDEX

373

save-update listener, 274

save-update mode, default-cascade
attribute, 137

saving entities, 67–68

SAX (Simple API for XML), 315

scale attribute, 107, 145

schema, 297–298, 317–318

schema attribute

<class> element, 140

<hibernate-mapping> element, 137

schema generation script, 317

schema information, 305

schema metadata, 315

schema name, 321

SchemaExport class, 340

SchemaExport option, 297

<schema-selection> element, 321–322

scratch pad editor, 200, 300

scratch pad window, 302

scrollable result sets, 11

SDK (Software Development Kit), 287

Search class, 285

search engines, Apache Lucene, 285

searches

filtering results of

basic example of, 230–234

defining and attaching fitlers, 228–
229

using in your application, 229–230

when to use, 227–228

and queries

aggregate methods, 207–208

aliases, 202

associations, 206–207

bulk updates and deletes with HQL,
208–209

from clause, 202

commenting generated SQL, 201–
202

Hibernate Query Language (HQL),
193–200

logging SQL, 200–201

named parameters, 204–205

named queries for Hibernate Query
Language (HQL) and SQL, 209–211

overview, 193–213

paging through result sets, 205

projection, 202–203

restrictions with Hibernate Query
Language (HQL), 203–204

select clause, 202–203

sorting results with order by clause,
206

syntax basics, 194–195

uniqueResult method, 205–206

using native SQL, 211–213

second-level subdivisions, 238–239

select clause, 196, 202–203, 208

select count(distinct product.price) from
Product query, 207

SELECT FOR UPDATE syntax, 69

SELECT queries, 69, 195, 221, 227

SELECT statements, 140, 194–195

http://

■ INDEX

374

select strategy, 125

select-before-update attribute, <class>
element, 140

seqhilo IdentifierGenerator
implementation, 143

seqhilo strategy, 125

sequence column type, 143

sequence IdentifierGenerator
implementation, 143

sequence strategy, 125

SEQUENCE type, GeneratorType
enumeration, 97

sequenceName attribute, 97

sequenceName value, 97

serializable type, 135

Session cache, 12

Session class, 13, 271

Session factory, 21–22

Session factory node, 297–299

Session interface, 67, 69–70, 212, 215, 229,
272, 275

Session object, 13, 119, 141, 211, 277–278,
285, 330, 333, 338

Session reference, 339

SessionEventListenerConfig interface, 273

SessionFactory class, 5, 13, 50, 330, 339

SessionFactory interface, 22, 133

SessionFactory object, 10, 12–13, 22, 59,
178, 298

session.get() method, 50

SessionImpl class, 272

sessions, 50–53, 177–178

managing, 332–333

related objects, 50–52

using, 52–53

session.update() method, 50

Set attributes, 137, 170

Set collection, 82, 154–156

SET function, MySQL, 242

Set interface, 154

set keyword, 208

<set> element, 152, 154–155

setCacheMode() method, 180, 190

setComment() method, 201

setEntity() method, 204

setFirstResult() method, 205, 219

setFlushMode() method, 71, 180

setMaxResults() method, 205–206, 219

setNamingStrategy() method, 21

setParameter() method, 230

setParameterList() methods, 230

setProjection() method, 222

setReadOnly() method, 180

short type, 134

show_sql value, 34

shutdown=true attribute, 28

Simple API for XML (SAX) EntityResolver,
315

simple applications, building

creating Hibernate configuration files,
33–35

creating object mappings, 42–47

creating persistence classes, 39

creating tables, 48–49

http://

■ INDEX

375

example client, 54–59

installing tools

Ant 1.8.0, 29–32

Ant tasks, 32–33

Hibernate, 27–28

HSQLDB 2.0.0, 28–29

Simple Logging Facade for Java
(SLF4J) 1.5.11, 28

persisting multiple objects, 38–39

running message examples, 35–38

sessions

related objects, 50–52

using, 52–53

simple inheritance hierarchy, 171

Simple Logging Facade for Java (SLF4J), 28,
293

SimpleFilterExample class, 231

single table inheritance, 115

SINGLE_TABLE approach, 114

SKU (stock keeping unit), 266

SLF4J (Simple Logging Facade for Java), 28,
293

Software class, 196, 199, 201, 215

Software Development Kit (SDK), 287

Software objects, 222

sort attribute

<map> element, 158

<set> element, 154–155

sorting

collections with @Sort annotation, 123

query's results, Criteria API, 220

results with order by clause, 206

Spring beans, using Hibernate in, 330–331

Spring Framework

configuring Hibernate from, 327–330

declarative transaction management,
331–332

managing sessions, 332–333

sample configuration file, 333–336

using Hibernate in Spring beans, 330–
331

sPropertyInitialized() method, 75

SQL (Structured Query Language)

dialects, 22–25

DISTINCT query, 221

formula-based properties, 90

injection attack, 204

named queries for, 209–211

native, 211–213

queries, 300, 302

SQL (Structured Query Language) Server,
205

SQL Server database, 24

<sql-delete> element, 269

<sql-insert> element, 269–271

sql-query entry, 138

SQLQuery interface, 212

SQLQuery object, 212

<sql-query> element, 209, 270

sqlRestriction() method, 218–219

SQLServerDialect class, 24

<sql-update> element, 269

src directory, 32

START match, 217

http://

■ INDEX

376

Static Metamodel Generator, Hibernate,
225

StatisticsService class, 12

StatisticsServiceMBean interface, 12

stock keeping unit (SKU), 266

stored procedures, invoking, 271–272

straight lines option, View menu, 303

strategy attribute, 96–97, 125

String data, 106

String fields, 89

String objects, 81, 94, 201–202

String parameter, 284

String type, 43, 135

String value, 106

Structured Query Language (SQL)

dialects, 22–25

DISTINCT query, 221

formula-based properties, 90

injection attack, 204

named queries for, 209–211

native, 211–213

queries, 300, 302

<subclass> element, 133, 174–175

subselect attribute, 140, 154

SUBSTRING_INDEX function, MySQL, 242

sum() method, 208

sum(String propertyName) method, 222

superclasses, mapped, 119

Supplier class, 196, 201, 212

Supplier objects, 207, 224

surrogate key, 39, 88, 90, 265

SwarmCachecache, 190

Sybase 11 database, 24

Sybase Anywhere database, 24

Sybase database, 24

Sybase11Dialect class, 24

SybaseAnywhereDialect class, 24

SybaseDialect class, 24

■T
tab-delimited file, 242

table attribute, 98, 106, 140, 154

table deletion privileges, 297

table details, 320

table naming strategy, 320–321

TABLE type, GeneratorType enumeration,
97

TABLE_PER_CLASS approach, 114

<table> element, 321–322

<table> task, 322

<table-filter> element, 321–322

tables, 48–49, 320

targetClass attribute, 118

targetEntity attribute, 109, 111–113

task definition, 324–325

TaskDef element, 313

taskdef namespace, 32

tasks, 324

template path, 323

template prefix, 323

template property, 323

template_path scripting variable, 324

http://

■ INDEX

377

templatePath attribute, 314, 324

templateprefix attribute, 324

templates, 323–324

temporal data fields or properties, 117

test programs, running, 298

testing HQL queries, 300–301

text type, 135

threads, 178, 191–192

throws clause, 339

TIME type, 117, 135

TIME value, 117

Times Ten 5.1 database, 24

TIMESTAMP data type, 117, 135

TIMESTAMP value, 117

<timestamp> element, 264

TimesTenDialect class, 24

timezone column, 237

timezone type, 135

title attribute, 265

title class, 174

titles property, 155

tools

changes to, 340

installing

Ant 1.8.0, 29–32

Ant tasks, 32–33

Hibernate, 27–28

HSQLDB 2.0.0, 28–29

Simple Logging Facade for Java
(SLF4J) 1.5.11, 28

Tools forum, Hibernate Forums page, 291

ToolsExample Console configuration, 303,
309

ToolsExample entry, console configuration
window, 297

ToolsExample folder, workspace directory,
293

ToolsExample Java project, 293

ToolsExample node, 297

ToolsExample option, Console
configuration dropdown, 306

ToolsExample project, 294, 303, 306

tools.jar file, 32

top command, 205

toString() method, 299, 324

toString representation, 299

Transaction object, 277

transactions

deadlocks, 185–186

locking, 184–185

overview, 181–183

transient objects, 61

triggers, 277

type attribute

<id> element, 142

<property> element, 145

Type column, Query Parameters view, 302

<type-mapping> element, 321–322

type-safe criteria, 225

■U
unchecked exceptions, 339

unidirectional association, 63

http://

■ INDEX

378

Uniform Resource Locator (URL), 289

unique attribute

<component> element, 146

<many-to-one> element, 151

<property> element, 145

UNIQUE constraint, 90

unique constraints, 90

uniqueConstraints attribute, 99, 104

unique-key attribute

<many-to-one> element, 151

<property> element, 145

uniqueResult() method, 53, 205–207, 219–
220

unsaved-value attribute, <id> element, 142

updatable attribute, 107

update attribute

<component> element, 146

<many-to-one> element, 151

<property> element, 145

UPDATE clause, 193

UPDATE commands, 139

update() method, 62, 144, 179

update property, 317

UPDATE statements, 139–140, 145–146,
194, 208

update value, 16

updates, bulk, 208–209

updating entities, 71–72

UPGRADE lock mode, 69, 185

UPGRADE_NOWAIT lock mode, 69, 185

upgrading from Hibernate 2

changes to tools and libraries, 340

changes with Java 5, 341

new features and support for old ones,
338–340

package and DTD changes, 337–338

URL (Uniform Resource Locator), 289

User class, 42, 46, 78, 84, 152, 170, 233–234

User column, 80–81

User entity, 87–88, 155

user keyword, 42

user libraries, 291–293

User Library option, library type list, 293

User object, 50, 52–53, 56, 77, 156, 168

User row, 78

User table, 85–87

UserCollectionType class, 153

user-defined template files, 311

User/Email table, 84, 88

UserEmailLink table, 87

User.hbm.xml file, 230

userId column, 87

userId field, 82

username field, 82, 90, 233

username parameter, 52, 302

Usernumber column, 80–81

UserTransaction object, 18

US.txt file, 236

US.zip file, 236

uuid IdentifierGenerator implementation,
143

uuid strategy, 125

http://

■ INDEX

379

■V
Validatable interface, 62

validate() method, 230

Value column, Query Parameters view, 302

valueColumnName attribute, 99

values, 134–136

VARCHAR database type, 319

VARCHAR type, 89

version property, 199

version value, 264

<version> element, 264

View menu, 303

views, 267–269

Vukotic, Aleksa, 327

■W
WebSphere Application Developer

(WSAD), 287

web.xml file, 333

where attribute, 140, 154

where clause, 154, 203–204, 207, 209, 227–
231

where condition, 140

workspace directory, 293

WSAD (WebSphere Application
Developer), 287

www.hibernate.org site, 28

■X
xalan.jar file, 18

XML (Extensible Markup Language), 6,
133, 136, 147, 152

files

configuration, 18–19, 294, 315, 318,
320

mapping, 294, 316, 318, 325

mapping documents, 229

■Z
ZIP file, Hibernate Console, 313

http://www.hibernate.org
http://

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Downloading the Code
	Contacting the Authors

	An Introduction to Hibernate 3.5
	Plain Old Java Objects (POJOs)
	Origins of Hibernate and Object-Relational Mapping
	Hibernate As a Persistence Solution
	A Hibernate Hello World Example
	Mappings
	Summary

	Integrating and Configuring Hibernate
	The Steps Needed to Integrate and Configure Hibernate
	Understanding Where Hibernate Fits in Your Java Application
	Deploying Hibernate
	Required Libraries for Running Hibernate 3.5
	JMX and Hibernate

	Hibernate Configuration
	Hibernate Properties
	XML Configuration
	Annotated Classes
	Naming Strategy
	Using a Container-Managed Data Source

	The Session Factory
	SQL Dialects
	Summary

	Building a Simple Application
	Installing the Tools
	Hibernate and Hibernate Tools
	Simple Logging Facade for Java (SLF4J) 1.5.11
	HSQLDB 2.0.0
	Ant 1.8.0
	The Ant Tasks

	Creating a Hibernate Configuration File
	Running the Message Example
	Persisting Multiple Objects
	Creating Persistence Classes
	Creating the Object Mappings
	Creating the Tables
	Sessions
	The Session and Related Objects
	Using the Session

	The Example Client
	Summary

	The Persistence Life Cycle
	Introduction to the Life Cycle
	Entities, Classes, and Names
	Identifiers
	Entities and Associations
	Saving Entities
	Object Equality and Identity
	Loading Entities
	Refreshing Entities
	Updating Entities
	Deleting Entities
	Cascading Operations
	Lazy Loading, Proxies, and Collection Wrappers
	Querying Objects
	Summary

	An Overview of Mapping
	Why Mapping Cannot Be Automated
	Primary Keys
	Lazy Loading
	Associations
	The One-to-One Association
	The One-to-Many and Many-to-One Association
	The Many-to-Many Association
	Applying Mappings to Associations

	Other Information Represented in Mappings
	Specification of (Database) Column Types and Sizes
	The Mapping of Inheritance Relationships to the Database
	Primary Key
	The Use of SQL Formula–Based Properties
	Mandatory and Unique Constraints
	Cascading of Operations

	Summary

	Mapping with Annotations
	Creating Hibernate Mappings with Annotations
	Cons of Annotations
	Pros of Annotations
	Choosing Which to Use
	Using Annotations in Your Application
	JPA 2 Persistence Annotations
	Entity Beans with @Entity
	Primary Keys with @Id and @GeneratedValue
	Generating Primary Key Values with @SequenceGenerator
	Generating Primary Key Values with @TableGenerator
	Compound Primary Keys with @Id, @IdClass, or @EmbeddedId
	Database Table Mapping with @Table and @SecondaryTable
	Persisting Basic Types with @Basic
	Omitting Persistence with @Transient
	Mapping Properties and Fields with @Column
	Modeling Entity Relationships
	Mapping an Embedded (Component) One-to-One Association
	Mapping a Conventional One-to-One Association
	Mapping a Many-to-One or One-to-Many Association
	Mapping a Many-to-Many Association
	Inheritance
	Single Table
	Joined
	Table per Class
	Choosing Between Inheritance Types When Modeling Inheritance
	Other JPA 2 Persistence Annotations
	Temporal Data
	Element Collections
	Large Objects
	Mapped Superclasses
	Ordering Collections with @OrderColumn
	Named Queries (HQL or JPQL)
	Named Native Queries (SQL)

	Configuring the Annotated Classes
	Hibernate 3–Specific Persistence Annotations
	@Entity
	Sorting Collections with @Sort
	Applying Indexes with @Table and @Index
	Restricting Collections with @Where
	Alternative Key Generation Strategies with @GenericGenerator

	Using Ant with Annotation-Based Mappings
	Code Listings
	Summary

	Creating Mappings with Hibernate XML Files
	Hibernate Types
	Entities
	Components
	Values

	The Anatomy of a Mapping File
	The <hibernate-mapping> Element
	The <class> Element
	The <id> Element
	The <property> Element
	The <component> Element
	The <one-to-one> Element
	The <many-to-one> Element
	The Collection Elements
	The set Collection
	The list Collection
	The idbag Collection
	The map Collection
	The bag Collection

	Mapping Simple Classes
	Mapping Composition
	Mapping Other Associations
	Mapping Collections
	Mapping Inheritance Relationships
	One Table per Concrete Class
	One Table per Subclass
	One Table per Class Hierarchy

	More Exotic Mappings
	The any Tag
	The array Tag
	The <dynamic-component> Element

	Summary

	Using the Session
	Sessions
	Transactions and Locking
	Transactions
	Locking
	Deadlocks

	Caching
	Threads
	Summary

	Searches and Queries
	Hibernate Query Language (HQL)
	Syntax Basics
	UPDATE
	DELETE
	INSERT
	SELECT

	The First Example with HQL
	Logging and Commenting the Underlying SQL
	Logging the SQL
	Commenting the Generated SQL

	The from Clause and Aliases
	The select Clause and Projection
	Using Restrictions with HQL
	Using Named Parameters
	Paging Through the Result Set
	Obtaining a Unique Result
	Sorting Results with the order by Clause
	Associations
	Aggregate Methods
	Bulk Updates and Deletes with HQL
	Named Queries for HQL and SQL
	Using Native SQL
	Summary

	Advanced Queries Using Criteria
	Using the Criteria API
	Using Restrictions with Criteria
	Paging Through the Result Set
	Obtaining a Unique Result
	Sorting the Query’s Results
	Associations
	Distinct Results
	Projections and Aggregates
	Query By Example (QBE)
	Summary

	Filtering the Results of Searches
	When to Use Filters
	Defining and Attaching Filters
	Filters with Annotations
	Filters with XML Mapping Documents

	Using Filters in Your Application
	A Basic Filtering Example
	Summary

	Case Study – Using Hibernate with an Existing Database
	Setting up the Database
	Downloading the Data
	Understanding the Data
	Geographic Names
	Country Subdivision Codes
	Second-Level Subdivisions
	Feature Codes
	Creating the Database Schema
	Loading the Data

	Creating a Java Object Model
	Creating the Admin1Code Class
	Creating the Admin2Code Class
	Creating the Feature Codes Class
	Creating the Place Class

	Configuring Hibernate
	Building the List of High Points
	Developing the HQL Query
	Running the Query

	Moving Forward with the Example
	Summary

	More Advanced Features
	Managed Versioning and Optimistic Locking
	Maps
	Limitations of Hibernate
	Hand-Rolled SQL
	Using a Direct Mapping
	Using a View
	Putting SQL into an Annotation or Mapping

	Invoking Stored Procedures
	Events
	An Example Event Listener

	Interceptors
	An Example Interceptor

	Overriding the Default Constructor
	Hibernate Search
	Summary

	Hibernate Tools
	The Eclipse Plug-In
	Downloading the Hibernate Tools Plug-in
	Installing the Plug-In
	The Boilerplate Project Configuration
	Using the Hibernate Console
	Creating a Hibernate Console Configuration
	Generating the Schema
	Running the Test Program
	Browsing the Model
	Testing HQL Queries
	Query Parameters
	Creating a Mapping Diagram
	Generating a Configuration File
	The Reverse Engineering and Code Generation Tools

	The Ant Tasks
	How the Ant Tasks Work
	Reverse Engineering
	Templates
	Configuring the Classpath

	Summary

	Hibernate and Spring
	Configuring Hibernate from a Spring Application
	Configuring Spring

	Using Hibernate in Your Spring Beans
	Declarative Transaction Management
	Managing the Session
	The Sample Configuration File
	Summary

	Upgrading from Hibernate 2
	Package and DTD Changes
	New Features and Support for Old Ones
	Changes and Deprecated Features
	Additions

	Changes to Tools and Libraries
	Changes with Java 5
	Summary

	Index
	¦Special Characters ¦A
	B
	¦
	¦C
	¦D
	¦E
	¦F
	¦G
	¦H
	¦I
	¦J
	¦K
	L
	¦
	¦M
	¦N
	¦O
	¦P
	Q
	¦
	¦R
	¦S
	T
	¦
	¦U
	¦V
	X
	¦
	¦W
	¦Z

