
ptg

www.allitebooks.com

http://www.allitebooks.org

ptg

Essential GWT

www.allitebooks.com

http://www.allitebooks.org

ptg

Essential GWT

Building for the Web with
Google Web Toolkit 2

Federico Kereki

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

ptg

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Apostrophe Editing
Services

Indexer
Jack Lewis

Proofreader
Linda Begley

Editorial Assistant
Olivia Basegio

Technical
Reviewers
Jason Essington
Jim Hathaway
Daniel Wellman

Cover Designer
Gary Adair

Compositor
Rob Mauhar

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Kereki, Federico, 1960-
Essential GWT : building for the web with Google Web toolkit 2 / Federico Kereki.

p. cm.
Includes index.
ISBN-13: 978-0-321-70514-3 (pbk. : alk. paper)
ISBN-10: 0-321-70514-9 (pbk. : alk. paper)

1. Ajax (Web site development technology) 2. Java (Computer program language)
3. Google Web toolkit. 4. Application software--Development. I. Title.
TK5105.8885.A52K47 2011
006.7'6--dc22

2010018606

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-70514-3
ISBN-10: 0-321-70514-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.
First printing, July 2010

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

❖

To my parents, Eugenio Kereki and Susana Guerrero, who
got me started on my way, and always stood by me, and to
my wife, Sylvia Tosar, who had to bear without a husband
while I wrote the book, who nevertheless kept the family
and home going on, and without whom I wouldn’t want

to go anywhere.

❖

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

This page intentionally left blank

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

Contents at a Glance

Preface xv

Acknowledgments xix

About the Author xxi

1 Developing Your Application 1

2 Getting Started with GWT 2 9

3 Understanding Projects and Development 21

4 Working with Browsers 31

5 Programming the User Interface 55

6 Communicating with Your Server 77

7 Communicating with Other Servers 119

8 Mixing in JavaScript 139

9 Adding APIs 157

10 Working with Servers 177

11 Moving Around Files 195

12 Internationalization and Localization 211

13 Testing Your GWT Application 229

14 Optimizing for Application Speed 259

15 Deploying Your Application 287

Index 301

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

This page intentionally left blank

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

Contents

Preface xv

Acknowledgments xix

About the Author xxi

1 Developing Your Application 1

Rich Internet Applications 1

Web 2.0 2

Cloud Computing 3

The “Death of the Desktop” 4

Advantages of GWT 4

HTML Ubiquity and Browser Differences 4

JavaScript Deficiencies 5

Software Methodologies to Apply 5

Classic Development Problems 5

Agile Methodologies 7

Forever Beta? 7

Summary 8

2 Getting Started with GWT 2 9

Why Use GWT? 9

Why Java? 10

Some Actual Disadvantages 10

The GWT Components 12

Compiler 12

JRE Emulation Library 14

UI Library 17

Setting Up GWT 17

Writing Code 17

Version Control Management 19

Testing 19

Running and Deploying 19

Summary 20

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

x Contents

3 Understanding Projects and Development 21

Creating a Project 21

Using the Google Plugin for Eclipse 21

Using the GWT Shell Script 22

Project Structure 23

Running Your Application: Development Mode 27

Summary 30

4 Working with Browsers 31

The Back Button Problem 31

Setting Up Your HTML Page 32

The History Class 33

Starting Your Application 34

Showing Forms in Pop-Ups 37

Passing Parameters 38

Creating a Menu 41

Detecting the User’s Browser 43

The Classic Way 43

The Deferred Binding Way 44

Recognizing Older Explorers 52

No JavaScript? 53

Summary 53

5 Programming the User Interface 55

Thinking About UI Patterns 55

MVC: A Classic Pattern 56

MVP: A More Suitable Pattern 57

Implementing MVP 59

Callbacks Galore 59

Implementation Details 60

Some Extensions 67

Declarative UI 69

A Basic UiBinder Example 70

More Complex Examples 73

Summary 76

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

xiContents

6 Communicating with Your Server 77

Introduction to RPC 77

Implementation 78

Serialization 79

Direct Evaluation RPC 83

RPC Patterns of Usage 84

The World Cities Service 84

Code Sharing 86

Coding the Server Side Services 88

Database-Related Widgets and MVP 94

A Look at MVP 100

A Country/State Cities Browser 101

Live Suggestions 108

Data Prevalidation 112

Enterprise Java Beans 116

Summary 118

7 Communicating with Other Servers 119

The Same Origin Policy (SOP) Restriction 119

Our City Update Application 121

Receiving and Processing XML 125

Using Ajax Directly 127

Going Through a Proxy 129

Producing and Sending XML 131

Creating XML with Strings 132

Creating XML Through the DOM 133

Sending the XML Data 135

Sending XML Through Ajax 136

Sending XML Through a Proxy 136

Summary 137

8 Mixing in JavaScript 139

JSNI 139

Basic JSNI Usage 140

Hashing with JavaScript 142

Animations Beyond GWT 143

A Steampunk Display Widget 143

 Download from www.wowebook.com

ptg

xii Contents

JSON 146

JSONP 153

Summary 155

9 Adding APIs 157

A Weather Vane 157

Getting Weather Data 157

Getting the Feed 159

Getting Everything Together 160

Getting at the Feed Data with an Overlay 161

Getting the Feed with JSNI 162

Dashboard Visualizations 162

Using the Google Visualization API 164

Handling Events 167

Working with Maps 168

Interactive Maps 168

Fixed Maps 173

Summary 175

10 Working with Servers 177

The Challenges to Meet 177

Before Going Any Further 177

Security 178

Ajax Problems 179

Cryptography 179

Hashing 180

Encrypting 180

Stateless Versus Stateful Servers 183

Common Operations 185

Logging In 185

Changing Your Password 190

Summary 193

11 Moving Around Files 195

Uploading Files 195

An Upload Form 195

A File Processing Servlet 200

Providing Feedback to the User 202

 Download from www.wowebook.com

ptg

xiiiContents

Downloading Files 204

A File Download Form 204

A Sample File Producing Servlet 207

Summary 209

12 Internationalization and Localization 211

Internationalization (i18n) 211

Resource Bundles 212

Using Constants 213

Messages 217

UiBinder Internationalization 219

Localization (l10n) 223

Summary 227

13 Testing Your GWT Application 229

Why Testing? 229

Advantages of Automatically Tested Code 230

And if a Bug Appears? 230

Unit Testing with JUnit 231

A Basic JUnit Example 231

Test Coverage with Emma 236

Testing MVP Code 238

Testing with Mock Objects 239

EasyMock 240

Integration Testing with GWTTestCase 247

Testing a View 247

Testing a Servlet 252

Acceptance Testing with Selenium 253

A Very Simple Example 255

What Can Go Wrong? 257

Summary 257

14 Optimizing for Application Speed 259

Design Patterns for Speed 259

Caching 260

Prefetching 263

Thread Simulation 266

Bundling Data 273

 Download from www.wowebook.com

ptg

xiv Contents

Speed Measurement Tools 277

Speed Tracer 278

YSlow 280

Page Speed 283

JavaScript Debuggers 285

Summary 286

15 Deploying Your Application 287

Compilation 287

Modules 289

Code Splitting 291

Deployment 297

Working with Client-Only GWT 297

Working with Client-Plus-Server GWT 297

Summary 300

Index 301

 Download from www.wowebook.com

ptg

Preface

Developing modern, interactive, complex web sites has become a harder task since
users’ expectations are higher today. The bar has been raised by the current crop of appli-
cations such as Gmail or Google Maps, and developers are expected to work up to that
level and provide similarly powerful new web sites. The style, speed, and interaction levels
of modern sites practically rival those of classical desktop installed applications, and of
course users don’t want to go back. How do you develop such sites?

It can be said that the usage of Ajax was what started the trend toward such distinc-
tive applications, but even given that technique, the rest of the development of web
pages was the same, tools were the same, testing methods were the same, and the whole
result was that the programmers’ jobs had gotten much harder than needed.

(Personally, I should confess that I really never liked classic-style web development:
Building large-sized applications was harder than it needed to be, JavaScript was—and
still is—missing constructs geared to complex systems, the click-wait-click-wait again
cycle was inevitably slow and not very interactive, and, to top it all, unless you were
quite careful with your testing, your design was prone to fail on this or that browser in
unexpected ways.)

GWT, in just a very few years, has grown into a powerful tool by harnessing the
power of Java and its considerable programming environment and many development
tools, and producing efficient and consistent output, despite the too-many and well-
known incompatibilities between browsers.

Getting started with GWT isn’t that hard—documentation is reasonably good, the
development environment can be Eclipse or several other equally powerful IDEs, and
programming is quite similar to old-fashioned Java Swing coding—so you can have your
first short application up and running in a short time.

Creating production-quality, secure, internationally compliant, high-level code can be,
however, a bit more complex. You need to take many factors into account, from the ini-
tial setup of your project and development of the user interface, to the final compile and
deployment of your application.

Similarly, we’ll also have to focus on methodologies and on software design patterns,
so we can go forth in a safer, more organized way toward the complete application. For
example, we’ll consider how the model-view-presenter (MVP) pattern can not only
enhance the design of the application, but also help run fully automatic tests, in modern
Agile programming style, to attain higher quality, better tested software.

We’ll be working with the latest tools and versions; not only GWT’s (2.0.3 just now),
but also Eclipse, Subversion, Tomcat, Apache, MySQL, and so on. Because all these tools

 Download from www.wowebook.com

ptg

are open source, we can support the notion that an appropriate software stack can be
built starting with GWT and ending with a full open web solution.

After my earlier confession on my dislike of classic web development strategies, I
should now aver that GWT did change that for me. Working in a high-level setting, with
plenty of tools, and practically forgetting about browser quirks, HTML, CSS, and
JavaScript, while gaining in clarity, maintainability, and performance, has made web appli-
cation creation an enjoyable task again!

The Structure of This Book
Chapters 1 through 3 deal with the basic setup for working with GWT. After consider-
ing the main reasons and objectives for using GWT, we’ll study what other tools are
required for serious code development, the methodology to use, and the internal aspects
of projects.

Chapters 4 and 5 are the backbone for the book, for they deal with the basic design
patterns that we use for building the User Interface. The code style and idioms devel-
oped here will be used throughout the rest of the book.

Chapters 6 and 7 deal with communications with servers, either through RPC (to
connect with servlets) or through direct Ajax (to communicate with remote services).

Chapters 8 and 9 study how to add both JavaScript coding and third-party APIs to
your application. Together with the previous two chapters, everything that’s needed for
mashing up services and getting information from different sources will have been covered.

Chapters 10 and 11 have to do with common server related problems, such as security
aspects, and file upload and download.

Chapter 12 deals with developing GWT applications that will be used worldwide and
covers both internationalization and localization.

Finally, Chapters 13 through 15 consider general themes such as testing GWT appli-
cations, optimizing their performance, and finally deploying them.

Who Should Read This Book
This book goes beyond “just learn GWT,” and is targeted to programmers who already
have a basis of GWT programming and want to encompass other web applications, serv-
ices, APIs, and standards as well, to produce Web 2.0-compliant Rich Internet
Applications (RIAs). A previous experience with web development, possibly in a J2EE
environment, will come in handy.

Having read this book through, the reader should not only be able to develop a RIA
on his own by just using GWT, but he will also have a reference book to help solve the
common problems that arise in such applications. Complete source code is given for all
examples, so getting started is quicker.

xvi Preface

 Download from www.wowebook.com

ptg

Web Resources for This Book
The Google Web Toolkit site at http://code.google.com/webtoolkit/ is a mandatory ref-
erence, and so is the forum at http://groups.google.com/group/google-web-toolkit.

The code examples for this book are available on the book’s web site at
www.informit.com/title/9780321705143.

xviiPreface

 Download from www.wowebook.com

http://code.google.com/webtoolkit/
http://groups.google.com/group/google-web-toolkit
www.informit.com/title/9780321705143

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

Acknowledgments

Writing a book can be a daunting task (and I should know because the idea really
frightened me at the beginning) and without the collaboration of many people, it would
probably become almost impossible.

I would like to thank the Addison-Wesley team, led by Trina MacDonald, who first
had the idea for this book and then followed it through all the way, helping me deal
with the many stages and norms of the book writing process, answering myriad ques-
tions, and giving shape to the book from an initial basic plan to its final structure. The
fact that I live “down below” in Montevideo, Uruguay, with five hours’ difference in
time with regard to the location of her office, also surely added an extra bit of complexity
to the whole experience!

I would also like to thank Songlin Qiu, the development editor, and Jason Essington,
Jim Hathaway, and Daniel Wellman, the three technical editors, who had the task of sift-
ing through all my code and text, endeavoring to make the book clearer, better organ-
ized, correctly formatted, well structured, and more easily understood. Reading other
people’s code is never easy, and doing that with a critic’s eye, seeking to make it clearer,
checking if it’s well commented and explained, and endeavoring to make the whole
more pedagogic and comprehensible obviously adds a lot to the job to be done.

I would also like to highlight and thank the contributions of Gabriel Ledesma,
Enrique Rodríguez, Miguel Trías, and Rodolfo Vázquez, who through many discussions
(with or without an eventual agreement!) on Java, design patterns, web development
techniques, usability, and teaching, helped shape many of the chapters in the book.

Finally, I would also like to thank the mostly nameless Google people who made
GWT possible, who roam the GWT forums helping everybody in need of aid, who
write documentation, examples, and tutorials, and who constantly seek to make GWT
even better and more powerful.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

About the Author

Federico Kereki is a Uruguayan systems engineer, with more than twenty years’ expe-
rience as a consultant, system developer, university professor, and writer. He has been
applying and teaching GWT since 2007. He has taught several computer science courses
at the Universidad de la República, Universidad ORT Uruguay, and the Instituto
Universitario Autónomo del Sur. He has written texts for some of these courses, and
several articles—on GWT and other open source topics—for magazines such as Linux
Journal and LinuxPro Magazine in the United States, Linux+ and Mundo Linux in Europe,
and for web sites such as linux.com and IBM Developer Works. Kereki gave talks on
GWT in public conferences organized by Microsoft and TCS in 2008 and 2009, and he
has used GWT to develop several companywide Internet systems for businesses in
Uruguay. His current interests tend toward software quality and software engineering—
with Agile Methodologies topmost—while on the practical side he is working with tools
such as GWT and Java, Ajax, SOA, and PHP. He has been working with Open Source
Software (FLOSS) for more than ten years, with both Windows and Linux. He resides,
works, and teaches in Uruguay.

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

1
Developing Your Application

Why would you use GWT? What can you develop with it and how? Before delving
into specifics (as we’ll be doing in the rest of the book) let’s consider the answers to
these questions, so you’ll know what to focus on.

Developing applications with GWT can be seen as a straightforward job, but you should
ask some interesting questions to unlock the way to powerful, distinct, applications. What
kind of applications should you develop with GWT? (And, given the current push for
Cloud Computing, you can even add “Where would you deploy your application?”)
How can you go about it? And, why would you use GWT?

Let’s consider all these questions in sequence to start you on your way through this
book, knowing your goal and the road to it.

Rich Internet Applications
When you start reading about Rich Internet Applications (RIAs), your JAB (Jargon,
Acronyms, and Buzzwords) warning should go off because there are many words that are
bandied about, without necessarily a good, solid definition or a clear delimitation of
their meanings.

Basically, what we build are web applications that have the look and feel of classic
desktop applications but that are delivered (and “installed”) over the web. Many tools
have been used for this purpose, such as Java (through applets), Adobe Flash, and more
recently, Microsoft Silverlight, but used in this way, all these tools are beaten, in terms of
practicality, by simple HTML-based systems.

The RIAs that we will be developing are based on JavaScript and Ajax and just
require an appropriate browser to run. Classic web applications were developed with a
different set of tools, subjected the user to frequent waits (the hourglass cursor was often
seen), and had severe restrictions as to usability, with a much clunkier feel to them than
desktop installed programs.

Although some people distinguish between RIAs and the kind of interactive web
applications we build, the frontiers are getting blurrier and blurrier. You could argue that
Flash or Silverlight require preinstalled plugins, or that development runs along different

 Download from www.wowebook.com

ptg

lines, but in terms of the final result (which is what the user experiences) differences are
not so marked, and well-designed HTML/JavaScript/Ajax applications can compete for
equality with applications developed with the other tools. (Also, some people opine that
HTML 5 can seriously challenge Flash, up to the point of making it obsolete, but that’s
still to come.1) There used to be obvious differences—the ability to store local data at
the user’s machine was the biggest one—but tools such as Google Gears or current
developments in HTML 5 have provided this feature to web applications.2

Given its ubiquity (from desktops to netbooks, and from cell phones to tablet PCs)
the browser can be considered a universal tool, and Ajax provides the best way for the
creation of highly interactive applications. Of course, a few years ago there weren’t many
tools for doing this (GWT itself appeared in 2006) and creating heavy-lifting interactive
code with just JavaScript wasn’t (and still isn’t) an appealing idea.3

Furthermore, given that users have been subjected for many years to web applica-
tions, and are familiar with their idioms, you are a bit ahead in terms of user interface
design by keeping to a reasonable standard.

As for the language itself, using Java as a tool—even if it gets compiled into
JavaScript, as GWT does—provides both a way around JavaScript’s deficiencies and
introduces a widely used language with plenty of development tools, which has been
used over and over for all kinds of applications and has been proved to scale to large-
sized applications.4

Web 2.0
Web 2.0 is another expression that has been bandied about a lot since its invention in
2004. Though there are way too many definitions for it, most seem to agree on the idea
of using the “Web as Platform,” where all applications run in a browser instead of being
preinstalled on your desktop. Furthermore, the idea of allowing users to produce their
own contents (à la Wikipedia) is also included, highlighting the collaborative aspect of
work, and thus bringing into the fold all kind of community and social networking sites
(think Facebook or YouTube). Finally (and that’s what actually works for us) the concept
of mashing together different data sources (probably from many web services) is also
included.

2 Chapter 1 Developing Your Application

1. See www.ibm.com/developerworks/web/library/wa-html5webapp/ for an article of some HTML 5

features already available in current browsers.

2. Google Gears’ development was practically stopped (other than support for currently available

versions) by the end of 2009 because of the upcoming HTML 5 features for local storage.

3. It might be said that developing large applications with, say, Flash, isn’t a walk in the park either,

for different reasons to be sure, but complicating the programmer’s job in any case.

4. It should be remarked that GWT isn’t the only such compile-to-JavaScript solution; for example,

the Python-based Pyjamas project (http://code.google.com/p/pyjamas/) provides Python-to-

JavaScript translation, and there are many more similar tools.

 Download from www.wowebook.com

http://code.google.com/p/pyjamas/
www.ibm.com/developerworks/web/library/wa-html5webapp/

ptg

GWT applications can obviously be used for producing highly interactive people
sites, but they can also link together information from different origins, consuming web
services with no difficulty, either connecting directly to the server or by means of proxy-
based solutions. Various data formats are also not a problem; if you cannot work with
such standards as XML or JSON, you can include external libraries (or roll out your
own) through JSNI or Java programming. (We cover this in Chapter 8, “Mixing in
JavaScript,” and Chapter 9, “Adding APIs.”)

In this context, the phrase Service-Oriented Architectures (SOA) frequently pops up.
Instead of developing tightly integrated, almost monolithic, applications, SOA proposes
basing your systems on a loosely integrated group of services. These services are general
in purpose and can be used in the context of different applications—and, as previously
mentioned, GWT is perfectly suited to “consuming” such services, dealing with different
protocols and standards. (We’ll cover this in Chapter 6, “Communicating with Your
Server,” and Chapter 7, “Communicating with Other Servers.”) If your company is cen-
tered on an SOA strategy, your GWT-developed applications will fit perfectly well.

Cloud Computing
Next to the idea of using the browser as the basis for the user’s experience, the most
current term related to modern application development is Cloud Computing. This idea
reflects the concept of sharing resources over the web, on demand, instead of each user
having a private, limited pool of resources. In this view, software is considered a “service”
(the acronym SAAS, which stands for “Software as a Service,” is often used) and a
resource similar to more “tangible” ones as hardware.

(As an aside, the vulnerability of some operating systems, most notably Windows, to
viruses, worms, and similar attacks, has given a push to the idea of using a simple, secure,
machine and storing everything “on the web,” letting the cloud administrators deal with
hackers and program infections.)

For many, this concept is yet another cycle going from centralized resources (think
mainframes) to distributed processing (PCs, possibly in client/server configurations) and
now to having the web as your provider. The main requirements for such an architecture
involve reliable services and software, delivered through specific data centers, and running
on unspecified servers; for the user, the web provides an access to a cloud of resources.

For GWT applications, your applications are basically destined from the ground up to
be used “in the cloud” because of the standard restrictions imposed by browsers.
Distributing an application over the web, accessing it from anywhere, and having your
data stored in a basically unknown place are all characteristics of any applications you
might write.5

3Rich Internet Applications

5. With current (or forthcoming) standards, you might also resort to storing data locally, or to using

your own private, dedicated, resources, but that’s not original and more often associated with clas-

sic desktop applications.

 Download from www.wowebook.com

ptg

The “Death of the Desktop”
The trend toward Cloud Computing has even spawned a new concept: the “Death of
the Desktop.” This presents rather starkly the problem of going overboard, to the limit:
From the appearance of mini netbooks (with flash-based disks, slow processors, not much
RAM) and iPhone-look-alike cell phones, some have reached the conclusion that desk-
top applications (and even desktop computers!) are on their way out. If this were true, it
could be great for GWT developers, but things are a bit different.

Despite several impressive opinions and pronouncements from people all over the
industry, the trend toward more powerful machines, with CPUs, memory, and I/O facili-
ties that put to shame the supercomputers of just a few years ago, doesn’t seem to be
slowing down. Even if you are enamored with the latest netbooks or high-powered cell-
phones, you should accept that working all the time with minimal screens isn’t the way
that things can get done at a company. (And for gaming or graphic-intense usages, small
machines aren’t so hot either; they may do, however, for business-oriented applications.)
In any case, GWT can help you because you can use its layout facilities and CSS styling
to produce applications for just about any device out there.

Also, remove the rosy glasses for an instant. Cloud computing offers several advantages
(and GWT applications can be considered to be right in the middle of that concept) but
also presents problems, so you need to plan accordingly. Aside from the obvious difficulty
of dealing with possibly flaky web connections, security and compatibility can be stum-
bling blocks. (On the other hand, scalability is well handled; there are plenty of large sites,
with hundreds or thousands of servers, proving that web applications can scale well.) The
important point is, with or without desktops, GWT provides some ways around these
kind of problems, and we’ll study this in upcoming chapters.6

Advantages of GWT
Why would you develop with GWT? Shouldn’t directly using JavaScript make more
sense? How do you manage with browser quirks? Let’s consider the reasons for GWT.

HTML Ubiquity and Browser Differences
The first reason for GWT applications is the ubiquity of HTML. Even if some time ago
browsers for, say, cell phones, weren’t as capable as their desktop brethren, nowadays you
can basically find the exact same capabilities in both. In terms of GWT, this is a boon
because it means that a well-designed application can run and look pretty in devices
from 3 inches to 25 inches.7

4 Chapter 1 Developing Your Application

6. And, of course, these inconveniences haven’t stopped anyone from developing HTML-based

applications!

7. Don’t expect to get the screen design right the first time; managing to build clear, small screen

browser applications is more an art than a science.

 Download from www.wowebook.com

ptg

This availability is somehow tempered because today’s browsers are not created
equal—but you certainly knew that if you designed web pages on your own! When
Microsoft’s Internet Explorer ruled the roost, having practically 100% of the browser
market, this wasn’t a noticeable problem. However, today browser usage statistics point to
a different status quo: Mozilla Firefox and Safari, among others, have started carving larger
and larger niches in the market, and in some countries (mostly European) they have out-
numbered Internet Explorer. The current trend is toward applying web standards, and
that bodes well for web developers. In any case, GWT is quite adept at solving browser
quirks and differences, so the point may be considered moot for the time being.

JavaScript Deficiencies
Even assuming fully standard-compliant browsers, the fact remains that JavaScript, no
matter how powerful, isn’t a good language from the specific point of view of software
engineering. Because this isn’t a book on JavaScript, we won’t delve in its main prob-
lems, but using it for large-sized application development can be, to say the least, a bit
complicated.

This language isn’t well adapted either to development by large groups of people, and
the tools it provides for system development aren’t that adequate, so the programmer
must add extra code to bridge the distance between a modern object-oriented design
and its actual implementation.

One solution that has been applied is the usage of different libraries that provide a
higher-level way of using the language.8 GWT solves this problem in a radically different
way, by enabling the use of the higher level Java language, for which there are plenty of
modern development, testing, and documentation tools.

Software Methodologies to Apply
For classic application development, many well-known methodologies exist, but in the
context of modern web development, you should definitely use some techniques.

Classic Development Problems
If you learned to develop systems years ago, you were surely exposed to the Waterfall
Model or some other methodologies directly based on it. In this model for the develop-
ment process, progress is seen as flowing like a waterfall from stage to stage, through

5Software Methodologies to Apply

8. You could consider Google’s “Closure” library (see http://code.google.com/closure/) used for

Gmail’s development, or Yahoo!’s YUI library (see http://developer.yahoo.com/yui/), jQuery

(http://jquery.com/), Dojo (www.dojotoolkit.org/), Prototype (www.prototypejs.org/), MooTools

(http://mootools.net/), and many others. The functionality of these libraries isn’t always the same,

but there’s considerable overlap between them, showing the problems they set out to solve are real

and well known.

 Download from www.wowebook.com

http://code.google.com/closure/
http://developer.yahoo.com/yui/
http://jquery.com/
http://mootools.net/
www.dojotoolkit.org/
www.prototypejs.org/

ptg

well-defined phases (see Figure 1.1) starting with the Analysis of Requirements, follow-
ing with the Design of the Solution and its Implementation, then to Testing (or Quality
Assurance), and finally to Installation and future Maintenance.

6 Chapter 1 Developing Your Application

Figure 1.1 The classic Waterfall Model isn’t the best possible
for GWT development.

This model is flawed in several ways (and of course, there are some fixes for that) but
its main problem is its orientation to highly regimented industries such as Construction,
in which late changes can be quite costly to implement, usually requiring tearing down
what was done and practically starting anew.

Another point—and an important one—is that you cannot expect users to be fully
aware of what they require; it is sometimes said “Users don’t know what they want, but
they know what they don’t want.”9 Classical methodologies do not take this into consid-
eration, and might thus incur important costs, because newly discovered or determined
requirements can invalidate a previous design.

Finally, it’s difficult to predict where difficulties will occur; problems with functionality
are usually found “on the go,” and if going back to change something to help future
development is too costly, you can face a dilemma: Spend money and time revising your

Analysis

Design

Programming

Testing

Installation

Maintenance

9. “I’ll know it when I see it” is another way of expressing this.

 Download from www.wowebook.com

ptg

design, or keep your substandard design, and spend money and time later trying to make
your software do tasks it wasn’t well designed to do.

It has been said that the Waterfall Model, and similar ones, are based on the old
“Measure Twice, Cut Once” saw, but you cannot actually apply this when you don’t
actually know what’s being measured! (And, furthermore, what happens if requirements
change along the way, and by the time you finish with development, the problem has
actually changed?) Modern, agile technologies try to take this into account and work in
a radically different way, and that’s the way you should use with GWT.

Agile Methodologies
Several software development methodologies seek to reduce the time between the
requirement analysis phase and the development phase to develop at least parts of the
system in shorter times, using possibly an iterative method to advance to the final appli-
cation. Prototypes are frequently used to bridge the distance between the user and the
developer, helping both to understand what’s actually required. Instead of attempting to
do a whole system at once, development is parceled in smaller subsystems. The user is
involved all the time, instead of providing his input (in the form of requirements) only at
the beginning and then dealing with the system after its installation.

All these suggestions are currently applied in Agile Software Methodologies (born in
2001) that emphasize collective (i.e., users plus programmers) development of systems, in
highly iterative steps, with frequent verification and (if needed) adaptation of the written
code.

Agile Methodologies usually break a complex system into several short stages, substi-
tuting short, easily measured and controlled iterations, for long-term (and hard to do)
planning. Each iteration (usually shorter than a month) involves a mini development
cycle that includes all the stages associated with a Waterfall Model but finishes with giv-
ing the users a working product with increasing functionality that serves not only as a
measure of advance, but also as an aid to determine if changes are needed. The delivered
software is used as the main measurement for progress, instead of depending on a Gantt
chart or other documents.

GWT is perfectly suited to such methodologies, because it can offer iterative develop-
ment, rapid prototyping (and here tools such as UiBinder, which we will study, can help
quickly develop appropriate interfaces), and automated testing. The latter point is partic-
ularly important: Given that development can (and will) go back and forth, and code
used in a previous iteration can be modified several times along the complete develop-
ment process, it’s important to check whether old functionality hasn’t been lost and
whether bugs have been introduced. GWT has tools that provide for both unit testing
(at the lowest level) and acceptance testing (at the user level).

Forever Beta?
As a side effect of the iterative development process, it’s usually hard to define what con-
stitutes a “version” of the final system. Because practically every iteration produces new

7Software Methodologies to Apply

 Download from www.wowebook.com

ptg

functionality, and the final goal isn’t as well defined as with classic methodologies (in
which the complete roadmap is laid out at the beginning and then preferably left
unchanged) with iterative development, you deliver the system in many small steps,
rather than in large ones.

In this context, it’s not unknown for systems to be considered in “perpetual beta”;
beta testing refers to the tests done by actual users with a system that is close to the full
product but not necessarily complete. (An extreme case of this is Google’s Gmail, which
was considered to be at beta level from 2004 to 2009!) With GWT, you can provide
functionality increases in short steps, and the web model enables for easy distribution of
the updated code.10

Summary
We touched upon several considerations that impact web application development. In the
rest of the book, we will be elaborating on them and provide specific techniques to help
you develop company-sized RIAs with the expected levels of quality and functionality.

8 Chapter 1 Developing Your Application

10. This could be said, of course, of any web-based application not necessarily written with GWT;

the point is that GWT helps you work this way.

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

2
Getting Started with GWT 2

Why use GWT 2? What are its advantages and disadvantages? What is required to take
advantage of this tool? How should you plan your work? In this chapter we consider the
whys, whats, and hows of GWT development; why you and your company should con-
sider its usage, what components are included in its framework, and how—with which
tools—you should do your development.

Why Use GWT?
Since its introduction at the JavaOne conference in May 2006, GWT has been evolving,
going from version 1.0 through 1.7 and up to the current 2.0.3, but the question is still
asked frequently: Why would you code web applications with GWT? Why not stay with
JavaScript? What advantages does GWT bring? Is it a complete framework for web
development? Even if you are already comfortable with GWT, these questions bear con-
sideration: Why would you recommend using GWT at your job?

Let’s start by defining what GWT is: It’s a tool that enables you to develop client-side
code, working with Java, and compiling your code into JavaScript, which is then exe-
cuted at the client’s browser. The final product is a web application with almost desktop-
application levels of interactivity, which executes client-side with minimal needs of
server-side code or interaction. Compiling into JavaScript provides an extra touch of
speed, and the final code is optimized and as good, or better, than human written code.
And, most important, you won’t need to (Okay, almost never will; see Chapter 4,
“Working with Browsers,” for specific cases in which you may want or have to) worry
about browser differences and quirks because GWT generates appropriate code for each
specific browser.1

1. The idea of compiling to JavaScript isn’t a GWT exclusive: Several other tools, such as Pyjamas

(see http://code.google.com/p/pyjamas/) or OpenLaszlo (see www.openlaszlo.org/) also work

this way.

 Download from www.wowebook.com

http://code.google.com/p/pyjamas/
www.openlaszlo.org/

ptg

Why Java?
The usage of Java is quite relevant. For starters, there’s a wealth of Java-experienced pro-
grammers, and the learning curve for GWT isn’t as hard as for other frameworks.2 On
the other hand, JavaScript development is as yet still far from mature, with little support
from IDEs, and too basic debugging methods—alert(...) calls are still probably the
most commonly used tool! Of course, if Java isn’t good enough, or if you have some
special-case-coding situation, you can resort to JavaScript code that can call and be called
from your Java code. Another plus is debugging your code by using Java debuggers.

Java also is well suited for Agile Development Methodologies, such as XP or Scrum.
TDD (Test Driven Development) is highly encouraged, with support for JUnit testing,
both for client- and server-side code. (In Chapter 13, “Testing Your GWT Application,”
we’ll go over the topic of GWT code testing.)

Web development also becomes easier; you can develop the presentation layer by
either using Swing-like techniques (as in common Java desktop programming), an
HTML-based approach, or the recent UIBinder declarative technique. (We will cover
this ground in Chapter 5, “Programming the User Interface.”) If you want a better look,
you can integrate widget or effects libraries to enhance the look of your application.

Some Actual Disadvantages
So, what’s not to like? To be fair, let’s consider some of the (real or imagined) disadvan-
tages of GWT. Despite all we have said, which are good reasons for using GWT, you
should also mind some negative points.

For starters, GWT web pages aren’t indexable by search engines. Because the applica-
tion is generated dynamically, search engines cannot index its contents. Some solutions,
such as cloaking, exist (having two sets of pages and presenting one to common users and
other with different content to search engine spiders) but they are difficult to apply with
GWT and might even fall afoul of indexing engines. If your business model somehow
depends on Search Engine Optimization (SEO) considerations, GWT might not be fully
adequate for you.

Also, GWT pages do not “gracefully degrade” in the presence of older browsers;
either the application will or won’t run, but there’s no middle ground with limited func-
tionality or restricted scope.3 Techniques such as progressive enhancement can be applied
(meaning, deploy a most basic site, which enables extra functionality if and only if the
browser supports it) but would demand duplicate coding, because if the user’s browser

10 Chapter 2 Getting Started with GWT 2

2. The GWT team explains that they didn’t just want to develop technology for the sake of

doing so, and Java already had many available tools. See http://code.google.com/webtoolkit/

makinggwtbetter.html for more details.

3. The current attitude is “just upgrade,” which tends to ignore valid reasons why users would want

or have to use older versions of more modern browsers.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/makinggwtbetter.html
http://code.google.com/webtoolkit/makinggwtbetter.html

ptg

doesn’t match GWT’s requirements, the application most surely will fail. You can apply
some workarounds for a few problems (such as using iframes to simulate Ajax calls) but
an inappropriate browser is usually a stumbling block. Happily, this objection is slowly
fading away, and in time you won’t need to worry about this. However, if you require,
for example, using your application with cell phones, you might find out that many users
will be locked out because of inadequacies in their browsers.4

For security, GWT applications are just as prone to attacks as any JavaScript applica-
tion. (We will consider security aspects in Chapter 10, “Working with Servers.”) Using
GWT won’t allow you to just ignore security. There are, however, some security-related
enhancements coming up (to avoid some of the more common attacks) but for the time
being, you should just take the same precautions as for web applications developed with
any other tools.5

Developers may complain that compiling and deploying is slower than with straight
JavaScript. This is probably trivially true (no compilation beats any compilation!) but the
point here is that writing the code is slower and more bug prone with JavaScript than
with Java. There are fewer tools for JavaScript coding, browsers have many quirks, and
your program will be full of if (isIE8)... tests. A solution is to use libraries such as
jQuery, prototype, Dojo, or ExtJS, which wrap some of those differences internally... but
in this case, why not use GWT that enables you to fully forget those differences?6

Similar notions are proposed by others who simply suggest that to develop rich
Internet applications, you should be directly working with JavaScript, because that’s
“what real programmers do,” and forget any alternatives! This conclusion is supported by
the notion that the Java-to-JavaScript conversion should necessarily be poor (because of
the differences between both languages) and that the generated code will be bulky and
slow. Apart from the unwarranted latter objections, the key point here is that JavaScript
isn’t the only problem; the differing implementations across browsers are the other big
problem. Real browser-independent code is quite hard to write (and larger, too) and it’s
difficult to ensure the application of the required discipline; you end up spending more
time, and writing more code, to achieve the same results as with a few lines of Java.7

11Why Use GWT?

4. Android cell phones and iPhone tend to work well out-of-the-box, but that’s not the rule for all cur-

rent cell phones.

5. In any case, note that GWT applications are neither more nor less prone to attacks than any

other JavaScript website, so this shouldn’t be considered a GWT-specific disadvantage but rather a

“fact of life” as pertaining to web development.

6. For more on this, read the “Reveling in Constraints” article by one of GWT creators, Bruce

Johnson, at http://queue.acm.org/detail.cfm?id=1572457.

7. If you worry about what happens when a new browser version is released, check the answer to

“Will my app break when a new browser comes out?” in the GWT FAQ at

http://code.google.com/webtoolkit/doc/latest/FAQ_GettingStarted.html.

 Download from www.wowebook.com

http://queue.acm.org/detail.cfm?id=1572457
http://code.google.com/webtoolkit/doc/latest/FAQ_GettingStarted.html

ptg

The GWT Components
In this section we will discuss the three basic components of GWT: the high-quality
Java-to-JavaScript compiler, the Java Runtime Environment (JRE) Emulation library, and
the User Interface (UI) library. If you were used to previous versions of GWT (up to
1.7) you may be missing the “hosted browser” that enabled you to try out code in hosted
mode, but GWT now uses “in browser development” (and development mode) that
enables you to directly test your application on your own browser, as we’ll see in
Chapter 3, “Understanding Projects and Development.”8

Compiler
The first and most important component of GWT is the Java-to-JavaScript compiler. It
takes your Java 1.5 code and produces distinct equivalent JavaScript versions that can be
run on all supported browsers: At the time of writing, all versions of Safari and Firefox,
Opera (at least up to versions 9.x), and versions 6 to 8 of Internet Explorer—Google
Chrome, being based on the same layout engine (WebKit) as Safari, is also supported and
runs Safari’s code.9 (Actually, the number of generated versions of the JavaScript code
can be far larger, if your application uses i18n—internationalization—as we’ll study in
Chapter 12, “Internationalization and Localization.”) Code can be minimized for size, for
faster downloads; there are also facilities for code splitting, which lets you download the
required JavaScript code in smaller pieces, on a when-required basis; see Chapter 15,
“Deploying Your Application,” for more on this.

The compiler does several code optimizing tasks during the compilation run, with
the stated goal of producing high-quality code, ideally besting code developed by hand
by experienced programmers. (Usually, code is obfuscated, but you can also ask for
“Pretty” or even “Detailed” output to better understand what the compiler does. The
desired option can be chosen when compiling, as we’ll see in Chapter 15.) Among the
many optimizations applied, the following are most significant:10

n Dead Code Elimination: Code that never gets called isn’t included in the out-
put file. If you develop a class with ten methods, but only use a couple of them,
the compiler won’t generate code for the rest of them. Similarly, if you inherit a
module with several dozen methods, output code will be generated only for the
actually required methods; you won’t incur in any size penalty because of methods
you don’t need.

12 Chapter 2 Getting Started with GWT 2

8. This “in browser” mode was, at least for a while, called OOPHM, standing for Out Of Process

Hosted Mode.

9. There are many other browsers (some for cell phones) that are also based on WebKit and thus

could run GWT applications; check http://webkit.org/ for more details.

10. See http://code.google.com/p/google-web-toolkit/wiki/AdvancedCompilerOptimizations for

planned future optimizations.

 Download from www.wowebook.com

http://webkit.org/
http://code.google.com/p/google-web-toolkit/wiki/AdvancedCompilerOptimizations

ptg

n Constant Folding: When the value of an expression can be known at compile
time, the expression is calculated beforehand, and the result will be directly used.
For example, if you write something such as Window.alert("Hello "+"World")
the generated JavaScript code will be something such as $wnd.alert("Hello
World"); note that this executes a bit faster because the needed string concatena-
tion is already done.

n Copy Propagation: An extension of Constant Folding, it lets you carry forward
the value of a variable if it can be known at compilation time. For example, given
the code int a=15; int b= a*a+5; the second line will be compiled as if it
read int b=230.

n String Interning: To avoid creating the same strings over and over again, each
distinct string is created once (and assigned to a variable with a name such as
$intern_22, for example) and used everywhere.11

n Code Inlining: For short, simple methods, GWT substitutes the actual method
code for the original call.

All these optimizations mean that the final code will be quite good. On the negative
side, GWT won’t do partial compilations; whenever you want to compile your code,
GWT looks at the whole of it and does a monolithic compilation to maximize the
number of possible optimizations. This was a conscious design decision by the Google
development team; you lose such advantages as reusing previously compiled modules, but
you gain a greater performance. If you were to compile a piece of code in advance, you
couldn’t do dead code optimization, for example, because you couldn’t predict if a cer-
tain method would be required.12

There are some other snags you need to be aware of:
n JavaScript doesn’t have a 64-bit integer numeric type, so GWT emulates long

variables with a pair of 32-bit integers. This works properly but is noticeably slower.
Also, when you use JSNI, you cannot pass these variables to JavaScript routines.

n For floating point numbers, JavaScript provides only a 64-bit (double) type, which
implies that overflows and result precision in arithmetic operations won’t be exactly
the same as in Java. Also, the strictfp keyword is disregarded.

n Exceptions are also handled differently. In JavaScript, most of the Java produced
exceptions (such as NullPointerException or MemoryOverflowException) are
replaced by a JavaScriptException. This causes a problem: When running in
development mode, a NullPointerException will be thrown, and you need to
catch (NullPointerException e) but in compiled mode, you need to catch

13The GWT Components

11. Yes, having variables start with “$” makes you think somebody in the GWT group must really

miss his PHP coding days...

12. Also, note that while in “development mode,” GWT doesn’t require (or do) a complete

compile/deployment process because it actually executes Java code.

 Download from www.wowebook.com

ptg

(JavaScriptException e) and you duplicate your exception handling code.
Another option, of course, is just to catch (Exception e) and then check for
the class of the exception.

n JavaScript provides no multithreading, so all thread-related functions will either be
ignored or rejected.

JRE Emulation Library
While in common Java you can use a prepackaged library without further concerns;
because of the way the GWT compiler works, it requires access to actual source code for
any class you might want to use. This requirement extends to the JRE, and GWT pro-
vides a partial implementation of it called the JRE Emulation Library.13

There are only four packages: java.io (sorely restricted!), java.lang, java.sql
(also quite limited), and java.util, but you can find some missing classes or methods.
(This is logical: For example, because JavaScript cannot use files, most of the classes in
java.io just wouldn’t work when compiled into JavaScript.)

Going into details, the java.io package is most limited, including just the
Serializable interface, which RPC considers a synonym for isSerializable. (We’ll
get to this in Chapter 6, “Communicating with Your Server.”) The reason for this limita-
tion is simple: The GWT-produced JavaScript code is executed in a browser sandbox and
cannot access any local files or printers. This might change (a little) with some HTML 5
features, but for now there’s nothing you can do.

More interesting, java.lang includes exceptions, classes, general utility methods, and
some interfaces.

Exceptions

ArithmeticException IndexOutOfBoundsException

ArrayIndexOutofBoundsException NegativeArraySizeException

ArrayStoreException NullPointerException

AssertionError NumberFormatException

ClassCastException RuntimeException

Error StringIndexOutOfBoundsException

Exception Throwable

IllegalArgumentException UnsupportedOperationException

IllegalStateException

Classes

Boolean Character

Byte Class

14 Chapter 2 Getting Started with GWT 2

13. Check http://code.google.com/webtoolkit/doc/1.6/RefJreEmulation.html for details.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/1.6/RefJreEmulation.html

ptg

Double Object

Float Short

Integer String

Long StringBuffer

Number StringBuilder

Utility:

Math Systema

Interfaces:

Appendable Comparable

CharSequence Iterable

Cloneable Runnableb

a. Note that system.err and system.out won’t work in web mode, unless you use the

System.setErr(...) and System.setOut(...) calls.

b. Because JavaScript provides no multithreading, runnable won’t run in a separate thread

as in standard Java.

The java.sql package includes three classes useful for date/time processing but
nothing else. And of course, from a security point of view, you wouldn’t want to try to
connect directly to a SQL database from your client, would you?

Classes

Date TimeStamp

Time

Finally, java.util includes the following exceptions.

Exceptions

ConcurrentModificationException NoSuchElementException

EmptyStackException TooManyListenersException

MissingResourceException

Classes

AbstractCollection EventObject

AbstractHashMap HashMap

AbstractList HashSet

AbstractMapEntry IdentityHashMap

AbstractMap LinkedHashMap

AbstractQueue LinkedHashSet

15The GWT Components

 Download from www.wowebook.com

ptg

Classes

AbstractSequentialList LinkedList

AbstractSet MapEntryImpl

ArrayList PriorityQueue

Arrays Stack

Collections TreeMap

Date TreeSet

EnumMap Vector

EnumSet

Interfaces

Collection Map

Comparator Queue

Enumeration RandomAccess

EventListener Set

Iterator SortedMap

ListIterator SortedSet

List

You can also look for certain GWT packages that provide extra functionality that Java
programmers take for granted:

n com.google.gwt.i18n.client.DateTimeFormat and
com.google.gwt.i18n.client.NumberFormat provide formatting functions.

n com.google.gwt.core.client.Duration can be used for timing purposes. (See
Chapter 14, “Optimizing for Application Speed,” for more on benchmarking and
performance aspects.) The returned values are double, so performance is better
than with the long Timer. (See the discussion at the end of the previous section
about long emulation in GWT.)

n com.google.gwt.user.client.Random provides a substitute for
java.util.Random.

n com.google.gwt.user.client.Timer can be used instead of
java.util.Timer.

As a general advice, before relying on any specific class or exception, check whether
it’s actually implemented, or just a placeholder needed for JRE compatibility, or a
trimmed down, limited, version of the usual JRE version. (You need to check GWT’s
own source code to do this check; yes, not very simple or friendly…)

On the other hand, don’t think that Java programming will become near to impossi-
ble with GWT. As we saw, in some cases there are alternative classes, and in others, you
can usually get by with JavaScript (JSNI) or any open source library.

16 Chapter 2 Getting Started with GWT 2

 Download from www.wowebook.com

ptg

UI Library
GWT provides a large, standard set of widgets (such as buttons or text input fields) and
panels. Using widgets is quite similar to Swing, so Java programmers can feel at home;
however, note that there are no layout managers (discussed next) and panels or CSS are
used instead for positioning objects.

Widgets are usually mapped into browser objects (think Heavyweight objects in
Swing) so they’ll share the visual aspect of whatever browser the user adopts. Styling can
be done on an object-per-object basis, or more generically by applying CSS, which is
the preferred solution. Some composite objects, more often associated with rich desktop
applications, are also included, such as a DatePicker for date input, SuggestBox for
real-time suggestions based on whatever the user has typed, RichTextArea for format-
ted text input, and more.14

Panels are containers for widgets or other panels. Panels also do double-duty as layout
managers; for example, FlowPanel uses standard HTML flow rules (or Swing’s
FlowLayout’s), whereas VerticalPanel stacks its elements vertically. We’ll go into
more detail about creating the user interface in Chapter 5.

Setting Up GWT
To develop a basic GWT application, you can make do with just about any text editor
and a few command line utilities, but for more serious work you need several other
tools. (And as we saw, the Google developers thought that a good reason for using Java
was the quantity of available tools for that language, so why skimp?) In this section, we’ll
consider several tools and plugins you should use for better GWT development.

Writing Code
Though you can develop GWT applications with just a text editor, Java, and a few scripts,
you should get Eclipse (at www.eclipse.org/), which is the Google-suggested IDE for
GWT. You should go for the JEE version, the most complete version for Java development.
All the examples in this book were developed with Eclipse 3.5, Galileo. You can also give
NetBeans (at http://netbeans.org/) with Gwt4nb (see https://gwt4nb.dev.java.net/) a
try, or go for Intellij IDEA (at www.jetbrains.com/idea/). I know programmers who
swear by each of these alternatives, so take your pick!

If you go with Eclipse, the Google Plugin for Eclipse (at http://code.google.com/
eclipse/) is practically mandatory; functions you usually had to do with shell commands
(such as creating a new project) can now be done within Eclipse. (See Figure 2.1.)
Installation is the same as for any plugin: Open Eclipse, go to Help, Install New
Software, add the Google Plugin URL, and it downloads and installs the rest of GWT.

17Setting Up GWT

14. See http://gwt.google.com/samples/Showcase/Showcase.html for samples of most available

widgets and panels.

 Download from www.wowebook.com

http://netbeans.org/
https://gwt4nb.dev.java.net/
http://code.google.com/eclipse/
http://gwt.google.com/samples/Showcase/Showcase.html
www.eclipse.org/
www.jetbrains.com/idea/
http://code.google.com/eclipse/

ptg

(We’ll go over the usage of the plugin in Chapter 3.) The plugin also provides other fea-
tures; for example, it can help you work with UiBinder (as we’ll be doing in Chapter 5),
or with JSNI (as in Chapter 8).

18 Chapter 2 Getting Started with GWT 2

Figure 2.1 The Google Plugin for Eclipse is a must, and it simplifies
creating both common web and Google App Engine applications.

(As an aside, Cypal Studio for GWT [at http://code.google.com/p/cypal-studio/] was
an alternative to the Google plugin, but for GWT 2, it’s in alpha version just now. As an
extra advantage, it simplified creating remote services [we’ll get to this in Chapter 6] and
deploying your application [see Chapter 15], but in its current alpha status, I wouldn’t
recommend it and suggest waiting for a release version.)

Lastly, all developers should follow the same standards. CheckStyle (athttp://
checkstyle.sourceforge.net/) is a tool that enforces whatever rules you decide to follow;
by default, Sun’s Eclipse-CS (at http://eclipse-cs.sourceforge.net) is a suitable plugin for
Eclipse; after installing it the standard way, a new option will be added to your project
menu (CheckStyle), and after running it, all nonstandard lines will be marked.

 Download from www.wowebook.com

www.allitebooks.com

http://code.google.com/p/cypal-studio/
http://checkstyle.sourceforge.net/
http://eclipse-cs.sourceforge.net
http://checkstyle.sourceforge.net/
http://www.allitebooks.org

ptg

Version Control Management
For version control management, I work with Subversion; therefore, I suggest using
Subclipse (at http://subclipse.tigris.org/), which is an Eclipse plugin, currently at version
1.6.5. Installation is similar to the Google Plugin’s; to be on the safe side, pick all pack-
ages and let Eclipse request any missing packages. I have also worked with Subversive (at
http://community.polarion.com/), another Eclipse plugin, and had no problems; pick
whichever suits you best.15

As for Subversion servers, which is beyond this book, but you can either install your
own server (see http://subversion.tigris.org/ for details) or use any of several public free
or paid servers; google a bit for this. (An appropriate venue could be Google’s own
Project Hosting at http://code.google.com/hosting/)

Testing
One of GWT’s greatest advantages is testing, and you have to install JUnit (from
www.junit.org/). The latest version, currently 4.8, can possibly be installed directly through
your distribution package manager (that was the case with OpenSUSE) or by following
the installation instructions at http://junit.sourceforge.net/README.html#Installation.
You need to add JUnit4 to the list of libraries; right-click on your project, click
Properties, Java Build Path, Libraries, and add JUnit4.

For testing coverage metrics, add EclEmma (at www.eclemma.org/). This plugin adds
a new launch mode (coverage) which, after running your test suite, produces a marked up
listing of your source code showing, which lines were or weren’t exercised by the test.
(See Chapter 13 for more on testing.) Installation is the usual one for Eclipse plugins.

Finally, for unit testing, EasyMock (at http://easymock.org/) is a valuable tool. Added
to the GUI patterns that we apply (see Chapter 5 for a discussion of the MVP design
pattern as applied to GWT) it will simplify writing our automatic tests. You need to
install both EasyMock (currently at version 2.5.2) and the EasyMock Class Extension (at
version 2.4), and add both jars to the build path. See Figure 2.2 on the next page for a
finished installation.

Running and Deploying
You should also have Firefox (at www.mozilla.com/en-US/). Actually, about any browser
could do, but Firefox has lots of great plugins for development, such as FireBug (a debug-
ger and inspector) and FireCookie (an extension that lets you examine cookies).16

19Setting Up GWT

15. Of course, version control is part of all development projects, and not really GWT-specific, but I

wanted to include everything that you would be likely to require for serious application development.

16. If you are running Linux, ironically you won’t be able to use Google’s own Chrome for develop-

ment, since a required plugin isn’t expected to be available until at least version 5 of the browser.

 Download from www.wowebook.com

http://subclipse.tigris.org/
http://community.polarion.com/
http://subversion.tigris.org/
http://code.google.com/hosting/
http://junit.sourceforge.net/README.html#Installation
http://easymock.org/
www.junit.org/
www.eclemma.org/
www.mozilla.com/en-US/

ptg

20 Chapter 2 Getting Started with GWT 2

Figure 2.2 A nicely filled out set of libraries for development and testing

When you start developing with GWT and testing your applications with your own
browser (we’ll get started with this in Chapter 3) you will be required to install an
appropriate plugin; follow onscreen instructions, depending on what browser you use.
Also, you should also get Selenium (at http://seleniumhq.org/), which is a great tool for
acceptance tests, and the Selenium IDE (a good help for setting up the tests) is provided
as a Firefox extension.

To finish, to deploy the actual application, you need some servlet container (such as
Tomcat, Jetty, or Glassfish, among many possibilities) or if your server side isn’t Java
based, a web server (Apache or Lighttpd come to mind). We won’t be covering how to
install and set up these programs in this book.

Summary
We analyzed why you should use GWT (and even some reasons against it, which aren’t
that weighty, in our opinion), what GWT is in terms of its components, and which tools
you need to get the most out of your development. Now, let’s get started with actual
GWT development, from the initial setup to the final deployment of your application.

 Download from www.wowebook.com

http://seleniumhq.org/

ptg

3
Understanding Projects and

Development

In this chapter we’ll create a project, study its structure, configure its modules, and show
how development works with GWT. Since GWT 1.0, this whole process has evolved
significantly; now it’s more streamlined, with a plugin for easier project creation and
OOPHM for faster, simpler development and testing.

Creating a Project
First, let’s start by creating a project—a “Hello World” application if you will—though
we won’t use it to showcase GWT, but rather to study the structure of a project. (And
we will throw some criticism at this simple application in Chapter 5, “Programming the
User Interface.”) We won’t do any coding because GWT can generate such code by
itself, and it’s good enough for our purposes. And, by the way, the simplest way to create
your own project and make certain that it was created correctly is by deleting Google’s
standard code and start writing your own.

You can create a GWT project in at least three ways: by means of the Google Plugin
for Eclipse, by using a shell script, or even directly by hand, file per file—though of
course there isn’t much going for the latter option, so we’ll avoid it.1

Using the Google Plugin for Eclipse
Originally, GWT provided some scripts to create a project with all required files and
directories (and we’ll look at this next) but using the Google Plugin for Eclipse (which
we installed in Chapter 2, “Getting Started with GWT 2”) is by far the simplest way.

1. In Eclipse, go to File, New, Other, Google, Web Application Project.

2. Give the project a name. (I inspiredly chose sampleproject.)

1. For just a single example of other ways to create a project, Maven users could utilize the

CodeHaus plugin at http://mojo.codehaus.org/gwt-maven-plugin/, and it’s likely that sooner or later

you’ll find plugins for just about any development environment.

 Download from www.wowebook.com

http://mojo.codehaus.org/gwt-maven-plugin/

ptg

3. Specify which package should be created. (I went with com.fkereki.sample.)

4. Check Use Google Web Toolkit and Use Default SDK. It is possible to install sev-
eral versions of the SDK at the same time; for example, for testing purposes, or for
building GWT projects created with older versions.

5. Because we aren’t going to deploy this project to Google App Engine, uncheck
Use Google App Engine.

6. Click Finish.

That’s all there is to creating a project with the Google Plugin for Eclipse; a certainly
simple process.

Using the GWT Shell Script
If you aren’t using Eclipse, you can use the webAppCreator shell script to generate all
needed directories and files. Note that before GWT 1.6 you had to use two scripts,
projectCreator and applicationCreator, to accomplish the same result.

You need to specify the module name, and you can also include several parameters:
n -overwrite means all existing files will be overwritten.
n -ignore means existing files will be left as-is and not overwritten. Note

that -ignore and -overwrite are mutually exclusive; you cannot specify them
both.

n -out someDirectory specifies the output directory; by default, the current one.
n -XnoEclipse implies no Eclipse-specific files will be created; you would use this

if you plan to use other IDE instead.
n -XonlyEclipse on the contrary means the script will generate only those files

needed for Eclipse; you can import this project into Eclipse.

The following is the (slightly abridged for legibility) result of a project creation run:

> cd work

> md secondsample

> sh webAppCreator com.kereki.secondsample

Created directory /home/fkereki/work/src

Created directory /home/fkereki/work/war

Created directory /home/fkereki/work/war/WEB-INF

Created directory /home/fkereki/work/war/WEB-INF/lib

Created directory /home/fkereki/work/src/com/kereki

Created directory /home/fkereki/work/src/com/kereki/client

Created directory /home/fkereki/work/src/com/kereki/server

Created file /home/fkereki/work/src/com/kereki/secondsample.gwt.xml

Created file /home/fkereki/work/war/secondsample.html

Created file /home/fkereki/work/war/secondsample.css

Created file /home/fkereki/work/war/WEB-INF/web.xml

Created file /home/fkereki/work/src/com/kereki/client/secondsample.java

22 Chapter 3 Understanding Projects and Development

 Download from www.wowebook.com

ptg

Created file /... /work/src/com/kereki/client/GreetingService.java

Created file /... /work/src/com/kereki/client/GreetingServiceAsync.java

Created file /... /work/src/com/kereki/server/GreetingServiceImpl.java

Created file /home/fkereki/work/build.xml

Created file /home/fkereki/work/README.txt

Created file /home/fkereki/work/.project

Created file /home/fkereki/work/.classpath

Created file /home/fkereki/work/secondsample.launch

Created file /home/fkereki/work/war/WEB-INF/lib/gwt-servlet.jar

After creating the project, you can import it into Eclipse with these steps:2

1. Go to File, Import, General, Existing Projects into Workspace.

2. Browse to the directory with the new project and select it.

3. Uncheck Copy Projects into Workspace, so Eclipse uses the directory you chose.

4. Click Finish.

We’ll study the files layout in the next section.

Project Structure
Let’s now get into the project structure. (See Figure 3.1 on the next page.)

You need several directories:
n Your production Java code goes in the src directory, which is further divided into
client (code that runs at the user’s browser), shared (a post-GWT-2.0 addition
for code used both at the client and the server) and server (code that runs server-
side).3 You can further create any subpackages within these three directories. You
can have other directories for client-side code but need to include them with the
<source> element. On the other hand, server-side code must reside within
server; you cannot specify other directories for it. If you want to share classes in
client and server-side code, you should include them in the shared directory,
because they need translation into JavaScript; this automatically implies that all
client-side code limitations apply to those classes.

n For testing, you may have test and gwttest directories (for JUnit and
GWTTestCase automatic tests) as we see in Chapter 13, “Testing Your GWT
Application.”4

23Project Structure

2. An equally valid alternative would be importing it into Netbeans and working with the GWT4NB

plugin, as we mentioned in Chapter 1, “Developing Your Application.”

3. Note that in standard Java fashion, com.kereki.sample.client actually stands for the

com/kereki/sample/client subdirectory.

4. The testing directories are actually optional but skipping automatic tests would go against the

idea of GWT development.

 Download from www.wowebook.com

ptg

Figure 3.1 The basic structure for a recently created project. This
structure is missing the directories for your automatic test code.

n Your output code will be produced in the war folder. This directory is in the
appropriate format for Java web servers such as Tomcat or Jetty, so you can directly
deploy your application. (We see more on this in Chapter 15, “Deploying Your
Application.”) Within it, you can find the files that form the client-side application
(static ones such as CSS or HTML, plus the compiler-generated JavaScript files)
and the Jar files and servlet configuration files for your server-side code.

The basic units in GWT are modules. You use modules both for the actual client-side
application and for libraries that you want to reuse across several projects. The module
definition goes in the project root and has a gwt.xml extension. A most basic module
description for our recently created project could contain

<?xml version="1.0" encoding="UTF-8"?>

<module rename-to='sampleproject'>

<inherits name='com.google.gwt.user.User'/>

<inherits name='com.google.gwt.user.theme.standard.Standard'/>

<entry-point class='com.kereki.sample.client.Sampleproject'/>

<source path='client'/>

</module>

24 Chapter 3 Understanding Projects and Development

 Download from www.wowebook.com

ptg

Let’s first examine this example and then move on to a fuller description of available
elements and attributes.

n The optional rename-to attribute in the <module> element lets you change the
generated application name from com.kereki.sample.client to the far friend-
lier, simpler sampleproject.

n The <inherits> elements include the contents of other modules; in this case, we
import basic GWT functionality (com.google.gwt.user.User) and a default
style for widgets (com.google.gwt.user.theme.standard.Standard).

n The <entry-point> element shows the starting class for the application.
n The <source> element defines which directories will or won’t be included for

code generation; here, we just include the standard client directory.

For a simple project, you don’t need more than this, but several elements let you add
further capabilities to your project; let’s now go into more detail.

n The root element for the gwt.xml file is <module>. You can define only a single
module per gwt.xml file, but you can have several differently named modules
within the same project. This would allow having, for example, a production mod-
ule definition (used for deployment, as we see in Chapter 15) and a development
module definition, which could be compiled more quickly, just for a single browser
and language.

n You can use the <rename-to> attribute to rename a module (as we previously
did) to give the compiled application a simpler name; otherwise, instead of going
to http://yourwebsite.com/sample, the user would have to browse to http://
yourwebsite.com/com.fkereki.sample.Sample, which isn’t so friendly.

If you were having a production module and a development module as previously
described, you could use this attribute so both modules produce an identically
named application. For example, we could have development.gwt.xml, whose
compilation would just produce a Safari version of the code; we’ll see more of this
in Chapter 15.

<?xml version="1.0" encoding="UTF-8"?>

<module rename-to='sampleproject'>

...same as earlier...

<set-property name="user.agent" value="safari" />

</module>

n The <source> element lets you include (the default action) or exclude specific
directories and file patterns. The default source path is client and not including
any source elements is equivalent to just including <source path='client'/>.
You can also include or exclude files or patterns; see the following <public> ele-
ment description.

25Project Structure

 Download from www.wowebook.com

http://yourwebsite.com/sample
http://yourwebsite.com/com.fkereki.sample
http://yourwebsite.com/com.fkereki.sample

ptg

n The <entry-point> element lets you specify an entry point class for your
application (i.e., a class that implements EntryPoint) as in <entry-point
class='com.kereki.sample.client.Sampleproject'/>. If you have several
entry point classes, their onModuleLoad methods will be executed sequentially, in
the same order as in the module file.

n The <script> and <stylesheet> elements let you automatically include exter-
nal JavaScript and CSS files with your module. Syntax is similar: <script src=
'someJavaScriptFileUrl'/> and <stylesheet src='someCssFileUrl'/>.
JavaScript files will be loaded before calling any of your entry point classes. CSS
files will be loaded in the given order. If the URLs are absolute, they will be used
as given; if not, they will be taken as relative to the URL of your project, meaning
its default public path.

Why would you include files this way, instead of using <script> and <link> tags
within the HTML file for your application? It would be particularly apt if you
were writing a module that depends on specific scripts or CSS files; any users of
your module would automatically require those files without having to remember
to include them.

n The <public> element also fulfills a similar objective. If you add <public
path='some/path/at/your/project'/> to the module specification, all the
corresponding files in that path will be copied to the output directory. Again, the
main reason for using this would be forcing any user of your module to include
the desired files; otherwise you could just make do by directly copying the files to
wherever you wanted them in the web directory.5 The standard placement for the
public directory is at the same level as the client and server directories.

The <source> and <public> elements support some extra attributes, to further
limit what files will be included or excluded. All files in the path are included by
default, unless you specify one or more patterns with includes="somePattern"
(to include only those files) or excludes="otherPattern,anotherOne,
yetEvenAnother" (include everything except these files).

Even more, if you want to include or exclude many specific files or patterns, you
can use the <include name='aListOfPatterns'> and <exclude name=
'otherPatterns'> elements.6

26 Chapter 3 Understanding Projects and Development

5. This is used, for example, to include some Internet Explorer 6 files in your war/yourModule/

gwt/standard/images/ie6 directory when you inherit a widget style module.

6. By default, several patterns are excluded, including backup files, CVS and SVN files, and more.

You can suppress this exclusion by adding defaultexcludes=no but it isn’t likely you will want to

do so; check http://ant.apache.org/manual/dirtasks.html#defaultexcludes for more on this. You

can also set filename matching not to be case-sensitive by adding casesensitive=false.

 Download from www.wowebook.com

http://ant.apache.org/manual/dirtasks.html#defaultexcludes

ptg

<public path='public' includes='*gif,*png'>

<include name='ubuntu*'/>

<include name='opensuse*'/>

<exclude name='install.gif'/>

</public>

n If your application uses RPC (we’ll work with RPC in Chapter 6, “Communicating
with Your Server,”), you need to configure the called servlets in the war/WEB_
INF/web.xml file. (We’ll consider how to deploy an application, servlets included,
in Chapter 15.) However, and only for GWTTestCase testing, you need to include
<servlet path="url" class="className"/>. The given classname should be
fully qualified as in com.kereki.sample.server.AnyServlet and the URL
should be an absolute path, such as /AnyServlet; of course, these values should
coincide with the web.xml values.

There are some compiler-specific element you will rarely want to mess with, such as
define-linker and add-linker that define which linker class will do the final
JavaScript packaging, at the end of the compilation; we won’t be using them.

Finally, and for completeness’ sake, let’s also list in advance several tags used for deferred
binding, which we’ll examine in Chapter 4, “Working with Browsers.” Managing prop-
erties is done with define-property, set-property,7 extend-property, and
property-provider.

You can set specific properties for generators with define-configuration-
property, set-configuration-property, clear-configuration-property, and
extend-configuration-property.

There are also several predicates such as when-property-is, when-type-
assignable, when-type-is, all, any, and none, which are used with the replace-
with and generate-with deferred binding directives.

Running Your Application: Development Mode
The most important change in GWT 2 was the introduction of OOPHM (Out Of
Process Hosted Mode) that meant you will try your code in your own browser.
(Another change is that the old Hosted mode is now called Development mode; the old
name was prone to generate confusion.) Running code in Development mode is essen-
tial to developing a GWT application: It lets you use Java debugging tools, while you see
the effects of your code in a production browser.

The previous Hosted mode used an old Mozilla-based browser, which didn’t enable
useful extensions or plugins (such as Firebug) to work. Also, you were limited to testing
your code in the development machine’s environment; you couldn’t connect to your

27Running Your Application: Development Mode

7. We already used this element when defining a development module, to specify that code should

be generated only for a specific browser, as in <set-property name="user.agent"

value="safari" />.

 Download from www.wowebook.com

ptg

Linux machine from a Windows machine in the same network and try to run the code
with Internet Explorer.

To try Development mode, right-click on your project, select Run As, and Web
Application. A GWT Development Mode window appears with a message Waiting for
Browser Connection To; open your favorite browser, and point it to the given URL.
(See Figure 3.2.)

28 Chapter 3 Understanding Projects and Development

Figure 3.2 Trying out your code in Development mode

Running in your own browser needs a special plugin that manages the connection
between your browser and the development environment. If you haven’t installed it yet,
instead of your running application, you get a warning about the lack of the plugin, as
shown in Figure 3.3.

Clicking on the given link redirects you to a page that enables you to download and
install the plugin. (See Figure 3.4.)

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg
Figure 3.3 GWT’s new Development Mode needs a special plugin so that

your browser can communicate with the development environment.

29Running Your Application: Development Mode

Figure 3.4 The first time you run an application in Development Mode, you need to install
the appropriate version of the GWT Developer Plugin for your browser.

 Download from www.wowebook.com

ptg

Simply follow the onscreen instructions, install the plugin, and you can run the appli-
cation.8 If you were used to the old GWT Hosted Mode, you notice some differences:

n There is no special Refresh button; just use F5, and the client application will be
recompiled and reloaded.

n If you need to make some changes in the server side of your application, click the
Jetty button at the GWT Development Mode window and then Restart Server.9

n When the application runs, you see a third tab for your application console. You
can display messages here by using GWT.log("some message",null) in your
code. You don’t need to worry about leaving these calls in your production code;
they will be optimized out by the compiler.10

There’s something that hasn’t changed; the first time you run your application in
Development mode you’ll have a short wait, the same as in the old Web mode. However,
refreshing your application is quite fast, so you’ll soon get in the run-test-modify-rerun
cycle, leaving the Development mode window open all the time.

Finally, note that you can as easily debug your application; right-click on your project,
select Debug as and Web Application. The rest will be exactly as running your program,
but you will have full access to Eclipse’s debugging tools, meaning you can set break-
points, examine variables, and so on. We won’t be delving into this because it’s pure Java
debugging; you can forget about GWT, JavaScript, compilation, translation, and every-
thing else, and just work with the Java code.

Summary
We saw how to create a project, both by using the GWT Plugin for Eclipse and the
webAppCreator shell script, and then went over the internal structure of a project and
the configuration of its modules. Finally, we studied how development works with
GWT, tried its new Development Mode, and touched on debugging. In the next chap-
ter, we’ll get started with actual application development.

30 Chapter 3 Understanding Projects and Development

8. Note that for some browsers—notably Google’s own Chrome—you need to do some extra steps

beyond the plugin’s installation.

9. Earlier versions of GWT used Tomcat instead of Jetty for internal servlet hosting.

10. You could also consider using project GWT-log at http://code.google.com/p/gwt-log/ for extra

logging features.

 Download from www.wowebook.com

http://code.google.com/p/gwt-log/

ptg

4
Working with Browsers

Even if generating browser-independent code is one of GWT’s main selling points,
there still remain some details you need to be aware of—hopefully without having to go
all the way to producing browser-specific code!

First, you need to pay special attention in case the user wants to go back to a previous
screen by using the Alt+Backspace combo or the Back button in his browser. Because
GWT applications run in a single screen, that action will probably log the user out of
your program.

Then, in some cases (such as deciding whether to show a video by using HTML 5’s
tags) you might need to be aware of the specific version of the user browser; we’ll see
two solutions for that, a classic one you surely already know, and a better GWT-specific
one taking advantage of deferred binding. Deferred binding will also pave the way for
automatic code generation, which we shall use to automate the production of part of
our application.

And, finally, you might need to deal with old browsers (yes, there still are IE 5
browsers around) and users who have disabled JavaScript—all of which are certain show-
stoppers for GWT applications.

So, in this chapter we will mainly deal with these kind of browser details you always
must take care of, and, as a welcome side effect, bring into being a general launcher
infrastructure that can help building menus and linking parts of your application, and see
some more about deferred binding and the inner workings of the GWT compiler.

The Back Button Problem
GWT applications (as most other Ajax-based applications, too) usually run in a single
page, which is dynamically created and regenerated as needed. This mode of work creates
the Back Button or Alt+Backspace problem: If the user tries to go back to a previous
screen in your application, results will be unexpected. Instead of going back as desired,
he will get kicked out of your application, landing in whichever page he had been before
visiting yours. Of course, the user cannot expect that your application won’t behave like
any other web application, so this behavior would be, to say the least, aggravating. You

 Download from www.wowebook.com

ptg

have no way of inhibiting the Alt+Backspace combo and the browser’s own Back com-
mand, but fortunately GWT provides a simple way out, with the History class.

It should be noted that at the 2009 Google I/O conference, the first point in Ray
Ryan’s “GWT App Architecture Best Practices” was “Get browser history right, and get
it right early.”1 The rationale for this is that you will find it far easier to get it right at
the beginning than to retrofit at a later point. So, let’s get into this right now, before
starting to develop any other code; what we shall see here will be complemented by the
MVP pattern discussion in the next chapter.

Setting Up Your HTML Page
The History class is GWT’s answer to the Alt+Backspace problem. It enables you to eas-
ily deal with Back and Forward commands, in a way that will be totally transparent to
the user. However, before starting with the actual details of this class, let’s add some
required code to your basic HTML page. Within its <body> add the following script:

<iframe src="javascript:''"

id="__gwt_historyFrame"

tabIndex='-1'

style="position: absolute; width: 0;

height: 0; border: 0">

</iframe>

Be careful with the double underscore at the beginning of __gwt_historyFrame. If
you try using the History class without having included the preceding code, when run-
ning in Development mode, you get the following warning in the log:

Unable to initialize the history subsystem; did you

include the history frame in your host page? Try

<iframe src=\"javascript:''\" id='__gwt_historyFrame'

style='position:absolute; width:0; height:0;

border:0'></iframe>

Note, however, that this message will only appear if you use Internet Explorer 6 and
7 browsers, which lack the necessary onhashchange event.2 (Of course, you might opt
for another solution, and kick the user out if his browser isn’t adequate. We will see ways
to do this later in this chapter, but it certainly wouldn’t be too friendly!) Other browsers,
such as Firefox or Safari, can run even without this script. The latest Internet Explorer 8
added support for this event with its Ajax Navigations feature.3

32 Chapter 4 Working with Browsers

1. Check http://code.google.com/events/io/2009/sessions/GoogleWebToolkitBestPractices.html

for the conference video and presentation.

2. And neither does Internet Explorer 8, when in Compatibility mode; see www.microsoft.com/

windows/internet-explorer/features/easier.aspx for a description of this mode.

3. Read http://msdn.microsoft.com/en-us/library/cc891506(VS.85).aspx for more on this.

 Download from www.wowebook.com

http://code.google.com/events/io/2009/sessions/GoogleWebToolkitBestPractices.html
http://msdn.microsoft.com/en-us/library/cc891506(VS.85).aspx
www.microsoft.com/windows/internet-explorer/features/easier.aspx
www.microsoft.com/windows/internet-explorer/features/easier.aspx

ptg

The History Class
The History class manages Back and Forward events, letting you provide a handler that
will deal with each command. You can find this class in the com.google.gwt.user
.client package. All its methods are static (so you use them without creating a History
object) and some are even native JavaScript code.

Whenever the users goes to a different part of your application, the URL changes:4

instead of being, say, www.yoursite.com/yourapp, it will become something like
www.yoursite.com/yourapp#sales—and “sales,” the string after the hash mark,
would be a token your application should recognize and use to identify some module of
your site. Your handler should decide what content to show depending on its value.5

What’s a token? In short, just about any string you can recognize and associate to a
given state in your program. Note that GWT’s documentation doesn’t specify a token’s
maximum length, but you shouldn’t assume it can be of any length, and rather keep it to,
say, about 100 bytes long.

To process History events, you first need to add a handler by using
History.addValueChangeHandler(...) and pass it an object that implements the
ValueChangeHandler<String> interface; your EntryPoint class will be the obvious
candidate to implement it. The handler will be called on every History change event,
and give you the chance to react and show the correct page.6

Note, however, that the first time your application is loaded you won’t be getting any
change event; browsers do not consider the first page load a hash change event for per-
formance reasons. Thus, you need to get the initial token on your own, by using the
History.getToken() method, followed by the History.newItem(...) call, so the
token will get processed instead of just pushed into the history stack.

Your initialization code will end up being something like the following—but careful,
there are some problems with the code, which we shall point out and fix quite soon.

import com.google.gwt.user.client.History;

import com.google.gwt.core.client.EntryPoint;

import com.google.gwt.event.logical.shared.ValueChangeEvent;

import com.google.gwt.event.logical.shared.ValueChangeHandler;

//more imports...

public class Mvptest implements EntryPoint,

ValueChangeHandler<String> {

33The Back Button Problem

4. For more on hashes and parameters, check www.w3.org/TR/hash-in-uri/.

5. Tokens look very much like HTML anchors, but there’s an important difference. In the case of

browsers, they navigate to anchors (which are just a sort of bookmark in the page) by just scrolling

the text of the currently displayed page. On the other hand, your GWT application will have to create

and show the appropriate page.

6. Earlier versions of GWT used a Listener instead, but that’s deprecated now.

 Download from www.wowebook.com

www.yoursite.com/yourapp
www.yoursite.com/yourapp#sales
www.w3.org/TR/hash-in-uri/

ptg

public void onModuleLoad() {

// do all kinds of initializing...

String startingToken = History.getToken();

History.addValueChangeHandler(this);

History.newItem(startingToken, true);

}

@Override

public void onValueChange(ValueChangeEvent<String> event) {

String token = event.getValue();

// depending on the value of token, do whatever you need

if (token.isEmpty()) {

// show the initial screen or menu

} else if (token.equals("login")) {

// show a login form

} else if (token.equals("some")) {

// show some form

} else if (token.equals("other")) {

// show other form

} else if (...) {

// ...more checks for other token values...

} else {

Window.alert("Unrecognized token=" + token);

}

}

}

Starting Your Application
Given the preceding code, it can be seen that an easy way to get a part of your program
to run at the beginning (such as a login form, for instance) is by just pushing a certain
token and letting the history mechanism take care of it. However, this also represents a
security fault. (See Figure 4.1 for a simple login form.) Think about what would happen
if the user had bookmarked a URL with a token in it and now opted to visit it. The
token would be processed, and the user would end up directly going to the desired part
of the application, without having ever logged in; not very safe or secure!

We can handle this with a bit of care. First, right at the beginning we check whether
there’s already a token in the URL, and if so, we store it for later, but otherwise ignore
it. Then, we go about priming the history stack with the login token, so the user will
need to log in before starting to use the application. And finally, when the login process
is done (more on this later) we can process the original token, and jump to wherever the
user wanted to go. Of course, we also need to clear the saved token, because otherwise
we will keep going back to it whenever the user goes back to the main screen.

34 Chapter 4 Working with Browsers

 Download from www.wowebook.com

ptgFigure 4.1 A login screen must be shown, even if the user bookmarked
an inner page of your application. After the user successfully logs in, he

may be sent to the page he asked for.

As a result, we honor the user’s request, but in a safe way, without bypassing the login
procedure. Given all this, a better startup code would be something like the one shown
next.

(A little advance warning: In the preceding code, we used hard-coded strings to stand
for the tokens, as in token.equals("login"). It’s far better to use constants [nothing
new here] and in our form design [which we’ll see in Chapter 5, “Programming the
User Interface”] we shall include a PLACE named constant in every screen; for example,
we would have

static final String PLACE="login";

We are getting just a bit ahead of ourselves, but you’ll agree that including hard-coded
constants is not usually considered good design and that we had to change it anyway.)

public class Mvptest implements EntryPoint,

ValueChangeHandler<String> {

String startingToken = "";

public void onModuleLoad() {

// initialize everything...

35The Back Button Problem

 Download from www.wowebook.com

ptg

/*

* If the application is called with a token, we cannot

* just jump to it; we need go past the login form

* first.

*

* After the user has logged in, the showMainMenu(...)

* method --called in the login callback-- will take

* care of jumping to the appropriate place.

*/

startingToken = History.getToken();

/*

* Set up the history management, and start by showing

* the login form.

*/

History.addValueChangeHandler(this);

History.newItem(LoginPresenter.PLACE, true);

}

void showLogin() {

// show login form

// after a valid user has logged in

}

void showMainMenu() {

// Use user information for menu configuration

// and create the main screen and menu

/*

* If the application was started with a token, now that

* the user is logged in, it's time to show it.

*

* Don't forget to clear startingToken, or after a

* logout/login, we will go back again to the token.

*/

if (!startingToken.isEmpty()) {

History.newItem(startingToken, true);

startingToken = "";

}

}

@Override

public void onValueChange(ValueChangeEvent<String> event) {

36 Chapter 4 Working with Browsers

 Download from www.wowebook.com

ptg

// as above...

}

}

For extra safety, you should include tests (in the OnValueChange(...) method) to
check whether the current user is allowed to go to where the token points; the current
user might not be the one who originally saved the bookmark, or might be keying in
the URL by hand as an experiment to get into parts of your application that would
otherwise be forbidden to him.

This, however, isn’t yet perfectly safe; the user might use some browser debugging
tool, and cheat by changing, after having been logged in, the stored information for him
to gain admission to other parts of the system. As we’ll see in Chapter 10, “Working
with Servers,” you’ll require more secure methods for a safer application.

Showing Forms in Pop-Ups
The preceding code in the onValueChange(...) method can be enhanced; let’s get to
the final version. There are two details we might want to consider. As it is, it does two
functions: It processes the change event and also launches a form. Because we might
want to launch a form without going through the history mechanism (for example, in a
PopupPanel) we should think about separating both functions.

Also, because in the latter case we wouldn’t want to show the new form on the main
screen, we need to pass a parameter: the panel where the new form should be shown.
This refactoring leads us to the following version; note that the show(...) methods
now receive a panel parameter.

@Override

public void onValueChange(ValueChangeEvent<String> event) {

executeInPanel(RootPanel.get(), event.getValue());

}

public void executeInPanel(Panel myPanel, String token) {

if (myPanel==null) {

myPanel = RootPanel.get();

}

myPanel.clear();

if (token.isEmpty()) {

// no need to do anything...

} else if (token.equals(LoginPresenter.PLACE)) {

// show login in panel myPanel

} else if (token.equals(someForm.PLACE)) {

// show some form in panel myPanel

} // etc.

}

37The Back Button Problem

 Download from www.wowebook.com

ptg

With this refactoring, if a form needs to show other forms in a pop-up, the logic
will become something like: (1) create the PanelPopup object, (2) show(...) it, and
(3) invoke the executeInPanel(...) method, giving it the panel, so the new form can
go in there. (See Figure 4.2 for a instance of a searcher form shown on top of the main
form application.) This kind of code will surely be required in several points of our
application, and in Chapter 5 we’ll decide we should move it into the Environment
object, a good place for all kinds of general code and constants, which we haven’t yet met.

38 Chapter 4 Working with Browsers

Figure 4.2 An improved launcher lets you display a form in a pop-up
panel. The form itself isn’t aware of whether it’s displayed on the main

screen or in a lesser panel.

So far, we have managed to show a form either on the main window or in a specific
panel, and we know how to perform that from a menu. The only thing we are missing is
the possibility of passing starting parameters to a form because it’s not always the case
that you want to start with an empty, cleared form, but rather with some preloaded data.

Passing Parameters
When using normal anchors, URLs can include parameters, but they will appear before
the hash mark, as in www.somemoviesite.com?film=123#synopsis that won’t work
in our case. Whenever the part before the hash changes, a page is loaded, so passing

 Download from www.wowebook.com

www.allitebooks.com

www.somemoviesite.com?film=123#synopsis
http://www.allitebooks.org

ptg

parameters in this way would mean that the whole application would get reloaded, los-
ing its state.

So, if you want to pass parameters to a form, you need to include them after the
corresponding token, in the classic style ?key1=value1&key2=value2... but then
you need to do the parsing on your own because the GWT Window.Location
.getParameter(...) and Window.Location.getParameterMap(...) methods do
not apply to hashes.

Note, if you want to be picky, that since tokens are any string you want, you do not
need to use any particular style, and you can invent your own notation and standard, but
why bother? Simple code like the following one can extract the parameters, which you
can provide to a form’s presenter as an extra parameter, so it can do whatever it needs.

public void executeInPanel(Panel ppp, String token) {

String args = "";

int question = token.indexOf("?");

if (question != -1) {

args = token.substring(question + 1);

token = token.substring(0, question);

}

// rest of the code, as before, but

// remember to provide whatever form is

// launched with the "args" parameter string

Note that if some parameters could include a question mark, it is up to you to encode/
decode them appropriately; the use of GWT’s URL encode(...) and decode(...)
methods (similar to PHP’s urlencode(...) and urldecode(...) functions, for exam-
ple) comes to mind.

Having each form parse the parameter string on its own, to get the keys and values,
would be a bad design. We can do better by adding some code that will do that job and
construct some kind of hash map with the actual parameters. We can get the string with
the parameters and use a KeyValueMap (an extension of HashMap<String,String>) to
store the extracted values. Let’s first write that class.

public class KeyValueMap extends HashMap<String, String> {

/**

* KeyValueMap: a short way of specifying a class that

* will be used to pass parameters to forms.

*/

private static final long serialVersionUID = 5225712868559413562L;

/**

* Standard constructor; produces an empty KeyValueMap.

*/

public KeyValueMap() {

this("");

}

39The Back Button Problem

 Download from www.wowebook.com

ptg

/**

* Create a KeyValueMap, and initialize it with the params

* string.

*

* @param params

* A string with URL-like parameters (see below)

*/

public KeyValueMap(final String params) {

initializeWithString(params);

}

The initializeWithString(...) method loads the hash map with the keys and
values included in the string. We must be careful to do the right thing if the string is
empty (meaning, create an empty hash map) or if some value is missing (and then we’ll
just assume the corresponding value is an empty string).

/**

* Initialize a KeyValueMap with a parameters URL-like

* string.

*

* @param params

* A string formatted like

* param1=value1¶m2=value2&... It is assumed

* that the value has been appropriately escaped.

*/

void initializeWithString(String params) {

clear();

if ((params != null) && !params.isEmpty()) {

String[] args = params.split("&");

for (String element : args) {

int equalIndex = element.indexOf("=");

if (equalIndex == -1) {

put(element, "");

} else {

put(element.substring(0, equalIndex), element

.substring(equalIndex + 1));

}

}

}

}

Having a toString(...) method isn’t actually required for our application, but it’s
quite good in terms of debugging and following standard practices.

@Override

public String toString() {

String result = "";

String separator = "";

40 Chapter 4 Working with Browsers

 Download from www.wowebook.com

ptg

for (String key : keySet()) {

result += separator + key + "=" + get(key);

separator = "\n";

}

return result;

}

}

We’ll get back to this class in Chapter 13, when we’ll write some automatic tests for
it, and in Chapter 15, where we build an independent module out of it.

Creating a Menu
The same mechanism we used for history management can be used to build a menu.
(Think about common bar-styled menus, with drop-down options, as seen in most desk-
top applications; that’s our goal here.) GWT’s implementation of menus require Command
objects, and because we always want to go to a part of our application, it makes sense
creating an appropriate class. Because all launching code goes in the Environment class,
our new class also goes there.

protected class HistoryCommand implements Command {

String historyToken;

public HistoryCommand(final String newToken) {

historyToken = newToken;

}

public void execute() {

launch(historyToken);

}

}

In case we want to do something that doesn’t fit this pattern, we can just use a simple
Command object, as in the following example.

Command sorry = new Command() {

@Override

public void execute() {

showAlert("Sorry, this isn't ready yet.");

}

};

Building the menu is standard fare; you could create a specific version for each user if
you want. (Because this kind of code is quite suitable for automatic generation, we shall
be writing an appropriate code generator later in this chapter when we consider
deferred binding and code generators.) The first part of our code just creates the bar on

41The Back Button Problem

 Download from www.wowebook.com

ptg

top of the screen and a panel below it (where forms will be shown) and then goes on to
check whether an initial token was provided; if so, the correct form is launched. We use a
Grid object to place objects onscreen; you could also work with CSS if you prefer
designing screens in that way.

final Grid rootDisplay = new Grid(2, 1);

final MenuBar runMenuBar = new MenuBar();

final VerticalPanel runPanel = new VerticalPanel();

private void showMainMenu() {

// TODO Use user information for menu configuration

runMenuBar.clearItems();

runMenuBar.setWidth("100%");

createMenu(runMenuBar);

rootDisplay.setWidth("100%");

rootDisplay.setWidget(0, 0, runMenuBar);

rootDisplay.setWidget(1, 0, runPanel);

RootPanel.get().clear();

RootPanel.get().add(rootDisplay);

/*

* If the application was started with a token, now that

* the user is logged in, it's time to show it.

*

* Don't forget to clear startingToken, or after a

* logout/login, we will go back again to it.

*/

if (!startingToken.isEmpty()) {

launch(startingToken);

startingToken = "";

}

}

Creating the menu by hand isn’t complicated; only sort of boring. We are dealing
with a single menu here; a more complex application could build different menus
depending on a user type parameter.

private void createMenu(MenuBar mb) {

// TODO Add user type parameter, for specific menu

// generation

mb.addItem("dummy#1", new HistoryCommand(

DummyOnePresenter.PLACE + "?parameter=value"));

mb.addItem("dummy#2", new HistoryCommand(

DummyTwoPresenter.PLACE));

42 Chapter 4 Working with Browsers

 Download from www.wowebook.com

ptg

MenuBar mb2 = new MenuBar(true);

mb2.addItem("subitem1", sorry);

mb2.addItem("subitem2", sorry);

mb2.addItem("subitem3", sorry);

mb2.addItem("subitem4", sorry);

mb.addItem("submenu", mb2);

mb.addItem("login", new HistoryCommand(

LoginPresenter.PLACE));

}

GWT also provides Hyperlink widgets, which work with the History mechanism.
We could let the user open any desired form, and even pass parameters to it, by writing
something along the lines of

new Hyperlink("Go to Dummy #1",

DummyOnePresenter.PLACE+"?parameter=value");

Detecting the User’s Browser
Though GWT does a good job of detecting your browser type (and generating code
that best suits it) you might want to generate different code depending on what kind of
browser the user has. We will examine a classic way of doing this—similar to the ways
you may do this in JavaScript—and a GWT-ish way of accomplishing the same task, by
using deferred bindings.

By the way, if you need a reason for doing this (and it’d better be good, because you
are doing away with one of GWT strengths!) you might think about generating HTML
5 tags for video watching, or dealing with the different tags required for Flash playback
in Firefox and IE? (Think the now-deprecated <EMBED> tag in opposition to the mod-
ern <OBJECT> tag.) However, it can be argued that these concerns are becoming moot
because all modern browsers are converging toward actual standards compliance. In any
case, doing this kind of job will let us learn a bit more about deferred binding replace-
ment, a most powerful device.

If you are not totally convinced that generating HTML code on your own will be a
great idea, you might really be satisfied with simply excluding older Internet Explorer
browsers from being used. So, in this section we’ll see different methods of detecting
your user’s browser and react accordingly.

The Classic Way
Browser detection is old hat for web developers, who have long known the need for
“special” handling of the differences between supposedly equal implementations of the
HTML standard. We can achieve this in two different ways: at run time—something you

43Detecting the User’s Browser

 Download from www.wowebook.com

ptg

have probably already done on your own—or at compile time, which is a special charac-
teristic of GWT. Let’s analyze first the classic way and then move on.

GWT provides JSNI (JavaScript Native Interface) to mix Java and JavaScript code,
and we’ll see more of it in Chapter 8, “Mixing in JavaScript.” However, let’s get ahead of
ourselves, because using a native (i.e., JavaScript) method is the easiest way to get at the
user agent. For example, the following code (the /*-{ and }-*/ delimiters are part of
the JSNI “magic”; we’ll explain it later) does just that in an economical way. Note that
producing the result in lowercase helps writing further tests.

public static native String getUserAgent() /*-{

return navigator.userAgent.toLowerCase();

}-*/;

Given this code, you may write code such as

if (getUserAgent().contains("gecko"))...

and act accordingly. This test will be done, however, at run time, and your generated
application will have to include code for all possible agents you want to consider. (Do
you really want to include Firefox-optimum code for IE users? And what about Opera,
Safari, or Chrome users; do they also need that baggage?) So, although this method
works, and is easy to understand, you probably want to move on to more advanced ways
and do things in GWT’s own way.7

The Deferred Binding Way
The other way to recognize the browser type is far subtler and uses GWT’s deferred
binding replacement technique. In server-side Java, you have dynamic binding that lets
you, at runtime, select the appropriate subclass and create an instance of it. However,
GWT doesn’t support reflection but provides deferred binding instead: Think “dynamic
class loading at compile time.”

When your source code is compiled, the GWT compiler produces a different version
of your code for each specific configuration it finds; this is how separate versions of your
application are created for Firefox, IE, and so on, and for each language. (We see more
on internationalization in Chapter 12, “Internationalization and Localization.”)

How could you use this? Let’s work out a simple example, by writing a greeter that
will work differently for IE and for other browsers. First, let’s set up a general class, which
we can use everywhere we need it. (This allows hiding the special GWT.create(...)
idiom from the rest of the application.)

44 Chapter 4 Working with Browsers

7. By the way, if you want to detect the operating system in use, you could use JSNI to get the value

of navigator.userAgent and then analyze its contents to determine the operating system. There are

plenty of such routines online; google for javascript detection os OR “operating system”

and you’ll get plenty of appropriate hits.

 Download from www.wowebook.com

ptg

public class HelloBrowser {

HelloBrowserStdImpl helloImpl = GWT.create(HelloBrowserStdImpl.class);

public void salute() {

helloImpl.sayHello();

}

}

Note that the class doesn’t do anything on its own; it delegates the work to the
helloImpl object, which was created by GWT. We have different classes for IE and for
other browsers. For the latter:

public class HelloBrowserStdImpl {

public void sayHello() {

Window.alert("You don't have IE.");

}

}

And for IE:

public class HelloBrowserIEImpl extends HelloBrowserStdImpl {

@Override

public void sayHello() {

Window.alert("If you are seeing this, you have IE.");

}

}

If we run the code as is, it will always show a standard hello message; we need to tell
GWT about both implementations of the class and when to use it. In the XML file for
your project, add, before the final </module> line:

<replace-with class="com.fkereki.mvptest.client.HelloBrowserIEImpl">

<when-type-is class="com.fkereki.mvptest.client.HelloBrowserStdImpl"/>

<any>

<when-property-is name="user.agent" value="ie6"/>

<when-property-is name="user.agent" value="ie8"/>

</any>

</replace-with>

Note the <any>...</any> construct, which lets you test for any of several agents at
the same time. You can also use <all>...</all> (which requires that all conditions
must be satisfied) or <none>...</none> (which requires that no conditions are satis-
fied) as alternatives. Of course, if you just want to check a single condition (say, for ie6)
you could have written more simply:

<replace-with class="com.fkereki.mvptest.client.HelloBrowserIEImpl">

<when-type-is class="com.fkereki.mvptest.client.HelloBrowserStdImpl"/>

<when-property-is name="user.agent" value="ie6"/>

</replace-with>

45Detecting the User’s Browser

 Download from www.wowebook.com

ptg

At runtime, the GWT-created user.agent property will be one of ie6, ie8, gecko,
gecko1_8, safari, or opera.8 (Yes, there is no ie7.) The code we added in the XML
file says to the compiler that when the user.agent property is any of ie6 and ie8,
class HelloBrowserIEImpl should substitute class HelloBrowserStdImpl.9

When the user downloads the application code, IE users get a version that has
HelloBrowserIEImpl built in; other users get HelloBrowserStdImpl instead. (See
Figure 4.3 to see this code in action.)

46 Chapter 4 Working with Browsers

8. Of course, this may change with future versions of GWT, as new versions of the browsers appear.

9. There’s a third predicate, <when-type-assignable class="some.class.name"/> that is

true for any class that may be assigned to the given class.

Figure 4.3 Browser detection, through deferred binding replacement. The
generated code varies from a browser to another, enabling you to write

specific browser-oriented code.

How could you take advantage of this? I previously mentioned a few situations:
Depending on the browser type, you could create a HTML widget to allow viewing

 Download from www.wowebook.com

ptg

videos (with the appropriate HTML 5 tags) or the correct tags (OBJECT or EMBED) for
Flash, but please make sure you actually have to go this way.10

Code Generation
GWT also provides the capability of generating a class dynamically (and internationaliza-
tion, which we’ll see in Chapter 12, is the main example of that) so let’s now see how
code generators work and write up a sample generator of our own to help in a simple,
but tedious, chore: creating a menu.

Whenever you include code to create an object by doing something like

MenuMaker newMenuBuilder = GWT.create(MenuMaker.class);

GWT invokes, at compile time, the corresponding generator, whose mission is to pro-
duce the code for the required class. Because creating a menu by hand can be tiresome,
let’s set up a MenuMaker class that can take care of doing that. We provide a simple con-
figuration text file (sample.menu) such as the following one, for a fictitious video rental
business.

menu Main

command RENT Rent a Movie

command BACK Return a Movie

command QUERY Search for Movies

command RESERVE Reserve a Movie

menu Reports

command LATE List late clients

command TOTALS Report total sales

endmenu

endmenu

menu Clients

command ADDCLIENT Add a new client

command SEARCHCLIENT Search for clients

command DELCLIENT Remove a client

endmenu

menu Movies

command ADDMOVIE Add a Movie

command SEARCHMOVIE Search for Movies

command DELMOVIE Remove a Movie

command LOSTMOVIE Enter a Movie as lost

endmenu

menu Other Functions

command LOGIN Log out

command BACKUP Make a backup

endmenu

47Detecting the User’s Browser

10. For a discussion on the multiple ways to include Flash depending on each browser, check Bobby

van der Sluis’ article at www.alistapart.com/articles/flashembedcagematch.

 Download from www.wowebook.com

www.alistapart.com/articles/flashembedcagematch

ptg

The structure of the file is easy to understand. No blank or comment lines are
allowed. A menu line creates a pop-up menu with the given text as a prompt. A command
line invokes the history method providing the second parameter as a token and using the
rest of the line as the menu prompt. Finally, an endmenu command just marks the finish
of the corresponding menu. (Okay, this kind of menu definition isn’t enough for all use
cases, but it will do for an example. Also, we won’t worry about syntax or content; we’ll
assume the file is perfectly correct, with no errors whatsoever, so the logic we write can
be simpler.) The MenuMaker class we want, is simply defined as

package com.kereki.generator.client;

// ...imports...

public interface MenuMaker {

public MenuBar createMenu();

}

Doing the following code produces a MenuBar object, with the structure provided in
the sample.menu file.

final MenuMaker newMenuBuilder = GWT.create(MenuMaker.class);

final MenuBar mb = newMenuBuilder.createMenu();

RootPanel.get().add(mb);

The code for our generator class can be as follows. Most of the code is boilerplate
(you’ll always use it the same way) but you’ll find it somewhat hard to learn the whys-
and-wherefores; documentation for generators is somewhat scanty.

Your generator class must extend Generator, and implement the generate(...)
method, which is responsible for producing all the code, or throwing
UnableToCompleteException otherwise.

package com.kereki.generator.rebind;

// ...imports...

public class MenuGenerator

extends Generator {

@Override

public String generate(

final TreeLogger logger,

final GeneratorContext context,

final String typeName)

throws UnableToCompleteException {

try {

final TypeOracle typeOracle = context.getTypeOracle();

48 Chapter 4 Working with Browsers

 Download from www.wowebook.com

www.allitebooks.com

http://www.allitebooks.org

ptg

final JClassType origType = typeOracle.getType(typeName);

final String packageName = origType.getPackage().getName();

final String origClassName = origType.getSimpleSourceName();

final String genClassName = origClassName + "Gen";

final ClassSourceFileComposerFactory classFactory =

new ClassSourceFileComposerFactory(

packageName, genClassName);

After this setup, we start producing code of our own. You must use addImport(...)
to add all the packages and classes that your generated code will require and then
addImplementedInterface(...) to generate the initial part of your class.

classFactory.addImport("com.google.gwt.user.client.ui.MenuBar");

classFactory

.addImport("com.kereki.generator.client.HistoryCommand");

classFactory.addImplementedInterface(origType.getName());

Now we can create the required writer objects and start with our own logic, reading
the menu file and producing output source code. For simplicity, I placed the
sample.menu file at the output WAR directory; a better solution would have been
using a source directory, but I wanted to write code as short as possible.

final PrintWriter printWriter = context.tryCreate(logger,

packageName, genClassName);

final SourceWriter sourceWriter = classFactory

.createSourceWriter(context, printWriter);

final File inFile = new File("sample.menu"); // at the WAR directory

final Scanner scanner = new Scanner(inFile);

String first, second, third;

int level = 0;

sourceWriter.println("public MenuBar createMenu() {");

sourceWriter.println("MenuBar stack[]= new MenuBar[20];");

sourceWriter.println("stack[0]= new MenuBar();");

while (scanner.hasNext()) {

first = scanner.next();

if (first.equals("menu")) {

second = scanner.nextLine().trim();

level++;

sourceWriter.println("stack[" + level

+ "]= new MenuBar(true);");

sourceWriter.println("stack[" + (level - 1) + "].addItem(\""

+ second + "\", stack[" + level + "]);");

49Detecting the User’s Browser

 Download from www.wowebook.com

ptg

} else if (first.equals("command")) {

second = scanner.next();

third = scanner.nextLine().trim();

sourceWriter.println("stack[" + level + "].addItem(\""

+ third + "\", new HistoryCommand(\"" + second + "\"));");

} else /* first.equals("endmenu") assumed */{

level--;

}

}

scanner.close();

sourceWriter.println("return stack[0];");

sourceWriter.println("}");

After having emitted all the code, it’s time to commit it, and return the name of the
generated class, because that’s required of generator classes.

sourceWriter.commit(logger);

final String genClassQualifiedName = origType

.getParameterizedQualifiedSourceName()

+ "Gen";

return genClassQualifiedName;

} catch (final Exception e) {

throw new UnableToCompleteException();

}

}

}

So GWT can invoke this generator, we must add a few lines to the gwt.xml file.

<generate-with class="com.kereki.generator.rebind.MenuGenerator">

<when-type-assignable class="com.kereki.generator.client.MenuMaker" />

</generate-with>

Running a sample application won’t produce any visible code (the generated code is
fed to the compiler but you won’t get to see it) though the results will be obvious. See
Figure 4.4 for the generated code in action.

If you want to take a look at the produced code, there’s a simple trick: Modify the
generator by adding an erroneous line guaranteed not to compile, such as
sourceWriter.println("Cave adventure = new xyzzy();") so the produced
code will generate “unknown type” errors. When you try to compile your code, GWT
will produce a message and create a snapshot file with the problematic code.11

50 Chapter 4 Working with Browsers

11. Note that you’ll have to stop and restart your development session before trying a new version of

a generator, because it’s not client-side code, and rather part of your GWT development environment.

 Download from www.wowebook.com

ptg

Figure 4.4 This menu was created automatically by a generator.

11:25:04.443 [ERROR][generator] Errors in

'gen://CBF9B236.../com/kereki/generator/client/MenuMakerGen.java'

11:25:04.628 [ERROR][generator] Line 9: Cave cannot be resolved to a type

11:25:04.628 [ERROR][generator] Line 9: xyzzy cannot be resolved to a type

11:25:04.695 [INFO] [generator] See snapshot:

/tmp/MenuMakerGen3442554202856735591.java

If you check out the contents of the snapshot file, you see what code you were gen-
erating—with the added error line also included, of course! For example, notice the
name of the created class (MenuMakerGen, the name of the original interface, plus Gen
tagged at the end), which is what the generator class returned.

package com.kereki.generator.client;

import com.google.gwt.user.client.ui.MenuBar;

import com.kereki.generator.client.HistoryCommand;

public class MenuMakerGen implements MenuMaker {

public MenuBar createMenu() {

Cave adventure = new xyzzy();

MenuBar stack[]= new MenuBar[20];

stack[0]= new MenuBar();

stack[1]= new MenuBar(true);

stack[0].addItem("Main", stack[1]);

stack[1].addItem("Rent a Movie", new HistoryCommand("RENT"));

stack[1].addItem("Return a Movie", new HistoryCommand("BACK"));

stack[1].addItem("Search for Movies", new HistoryCommand("QUERY"));

stack[1].addItem("Reserve a Movie", new HistoryCommand("RESERVE"));

stack[2]= new MenuBar(true);

stack[1].addItem("Reports", stack[2]);

stack[2].addItem("List late clients", new HistoryCommand("LATE"));

stack[2].addItem("Report total sales", new HistoryCommand("TOTALS"));

stack[1]= new MenuBar(true);

stack[0].addItem("Clients", stack[1]);

stack[1].addItem("Add a new client", new HistoryCommand("ADDCLIENT"));

51Detecting the User’s Browser

 Download from www.wowebook.com

ptg

stack[1].addItem("Search for clients",

new HistoryCommand("SEARCHCLIENT"));

stack[1].addItem("Remove a client", new HistoryCommand("DELCLIENT"));

stack[1]= new MenuBar(true);

stack[0].addItem("Movies", stack[1]);

stack[1].addItem("Add a Movie", new HistoryCommand("ADDMOVIE"));

stack[1].addItem("Search for Movies",

new HistoryCommand("SEARCHMOVIE"));

stack[1].addItem("Remove a Movie", new HistoryCommand("DELMOVIE"));

stack[1].addItem("Enter a Movie as lost",

new HistoryCommand("LOSTMOVIE"));

stack[1]= new MenuBar(true);

stack[0].addItem("Other Functions", stack[1]);

stack[1].addItem("Log out", new HistoryCommand("LOGIN"));

stack[1].addItem("Make a backup", new HistoryCommand("BACKUP"));

return stack[0];

}

}

There’s more to generators, from ways to indent or unindent the generated code
(why worry, since nobody will get to see it but the GWT compiler?) to processing
annotations to parameterize the code generation, or using reflection to learn about the
classes to be produced, but describing all the possibilities would likely require a book of
its own. This kind of usage I have shown is quite powerful, however, and can be applied
to many different situations.

Recognizing Older Explorers
GWT is geared toward reasonably modern browsers, but unhappily there are still plenty
of users with old versions of every browser that has ever been used, and Internet
Explorer 5 and 6 (released in 1999 and 2001, respectively) are at the top of the list of
“antique browsers.”

You can’t just kick out those users (well, if you insist, you can…) but at least your site
should have an appropriate warning. You might use code such as we saw in the previous
section, but for IE browsers, there is a more specific solution. The “IE6 No More” site
has a simple script (available in different languages) that you should include at the begin-
ning of your HTML source.12 A simpler version could be as follows.

<!--[if lt IE 7]>

This website won't work well with older Internet Explorer browsers. Please update to IE8,
or try out Mozilla Firefox, Safari, or Google Chrome.

<![endif]-->

52 Chapter 4 Working with Browsers

12. Check the “IE6 no more” site at www.ie6nomore.com/ and MSDN’s site at

http://msdn.microsoft.com/en-us/library/ms537509(VS.85).aspx for more on recognizing IE.

 Download from www.wowebook.com

http://msdn.microsoft.com/en-us/library/ms537509(VS.85).aspx
www.ie6nomore.com/

ptg

This code uses conditional comments, which work only in Internet Explorer. With
other browsers, the code will be just considered a comment.13

No JavaScript?
Finally, to wrap up possible problems, the biggest showstopper for a GWT application is
disabled JavaScript. The solution for this—unless you want to code everything twice:
once with JavaScript, Ajax, the works, and once again with the most basic HTML!—is
pretty classic, and the projectCreator script already takes care of that for you.

(And no, this isn’t such a rare situation. Different estimations coincide in showing that
about 10% of all users have disabled JavaScript as a safety measure, so you really need to
consider and solve this problem.)

For a simple solution, just include in the main HTML of your page code such as the
following, which was actually taken from a GWT project. Note that this code is created
by webAppGenerator and will thus be included in every project you create.

<noscript>

<div style="width: 22em; position: absolute; left: 50%;

margin-left: -11em; color: red; border: 1px solid red;

padding: 4px; font-family: sans-serif">

Your web browser must have JavaScript enabled in order for this

application to display correctly.

</div>

</noscript>

Remember the old <noscript> tag? If the user disables JavaScript, he gets a red bor-
dered warning instead of your GWT application. It won’t let him run the application
(which wouldn’t have run anyway) but at least he’ll get an explanation.

Summary
We have dealt with some browser-related themes. First, we studied how to work with
History, allowing the user to use the Back and Forward commands at will, leading to a
general launcher for any application. Second, we dealt with browser recognition code in
two different ways (run-time and compile-time), which let us take a look at GWT’s
deferred binding replacement and code generation techniques. And, finally, we also stud-
ied automatic code generation, another deferred binding technique, that lets us produce
code in a fully automatic way.

53Summary

13. See more on conditional comments in the Quirksmode site at www.quirksmode.org/css/

condcom.html.

 Download from www.wowebook.com

www.quirksmode.org/css/condcom.html
www.quirksmode.org/css/condcom.html

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

5
Programming the User

Interface

Designing the User Interface (UI) of your application has serious implications for your
whole system. Applying a right design pattern such as Model-View-Presenter (MVP)
makes for highly testable, well-layered implementations. The minimalistic view program-
ming we apply is further reduced by using UiBinder (a GWT 2 novelty), which enables
you to create the view layer by using XML, with practically no Java code at all. In this
chapter we’ll work at developing the UI, applying all the mentioned tools and methods.1

Thinking About UI Patterns
Earlier in the book we mentioned we’d be throwing some criticism at the standard
GWT created “Hello World” type application. (You’ll remember it just has a name
textbox and a button; when you click the button, it uses RPC to call a servlet, and
finally displays a panel with some information, and waits for you to click a button to
close the panel.) The coding style is typical of common efforts for interactive forms,
insofar as it mixes display logic (for showing values), application logic (what to do with
the values), and business logic (what the servlet does); what problems does it cause?

Before answering this important question, let’s get a bit ahead and think about testing.
(We’ll do a lot of testing in Chapter 13, “Testing Your GWT Application.”) For example,
going beyond our sample application

n How would you test a form that was supposed to produce an “alert” window?
Sure, you can run the application and see if the alert shows up, but it would force
you to run the tests by yourself without any automation help.

1. Note, however, that we won't be doing a tutorial on basic UI programming; if you need to refresh

your knowledge about this, check http://code.google.com/webtoolkit/doc/latest/tutorial/

gettingstarted.html or google for “GWT UI tutorial.”

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/tutorial/gettingstarted.html
http://code.google.com/webtoolkit/doc/latest/tutorial/gettingstarted.html

ptg

n How would you test a form that required clicking or value inputs by the user?
Having to do the clicks or data entry on your own isn’t very agreeable.

n How would you test a form that calls a servlet (such as the sample application
does), if the servlet did actual work, such as updating a data base or posted a tweet?
Every time you tested the applications, you would be causing serious side effects.

There are some ways around these problems (even without using such tools as we use
later) but let’s try to work out a solution that will be easily tested, and also offer several
other advantages.

The servlet problem seems to be the harder one, but the solution is easy; it hinges on
a pattern called Dependency Injection. If the form connects to the service on its own,
and then uses that connection, there will be no way out. Thus, the idea is to separate the
user of a service from the provider of the service: The form will use a service, and some
other component of our system will provide it with the service it should call. It will be
easy then, during testing, to arrange so that the form will be provided a fake service,
with no negative side effects.

Dependency Injection also solves the “alert” problem; you should inject an object
into the UI, so the latter, instead of directly doing Window.alert(...) on its own,
would call a method of the injected object, which would do the alert. For production,
the injected object would just do the alert, and for testing, we’d have a fake “alert-er” that
would just register that an alert was called for, without interrupting the flow of testing.

This problem has been around long enough, and the corresponding solution has been
given a name: the Humble Dialog or, more generally, Humble Object.2 Basically, the
idea is to split the UI into parts, so testing can be done more simply, and responsibilities
are clearly assigned. The purely display-related logic will be in a simple object (the View),
which will be injected into a supervisor object, which in turn shall be in charge of con-
trolling and commanding the view. Let’s first give a view to MVC, a long-standing solu-
tion to the problem, and then move over to MVP, a more streamlined pattern.

MVC: A Classic Pattern
Since Smalltalk in the 80s, the MVC (Model-View-Controller) pattern has been used, in
many guises, for designing user interfaces.3 Basically, the system is composed of

n The Model, which comprises all business logic. For web-based systems, this means
servlets, web services, or any other kind of implementation residing server-side.

n The View includes all necessary widgets for user interaction. For web-based sys-
tems, the View usually resides client-side.

56 Chapter 5 Programming the User Interface

2. See www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf for the original paper by

Michael Feathers, “The Humble Dialog Box.”

3. See http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html for a history of the development

of MVC by Trygve M. H. Reenskaug, its creator.

 Download from www.wowebook.com

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
www.objectmentor.com/resources/articles/TheHumbleDialogBox

ptg

n The Controller, which stands between them and translates user actions into model
updates. Depending on which framework you use, you may find the Controller
either client- or server-side, but that’s not relevant here.

How do these components relate to each other? (See Figure 5.1.) Basically, the
Controller observes the View, and in response to user events, it can trigger model
changes (by sending commands to the Model) or update the View to show the results of
methods or events. The View can send queries to the Model (to get data) and also
observe model change events, to eventually update itself. Finally, the Model receives
update commands from the View, answers queries from the View, and communicates
model changes to the View.

57Thinking About UI Patterns

Figure 5.1 The MVC (Model-View-Controller) design pattern has been
around since the 80s, but isn’t optimal for GWT UI programming.

For GWT development, the View/Model interaction causes some difficulties. First,
having the Model communicate changes to the View is complicated (though you may
do with Comet, but that’s not usually practical) because of the server/client separation.
Reciprocally, having the View send queries to the Model makes testing harder (as we’ll
see in Chapter 13) because it requires using GWTTestCase, which is slower.4

MVP: A More Suitable Pattern
Recently, a variant of MVC in which the Controller role is taken over by a Presenter,
with changed responsibilities, has proved to be more appropriate for GWT applications.
(See Figure 5.2.)

4. If tests are harder to write and slower to run than need be, it’s highly likely that they won’t be

written or run, despite what your development rules say, so it’s in our interest to work toward easily

tested design patterns.

Controller

View

Model

Model
Updates

User
Events

View
Updates

Queries

Model
Changes

 Download from www.wowebook.com

ptg

Figure 5.2 The MVP is adequate because it reduces the number and
ways of connections between components.

In this pattern:
n The Model has the same role as in MVC, but it communicates only with the

Presenter, which can send it both model update commands and queries.
n The View has a similar role as in MVC, but it doesn’t communicate with the

Model any more. Whenever the user does an action, the View informs the
Presenter about the event, which may in turn ask the View to update itself.

n The Presenter is key in this pattern, for it is a bridge between the Model and the
View. In response to the user events, it can communicate with the Model, and
depending on its answers, send update commands to the View.

In this pattern, the (humble) View is quite simple and practically has no logic at all.
Mostly, it will have code to create and displays widgets to get or set their values and to
dispatch user events to the Presenter. If the user enters a value in a widget, the View
won’t do any validation; rather, it will notify the Presenter about the data change, and
the Presenter will be responsible for the validation.5

In terms of testing, we hope to be available to skip testing the View (because of its
simplicity) and work with a mocked instance of it, which we’ll access only through its
Display interface.

58 Chapter 5 Programming the User Interface

Model

Model Updates
and Queries

User
Events

Update
View

Model
Changes

Presenter

View

5. Because of this characteristic, this pattern is also called Passive View. Martin Fowler has

“retired” the MVP pattern (see http://martinfowler.com/eaaDev/ModelViewPresenter.html) but in

this case, his views haven’t been universally adopted, and MVP is still commonly used.

 Download from www.wowebook.com

http://martinfowler.com/eaaDev/ModelViewPresenter.html

ptg

Implementing MVP
We have seen the advantages of MVP; now let’s study what we need to implement this
pattern. Apart from a few auxiliary classes, implementation will be simple. Of course, you
may think that for a simple login form—the example we’ll use—it could be considered
overkill, but that’s usually the case with too-simple forms.

Callbacks Galore
Before implementing MVP, let’s look at callbacks. The first “A” in Ajax stands for asyn-
chronous, and you must get used to calling a function and not waiting for the answer.
This will be true not only when you use RPC (as we’ll do in Chapter 5, “Programming
the User Interface,” and Chapter 6, “Communicating with Your Server”) but also when
you are waiting for some input from the user.

Callbacks aren’t that beloved, though. Because of the complexity they can add to a
program, and the extra difficulties when debugging, they have been compared to the
satirical “come from” statement.6 In any case, because we’ll be having rather a lot of them,
let’s consider an accessory SimpleCallback class that can help us writing shorter code.

import com.google.gwt.user.client.rpc.AsyncCallback;

public abstract class SimpleCallback<T> implements

AsyncCallback<T> {

@Override

public final void onFailure(Throwable caught) {

// Should never be used...

}

@Override

public final void onSuccess(T result) {

goBack(result);

}

public abstract void goBack(T result);

}

The standard GWT interface AsyncCallback always requires your coding both the
onSuccess and the onFailure methods. However, in many cases you won’t be dealing
with the latter case; for example, you won’t allow the user to leave the login form until
he has entered a right user/password combination, so there can only be a “successful”
return from it. Our SimpleCallback class makes onSuccess and onFailure final (so
you cannot implement them) and defines an abstract goBack (as an alternative to

59Implementing MVP

6. For the “come from” statement, see www.fortranlib.com/gotoless.htm—even if you are not up to

par with FORTRAN coding, the examples will be clear enough (or obscure enough!) to make their point.

 Download from www.wowebook.com

www.fortranlib.com/gotoless.htm

ptg

“return,” which is a reserved word) method, which you need to implement. If your call-
back won’t pass any results to the caller, just use goBack(null).7

Implementation Details
Now, after the aside with callbacks, let’s turn to implementing MVP in GWT and use
the login screen as an example. Our application requires some client-side attributes and
methods; we can easily imagine storing the username and password, or having menu cre-
ation and application launching methods (we did mention that in advance in Chapter 4,
“Working with Browsers”) so let’s use an Environment singleton object for all that, and
not forget to include a getModel() method. The Model object itself will have several
methods for accessing all server-side services (we’ll get to this in Chapter 6) but for now
we’ll make do with just a LoginService; it’s easy to guess what it does!8

Our login form requires a LoginFormPresenter and a LoginFormView, which extends
appropriate abstract classes. We’ll have LoginView implement the LoginDisplayInterface
declared within the presenter’s code, with all the needed getters and setters; working this
way will simplify mocking the view for our automatic testing.

We’ll inject the appropriate Environment and View into the Presenter through its
constructor. The Presenter will inject its callbacks into the View through the methods
defined in the Display interface; this is done so the View will know what method to call
on each relevant user event. See Figure 5.3 for a UML explanation of the design.

In terms of code, the Presenter class would be

abstract public class Presenter {

String params;

Display display;

Environment environment;

KeyValueMap kvm;

public Presenter() {

}

public Presenter(String someParams, Display aDisplay,

Environment anEnvironment) {

super();

params = someParams;

display = aDisplay;

environment = anEnvironment;

60 Chapter 5 Programming the User Interface

7. You might also want to use a Runnable object and implement its Execute(...) method

instead of a SimpleCallback with a goBack(...); moreover, when no results are passed back

to the caller. I opted for going with callbacks only for generality. You could also object that hiding the

onFailure(...) method isn’t a good practice, even if it never gets called.

8. Note that Singleton objects are hard to test (and thus run against the grain of Chapter 13) but

we aren’t actually using it that way; rather, we are working with the object by dependency injection,

so we can mock it as needed for our automatic tests.

 Download from www.wowebook.com

ptg

// ...get parameters from someParams...

}

public Environment getEnvironment() {

return environment;

}

public Display getDisplay() {

return display;

}

// ...we'll also have a getter for parameters...

}

61Implementing MVP

Presenter

View

Composite

Model

-display

-enviroment

-model

- display : genericDisplay
- environment : Environment
+ getDisplay() : genericDisplay
+ getEnvironment() : Environment

LoginPresenter

- logininService : Callback
- loginSucessCallback : Callback

LoginView

name : Textbox
password : PasswordTextBox
loginButton

+ RemoteLoginService()

Environment

- model : Model

«Interface»
genericDisplay

+ asWidget()

«Interface»
LoginDisplay

+ getName() : string
+setName)text : string)
+getPassword() : string
+ setPassword(text : string)
+setLoginCallback(callback: Callback)

Figure 5.3 A UML class diagram for our MVP setup. Note that for client-
side data and methods, we end up having an Environment class.

 Download from www.wowebook.com

ptg

The LoginFormPresenter class will then be as follows. The PLACE string will be
used for bookmarks and history management in the next chapter. Also note that the used
login method isn’t the safest; we look at alternatives in Chapter 10, “Working with
Servers.”

public class LoginFormPresenter extends Presenter {

static String PLACE = "login";

// define loginService and loginSuccessCallback as callbacks

public LoginFormPresenter(final String params,

final PresenterDisplay loginDisplay,

final Environment environment,

final SimpleCallback<String> callback) {

super(params, loginDisplay, environment);

loginSuccessCallback = callback;

loginService = LoginFormPresenter.this.getEnvironment()

.getModel().getRemoteLoginService();

loginDisplay.setName("federico");

loginDisplay.setPassword("");

loginDisplay.setLoginCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

String name = ((PresenterDisplay) LoginFormPresenter.this

.getDisplay()).getName();

String pass = ((PresenterDisplay) LoginFormPresenter.this

.getDisplay()).getPassword();

loginService.getSomething(name, pass,

new AsyncCallback<String>() {

// on successful login, execute

// the loginSuccessCallback

});

}

});

}
}

62 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg

The getSomething(...) method is just a placeholder for the actual login method,
which we’ll get to implement in Chapter 10.9

We also require the PresenterDisplay interface that will be implemented by
LoginView.

interface LoginFormDisplay extends Display {

/**

* Access the Name field

*

* @return Whatever the user entered in the Name field

*/

String getName();

/**

* Initialize the Name field

*

* @param s

* Set the name field to s; most commonly just

* "" or possibly a saved name from an earlier

* session.

*/

void setName(String s);

/**

* Access the Password field

*

* @return Whatever the user entered in the Password

* field

*/

String getPassword();

63Implementing MVP

9. Note: the following discussion can be considered a bit bizantine! It could be argued that a refer-

ence such as getEnvironment().getModel().getRemoteLoginService() violates the Law

of Demeter, because the caller must know internal details of the Model to use it. As an argument

for it, we use the Environment object as a sort of repository for all global objects, constants, and

variables; the Model could certainly be a separate object, and we would just have to inject both of

them when creating a form. Furthermore, the Model has nothing but these methods; it has no

behavior per se. However, as an argument “against,” when we get to optimization (in Chapter 14,

“Optimizing for Application Speed”) we will see that directly accessing a RPC service disallows some

performance enhancing patterns, so we would probably opt for writing something such as

getEnvironment().doSomething(...) and not violate Demeter’s law.

 Download from www.wowebook.com

ptg

/**

* Initialize the Password field

*

* @param s

* Set the password field to s; usually just ""

*/

void setPassword(String s);

/**

* Initialize the login callback, which shall be

* executed when the user clicks the "Login" button

*

* @param acb

* Set the login callback to acb. The Presenter

* will have to get the Name and Password

* fields (by using the methods above) and

* perform the needed checks.

*/

void setLoginCallback(SimpleCallback<Object> acb);

}

The LoginFormView class extends View, which itself extends Composite; it could
directly extend the latter class, but it would be more obscure. (Using that class is logical
because a form is composed by many widgets. This definition mandates including an
initWidget(...) call; miss it, and you won’t see any widgets.)

The view also needs to implement the LoginFormDisplay interface that was defined
in LoginFormPresenter. Finally, the view constructor must define all necessary widgets,
place them onscreen, and add a handler to the Login button that will call the (presenter-
provided) callback.

public class LoginFormView extends View implements

LoginFormPresenter.LoginFormDisplay {

AsyncCallback<Object> loginCallback;

final TextBox nameTextBox = new TextBox();

final TextBox passwordTextBox = new PasswordTextBox();

final Button loginButton = new Button("Log in");

final FlexTable flex = new FlexTable();

final DockPanel dock = new DockPanel();

/**

* Defines the view for the Login Form. Since this will be

* shown in the main screen, we take care of centering the

* fields (by using a DockPanel) so it will look nicer.

*/

64 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg

public LoginFormView() {

loginButton.addClickHandler(new ClickHandler() {

public void onClick(final ClickEvent event) {

loginCallback.onSuccess(null);

}

});

flex.setWidget(0, 0, new Label("User name:"));

flex.setWidget(0, 1, nameTextBox);

flex.setWidget(1, 0, new Label("Password:"));

flex.setWidget(1, 1, passwordTextBox);

flex.setWidget(2, 1, loginButton);

dock.setWidth("100%");

dock.setHeight("100%");

dock.setHorizontalAlignment(DockPanel.ALIGN_CENTER);

dock.setVerticalAlignment(DockPanel.ALIGN_MIDDLE);

dock.add(flex, DockPanel.CENTER);

initWidget(dock);

}

The following are simple getters and setters for the Presenter to invoke.

@Override

public final String getName() {

return nameTextBox.getValue();

}

@Override

public final String getPassword() {

return passwordTextBox.getValue();

}

@Override

public final void setName(final String s) {

nameTextBox.setValue(s);

}

@Override

public final void setPassword(final String s) {

passwordTextBox.setValue(s);

}

@Override

public final void setLoginCallback(

final SimpleCallback<Object> acb) {

65Implementing MVP

 Download from www.wowebook.com

ptg

loginCallback = acb;

}

@Override

public final Widget asWidget() {

return LoginFormView.this;

}

}

How does all this come together? We have already seen part of this in the menu code
in Chapter 4, but let’s complete that. The launching code for the login form will be in
the Environment singleton, and will

n Create a LoginFormView.
n Create a callback for the LoginFormPresenter, with code to be executed after a

successful user login; at the very least, the username will be stored, but let’s not
delve into that now.

n Create a LoginFormPresenter, and inject the view and the environment itself
into the Presenter via its constructor. (The Presenter will use the environment to
contact the Model to validate the user/password pair.)

n Show the LoginFormPresenter onscreen.

The Presenter must initialize the LoginFormView user and password fields, and set
the view’s callback to a method that will

n Get the user and password fields from the form.
n Through the Environment, call the Model’s login validation method.
n If the attempt is successful, execute the callback that was provided by the Environ-

ment, passing whatever the Environment expects; at the very least, the username.
n If the attempt is unsuccessful, warn the user.

With this, we can now complement the launcher code from Chapter 4. Our menu
code would do something as

if (token.equals(DummyOnePresenter.PLACE)) {

panel.add(new DummyOnePresenter(args, new DummyOneView(), this)

.getDisplay().asWidget());

} ...

There are two actions to be done. First, we construct an appropriate Presenter, by
giving it a list of arguments, the View to use, and the current Environment (this). And
second, we get the Display from the Presenter as a Widget, and we add it to the panel
so it will get shown; you can only add widgets to a panel, and that’s why we need to get
the Display as one.

66 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg

Some Extensions
On first meeting the MVP pattern, one usually has several questions about implementing
specific behaviors; let’s give a look to some usual problems and solutions. We create a
second Login form, but just highlight the changes for the code we previously saw.

Many e-commerce sites have warnings Don’t Click This Button Again because a pay-
ment would be processed twice or another similar fate would doom the double-clicking
user. Solving this can be quite easy—just a matter of disabling the button after the first
click—but how do you manage when the View and the Presenter are separate? We just
need to add an enableLoginButton(...) method to the Display interface and imple-
ment it in the View.

(If you prefer, you could rather have two separate parameterless methods, disableLogin()
and enableLogin(); do whatever suits you! I opted for having a single method, because
that would allow me shorter code to enable or disable the login button in a blur han-
dler; we’ll get to that later.)

@Override

public void enableLoginButton(boolean b) {

loginButton.setEnabled(b);

}

Then, the Presenter can easily disable the button after it’s clicked and enable it again
in case the login attempt was unsuccessful; we’d just have to add a pair of lines to our
original code:

public void goBack(final Object result) {

String name = (LoginFormPresenter.this.getDisplay()).getName();

String pass = (LoginFormPresenter.this.getDisplay()).getPassword();

LoginFormPresenter.this.getDisplay().enableLoginButton(false);

loginService.getSomething(name, pass, new AsyncCallback<String>() {

public void onFailure(final Throwable caught) {

LoginFormPresenter.this.getEnvironment().showAlert("Failed login");

LoginFormPresenter.this.getDisplay().enableLoginButton(true);

loginSuccessCallback.onFailure(new Throwable());

}

public void onSuccess(final String result) {

// ...as before...

}

});

In a similar vein, we can modify the login form so the Login button won’t be enabled
unless the user has entered both the name and password, and this will let us share a han-
dler. We have to add a “blur” handler to the name and password fields, so the Presenter can

67Some Extensions

 Download from www.wowebook.com

ptg

learn when they have been changed; then, using the same enableLoginButton(...)
method we just saw, it can enable or disable the button as needed.10

In the Display interface we’ll add

/**

* Initialize the name blur callback, which shall be

* executed when the user changes the name textbox.

*

* @param acb

* Set the name blur callback to acb.

*/

void setNameBlurCallback(SimpleCallback<Object> acb);

Both setters are trivial; just a matter of storing the given callbacks in the
nameBlurCallback and passwordBlurCallback private attributes. Then, in the View
constructor we’ll add

nameTextBox.addBlurHandler(new BlurHandler() {

@Override

public void onBlur(BlurEvent event) {

nameBlurCallback.onSuccess(null);

}

});

passwordTextBox.addBlurHandler(new BlurHandler() {

@Override

public void onBlur(BlurEvent event) {

passwordBlurCallback.onSuccess(null);

}

});

The Presenter must define the Callback and define how to do the enabling and dis-
abling of the Login button. In its constructor, we create the handler and also use it after
having initialized the name and password fields. (Why? A good point: Widgets aren’t dis-
played when the View is created, and you should have initialized them before firing any
events or doing any processing.)

SimpleCallback<Object> commonBlurHandler = new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

String name = LoginFormPresenter.this.getDisplay().getName();

String pass = LoginFormPresenter.this.getDisplay().getPassword();

boolean canLogin = !(name.isEmpty()) & !(pass.isEmpty());

(LoginFormPresenter.this.getDisplay()).enableLoginButton(canLogin);

}

};

68 Chapter 5 Programming the User Interface

10. Note that listeners are (since GWT 1.6) deprecated, and handlers is the way to go in GWT.

 Download from www.wowebook.com

ptg

loginDisplay.setName("federico");

loginDisplay.setPassword("");

commonBlurHandler.goBack(null);

Working this way, no matter what event or condition you want to consider, the
implementation always consists of

n Adding the required methods in the Display interface, so the Presenter can use
them to inject the needed code

n Defining (in the Presenter) what code will be executed on each event, and use the
Display setters to inject them into the view

n Modifying the View so it connects the UI events to the Presenter callbacks

This isn’t exactly rocket science, and you may be feeling that this is actually quite a
bother; after all, it’s too much overhead for a simple form with three widgets! The first
point that needs to be made is that splitting your UI code in this way doesn’t lessen your
coding possibilities; anything you could do in the old “all-together” style, you can still do
now. And, as a second point, being able to unit test the code in a simpler way will pay
off with the overall code quality; just remember not all screens will be this short, and the
overhead won’t mean as much!11

Declarative UI
Isn’t there a way to avoid all the object creation and object placement code? Building
any kind of UI requires at least two or three lines per field, and that can quickly add up
to large numbers. Furthermore, the Swing-like style of programming doesn’t enable for
quick changes in layout; you might end up having to rewrite large parts of your code
because of a “little” change. And, finally, the produced code is too verbose (meaning,
almost unreadable) making it hard to deduce or explain what kind of layout will be pro-
duced: Communication between UI designers (who “speak” HTML, CSS, and XML,
rather than Java) and GWT coders will be more complex than needed.

Fortunately, GWT 2 introduces UiBinder, which alleviates the problem by letting you
define the interface declaratively, using an XML markup scheme, which is transformed
into Java code at compile time. You can even add handlers to fields, which helps make
the view code even shorter; a good aid in making the View as simple as possible, without
getting tempted into adding Presenter logic to it. CSS styling can be applied locally, and
internationalization (i18n) is also supported, as we see in Chapter 12,
“Internationalization and Localization.”

Let’s start with a simple example, by creating yet a third version of our Login form,
and then delve more deeply into UiBinder’s capabilities.

69Declarative UI

11. For a different take on defining Views and Presenters, you can consider the gwt-presenter

project at http://code.google.com/p/gwt-presenter/. The View merely creates and makes

visible the actual widgets (defined through their interfaces, such as HasValue<String>

getNameTextBox(...)) while assigning handlers is the Presenter’s responsibility.

 Download from www.wowebook.com

http://code.google.com/p/gwt-presenter/

ptg

A Basic UiBinder Example
To use UiBinder, you need to add the <inherits name="com.google.gwt.uibinder
.UiBinder"/> declaration to the gwt.xml module description file for your applica-
tion. For each object that uses UiBinder, you also need to create (at least) one ui.xml
file (with the layout for your view, including both HTML code and GWT widgets) and
include some annotations so the right code is generated. You can also rest assured that
UiBinder checks (at compile time) all cross references between your XML declaration
file and your Java code, to weed out mistakes; the Google Plugin for Eclipse is UiBinder-
aware, and errors appear with the classical red, wiggly underline.

Of course, before going any further, you should understand that UiBinder is not your
usual template interpreter. All code generation is done at compile time and not at run-
time. There are no loops or conditional layout statements, as usual with template engines.
And, of course, there is no data binding and no value loading; getting data to and from
your widgets is still your View’s responsibility.

Defining the Template
Let’s do a login view, with name and password fields and a login button. (We work with
this form in Chapter 4.) Create a LoginFormView.ui.xml file in the same directory as
LoginFormView.java, with the following contents:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'>

<g:HTMLPanel>

<table>

<tr>

<td><g:Label text="User Name:"/></td>

<td><g:TextBox u:field='nameTextBox'/></td>

</tr>

<tr>

<td><g:Label text="Password:"/></td>

<td><g:PasswordTextBox u:field='passwordTextBox'/></td>

</tr>

<tr>

<td></td>

<td><g:Button text='Login' u:field='loginButton'/></td>

</tr>

</table>

</g:HTMLPanel>

</u:UiBinder>

(An aside: If you use Eclipse, you can create this file—and the corresponding Java
code—by selecting File, New, UiBinder. (See Figure 5.4.) Similarly, to edit an already
created template, right-click it and pick Open with, UI Template Editor.)

70 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg
Figure 5.4 The newest GWT Plugin for Eclipse enables you to create

UiBinder templates easily.

Now, back to the template. Its first line (<?xml...) just declares the file type and
encoding, in usual XML way. The second line (<!DOCTYPE...) includes a whole bunch
of <!ENTITY definitions, for all HTML standard entities such as or á12

XML doesn’t know about HTML, so excluding this line will cause an Error parsing
XML (line 8): The entity "nbsp" was referenced, but not declared mes-
sage, and your code won’t run.13

The third line (<u:UiBinder...) not only defines the root element for the XML doc-
ument, but also defines a namespace prefix (g, as in xmlsn:g) that implies that all the
classes in the com.google.gwt.user.client.ui package can be used as elements, by
combining the defined prefix with the Java class name and writing something such as
g:TextBox or g:Button.14

71Declarative UI

12. You can find a complete list of HTML entities at www.w3.org/TR/html5/named-character-

references.html but check before at http://dl.google.com/gwt/DTD/xhtml.ent to make sure it’s

included.

13. The contents of this file are included in the compiler, so GWT won’t have to connect to the

Internet to compile your UI definition.

14. Note that the other namespace definition ("u") enables you to use the UiBinder class itself.

 Download from www.wowebook.com

http://dl.google.com/gwt/DTD/xhtml.ent
www.w3.org/TR/html5/named-characterreferences.html
www.w3.org/TR/html5/named-characterreferences.html

ptg

(In this example, we use HTMLPanel because it enables mixing HTML code and
widgets; if you just needed the former, you could go with HTML. You can use HTML
code only with panels that implement the HasHTML interface.)

The u:field attribute makes available the widget through the given name and
relates it to a corresponding @UiField annotation; more on this, next. Note that this also
applies to DOM elements; if you define you can define
@UiField SpanElement mySpan and use it as in mySpan.setInnerText("some text").

You can also define or include CSS styles with u:style, but most probably you
won’t be using that, because it’s unlikely you will want to define particular, specific styles
for a view, instead of using a general CSS file for the complete application—the same
reason why inline styles are not desired, and overall styles are preferred.15

Defining the Java Side
Let’s now turn to the Java part. We need to declare to which template we’ll be binding
our code, which objects are to be used as widgets in it, and what handlers shall be
attached to events.

public class LoginFormView {

@UiTemplate("LoginFormView.ui.xml")

interface Binder extends UiBinder<HTMLPanel, LoginFormView> {}

private static final Binder binder= GWT.create(Binder.class);

@UiField TextBox nameTextBox;

@UiField PasswordTextBox passwordTextBox;

@UiField Button loginButton;

public LoginFormView() {

HTMLPanel dlp= binder.createAndBindUi(this);

initWidget(dlp);

}

// ...any other methods...

}

The @UiTemplate annotation lets you define the corresponding template file; by
default, the same name of the class (so in this case the annotation isn’t actually needed)
but ending with .ui.xml instead of .java, is used. You must extend the UiBinder<U,O>
generic interface: U represents the generated widget class (in this case, HTMLPanel as we
saw in the template) and O stands for the owning class (the class we are defining right
now). Finally, you must GWT.create(...) an instance of your interface (another case of
deferred binding, which we saw in Chapter 4) which will be bound to the UiBinder
created object when you call its createAndBindUi(this) method.

72 Chapter 5 Programming the User Interface

15. Okay, if you really insist on applying styles for each template, check http://code.google.com/

webtoolkit/doc/latest/DevGuideUiBinder.html#Hello_Stylish_World for a description of the style

element.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideUiBinder.html#Hello_Stylish_World
http://code.google.com/webtoolkit/doc/latest/DevGuideUiBinder.html#Hello_Stylish_World

ptg

The @UiField annotation relates your Java objects to the template widgets. Note that
you just provide the object declaration here; actual object creation and binding will be
done by UiBinder. (See the “Dealing with Constructors” section, for some exceptions.)
A small detail: Tthe Java objects cannot be private, because in that case they couldn’t
be accessed and bound.

Finally, you can use the @UiHandler annotation to assign handlers to widgets.

@UiHandler("loginButton")

void uiOnLoginButton(ClickEvent event) {

// ...your event handling code...

}

This takes care of creating the needed Handler and assigning it to the template widget.
Note, however, that you can use this only with widget objects and not for DOM ele-
ments; you can assign an event to a <g:Button> (as in this example) but not to a mere
HTML <button>.

More Complex Examples
Let’s now examine a few other uses for UiBinder, such as setting widgets attributes,
using constructors, adding your own packages, handling several views, and more.

Presetting Properties
You can preset most widget properties through the XML file. In our case, you could dis-
able the login button by writing <g:Button text='Login' u:field='loginButton'
enabled='false'/> or preload the username TextBox with <g:TextBox u:field=
'nameTextBox' value='default user'/>.Any attribute that can be set with a
widget.setAttribute(...) call can be initialized in this way.16

Using Your Own Widgets
You can also use any widgets you have created. For simplicity, let’s say you created (in the
com.fkereki.mvpproject.client package) a ReadOnlyTextBox that disables itself.

public class ReadOnlyTextBox extends TextBox {

/**

* A simple textbox that just disables itself

*/

public ReadOnlyTextBox() {

super();

setEnabled(false);

}

}

73Declarative UI

16. This style is basically the same as used with JavaBeans; see http://java.sun.com/javaee/5/

docs/tutorial/backup/update3/doc/JSPIntro8.html for more on this.

 Download from www.wowebook.com

http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/JSPIntro8.html
http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/JSPIntro8.html

ptg

If you want to use this kind of widget in a UiBinder template, you just have to add a
new namespace:

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

xmlns:h='urn:import:com.fkereki.mvpproject.client'>

which enables you to use your widget as in <h:ReadOnlyTextBox .../>. In a sense,
this works like a wildcard import in Java; you can use not only ReadOnlyTextBox, but
any other widget defined in the same package as well.

Dealing with Constructors
All widgets declared in templates are created via GWT.create(...) meaning that they
must provide a default zero argument constructor. If you need a special constructor,
there are ways to work around UiBinder’s restriction: You can either create the widget
yourself or provide a factory method that will create it, or let UiBinder know about the
required constructor so it will use it itself.

The first and simplest solution is creating the widget yourself. Suppose you want to
use your own constructed loginButton in the preceding form. By changing the
@UiField annotation, UiBinder won’t create the widget, and its creation will be up to
you.

@UiField(provided = true)

Button loginButton;

Then, before binding the UI, you need to create the provided=true objects:

public LoginFormView3() {

loginButton = new Button("My Own Login");

HTMLPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

A second way of achieving this is by providing a Factory method that creates and
returns the appropriate object. Say we have a different ReadOnlyTextBox2 class that
requires its initial value as a constructor parameter.

public class ReadOnlyTextBox2 extends TextBox {

public ReadOnlyTextBox2(String init) {

super();

setEnabled(false);

setValue(init);

}

}

We have to include a provider with:

@UiFactory ReadOnlyTextBox2 makeROTB2(String init) {

return new ReadOnlyTextBox2(init);

}

74 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg

UiBinder will use this Factory to construct all ReadOnlyTextBox2 objects in the
template.

Finally, you could tell UiBinder to directly use the new constructor. We annotate the
ReadOnlyTextBox2 constructor with @UiConstructor as follows:

public class ReadOnlyTextBox2 extends TextBox {

public @UiConstructor ReadOnlyTextBox2(String init) {

...

}

}

Now, we can use it within a template as <h:ReadOnlyTextBox2 init='initial
value'/> and the provided constructor will be used.

Working with More Complex Layouts
What do you do if you require a more complex layout, which you cannot get with
UiBinder templates? For example, say you want to have several templates in a TabPanel
or a Grid? You can’t directly create or position any such widgets with UiBinder (at
most, you’ll get zero tabs or a 0×0 grid) so you have to create the container yourself,
then create the template objects, and finally assign them to your container.

Creating several template objects is simple, but you’ll require a separate auxiliary class
for each.

n Create all needed auxiliary classes, each with its own @UiTemplate annotation,
interface, and binder objects. Each class should extend Composite.

n In your main form, create an instance of each auxiliary class. (The auxiliary classes
may have nonempty constructors, which you would use to pass parameters for the
widget creation and binding.) These instances will be populated with all the widg-
ets you defined.

n Add each created object to your TabPanel, Grid, or whatever. Each panel or cell
will now show whatever group of widgets you defined in the corresponding auxil-
iary classes.

Although the auxiliary classes would look much like the example we already worked
out, your main class might include code such as

tp = new TabPanel();

tp.add(new Auxiliary1(...), "One");

tp.add(new Auxiliary2(...), "Two");

tp.add(new Auxiliary3(...), "Three");

It should be clear that this solution, although more Java-heavy than our previous
examples, can easily be generalized to any kind of container and applied to any graphic
design you might want.

75Declarative UI

 Download from www.wowebook.com

ptg

Summary
We have studied ways to design the UI architecture, settling on the MVP pattern (with
a “humble” View and a controlling Presenter) and we have applied UiBinder to more
easily construct the View component. We have worked with testing in mind, and the
resulting code will be simpler to test. Applying the techniques given here, you can design
the UI in an easier way (because the XML templates can be used by nonprogrammers)
and the View code will be minimized for faster development. In future chapters we build
on the structure we created in Chapter 4 and this one, and code will follow the styles
shown here.

76 Chapter 5 Programming the User Interface

 Download from www.wowebook.com

ptg

6
Communicating with

Your Server

Remote Procedure Calls (RPC) can bring client- and server-side code together and
therefore are one of GWT’s more potent tools. In this chapter we’ll analyze how RPC
works and show several patterns of its usage, including live suggestions, client-side data
prevalidation, and connecting to Enterprise Java Beans (EJB). We shall even be providing
a more complicated example of MVP, with an RPC-enabled composite widget.

Introduction to RPC
RPC enables GWT programmers to work almost as if the client- and server-side code
resided at the same machine, making the connection practically invisible. There are some
differences, however. For example, server-side code can use any class and package in the
Java repertory, but client-side code is still limited. Also, some classes might not be trans-
ferred back and forth because of serialization problems; we’ll touch on that next. Finally,
of course connecting to a server and processing without waiting for an answer moves us
out of the “synchronous world”; callbacks will be used everywhere for asynchronous
coding.1

For implementation, RPC uses Ajax throughout, and GWT also provides the HTTP
client classes (which we’ll get to use in Chapter 7, “Communicating with Other
Servers”) if you need to connect to non-GWT server-side code. On the server side,
servlets are used, by means of extending the RemoteServiceServlet. You aren’t lim-
ited, however, to this architecture; you can use, say, Enterprise Java Beans (EJB) or Restful
Services if you want, so your GWT application can connect to practically any kind of
server side services architecture.

The most common usage of RPC is, obviously, accessing server-side servlets or EJBs,
but it has a less obvious application, code splitting: a way to reduce the load time of your
application, which we see in Chapter 15, “Deploying Your Application.”

1. This is the big difference between RMI (well known to Java programmers) and RPC; the former is

synchronous (blocking), whereas the latter is always asynchronous (nonblocking).

 Download from www.wowebook.com

ptg

Implementation
Let’s just give a once-over to the central concepts regarding RPC and then move to spe-
cific use cases and applications.

Though there have been some changes in how RPC was implemented as GWT
evolved, the basic mechanism (involving a couple of client-side interfaces plus a
RemoteService extended server-side class) is still the same.2 In particular, “magic nam-
ing” is still applied (meaning GWT expects classes and interfaces names to follow certain
rules) so for example, for a WorldService remote service you would have3

n public interface WorldService extends RemoteService, with the client-
side specification of the provided services

n public interface WorldServiceAsync, which describes a “stub” that will
mediate with the server and pass the results to the caller via an AsyncCallback,
which will be used to pass the server-returned value to the caller

n public class WorldServiceImpl extends RemoteServiceServlet

implements WorldService, which provides the actual server-side implementa-
tion code

(We shall see more of this WorldService remote servlet soon.)
Servlet mapping has also changed. In the current style, you need to annotate the

client-side WorldService with @RemoteServiceRelativePath(...) providing the
relative path for the remote service as a parameter. This annotation causes the client-side
proxy to use GWT.getModuleBaseURL()+"theAnnotatedValue" as the service entry point
for the servlet. You also need to provide more data on the remote servlet in the
war/WEB-INF/lib/web.xml file, using both the <servlet> and <servlet-mapping>
elements.4

<servlet>

<servlet-name>

worldServlet

</servlet-name>

<servlet-class>

com.fkereki.mvpproject.server.WorldServiceImpl

</servlet-class>

</servlet>

78 Chapter 6 Communicating with Your Server

2. Check http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html, and

in particular the “Plumbing Diagram,” if you want to refresh your RPC knowledge.

3. A small bother: The GWT Plugin for Eclipse doesn’t help create these three files, but the GWT4NB

plugin for Netbeans and the IntelliJ GWT plugin do. However, if you change one of the three files, the

plugin can help you fix the other two.

4. In earlier versions of GWT, you would have had to add <servlet path="..." class="..."/>

elements to your gwt.xml file. Currently, you need to do so only if you run GWTTestCase code.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html

ptg

<servlet-mapping>

<servlet-name>

worldServlet

</servlet-name>

<url-pattern>

/mvpproject/world

</url-pattern>

</servlet-mapping>

Note that the servlet-class element value is the fully qualified name of the service
implementation class, and that the url-pattern element must match the relative path loca-
tion of the servlet itself.

Calling a remote servlet still uses the same sequence: First create the client-side proxy
to the remote servlet by writing WorldServiceAsync worldService= GWT.create
(WorldService.class), and then call any server-side method by using worldService
.anyMethod(...) and including an AsyncCallback<...> matching whatever
anyMethod(...) returns.5

A final point: When running in development mode, previous versions of GWT
included a Tomcat server; GWT 2 uses Jetty instead. (Actually, in development you could
use any other server, by providing the -noserver parameter for your development
launcher configuration.) Of course, when you deploy your application (see Chapter 15)
you can use either of them, or any other equivalent servers.

Serialization
Serialization is handled transparently through deferred binding, and appropriate serializa-
tion/deserialization methods are created at compile time for each class you want to send
over the wire. (Note that GWT analyzes your code, and these methods will be provided
only for the classes you actually send over the wire.) Java serialization isn’t used (a GWT
serialized object is different from a Java serialized object) because GWT makes a far sim-
pler usage of serialization (for example, version IDs aren’t needed) and only a few JRE
classes are supported. However, since GWT 1.4, java.io.Serializable can be used
instead of IsSerializable, but be aware that it is treated as a synonym; GWT’s own
serialization is still used.6

The rules that define what types are serializable, are simple:
n Primitive types (char, byte, short, and so on) and their wrappers (Character, Byte,

Short, etc.) are serializable.

79Introduction to RPC

5. It should be noted that GWT hasn’t ever provided, and still doesn’t include, any synchronous RPC

facilities. There are good reasons for this (such as JavaScript not being multithreaded) and you sim-

ply have no option to specify a non-Async call.

6. If your company uses Java heavily, java.io.Serializable is probably the way to go, but only

for source code compatibility; keep in mind that GWT’s methods are actually used. I personally pre-

fer to use IsSerializable, because that won’t let me forget I’m using GWT’s serialization style.

 Download from www.wowebook.com

ptg

n Enumerations, strings, and dates are serializable.7

n Throwables are serializable.
n Arrays of serializable types are serializable.
n Not all JRE emulation classes are serializable; however, ArrayList, HashMap,

HashSet, Stack, and Vector (among others) are.
n java.lang.Object isn’t serializable; avoid services that simply pass Objects along.8

A class will be serializable if all its attributes are of serializable types, with the excep-
tion that transient and final attributes are ignored and don’t get serialized and trans-
ferred. You must implement the IsSerializable interface and also provide a default
(no arguments) constructor.9 Note that this interface actually has no methods and is
only used to let the GWT compiler learn that you are planning to use the implementing
class for RPC.

For efficiency considerations, try to be quite specific and go for concrete implemen-
tations rather than interfaces when declaring the types of your attributes. For example, in
the SuggestBox implementation (which we’ll develop later in this chapter) I declare
final ArrayList<SuggestionItem> suggestionsList=... whereas the standard
practice would have called for using List<SuggestionItem>; doing it this way helps
the compiler optimize the produced code, for it can tell it needs just the ArrayList
serialization code.

Note that it is even possible to define your own serialization/deserialization methods
for any xxxx class, by defining (in the same package of the original class) a xxxx_
CustomFieldSerializer class (magic naming, again) that provides appropriate public
static serialize(...), deserialize(...) and instantiate(...) methods.10

Some possible reasons would be efficiency (serializing “heavy” objects) or availability
(legacy objects that do not implement Serializable or IsSerializable or that don’t
provide the default constructor).

As a test, I created a standard application with the GWT Plugin for Eclipse and then
modified it a little. First, I created a RpcResponse class with a few—most, useless—
fields; this class was meant to be returned by GreetingService:

package com.kereki.stdserialize.client;

import com.google.gwt.user.client.rpc.IsSerializable;

80 Chapter 6 Communicating with Your Server

7. Note, however, that only the enumeration names will be sent over; if you have any member vari-

ables, they won’t be included.

8. Furthermore, if you had Object as a return type, the GWT compiler would have to include code for

all possible actual classes, thus generating lots and lots of unused code.

9. It’s easy (ask me how I know!) to forget this no arguments constructor, because even if you don’t

require it for anything, GWT does.

10. Check http://code.google.com/p/wogwt/wiki/CustomFieldSerializer for more on this.

 Download from www.wowebook.com

http://code.google.com/p/wogwt/wiki/CustomFieldSerializer

ptg

public class RpcResponse

implements IsSerializable {

public String aText;

public String anotherText;

public float aNumber;

public boolean aBoolean;

}

Then I modified GreetingService so it would return a RpcResponse object
instead of a String. (This also required substituting RpcResponse for String in the
other RPC files.) The GreetingServiceImpl class would change as follows.

public RpcResponse greetServer(String input) {

String serverInfo= getServletContext().getServerInfo();

String userAgent= getThreadLocalRequest().getHeader(

"User-Agent");

RpcResponse answer= new RpcResponse();

answer.aText= "Hello, " + input + "!

I am running "

+ serverInfo + ".";

answer.anotherText= "It looks like you are using:
"

+ userAgent;

answer.aNumber= 220960;

answer.aBoolean= true;

return answer;

}

I ran the modified program, and used Firebug (which we installed in Chapter 2,
“Getting Started with GWT 2”) to check what was sent from the server to the client:

//OK[3,2,220960.0,1,1,["com.kereki.stdserialize.client.RpcResponse/3480033907",
"Hello, kereki!

I am running jetty-6.1.x.","It looks like you are
using:
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.6) Gecko/20091201
SUSE/3.5.6-5.1 Firefox/3.5.6"],0,5]

Now I added a RpcResponse_CustomFieldSerializer class to the client-side
code. Any serializer class must implement

n public static void deserialize(...) which takes a Stream reader and an
object (an instance of the class you want to load) as parameters and must initialize
the object with the data read from the reader.

n public static void serialize(...) which takes a Stream writer and an
object as parameters and must serialize the latter (i.e., create an equivalent string
from it) by writing to the former.

n an initialize method, that must return an instance of your class. This method is
actually required only if your class doesn’t have a empty constructor.

81Introduction to RPC

 Download from www.wowebook.com

ptg

Reading and writing to the streams is helped by several convenience methods such
as writeString(...), writeFloat(...), writeBoolean(...), and so on, plus the
corresponding readString(...), readFloat(...), readBoolean(...) and more.
Note that you can write anything you want to the stream; if you check the following
serialize(...) method, you can see I included a my own serializer! string that is
totally unneeded! Your only requirement is that, given the serialized contents, you must
reconstruct the original object. Note, too, that while in serialize(...) you can write
the values in any order; the deserialize(...) method must read them in the same
order they were written.

package com.kereki.stdserialize.client;

import com.google.gwt.user.client.rpc.SerializationException;

import com.google.gwt.user.client.rpc.SerializationStreamReader;

import com.google.gwt.user.client.rpc.SerializationStreamWriter;

public class RpcResponse_CustomFieldSerializer {

public static void deserialize(

SerializationStreamReader reader,

RpcResponse instance)

throws SerializationException {

if (instance == null) {

throw new NullPointerException("Null RpcResponse!");

} else {

String dummy= reader.readString();

instance.aText= reader.readString();

instance.anotherText= reader.readString();

instance.aNumber= reader.readFloat();

instance.aBoolean= reader.readBoolean();

}

}

public static RpcResponse instantiate(

SerializationStreamReader reader)

throws SerializationException {

return new RpcResponse();

}

public static void serialize(

SerializationStreamWriter writer,

RpcResponse instance)

throws SerializationException {

if (instance == null) {

throw new NullPointerException("Null RpcResponse!");

82 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

} else {

writer.writeString("my own serializer!");

writer.writeString(instance.aText);

writer.writeString(instance.anotherText);

writer.writeFloat(instance.aNumber);

writer.writeBoolean(instance.aBoolean);

}

}

}

I ran the modified application (remember you have to restart Development mode, so
the new server code will be recognized) and checked again with Firebug what was sent,
and I could confirm that my serializer was used, because the data format changed; more-
over, my useless string was there in plain sight!

//OK[1,220960.0,4,3,2,1,["com.kereki.stdserialize.client.RpcResponse/424577744",
"my own serializer!","Hello, kereki2!

I am running jetty-6.1.x.","It looks
like you are using:
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.6)
Gecko/20091201 SUSE/3.5.6-5.1 Firefox/3.5.6"],0,5]

As a final note, keep in mind that if you extend a class with a custom serializer, you
must also provide custom serializers for the subclasses; otherwise, they will fall back to
the standard GWT serializer. In any case, writing your own serializer methods is probably
something you won’t be doing, but it’s good to know that you can do so if you need to.

Direct Evaluation RPC
Finally, as an example of nonstandard serialization, a new RPC subsystem is being devel-
oped, though not still at production-quality level.11 Direct Evaluation RPC (or deRPC,
for short) creates a string somewhat akin to JSON for serialization (insofar it includes
both attribute names and values, instead of just values as with GWT’s standard serializa-
tion) that enables faster serialization and deserialization processes. Using deRPC instead
of the standard RPC is simple and requires

n Inherit com.google.gwt.rpc.RPC in your application gwt.xml file
n Extend RpcService and RpcServlet, instead of RemoteService and
RemoteServiceServlet

I further modified the standard greeting application from the previous section, and
running it produced visibly different results; in particular, note that the attribute names
are included in the response.

R1~Lcom.kereki.stdserialize.client.RpcResponse~I4~"42~com.kereki.stdserialize
.client.RpcResponse~"8~aBoolean~Z1~@1~"7~aNumber~F220960.0~@1~"5~aText~"48~Hello,
kereki3!

I am running jetty-6.1.x.~@1~"11~anotherText~"127~It looks like
you are using:
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.6)
Gecko/20091201 SUSE/3.5.6-5.1 Firefox/3.5.6~

83Introduction to RPC

11. You can check http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication

.html#DevGuideDeRPC for the status of deRPC.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html#DevGuideDeRPC
http://code.google.com/webtoolkit/doc/latest/DevGuideServerCommunication.html#DevGuideDeRPC

ptg

Despite the declared advantages, it should be repeated that deRPC is still considered
experimental code, “available as a technology preview for early adopters” as the GWT
developers put it, so keep it in mind, but don’t use it for production code yet.12

RPC Patterns of Usage
In this section, let’s consider several RPC use cases, such as database bound widgets, live
suggestions, on-the-fly validation, and more. Oh, and by the way, we shall also be show-
ing a MVP interesting detail: how to include views within other views, and how every-
thing gets wired together.

The World Cities Service
To have meaningful examples, we work with a regular-sized database, with information
on countries, regions, and cities of the world. I used MaxMind’s free cities table along
with the International Organization for Standardization (ISO) 3166 table of country
codes and both the ISO 3166-2 and Federal Information Processing Standards (FIPS)
10-4 tables of region codes.13 (This was required because the United States cities’ data
used the common two-letter codes—such as NY for New York—instead of the numeric
ISO codes.) The needed data was provided as comma-separated values (CSV) files, so
loading it into MySQL tables was easy.

To follow the next examples, note that
n Countries are identified by a two-letter code (for example, US stands for the

United States) and have a name.
n Countries are divided into states (or depending on the country, provinces, depart-

ments, regions, and more), which are identified by a numeric code (except for the
US). The state code is unique only within the country. Each state also has a name.

n Cities are located in states and have a pure ASCII name, an accented name (possi-
bly including foreign characters), a population (or zero, if unknown), a latitude, and
a longitude. City names are unique only within a given state of a country; you can
find several dozen “Springfield” cities just in the United States!

The world database can be created with

CREATE DATABASE world

DEFAULT CHARACTER SET latin1

COLLATE latin1_general_ci;

USE world;

84 Chapter 6 Communicating with Your Server

12. Being a “preview” also implies there could be important changes in it, which could impact your

code.

13. You can get these tables at www.maxmind.com/app/worldcities.

 Download from www.wowebook.com

www.maxmind.com/app/worldcities

ptg

CREATE TABLE cities (

countryCode char(2) COLLATE latin1_general_ci NOT NULL,

cityName varchar(50) COLLATE latin1_general_ci NOT NULL,

cityAccentedName varchar(50) COLLATE latin1_general_ci NOT NULL,

regionCode char(2) COLLATE latin1_general_ci NOT NULL,

population bigint(20) NOT NULL,

latitude float(10,7) NOT NULL,

longitude float(10,7) NOT NULL,

KEY `INDEX` (countryCode,regionCode,cityName),

KEY cityName (cityName),

KEY cityAccentedName (cityAccentedName)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

CREATE TABLE countries (

countryCode char(2) COLLATE latin1_general_ci NOT NULL,

countryName varchar(50) COLLATE latin1_general_ci NOT NULL,

PRIMARY KEY (countryCode),

KEY countryName (countryName)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

CREATE TABLE regions (

countryCode char(2) COLLATE latin1_general_ci NOT NULL,

regionCode char(2) COLLATE latin1_general_ci NOT NULL,

regionName varchar(50) COLLATE latin1_general_ci NOT NULL,

PRIMARY KEY (countryCode,regionCode),

KEY regionName (regionName)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

I defined a WorldService remote service, with several functions that we use next,
specifically

n addCity(...) can be used to add a new city to the database.
n cityExists(...) checks whether a given city already exists within a given state

of a country.
n getCities(...) returns cities from a state of a country; you have to specify how

many cities you want, and from which starting point in the list of all cities in the
state.

n getCitiesStartingWith(...) returns all cities in a certain state, whose name
starts with a given substring.

n getCountries(...) simply returns a list of all existing countries.
n getStates(...) returns a list of all states in a given country.

But, before we start with the actual code, let’s give a thought to a little problem: How
do we share code between the client and the server?

85RPC Patterns of Usage

 Download from www.wowebook.com

ptg

Code Sharing
The more checks you do client-side, before sending anything to the server, the more spry
your application will feel. (And note that we show a related design pattern, “Prevalidation”,
next in this chapter.) With usual web development tools, that would imply having to code
all checks twice (once in JavaScript for the client-side code, and once in any other lan-
guage for the server-side code) but with GWT, within limits, you can use the same Java
code on both sides. The only limitation, as we have already seen before, is that client-side
code is restricted to a subset of the Java language; the source code for any shared objects
will have to be located in a client-side package to insure it can be compiled and processed.

You require a server-side version of the object, with two special extra methods: a
constructor that can initialize the server-side object with the client-side object, and a
method that can produce a client-side object out of a server-side object. (Obviously, if
you could use the same code client- and server-side, you wouldn’t require two classes.
Furthermore, according to the standard layout we save in Chapter 3, “Understanding
Projects and Development,” we’d place the common code in the shared directory.)

We have ClientCityData and ServerCityData classes to show this pattern. As pre-
viously described, the client-side code implements the IsSerializable interface so
objects can be sent back and forth as described. Note that the validation method does
only client-side valid operations.

package com.fkereki.mvpproject.client.rpc;

import com.google.gwt.user.client.rpc.IsSerializable;

public class ClientCityData

implements IsSerializable {

public String countryCode;

public String regionCode;

public String cityName;

public String cityAccentedName;

public int population;

public float latitude;

public float longitude;

We have two constructors: the required empty one, and another with all the city data.

public ClientCityData() {

}

public ClientCityData(

final String pCC, final String pRC, final String pCN,

final String pCAN, final int pPop, final float pLat,

final float pLong) {

countryCode= pCC;

regionCode= pRC;

cityName= pCN;

86 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

cityAccentedName= pCAN;

population= pPop;

latitude= pLat;

longitude= pLong;

}

You can’t do so many validations client-side as you could server-side because of the
Java restrictions imposed by GWT for your client code. (We have a more complete rou-
tine in our server-side code.) Let’s have the validation function return an empty string if
there are no problems with the data, or an explanation instead.

public String validationProblems() {

if (countryCode.isEmpty()) {

return "No country specified";

} else if (regionCode.isEmpty()) {

return "No region specified";

// ...more checks...

} else {

return "";

}

}

}

Our other version, ServerCityData, includes both special methods previously
described and also implements more checks. Note how we import the client-side ver-
sion of the class, which we extend.

package com.fkereki.mvpproject.server;

import com.fkereki.mvpproject.client.rpc.ClientCityData;

public class ServerCityData

extends ClientCityData {

As described, we have a constructor that can take a client-side object and use it to
construct a server-side one.

public ServerCityData(

final ClientCityData pObject) {

countryCode= pObject.countryCode;

regionCode= pObject.regionCode;

cityName= pObject.cityName;

cityAccentedName= pObject.cityAccentedName;

population= pObject.population;

latitude= pObject.latitude;

longitude= pObject.longitude;

}

87RPC Patterns of Usage

 Download from www.wowebook.com

ptg

Here’s the other mandatory method: one that can produce a client-side version of a
server-side object, so you can send it back from the server to the client.

public ClientCityData asCityData() {

return new ClientCityData(countryCode, regionCode, cityName,

cityAccentedName, population, latitude, longitude);

}

Our server-side validation code must be complete; we probably redefine and “amplify”
the client-side checks here. Of course, there’s no need to recode everything; we can still
access the original validations by means of super.validationProblems(...).

@Override

public String validationProblems() {

final String svp= super.validationProblems();

if (!svp.isEmpty()) {

return svp;

} else {

final WorldServiceImpl wsi= new WorldServiceImpl();

if (wsi.cityExists(countryCode, regionCode, cityName)) {

return "City exists.";

} else {

return "";

}

}

}

}

Now that we have seen how to pass city objects back and forth, let’s get to the actual
coding of the services we need.

Coding the Server Side Services
The WorldService.java interface is as follows:

package com.fkereki.mvpproject.client.rpc;

// ...several imports...

@RemoteServiceRelativePath("world")

public interface WorldService extends RemoteService {

public String addCity(ClientCityData cd);

public Boolean cityExists(String pCountry,

String pRegion, String pCity);

public LinkedHashMap<String, ClientCityData> getCities(String pCountry,

String pRegion, int pFrom, int pQuantity);

88 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

public LinkedHashMap<String, ClientCityData> getCitiesStartingWith(

String pCountry, String pRegion, String pStart);

public LinkedHashMap<String, String> getCountries();

public LinkedHashMap<String, String> getStates(String pCountry);

}

The corresponding Async interface is easily derived from it. (If you just code the pre-
ceding interface, the Google Plugin for Eclipse can detect the need for the Async inter-
face and offer to create it automatically.) The code is a direct parallel of the preceding
code; the added AsyncCallback parameters are the only difference.

package com.fkereki.mvpproject.client.rpc;

// ...imports...

public interface WorldServiceAsync {

void addCity(ClientCityData cd, AsyncCallback<String> ac);

void cityExists(String pCountry, String pRegion,

String pCity, AsyncCallback<Boolean> ac);

void getCities(String pCountry, String pRegion,

int pFrom, int pQuantity, AsyncCallback<LinkedHashMap<String,

ClientCityData>> ac);

void getCitiesStartingWith(String pCountry, String pRegion,

String pStart, AsyncCallback<LinkedHashMap<String,

ClientCityData>> callback);

void getCountries(AsyncCallback<LinkedHashMap<String, String>> ac);

void getStates(java.lang.String country,

AsyncCallback<LinkedHashMap<String, String>> ac);

}

We’ll use all these methods in our examples, and since this is pure Java server-side
code, let’s study all the code at once. Note I defined a gwtuser user with a gwtpass
password for the world database. The actual algorithms are straightforward. Because the
services can be programmed using the full Java facilities, you might also use OpenJPA or
Hibernate, but I didn’t want to add an extra complication (which doesn’t have to do
with GWT in any case) so I just used a simple, clear definition and left optimization
details for other books.

package com.fkereki.mvpproject.server;

// ...several imports...

89RPC Patterns of Usage

 Download from www.wowebook.com

ptg

public class WorldServiceImpl

extends RemoteServiceServlet

implements WorldService {

private static final long serialVersionUID = 1L;

/*

* MySQL and JDBC related constants and variables

*/

static String jdbc_url = "jdbc:mysql://127.0.0.1/world";

static String mysql_user = "gwtuser";

static String mysql_password = "gwtpass";

private Connection conn = null;

Let’s start with some simple utility methods for connecting and getting disconnected
from the database. The methods are quite simple and require little explanation. (However,
it should be commented that actual implementation of this service would probably
access a JNDI pool of connections for efficiency considerations, but that doesn’t have
anything to do with GWT, so let’s also skip that.)

private void connectToDatabase() throws Exception {

DriverManager.registerDriver(new com.mysql.jdbc.Driver());

Class.forName("com.mysql.jdbc.Driver").newInstance();

conn = DriverManager.getConnection(jdbc_url,

mysql_user, mysql_password);

}

private void disconnectFromDatabase() throws Exception {

conn.close();

}

The addCity(...) method tries to add a new city to the database. For simplicity, we
have it return an empty string if it succeeded or an error message otherwise. Note how
we construct a ServerCityData object out of the ClientCityData object that we
received as a parameter. After checking for possible validation problems, we use a pre-
pared statement (never forget about possible SQL injection attacks!) to actually insert the
new city in the database.

public String addCity(final ClientCityData cd) {

final ServerCityData scd = new ServerCityData(cd);

final String svp = scd.validationProblems();

if (!svp.isEmpty()) {

return svp;

} else {

try {

connectToDatabase();

final PreparedStatement ps = conn

.prepareStatement("INSERT INTO cities "

+ "(countryCode, regionCode, "

+ "cityName, cityAccentedName, "

90 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

+ "population, latitude, longitude) "

+ "VALUES (?,?,?,?,?,?,?)");

ps.setString(1, scd.countryCode);

ps.setString(2, scd.regionCode);

ps.setString(3, scd.cityName);

ps.setString(4, scd.cityAccentedName);

ps.setInt(5, scd.population);

ps.setFloat(6, scd.latitude);

ps.setFloat(7, scd.longitude);

ps.executeUpdate();

ps.close();

disconnectFromDatabase();

} catch (final Exception e) {

return "Error adding city: " + e.getMessage();

}

return "";

}

}

Let’s now write the cityExists(...) method, that checks whether a city with a
given name already exists in a region of a country. Doing a simple count is enough to
do that check. (And yes, I should have used a PreparedStatement here too!) Note that
with RPC, objects must always be returned, and thus the Boolean type.

public Boolean cityExists(final String pCountryCode,

final String pRegionCode, final String pCityName) {

boolean result = false;

try {

connectToDatabase();

final Statement stmt = conn.createStatement();

final ResultSet rs = stmt

.executeQuery("SELECT COUNT(*) FROM cities WHERE countryCode='"

+ pCountryCode + "' AND regionCode='" + pRegionCode

+ "' AND cityName='" + pCityName + "'");

rs.first();

result = rs.getInt(1) > 0;

stmt.close();

disconnectFromDatabase();

} catch (final Exception e) {

e.printStackTrace();

}

return new Boolean(result);

}

91RPC Patterns of Usage

 Download from www.wowebook.com

ptg

For a cities browsing example we’ll develop, we’ll require getting all the cities from a
region of a country. As we’ll page through the result set, we’ll need to specify how many
cities to return (pQuantity) and at which offset (pFrom) to start. The result will be a
linked hash map ordered by city name. Note that we use ClientCityData objects in
the map because we couldn’t send it back to the client otherwise.

public LinkedHashMap<String, ClientCityData> getCities(

final String pCountryCode,
final String pRegionCode,
final int pFrom,

final int pQuantity) {

final LinkedHashMap<String, ClientCityData> citiesList =

new LinkedHashMap<String, ClientCityData>();

try {

connectToDatabase();

final Statement stmt = conn.createStatement();

final ResultSet rs = stmt

.executeQuery("SELECT * FROM cities WHERE countryCode='"

+ pCountryCode + "' AND regionCode='" + pRegionCode

+ "' ORDER BY cityName LIMIT " + pFrom + "," + pQuantity);

while (rs.next()) {

citiesList.put(rs.getString("cityName"), new ClientCityData(rs

.getString("countryCode"), rs.getString("regionCode"), rs

.getString("cityName"), rs.getString("cityAccentedName"), rs

.getInt("population"), rs.getFloat("latitude"), rs

.getFloat("longitude")));

}

stmt.close();

disconnectFromDatabase();

} catch (final Exception e) {

e.printStackTrace();

}

return citiesList;

}

For the SuggestBox example we have already mentioned, we’ll require getting a list
of all cities, in a certain region of a country, whose names start with a given string.

public LinkedHashMap<String, ClientCityData> getCitiesStartingWith(

String pCountryCode, String pRegionCode, String pStart) {

final LinkedHashMap<String, ClientCityData> citiesList =

new LinkedHashMap<String, ClientCityData>();

92 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

try {

connectToDatabase();

final Statement stmt = conn.createStatement();

final ResultSet rs = stmt

.executeQuery("SELECT * FROM cities WHERE countryCode='"

+ pCountryCode + "' AND regionCode='" + pRegionCode

+ "' AND cityName LIKE '" + pStart

+ "%' ORDER BY cityName");

while (rs.next()) {

citiesList.put(rs.getString("cityName"), new ClientCityData(rs

.getString("countryCode"), rs.getString("regionCode"), rs

.getString("cityName"), rs.getString("cityAccentedName"), rs

.getInt("population"), rs.getFloat("latitude"), rs

.getFloat("longitude")));

}

stmt.close();

disconnectFromDatabase();

} catch (final Exception e) {

e.printStackTrace();

}

return citiesList;

}

The implementation of countries and regions ListBox widgets will require getting all
countries and all regions from a country. This first method produces a LinkedHashMap
with all countries in alphabetical order, so as to simplify the handling of the list.

public LinkedHashMap<String, String> getCountries() {

final LinkedHashMap<String, String> countriesList =

new LinkedHashMap<String, String>();

try {

connectToDatabase();

final Statement stmt = conn.createStatement();

final ResultSet rs = stmt.executeQuery(

"SELECT countryCode,countryName "

+ "FROM countries ORDER BY 2");

while (rs.next()) {

countriesList.put(rs.getString(1), rs.getString(2));

}

stmt.close();

disconnectFromDatabase();

} catch (final Exception e) {

93RPC Patterns of Usage

 Download from www.wowebook.com

ptg

e.printStackTrace();

}

return countriesList;

}

This method returns all regions from a country. The region codes are used as keys and
the region names as values. The LinkedHashMap is ordered by region name, alphabeti-
cally, to simplify loading the corresponding ListBox.

public LinkedHashMap<String, String> getStates(

final String pCountryCode) {

final LinkedHashMap<String, String> regionsList =

new LinkedHashMap<String, String>();

try {

connectToDatabase();

final Statement stmt = conn.createStatement();

final ResultSet rs = stmt

.executeQuery("SELECT regionCode,regionName FROM regions "

+ "WHERE countryCode='" + pCountryCode + "' ORDER BY 2");

while (rs.next()) {

regionsList.put(rs.getString(1), rs.getString(2));

}

stmt.close();

disconnectFromDatabase();

} catch (final Exception e) {

e.printStackTrace();

}

return regionsList;

}

}

It was quite a stretch of code, but with it out of the way, let’s get now to specific
usages of RPC.

Database-Related Widgets and MVP
A common usage of RPC is to populate ListBox or similar widgets. For example, we
might want to have a country/state pair of ListBox fields; the first ListBox should
include all countries, and whenever the user picks a different country, the second
ListBox should be filled with the appropriate states from the World database. With the
given services, doing the first task is quite simple:

94 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

// ...show "Loading..." in the Countries ListBox

getEnvironment().getModel().getCountries(

new SimpleCallback<LinkedHashMap<String, String>>() {

@Override

public void goBack(LinkedHashMap<String, String> result) {

// ...use result to load the countries ListBox...

}

});

Similarly, loading the correct states after the selected country changes is a trivial varia-
tion that requires defining a ValueChangeHandler for the countries widget, and a few
lines such as

// ...empty the states ListBox...

if (!getDisplay().getCountry().isEmpty()) {

getEnvironment().getModel().getStates(getDisplay().getCountry(),

new SimpleCallback<LinkedHashMap<String, String>>() {

@Override

public void goBack(LinkedHashMap<String, String> result) {

// ...use result to load the states ListBox...

}

});

}

Of course, managing this isn’t hard, and a basic example at that, so let’s spice it up a
little by creating a Composite widget that we can reuse in different forms. (And we’ll do
that for the prevalidation example; see next.) How shall we split the code?

Each composite widget will be a View by itself, with a corresponding Presenter,
which shall take care of all required code for event processing. As a View (in our code)
actually extends Composite, we can include a View anywhere within another View and
even use UiBinder for that. Finally, whenever an included widget changes or causes any
similar event, it fires an appropriate event so the including View can respond to it. See
Figure 6.1.

95RPC Patterns of Usage

V P M1 1

*

Figure 6.1 Composite widgets are split into a View (V) and a Presenter (P).
The main Presenter can include other Presenters, each bound to a

different View (themselves all included within the main View) and all
sharing the same Model (M).

Because the previous explanation might be hard to visualize, let’s show how to build a
CountryStateView widget and how to use it. Let’s start by looking at its design; we can

 Download from www.wowebook.com

ptg

use UiBinder for this—though it’s simple enough (just a couple of ListBox widgets side
by side!) that we can manage by creating it directly through pure Java code!

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'>

<g:HTMLPanel>

<g:ListBox u:field="countryCode"/>

<g:ListBox u:field="stateCode"/>

</g:HTMLPanel>

</u:UiBinder>

The corresponding View code is more interesting. We just define the required Display
interface with two getters for the Country and State values, two setters for their corre-
sponding ListBox widgets (more on this next), and a couple of callback related methods
for their value changes.

package com.fkereki.mvpproject.client.countryState;

// ...imports...

public interface CountryStateDisplay

extends Display, HasValueChangeHandlers<Object> {

String getCountry();

String getState();

void setCountryList(LinkedHashMap<String, String> cl);

void setStateList(LinkedHashMap<String, String> sl);

void setOnCountryChangeCallback(SimpleCallback<Object> acb);

void setOnStateChangeCallback(SimpleCallback<Object> acb);

}

The initial part is standard, though—just definitions, and the UiBinder related code.

package com.fkereki.mvpproject.client.countryState;

// ...imports...

public class CountryStateView

extends View

implements CountryStateDisplay {

@UiTemplate("CountryStateView.ui.xml")

interface Binder extends UiBinder<HTMLPanel, CountryStateView> {

}

96 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

private static final Binder binder = GWT.create(Binder.class);

@UiField ListBox countryCode;

@UiField ListBox stateCode;

SimpleCallback<Object> onCountryChangeCallback;

SimpleCallback<Object> onStateChangeCallback;

public CountryStateView() {

super();

HTMLPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

}

Because CountryStateView needs to fire a ValueChangeEvent whenever any of its
components changes (otherwise, how would the including View otherwise learn about
those changes?) we need to define an addValueChangeHandler method, so a handler
can be added to our new widget:

@Override

public HandlerRegistration addValueChangeHandler(

ValueChangeHandler<Object> handler) {

return addHandler(handler, ValueChangeEvent.getType());

}

The rest of the code is simple. Note, in particular, that the Presenter doesn’t directly
work with the ListBox widgets; rather, it uses setCountryList(...) and
setStateList(...) to provide the required lists of values, and a quite short code loads
those values into the widgets.14 (We use an empty string as the value for the “Select a
country” text, so we can tell whether the user has actually selected a country; the same is
done for the states ListBox.) The getCountry(...) and getState(...) methods are
also simple enough that we dare use them with little testing.

@Override

public String getCountry() {

int current = countryCode.getSelectedIndex();

return current == -1 ? "" : countryCode.getValue(current);

}

@Override

public String getState() {

int current = stateCode.getSelectedIndex();

return current == -1 ? "" : stateCode.getValue(current);

}

97RPC Patterns of Usage

14. This can be considered an application of the Adapter (or Wrapper) design pattern;

see www.oodesign.com/adapter-pattern.html for more on this.

 Download from www.wowebook.com

www.oodesign.com/adapter-pattern.html

ptg

@Override

public void setCountryList(LinkedHashMap<String, String> cl) {

countryCode.clear();

if (cl != null) {

countryCode.addItem("--Select a country--", "");

for (final String it : cl.keySet()) {

countryCode.addItem(cl.get(it), it);

}

}

}

@Override

public void setStateList(LinkedHashMap<String, String> sl) {

stateCode.clear();

if (sl != null) {

stateCode.addItem("--Select a state--", "");

for (final String it : sl.keySet()) {

stateCode.addItem(sl.get(it), it);

}

}

}

To finish, we just need to store the Presenter callbacks and to call them when
appropriate.

@Override

public void setOnCountryChangeCallback(SimpleCallback<Object> acb) {

onCountryChangeCallback = acb;

}

@Override

public void setOnStateChangeCallback(SimpleCallback<Object> acb) {

onStateChangeCallback = acb;

}

@UiHandler("countryCode")

void uiOnCountryChange(ChangeEvent event) {

onCountryChangeCallback.onSuccess(null);

}

@UiHandler("stateCode")

void uiOnStateChange(ChangeEvent event) {

onStateChangeCallback.onSuccess(null);

}

}

Let’s finish with the Presenter, which is neither long nor complicated. Particularly
note that it follows the same standards we used earlier in the book; this reinforces the
notion that any particular View can be used within any other View.

98 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

package com.fkereki.mvpproject.client.countryState;

// ...imports...

public class CountryStatePresenter

extends Presenter<CountryStateDisplay> {

public CountryStatePresenter(

final String params,

final CountryStateDisplay countryStateDisplay,

final Environment environment) {

super(params, countryStateDisplay, environment);

Until we get the countries list via RPC, we can make do by just displaying
Loading... in the Countries ListBox.

LinkedHashMap<String, String> emptyCountriesList =

new LinkedHashMap<String, String>();

emptyCountriesList.put("", "Loading...");

getDisplay().setCountryList(emptyCountriesList);

getEnvironment().getModel().getCountries(

new SimpleCallback<LinkedHashMap<String, String>>() {

@Override

public void goBack(LinkedHashMap<String, String> result) {

getDisplay().setCountryList(result);

}

});

Whenever the country value changes, if an actual country were chosen (i.e., if the
country value isn’t empty) we use RPC to get the corresponding states list.

getDisplay().setOnCountryChangeCallback(new SimpleCallback<Object>() {

@Override

public void goBack(Object result) {

getDisplay().setStateList(null);

if (!getDisplay().getCountry().isEmpty()) {

getEnvironment().getModel().getStates(getDisplay().getCountry(),

new SimpleCallback<LinkedHashMap<String, String>>() {

@Override

public void goBack(LinkedHashMap<String, String> result) {

getDisplay().setStateList(result);

ValueChangeEvent.fire(getDisplay(), null);

}

});

}

}

});

99RPC Patterns of Usage

 Download from www.wowebook.com

ptg

Finally, so the encompassing View can learn whenever the user has picked a different
country/state pair of values, we add firing event logic to the state change handler.

getDisplay().setOnStateChangeCallback(new SimpleCallback<Object>() {

@Override

public void goBack(Object result) {

ValueChangeEvent.fire(getDisplay(), null);

}

});

}

}

Now, how shall we use this new widget? Let’s move to the next section and develop a
simple paging application that can let us inspect all the cities in a given state of a coun-
try. We’ll come back to this in Chapter 14, “Optimizing for Application Speed,” when
we consider using caching for enhancing performance.

A Look at MVP
With the work we have done up to now, we can now look to the Model, the last com-
ponent of MVP, which we had left aside. (We mentioned the Environment object would
be a singleton, and it would include a Model object to connect with the server, but that
was as far as we had gotten in Chapter 5, “Programming the User Interface.”) Anything
that has to do with servlets (RPC) or services, shall be in the Model.

We have to provide the necessary services (built with GWT.create(...) as shown
earlier in this chapter) but since they can be reused, it makes sense to create them only
once, store them in local variables, and use them whenever needed. We can even go one
better and not create them until actually needed (“lazy evaluation”).

public class Model {

private LoginServiceAsync loginService;

private WorldServiceAsync worldService;

private XhrProxyAsync xhrProxy;

public LoginServiceAsync getRemoteLoginService() {

if (loginService == null) {

loginService = GWT.create(LoginService.class);

}

return loginService;

}

public WorldServiceAsync getRemoteWorldService() {

if (worldService == null) {

worldService = GWT.create(WorldService.class);

}

return worldService;

}

100 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

public XhrProxyAsync getRemoteXhrProxy() {

if (xhrProxy == null) {

xhrProxy = GWT.create(XhrProxy.class);

}

return xhrProxy;

}

}

We haven’t yet seen the XhrProxy service; we’ll get to it in the next chapter. We’ll add
some methods later to this class, because having code all over our application using serv-
ices directly is not a good design. (Also, it won’t help with testing of the kind we’ll do in
Chapter 13, or some optimizations we’ll see in Chapter 14.) We should rather concen-
trate all such communication tasks within the Model class, and no other part of the sys-
tem should know about the actual implementation details, but we’ll get to this later.

A Country/State Cities Browser
Given the Country/State composite widget we just developed, we can use it (even with
UiBinder) to produce a simple city paging form. We could have developed it without
using the new widget (see the provided source code for that) but it wouldn’t give us any
code reusing. The form (please, no snide comments about my graphic design abilities!)
should look like Figure 6.2.

101RPC Patterns of Usage

Figure 6.2 A simple city browser application enables us to page through
the cities in any state of any country. The country/state pair is actually a

separate widget, also developed with the MVP design pattern, and included
within another MVP patterned form.

 Download from www.wowebook.com

ptg

The Display interface for the View is short. Note how the setCityData(...)
method receives the number of the line to set (i) as a parameter; thus, the Presenter can
initialize a whole table row by row, a line at a time.

package com.fkereki.mvpproject.client.citiesBrowser2;

// ...imports...

public interface CitiesBrowserDisplay extends Display {

CountryStateDisplay getCountryState();

void setCityData(final int i, final String name, final String pop,

final String lat, final String lon);

void setOnCountryStateChangeCallback(SimpleCallback<Object> acb);

void setOnFirstClickCallback(SimpleCallback<Object> acb);

void setOnNextClickCallback(SimpleCallback<Object> acb);

void setOnPreviousClickCallback(SimpleCallback<Object> acb);

}

The getCountryState(...) method provides access to the included View
(but defined in terms of its interface) so it can be injected into its own presenter, as
shown next. The setCityData(...) method loads a grid row with city data. The
setOnCountryStateChangeCallback(...) method is provided so that the Presenter
can learn whenever there was a change, to erase the grid data and set things up for a
new city. Finally, the last three methods have to do with the three buttons used for pag-
ing back and forth through the cities.

The main view is defined through UiBinder and is interesting because it includes our
composite Country/State widget by means of the cs namespace. This file should be
called CitiesBrowserView.ui.xml in accordance with standard naming rules.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder

xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

xmlns:cs='urn:import:com.fkereki.mvpproject.client.countryState' >

<g:HTMLPanel>

<h1>CitiesBrowser2</h1>

Country/State:<cs:CountryStateView u:field="countryStateView"/>

<g:Button u:field="firstButton"/>

<g:Button u:field="previousButton"/>

<g:Button u:field="nextButton"/>

102 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

<g:FlexTable u:field="cg"/>

</g:HTMLPanel>

</u:UiBinder>

As to the View code, the most interesting parts are the UiBinder related matters, and
the use of the composite Country/State widget. Note that the grid headings must be
initialized through Java code because you cannot do that with UiBinder. The CITIES_
PAGE_SIZE constant will be used for paging.

package com.fkereki.mvpproject.client.citiesBrowser2;

// ...imports...

public class CitiesBrowserView

extends View

implements CitiesBrowserDisplay {

@UiTemplate("CitiesBrowserView.ui.xml")

interface Binder extends UiBinder<HTMLPanel, CitiesBrowserView> {

}

public static final int CITIES_PAGE_SIZE = 20;

Let’s bind the form to the UiBinder design. Note that we are constructing some of
the buttons on our own, but we could have let UiBinder create them, and then set their
properties in our code.

private static final Binder binder = GWT.create(Binder.class);

@UiField

CountryStateView countryStateView;

@UiField

FlexTable cg;

@UiField(provided = true)

Button firstButton = new

Button("First " + CITIES_PAGE_SIZE + " cities");

@UiField(provided = true)

Button previousButton = new

Button("Previous " + CITIES_PAGE_SIZE);

@UiField(provided = true)

Button nextButton = new

Button("Next " + CITIES_PAGE_SIZE);

SimpleCallback<Object> onFirstClickCallback;

SimpleCallback<Object> onPreviousClickCallback;

103RPC Patterns of Usage

 Download from www.wowebook.com

ptg

SimpleCallback<Object> onNextClickCallback;

SimpleCallback<Object> onCountryStateChangeCallback;

Creating the View is simple; the only remarkable point is that we have to finish the
cities grid (cg) formatting ourselves because there isn’t any way (at least yet) to do so
with UiBinder.

public CitiesBrowserView() {

super();

HTMLPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

cg.setText(0, 0, "Name");

cg.setText(0, 1, "Population");

cg.setText(0, 2, "Latitude");

cg.setText(0, 3, "Longitude");

}

There are just two methods related to the CountryStateView widget.

@Override

public CountryStateDisplay getCountryState() {

return countryStateView;

}

@UiHandler("countryStateView")

void uiOnChange(ValueChangeEvent<Object> event) {

onCountryStateChangeCallback.onSuccess(null);

}

The rest of the methods are trivial.

@Override

public void setCityData(int i, String name, String pop, String lat, String lon)
{

cg.setText(i, 0, name);

cg.setText(i, 1, pop);

cg.setText(i, 2, lat);

cg.setText(i, 3, lon);

}

@Override

public void setOnCountryStateChangeCallback(SimpleCallback<Object> acb) {

onCountryStateChangeCallback = acb;

}

@Override

public void setOnFirstClickCallback(SimpleCallback<Object> acb) {

onFirstClickCallback = acb;

}

104 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

// ...setOnNextClickCallback and setOnPreviousClickCallback are similar

@UiHandler("firstButton")

void uiOnFirstClick(ClickEvent event) {

onFirstClickCallback.onSuccess(null);

}

// ...the handlers for the two other buttons are similar

}

Finally, let’s look to the Presenter, which must deal not only with the grid and but-
tons, but also with the Country/State widget changes.

package com.fkereki.mvpproject.client.citiesBrowser2;

// ...imports...

public class CitiesBrowserPresenter

extends Presenter<CitiesBrowserDisplay> {

public static String PLACE = "citybrowse";

int currentStart = 0;

CountryStatePresenter csp;

public CitiesBrowserPresenter(final String params,

final CitiesBrowserDisplay citiesBrowserDisplay,

final Environment environment) {

super(params, citiesBrowserDisplay, environment);

csp = new CountryStatePresenter("", getDisplay().getCountryState(),

environment);

clearCities();

Note how the following methods implement paging. The displayCities(...)
method can be used for displaying actual cities, whereas displayEmptyCities(...)
just displays empty placeholders; see the clearCities(...) method, for example.

getDisplay().setOnFirstClickCallback(new SimpleCallback<Object>() {

@Override

public void goBack(Object result) {

if (checkCountryAndState()) {

currentStart = 0;

getAndDisplayCities();

}

}

});

105RPC Patterns of Usage

 Download from www.wowebook.com

ptg

// ...setOnPreviousClickCallback is similar, but does

// currentStart -= CitiesBrowserView.CITIES_PAGE_SIZE

// while setOnNextClickCallback does

// currentStart += CitiesBrowserView.CITIES_PAGE_SIZE;

getDisplay().setOnCountryStateChangeCallback(new

SimpleCallback<Object>() {

@Override

public void goBack(Object result) {

clearCities();

}

});

}

Because we associated empty values to the Select... messages in both listboxes,
checking if the user has picked something in both fields is easy.

boolean checkCountryAndState() {

return !getDisplay().getCountryState().getCountry().isEmpty()

&& !getDisplay().getCountryState().getState().isEmpty();

}

void clearCities() {

currentStart = 0;

displayEmptyCities(0, "");

}

/**

* Display all cities in citiesList in the grid.

* If there aren't enough cities

* to fill out the grid, empty the extra rows.

*

* @param pCitiesList

* Hash map ordered alphabetically by city name, with up to

* CITIES_PAGE_SIZE cities.

*/

void displayCities(final LinkedHashMap<String,

ClientCityData> pCitiesList) {

final NumberFormat nf = NumberFormat.getDecimalFormat();

int i = 0;

for (final String it : pCitiesList.keySet()) {

i++;

final ClientCityData cd = pCitiesList.get(it);

getDisplay().setCityData(i, cd.cityName, nf.format(cd.population),

nf.format(cd.latitude), nf.format(cd.longitude));

}

106 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

displayEmptyCities(i, "");

}

/**

* Blank out all lines in the cities grid,

* from the line pSince up to the end.

*

* @param pSince

* First line to blank

*

* @param pDisplayText

* Text to display in the first column;

* may be "Loading..." or ""

*/

void displayEmptyCities(int pSince, final String pDisplayText) {

while (pSince < CitiesBrowserView.CITIES_PAGE_SIZE) {

pSince++;

getDisplay().setCityData(pSince, pDisplayText, "", "", "");

}

}

Now we get to the actual display code. We use the displayEmptyCities(...)
method to display a Loading... text, which will be replaced by the actual cities names
when their data arrives. Should there not be enough cities to fill the table, blank lines
would be displayed instead.

void getAndDisplayCities() {

if (currentStart < 0) {

currentStart = 0;

}

displayEmptyCities(0, "Loading...");

getEnvironment().getModel().getCities(

getDisplay().getCountryState().getCountry(),

getDisplay().getCountryState().getState(), currentStart,

CitiesBrowserView.CITIES_PAGE_SIZE,

new SimpleCallback<LinkedHashMap<String, ClientCityData>>() {

@Override

public void goBack(LinkedHashMap<String, ClientCityData> result) {

displayCities(result);

}

});

}

}

Note that the main CitiesBrowserView includes the smaller CountryStateView,
but doesn’t “know” about its inner changes unless the latter’s presenter fires a

107RPC Patterns of Usage

 Download from www.wowebook.com

ptg

ValueChangeEvent; the behavior and attributes of the CountryStateView are
totally encapsulated and only accessible to its presenter. With regard to the main
CitiesBrowserView, the CountryStateView behaves just as any run-of-the-mill
widget.

We’ll return to this form in Chapter 13, when we’ll study a performance-enhancing
design pattern: prefetching.

Live Suggestions
Want to do live suggestions, as Google does whenever you type in a search? GWT pro-
vides an useful SuggestBox, but to actually make it work, you need to get the possible
options dynamically. The standard, simple way of using these widgets depends on a pre-
determined list of options, as GWT’s own documentation shows:

MultiWordSuggestOracle oracle = new MultiWordSuggestOracle();

oracle.add("Cat");

oracle.add("Dog");

oracle.add("Horse");

oracle.add("Canary");

SuggestBox box = new SuggestBox(oracle);

This widget never shows other options than the four given animals. To get a more
useful widget, you need to program your own MultiWordSuggestOracle. I coded a
(really simple!) form including just a single SuggestBox that connects to the server to
provide New York state cities’ suggestions (see Figure 6.3).

108 Chapter 6 Communicating with Your Server

Figure 6.3 Our SuggestBox uses RPC to get all NY state cities whose
name start with whatever the user has typed.

The oracle code (including RPC) will be in the Presenter, but the View will have the
actual widget creation code. The form Display interface is simplicity itself, including just
a method to get the city name and another to set the SuggestBox oracle:

package com.fkereki.mvpproject.client.suggest;

import com.fkereki.mvpproject.client.Display;

import com.google.gwt.user.client.ui.MultiWordSuggestOracle;

 Download from www.wowebook.com

ptg

public interface SuggestDisplay

extends Display {

String getCityName();

void setCitiesOracle(MultiWordSuggestOracle oracle);

}

Given that the View is simple, using UiBinder would have been overkill. The methods
that interest us are the two final ones, getCityName(...) and setCitiesOracle(...).
Note that (at least at present) there’s no way to inject an oracle into a SuggestBox, so
you actually have to create a new widget.15

package com.fkereki.mvpproject.client.suggest;

// ...imports...

public class SuggestView

extends View

implements SuggestDisplay {

FlexTable ft = new FlexTable();

SuggestBox sb;

public SuggestView() {

ft.setWidget(0, 0, new Label("Pick a New York city:"));

ft.setWidget(0, 1, new SuggestBox());

initWidget(ft);

}

@Override

public String getCityName() {

return sb.getValue();

}

@Override

public void setCitiesOracle(MultiWordSuggestOracle oracle) {

sb = new SuggestBox(oracle);

ft.setWidget(0, 1, sb);

}

}

109RPC Patterns of Usage

15. There is a way to get the oracle, getSuggestOracle(...), but there’s no corresponding

setSuggestOracle(...). You might work around this by using the wrap(...) method, but it

feels sort of patchy. Another possibility would be using @UiBinder(provided=true) and writing

a Factory to construct the widget with the needed oracle.

 Download from www.wowebook.com

ptg

Each time the user modifies the input text box, the oracle’s requestSuggestions(...)
method (see next) is called, with a request parameter (from which you can get the letters
the user typed) and a callback (which you call after you get the suggestions). We query
the server, get a list of cities matching whatever the user typed, and provide an
ArrayList with the found SuggestionItem data. The SuggestionItem class isn’t
provided by GWT; I defined it to ease producing the required list. Note the empty con-
structor (mandatory for serialization), the alternative constructor (which constructs a
suggestion out of a given string) and the trivial getDisplayString(...) and
getSuggestString(...) methods.16

package com.fkereki.mvpproject.client.suggest;

// ...imports...

public class SuggestionItem
implements SuggestOracle.Suggestion, IsSerializable {

private String suggestionText;

public SuggestionItem() {

super();

}

public SuggestionItem(String text) {

super();

suggestionText = text;

}

@Override

public String getDisplayString() {

return suggestionText;

}

@Override

public String getReplacementString() {

return suggestionText;

}

}

With this, our Presenter code is reasonably straightforward.

package com.fkereki.mvpproject.client.suggest;

// ...imports...

110 Chapter 6 Communicating with Your Server

16. You can have a different text appear in the suggestion list than in the input text box, but I didn’t

find that useful.

 Download from www.wowebook.com

ptg

public class SuggestPresenter extends Presenter<SuggestDisplay> {

public static String PLACE = "baz";

public SuggestPresenter(String params, SuggestDisplay suggestDisplay,

Environment environment) {

super(params, suggestDisplay, environment);

getDisplay().setCitiesOracle(new MultiWordSuggestOracle() {

@Override

public void requestSuggestions(Request request, Callback callback) {

final Request savedRequest = request;

final Callback savedCallback = callback;

final Response response = new Response();

final ArrayList<SuggestionItem> suggestionsList =
new ArrayList<SuggestionItem>();

/*

* If the query is more than two characters long, search;

* otherwise, just return no suggestions. Also return no

* suggestions if the search happens to fail for some reason.

*/

String beginning = request.getQuery();

if (beginning.length() > 2) {

getEnvironment().getModel().getRemoteWorldService()

.getCitiesStartingWith("US", "NY", request.getQuery(),

new AsyncCallback<LinkedHashMap<String,

ClientCityData>>() {

@Override

public void onFailure(Throwable caught) {

response.setSuggestions(suggestionsList);

savedCallback.onSuggestionsReady(

savedRequest,

response);

}

@Override

public void onSuccess(

LinkedHashMap<String, ClientCityData> result) {

for (final String it : result.keySet()) {

suggestionsList.add(new SuggestionItem(

result.get(it).cityName));

}

response.setSuggestions(suggestionsList);

savedCallback.onSuggestionsReady(

111RPC Patterns of Usage

 Download from www.wowebook.com

ptg

savedRequest,

response);

}

});

} else {

response.setSuggestions(suggestionsList);

callback.onSuggestionsReady(request, response);

}

}

});

}

}

Note that we don’t care to search until the user has typed at least three letters; you
would have to receive too much data. Some other optimizations you might care to con-
sider include

n Use a Timer to delay the actual search, so it won’t be attempted unless the user
has paused typing. (As is, it would try making many calls to the server and be lim-
ited by the maximum number of allowed connections—and, furthermore, most of
those calls would be redundant or useless.) If requestSuggestions is called
again, cancel(...) the timer and schedule(...) a new call.

n Check, before providing the list of suggestions, if the SuggestBox still has the
same contents as when you did the RPC, and if not, ignore the received results.
Note that the user might have edited the SuggestBox while your search was run-
ning, and you could be providing a totally useless list of suggestions.

n Modify the service so if it finds more than, say, 50 cities, it returns an empty list.
(We cannot hog the connection!) In MySQL you can manage this by adding the
LIMIT clause to the SELECT statement and by using SELECT FOUND_ROWS()
afterward to see if your limit was attained.

Data Prevalidation
A rule of Internet programming states that all checks must always be done server-side,
because you cannot safely assume that data has not been tampered with client-side. This
said, it doesn’t make much sense to wait until the user finished with data entry before
advising him of a trivial error. For example, let’s consider a city entry form, which lets
the user enter a city’s data (country, state, name, population, and so on) and then add it to
the database. (See Figure 6.4.)

After the user enters a city name, you can use RPC to check whether there already
exists a such named city, and if so, show a warning, highlight the field, and so on. See
Figure 6.5.

112 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

Figure 6.4 A simple city input form. If the user enters the name of an
already existing city, he should get a warning so that he can fix it before

trying to commit the entered data.

113RPC Patterns of Usage

Figure 6.5 If the city already exists, we can use CSS to highlight the
field, provide a warning, and more.

Let’s hit the main points of the application. The UiBinder form is simple.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

xmlns:h='urn:import:com.fkereki.mvpproject.client.countryState'>

<g:HTMLPanel>

<table>

<tr>

<td>Country/State:</td>

<td><h:CountryStateView u:field="countryState" /></td>

</tr>

<tr>

<td>Name:</td>

<td><g:TextBox u:field="cityName" /></td>

</tr>

 Download from www.wowebook.com

ptg

<tr>

<td>Accented Name:</td>

<td><g:TextBox u:field="cityAccentedName" /></td>

</tr>

<tr>

<td>Population:</td>

<td><g:TextBox u:field="cityPopulation" /></td>

</tr>

<tr>

<td>Latitude:</td>

<td><g:TextBox u:field="cityLatitude" /></td>

</tr>

<tr>

<td>Longitude:</td>

<td><g:TextBox u:field="cityLongitude" /></td>

</tr>

</table>

<g:Button u:field="addCityButton" text="Add City" />

</g:HTMLPanel>

</u:UiBinder>

In the View, we need to assign a value change handler, which calls a (presenter pro-
vided) method. Note that we must assign the handler both to the country/state widget
and to the city name textbox, because all those fields are involved in the validation we
want to do.

@UiHandler("cityName")

void uiOnCityChange(ChangeEvent event) {

onCityNameChangeCallback.onSuccess(null);

}

@UiHandler("countryState")

void uiOnChange(ValueChangeEvent<Object> event) {

onCountryStateChangeCallback.onSuccess(null);

}

In the presenter, we have to set up a method that will (1) get the current country,
state, and city name values, (2) if none is missing, use RPC to check whether that city is
already in the database, and (3) depending on the check result, set the CSS style for the
city name either as normal or as an error.

SimpleCallback<Object> ch= new SimpleCallback<Object>() {

@Override

public void goBack(Object result) {

final String country=

getDisplay().getCountryState().getCountry();

114 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

final String state=

getDisplay().getCountryState().getState();

final String city= getDisplay().getCityName();

if (!country.isEmpty() && !state.isEmpty()

&& !city.isEmpty()) {

getEnvironment().getModel().getRemoteWorldService()

.cityExists(country, state, city,

new AsyncCallback<Boolean>() {

public void onFailure(

final Throwable caught) {

// ...warn about the problem...

}

public void onSuccess(

final Boolean result) {

if (result.booleanValue()) {

/*

* That city already exists!

*/

getEnvironment()

.showAlert(

"That city is already in the database");

getDisplay().setCityNameCssStyle(

"gwt-Textbox-Error");

} else {

getDisplay().setCityNameCssStyle(

"gwt-TextBox");

}

}

}

});

}

};

getDisplay().setOnCityNameChangeCallback(ch);

getDisplay().setOnCountryStateChangeCallback(ch);

This code is simple but has a subtle, easy-to-miss error. What would happen if the
user entered a duplicate city name, realized his error, and quickly fixed it before the
RPC check was done? The result would come showing the duplicate value, and the pre-
senter would highlight the new value of the field as duplicate, whereas the old one was
the actual wrong value. A better way of coding the main part of the check requires stor-
ing the original country, state, and city name values and reporting the duplication if and
only if those three values still match.

115RPC Patterns of Usage

 Download from www.wowebook.com

ptg

getEnvironment().getModel().getRemoteWorldService().cityExists(

country, state, city, new AsyncCallback<Boolean>() {

/*

* In order to prevent spurious or redundant messages or

* actions, let's store the original parameters for the service

* call...

*/

String originalCountry = country;

String originalState = state;

String originalCityName = city;

public void onFailure(final Throwable caught) {

// ...as before...

}

public void onSuccess(final Boolean result) {

/*

* ...and avoid doing anything unless the parameters still

* match.

*/

if (originalCountry.equals(getDisplay().getCountryState()

.getCountry())

&& originalState.equals(getDisplay().getCountryState()

.getState())

&& originalCityName.equals(getDisplay().getCityName())) {

if (result.booleanValue()) {

//...as before...

This pattern appears in different guises in other examples in the book. You must
always assume a RPC call might take several minutes (!) and the user could use that time
to change everything from the way it was before the call.

Enterprise Java Beans
Using GWT for the client-side of your application doesn’t mean you cannot use
Enterprise Java for the server-side code. (And using the existing Java infrastructure might
become a necessity and a requirement for your new GWT application, so it can coexist
happily with the already in-use code.) You cannot directly call an EJB from your client,
but you can call a RemoteServlet via RPC, and this servlet can in turn connect to the
EJB.

As a test, I coded and deployed (using GlassFish) a truly simple EJB that received a
first name and a last name and returned it in a normalized “LAST, FIRST” format. I
then coded an EjbAccess remote servlet that received two strings (first and last name)
connected to the EJB and returned the produced normalized string to the client-side
caller. A bare-bones code sample using a EJB could be as follows.

116 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

package com.kereki.ejbcall.server;

//...imports...

@SuppressWarnings("serial")

public class EjbAccessImpl

extends RemoteServiceServlet

implements EjbAccessService {

public String normalizeName(String firstName, String lastName) {

String xxx= "";

Context ctx;

try {

/*

* We are connecting to GlassFish v.3, where our EJB is posted

*/

Properties props= new Properties();

props.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.cosnaming.CNCtxFactory");

props.put("java.naming.factory.url.pkgs",

"com.sun.enterprise.naming");

props.put(Context.PROVIDER_URL,

"iiop://localhost:3700/");

ctx= new InitialContext(props);

BookServiceEJBRemote ejb= (BookServiceEJBRemote) ctx

.lookup("java:global/EJBModule/BookServiceEJBBean!"+

"gwt.book.integration.BookServiceEJBRemote");

xxx= ejb.getNormalizedName(firstName, lastName);

} catch (NamingException ex) {

ex.printStackTrace();

}

return xxx;

}

}

117RPC Patterns of Usage

 Download from www.wowebook.com

ptg

This kind of proxying is easy to implement and can also help connect to other serv-
ices, including non-Java based ones; we’ll see more on this in Chapter 7. Of course, there
are more ways of solving this: For example, you could use the EJB container to host the
GWT components, and you could look up the local interfaces in JNDI. This is, however,
a server-side consideration, and goes beyond GWT, so we won’t be studying it any further.

Summary
We have studied several usage patterns that involve RPC, showing how its application
can enhance performance, a recurring theme in this book. We also took advantage of an
application of RPC to build a database bound widget, and saw how to do and use it
with MVP in mind, going further than we had in previous chapters. We also saw how to
share code (even incompatible classes) between client- and server-side code.

In the next chapter we’ll keep to server connection-related themes but consider using
Ajax more directly, instead of indirectly through RPC.

118 Chapter 6 Communicating with Your Server

 Download from www.wowebook.com

ptg

7
Communicating with

Other Servers

If you cannot or won’t use GWT servlets on the server (possibly because your company
has already set up a different environment, with a services-oriented architecture, probably
based in scripting languages such as PHP) you can still do direct Ajax calls and process
other kind of responses, such as XML (or JSON, which we’ll see later on). In this chap-
ter we will study the usage of XmlHttpRequests and connect to services both to get and
to send XML data.

RPC calls are very useful in GWT, but in today’s computing environments, it’s highly
likely that your GWT application will have to coexist with other, previously developed,
separate applications. Your company might already have in place a service-oriented archi-
tecture, and it wouldn’t pay to redevelop and revalidate all that code, just to use RPC.

Fortunately, the GWT developers didn’t forget about Ajax, and also provide direct
access to XMLHttpRequest calls, which means you can connect to other kinds of services;
you can even deploy a complete system using GWT exclusively for client-side code and
never develop a single line of server-side Java code!

Of course, a web service can return any kind of data, and a most likely option is the
usage of XML, so in this chapter we will develop a simple form that will both get and
send XML data, and do so in several different ways. (And we will be seeing more ways
of getting such data, through JSONP or external APIs, in the next chapters.)

But, before getting to work with all these examples, we need to analyze and solve a
possibly show-stopping problem: the Same Origin Policy, a security measure that could
stop all our connections cold and leave us without any way to test our application!

The Same Origin Policy (SOP) Restriction
The Same Origin Policy (SOP) is a security restriction that won’t let a page, which was
loaded from a certain origin (taken as the trio formed by protocol, host, and port) to
access any data from any URL that changes a part of that trio. (Internet Explorer is
rather cavalier about the SOP, and only forbids accesses when you change protocol

 Download from www.wowebook.com

ptg

or host, but allows port changes. However, for Ajax calls, it does pay attention to the
port.) For example, if your GWT client-side application was loaded from http://
www.somesite.com:80/a/page/at/your/site, SOP won’t enable your application to
attempt to get data from other URLs (this is called cross scripting) by blocking any calls to
https://www.somesite.com (changed protocol), http://www.othersiteofyours.com
(changed host), or even www.somesite.com:8080 (changed port).1

SOP is, of course, a good browser security idea, because it makes it impossible for
rogue JavaScript code from any origin to access and handle data taken from another, dif-
ferent, origin. Actually, managing to disable SOP would be a phisher’s ultimate wish: You
could be looking at a valid, legit page, while a third party could be monitoring your
interactions with the page and learning your secrets along the way. With SOP in place,
you can rest assured that any content you view will have been sent by the expected ori-
gin and that no code from any other (suspect) origin could be interfering.

On the other hand, for GWT development, SOP proves to be rather a bother. When
you try your application in Development mode, it connects to port 8888, but you may
be trying to connect to a PHP web service residing at the standard port 80, which
means the call won’t be allowed by SOP!

If your application doesn’t use RPC and you deploy it with Apache (we will touch
on Deployment in Chapter 15, “Deploying Your Application”) the compiled version of
your code won’t have any problems calling the web service (because both will run at
port 80) but having to compile and deploy your code after every little change would
quickly become quite tiresome.

Is there a way out? It depends on how you plan to deploy your application, and what
web services you want to connect to. A first solution implies adding the -noserver
parameter to your development launch configuration and setting the port number to 80.
If your code connects only to that port (i.e., not trying to access both servlets and other
services, which reside at different ports) you won’t have any problems. However, there
are other situations you must consider.

n If the desired web services require a different protocol, or reside at another host,
you are plumb out of luck; you will have to deploy a proxy on your server (we’ll
see how to do it next), access it through RPC, and let it connect to the other web
service, post your parameters, get the answer, and then send it back to you for your
own processing. JSONP (which we’ll also study) can provide another solution.

n If you want to connect to a web service running on the same server, but at a dif-
ferent port, the simplest solution could be using Internet Explorer (an old version,
at that) for Development mode, and in this case, the browser wouldn’t complain
about the different port: Internet Explorer’s noncompliance with standards would
come out to be an advantage! However, I couldn’t seriously recommend this way

120 Chapter 7 Communicating with Other Servers

1. You can find a treatment of this at http://code.google.com/p/browsersec/wiki/Part2.

 Download from www.wowebook.com

http://www.somesite.com:80/a/page/at/your/site
https://www.somesite.com
http://www.othersiteofyours.com
http://code.google.com/p/browsersec/wiki/Part2
http://www.somesite.com:80/a/page/at/your/site
www.somesite.com:8080

ptg

of working; your development work would hinge on a program not going along
with standards and would limit you to a single browser, so even if this provides a
quick workaround, it cannot be considered a definitive solution.

n In the same preceding situation, if you work with Linux and Firefox, the port
change would be recognized and rejected, but Firefox 3.5 and later implements the
W3C “Access Control Specification”,2 which enables the server to accept or
rejects calls, by using new HTTP headers that describe what origins are allowed
to use the service. For GET calls, if the caller is enabled to use the service, an
accepted answer includes a header such as Access-Control-Allow-Origin:
http://an.accepted.site, which Firefox will see. For POST methods (that
could cause side effects on the server side) browsers are supposed to “preflight” the
petition by sending an HTTP OPTIONS query, and only after receiving approval,
sending the actual POST request. We won’t get deeply into this; after all, it’s a
browser-and-server-code-related matter, which doesn’t actually have much (or
anything) to do with GWT. This is better than the Internet Explorer solution (at
least it would work both under Linux and Windows) but it would also cause some
pain and limit your development. This evaluation would change if Internet
Explorer and other browsers aligned themselves with the W3C specification, but
that’s not the situation for the time being.

n Finally, if you want to connect to a different server, or use a different port, you are
definitely out of luck. Even if you could get the service deployers to modify their
code and send out the proper headers, it wouldn’t help users who didn’t run
Firefox; you will have no way but to recur to a proxy, because SOP restrictions do
not apply to code not running on a browser.3

So, let’s work out a simple example and run it either with a proxy or by using
Firefox’s solution.

Our City Update Application
Let’s plan a simple program, which will let us update the missing Population fields in
most of our cities database. The user can enter the beginning of a city name, search for
all cities matching that beginning, edit (in a grid) the populations of all those cities, and
finally send the modified data back to the server so the database will be updated. See
Figure 7.1 for a bare-bones form design.

121Our City Update Application

2. See http://dev.w3.org/2006/waf/access-control/ for the specification, and https://

developer.mozilla.org/En/Server-Side_Access_Control for a complete description of Firefox’s

implementation.

3. Okay, this isn’t fully true; you could do, under certain circumstances, by using JSONP, as we will

see in next chapter.

 Download from www.wowebook.com

http://an.accepted.site
http://dev.w3.org/2006/waf/access-control/
https://developer.mozilla.org/En/Server-Side_Access_Control
https://developer.mozilla.org/En/Server-Side_Access_Control

ptg

Figure 7.1 A simple design suffices for our cities population updating
application. The user will get all cities whose names start with a given
string, enter the populations for the matching cities, and send the data

back to the server.

After the user keys in the city name start and gets the cities, he may see something
such as Figure 7.2.

122 Chapter 7 Communicating with Other Servers

Figure 7.2 Getting all cities whose names start with Darwin.

 Download from www.wowebook.com

ptg

The design of the view is easy, so we won’t show that code here. The Display inter-
face for the view is more interesting, because it shows how to deal with grids and arrays
of values in MVP fashion.

public interface CitiesUpdaterDisplay extends Display {

void clearAllCities();

String getCityNameStart();

int getCityPopulation(final int i);

void setCityData(

final int i,

final String cityName,

final String countryName,

final String stateName,

final int population);

void setOnCityNameStartChangeCallback(SimpleCallback<Object> acb);

void setOnGetCitiesClickCallback(SimpleCallback<Object> acb);

void setOnUpdateCitiesClickCallback(SimpleCallback<Object> acb);

}

The clearAllCities() method enables the Presenter to empty the grid,
whereas setCityData(...) enables filling the grid city by city, line by line. The
getCityPopulation(...) method is used to get data back from the grid, and
getCityNameStart() accesses the city name field to provide its value. Finally, the
three set...Callback(...) methods are used to handle city name change events plus
click events on both buttons.

When the user clicks on Get Cities, the Presenter receives an XML file like the one
shown (in a slightly abridged form) next. The root element is <cities>, which includes
a <city> element for each returned city. The country and state values are returned in
separate elements, using attributes for the code and name. (These values could have been
returned as attributes of the <city> element, but here we want to show several XML
processing features; this XML isn’t actually optimal for our usage.) Finally, latitude and
longitude are returned (once again, uselessly unless as an example) in the <coords> ele-
ment. Finally, note that the <pop> element is included only for those cities (in our case,
just the Australian “Darwin” city) whose population is known.

<?xml version="1.0" encoding="UTF-8"?>

<cities>

<city name="darwin">

<country code="AR" name="Argentina"/>

<state code="16" name="Rio Negro"/>

<coords>

<lat>-39.2000008</lat>

123Our City Update Application

 Download from www.wowebook.com

ptg

<lon>-65.7666702</lon>

</coords>

</city>

<city name="darwin">

<country code="AU" name="Australia"/>

<state code="03" name="Northern Territory"/>

<coords>

<lat>-12.4666672</lat>

<lon>130.8333282</lon>

</coords>

<pop>93081</pop>

</city>

...

... several <city> elements removed

...

<city name="darwin">

<country code="UY" name="Uruguay"/>

<state code="17" name="Soriano"/>

<coords>

<lat>-33.0999985</lat>

<lon>-57.6333351</lon>

</coords>

</city>

<city name="darwin">

<country code="ZW" name="Zimbabwe"/>

<state code="03" name="Mashonaland Central"/>

<coords>

<lat>-16.7833328</lat>

<lon>31.5833340</lon>

</coords>

</city>

</cities>

The PHP code that runs on the server and produces this output is quite simple. Note
that the method used for producing XML code is quite similar to the strings-based
method we will develop for GWT. Also, note that the generated code uses both attributes
and elements, just for variety; in actual life, you would go for the most compact possible
representation.4

<?php

header("Content-type: text/xml");

$desiredCity= addslashes($_REQUEST["city"]);

124 Chapter 7 Communicating with Other Servers

4. Also, this is the simplest way to produce XML output, but there are alternatives, such as the

XMLWriter class, or SimpleXML, or any of PEAR’s XML-related functions and classes.

 Download from www.wowebook.com

ptg

$conn= mysql_connect("127.0.0.1", "mysqluser", "mysqlpass");

mysql_select_db("world");

$result= mysql_query("SELECT ci.cityName, ci.countryCode,".

"co.countryName, ci.regionCode, re.regionName, ".

"ci.population, ci.latitude, ci.longitude ".

"FROM cities ci JOIN regions re ON ".

"ci.countryCode=re.CountryCode AND ci.regionCode=re.regionCode ".

"JOIN countries co ON ci.countryCode=co.countryCode ".

"WHERE ci.cityName LIKE '%{$desiredCity}%' ".

"ORDER BY ci.cityName, co.countryName, re.regionName ");

echo '<?xml version="1.0" encoding="UTF-8"?>'."\n";

echo '<cities>'."\n";

while ($row= mysql_fetch_assoc($result)) {

echo ' <city name="'.htmlspecialchars($row['cityName']).'">'."\n";

echo ' <country code="'.$row['countryCode'].'" ';

echo 'name="'.htmlentities($row['countryName']).'"/>'."\n";

echo ' <region code="'.$row['regionCode'].'" ';

echo 'name="'.htmlentities($row['regionName']).'"/>'."\n";

echo ' <coords>'."\n";

echo ' <lat>'.$row['latitude'].'</lat>'."\n";

echo ' <lon>'.$row['longitude'].'</lon>'."\n";

echo ' </coords>'."\n";

if ($row['population']>0) {

echo ' <pop>'.$row['population'].'</pop>'."\n";

}

echo ' </city>'."\n";

}

echo '</cities>'."\n";

?>

Leaving aside (for the moment) the matter of actually getting the XML string, let’s
study how to process it in GWT.

Receiving and Processing XML
To use the XML library, you have to add <inherits name="com.google.gwt.xml
.XML"/> to the .gwt.xml file of your application. You convert the string to a XML
document by using XMLParser.parse(...) and access its root (<cities>, in this case)
with the getDocumentElement() method; after this, you are ready to walk through
the XML.

125Receiving and Processing XML

 Download from www.wowebook.com

ptg

GWT’s XML parser is based on the browser’s own JavaScript DOM routines. (This
will affect our tests in Chapter 13, “Testing Your GWT Application”; we won’t be able to
test with just JUnit any XML using form.) Browser parsers often create empty text
nodes for each tab or line break, and unless you remove them, your code will encounter
unexpected elements, which might even cause your algorithm to fail; always use
removeWhitespace(...) to clean up the generated document before attempting to
process it. Another quirk: if you expect to process CDATA sections, you’ll need to verify
whether your browser supportsCDATASection(...); if not, those sections will
become text nodes, and your XML processing logic will have to vary.5 Finally, note that
your XML processing code will usually be full of casts; it’s up to you to decide what
kind of nodes you will process!

The Presenter code for our form is as follows. The logic also uses
HashMap<Integer, ClientCityData> cityList to store the cities data, for later
usage when updating the server.

void displayCities(String xmlCities) {

clearCities();

if (!xmlCities.isEmpty()) {

final Document xmlDoc = XMLParser.parse(xmlCities);

final Element root = xmlDoc.getDocumentElement();

XMLParser.removeWhitespace(xmlDoc);

As we said, you must remember to removeWhitespace(...) from the produced
Document; otherwise, you’ll have to deal with plenty of empty nodes.

final NodeList cities = root.getElementsByTagName("city");

for (int i = 0; i < cities.getLength(); i++) {

final Element city = (Element) cities.item(i);

String cityName = city.getAttributeNode("name").getValue();

final Element country = (Element)

city.getElementsByTagName("country")

.item(0);

String countryCode = country.getAttributeNode("code").getValue();

String countryName = country.getAttributeNode("name").getValue();

final Element state = (Element)

city.getElementsByTagName("state")

.item(0);

String stateCode = state.getAttributeNode("code").getValue();

String stateName = state.getAttributeNode("name").getValue();

126 Chapter 7 Communicating with Other Servers

5. Keep in mind that GWT’s XML parser depends on the underlying browser’s parser, so you should

be extra careful not to write any code that could depend on functionality not common to all

browsers!

 Download from www.wowebook.com

ptg

int population = 0;

Element popElem = (Element)

city.getElementsByTagName("pop").item(0);

if (popElem != null) {

population =

Integer.parseInt(popElem.getFirstChild().getNodeValue());

}

Element coords = (Element)

city.getElementsByTagName("coords").item(0);

Element lat = (Element) coords.getElementsByTagName("lat").item(0);

Element lon = (Element) coords.getElementsByTagName("lon").item(0);

float latitude =

Float.parseFloat(lat.getFirstChild().getNodeValue());

float longitude =

Float.parseFloat(lon.getFirstChild().getNodeValue());

After having collected the complete city data, we just have to show it onscreen, by
using the setCityData(...) method and add it to cityList.

getDisplay().setCityData(i + 1,

cityName, countryName,

stateName, population);

/*

* Given the usage of cityList, we could have set latitude

* and longitude to 0.0, and it would have worked all the same...

*/

cityList.put(i + 1, new ClientCityData(countryCode, stateCode,

cityName, "", population, latitude, longitude));

}

}

}

Notice the use of getElementsByTagName(...) to get an array of elements,
getAttributeNode(...) to get at attributes, and getNodeValue(...) to get the
value associated with a node. We still have to see how to produce XML (for our city
updating service consumes XML too) but let’s first finish the matter of getting the data
from the server, with two variants.

Using Ajax Directly
If you solved the SOP problems, using Ajax directly is a no-brainer. GWT used to limit
you to using GET and POST calls only (because Safari wasn’t able to do otherwise) but
for this application that’s enough. In any case, it was always possible to emulate other
requests by doing a POST and including an extra parameter specifying what method you
actually wanted to use. And by the way, you might even have to use this emulation to do
GET requests, but with too long an URL; if you must send over too many parameters,

127Receiving and Processing XML

 Download from www.wowebook.com

ptg

and the 256-character limit will be exceeded, you’ll just have to recur to using a POST,
and faking a GET.6

Because we assume the service is in the same server, we can use GWT.getHostPage -
BaseURL(...) and massage it a bit (see the following baseUrl variable and the second
parameter to RequestBuilder) to produce the actual URL to call. This way of working
also helps during development; calls will be sent to your development machine instead of
to the actual server, where they could be quite harmful!

void getCitiesViaRequestBuilder() {

String baseUrl = "http:" + GWT.getHostPageBaseURL().split(":")[1];

final RequestBuilder rb = new RequestBuilder(RequestBuilder.GET,

URL.encode(baseUrl + ":80/bookphp/getcities1.php?city="

+ getDisplay().getCityNameStart()));

try {

rb.sendRequest(null, new RequestCallback() {

@Override

public void onError(Request request, Throwable exception) {

//...inform about the error...

}

@Override

public void onResponseReceived(Request request,

Response response) {

displayCities(response.getText());

}

});

} catch (Exception e) {

// ...inform about the error...

}

}

Directly specifying a port in the desired URL isn’t quite nice, even leaving aside the
usage of hard-coded constants; if you set up your development environment properly
and run your code on port 80, you won’t have to do this fiddling. On the other hand,
including the desired port number forces you to set things up properly, so it could be
positive after all!7

On receiving the answer, we just execute the displayCities(...) method we pre-
viously saw. Of course, error handling should be enhanced; just informing the user
wouldn’t probably do, but adding extra behavior isn’t hard to do.

128 Chapter 7 Communicating with Other Servers

6. Emulating PUT and DELETE calls with POST and GET is common; for example, the prototype.js

JavaScript library lets you change a GET into a DELETE by adding _method=DELETE to the parame-

ters list; Ruby on Rails uses a similar solution, and there are many more examples.

7. I won’t be repeating this comment, but note that all examples in this chapter force port 80 in this

way.

 Download from www.wowebook.com

ptg

Going Through a Proxy
If you cannot get past the SOP problems, you’ll have to implement a RemoteServlet
that acts as a proxy. You’ll have to implement, at the very least, the GET and POST
methods, but it’s possible (depending on your requirements) that you will also have to
add PUT, DELETE, and so on, but their implementations are quite similar (DELETE is
similar to GET, and PUT to POST) so that won’t be a problem.8 We’ll call our servlet
XhrProxy, standing for XMLHttpRequestProxy.

(Of course, this solution has its own costs; mainly, you will be adding to the server
load, because it will have to intermediate in all requests. However, if the server environ-
ment isn’t Java-based, there’s no way out other than using the proxy.)

We shall implement two methods: getFromUrl(...) and postToUrl(...). Both
methods will receive three parameters: the URL of the server providing the service, the
path to the service (relative to the URL), and the parameter string in the usual parameter=
value¶meter2=value2&... style; it’s your responsibility to adequately escape all
values. Implementing this method is more of a Java problem than a GWT one, and the
use of a BufferedReader simplifies it.

package com.fkereki.mvpproject.server;

//...imports...

public class XhrProxyImpl

extends RemoteServiceServlet

implements XhrProxy {

@Override

public String getFromUrl(

final String originalUrl,

final String originalPath,

final String parameters) {

String result = "";

try {

final String urlToGet = originalUrl + "/" + originalPath

+ (parameters.isEmpty() ? "" : "?" + parameters);

final URL url = new URL(urlToGet);

final BufferedReader in = new BufferedReader(

new InputStreamReader(url.openStream()));

String inputLine;

while ((inputLine = in.readLine()) != null) {

129Receiving and Processing XML

8. For the whole list of possible calls, check www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

 Download from www.wowebook.com

www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

ptg

result += inputLine;

}

in.close();

return result;

} catch (final Exception e) {

return "";

}

}

Keep in mind this code is intended as an example, and not as production-ready code;
in an actual implementation you would care more about error processing than mainly
returning an empty string, for example.

Implementing POST is similar, but in this case we’ll have to both read and write to
the connection; first write to send the request and then read to get the results.9

@Override

public String postToUrl(

final String originalUrl,

final String originalPath,

final String parameters) {

String result = "";

try {

final String EOL = "\r\n";

final URL url = new URL(originalUrl);

final URLConnection connection = url.openConnection();

connection.setDoOutput(true);

final BufferedReader in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));

final OutputStreamWriter out = new OutputStreamWriter(connection

.getOutputStream());

out.write("POST " + originalPath + EOL);

out.write("Host: " + originalUrl + ":80" + EOL);

out.write("Accept-Encoding: identity" + EOL);

out.write("Connection: close" + EOL);

out.write("Content-Type: application/x-www-form-urlencoded" + EOL);

out.write("Content-Length: " + parameters.length() + EOL);

out.write(EOL);

130 Chapter 7 Communicating with Other Servers

9. For sample Java code, see http://developers.sun.com/mobility/midp/ttips/HTTPPost/ and for all

the possible headers, go to www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

 Download from www.wowebook.com

http://developers.sun.com/mobility/midp/ttips/HTTPPost/
www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

ptg

out.write(parameters);

out.write(EOL);

String inputLine;

while ((inputLine = in.readLine()) != null) {

result += inputLine;

}

in.close();

out.close();

return result;

} catch (Exception e) {

return "";

}

}

}

Again, there are shorter and more robust ways of writing this code, such as using
the Apache HttpComponents HttpClient library (see http://hc.apache.org/
httpcomponents-client/) but for our example, the provided implementation is
enough.

Producing and Sending XML
Now that we have seen how to send requests and process XML results, let’s turn to pro-
ducing XML output and sending it to the server. If the user updates any city population,
we’ll send an XML file with all the updated cities; we’ll use the same format that we
got, just so we can experiment a bit more. There are two ways of producing this output:
Because XML is just text, we can work with strings and build up the XML output bit
by bit, or we can internally generate an XML document and then convert it to a string
with its toString() method; let’s go over both ways, but first let’s look at the code
that will decide which cities to update.

getDisplay().setOnUpdateCitiesClickCallback(

new SimpleCallback<Object>() {

@Override

public void goBack(Object dummy) {

HashMap<Integer, ClientCityData> newCityList =

new HashMap<Integer, ClientCityData>();

for (Integer i : cityList.keySet()) {

int gridPop = getDisplay().getCityPopulation(i);

ClientCityData thisCity = cityList.get(i);

if (thisCity.population != gridPop) {

thisCity.population = gridPop;

newCityList.put(i, thisCity);

131Producing and Sending XML

 Download from www.wowebook.com

http://hc.apache.org/httpcomponents-client/
http://hc.apache.org/httpcomponents-client/

ptg

}

}

String xmlToSend;

/*

* Create the XMl to send via any of the

* two following calls (but not both!)

*/

xmlToSend= citiesToXmlViaDom(newCityList);

xmlToSend= citiesToXmlViaString(newCityList);

/*

* ...and then pick one of the two following

* sentences to send the data to the server

*/

sendCitiesToServerViaRequestBuilder(xmlToSend);

sendCitiesToServerViaProxy(xmlToSend);

}

});

In the DisplayCities(...) method we previously saw, we had created CityList
with all the data on the received cities. Now, we loop over all the cities, get the (possibly
updated) population from the grid by using getDisplay().getCityPopulation(i); if
there were a change, we add the city data to newCityList, with which we shall con-
struct the XML output code.

Creating XML with Strings
As XML is plain text, we can just loop through newCityList and build up the result
string bit by bit. Note that we do not actually need to include line feeds or indent ele-
ments with spaces; this was done just for clarity.10

String citiesToXmlViaString(HashMap<Integer, ClientCityData> aList) {

String result = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

result += "<cities>\n";

for (int i : aList.keySet()) {

ClientCityData thisCity = aList.get(i);

result += "<city>\n";

result += " <city name=\"" + thisCity.cityName + "\">\n";

result += " <country code=\"" + thisCity.countryCode + "\"/>\n";

result += " <state code=\"" + thisCity.stateCode + "\"/>\n";

result += " <pop>" + thisCity.population + "</pop>\n";

132 Chapter 7 Communicating with Other Servers

10. Though it may seem like bit-counting, for extra speed you should always be as concise as possi-

ble in every data you send back and forth; although I agree that in many cases, the difference may

be unnoticeable.

 Download from www.wowebook.com

ptg

/*

* In truth, putting latitude and longitude in the XML string isn't

* needed; let's do it just for showing how it's done.

*/

result += " <coords>\n";

result += " <lat>" + thisCity.latitude + "</lat>\n";

result += " <lon>" + thisCity.longitude + "</lon>\n";

result += " </coords>\n";

result += "</city>\n";

}

result += "</cities>\n";

return result;

}

In this particular case, because we know that city names, country and state codes, and
geographical coordinates are just letters and numbers, we need not worry about nonvalid
characters, but if the text to be output might include < or apostrophes or other XML-
used characters, we would have to pass every string through a function such as11

public static String htmlSpecialChars(final String inp) {

String aux = inp;

aux = aux.replace("&", "&");

aux = aux.replace("\"", """);

aux = aux.replace("'", "'");

aux = aux.replace("<", "<");

aux = aux.replace(">", ">");

return aux;

}

This function changes the five characters that XML uses for itself, replacing them by
their HTML equivalents; all other characters are left as-is. Be careful to first replace &
with &, and only then do the other substitutions; otherwise, you would get
&lt; for <.12

Creating XML Through the DOM
The second way to produce an XML string is by building up a XML document and
then converting it to a string with its toString() method.

133Producing and Sending XML

11. There are many other possibilities, such as Apache Commons own StringEscapeUtils

.escapeXML() function.

12. The function is based on PHP’s own htmlSpecialChars(...) function; see

www.php.net/manual/en/function.htmlspecialchars.php for more on it.

 Download from www.wowebook.com

www.php.net/manual/en/function.htmlspecialchars.php

ptg

String citiesToXmlViaDom(HashMap<Integer, ClientCityData> aList) {

Document xml = XMLParser.createDocument();

Element cities = xml.createElement("cities");

xml.appendChild(cities);

for (int i : aList.keySet()) {

ClientCityData aCity = aList.get(i);

Element city = xml.createElement("city");

city.setAttribute("name", aCity.cityName);

Element country = xml.createElement("country");

country.setAttribute("code", aCity.countryCode);

city.appendChild(country);

Element region = xml.createElement("state");

region.setAttribute("code", aCity.stateCode);

city.appendChild(region);

String pop = "" + aCity.population;

Element popEl = xml.createElement("pop");

Text popText = xml.createTextNode(pop);

popEl.appendChild(popText);

city.appendChild(popEl);

/*

* We actually don't use the <coords> element,

* but let's build it up for the sake of it.

*/

Element coords = xml.createElement("coords");

Element lat = xml.createElement("lat");

Text latText = xml.createTextNode("" + aCity.latitude);

lat.appendChild(latText);

coords.appendChild(lat);

/*

* If you want to write a little less, you can chain "create"

* commands; check out the differences with the "lat" code above.

*

* Of course, with such brevity, legibility may suffer...

*/

coords.appendChild(xml.createElement("lon").appendChild(

xml.createTextNode("" + aCity.longitude)));

city.appendChild(coords);

134 Chapter 7 Communicating with Other Servers

 Download from www.wowebook.com

ptg

cities.appendChild(city);

}

return "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"

+ xml.toString();

}

We use createElement(...) and createTextNode(...) to build up the neces-
sary nodes, setAttribute(...)to assign attribute values, and appendChild(...) to
link objects together and form the DOM structure. Note how the <longitude> ele-
ment is created with a single rather complex call; this way of achieving brevity at the
cost of clarity appeals to some programmers, and that’s why I included it—though I
frown on it myself!

Sending the XML Data
Now that we have seen how to produce the XML data for updating the cities, let’s see
how to send the data. The PHP service that will receive the XML string and use it to
update the database is simple; pay particular attention to the processing of the
OPTIONS request to allow Firefox cross scripting.

<?php

if($_SERVER['REQUEST_METHOD'] == "OPTIONS") {

header('Access-Control-Allow-Origin: http://arunranga.com');

} elseif($_SERVER['REQUEST_METHOD'] == "POST") {

$xml_str= $_POST["xmldata"];

$xml_obj= simplexml_load_string($xml_str);

$conn= mysql_connect("127.0.0.1", "mysqluser", "mysqlpass");

mysql_select_db("world");

foreach($xml_obj->children() as $city) {

$name= addslashes($city['name']);

$country= addslashes($city->country['code']);

$region= addslashes($city->region['code']);

$pop= addslashes($city->pop);

$lat= addslashes($city->coords->lat);

$lon= addslashes($city->coords->lon);

mysql_query("REPLACE INTO cities ".

"cityName, countryCode, regionCode, ".

"population, latitude, longitude) VALUES (".

135Producing and Sending XML

 Download from www.wowebook.com

ptg

"'{$name}', '{$country}', '{$region}', ".

"'{$pop}', '{$lat}', '{$lon}')");

} else

die("Not allowed operation");

}

?>

Now let’s turn to actually sending the data from our GWT client application.

Sending XML Through Ajax
Using XMLHttpRequest to send the XML data to the server via Ajax is quite similar to
getting the XML. We use the same kind of processing as earlier to get the baseUrl and
from hence the final URL to call.

void sendCitiesToServerViaRequestBuilder(String xmlToSend) {

String baseUrl = "http:" + GWT.getHostPageBaseURL().split(":")[1];

final RequestBuilder rb = new RequestBuilder(RequestBuilder.POST,

URL.encode(baseUrl + ":80/bookphp/setcities.php?" + "xmldata="

+ xmlToSend));

try {

rb.sendRequest(null, new RequestCallback() {

@Override

public void onError(Request request, Throwable exception) {

// ...warn about the error...

}

@Override

public void onResponseReceived(Request request, Response response) {

// ...let the user know the data were processed...

}

});

} catch (Exception e) {

// ...warn about the error...

}

}

After the routine learns that the XML data was successfully processed, it could inform
the user, reenable the Send Data button (if it were disabled, applying the “double click”
preventing logic that we saw in Chapter 5, “Programming the User Interface”), and so on.

Sending XML Through a Proxy
Using a proxy is practically the same. Do not forget to URL.encode(...) the data to be
passed to the proxy.

136 Chapter 7 Communicating with Other Servers

 Download from www.wowebook.com

ptg

void sendCitiesToServerViaProxy(String xmlToSend) {

final String baseUrl = "http:"

+ GWT.getHostPageBaseURL().split(":")[1];

final String realUrl = URL.encode(baseUrl);

final String realPath = URL.encode("bookphp/setcities.php");

final String params = URL.encode("xmldata=" + xmlToSend);

XhrProxyAsync xhrProxy = getEnvironment().getModel()

.getRemoteXhrProxy();

xhrProxy.postToUrl(realUrl, realPath, params,

new AsyncCallback<String>() {

@Override

public void onFailure(Throwable caught) {

//...warn about the problem...

}

@Override

public void onSuccess(String result) {

//...let the user know the data were processed...

}

});

}

After the XML is processed, further steps would be the same as with the
RequestBuilder previous call.

Summary
We have seen how to process and generate XML code, and also studied how to get it
from a server either by using XMLHttpRequest calls or by having an intermediate
proxy, called by RPC.

We return to XML processing in the next chapters, when we will build an RSS/
Atom feed reader; we’ll be getting the feeds either via JSONP (Chapter 8, “Mixing in
JavaScript”) or through external APIs (Chapter 9, “Adding APIs”), but the XML process-
ing will be along the same lines we saw in this chapter.

137Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

8
Mixing in JavaScript

JavaScript is to GWT what assembly language is to classic compilers, and although you
should be careful, mixing JavaScript in with your Java code can help. For example, you can
attain better performance, or achieve otherwise hard-to-get results, including getting data
from remote servers bypassing the Same Origin Policy we covered in previous chapters.

There are some circumstances when you will need to add some JavaScript to your
application, and GWT provides a solution for this kind of situation. The GWT develop-
ers frequently use this to get low-level access to browser aspects, but there are other pos-
sible usages, such as taking advantage of prewritten JavaScript routines and libraries, using
JSON (an alternative to XML) for connection with servers, or using JSONP as a way to
avoid cross scripting SOP restrictions; we’ll analyze examples of all these situations in this
chapter.

JSNI
JavaScript Native Interface (JSNI) enables you to include JavaScript written routines within
your GWT Java program. Your JavaScript code will fully interact (i.e., calling, or being
called by) with the Java code, passing data back and forth, and even processing exceptions
thrown by each other. In fact, you could think of JavaScript as the “assembly language”
for GWT applications and use it the same way you would use Intel assembly code with
C++, for example. (As an example of this, several History methods that we used in
Chapter 4, “Working with Browsers,” are actually programmed directly in JavaScript.)

Before going any further, some warnings need be given in advance. First, it should be
obvious that by programming directly with JavaScript, you are foregoing GWT’s advan-
tages as to browser independence; for example, if your code deals with DOM aspects,
you will have to take care of compatibility by yourself. (Deferred binding—which we
saw in Chapter 4—is often used along with JSNI to produce browser-specific versions of
classes; GWT does this all the time.) Memory leaks and hard to trace errors are also a
possibility, and, of course, as we commented in Chapter 1, “Developing Your Application,”
JavaScript isn’t so good from the software engineering point of view as Java itself; wasn’t

 Download from www.wowebook.com

ptg

that a reason for using GWT? But, if you still decide to go ahead, JSNI will enable you
to access low-level operations or reuse third-party libraries, and possibly even squeeze a
drop more of speed and performance for your application.1

Other observation that needs be done is that JavaScript code will be harder to write
(neither the Java compiler nor GWT will detect syntactic or semantic problems in your
JavaScript code), debug (your Eclipse debugger won’t be much help when debugging
non-Java code) and test (you won’t be able so easily mock classes that mix JavaScript and
Java) so before going this way, you should certainly question yourself to see if pure GWT
Java code isn’t capable or good enough for your purposes.

In any case, we shall see more JSNI; for example, in Chapter 9, “Adding APIs,” we use
it to access third-party services (think Google Maps for a simple case) through specific
JavaScript APIs.

Basic JSNI Usage
Because JSNI isn’t so well known and used, let’s give a quick once over to the basic rules.
Calling a Java method from JavaScript requires a complex notation because your code
must provide all necessary disambiguation information to distinguish among possibly
overloaded methods. Calls are always in the form instance.@classname::method(
signature)(arguments) in which

n Instance is the object whose method you’ll be calling; you must omit it for static
calls. Don’t forget the dot before the @ symbol!

n Classname is the fully qualified class name, such as com.kereki.nixietest.
client.NixieDisplay as we’ll see in an upcoming example.

n Method is the name of the method you are calling.
n Signature is the internal Java Virtual Machine parameters signature for the method

parameters, built from the following table below.2 For example, if you were calling
a method with (int n, String s, int[] a) parameters, the corresponding
signature would be ILjava/lang/String;[I.

n Arguments is the actual list of arguments that you want to pass to the called
method. Note that calls to vararg methods require passing an array of values.3

140 Chapter 8 Mixing in JavaScript

1. Of course, you may have to work really hard at beating the speed of GWT generated code.

2. See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp276 for the specifica-

tion of Java signatures.

3. See http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html for more on this; the

required JSNI creation of an array actually fits the old Java style for dealing with varargs.

 Download from www.wowebook.com

http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/types.html#wp276
http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html

ptg

Type Signature

Boolean Z

Byte B

Char C

Double D

Float F

Integer I

Long J

Short S

all classes L fullyQualifiedClassName; with dots replaced by forward
slashes, as in Ljava/lang/String;

array of type [type

Invoking a Java constructor follows the same rule, except that the method name is
always new. Accessing Java fields from JavaScript also uses a similar syntax:
instance.@classname::field. You should take into account the following rules
regarding what types can be passed back and forth between Java and JavaScript:

n Java String types become JavaScript string values.
n Java Boolean types become JavaScript Boolean values.
n Java numeric types become JavaScript number values, with the exception that
long types are not supported.4

JSNI methods can return void, a Java primitive, a Java Object (created by Java code,
but possibly modified by JavaScript code), or a JavaScript created JavaScriptObject;
the latter, as far as GWT is concerned, will behave like a black box, and only JSNI code
will be able to access it.

Finally, you can handle Java exceptions within JavaScript code and vice versa
(JavaScript exceptions become JavaScriptException objects for Java processing) but
it’s recommended that you handle Java exceptions in Java code and JavaScript exceptions
in JavaScript code. (The reason for this is that JavaScriptException objects are
untyped, which goes against the vein of usual programming. You can even then get at
the original exception name and description by using the getName(...) and
getDescription(...) methods if you still want to process the exception yourself.)

141JSNI

4. JavaScript doesn’t provide an adequate substitution for long variables, so they are emulated by

the compiler, but this prevents using such values with JSNI. See http://code.google.com/webtoolkit/

doc/latest/DevGuideCodingBasicsJSNI.html for further explanation.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsJSNI.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodingBasicsJSNI.html

ptg

Hashing with JavaScript
Now, let’s start out with several simple, short JSNI examples. As we’ll see in Chapter 10,
“Working with Servers,” we can add a bit more security to logins and data exchanges by
using hashes. (A hash function takes a string as input and produces another string. The
important details are that there is no practical way to determine the input string from
the output string, and that any change in the input string, small as it might be, will pro-
duce several changes in the output string.) Hashes are usually involved in authentication
protocols, and that’s the way we’ll use them.

There are many possible such functions, such as MD5 or SHA-1, and because there
are quite good, free JavaScript implementations available, we can just take advantage of
them.5

Let’s pick Paul Johnston’s minified implementation of MD5 (at http://pajhome.org.uk/
crypt/md5/) and produce a JSNI wrapper. You will have to add the appropriate <script>
declaration to your HTML file:

<script type="text/javascript"

language="javascript" src="md5-min.js">

</script>

An (even better from the point of view of packaging everything together) alternative
would be adding <script src="/md5-min.js"/> to your gwt.xml module declara-
tion file, as we saw in Chapter 3, “Understanding Projects and Development”; in both
cases, you can be assured that your code won’t be called until the script is loaded. The
script itself should be placed in the war directory of your project.6

Given this, calculating the MD5 hash for any string can be done by just writing
md5("your string") if you declare7

private static native String md5(String pText) /*-{

return $wnd.hex_md5(pText);

}-*/;

Note particularly the usage of $wnd (which points to the current page’s browser win-
dow) to access the hex_md5(...) method; because your GWT compiled code executes
in a frame, you wouldn’t get access to the window methods and variables. (Forgetting to
use $wnd is a quite common error; remind me to tell you how I know!) Similarly, you
would use $doc (which points to the current page’s document object) to get at the cur-
rent document properties.

142 Chapter 8 Mixing in JavaScript

5. For example, you can find MD5 implementations at http://www.webtoolkit.info/javascript-md5.html

and http://pajhome.org.uk/crypt/md5/ and by searching a bit, you can find several more.

6. Previous versions of GWT used a public directory for this.

7. Note that the /*-{...}-*/ notation is actually a comment; in Java (not GWT) native methods

are pure object code, and you aren’t allowed to specify a code block for them. With JSNI, you

include your JavaScript within a comment that will be ignored by Java but recognized and processed

by the GWT compiler.

 Download from www.wowebook.com

http://pajhome.org.uk/crypt/md5/
http://www.webtoolkit.info/javascript-md5.html
http://pajhome.org.uk/crypt/md5/
http://pajhome.org.uk/crypt/md5/

ptg

Analogously, you could use other cryptographic methods for encoding or decoding,
for example; just make sure your JavaScript implementation is well tested, even taking
into account possible changes such as the previous usage of $wnd.8

Animations Beyond GWT
Although GWT does provide some help as to animations (see the com.google.gwt
.animation.client.Animation for more on this) there are many well-tested and effi-
cient libraries, such as jQuery (at http://jquery.com/) or script.aculo.us (at
http://script.aculo.us/) that provide all kinds of animations, transitions, and effects.

Let’s go with jQuery, and use it for a simple embellishment to highlight hyperlinks as
you hover over them. First, you’ll have to add the appropriate jQuery library to your
HTML file, with <script type="text/javascript" language="javascript"
src="jquery-1.3.2.min.js"></script>.

Then, we can write a JSNI animateAllLinks(...) function that will get all links
on the current window ($('a') is a selector, the jQuery way of referring to all <a> links,
and we already saw the need for $wnd) and make them grow to 150% size when the
mouse goes over them, and reduce them back to normal size when the mouse moves
out. (Yes, I know that the effect isn’t that pretty, but on the other hand, it’s simple to
code!) The stop(...) method cancels any previous animation enabling a new one to
proceed. The code is then

private static native void animateAllLinks() /*-{

$wnd.$('a').hover(

function() { // mouse in animation code

$wnd.$(this).stop().animate({fontSize:'150%'}, 250);

},

function() { // mouse out animation code

$wnd.$(this).stop().animate({fontSize:'100%'}, 250);

});

}-*/;

If you call the animateAllLinks(...) function, jQuery will add the two anima-
tions to every <a> link it can find. Of course, you can do much better, by both doing
animations and CSS styling, but that would be beyond this book; we just want to see
how to use an external JavaScript library, and JSNI enabled us to do it quite simply.

A Steampunk Display Widget
Do you remember Nixie tubes? The earliest calculators (in the 70s before LED times)
used them for displays. Basically, those tubes included several numeral-shaped cathodes,

143JSNI

8. If you want to test any implementation, there are many “test suites” such as the one at

http://home.claranet.de/xyzzy/src/md5.cmd that you can use.

 Download from www.wowebook.com

http://jquery.com/
http://script.aculo.us/
http://home.claranet.de/xyzzy/src/md5.cmd

ptg

which glowed orange when power was applied to them.9 Hobbyists are nowadays using
these tubes to build Steampunk-styled appliances like clocks; let’s build a widget enabling
us to display numbers, as in Figure 8.1.10

144 Chapter 8 Mixing in JavaScript

9. See www.tube-tester.com/sites/nixie/different/nixie-tube-links.htm for many links to Nixie tubes

information.

10. I remember my father bringing home a desk calculator—Monroe or Sweda brand, I think—which

used such tubes for its display… does this memory date me?

Figure 8.1 A Nixie display widget, showing vital information such as
James Bond’s secret agent number, Charles Darwin and Abraham Lincoln’s

shared birthday, and all the available digits.

Čestmír Hýbl provides, in his web site, both a useful routine and the needed images
(see http://cestmir.freeside.sk/projects/dhtml-nixie-display/) with which we can build a
Java NixieDisplay class.

package com.kereki.nixietest.client;

import com.google.gwt.core.client.JavaScriptObject;

import com.google.gwt.user.client.ui.HTMLPanel;

public class NixieDisplay

extends HTMLPanel {

JavaScriptObject display;

public NixieDisplay(

String pName,

int pDigits,

String pAlign) {

super("<div id='" + pName + "'></div>");

display = initNixieDisplay(pName, pDigits, pAlign);

}

 Download from www.wowebook.com

http://cestmir.freeside.sk/projects/dhtml-nixie-display/
www.tube-tester.com/sites/nixie/different/nixie-tube-links.htm

ptg

private native JavaScriptObject initNixieDisplay(

String pName,

int pDigits,

String pAlign) /*-{

var nd = new $wnd.NixieDisplay();

nd.id = pName;

nd.charCount = pDigits;

nd.charWidth = 30;

nd.charHeight = 50;

nd.charGapWidth = 0;

nd.urlCharsetImage= "nixielib/zm1080_d1_09bdm_30x50_8b.png";

nd.align = pAlign;

return (nd);

}-*/;

public native void setText(String pText) /*-{

this.@com.kereki.nixietest.client.NixieDisplay::display.init();

this.@com.kereki.nixietest.client.NixieDisplay::display.setText(pText);

}-*/;

}

Before getting into details, let’s see how this class would be used. The following code
produces the display that was shown earlier.

NixieDisplay display1 = new NixieDisplay("nd1", 5, "right");

NixieDisplay display2 = new NixieDisplay("nd2", 10, "left");

NixieDisplay display3 = new NixieDisplay("nd3", 12, "right");

FlexTable ft = new FlexTable();

ft.setWidget(0, 0, new Label("James Bond is:"));

ft.setWidget(0, 1, display1);

ft.setWidget(1, 0, new Label("Darwin/Lincoln Birthdate:"));

ft.setWidget(1, 1, display2);

ft.setWidget(2, 0, new Label("All digits:"));

ft.setWidget(2, 1, display3);

RootPanel.get().add(ft);

display1.setText("007 ");

display2.setText("02-12-1809");

display3.setText("-123456.7890");

The JavaScript routine needs a <div> (with an id) to display the characters, so
extending HTMLPanel was a sensible choice. The constructor requires a name (for the
<div id>), a length (in digits) and a default alignment ("left" or "right") for the
text. To set a value, the setText(...) method is provided. The logic for constructing

145JSNI

 Download from www.wowebook.com

ptg

and updating a display were taken from the web site; in particular note the way of get-
ting at an attribute of a Java object from JavaScript (which in this case happens to be a
function) in the setText(...) method, with this.@com.kereki.nixietest.client
.NixieDisplay::display.init().

Okay, maybe this kind of widget isn’t your “cup of tea,” but if you like this retro look,
check out Hýbl’s site and code, and you’ll learn how to use other tubes, or create a
dynamic old-style clock or calculator for your web application. Using other JavaScript
widget libraries is similar to the job we did here, in any case, and you can enhance your
GWT applications this way.

JSON
JSON (JavaScript Object Notation) is an alternative to XML, with the extra advantage
that it is quite easily processed by JavaScript.11 GWT has always provided support for
this protocol, and in particular GWT 2 includes several classes and methods that make
JSON processing even easier.

Let’s create a simple news reader, using a JSON data source, to examine how to get
and process such data. We use Yahoo’s search services12 that searches for news and pro-
vides them in JSON format. (You can also get the feed in JSONP format, which makes
for even easier processing; we’ll touch on this next.)

A sample call to http://search.yahooapis.com/NewsSearchService/V1/newsSearch?appid=
YahooDemo&query=computer&results=5&language=en&output=json provides a JSON
string, with up to five news in English language that include the word “computer.” With
some added blanks for readability, and abridging some texts, the output might be as fol-
lows:

{"ResultSet": {

"totalResultsAvailable":"19978",

"totalResultsReturned":5,

"firstResultPosition":"1",

"Result":[

{

"Title":"Micro computer club meets Jan 12 in Hanover Twp.",

"Summary":"HANOVER TWP. - The Micro Computer Club will meet ...",

"Url":"http:\/\/recordernewspapers.com\/articles\/2010\/01\/09...",

"ClickUrl":"http:\/\/recordernewspapers.com\/...",

"NewsSource":"Hanover Eagle",

"NewsSourceUrl":"http:\/\/www.recordernewspapers.com...",

146 Chapter 8 Mixing in JavaScript

11. See www.json.org/ for more information on JSON, including parsers and generators for several

dozen languages and environments.

12. See http://developer.yahoo.com/search/web/V1/webSearch.html for a full specification of

query strings.

 Download from www.wowebook.com

http://search.yahooapis.com/NewsSearchService/V1/newsSearch?appid=YahooDemo&query=computer&results=5&language=en&output=json
http://developer.yahoo.com/search/web/V1/webSearch.html
http://search.yahooapis.com/NewsSearchService/V1/newsSearch?appid=YahooDemo&query=computer&results=5&language=en&output=json
www.json.org/

ptg

"Language":"en",

"PublishDate":"1263082654",

"ModificationDate":"1263082655"},

{

"Title":"The Hindu Business Line...",

"Summary":"Over one lakh government schools...",

...},

{...},

{...}

]}

}

The JSON notation (a subset of JavaScript) is easy to read: Braces surround objects,
brackets surround arrays, and attributes are followed by a colon and their values. This news
server provides a ResultSet object, with three attributes (totalResultsAvailable,
totalResultsReturned, and firstResultPosition) having to do with how many
and which items were returned, and another attribute (Result) that is an array of
objects itself, each one representing a news item. These objects have several attributes,
including Title, Summary, URL, NewsSource, Language, among others.

(An aside, just for completeness: If you need to produce JSON code with client-side
code—not a likely situation, because JSON is usually produced at the server and con-
sumed at the client—you can use the JsonUtils.escapeValue(...) method to pro-
duce escaped, valid JSON strings, and a simple logic to build the output string piece by
piece, in a similar way to what we did in Chapter 7, “Communicating with Other
Servers,” to produce XML output.)

The view for our reader will be simple: a TextBox for specifying what terms you
want to search, a Button to do the call, and an HTMLPanel to display an appropriately
built up string, with the news titles, summaries, and clickable links to the original web
page. See Figure 8.2 for our simple form design.

147JSON

Figure 8.2 A simple news reader that will let us search for news on any
search terms we want.

 Download from www.wowebook.com

ptg

After a search for ABRAHAM LINCOLN you could get something such as Figure
8.3, showing a maximum of five news items. (This parameter can be changed.) Clicking
on a title would open a new page with the original news web site.

148 Chapter 8 Mixing in JavaScript

Figure 8.3 The results of searching for news regarding ABRAHAM
LINCOLN, with a preset maximum of five news items.

The NewsReaderView.ui.xml and NewsReaderView files are quite simple, involv-
ing just a few fields and a single callback (when the button gets clicked). The ui.xml file
is simply:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'>

<g:HTMLPanel>

<h1>NewsReader</h1>

Search for:<g:TextBox u:field="searchFor"/>

<g:Button u:field="getNews" text="Get News"/>

<hr/>

<g:HTML u:field="newsResult"/>

</g:HTMLPanel>

</u:UiBinder>

The corresponding view is

package com.fkereki.mvpproject.client.newsReader;

// ...several imports...

 Download from www.wowebook.com

ptg

public class NewsReaderView

extends View

implements NewsReaderDisplay {

@UiTemplate("NewsReaderView.ui.xml")

interface Binder

extends UiBinder<HTMLPanel, NewsReaderView> {

}

private static final Binder binder = GWT.create(Binder.class);

@UiField TextBox searchFor;

@UiField Button getNews;

@UiField HTML newsResult;

SimpleCallback<Object> onGetNewsCallback;

public NewsReaderView() {

super();

HTMLPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

}

@Override

public String getTextToSearchFor() {

return searchFor.getValue();

}

@Override

public void setNews(String htmlNews) {

newsResult.setHTML(htmlNews);

}

@Override

public void setOnGetNewsCallback(SimpleCallback<Object> acb) {

onGetNewsCallback = acb;

}

@UiHandler("getNews")

void uiOnGetNewsClick(ClickEvent event) {

onGetNewsCallback.onSuccess(null);

}

}

The required NewsReaderDisplay interface is also quite simple, with methods for
getting the textbox contents, setting the HTML list of news, and setting the button call-
back; let’s examine it just for completeness:

149JSON

 Download from www.wowebook.com

ptg

public interface NewsReaderDisplay

extends Display {

String getTextToSearchFor();

void setNews(String htmlNews);

void setOnGetNewsCallback(SimpleCallback<Object> acb);

}

Now we can get to the more interesting part, and consider the NewsReaderPresenter
.java logic. The main part hinges on creating the “Get News” button callback, that will
construct the correct URL and connect to the news search service to get the latest news
items.

package com.fkereki.mvpproject.client.newsReader;

// ...imports...

public class NewsReaderPresenter

extends Presenter<NewsReaderDisplay> {

public static String PLACE = "newsReader";

public NewsReaderPresenter(

final String params,

final NewsReaderDisplay newsReaderDisplay,

final Environment environment) {

super(params, newsReaderDisplay, environment);

getDisplay().setOnGetNewsCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

getNewsViaXhr();

}

});

}

void displayNews(final NewsFeed data) {

// format and show the news...

}

void getNewsViaXhr() {

final String newsUrl = "http://search.yahooapis.com";

final String newsPath = "NewsSearchService/V1/newsSearch";

final String newsParams = "appid=YahooDemo&query="

+ URL.encode(getDisplay().getTextToSearchFor())

+ "&results=5&language=en&output=json";

150 Chapter 8 Mixing in JavaScript

 Download from www.wowebook.com

ptg

final XhrProxyAsync xhrProxy = getEnvironment().getModel()

.getRemoteXhrProxy();

xhrProxy.getFromUrl(newsUrl, newsPath, newsParams,

new AsyncCallback<String>() {

@Override

public void onFailure(final Throwable caught) {

// warn about the error...

}

@Override

public void onSuccess(final String result) {

final NewsFeed data = JsonUtils.unsafeEval(result);

displayNews(data);

}

});

}

}

If the Ajax call succeeds, we’ll use the JsonUtils.unsafeEval(...) method—
basically just a plain call to JavaScript’s own eval(...) function, with no further safety
measures; thus, the “unsafe” part of the name—to produce a NewsFeed object, an overlay
for the underlying JavaScript object; let’s study this a bit.

How do you work with a JavaScript object with Java code? You could go for the
older JSONParser methods and build an object item per item, but it wouldn’t be so
efficient as using an overlay object that will encapsulate all accesses, hiding the underly-
ing JavaScript object.

First, you should remember that you cannot create such an object by using Java’s
new(...) syntax; the whole idea of overlays is to graft an access to an already existing
JavaScript object. Because we use unsafeEval(...) to get the JavaScript version of the
news feed object, we are well on our way.13

Our NewsFeed overlay class will just provide four methods, because we are only
interested in a few fields of the complete JSON result: We want to know how many
news items there were, and their titles, summaries, and URLs. Note the protected con-
structor, that won’t enable you to even try to construct a NewsFeed object with Java.

package com.fkereki.mvpproject.client.newsReader;

import com.google.gwt.core.client.JavaScriptObject;

151JSON

13. This function is quite new in GWT; in fact, most online documentation shows how to accomplish

the evaluation by means of a JavaScript method that directly calls eval(...). By using this func-

tion you get the same result but keep to Java code.

 Download from www.wowebook.com

ptg

public class NewsFeed

extends JavaScriptObject {

protected NewsFeed() {

}

public final native String getClickUrl(final int i) /*-{

return this.ResultSet.Result[i].ClickUrl;

}-*/;

public final native String getSummary(final int i) /*-{

return this.ResultSet.Result[i].Summary;

}-*/;

public final native String getTitle(final int i) /*-{

return this.ResultSet.Result[i].Title;

}-*/;

public final native int getTotalResultsReturned() /*-{

return this.ResultSet.totalResultsReturned;

}-*/;

}

All methods must be final or private, so the compiler will resolve the call at com-
pile time and generate optimized, possibly inlined, code. (We’ll see the results of this
optimization next.) Through overlays, your Java code can interact with the JavaScript
object with no fuss. You could even add extra “Java-only” methods to NewsFeed; for
example, we could write something like—and feel free to fill in the details—the
getAge(...) method, which would tell how old is a piece of news.

public final long getAge(final int i) {

// use a JSNI method to get the PublishDate attribute

// of the i-th news item, and store it to newsTimeStamp

// get the current timestamp by using new Date().getTime()

// and store it to currentTimeStamp

return currentTimeStamp - newsTimeStamp;

}

Note that this enables having a richer view of the underlying JavaScript object than
the original object would have enabled.

Given the preceding class, the displayNews(...) method iterates through all
news items (their quantity is obtained through the getTotalResultsReturned(...)
method) and constructs a link (by using getClickUrl(...) and getTitle(...)) with
the following getSummary(...) results. A couple of empty lines separate different news
items.

152 Chapter 8 Mixing in JavaScript

 Download from www.wowebook.com

ptg

void displayNews(NewsFeed data) {

String show = "";

final int news = data.getTotalResultsReturned();

for (int i = 0; i < news; i++) {

show += ""

+ data.getTitle(i) + "
" + data.getSummary(i)

+ "
<br/";

}

getDisplay().setNews(show);

}

Used in this way, JSON is easier to work with than XML. If you compile the project
producing Pretty code (as we mentioned in Chapter 2, “Getting Started with GWT 2”)
you’ll see the produced JavaScript code is as compact as it could be, and practically a
one-by-one translation of your Java code:

function $displayNews(this$static, data){

var i, news, show;

show = '';

news = data.ResultSet.totalResultsReturned;

for (i = 0; i < news; ++i) {

show += "<a href='" + data.ResultSet.Result[i].ClickUrl

+ "' target='_blank'>" + data.ResultSet.Result[i].Title

+ '<\/a>
' + data.ResultSet.Result[i].Summary

+ '
<br/';

}

dynamicCast(this$static.display_0,9).newsResult.element.innerHTML =

show || '';

}

The produced code is exactly what you’d directly write in JavaScript (in passing, note
that the calls to data methods were inlined, so there’s no overhead there; this validates
what we said about the need for private, final methods) so it will run faster than if it
had received XML.

JSONP
Because you can load JavaScript code from other domains, and JSON objects are
JavaScript code, it stands to reason that you can get JSON objects without regard to
SOP restrictions… but how do you know when the object is ready? JSONP (JSON
with Padding) provides a solution.

When you connect to a JSONP server, you add an argument that becomes a callback
to a function, with the JSON data as a parameter. For example, the same call to the
Yahoo! News search function, with an added callback=yourownfunction parameter,
returns something like the following, minus extra spaces added for readability:

153JSONP

 Download from www.wowebook.com

ptg

yourownfunction({"ResultSet": {

"totalResultsAvailable":"19919",

"totalResultsReturned":5,

"firstResultPosition":"1",

"Result": [{

"Title":"Here are ...",

"Summary":"Maybe you've resolved ...",

"Url":"http:\/\/www.usatoday.com...",

"ClickUrl":"...",

"NewsSource":"USA Today",

"NewsSourceUrl":"http:\/\/www.usatoday.com\/",

"Language":"en",

"PublishDate":"1262970718",

"ModificationDate":"1262972040"},

{"Title":"Final Glance: Computer companies",...},

{...}...]}})

When the script is loaded, it will execute, and thus call yourownfunction(...),
which will process the received JSON string—a nice way to skip around cross origin
restrictions!

(Of course, a serious warning must be given: If you connect to an untrusted site,
receive a JSONP result, and blindly use it, anything may happen. You are purposefully
avoiding SOP tests, so you must fully trust the downloaded code.)

Up to GWT 1.7, you had to code JSONP calls “by hand” (you had to do some
DOM maneuvering to add a <script> node to your current page and then set its URL
appropriately) but GWT 2 added the JsonpRequestBuilder class, which enables you
to do JSONP calls in a fashion similar to Ajax calls. You must, however, add

<inherits name="com.google.gwt.jsonp.Jsonp"/>

to your gwt.xml module file, to use JSONP.
We can modify our news reader by providing a different method, that will replace

getNewsViaXhr(...).

void getNewsViaJsonp() {

final String newsUrl = "http://search.yahooapis.com/"

+ "NewsSearchService/V1/newsSearch?appid=YahooDemo&query="

+ URL.encode(getDisplay().getTextToSearchFor())

+ "&results=5&language=en&output=json";

final JsonpRequestBuilder jsonp = new JsonpRequestBuilder();

jsonp.requestObject(newsUrl, new AsyncCallback<NewsFeed>() {

@Override

public void onFailure(final Throwable caught) {

// ...warn about the problem...

}

154 Chapter 8 Mixing in JavaScript

 Download from www.wowebook.com

ptg

@Override

public void onSuccess(final NewsFeed result) {

displayNews(result);

}

});

The code is quite similar, but note that the AsyncCallback for the JSONP call is
defined to return a NewsFeed object and that you don’t need to parse the result of the
call, which is already converted into the appropriate format. Also observe that the URL
we need to provide is exactly the same as in the Ajax version; the &callback=...
attribute will be added by JsonpRequestBuilder. (And, should you require a different
name for it—say, _call—you would have to set it via jsonp.setCallbackParam(
"_call"). The default name for the JSONP callback routine is, as you might expect,
callback.)

Because many important, well-known Internet companies (including Yahoo!, Google,
Twitter, Flicker, and more) provide JSONP feeds, this method will enable us to produce
Web 2.0-like mashup services, without recurring to proxies or anything else, for an extra
bit of speed.

Summary
Directly coding in JavaScript by means of JSNI enables you to go beyond any possible
limitations that you might find in GWT. Though obviously requiring a more careful
approach (and somewhat complicated rules for Java/JavaScript interaction) JSNI is widely
used by the GWT developers and is a worthy tool for you to learn and use—and we
will keep working with it in the following chapter, using JSNI to interact with several
important APIs.

155Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

9
Adding APIs

There are many JavaScript libraries and web services, and you can include their features
in your application by adding JSNI (as we saw in Chapter 8, “Mixing in JavaScript,”) and
some GWT coding. In this chapter we see some examples and get to process data feeds
to get weather information, use charts to provide a visual dashboard, and interact with
geographic data working with maps.

Creating highly interactive, modern web applications doesn’t mean reinventing the
wheel for each specific purpose. Rather, we like to utilize the many available APIs for
just about anything you might want.

(Of course, you should remember that you won’t be getting the usual GWT benefits
as to code optimization, dead code removal, and more, if you just produce a wrapper
around a JavaScript library. If there’s a GWT-only solution, you’ll probably be better off
using it.)

In this chapter we see how a mixture of Java and JavaScript coding can let you easily
mix in several APIs into your application, with no particular complications. We won’t
restrict ourselves to Google-only routines, so you can get experience on handling APIs
that might have not even been prepared for GWT.

A Weather Vane
Let’s start by using some libraries to get weather information, which we could include in
any site.1 For my example, I wanted to get Montevideo, Uruguay (my birth place, and
where I live) weather information—without merely looking out of my window!

Getting Weather Data
First, I needed a web service that would provide weather information. Out of the many
available possibilities, I opted (no particular reason) for Yahoo! Weather RSS Feed (see

1. And yes, Weather Vane may not be a precise or correct name but is flashier sounding than

Weather Widget!

 Download from www.wowebook.com

ptg

http://developer.yahoo.com/weather/). To use it, I had to go to Yahoo’s Weather site (at
http://weather.yahoo.com/) and using the search function, let me learn that the WOEID2

code for Montevideo was 468052. I got that directly from examining the URL for
Montevideo’s weather, which was http://weather.yahoo.com/uruguay/montevideo/
montevideo-468052/. (Another example would be 2442047, which means Los Angeles,
California, USA.) Given that code, accessing the feed at http://weather.yahooapis.com/
forecastrss?w=468052&u=c would get Montevideo’s (w=468052) weather information
in Celsius (u=c) degrees.

If you want to consider other possibilities for getting weather information, you could
check GeoNames’ site (at www.geonames.org/) and in particular its web services (at
www.geonames.org/export/JSON-webservices.html) that can provide JSON weather
information. For example, knowing that Montevideo is at latitude –34.858 and longi-
tude –56.171 (I googled for that information; mind having it in decimal format rather
than in the more classic 34°51'29"S, 56°10'14"W style) I could then access http://
ws.geonames.org/findNearByWeatherJSON?lat=-34.858&lng=-56.171 and get the
(slightly edited and abridged) JSON result listed here.3

{"weatherObservation":{

"clouds":"scattered clouds",

"weatherCondition":"in vicinity: rain",

"observation":"SUAA 162100Z 15003KT 9999 VCRA SCT023 BKN040 23/18 Q1010",

"windDirection":150,

"ICAO":"SUAA",

"elevation":54,

"countryCode":"UY",

"lng":-56.25,

"temperature":"23",

"dewPoint":"18",

"windSpeed":"03",

"humidity":73,

"stationName":"Melilla",

"datetime":"2010-01-16 21:00:00",

"lat":-34.7666666666667,

"hectoPascAltimeter":1010

}

}

Just so you can see GWT’s flexibility, you could also use several other RSS weather
feeds, such as Accuweather’s (see http://rss.accuweather.com/rss/liveweather_rss.asp?metric=
1&locCode=SAM|UY|UY010|MONTEVIDEO) or The Weather Channel’s (see

158 Chapter 9 Adding APIs

2. WOEID stands for Where On Earth ID and is a 32-bit number used by Yahoo! for its geographic

GeoPlanet services and data; see http://developer.yahoo.com/geo/ for more on this.

3. If you are curious, ICAO stands for International Civil Aviation Organization, and SUAA is the code

for the Ángel S. Adami Civil Airport in Melilla, near Montevideo.

 Download from www.wowebook.com

http://developer.yahoo.com/weather/
http://weather.yahoo.com/
http://weather.yahoo.com/uruguay/montevideo/montevideo-468052/
http://weather.yahooapis.com/
http://ws.geonames.org/findNearByWeatherJSON?lat=-34.858&lng=-56.171
http://rss.accuweather.com/rss/liveweather_rss.asp?metric=1&locCode=SAM|UY|UY010|MONTEVIDEO
http://developer.yahoo.com/geo/
http://weather.yahoo.com/uruguay/montevideo/montevideo-468052/
http://ws.geonames.org/findNearByWeatherJSON?lat=-34.858&lng=-56.171
http://rss.accuweather.com/rss/liveweather_rss.asp?metric=1&locCode=SAM|UY|UY010|MONTEVIDEO
www.geonames.org/
www.geonames.org/export/JSON-webservices.html

ptg

http://rss.weather.com/weather/rss/local/UYXX0006?cm_ven=LWO&cm_cat=
rss&par=LWO_rss) among many.4 Yet another possibility would be using Yahoo Pipes
(http://pipes.yahoo.com/pipes/) and build yourself an appropriate JSON service. Yahoo
Pipes lets you mash different feeds (such as the RSS feeds I mentioned) and produce
results in JSON, XML, and more formats.

Getting the Feed
Now, how do we get this feed? Of course we could do a proxy (as we saw in Chapter 7,
“Communicating with Other Servers,”) and extract the weather information from the
RSS XML result, but the Google Ajax Feed API (see http://code.google.com/apis/
ajaxfeeds/) will help us. (Remember you cannot directly get the feed because of the
SOP restrictions we studied in Chapter 6, “Communicating with Your Server.”) You can
use this API to download any public data RSS/Atom feed by using just JavaScript;
Google provides the necessary server-side proxy, and integrating a feed becomes easier.
Also, this library can return the feed data in either JSON (by default) or XML; because
we are working with client-side code, the first option is a natural for us. The (slightly
edited and abridged) string we’d be getting is

{"feed":{

"title":"Yahoo! Weather - Montevideo, UY",

"link":"http://us.rd.yahoo.com/...",

"author":"",

"description":"Yahoo! Weather for Montevideo, UY",

"type":"rss20",

"entries":[{

"title":"Conditions for Montevideo, UY at 12:00 pm UYT",

"link":"http://us.rd.yahoo.com/...",

"author":"",

"publishedDate":"Thu, 14 Jan 2010 12:00:00 -0800",

"contentSnippet":"\nCurrent Conditions:\nFair, 26 C\nForecast:\nThu - Sunny.
High: 26 Low: 17\nFri - Mostly Sunny. High: 28 Low: 21\n\nFull Forecast at ...",

"content":"\u003cimg src\u003d\"http://l.yimg.com/a/i/us/we/52/34.gif\
"\u003e\u003cbr\u003e\n\u003cb\u003eCurrent
Conditions:\u003c/b\u003e\u003cbr\u003e\nFair, 26
C\u003cbr\u003e\n\u003cbr\u003e\u003cb\u003e
Forecast:\u003c/b\u003e\u003cbr\u003e\nThu - Sunny. High: 26 Low:
17\u003cbr\u003e\nFri - Mostly Sunny. High: 28 Low: 21...",

"categories":[]

}]

}

}

Finally, how do we get to use this API? We have to load it into memory and then
interact with it to get the data. The standard way is by using JavaScript but we can go
one better.

159A Weather Vane

4. Be careful, however; different codes stand for the same cities, and of course, data formats vary.

 Download from www.wowebook.com

http://rss.weather.com/weather/rss/local/UYXX0006?cm_ven=LWO&cm_cat=rss&par=LWO_rss
http://pipes.yahoo.com/pipes/
http://code.google.com/apis/ajaxfeeds/
http://rss.weather.com/weather/rss/local/UYXX0006?cm_ven=LWO&cm_cat=rss&par=LWO_rss
http://code.google.com/apis/ajaxfeeds/

ptg

<html>

<head>

<script type="text/javascript" src=http://www.google.com/jsapi />

<script type="text/javascript">

google.load("feeds", "1");

function initialize() {

var url= "http://weather.yahooapis.com/forecastrss?w=468052&u=c";

var feed= new google.feeds.Feed(url);

feed.load(function(result) {

// do something with result

});

}

google.setOnLoadCallback(initialize);

</script>

</head>

<body>

...rest of your site...

</body>

</html>

We can use the GWT AjaxLoader API (see http://code.google.com/docreader/#p=
gwt-google-apis&s=gwt-google-apis&t=AjaxLoaderGettingStarted) to load the Feed
API, and then this API to get the RSS weather information, transformed into JSON…
sounds harder than it is, in fact!

By the way, loading the JavaScript library on demand helps providing a faster startup
time, along the lines of RunAsync(...), which we’ll use in Chapter 15, “Deploying
Your Application.” Also note that after the library has been loaded, future load requests
won’t reload it, so performance will be very good.

Getting Everything Together
Let’s go at this step by step. To use the GWT AjaxLoader API, you have to add
<inherits name="com.google.gwt.ajaxloader.AjaxLoader"/> to your gwt.xml
file. You also have to get the gwt-ajaxloader-1.0.0.tar.gz file from Google’s down-
load site (at http://code.google.com/p/gwt-google-apis/downloads/list), extract the
gwt-ajaxloader.jar file from it, and add it to your project’s client-side code build path.

(Note that Google provides several APIs that simplify using services, without having
to write JavaScript by yourself. In any case, in this chapter we use both such APIs and
JSNI-based methods to consider all possible solutions.)

First, you need to initialize AjaxLoader and then use it to load the Feeds library into
memory; you’ll provide the library’s name ("feeds") and the version you want to use
("1" at the time, but there can be new ones in the making). You also have to provide a
Runnable object, whose run(...) method will be used as a callback, after the API is

160 Chapter 9 Adding APIs

 Download from www.wowebook.com

http://code.google.com/docreader/#p=gwt-google-apis&s=gwt-google-apis&t=AjaxLoaderGettingStarted
http://code.google.com/p/gwt-google-apis/downloads/list
http://code.google.com/docreader/#p=gwt-google-apis&s=gwt-google-apis&t=AjaxLoaderGettingStarted

ptg

loaded. Code like the following should be used to initially load the JavaScript library and
then to actually get the feed.

AjaxLoader.init();

final AjaxLoaderOptions options = AjaxLoaderOptions.newInstance();

AjaxLoader.loadApi("feeds", "1", new Runnable() {

public void run() {

getFeed();

}

}, options);

Getting at the Feed Data with an Overlay
We’ll get to the getFeed(...) routine soon, but let’s first see how we’ll process the
feed. The easiest way to get the JSON data is through an overlay, as we saw in Chapter 8.

public class WeatherFeed

extends JavaScriptObject {

protected WeatherFeed() {

}

public final native String getFeedDescription() /*-{

return this.feed.description;

}-*/;

public final native String getItemContent() /*-{

return this.feed.entries[0].content;

}-*/;

public final native String getItemLink() /*-{

return this.feed.entries[0].link;

}-*/;

public final native String getItemTitle() /*-{

return this.feed.entries[0].title;

}-*/;

}

The GWT method that uses the WeatherFeed data could be as simple as the following:

void processWeather(final WeatherFeed ww) {

final VerticalPanel vp = new VerticalPanel();

vp.add(new Anchor(ww.getFeedDescription(), ww.getItemLink()));

vp.add(new HTMLPanel(ww.getItemContent()));

RootPanel.get().add(vp);

Window.alert("Check it out!");

}

161A Weather Vane

 Download from www.wowebook.com

ptg

Getting the Feed with JSNI
Now, let’s get back to actually getting the data. A suitable getFeed(...) routine
requires JSNI; a possible solution is

private native void getFeed() /*-{

var myself= this;

var url= "http://weather.yahooapis.com/forecastrss?w=468052&u=c";

var feed= new $wnd.google.feeds.Feed(url);

feed.load(function(result) {

if (!result.error) {

myself.@com.kereki.apisdemo.client.Apisdemo::processWeather

(Lcom/kereki/apisdemo/client/WeatherFeed;)(result);

}});

}-*/;

Notice the usage of $wnd to get at the google.feeds variable, and also the call to
the Java processWeather(...) method, with the usual JSNI style we saw in Chapter 8.
An important detail: you might think of writing that call as this.@com... instead of
declaring and using the myself variable as given, but that would be an error because
this would point to the recently created function object and not to yours.5

Dashboard Visualizations
For Management Information Systems (MIS) applications, adding a dashboard showing
the most important business indicators is a good way to provide a bird’s eye glance to the
current situation of your company. Instead of showing plain numbers, graphics and charts
are usually chosen, and we’ll now turn to several ways of providing such visualizations.

The easiest way would probably be using the Google Visualization API (at http://
code.google.com/docreader/#p=gwt-google-apis&s=gwt-google-apis&t=Visualization),
which provides access to all kinds of graphs, both static (just an image) and animated
(meaning you can click on chart items and fire events, for example).6

An example of the usage of this API (we’ll get to details later) is shown in Figure 9.1.7

162 Chapter 9 Adding APIs

5. Bone up on JavaScript closures if you are not sure about this. A possible reference is

https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures.

6. This API also provides a Table object (why, yes, a table is also a visualization tool, isn’t it?) whose

data can be sorted, paged, and formatted; check it out at http://code.google.com/apis/visualization/

documentation/gallery/table.html.

7. By the way, the data I used for the examples were taken from GeoHive (at www.xist.org/); other

possibilities (among many available) would be The CIA World Factbook (https://www.cia.gov/library/

publications/the-world-factbook/) or NationMaster (www.nationmaster.com/).

 Download from www.wowebook.com

http://code.google.com/docreader/#p=gwt-google-apis&s=gwt-google-apis&t=Visualization
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Working_with_Closures
http://code.google.com/apis/visualization/documentation/gallery/table.html
https://www.cia.gov/library/publications/the-world-factbook/
http://code.google.com/docreader/#p=gwt-google-apis&s=gwt-google-apis&t=Visualization
http://code.google.com/apis/visualization/documentation/gallery/table.html
www.xist.org/
https://www.cia.gov/library/publications/the-world-factbook/
www.nationmaster.com/

ptg

Figure 9.1 Some sample visualizations of basic world demographic data,
provided by the Google Visualizations API.

You can pick several other packages. Google provides the Google Chart API (at
http://code.google.com/apis/chart/), which can be used with JSNI, or directly by pro-
viding an appropriate URL; for example, by linking to http://chart.apis.google.com/
chart?chs=480x360&cht=bhs&chtt=World%20Population&chd=s:dZHFEEDDDD9&ch
xl=0:|Rest|Japan|Russia|Nigeria|Bangladesh|Pakistan|Brazil|Indonesia|USA|India|
China|1:|Population|2:|Countries|&chxt=y,x,t you can provide an image as shown in
Figure 9.2, but note that you’ll have to do some coding to convert numbers (the popula-
tions, in this case) to letters (see the chd parameter in the URL above); not hard, anyway.

163Dashboard Visualizations

Figure 9.2 The Google API Chart has a rather complex interface but
enables you to produce charts by just linking to a specific URL.

 Download from www.wowebook.com

http://code.google.com/apis/chart/
http://chart.apis.google.com/

ptg

Several more JavaScript or Flash-based libraries can help producing visualizations such
as the ones in this chapter. Personally, I’d rather go for JavaScript than for Flash (after hav-
ing said, in Chapter 1, “Developing Your Application,” that using GWT was advantageous
because you didn’t require any plugins, it wouldn’t do to actually recommend a Flash-
based visualization library, would it?) but via JSNI you can interact with both of them.

With all libraries you might find that given chart styles might not run or be shown
on all browsers; a nice solution to this is to apply the deferred binding techniques we
used in Chapter 4, “Working with Browsers,” and either provide an alternative chart style
or at least give an adequate warning.

Using the Google Visualization API
Using this API requires adding <inherits name='com.google.gwt.visualization
.Visualization'/> to your gwt.xml file. You won’t have to use the GWT AjaxLoader
API (as in the weather feed example) because the VisualizationUtils package
already provides the necessary function; for example, you could load the API and set it
up for displaying PieChart and AreaChart objects with the following line of code:8

VisualizationUtils.loadVisualizationApi(onVisualizationsLoadCallback,

PieChart.PACKAGE, AreaChart.PACKAGE, Gauge.PACKAGE);

The onVisualizationsLoadCallback method will be called as soon as the API is
loaded in memory and ready to be used; you can use it, for example, to initialize the
visualizations for your page. (In Chapter 15 we’ll see how we could split the code away,
so it would actually be loaded only if needed.)

final Runnable onVisualizationsLoadCallback = new Runnable() {

public void run() {

final HorizontalPanel hp = new HorizontalPanel();

final PieChart worldPopPie = new PieChart(create2010PopTable(),

create2010PopOptions());

hp.add(worldPopPie);

final AreaChart popGrowthChart = new AreaChart(

createPopGrowthTable(), createPopGrowthOptions());

hp.add(popGrowthChart);

final Gauge popGauge = new Gauge(createPopGaugeTable(),

createPopGaugeOptions());

hp.add(popGauge);

RootPanel.get().add(hp);

}

};

164 Chapter 9 Adding APIs

8. All Google provided visualizations include a PACKAGE String that identifies them.

 Download from www.wowebook.com

ptg

Each visualization requires a data table and visualization options. Data tables can have
many columns; you’ll have to check what’s appropriate for the type of visualization you
are creating. For example, the world population pie chart uses a two-column data table,
with the country names in the first column and populations in the second.

private void addIdentValueRow(

final DataTable data,

final String ident,

final double value) {

data.addRow();

data.setValue(data.getNumberOfRows() - 1, 0, ident);

data.setValue(data.getNumberOfRows() - 1, 1, value);

}

private AbstractDataTable create2010PopTable() {

/*

* 2010 Population Data taken from

* http://www.xist.org/earth/population1.aspx

*/

final DataTable data = DataTable.create();

data.addColumn(ColumnType.STRING, "Country");

data.addColumn(ColumnType.NUMBER, "Population (millions)");

addIdentValueRow(data, "China", 1338.6);

addIdentValueRow(data, "India", 1166.1);

addIdentValueRow(data, "USA", 307.2);

addIdentValueRow(data, "Indonesia", 240.2);

addIdentValueRow(data, "Brazil", 198.7);

addIdentValueRow(data, "Pakistan", 176.2);

addIdentValueRow(data, "Bangladesh", 156.1);

addIdentValueRow(data, "Nigeria", 149.2);

addIdentValueRow(data, "Russia", 140.0);

addIdentValueRow(data, "Japan", 127.1);

addIdentValueRow(data, "Rest of the World", 2834.1);

return data;

}

The required options for each visualization vary a bit. Also, if you have more than one
type of visualization on your application, you have to qualify which Options class you
want because all are named the same way. The world population pie had the following
code; note the PieChart.Options specification.9

165Dashboard Visualizations

9. If you cannot find a wrapper function to set a desired parameter, you can use the generic

setOption(...) call: options.setOption("is3D", true) is the same as

options.set3D(true), for example. Check online for the names of the necessary parameters.

 Download from www.wowebook.com

ptg

private PieChart.Options create2010PopOptions() {

final PieChart.Options options = PieChart.Options.create();

options.setWidth(400);

options.setHeight(360);

options.set3D(true);

options.setTitle("World Pop (millions)");

return options;

}

Just for completeness, we can have the code required for the other two visualizations:
an area chart showing the growth and estimated sizes of the world’s population (a line
chart would have done as well) and a gauge showing the current population.10

private Gauge.Options createPopGaugeOptions() {

final Gauge.Options options = Gauge.Options.create();

options.setWidth(300);

options.setHeight(300);

options.setGaugeRange(0, 10000);

options.setGreenRange(1500, 3000);

options.setYellowRange(3000, 5000);

options.setRedRange(5000, 10000);

options.setMajorTicks(new String[] {"0", "2bn",

"4bn", "6bn", "8bn", "10bn" });

options.setMinorTicks(10);

return options;

}

private AbstractDataTable createPopGaugeTable() {

/*

* 2010 Population Data taken from

* http://www.xist.org/earth/population1.aspx

*/

final DataTable data = DataTable.create();

data.addColumn(ColumnType.STRING, "Population");

data.addColumn(ColumnType.NUMBER, "Millions");

addIdentValueRow(data, "World", 6833.5);

return data;

}

166 Chapter 9 Adding APIs

10. There is no surefire standard for the optimum world population, but several papers seem to

agree that between 1.5 and 2 billion would be best, up to 5 could be acceptable, and that the cur-

rent numbers are already too big. Anyway, do not read any intended political statements in this; I

just needed some data that could logically be shown in a gauge!

 Download from www.wowebook.com

ptg

private AreaChart.Options createPopGrowthOptions() {

final AreaChart.Options options = AreaChart.Options.create();

options.setWidth(400);

options.setHeight(360);

options.setTitle("Population (millions) Growth");

options.setLegend(LegendPosition.NONE);

options.setMin(0);

options.setEnableTooltip(true);

return options;

}

private AbstractDataTable createPopGrowthTable() {

/*

* World (actual and projected) Population Data from

* http://www.xist.org/earth/his_proj.aspx

*/

final DataTable data = DataTable.create();

data.addColumn(ColumnType.STRING, "Decade");

data.addColumn(ColumnType.NUMBER, "Pop (millions)");

addIdentValueRow(data, "1950", 2255.9);

addIdentValueRow(data, "1960", 3041.6);

addIdentValueRow(data, "1970", 3711.8);

addIdentValueRow(data, "1980", 4452.8);

addIdentValueRow(data, "1990", 5282.4);

addIdentValueRow(data, "2000", 6084.9);

addIdentValueRow(data, "2010", 6866.9);

addIdentValueRow(data, "2020", 7659.3);

addIdentValueRow(data, "2030", 8373.1);

addIdentValueRow(data, "2040", 9003.2);

addIdentValueRow(data, "2050", 9539.0);

return data;

}

Handling Events
You can also process events related to visualizations, such as mouseOver, select, and
more. For example, say we want to let the user click on a pie wedge and then do some-
thing related to the picked country. Just after creating the object, we should add an
appropriate handler to the pie chart by writing code such as

worldPopPie.addSelectHandler(new SelectHandler() {

@Override

public void onSelect(final SelectEvent event) {

final JsArray<Selection> selections = worldPopPie

.getSelections();

final int chosenRow = selections.get(0).getRow();

167Dashboard Visualizations

 Download from www.wowebook.com

ptg

Window.alert("you clicked on country #" + (chosenRow + 1));

}

});

The getSelections(...) method returns all clicked selections, and because on pie
charts you can only click on a single wedge, by writing selections.get(0).getRow()
we learn which row of the data table corresponds to the selected wedge. Of course, you
would probably do something more meaningful than just letting the user know on
which country he did click on!

Working with Maps
As a final example, let’s work on building a widget that will allow us to enter or modify
the geographic coordinates of a given point.

Currently, there are at least three major map APIs: Google Maps (at http://
code.google.com/apis/maps/), Microsoft Bing Maps (at www.microsoft.com/maps/)
and Yahoo! Maps (at http://developer.yahoo.com/maps/). Just for variety, let’s go with
the latter, which will require us a bit of XML processing and JSNI (unlike Google Maps,
because we could use the GWT API at http://code.google.com/docreader/#p=gwt-
google-apis&s=gwt-google-apis&t=MapsGettingStarted), and will enable us to both get
interactive (clickable, draggable, and so on) maps and fixed maps (plain images) for less
demanding applications.

Interactive Maps
The most interesting maps are interactive, meaning you can drag them around, zoom in
or out, and pinpoint specific points of interest. We’ll write a simple application that will
show a map with a marker on it (arbitrarily set at the American Museum of Natural
History, or AMNH; my favorite place to see in New York City!) and allow you to click
on other position. The map will start centered at the AMNH, and each time you click
on a different spot, the marker will move there and the map will be recentered. You’ll
have a continuously updated display of the latitude and longitude of the marker. See
Figure 9.3 for a view of our application.

We shall work in the MVP style we have been using. The Display interface for this
form will be quite simple—and for an actual application, you’d probably add more
methods—and will just include a couple of getters (to gain access to the current coordi-
nates of the marker) and a setter (to put the marker at a given position).

package com.fkereki.mvpproject.client.map1;

// ...imports...

public interface MapDisplay

extends Display {

double getLatitude();

168 Chapter 9 Adding APIs

 Download from www.wowebook.com

http://code.google.com/apis/maps/
http://developer.yahoo.com/maps/
http://code.google.com/apis/maps/
http://code.google.com/docreader/#p=gwtgoogle-apis&s=gwt-google-apis&t=MapsGettingStarted
http://code.google.com/docreader/#p=gwtgoogle-apis&s=gwt-google-apis&t=MapsGettingStarted
www.microsoft.com/maps/

ptg

Figure 9.3 Our interactive map, showing the American Museum of
National History in New York City. You can reposition the marker by clicking
on any spot. The map can be dragged and zoomed, too. © 2010 NAVTEQ.
All rights reserved. ©2010 Yahoo! Inc. YAHOO! and the YAHOO! logo are

registered trademarks of Yahoo! Inc.

double getLongitude();

void setCoordinates(double latitude, double longitude);

}

The corresponding Presenter is trivial. We use PLACE as before to set up the menu
and program the corresponding actions.

package com.fkereki.mvpproject.client.map1;

// ...imports...

public class MapPresenter

extends Presenter<MapDisplay> {

public static String PLACE = "map";

169Working with Maps

 Download from www.wowebook.com

ptg

public MapPresenter(

final String params, final MapDisplay mapDisplay,

final Environment environment) {

super(params, mapDisplay, environment);

}

}

The interesting logic lies at the View. Because it is responsible for creating the widg-
ets, all the interaction with the Yahoo! Maps API will go here. You have to add the line
<script type="text/javascript" language="javascript" src="http://

api.maps.yahoo.com/ajaxymap?v=3.8&appid=...yourKeyGoesHere...">

</script> to your main HTML file, so the required API will be included. To use it,
you’ll also have to get a key of your own; check the “How do I get started?” section at
http://developer.yahoo.com/maps/rest/V1/ for more details on that.

The Yahoo! Maps API specifies you must provide a <div> where the map will be
shown; we’ll use a HTML object for this, with appropriate contents. We’ll also define sev-
eral widgets for the Latitude and Longitude fields, plus a VerticalPanel and a
FlexTable to organize everything. Finally, yahooMap will point to the actual map and
be a JavaScriptObject, defined and used only in JavaScript coding.

package com.fkereki.mvpproject.client.map1;

// ...imports...

public class MapView

extends View

implements MapDisplay {

final VerticalPanel vp = new VerticalPanel();

final HTML div = new HTML(

"<div id='myveryownmap' style='height:50%;width:75%;'></div>");

final FlexTable ft = new FlexTable();

final TextBox lat = new TextBox();

final TextBox lon = new TextBox();

JavaScriptObject yahooMap = null;

/*

* AMNH= American Museum of Natural History, NYC

*/

final double AMNHlat = 40.780411;

final double AMNHlon = -73.974037;

final String AMNHDescription = "American Museum
of Natural History";

public MapView() {

super();

vp.add(new InlineHTML("<h1>Interactive Map</h1>"));

170 Chapter 9 Adding APIs

 Download from www.wowebook.com

http://api.maps.yahoo.com/ajaxymap?v=3.8&appid=...yourKeyGoesHere
http://developer.yahoo.com/maps/rest/V1/

ptg

ft.setWidget(0, 0, new Label("Latitude:"));

ft.setWidget(0, 1, lat);

ft.setWidget(1, 0, new Label("Longitude:"));

ft.setWidget(1, 1, lon);

vp.add(div);

vp.add(ft);

initWidget(vp);

}

The getLatitude(...), getLongitude(...) and setCoordinates(...) meth-
ods are quite simple, and mainly access the corresponding TextBox fields.

@Override

public final double getLatitude() {

return Double.parseDouble(lat.getValue());

}

@Override

public final double getLongitude() {

return Double.parseDouble(lon.getValue());

}

@Override

public final void setCoordinates(

final double latitude,

final double longitude) {

lat.setValue("" + latitude);

lon.setValue("" + longitude);

}

Now, how and when should we initialize the map? We are just defining a Composite
widget here, and it won’t get displayed until later, so we cannot do any Maps API calls
right now. Because we need the map to be initialized as soon as the form is shown, an
easy way to achieve this is by redefining the onAttach(...) method, and our initializa-
tion code will be called the moment the widget is shown.11

@Override

public final void onAttach() {

super.onAttach();

yahooMapInit();

setCoordinates(AMNHlat, AMNHlon);

yahooMapDisplay(AMNHlat, AMNHlon, AMNHDescription);

}

171Working with Maps

11. The onLoad(...) method could also be used.

 Download from www.wowebook.com

ptg

The most interesting parts come now. Initialization requires calling the YMap function
to produce a map, setting its type to whatever we want (we are going for a regular map;
other options include satellite and hybrid versions), and saving it to the yahooMap attri -
bute we defined earlier. Note the usage of the usual JSNI $wnd prefix, and the rather
long way for accessing yahooMap. You could get fancier and add several types of controls
if you want; check the API documentation for that.

private final native void yahooMapInit()

/*-{

var map = new $wnd.YMap($doc.getElementById('myveryownmap'));

map.setMapType($wnd.YAHOO_MAP_REG);

this.@com.fkereki.mvpproject.client.map1.MapView::yahooMap= map;

//

// You can add controls:

//

// map.addTypeControl();

// map.addPanControl();

// map.addZoomLong();

// map.addZoomShort();

//

}-*/

;

Displaying the map at a given coordinate requires creating a YGeoPoint object and
using the drawZoomAndCenter(...) method. (Notice, once again, that we need a
myself variable because of closure matters in the moveMarker(...) method; see the
following code.) After, we can add a marker at the center point of the map, give it an
“auto expand” text and show it.

Finally, we must capture clicks on the map to reposition the marker; the
moveMarker(...) method achieves that: The second parameter stands for the coordi-
nates of the clicked point. Then, we can reset the marker coordinates with
setYGeoPoint(...) and pan the view so the map will be centered by using
panToLatLon(...). Finally, we can call the Java setCoordinates(...) method so the
updated coordinates will be shown onscreen.

private final native void yahooMapDisplay(

final double lat,

final double lon,

final String text) /*-{

var myself= this;

var map= myself.@com.fkereki.mvpproject.client.map1.MapView::yahooMap;

var currentGeoPoint = new $wnd.YGeoPoint(lat, lon);

map.drawZoomAndCenter(currentGeoPoint, 3);

map.addMarker(currentGeoPoint,"myveryownmarker");

map.getMarkerObject("myveryownmarker").addAutoExpand(text);

172 Chapter 9 Adding APIs

 Download from www.wowebook.com

ptg

map.getMarkerObject("myveryownmarker").openAutoExpand();

$wnd.YEvent.Capture(map, $wnd.EventsList.MouseUp, moveMarker);

function moveMarker(_e, _c) {

map.getMarkerObject("myveryownmarker").setYGeoPoint(_c);

map.panToLatLon(_c);

myself.@com.fkereki.mvpproject.client.map1.MapView::

setCoordinates(DD)(_c.Lat, _c.Lon);

}

//

// If needed, you could get the current marker coordinates by writing:

//

// var myobj= map.getMarkerObject("myveryownmarker");

// alert("Coords: "+myobj.YGeoPoint.Lat+", "+myobj.YGeoPoint.Lon);

//

}-*/

;

}

I have used similar logic for applications that worked with geographical data, so the
data entry personnel could check whether a store was correctly positioned, and of
course, reposition it if needed. You can also use other functions that let you search for a
place by giving, say, its street address; check on that for extra flexibility.

Fixed Maps
If you don’t need interactive maps and can do with just a image file, Yahoo! Maps also
provides a REST API (see http://developer.yahoo.com/maps/rest/V1/) that you can use
in a two-step process to get an image built by Yahoo!’s servers.

First, you need to call a service (at http://local.yahooapis.com/MapsService/V1/
mapImage) whose answer will be an XML file with a URL in it; you can then assign
the URL to an <image> object, and the generated map will be displayed; let’s do it first
by hand, and then with GWT code. For example, say we want to get an image of the
map around the American Museum of Natural History, as in the previous section. We
must first connect to http://local.yahooapis.com/MapsService/V1/mapImage?appid=
...yourKeyGoesHere...&latitude=40.780411&longitude=-73.974037 and the returned
value will be something like the following (slightly abridged and edited) XML string.

<?xml version="1.0"?>

<Result xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

http://gws.maps.yahoo.com/mapimage?MAPDATA=...encodedMapDataGoesHere...

&mvt=m&cltype=onnetwork&.intl=us&appid=...yourKeyGoesHere...

&oper=&_proxy=ydn,xml</Result>

<!-- ws11.ydn.ac4.yahoo.com

compressed/chunked Mon Jan 18 15:05:10 PST 2010 -->

Displaying that URL would provide an image such as shown in Figure 9.4.

173Working with Maps

 Download from www.wowebook.com

http://developer.yahoo.com/maps/rest/V1/
http://local.yahooapis.com/MapsService/V1/mapImage
http://local.yahooapis.com/MapsService/V1/mapImage?appid=...yourKeyGoesHere...&latitude=40.780411&longitude=-73.974037
http://local.yahooapis.com/MapsService/V1/mapImage?appid=...yourKeyGoesHere...&latitude=40.780411&longitude=-73.974037
http://local.yahooapis.com/MapsService/V1/mapImage

ptg
Figure 9.4 Yahoo! Maps also provides a two-step process to get a fixed

map image. © 2010 NAVTEQ. All rights reserved. ©2010 Yahoo! Inc.
YAHOO! and the YAHOO! logo are registered trademarks of Yahoo! Inc.

Now, with the tools we have already been using in previous chapters, getting and dis-
playing such an image becomes not too complicated. The logic that would get the URL
for the map including the American Museum of Natural History (AMNH) would be
along the lines of the following; let’s assume this code will go in a Presenter, and that the
corresponding View will have a method enabling the Presenter to set the map’s URL.

final String YAHOOID = "...yourKeyGoesHere...";

final double AMNHlat = 40.780411;

final double AMNHlon = -73.974037;

xhrProxy.getFromUrl("http://local.yahooapis.com",

"MapsService/V1/mapImage", "appid=" + YAHOOID + "&latitude="

+ AMNHlat + "&longitude=" + AMNHlon,

new AsyncCallback<String>() {

@Override

public void onFailure(final Throwable caught) {

environment.showAlert("Couldn't connect to Yahoo Maps");

}

174 Chapter 9 Adding APIs

 Download from www.wowebook.com

ptg

@Override

public void onSuccess(final String result) {

final Document xmlDoc = XMLParser.parse(result);

final Element root = xmlDoc.getDocumentElement();

XMLParser.removeWhitespace(xmlDoc);

final String actualUrl = root.getFirstChild()

.getNodeValue();

// set the View's map image URL to actualUrl

}

});

We use the same xhrProxy object as earlier (see Chapter 7). Note that the parsed
XML object consists only of the root element, with a text node, so we can get the URL
by just doing root.getFirstChild().getNodeValue(); much easier than in other
examples we’ve already seen! In the onSuccess(...) method, you would finish by
using the obtained actualUrl value, setting the view’s image URL to it.

Check the documentation, for there are many more options than the few we used
here; for example, instead of using latitude and longitude, you can specify a location by
combining several of street, city, state, ZIP, or a free text location description (such as
“Albany, NY”). You can also get either a PNG or GIF file, define the map’s dimensions,
and the zoom level (from 1, meaning street level, to 12, meaning country level).

Note that if all you care for is an image, this sample code shows a simple way of get-
ting it, by building on our previous work. Getting a map requires more work than get-
ting a chart from the Google Chart API (where, as we saw, providing the URL is
enough to get the image) but it isn’t such a complex method either.

Summary
We have seen how to interact with several popular APIs, in some cases by using just Java
code, and in others by mixing in JSNI. GWT applications (or, more generally, Ajax
applications) usually mash up information from several places, or use interesting APIs and
widgets to provide a nicer experience to the user, and this chapter has shown several
ways to do that.

175Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

10
Working with Servers

All Internet applications have security concerns, and your GWT application won’t be
able to elude them. In this chapter we consider important security terms and methods,
and then go on to applying them for safe (or, more precisely, safer) communications with
your server.

The Challenges to Meet
We cannot study possible solutions to security problems without having an understand-
ing of the situations we’ll face, so let’s start by considering what are our objectives (or what
do we mean by security), which tools we may apply, and how to use them with GWT.

This chapter will differ a bit from the rest of the chapters in the book, inasmuch we’ll
be showing code fragments, which implement the described ideas, rather than whole
applications; fortunately, applying the methods shown isn’t that hard!

Before Going Any Further
Lest you end with wrong hopes, let’s start with a dire warning: Unless you use secure
(meaning, SSL communications: https:// instead of http://) there is no way to com-
pletely defend your application against a wise hacker with appropriate tools.1

In usual “cryptospeak,” we talk of two people, Alice and Bob, trying to communicate
with each other, possibly over unsafe or unsecure channels of communication. Also, we
usually consider the possible existence of several unsavory characters that might want to
interfere, such as Eve (an eavesdropper, who wants to see what information is sent back
and forth) or Mallory (a more malicious person, who goes beyond mere curiosity, and
may even add, modify, or delete packets and programs, or redirect your communications
to other servers).

When you use https:// you can be certain you are connecting to the server you
want, and due to the encryption of the point-to-point “tunnel” between your machine

1. This solution also has some other problems. For example, code loaded via https:// isn’t cached,

so end-user performance won’t be as good when he comes back to your application.

 Download from www.wowebook.com

ptg

and the server, nobody can “listen” to the communications between your application and
your services. If you don’t use this protocol, a hacker might look at the packets that flow
between client and server, inspect them, and even modify them at will. He might even
modify the JavaScript code you download to your machine, so it will do whatever he
wants, unknown to you!

We are going to discuss several ideas that can help against lesser adversaries (for exam-
ple, the usage of cryptography so Eve cannot read the communications) but remember:
Unless you go for full security with SSL, you cannot rest assured that your application
won’t be hijacked, or your data modified, and that a determined Mallory won’t be able
to harm you.

Security
Usually, “security” is recognized as equal to the acronym AAA, which stands for
Authentication, Authorization, and Accounting, with the following meanings:

n Authentication: The system should recognize a valid user.
n Authorization: The system should enable specific actions only to certain users.
n Accounting: The system should provide a log of used resources, performed tasks,

and so on.

Some other meanings are usually added, such as
n Availability: Systems should be ready for use, and perform correctly and acceptably.
n Confidentiality: Data should be available only to the people who should access it.
n Integrity: Data is changed only in allowed ways by allowed people.
n Non Repudiation: Users shouldn’t perform an action and later deny having per-

formed it.

For the purposes of this chapter, we’ll be mainly dealing with Authentication (so only
a given set of users will be able to use the application), Confidentiality (so Eve, our
eavesdropper, cannot get to the data), and Integrity (so Mallory cannot change, inject, or
delete any kind of data updates). Also, when data is signed (and because the signature
depends among other things on your password, nobody else could fake it) we are provid-
ing a basic Non Repudiation scheme, but that’s beyond our intent.

As to Authorization, there are many ways of doing this. Notice, however, that you do
have to worry about server-side authorization; never assume that client-side checks are
valid, and always consider that the user may be executing tampered-with code (or might
have done some tampering himself!) so whichever checks or tests you need to do, must
absolutely be done on the server. Finally, there are many Accounting solutions (also a
server-side problem), and Availability actually hasn’t much to do with GWT.2

178 Chapter 10 Working with Servers

2. See http://code.google.com/webtoolkit/articles/security_for_gwt_applications.html for a more

general description of security problems and solutions.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/articles/security_for_gwt_applications.html

ptg

Ajax Problems
Although “classic” web applications usually remember the state of the application at the
server side, Ajax (and thus, GWT) applications tend to do that on the client, to better
take advantage of JavaScript code. However, this might tempt a developer to implement
security controls at the client side, which is totally insecure. An attacker could modify
the code running on his PC while testing for exploitable vulnerabilities, and your server
would be receiving data from a tainted source. So, it’s worth repeating: Security controls
must be totally implemented, or at least rechecked, on the server.

As a consequence, never assume that any data or commands received server-side are
valid. You should certainly run checks and do validations at the client to provide a more
fluid experience to the end user (and in fact we saw such a pattern, PreValidation, in
Chapter 6, “Communicating with Your Server”) but that won’t enable you to skip any
controls at the server.3

Cryptography
Cryptography has several uses, and we will apply both encryption and hashing. The first
term means transforming a plain text into an unreadable crypto text that can be trans-
formed back into the original only by using an appropriate key, and thus provides for
security against Eve, whom we met earlier in this chapter. The second term, hashing,
refers to a way of producing a fixed-size digest from a given text, in such a way that any
changes to the text imply changes in the digest. If you are given a text and a digest, if
they do not match, you can be sure there’s been some tampering with the data, whereas
if there’s a match, it’s highly likely the text hasn’t been modified.4

Before we go any further, don’t become tempted with the idea of producing your
own super-duper-ultra-highly obfuscated cryptographic method; published standard
methods (such as AES, RSA, and many more; just google for “Cryptography,” and you’ll
get plenty of references) have withstood analysis, checks, verifications, and attacks, and it’s
unlikely any method thrown together in a short while can endure the same kind of tests.

Also, do not ever rely on “Security through Obscurity,” assuming that the would-be
attackers won’t guess what you did. In particular, never assume that GWT’s code obfus-
cation will be enough to protect your code; a determined programmer will be able to
deduce your algorithms and methods, and you’ll be left wide open to all kinds of attacks.

179Cryptography

3. Note that this doesn’t imply coding everything twice; you can easily share tests between client-

and server-side code, because everything is written in Java.

4. The standard reference for Cryptography is Bruce Schneier’s “Applied Cryptography”; check it at

www.schneier.com/book-applied.html, but also read his “Practical Cryptography” (check

www.schneier.com/book-practical.html) for real-life practical considerations before you plunge for-

ward applying methods right and left.

 Download from www.wowebook.com

www.schneier.com/book-applied.html
www.schneier.com/book-practical.html

ptg

Hashing
This said and done, let’s start with hashing, because we have already seen the MD5
method in Chapter 8, “Mixing in JavaScript.” In that case, our implementation used
JSNI; now we need a Java version for the server-side services, and we are going with the
JCA (Java Cryptography Architecture)5 so we can simply write the following short
method. Note that MD5 requires a zero-padded 32 bytes long hash, and some published
versions of this code omit the final while in our code, thus possibly producing an (erro-
neous) shorter hash.

public static String md5(final String text) {

String hashword = null;

try {

final MessageDigest md5 = MessageDigest.getInstance("MD5");

md5.update(text.getBytes());

final BigInteger hash = new BigInteger(1, md5.digest());

hashword = hash.toString(16);

} catch (final NoSuchAlgorithmException nsae) {

}

while (hashword.length() < 32) {

hashword = "0" + hashword;

}

return hashword;

}

The preceding code is somewhat cavalier about errors; should a NoSuchAlgorithm -
Exception be thrown, hashword would be null, and the reference to hashword
.length() would then throw a NullPointerException; not very clear, and not very
good programming style either!

Let’s set up a Security package, with all the methods we’ll need; in fact, we’ll have dif-
ferent implementations of this package, for client- and server-side coding, but with the
same methods. This can be considered an application of the Façade design pattern; even if
the implementations are different (as in MD5), having the same methods makes for easier
coding (only one API to learn) and for testing (the same tests we use for client-side cod-
ing can be used server-side.)

Encrypting
Back to cryptography, there are many usable methods, and we are going to use a simple
—and fast—one, called RC4 (or also ARCFOUR), which is a symmetric (meaning the
same key is used for coding and decoding) algorithm. RC4 is quite efficient and is
applied for SSL (secure communications) and WEP. Using RC4 in server-side code is
easy, but for client-side coding there isn’t such a standard implementation as JCA’s.

180 Chapter 10 Working with Servers

5. Read more on JCA at http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/

CryptoSpec.html.

 Download from www.wowebook.com

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

ptg

package com.fkereki.mvpproject.client;

import com.google.gwt.user.client.Random;

private final byte sbox[] = new byte[256];

private int i;

private int j;

// Set up the internal parameters (sbox, i, j) so we can

// start decoding right away

public void setUp(final String key) {

int k;

byte x;

for (i = 0; i < 256; i++) {

sbox[i] = (byte) i;

}

final int kl = key.length();

for (i = 0, j = 0, k = 0; i < 256; i++) {

j = j + sbox[i] + key.charAt(k) & 0xff;

k = (k + 1) % kl;

x = sbox[i];

sbox[i] = sbox[j];

sbox[j] = x;

}

// Set things up to start coding/decoding

i = 0;

j = 0;

}

// Assuming everything was set up earlier, encode plaintext. This can

// be done in stream fashion; sequential calls to this routine will be

// the same as a single call with a longer parameter. In other words,

// as Benny Hill had it in a comedy sequence,

// codeDecode("THE")+codeDecode("RAPIST") equals codeDecode("THERAPIST")

public String codeDecode(final String plaintext) {

byte x;

String r = "";

final int pl = plaintext.length();

for (int k = 0; k < pl; k++) {

i = i + 1 & 0xff;

181Cryptography

 Download from www.wowebook.com

ptg

j = j + sbox[i] & 0xff;

x = sbox[i];

sbox[i] = sbox[j];

sbox[j] = x;

r+= (char)(plaintext.charAt(k) ^ sbox[sbox[i]+sbox[j] &0xff] &0xff);

}

return r;

}

// A simple utility method to simplify setting up the key and

// using it for encryption in a single step

public String codeDecode(final String key, final String plaintext) {

setUp(key);

return codeDecode(plaintext);

}

}

In this case, the code can be used both client- and server-side. Just for variety, let’s
then reuse it; we have already used JSNI (with MD5) and JCA (again with MD5), so
now we’ll opt for sharing the same code. Note that the same codeDecode(...)
method is used for both encoding and decoding.

To always transmit ASCII legible characters (that will make debugging easier!) let’s add
a pair of utility methods to our Security package. The first, byteStringToHexString(...)
will convert a String formed by any bytes, to a Hex equivalent; for example, AtoZ\n
would become 41746f5a0a, which contains only digits and letters. To revert the effects
of this, let’s also have hexStringToByteString(...). The source code can be used
both client- and server-side, so that means less coding.

public class Security {

public static String byteStringToHexString(final String s) {

String r = "";

for (int i = 0; i < s.length(); i++) {

r += byteToHexChars(s.charAt(i));

}

return r;

}

// Convert a number (0..255) into its two-character equivalent.

// For example, 15 returns "0F" and 100 returns "64".

public static String byteToHexChars(final int i) {

final String s = "0" + Integer.toHexString(i);

return s.substring(s.length() - 2);

}

182 Chapter 10 Working with Servers

 Download from www.wowebook.com

ptg

public static String hexStringToByteString(final String s) {

String r = "";

for (int i = 0; i < s.length(); i += 2) {

r += (char) Integer.parseInt(s.substring(i, i + 2), 16);

}

return r;

}

Finally, on occasion we shall need to produce a nonce, a cryptographic term that stands
for “number used once,” but which can actually be any kind of random or time-dependent
string. For server-side coding, we can just use code from the Apache Commons Lang
component.6

public static String randomCharString() {

return RandomStringUtils.randomAlphabetic(32);

}

On the other hand, we’ll have to whip up our own implementation for client-side
coding, because there’s no GWT version of RandomStringUtils. In any case, it’s easy
to come up with something like the following.

public static String randomCharString() {

String r = "";

for (int i = 0; i < 32; i++) {

r += (char) ('A' + Random.nextInt(26));

}

return r;

}

We are done; let’s now start applying these methods for our GWT security problems.

Stateless Versus Stateful Servers
With usual web systems, all the application “state” is kept at the server, whereas the client
is used just to display data and to capture events, which are forwarded to the server.
Whenever the server receives an event, it does whatever process is necessary and sends a
new page to the client, so the user can see an updated display with the effects of his
operation. See Figure 10.1.

More modern (i.e., Ajax) systems turn this scheme upside down. By taking advantage
of local JavaScript processing, most events are managed client-side, and RPC is used to
send queries or new data to the server. The server by itself is just a service provider;
whenever it receives a request from the client, it updates the system database and sends
back any results, which will be displayed by the client side logic. See Figure 10.2.

183Stateless Versus Stateful Servers

6. See http://commons.apache.org/lang/.

 Download from www.wowebook.com

http://commons.apache.org/lang/

ptg

Figure 10.1 In classic web systems, all application state resides at the
server, whereas the client is just used for displaying data.

184 Chapter 10 Working with Servers

Stateless
Client

Stateful
ServerEvents and Data

Screen to Be Shown

Stateful
Client

Stateless
ServerProcess Calls

Events

Service Results

Figure 10.2 Modern web systems take advantage of JavaScript and Ajax
calls to bring processing closer to the user.

It can be argued that moving state away from the server helps provide more scalable
systems. With fully stateless servers, should you find a bottleneck in server-side process-
ing, you could easily add more servers. With this, clients could connect to any available
server, because all the required data would be provided by the client; the server wouldn’t
have to “remember” anything.

Because of this, we shall be opting for stateless (or, as-little-state-as-possible) server-
side coding. This automatically implies that the client-side code will have to identify
itself before asking for any processing. The server-side code will have first to validate
whether the user is a valid one, and authorize to perform whichever process he might
ask, and if everything is OK then proceed with the request and send back the produced
results.

To enhance security, both sides (client and server) will have to share a “secret”; that is,
information known only to both of them. A client-side easy secret is the user password;
however, we cannot just send it over the web connection, for that would be quite risky.
We shall recur to creating a special “session key” that will be used for identification and
also for encryption and hashing; we shall see this next.

Remembering the secret for each client-side user can be done either with a database
or by using HTML sessions. We’ll use the first solution (so our servers won’t be 100%
state free) but that’s the only state data that will be kept at the server.

 Download from www.wowebook.com

ptg

Common Operations
In this section let’s consider common operations (such as logging in or changing your
password) that require extra care to avoid security risks.

Logging In
We’ll start with a typical “what’s wrong with this picture?” puzzle and consider the fol-
lowing code, taken from the Login Presenter we saw back in Chapter 4, “Working with
Browsers.” Remember the somewhat meaningless getSomething(...) call? Let’s now
figure out what it should do. (We should point out that we still haven’t said what the
servlet should return, but that’s not the problem here.7)

loginDisplay.setLoginCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

final String name = LoginFormPresenter.this.getDisplay()

.getName();

final String pass = LoginFormPresenter.this.getDisplay()

.getPassword();

loginService.getSomething(name, pass,

new AsyncCallback<String>() {

...

});

}

});

The real problem is that the password is sent “in the clear” to the server. If Eve (our
eavesdropping intruder) were to use a sniffer and check all packets sent from your client
to the server, she would immediately get a nice user/password pair, which would enable
her to fully impersonate a valid user!

It’s time for some cryptography, but some methods just won’t do. For example, send-
ing a hash of the password instead of the actual password wouldn’t work either; Eve
(with the aid of Mallory, perhaps) could do a fake login and send the username plus the
key hash, and she’d also be in. Sending an encoded password, but using always a fixed key
for encoding, would present the same problem. The solution is simple: We will generate a
nonce and send

n Username
n Nonce
n Hash of the user password concatenated to the nonce

185Common Operations

7. For another take on secure logins, see http://code.google.com/p/google-web-toolkit-incubator/

wiki/LoginSecurityFAQ.

 Download from www.wowebook.com

http://code.google.com/p/google-web-toolkit-incubator/wiki/LoginSecurityFAQ
http://code.google.com/p/google-web-toolkit-incubator/wiki/LoginSecurityFAQ

ptg

Unless an intruder knows your password, he cannot produce the correct hash, so this
is a safer method. (And, in any case, we shall be adding more protection to our commu-
nications, by using signatures.) The code for this would be simple; we’ll reuse the MD5
logic we saw back in Chapter 8.8

loginDisplay.setLoginCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

LoginFormPresenter.this.getDisplay().enableLoginButton(false);

final String name = LoginFormPresenter.this.getDisplay().getName();

final String pass = LoginFormPresenter.this.getDisplay()

.getPassword();

final String nonce = Security.randomCharString();

final String hashPassword = Security.md5(nonce + pass);

loginService.getSessionKey(name, nonce, hashPassword,

new AsyncCallback<SessionKeyServiceReturnDto>() {

@Override

public void onFailure(final Throwable caught) {

LoginFormPresenter.this.getEnvironment().showAlert(

"Failed login");

LoginFormPresenter.this.getDisplay().enableLoginButton(

true);

loginSuccessCallback.onFailure(new Throwable());

}

@Override

public void onSuccess(

final SessionKeyServiceReturnDto result) {

final String calculatedHash = Security.md5(nonce

+ result.encryptedSessionKey);

if (result.hash.equals(calculatedHash)) {

final Security secure = new Security();

final String sessionKey = secure

.codeDecode(

pass + nonce,

Security.hexStringToByteString(

result.encryptedSessionKey));

186 Chapter 10 Working with Servers

8. It has been said that MD5 isn’t a good hashing method any longer, and that you should replace it

with SHA-1 or better. It can be argued that for these kinds of values, MD5 could be appropriate, but

in any case we are more interested in the general logic than on the specific hash function to apply. I

went with MD5 because we had already used it earlier in the book, and because its known problems

(such as producing two different strings that hash to the same value) do not necessarily apply in

this context.

 Download from www.wowebook.com

ptg

loginSuccessCallback.goBack(new UserPassKeyDto(name,

pass, sessionKey));

} else {

LoginFormPresenter.this.getEnvironment().showAlert(

"Wrong data - problem in communication!");

LoginFormPresenter.this.getDisplay()

.enableLoginButton(true);

loginSuccessCallback.onFailure(new Throwable());

}

}

});

}

});

The preceding code modifies the “Login” button callback in our Login Form.
Because we are just trying to log in (this is our first attempt at communicating with the
server) there’s no shared secret (session key) yet. We shall call the getSessionKey(...)
method (getSessionKey(...) is a better name than getSomething(...), isn’t it?)
with the user name, a nonce, and a hash of the password concatenated with the nonce. If
the server accepts this login (we shall be seeing the server side code in a moment) it will
return an encrypted version of the session key, plus a hash code. We use a DTO for this;
remember to have it implement IsSerializable, and add an empty constructor as we
saw in Chapter 6.

package com.fkereki.mvpproject.client.dtos;

public class SessionKeyServiceReturnDto

extends GenericServiceReturnDto {

public String encryptedSessionKey;

public SessionKeyServiceReturnDto() {

}

}

The base GenericServiceReturnDto class will be used for all data exchanges that
require security checking. Notice that we have one only attribute (hash); other attributes
will have to be added depending on what your service must return. Also note that none
of the secret parameters (user password, session key, and even the nonce) are stored
within the DTO; sending them over the wire would be a really dumb move!

package com.fkereki.mvpproject.client.dtos;

import com.google.gwt.user.client.rpc.IsSerializable;

public abstract class GenericServiceReturnDto

implements IsSerializable {

187Common Operations

 Download from www.wowebook.com

ptg

/*

* Each extended subclass will add some data. The "hash" field must be

* calculated using the (non-included) nonce, the other data, and the

* (non-included) sessionkey.

*/

public String hash;

public GenericServiceReturnDto() {

}

}

The client, on receiving the DTO shown here, will have to validate whether the hash
coincides with the data, and if so, will decrypt the session key, which was encrypted
using the user password plus a nonce. The rationale for using the user password for this
encryption is that nobody will be able to decrypt the session key unless he knows the
user password. And, the reason for using an extra nonce is that the same key should
never be used twice, to avoid some possible attacks.

The required server-side coding is as follows.

@Override

public SessionKeyServiceReturnDto getSessionKey(

final String name,

final String nonce,

final String passHash)

throws FailedLoginException {

final String password = ...get the password for "name" from the db...;

// check the received data by means of the hash

final String calculatedHash = Security.md5(nonce + password);

// if there's a match, create a sessionKey and send it back

if (passHash.equals(calculatedHash)) {

final String sessionKey = Security.randomCharString()

.toLowerCase();

// store the session key from the session

// (alternative: store the key at the DB)

final HttpServletRequest request = getThreadLocalRequest();

final HttpSession session = request.getSession();

session.setAttribute(SESSION_KEY_ID, sessionKey);

final Security secure = new Security();

final String coded = secure.codeDecode(password + nonce,

sessionKey);

final String hexCoded = Security.byteStringToHexString(coded);

188 Chapter 10 Working with Servers

 Download from www.wowebook.com

ptg

final SessionKeyServiceReturnDto sk = new

SessionKeyServiceReturnDto();

sk.encryptedSessionKey = hexCoded;

sk.hash = Security.md5(nonce + hexCoded);

return sk;

} else {

throw new FailedLoginException();

}

}

The server starts by calculating the hash it should have received; if there were some
meddling with the data or the hash, there won’t be a match, and the login attempt will
be rejected. On the other hand, if there is a match, the server can be fairly confident that
the user at the other end is the correct one; nobody else could have calculated the pro-
vided hash, which depended on the password. (And, nice point, nobody can determine
the password from the hash; that’s a key characteristic of hashes.) After this, the server can
just generate a random session key, encrypt it (with the user password concatenated with
the received nonce), and send it together with a hash, so the client can recheck the
validity of the transmission.

Even if Mallory faked the first call to the server, he wouldn’t still have the password
(unless he actually “0wn3d” your client machine, and then he could obviously do any-
thing he desired!) and he needs the said password for other steps, as we’ll see next. Also,
the server could keep a list of client-used nonces and refuse to accept a login with a
repeated value, which would deny Mallory’s replay attempt.

(In this database, passwords are stored “in the clear,” but we could easily plug that poten-
tial security hole. We could hash the password before storing it in the users table, and then
the user, instead of hashing the nonce plus his password, would hash the nonce plus the hash
of his password, and the checking procedure at the server would be similarly changed.)

As a final question, where should the server store the session key it just generated? A
logical possibility would be using a server-side session, and write code such as9

final HttpServletRequest request = getThreadLocalRequest();

final HttpSession session = request.getSession();

session.setAttribute("sessionkey", generatedSessionKey);

Retrieving the session key at a later time would merely involve

final HttpServletRequest request = getThreadLocalRequest();

final HttpSession session = request.getSession();

return (String) session.getAttribute("sessionkey");

Notice that you can use a server-side session to store as many key/value pairs as you
want, but we use it just for the session key. The simplest way out, as we mentioned earlier,

189Common Operations

9. Note that this is pure Java code and actually has nothing to do with GWT.

 Download from www.wowebook.com

ptg

is using the database itself, and storing the session key along with the user data. (Another,
better, possibility would involve using a separate table including a timestamp, the user-
name, the nonce sent by the user, and the session key created by the server. This table
would also do as a log for login attempts.) Logic for this is straightforward, so let’s move
on to more complicated operations.

Changing Your Password
The preceding login code is particular, insofar that the session key cannot be used—
mainly because it hasn’t been determined yet! Let’s now consider other processes, requir-
ing the client to send sensitive data to the server, such as a new password.10

Let’s first consider our “Change Password” form. The view (done with UIBinder) is
simple. See Figure 10.3.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE u:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

xmlns:h='urn:import:com.fkereki.mvpproject.client'

>

<g:HTMLPanel>

<h1>ChangePasswordView</h1>

<table>

<tr>

<td><g:Label text="User Name:"/></td>

<td><g:TextBox u:field='nameTextBox' enabled='false'/></td>

</tr>

<tr>

<td><g:Label text="New Password:"/></td>

<td><g:PasswordTextBox u:field='passwordTextBox1'/></td>

</tr>

<tr>

<td><g:Label text="Reenter New Password:"/></td>

<td><g:PasswordTextBox u:field='passwordTextBox2'/></td>

</tr>

<tr>

<td></td>

<td><g:Button u:field='changePasswordButton' text='Change Password'/></td>

</tr>

</table>

</g:HTMLPanel>

</u:UiBinder>

190 Chapter 10 Working with Servers

10. It should be repeated here, that it’s not likely that you will require such levels of secrecy for all

operations; however, if you do, the methods shown here will be adequate. (And if you did require

such privacy, you should rather use SSL, encrypt all transmissions in the safest possible way, and

forget your problems.)

 Download from www.wowebook.com

ptg

191Common Operations

Figure 10.3 A simple password change form requires hashes and
encryption to safely send the new password from the client to the server.

The Display interface is similar to the Login interface and has a setter for the name
field, a couple of getters for the password fields, a method for enabling or disabling the
Change Password button, a callback for handling the blur events on both password fields,
and a callback for the click event of the button.

The corresponding View code is simple, so let’s move to the Presenter. We don’t want
the user to attempt changing his password, unless he has entered it twice, and both data
entries match. We can use a common blur handler for both password fields.

package com.fkereki.mvpproject.client.changePassword;

// ...imports...

public class ChangePasswordFormPresenter

extends Presenter<ChangePasswordFormDisplay> {

public static String PLACE = "change";

LoginServiceAsync loginService;

SimpleCallback<String> loginSuccessCallback;

public ChangePasswordFormPresenter(

final String params,

final ChangePasswordFormDisplay loginDisplay,

final Environment environment) {

super(params, loginDisplay, environment);

loginService = getEnvironment().getModel().getRemoteLoginService();

final SimpleCallback<Object> commonBlurHandler =

new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

final String pass1 = ChangePasswordFormPresenter.this

.getDisplay().getPassword1();

 Download from www.wowebook.com

ptg

final String pass2 = ChangePasswordFormPresenter.this

.getDisplay().getPassword2();

final boolean canLogin = !pass1.isEmpty() & pass1.equals(pass2);

ChangePasswordFormPresenter.this.getDisplay()

.enableChangePasswordButton(canLogin);

}

};

loginDisplay.setPasswordBlurCallback(commonBlurHandler);

commonBlurHandler.goBack(null);

Initializing the form is quite straightforward. Notice we require some new methods in
the Environment object: We’ll store in it the current user (whose name we show in a
read-only field), the current password (which the user entered in the login form), and
the current session key (which was obtained when the user logged in.)

final String currentUser = environment.getCurrentUserName();

final String currentKey = environment.getCurrentSessionKey();

final String currentPass = environment.getCurrentUserPassword();

loginDisplay.setName(currentUser);

The only part missing from the code is the click handler for the Change Login but-
ton. We get the new password from the form, generate a nonce, and use it plus the user
(current) password and the session key to encrypt the new password. Adding a hash (to
avoid data tampering), we call the changePassword(...) method. If the password
change is successful, we have to change the password in the environment; otherwise, the
server (which already has the new password) wouldn’t decrypt future encrypted data.

loginDisplay

.setChangePasswordCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

ChangePasswordFormPresenter.this.getDisplay()

.enableChangePasswordButton(false);

final String pass1 = ChangePasswordFormPresenter.this

.getDisplay().getPassword1();

final Security sc = new Security();

final String nonce = Security.randomCharString();

final String encryptedPass1 = sc.codeDecode(nonce

+ currentPass + currentKey, pass1);

final String visibleEncryptedPass1 = Security

.byteStringToHexString(encryptedPass1);

192 Chapter 10 Working with Servers

 Download from www.wowebook.com

ptg

final String hashPassword = Security.md5(nonce

+ visibleEncryptedPass1

+ environment.getCurrentSessionKey());

loginService.changePassword(currentUser,

visibleEncryptedPass1, nonce, hashPassword,

new AsyncCallback<Void>() {

@Override

public void onFailure(final Throwable caught) {

ChangePasswordFormPresenter.this.getEnvironment()

.showAlert("Failed change");

ChangePasswordFormPresenter.this.getDisplay()

.enableChangePasswordButton(true);

}

public void onSuccess(final Void result) {

ChangePasswordFormPresenter.this.getEnvironment()

.showAlert("Password was changed");

ChangePasswordFormPresenter.this.getEnvironment()

.setCurrentUserPassword(pass1);

ChangePasswordFormPresenter.this.getDisplay()

.enableChangePasswordButton(true);

}

});

}

});

}

}

The scheme showed in this case can be used for any kind of data exchange. For
example, if we had a service that sent back sensitive data, it would encrypt it (using the
user password, the session key, and a nonce), and add a hash. The client would then have
to recalculate the hash, and if it matched, then it would decrypt the data and use it.

Summary
All Internet applications can be vulnerable to malicious third parties, and thus you’ll have
to take security in consideration whenever you program with GWT. (Also, read the ref-
erence mentioned in footnote 2 on security; there are many ways to take in a user.)
Fortunately, the required steps are simple and easy to apply. On the other hand, it’s a bit
sad to notice that unless you go with the https:// solution, anything you plan or do
might be eventually subverted; for example, the user could be tricked into connecting to
a malicious server!

193Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

11
Moving Around Files

Sending files to a server, or receiving a file from a server, is a common requirement,
and GWT allows you to do so, but you’ll have to use tools we haven’t yet seen. In this
chapter we’ll study these matters, see how to provide feedback to the user as the process
runs, and even get to use different ways of communicating with the server, complement-
ing the methods we already studied.

Uploading Files
Given the browser restrictions on client-side file handling (meaning, basically you cannot
do anything at all with files!) uploading any files to a server requires more “classical” web
programming, like submitting forms to send the data; we won’t be able to apply any of
GWT or Ajax techniques to work otherwise.

We’ll start with a simple file upload form, then consider the server-side servlet that
will receive and process it, and finally move on to study how to give feedback to the
user while this whole job is being done.

An Upload Form
Let’s work with an as-easy-as-possible upload form, with absolutely no frills. (See Figure 11.1.)
I named the form FileUpload, so the UiBinder code is FileUploadView.ui.xml.

We could have several file upload fields, if we wanted to send up many files at the
same time, just as with any web page.1 (And to prepare for this, the server-side code will
include a loop, so it could receive any number of files; see next.)

1. With the upcoming HTML 5 new features, you could allow for drag-and-drop selection of files, and

apply JSNI to do some JavaScript local processing, but you cannot depend on that right now

because it’s not widely implemented. To learn more about this, see the latest draft at http://

dev.w3.org/html5/spec/Overview.html for more data on the <input type="file"> new element

and on drag-and-drop methods.

 Download from www.wowebook.com

http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html

ptg

Figure 11.1 A no-frills file upload form. We could as easily upload several
files at the same time.

The interesting point is that the only way to submit files to a server is through a
form, and thus we’ll have to enclose the FileUpload widgets within a FormPanel.
Another important point is that you must give each FileUpload widget a name; other-
wise, you won’t be able to process those files server-side.2

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ui:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

xmlns:h='urn:import:com.fkereki.mvpproject.client'

>

<g:FormPanel u:field="uploadForm">

<g:HTMLPanel>

<h1>FileUploadView</h1>

<table>

<tr>

<td>

<g:Label text='File to Upload:' />

</td>

<td>

<g:FileUpload u:field="fileToUpload" name="uploadedfile" />

</td>

</tr>

<tr>

<td></td>

<td>

<g:Button u:field="uploadButton" text='Upload it' />

</td>

</tr>

</table>

</g:HTMLPanel>

</g:FormPanel>

</u:UiBinder>

196 Chapter 11 Moving Around Files

2. Forgetting this is easy and will lead to producing a zero-length list in the file processing servlet,

when you do upload.parseRequest(request)... guess how I know?

 Download from www.wowebook.com

ptg

You will also have to set three FormPanel parameters (or your upload will fail) and I
opted to do this in the View code, though it could be argued that setting them from the
Presenter would be better because it would allow applying JUnit testing as in Chapter 13,
“Testing Your GWT Application”:

n Set the form’s Action to the path for your file processing servlet.
n Set the encoding to Multipart.
n Set the method to POST; you cannot send files otherwise.

This form’s Display interface will provide a getter for the filename (so we can check
whether to submit the form), a callback to handle the click the Upload File button, a
callback to process (and possibly cancel, if some condition isn’t satisfied) the Submit
event that will be fired by the button, another callback to handle the Submit Complete
event (which is fired when the submission is done), and a method to actually submit
the form.

package com.fkereki.mvpproject.client.fileUpload;

import com.fkereki.mvpproject.client.Display;

import com.fkereki.mvpproject.client.SimpleCallback;

import com.google.gwt.user.client.ui.FormPanel;

public interface FileUploadDisplay

extends Display {

String getFileToUploadName();

void setSubmitCallback(SimpleCallback<FormPanel.SubmitEvent> scb);

void setSubmitCompleteCallback(

SimpleCallback<FormPanel.SubmitCompleteEvent> scb);

void setUploadClickCallback(SimpleCallback<Object> scb);

void submitForm();

}

The corresponding view is in FileUploadView.java:

package com.fkereki.mvpproject.client.fileUpload;

// ...imports...

public class FileUploadView

extends View

implements FileUploadDisplay {

197Uploading Files

 Download from www.wowebook.com

ptg

@UiTemplate("FileUploadView.ui.xml")

interface Binder

extends UiBinder<FormPanel, FileUploadView> {

}

@UiField FormPanel uploadForm;

@UiField FileUpload fileToUpload;

@UiField Button uploadButton;

SimpleCallback<SubmitCompleteEvent> onSubmitCompleteCallback;

SimpleCallback<SubmitEvent> onSubmitCallback;

SimpleCallback<Object> onUploadClickCallback;

private static final Binder binder = GWT.create(Binder.class);

public FileUploadView() {

final FormPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

uploadForm.setAction("/mvpproject/fileprocess");

uploadForm.setEncoding(FormPanel.ENCODING_MULTIPART);

uploadForm.setMethod(FormPanel.METHOD_POST);

}

@Override

public String getFileToUploadName() {

return fileToUpload.getFilename();

}

@UiHandler("uploadForm")

public void onSubmitComplete(final SubmitCompleteEvent event) {

onSubmitCompleteCallback.goBack(event);

}

@UiHandler("uploadForm")

public void onSubmitForm(final SubmitEvent event) {

onSubmitCallback.goBack(event);

}

@Override

public void setSubmitCallback(final SimpleCallback<SubmitEvent> scb) {

onSubmitCallback = scb;

}

@Override

public void setSubmitCompleteCallback(

final SimpleCallback<SubmitCompleteEvent> scb) {

198 Chapter 11 Moving Around Files

 Download from www.wowebook.com

ptg

onSubmitCompleteCallback = scb;

}

@Override

public void setUploadClickCallback(final SimpleCallback<Object> scb) {

onUploadClickCallback = scb;

}

@Override

public void submitForm() {

uploadForm.submit();

}

@UiHandler("uploadButton")

void uiOnUploadClick(final ClickEvent event) {

onUploadClickCallback.goBack(null);

}

}

Let’s now go to the Presenter code, which actually does the work.

package com.fkereki.mvpproject.client.fileUpload;

// ...imports...

public class FileUploadPresenter

extends Presenter<FileUploadDisplay> {

public static String PLACE = "upload";

public FileUploadPresenter(

final String params, final FileUploadDisplay fileUploadDisplay,

final Environment environment) {

super(params, fileUploadDisplay, environment);

fileUploadDisplay

.setUploadClickCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

if (getDisplay().getFileToUploadName().isEmpty()) {

getEnvironment().showAlert(

"You must pick a file to upload.");

} else {

getDisplay().submitForm();

}

}

});

199Uploading Files

 Download from www.wowebook.com

ptg

fileUploadDisplay

.setSubmitCallback(new SimpleCallback<SubmitEvent>() {

@Override

public void goBack(final SubmitEvent result) {

// you could check for special conditions

// if the event cannot proceed, then do:

// result.cancel();

// As an alternative, these checks could go

// in the button click method.

}

});

fileUploadDisplay

.setSubmitCompleteCallback(new

SimpleCallback<SubmitCompleteEvent>() {

@Override

public void goBack(final SubmitCompleteEvent result) {

// do something when the file process is done

}

});

}

}

We aren’t including any feedback here while the file is being uploaded; we’ll get to
that later, and it will involve adding some code to the Submit event handler.

A File Processing Servlet
Now, let’s turn to the server-side file processing servlet. (Of course, this code could also
be a PHP script, for example, because we are dealing with standard HTML form sub-
mission; let’s keep to Java to go along with GWT’s orientation.) Get and add the Apache
Commons commons-fileupload and commons-io jars to your application, and then
you’ll be able to easily get and process the uploaded files.3

You’ll also have to modify the web.xml file for your project, to include the informa-
tion on your servlet. In a rapt of inspiration, I named the servlet fileProcess, and thus
I added the following lines to the said XML file:

<servlet>

<servlet-name>fileProcess</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.FileProcess</servlet-class>

</servlet>

200 Chapter 11 Moving Around Files

3. See http://commons.apache.org/ for this.

 Download from www.wowebook.com

http://commons.apache.org/

ptg

<servlet-mapping>

<servlet-name>fileProcess</servlet-name>

<url-pattern>/mvpproject/fileprocess</url-pattern>

</servlet-mapping>

Our servlet code is as follows. For now, we’ll just care about the doPost(...)
method; we’ll later use the doGet(...) method to provide feedback to the user.

package com.fkereki.mvpproject.server;

// ...imports...

public class FileProcess

extends HttpServlet {

@Override

protected void doPost(

final HttpServletRequest request,

final HttpServletResponse response)

throws ServletException,

IOException {

final FileItemFactory factory = new DiskFileItemFactory();

final ServletFileUpload upload = new ServletFileUpload(factory);

try {

final List<FileItem> itemsList = upload.parseRequest(request);

for (final FileItem item : itemsList) {

if (!item.isFormField()) {

final InputStream input = item.getInputStream();

final FileOutputStream output = new FileOutputStream(

"/tmp/dummy");

final byte[] buf = new byte[1024];

int len;

while ((len = input.read(buf)) > 0) {

output.write(buf, 0, len);

}

output.close();

input.close();

}

}

} catch (final FileUploadException e) {

throw new ServletException(e.getMessage());

}

}

}

201Uploading Files

 Download from www.wowebook.com

ptg

We are just receiving the file and saving it to /tmp/dummy—probably not quite useful
in a true-life system! The code uses the Commons API; there’s nothing GWT-specific in
there. This kind of programming is actually quite classic non-Ajax servlet code; for
example, you could have also provided parameters to the servlet by using hidden fields
or form fields, if desired. You could even have access to the session and apply all the usual
web processing methods you knew before using GWT.4

As to the code itself, note there’s a loop that processes all form items, discarding mere
fields, to process all the uploaded files. (This would allow you to process several files at
once.) You can use the getSize(...) method to get the file total size (and possibly dis-
card too large files), and getName(...) to get the original file name, among other
methods.

Providing Feedback to the User
If you are uploading large files, or if their process can take some time, it would be better
from the user’s point of view if you were to provide him with some kind of feedback.
However, when most (if not all) servlet containers receive a request, they store it inter-
nally in their entirety before invoking your code; thus, you won’t be able to provide any
useful feedback to the user: It would just jump from 0% to 100% with no in-between
moments.5

Given this restriction, let’s at least work on providing some feedback during the actual
file process. We could store information on the advance of our code during the process-
ing loop (the session would be a simple solution) and send it back to the user with the
doGet(...) method. We’d change the main file writing part of our code like this:

final byte[] buf = new byte[1024];

final long size= item.getSize();

int len;

int processed = 0;

while ((len = input.read(buf)) > 0) {

output.write(buf, 0, len);

processed += len;

request.getSession().setAttribute("processed",

processed + "/" + size);

}

We use processed to keep count of how many bytes have been read, and we store
the total length of the file in size. Finally, we set up a string such as 1024/22960
(meaning, 1024 bytes read out of 22960) and store it in the processed attribute of the
session, so the user can query it. Of course, we could easily ramp the level of the feed-
back information and provide more data, but this will do for an example. We must also

202 Chapter 11 Moving Around Files

4. In fact, we will be doing this in order to provide feedback.

5. Check the ProgressListener interface for more on this; you can find usage documentation at

http://commons.apache.org/fileupload/using.html.

 Download from www.wowebook.com

http://commons.apache.org/fileupload/using.html

ptg

write the doGet(...) method, which shall just access the session and return the
progress information just stored.

@Override

protected void doGet(

final HttpServletRequest request,

final HttpServletResponse response)

throws ServletException,

IOException {

response.getOutputStream().print(

(String) request.getSession().getAttribute("processed"));

}

How should the client get and use this information? Let’s first consider how to call
the servlet and do a GET and then move on to other considerations. As we are not
working with RPC, we’ll have to use the RequestBuilder class to do direct Ajax calls.
Possibly in the Submit event code at the Presenter, you would add something such as

final RequestBuilder builder = new RequestBuilder(

RequestBuilder.GET, "/mvpproject/fileprocess");

builder.setCallback(new RequestCallback() {

@Override

public void onError(

final Request request,

final Throwable exception) {

// warn on error...

}

@Override

public void onResponseReceived(

final Request request,

final Response response) {

// use response.getText() to get the service returned value

// and then use it to provide feedback to the user

}

});

Given this, you would do a GET by simply writing

try {

builder.send();

} catch (final RequestException e) {

// warn the user if the call failed

}

203Uploading Files

 Download from www.wowebook.com

ptg

How and when would you use this code? I’ll leave the details up to you, but the sim-
plest way would be creating a Timer (at the Submit event) and scheduling it to run, say,
every 2 seconds (2000 milliseconds).6 At the Submit Complete event, you would can-
cel(...) the timer. The Timer’s run(...) method would do the GET with the pre-
ceding code and use the returned value to update some label or process bar on the form.

Downloading Files
After all the work we did to upload files, the counterpart, downloading a file, is an anti-
climax; the code is quite simple, and the only possible complications could lay server-
side, to produce the required result.7

We shall see two ways of getting a file; either by posting the form (as with the file
upload example) or by using a more classic link.

A File Download Form
As earlier, let’s go with a simple form. (See Figure 11.2.) We’ll provide our (simple, make
believe) servlet with three parameters; it would be just as easy to include more, or to add
hidden fields to the form.

204 Chapter 11 Moving Around Files

6. Even better, schedule it to run once, and when it runs, have the timer schedule itself again in 2

more seconds, so you’ll avoid creating a bunch of pending requests should there be some kind of

slowdown.

7. For example, if you want to produce reports in several different formats, you might want to con-

sider JasperReports (see http://jasperforge.org/) or Pentaho (at www.pentaho.com/), but note that

using these tools won’t have anything to do with GWT; it’s a pure server-side coding effort.

Figure 11.2 This form will invoke a servlet, which will produce a text file;
real-life applications would get a PDF, a spreadsheet, or the like.

The FileDownloadView.ui.xml file is similar to the one we used for uploads; let’s
just see part of it, including the third parameter, the button, and the link.

 Download from www.wowebook.com

http://jasperforge.org/
www.pentaho.com/

ptg

<tr>

<td>

<g:Label text='3rd parameter:' />

</td>

<td>

<g:TextBox u:field="parameter3" name="parameter3" />

</td>

</tr>

<tr>

<td></td>

<td>

<g:Button u:field="downloadButton" text='Get it' />

<g:Anchor u:field="downloadLink" text='Or get it' />

</td>

</tr>

The Display interface will provide getters for the three parameters, methods for
setting the callbacks for the button and link click handlers, a setter for the destination
(href) of the link, and methods for setting the Submit event handler and for actually
submitting the form.

package com.fkereki.mvpproject.client.fileDownload;

// ...imports...

public interface FileDownloadDisplay

extends Display {

String getParameter1();

String getParameter2();

String getParameter3();

void setDownloadClickCallback(SimpleCallback<Object> scb);

void setDownloadLinkClickCallback(SimpleCallback<Object> scb);

void setLinkHref(String href);

void setSubmitCallback(SimpleCallback<FormPanel.SubmitEvent> scb);

void submitForm();

}

The View code (FormDownloadView.java) is simple, and we can skip it. Let’s just
consider the constructor, which sets the form parameters. Note that this time, we use a
GET method instead of a POST, and we invoke a different servlet, fileproduce, which
we’ll be seeing next:

205Downloading Files

 Download from www.wowebook.com

ptg

public FileDownloadView() {

final FormPanel dlp = binder.createAndBindUi(this);

initWidget(dlp);

downloadForm.setAction("/mvpproject/fileproduce");

downloadForm.setMethod(FormPanel.METHOD_GET);

}

To finish, let’s consider the Presenter code. Setting callbacks is similar to the upload
code; the only interesting part is the link click callback. In it, we have to get the form
parameters, encode them appropriately so they can be sent to the server, and dynamically
create the destination for the link.

package com.fkereki.mvpproject.client.fileDownload;

// ...imports...

public class FileDownloadPresenter

extends Presenter<FileDownloadDisplay> {

public static String PLACE = "download";

public FileDownloadPresenter(

final String params,

final FileDownloadDisplay fileDownloadDisplay,

final Environment environment) {

super(params, fileDownloadDisplay, environment);

fileDownloadDisplay

.setDownloadLinkClickCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

final String param1 = URL.encode(getDisplay()

.getParameter1());

final String param2 = URL.encode(getDisplay()

.getParameter2());

final String param3 = URL.encode(getDisplay()

.getParameter3());

getDisplay()

.setLinkHref(

"/mvpproject/fileproduce?parameter1=" + param1

+ "¶meter2=" + param2 + "¶meter3="

+ param3);

}

});

206 Chapter 11 Moving Around Files

 Download from www.wowebook.com

ptg

// set the other callbacks

}

}

With this code, either by clicking the button (which will do a classic form submis-
sion) or on the link, the user will invoke a remote servlet, which will generate a file.

A Sample File Producing Servlet
In a real-life application, you would be invoking a servlet that would most likely produce
some kind of report or spreadsheet, but for this example let’s go for something rather
more trivial and just send back a text file including the received form parameters as its
contents.

This is straightforward server-side Java programming; the only points you must
remember is setting its content type and disposition.8 The rest of the doGet(...)
method is simple; we just output the received parameters to the request OutputStream
and close it.

package com.fkereki.mvpproject.server;

// ...imports...

public class FileProduce

extends HttpServlet {

@Override

protected void doGet(

final HttpServletRequest request,

final HttpServletResponse response)

throws ServletException,

IOException {

// media type (or, more modern, content type)

//

// text/plain application/msexcel

final ServletOutputStream output = response.getOutputStream();

response.setContentType("text/plain");

response.setHeader("Content-Disposition",

"attachment; filename=somefile.txt");

output.println("Received parameters:");

output.println(request.getParameter("parameter1"));

output.println(request.getParameter("parameter2"));

output.println(request.getParameter("parameter3"));

output.close();

}

207Downloading Files

8. See RFC 2046 at www.ietf.org/rfc/rfc2046.txt for more on this.

 Download from www.wowebook.com

www.ietf.org/rfc/rfc2046.txt

ptg

For generality, we can let the servlet answer to POST methods in the same way than
to GETs.

@Override

protected void doPost(

final HttpServletRequest request,

final HttpServletResponse response)

throws ServletException,

IOException {

doGet(request, response);

}

}

Now, running the form and clicking the button or link will call the servlet, produce a
somefile.txt text file, and give you the option to open or download it. See Figure 11.3.

208 Chapter 11 Moving Around Files

Figure 11.3 Clicking on either the button or the link does a call to the
servlet that produces a simple text file as output.

It’s most important to note that in this example, we have been mostly using time-
tried web programming techniques and not much GWT-original code. (If, for example,
you wanted to display the contents in a separate window, you would just add target=
"_blank" to the link’s destination; pure classic HTML!) Also, you need not invoke a
servlet; it would have been equally simple (just a matter of changing destinations) to
interact with PHP or Python scripts; the client-side code doesn’t care, and the server-
side programming need not know that it is talking to a GWT client.

 Download from www.wowebook.com

ptg

Summary
In this chapter we studied both how to upload and download files from a server. These
processes required using forms and Ajax, so we got to complement the server-communi-
cation techniques seen in previous chapters. We also interacted with common servlets,
proving GWT can coexist in a more classic Java-oriented server-side architecture.

209Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

12
Internationalization

and Localization

Developing applications that can be used in different countries, with different lan-
guages, requires applying specific techniques, but GWT simplifies dealing with interna-
tionalization (i18n) and localization (l10n) matters. In this chapter we’ll examine the rel-
evant tools, and also how to apply them to UiBinder designed forms.

If you are developing an application that will potentially be used worldwide, instead
of being restricted to an Intranet, you will have to take into account multiculture and
multilanguage aspects, so your software is still usable.

Since having several separate versions for each required language (or, worse, for each
locale; remember American English isn’t the same as British English, for example) can
soon become quite unwieldy, you’ll want to use methods that allow developing and
maintaining just one code base.

GWT provides i18n support with its Constants and ConstantsWithLookup inter-
faces allowing you to work with string literals in different languages, and with the
Messages interface, which adds singular/plural considerations, as well as to work with
UiBinder.

Finally, in terms of l10n, GWT lets you deal with different currency or date formats,
allowing you to more completely adapt your application to specific groups of users, and
that will be the last theme in this chapter.1

Internationalization (i18n)
Let’s start by considering how to provide appropriate texts for users in different coun-
tries. We’ll first give a quick overview to Java’s standard resource bundles, and then move

1. By the way, if you don’t know where i18n and l10n come from, i18n refers to the fact that there

are 18 letters between the initial i and the final n in “internationalization,” and likewise for l10n and

“localization.”

 Download from www.wowebook.com

ptg

to the ConstantsWithLookup and Messages GWT interfaces, which will let us use
those bundles in a quite efficient way.2

All i18n methods require the same libraries, so no matter which one you decide to
use, you’ll have to add the line <inherits name="com.google.gwt.i18n.I18N"/>
to your gwt.xml configuration file.

Resource Bundles
In standard Java programming, internationalization is usually done by means of resource
bundles: .properties files with locale-specific data. Although this data might be any-
thing (numbers, dates, whatever) most usually we’ll just deal with strings. Each string is
identified by a “key,” which must remain constant across different resource bundles.
Basically, in your code you will (mostly indirectly, sometimes directly) refer to this key so
your program will be locale-independent, inasmuch as what string will be shown shall
depend on which locale resource bundle you use.

GWT supports generic resource bundles (strings that will be shown if no other more
specific locale is chosen), language resource bundles (for example, English or Spanish
versions of your strings), and even country-specific resource bundles (such as British
English, or Mexican Spanish). You should have a generic bundle file, plus one or more
language bundles, plus possibly some country specific bundles. All keys should appear in
the generic bundle file. If a certain key appears in several bundles, country strings have
priority over language strings, and the latter have priority over the generic ones. For
example, suppose we are given these bundles (whose names shall be explained presently).

Transport.properties Transport_en_GB.properties Transport_es.properties

flight=airplane flight=aeroplane flight=avión

vehicle=car vehicle=automóvil

underground=subway underground=tube underground=subterráneo

sea=ship sea=barco

In this case, a British user who wanted to use the underground would get a message
about the tube; Spanish users would get references to the subterráneo; everybody else
(including other non-British English speakers) would get the subway standard reference.
(GWT considers English as the standard language.) Note that you don’t have to repeat
keys in all files; all British users would get car for vehicle, for example, because they don’t
have a specific string value for that key.

You should always provide a basic, standard reference (though you don’t need to use a
resource bundle for this, because you can do with annotations; see the following) plus

212 Chapter 12 Internationalization and Localization

2. If you also have to support RTL (right-to-left) languages such as Arabic or Hebrew, using the tech-

niques in this chapter won’t be enough, for you’ll also have to change the visual theme; see

http://code.google.com/webtoolkit/doc/latest/DevGuideUiCss.html#themes for more on this.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideUiCss.html#themes

ptg

resource bundles for each language you plan to support, eventually even going as far as
to provide files for specific countries.

Resource bundles must be named with the interface name (see next) optionally fol-
lowed by an underscore and a lowercase two-character language specification, and possi-
bly another underscore and an uppercase two-character country code.3

A final reminder: Resource bundles must be written in UTF-8 if you require foreign
letters or accents. Be sure to include the line

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

in your .html file, and also to configure your resource bundle editor to use this charac-
ter set.4

Using Constants
The Constants and ConstantsWithLookup interfaces bind, at compile time, the pro-
vided resource bundles with your provided code, to produce locale-specific versions of
the code. (We’ll be seeing the specific code generator mechanism in a short while.)
Whenever the user browses to your application, the loader code determines your browser
type (as we mentioned in Chapter 4) and your locale, and then loads the compiled
version of your system that matches those two parameters. (As we saw earlier, this is as
efficient as it gets, for you download only code that suits your situation perfectly, instead
of a large suit-everybody version, with support for all browsers and all languages, even if
you don’t require them.) We will first use the simpler Constants interface, and then see
why and when we would prefer the other one.5

For a simple example, say you wanted to greet a user. You could have a generic mes-
sage and a more specific one, along the (not very original!) lines of

genericHello=Hello there!

specificQuery=How are you today?

For British speakers you might change the first line to Hullo there! (do note the
spelling of the first word) whereas for Spanish users you would provide something with
plenty of special characters, along the lines of

genericHello=¡Hola!

specificQuery=¿Cómo estás hoy?

213Internationalization (i18n)

3. The language codes are taken from the ISO 639-1 standard (see www.infoterm.info/standardization/

iso_639_1_2002.php) whereas country codes (which we already used in Chapter 6) are from ISO

3166-1.

4. For example, in Eclipse you should go to Edit, Set Encoding and pick UTF-8; otherwise, your file

won’t match expectations and results will look weird, to say the least.

5. Note that constants need not be Strings (for you can also provide Boolean, float, integer, and so

on constants) but as far as internationalization goes, this is by far the most common case.

 Download from www.wowebook.com

www.infoterm.info/standardization/iso_639_1_2002.php
www.infoterm.info/standardization/iso_639_1_2002.php

ptg

To use these files, let’s extend the ConstantsWithLookup interface. (We could as eas-
ily have extended Constants, but as I want to later show dynamic string lookup, I went
with ConstantsWithLookup.) If we opted to call it Greet, the Greet.java file could be

package com.kereki.testi18n.client;

import com.google.gwt.i18n.client.ConstantsWithLookup;

public interface Greet

extends ConstantsWithLookup {

String genericHello();

String specificQuery();

}

Because your interface was named Greet, your resource bundles should be named
Greet.properties, Greet_en_GB.properties and Greet_es.properties with the
contents previously listed; the first would be the generic catch-all, whereas the second
would be applied to British users, and the third one for Spanish ones. These bundles
must be at the same directory where the source file for your interface resides.

Finally, you must let the compiler know about which languages will be supported, by
editing the gwt.xml file and adding

<extend-property name="locale" values="en" />

<extend-property name="locale" values="en_GB" />

<extend-property name="locale" values="es" />

We can test this internationalization by writing just a pair of lines.

final Greet greet = GWT.create(Greet.class);

Window.alert(greet.genericHello() + " " + greet.specificQuery());

The first line uses deferred binding to create the appropriate class (depending on the
locale of the browser) and the second line displays the required texts.6

If you run this code without any further ado, you’ll get a Hello there! How are
you? message. If you want to test the other locales, you can either add a line such as

<meta name="gwt:property" content="locale=es">

to your .html file (which will set the default language for your application to Spanish)
or add the parameter locale=es to the URL in your browser; any of these solutions
would produce a ¡Hola! ¿Cómo estás? alternative message. The first solution is best
for large scale testing, whereas the URL one (which takes precedence over the other
solution) is preferred for quick tests.

214 Chapter 12 Internationalization and Localization

6. For extra efficiency, you should create the greet object just once, and then always refer to it; the

Singleton design pattern comes to mind, and is a perfect fit for this situation.

 Download from www.wowebook.com

ptg

Some Annotations Tricks
You need not have a generic resource bundle, for you can use annotations to provide
default values—and that’s better from the point of view of documentation and usage. For
example, we might want to have a string describing the kind of users to whom the spe-
cific locale version applies. By adding

@DefaultStringValue("English speakers")

String kindOfUsers();

to the Greet.java file, you would be defining a new text, which by default would
be English speakers, without the need for a Greet.properties entry. (You
would, however, have to add kindOfUsers=British speakers to the Greet_en_
GB.properties file and kindOfSpeakers=Hablantes de Español to Greet_
es.properties.) Having the default value in the same interface file helps programmers
understand the meaning of the strings, without resorting to checking other bundles for
tips or hints.

For extra clarity, your keys need not match the methods names. By using the
@Key(...) annotation, you can specify which is the actual key used in the properties
file. You could write

@Key("day.morning")

@DefaultStringValue("morning")

String morning();

@Key("day.afternoon")

@DefaultStringValue("afternoon")

String afternoon();

This would require adding, in the Spanish resource bundle, lines such as

day.morning=Mañana

day.afternoon=Tarde

(Note that we used @DefaultStringValue(...)to avoid having a generic
.properties file, as shown earlier.) The keys could be structured so as to allow a more
logical ordering, whereas the interface methods can keep using simple names.

Translating Error Codes
The preceding code works just fine for texts that are created client-side, but what would
you do with, say, an error message that was originated server-side? An i18n aware appli-
cation that will display error messages only in English isn’t a very good international
application! There are two solutions to this problem; you could also use standard interna-
tionalization techniques server-side, or you could send error codes instead of error texts,
and have the codes translated into texts client-side. The first technique has nothing to do
with GWT, so we’ll skip it, but let’s consider now the ConstantsWithLookup interface
to solve the problem client-side.

215Internationalization (i18n)

 Download from www.wowebook.com

ptg

This interface adds methods that let you seek the value corresponding to any given
key. With the Constants interface, the mapping between keys and methods is static;
ConstantsWithLookup adds a dynamic way of getting the required values.

For a simple example, if we change our Greet class to extend ConstantsWithLookup
(and change nothing else) then the two following lines would produce the same result:

Window.alert(greet.kindOfUsers());

Window.alert(greet.getString("kindOfUsers"));

The standard pattern of usage would be
n Define constants to represent status or error messages.
n Modify your remote servlets, so they will return those constants instead of strings.
n Use (at the client side) a ConstantsWithLookup class to translate the constants

into localized strings.

You might be tempted to always use this kind of interface, but to understand when to
use each of the two constants interfaces, let’s examine the produced JavaScript code. The
compiler makes short work of straight calls; for example, by compiling the application with
Pretty style (see Chapter 15, “Deploying Your Application”) we can see that the en_GB
version of the code produces our greeting message to British users by simply doing:

$wnd.alert('Hullo there! How are you today?');

On the other hand, to fulfill dynamic requests, code such as the following will be
generated, including all possible strings. (This is logical because there’s no way to tell
which key you might ask for.) Even though the code is efficient and uses a cache to
avoid re-doing searches, it still must include every possible key in your GWT code.

function $getString(this$static, arg0){

var target;

target = dynamicCast($get_1(this$static.cache, arg0), 1);

if (target != null) {

return target;

}

if ($equals_1(arg0, 'specificQuery')) {

$put(this$static.cache, 'specificQuery', 'How are you today?');

return 'How are you today?';

}

if ($equals_1(arg0, 'genericHello')) {

$put(this$static.cache, 'genericHello', 'Hullo there!');

return 'Hullo there!';

}

if ($equals_1(arg0, 'kindOfUsers')) {

$put(this$static.cache, 'kindOfUsers', 'British English Speakers');

return 'British English Speakers';

}

216 Chapter 12 Internationalization and Localization

 Download from www.wowebook.com

ptg

throw $MissingResourceException(new MissingResourceException, "Cannot find
constant '" + arg0 + "'; expecting a method name");

}

So, to get the smallest possible output code, you might consider using a Constants
object for the strings you generate client-side, plus a ConstantsWithLookup object
exclusively to deal with server-side codes.

Messages
So far, we have been considering static (i.e., unvarying) messages, most appropriate for
captions, warnings, and the like, but applications also require dynamic, varying messages
that are built up from fixed and changing elements, such as an “Hasta la vista…” message,
to be completed appropriately, as in “Hasta la vista, Baby.” (Of course, this need for vari-
able messages also should take into account locales, so the message could be “Auf wieder-
sehen…” or “Au revoir…” for Germans or Frenchmen.) GWT supports these localized,
variable texts by means of the Messages interface.

This interface is very much like the Constants and ConstantsWithLookup inter-
faces we saw earlier (you also invoke it in the same way, by using GWT.create(...))
and works by defining keys and strings, with the most important differences that the
string values you provide can include special placeholders, and that the methods you
write can accept arguments that will be substituted for the placeholders.

Let’s create a simple MyMessages interface, which we can use to provide good-bye
messages. The format for placeholders is the standard Java MessageFormat style:
Parameters to be substituted start at 0, so the single parameter in our sayGoodbye(...)
method will replace all {0} occurrences within the string.7 Let’s also produce message
showing the year of birth and current age, just to show how to replace more parameters,
and how to work with other data types.

package com.kereki.testi18n.client;

// ...imports...

@DefaultLocale("en")

public interface MyMessages

extends Messages {

@DefaultMessage("I was born in {0} so now I''m {1} years old.")

String sayAge(int year, int age);

@DefaultMessage("Good- bye, {0}")

String sayGoodbye(String whom);

}

217Internationalization (i18n)

7. See http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html for more on this.

 Download from www.wowebook.com

http://java.sun.com/j2se/1.5.0/docs/api/java/text/MessageFormat.html

ptg

We are following here the idea of including default values within the interface code
to simplify future editing. (Pay particular attention to the doubled-up single quote in the
sayAge(...) string.) For British users, we would have a MyMessages_en_GB.proper-
ties file with, possibly, a line reading

sayGoodbye=Goodbye, {0}!

(note the lack of a hyphen in “Goodbye,” and no alternative string for sayAge(...))
whereas Spanish users would require a MyMessages_es.properties resource file with

sayGoodbye=¡Hasta la vista, {0}!

sayAge=Tengo {1} años porque nací en {0}

(The only reason for showing the age first and the birth year second is to prove it can
be done; you need not use the parameters in ascending order.)

Now, although sayAge(2000,10) produces a perfectly fine I was born in 2000
so now I'm 10 years old, a call such as sayAge(2009,1) produces a queer result:
...now I'm 1 years old. However, the Messages interface provides a way around
that. Let’s see first how the code looks and then provide the explanations.

We’ll write a new sayAge2(...) method fixing the plural problem. You must pro-
vide a generic plural case (...I'm {1} years old) and then add the special cases that,
depending on the used language, may apply when the number is zero or one.8

@DefaultMessage("I was born in {0} so now I''m {1} years old.")

@PluralText({"one","I was born in {0} so now I''m just one year old." })

String sayAge2(int year, @PluralCount int age);

Note the @PluralCount annotation, which indicates which parameter is related to
plurals; in this case, we want to treat the parameter indicated as {1} as the special one. In
English, zero is treated as plural (...I'm 0 years old) so you just need a special case
for one (...I'm just one year old—we need not actually show the 1!). The corre-
sponding Spanish resource bundle would include

sayAge2=Tengo {1} años porque nací en {0}

sayAge2[one]=Tengo un año porque nací en {0}

You would provide similar rules for Italian, German, or Portuguese as spoken in
Portugal. For Portuguese as spoken in Brazil (or for French) rules vary, because zero is
considered singular.

sayAge2=Eu sou {1} anos de idade porque eu nasci em {0}

sayAge2[one]=Eu sou um ano de idade porque eu nasci em {0}

sayAge2[none]= Eu sou zero ano de idade porque eu nasci em {0}

You must apply the rules pertaining to the specific locale; you cannot, for example,
provide a special “zero” case for English, because the standard rules say it’s to be treated

218 Chapter 12 Internationalization and Localization

8. For some languages, such as Arabic, there are special plural forms for number two and even for

small numbers, but for most (if not all) western languages, the only special cases you’ll have to con-

sider are zero and one.

 Download from www.wowebook.com

ptg

as a plural. If you want to check which rules apply for each language, there’s no official
source other than the actual GWT Java code; check it out9 and then examine the
DefaultRule*java files at the trunk/user/src/com/google/gwt/i18n/client/
impl/plurals/ directory.

UiBinder Internationalization
Let’s end this chapter by considering how to translate complete pages. Of course, you
could build screens up field by field and text by text, using the methods in previous sec-
tions to provide the required translations. You would probably be better off without
using UiBinder, but you could make it work.

This solution, however, wouldn’t solve all the possible i18n considerations: For exam-
ple, whereas in western countries the family name follows the first name, in eastern
countries (such as Japan, China, and Korea) it’s the other way round: the family name
comes first, and the first name follows. If you wanted to reorder two TextBoxes repre-
senting the family and first names to comply with custom, you would have to add some
extra coding.

GWT provides a Messages-based way to apply internationalization to UiBinder
forms that, even though it isn’t as polished as the rest of the tools, can be used with little
effort.10 Let’s first examine a simple screen (see Figure 12.1) with some text intermin-
gled with fields.

219Internationalization (i18n)

9. See http://code.google.com/webtoolkit/makinggwtbetter.html#checkingout for instructions on this.

10. The fact that this solution is still lacking some polish can be verified by reading the discussion

at the bottom of http://code.google.com/p/google-web-toolkit/wiki/UiBinderI18n and the follow-up

thread at http://code.google.com/p/google-web-toolkit/issues/detail?id=4355.

Figure 12.1 A nonsense form for UiBinder-based internationalization

Let’s summarize the whole process in advance. To internationalize a UiBinder form,
you will have to add several elements to the form XML code. These elements will iden-
tify the parts of the form that need translation and provide placeholders for fields and
other nonvarying components. When you compile your project, a resource bundle will
be generated for your form, with a line for every item that must be translated, in

 Download from www.wowebook.com

http://code.google.com/webtoolkit/makinggwtbetter.html#checkingout
http://code.google.com/p/google-web-toolkit/wiki/UiBinderI18n
http://code.google.com/p/google-web-toolkit/issues/detail?id=4355

ptg

Messages style. To finish the job, you will have to provide translations for each language
you want to support; you will probably require a team of (human) translators for this
task.11 When the form is shown, UiBinder will use a hidden Messages interface to
translate all onscreen terms.

Now, let’s get to details. The standard ui.xml file for the form would have along the
lines of

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ui:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'>

<g:HTMLPanel>

<div>How are you today?</div>

Input a value: <g:TextBox />

<hr />

Please, think before clicking the button.

<g:Button u:field="aButton" title="Produce some kind of result">

Please click me!

</g:Button>

</g:HTMLPanel>

</u:UiBinder>

To use UiBinder’s i18n facilities, you have to add several elements to the preceding
file, and the complete file (we’ll get to explanations in a moment) should become as fol-
lows. First, you need to add some boilerplate at the <u:uibinder> element, so the nec-
essary methods will be invoked and i18n binding will happen. The only attribute you
might want to change (if English isn’t your default language) is defaultLocale.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ui:UiBinder SYSTEM "http://dl.google.com/gwt/DTD/xhtml.ent">

<u:UiBinder xmlns:u='urn:ui:com.google.gwt.uibinder'

xmlns:g='urn:import:com.google.gwt.user.client.ui'

u:defaultLocale="en"

u:generateFormat='com.google.gwt.i18n.rebind.format.PropertiesFormat'

u:generateKeys="com.google.gwt.i18n.rebind.keygen.MD5KeyGenerator"

u:generateLocales="default">

HTML elements need no special notation. General text, however, should be enclosed
in a <u:msg> element so it will be recognized as something to be translated. The key
attribute (equivalent to the @Key(...) annotation) will be used in the resource bundle
to identify the enclosed string. You need not specify keys, but in that case GWT will
generate them with a MD5 based method; personally, I prefer using my own, more
understandable, keys, but to each his own!

220 Chapter 12 Internationalization and Localization

11. Of course, Google Translate could (some day) be integrated into this task....

 Download from www.wowebook.com

ptg

The description attribute appears as a comment in the file to help translators by
giving some context. HTML elements within a text are recognized, as in think.

<g:HTMLPanel>

<div>

<u:msg key="example.salute" description="Greeting">

How are you today?

</u:msg>

</div>

<u:msg>

Input a value: <g:TextBox />

</u:msg>

<hr />

<u:msg key="reconsideration" description="Urge to reconsider">

Please, think before clicking the button.

</u:msg>

You will usually also require translating other terms, such as tooltips or image descrip-
tions. Each such attribute shall be enclosed in a <u:attribute> element, which must
include the name of the attribute, an optional description as an aid to the translator,
and an optional key. In case a word might have two or more meanings (the common
example is orange, which might be a color or a fruit) you can also add a meaning
attribute (such as meaning="the fruit") so the translator can discern which transla-
tion to use.

<g:Button u:field="aButton" title="Produce some kind of result">

<u:attribute key="button.title"

name="title" description="tooltip text for button" />

<u:msg key="button.text" description='Button text'>

Please click me!

</u:msg>

</g:Button>

</g:HTMLPanel>

</u:UiBinder>

When you compile your code, you must include the -soyc parameter.12 (An alternative
is including the -extra parameter, and specify a directory for the output translation files.)
After the code is compiled, a file will be created within the extras directory, with a name

221Internationalization (i18n)

12. We will be touching on the possible compile parameters in more detail in Chapter 15, when we

deal with code splitting. For now, you’ll just have to accept the need for them!

 Download from www.wowebook.com

ptg

such as com.kereki.testi18n.client.ExampleMyUiBinderImplGenMessages
.properties—in my case, I was working with the com.kereki.testi18n package,
and the Example.ui.xml file was in the client subpackage. The contents of this file
will look like the following, though I reordered some lines for clarity:

Generated from

com.kereki.testi18n.client.ExampleMyUiBinderImplGenMessages

for locale default

Description: Greeting

example.salute=How are you today?

0=arg0 (Example:), 1=arg1 (Example:)

3251F2DD00D79AD3E05D89C06E60F1AA=Input a value\: {0}{1}

Description: Urge to reconsider

reconsideration=Please, think before clicking the button.

Description: Button text

button.text=Please click me\!

Description: tooltip text for button

button.title=Produce some kind of result

Let’s walk through this. For the first salute, a straight line (example.salute=How
are you today?) in the style of what we have already seen, was produced.

The line asking to input a value shows what happens if you don’t enter a key; a MD5
based value (3251F2DD00D79AD3E05D89C06E60F1AA) was used instead. Also, notice that
placeholders were created for the TextBox; don’t worry about the fact that there are two
placeholders for a single field—it’s just the way internationalization sometime works
with UiBinder.

The think line shows that HTML elements were passed through, without change; a
translator would be able to keep them. And, finally, note that two lines were produced
for the text and tooltip of the button.

What do you do now? The generated file must be copied to the same directory
as the ui.xml file, and renamed—but the renaming rules are also somewhat
awkward; my Example.ui.xml file required a Spanish resource bundle named
ExampleMyUiBinderImplGenMessages_es.properties as follows:

Generated from

com.kereki.testi18n.client.ExampleMyUiBinderImplGenMessages

for locale default

0=arg0 (Example:), 1=arg1 (Example:)

3251F2DD00D79AD3E05D89C06E60F1AA=Entre un valor\: {0}{1}

Description: Button text

button.text=¡Por favor, oprímame\!

222 Chapter 12 Internationalization and Localization

 Download from www.wowebook.com

ptg

Description: tooltip text for button

button.title=Genera algún tipo de resultado

Description: Greeting

example.salute=¿Cómo está hoy?

Description: Urge to reconsider

reconsideration=Por favor, piense antes de oprimir el botón.

Running the same application with locale=es added (see Figure 12.2) produced a
wholly translated output… except for the H1 title, which I forgot to include in the
ui.xml file! I decided to let this error be, as a reminder of the possible problems you
will likely find.

223Localization (l10n)

Figure 12.2 The same form, but translated automatically into Spanish.

As I said, UiBinder-based internationalization does work, but you’ll have to agree that
the work here isn’t as straightforward as earlier. (The need for actually compiling the
application with an extra parameter to boot, and the strange names for the resource bun-
dles, come to mind.) Documentation isn’t complete (and sometimes even wrong; I had
to work out some of the previous details by perusing forum threads or by studying the
GWT source code itself) and it’s possible that there will be changes in the near future, so
be careful when using this facility.13

Localization (l10n)
Localization is a concept akin to internationalization (but far easier to implement) that
has to do with dates, time, and numbers representation, rather than with strings transla-
tion. After all the work required for full internationalization, the comparable localization
tasks will seem like an anticlimax, for you can use it out-of-the-box without any specific
adaptation.

13. The current version of the documentation is at http://code.google.com/webtoolkit/doc/latest/

DevGuideUiBinderI18n.html; check it for extra use cases, or for changes in functionality.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideUiBinderI18n.html
http://code.google.com/webtoolkit/doc/latest/DevGuideUiBinderI18n.html

ptg

Although you could roll out your own date and number formats (by using a Constants
interface, for example) GWT provides specialized resource bundles for most locales,
which take care of all needed conversions to and from dates and numbers. Roughly
speaking, you could compare GWT’s date and number formatting functionality to Java’s
own java.text.SimpleDateFormat and java.text.DecimalFormat packages.14

For example, if you want to get the current date in “short” format, you can simply
write

String currentDate=

DateTimeFormat.getShortDateFormat().format(new Date())

and the correct locale format would be applied. For example, in the US (locale=en)
you would get something such as 4/2/10, but with locale=en_GB then 02/04/2010
would be produced; notice that in European fashion, the day comes before the month.15

The following table shows all possible predefined Date and Time formats for locale=en
and locale=es. There are also DateTime formats, which are just the concatenation of
the corresponding Date and Time formats, so we are skipping those for brevity.

toString Fri Apr 02 12:11:44 UYT 2010 Fri Apr 02 12:11:44 UYT 2010

Full Date Friday, April 2, 2010 viernes 2 de abril de 2010

Full Time 12:11:44 PM Etc/GMT+3 12:11:44 p.m. Etc/GMT+3

Long Date April 2, 2010 2 de abril de 2010

Long Time 12:11:44 PM UTC-3 12:11:44 UTC-3

Medium Date Apr 2, 2010 02/04/2010

Medium Time 12:11:44 PM 12:11:44

Short Date 4/2/10 02/04/10

Short Time 12:11 PM 12:11

By the way, the needed data was produced with this code.

final Date today = new Date();

GWT.log(today.toString());

GWT.log(DateTimeFormat.getFullDateFormat().format(today));

GWT.log(DateTimeFormat.getFullTimeFormat().format(today));

GWT.log(DateTimeFormat.getLongDateFormat().format(today));

GWT.log(DateTimeFormat.getLongTimeFormat().format(today));

GWT.log(DateTimeFormat.getMediumDateFormat().format(today));

224 Chapter 12 Internationalization and Localization

14. If you want to learn about all formatting possibilities, check out http://google-web-toolkit

.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/DateTimeFormat.html and

http://google-web-toolkit.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/

NumberFormat.html.

15. If you want to see the specific rules applied for each locale, download the GWT source code,

and see the files at trunk/user/src/com/google/gwt/i18n/client/constants directory.

 Download from www.wowebook.com

http://google-web-toolkit.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/DateTimeFormat.html
http://google-web-toolkit.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/DateTimeFormat.html
http://google-web-toolkit.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/NumberFormat.html
http://google-web-toolkit.googlecode.com/svn/javadoc/2.0/com/google/gwt/i18n/client/NumberFormat.html

ptg

GWT.log(DateTimeFormat.getMediumTimeFormat().format(today));

GWT.log(DateTimeFormat.getShortDateFormat().format(today));

GWT.log(DateTimeFormat.getShortTimeFormat().format(today));

If you need your own format (say you want to produce dates in the ISO 8601 standard
format, such as 2010-04-02) you can use the getFormat(...) method and provide
your own pattern string. The following code would produce the desired ISO format.

DateTimeFormat formatIso = DateTimeFormat.getFormat("yyyy-MM-dd");

String dateIso = formatIso.format(new Date());

There are many pattern codes, as in the following table. Note that they are practically
the same as in Java16

n G provides the era, AD or BC.
n y provides the year; yyyy would be 2010, but yy would be just 10.
n M provides the month: MMMM would be the full name (April), MMM a shorter version

(Apr), MM the left-padded with zeroes number (04), and M the number (4).
n d provides the day in the month.
n H provides the hour in 24-hours format (0–23), whereas k provides it in 1–24

format.
n h provides the hour in AM/PM format (1–12), whereas K provides it in 0–11

format.
n m provides the minute in the hour (0–59).
n s provides the second in the minute (0–59).
n S provides the milliseconds.
n E provides the day of the week, in text; EEEE would be the full name (Friday),

and EEE a shorter version (Fri).
n a provides the AM/PM marker.
n a single quote is used to escape text, as in 'Date=', and if you want an actual

quote in the text, you’ll have to write it twice as in 'O''clock'.

For all numbers, if you specify the code twice, you’ll get a left-padded with zeroes
number: HH would produce 09, whereas H would just produce 9.

Finally, you can also use formats to parse strings into Date objects. For example, if we
had the ISO format string 1809-02-12 (the birth date of Abraham Lincoln and Charles
Darwin, which we saw some chapters ago, in Figure 8.1) and wanted to produce a Date
object, we should write

DateTimeFormat formatIso = DateTimeFormat.getFormat("yyyy-MM-dd");

Date lincolnDarwin = formatIso.parse("1859-02-12");

225Localization (l10n)

16. See http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html for the pos-

sible codes. Java adds the D, F, W, and w codes (standing for the day in the year, the day in the week,

the week in the year, and the week in the month) but lacks the Z and v codes shown in the table.

 Download from www.wowebook.com

http://java.sun.com/docs/books/tutorial/i18n/format/simpleDateFormat.html

ptg

You can also use the parseStrict(...) method, which is more careful; whereas a
date such as February 30th would be accepted by parse(...) and turned into March
2nd, parseStrict(...) would throw IllegalArgumentException instead.

Similarly, NumberFormat provides currency, percent, integer, and float formats,
according to locale rules; for example, a comma is used to separate thousands in the US
(thus, 2,010) but in Spanish a dot is substituted instead (so, 2.010). The basic predefined
formats, for locale=en and locale=es, are as follows.

Currency $22,919.60 Arg$22.919,60

Decimal 22,919.6 22.919,6

Percent 2,291,960% 2.291.960%

Scientific 2E4 2E4

The code that produced this output was merely

double number = 22919.60;

GWT.log(NumberFormat.getDecimalFormat().format(number));

GWT.log(NumberFormat.getPercentFormat().format(number));

GWT.log(NumberFormat.getScientificFormat().format(number));

GWT.log(NumberFormat.getCurrencyFormat().format(number));

You can immediately see there’s a problem with currencies; for example, Arg$
isn’t the currency symbol either for Spanish, nor for Argentine.17 You could write
getScientificFormat("UYU") to get the Uruguayan currency format,18 but it returns
Ur$22.919,60; once again, a wrong symbol.

You can also specify your own formats, by using the following codes to create a for-
mat string.

n 0 stands for any digit. # also stands for any digit, but if it represents a zero at the
left of the number, a space is shown instead.19

n The dash (-) stands for the minus sign.
n The period stands for whatever character is used in your country for the fraction

separator, and the comma stands for the thousands separator. For example, in
Uruguay the period stands for a comma, while the comma stands for a period…
rather confusing!

226 Chapter 12 Internationalization and Localization

17. See www.xe.com/symbols.php for a list of currency symbols.

18. The used codes seem to be based on those of ISO 4217, which includes USD for the US Dollar,

EUR for the Euro, and GBP for the British Pound, for example. However, there are many countries

missing from the list used by GWT.

19. If you were to format James Bond’s secret agent number with format “000”, you’d correctly get

“007”, but if you used “###” as a format, you’d get “ 7” instead, with two leading spaces.

 Download from www.wowebook.com

www.xe.com/symbols.php

ptg

n E (for “Exponent”) is used to separate the mantissa from the exponent, in scientific
notation.

n % is used to show that the number is to be formatted as a percentage, and thus
multiplied by 100.

n A single quote is used to escape text, as with Dates.

For example, you could format a number to be displayed in 15 columns, with an
optional trailing sign, with NumberFormat.getDecimalFormat("###,###,##0.00-").
Finally, you can also use the parse(...) method to transform a string into a number,
like in

double number = NumberFormat.getDecimalFormat().parse("1234.56");

GWT will throw NumberFormatException if the number cannot be parsed.

Summary
Designing an application for international use requires more work and preparation than
doing a simple single-locale one. However, GWT provides reasonably simple i18n and
more straightforward (almost in the “no assembly required” category) l10n tools that let
you get the job done with no great complexity.

227Summary

 Download from www.wowebook.com

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

13
Testing Your GWT Application

Testing, and in particular, fully automated testing, is an important part of the GWT
development cycle. In this chapter we’ll study ways of doing so in optimal ways, starting
with unit tests and ending with integration and acceptance testing.

Why Testing?
The idea of testing software is fairly obvious,1 but the GWT philosophy is based on test-
ing everything automatically, without anybody’s intervention, as an aid to bug prevention
and detection at the earliest time.2 The Google Testing Blog (at http://googletesting
.blogspot.com/) goes as far as including the motto “Debugging sucks; Testing Rocks” at the
top of the page. Another saying is “If it’s not tested, it’s broken”; untested code can (and
must be assumed to) contain any number of bugs.

Automatic testing lies at the heart of techniques such as test-driven development
(TDD) and methodologies like Scrum3 and Extreme Programming (XP).4 The main
idea is to develop code, with a method based on repetitions of a short development cycle
loop:

n First you write an (obviously failing) automated test case for a new functionality.
This isn’t a waste of time; if a test for a yet-unwritten function should pass, then
something is obviously very wrong with your test…

n Then you write code that implements the said functionality and passes the test. It
goes without saying that all previous tests should also pass; your code shouldn’t
break other code!

1. Though now and then everybody is tempted to skip testing, because “it’s just so small a change,

nothing could go wrong!”

2. If you examine GWT’s own source code, you’ll find lots and lots of the kind of tests we’ll be devel-

oping in this chapter.

3. See www.scrumalliance.org/ for more on Scrum.

4. See www.extremeprogramming.org/ for a good introduction to XP.

 Download from www.wowebook.com

http://googletesting.blogspot.com/
http://googletesting.blogspot.com/
www.scrumalliance.org/
www.extremeprogramming.org/

ptg

n And finally, you refactor the code so that it meets acceptable standards. Getting the
code to work, and then enhancing it (while using the recently written test to
ensure as far as possible that the refactoring doesn’t break anything) is easier than
trying to get the code to work and be elegant at the same time.5

Advantages of Automatically Tested Code
Automated tests encourage better, simpler, code designs; help against common problems
such as regressions (reintroducing an earlier bug while modifying some seemingly unre-
lated code); and inspire more confidence in the quality of the produced software, which
can be shown to pass lots of tests, proving that at least it provides some desired level of
functionality.

Developers with good TDD practice are more likely to focus on what’s actually
required (the YAGNI principle, standing for You Ain’t Gonna Need It) and simplicity
(think KISS, or Keep It Simple, Stupid) because they only develop what’s actually needed
to pass the tests, not worrying about unrequired functionality or unjustified enhance-
ments. Also, they are more likely to detect bad designs, side effects, or obscure code,
because all these conspire against automated testing.

Automated tests also serve, at a certain level, as documentation. Everybody knows that
you can never have too many examples, and each test is a living example showing how
to use a class, what kind of parameters to provide, and which results you should get.

We’ll consider three types of testing for GWT programs:
n Unit Tests, which apply to specific classes or methods, testing them one at a time,

independently of other classes and methods. These tests must be as fast as possible,
so you won’t balk at running them and won’t require a browser.

n Integration Tests, which apply, for example, to specific forms or services and imply
using a browser for the tests. These tests are slower, but test functionality closer to
the user’s requirements.

n Acceptance Tests, which are specifically focused on use cases and are oriented to
verifying the functionality of the system as a whole. These tests are usually the
slowest and largest, and require the most setup and preparation, because they try
out the workings of the complete system.

We’ll use common tools (such as JUnit or Selenium) for some of these tests and
GWT specific extensions (GWTTestCase) for others.

And if a Bug Appears?
A basic theorem of Computing Theory states that testing can never prove the absence of
errors but only their presence. Before going any further, let’s consider a practical ques-

230 Chapter 13 Testing Your GWT Application

5. Martin Fowler’s page on Refactoring at www.refactoring.com/ is a must-see.

 Download from www.wowebook.com

www.refactoring.com/

ptg

tion: what would you do if a bug surfaces in your code? (Yes, even though you may test
and test and test, bugs almost surely remain in your code.) No matter how tempted you
may be, what you won’t do is run away to patch your source code: There’s a more
important problem to fix: namely, that your test code isn’t obviously good enough, for it
let a bug go past!

The first step, after you understand how the error came to be, is to write a new test
case that will simulate the situation that led to the error, and thus logically fail. Then, and
only then, try to fix the code and run the test suite again; your recently added test should
now pass, but more important, you now have better tests for the future. It is obvious that
your original tests missed some conditions; your new ones at least take care of one prob-
lem, and that kind of bug won’t reappear.

Unit Testing with JUnit
Many Java programmers already use JUnit for testing their code, but what’s most inter-
esting is the fact that you can also use it to test GWT code, despite its compilation into
JavaScript. JUnit6 is a member of the global xUnit family, whose members allow automatic
testing for code written in languages as diverse as Smalltalk (SUnit), PHP (PHPUnit),
HTTPUnit (web pages and services), and JSUnit (JavaScript). Its current version is 4.8.1,
and you’ll have to get the required jar file, as we mentioned in Chapter 2, “Getting
Started with GWT 2.”

With earlier versions of GWT, you had to create the appropriate project structure
with the jUnitCreator command-line tool, but now the required directories and files
are automatically created with the project.7 The standard structure has a test directory
at the same level as src. You can parallel the project structure from src/.../client
into a test/.../client directory; having the test code and the tested code in the
same package will help with visibility matters, but won’t hamper creating the application,
because by default only code in src/client gets compiled.

A Basic JUnit Example
So as to get in gear for more complicated testing, let’s at first consider how to test the
KeyValueMap class we used to store parameters for forms in Chapter 4, “Working with
Browsers.” (Don’t fret if this example doesn’t have anything to do directly with forms;
we’ll presently get to testing such code.) As that class is at src/com/fkereki/mvppro-
ject/client/KeyValueMap.java, our test code will reside at test/com/fkereki/
mvpproject/client/KeyValueMapTest.java; note the usual naming convention for
our test class. For ease of understanding, let’s review the original class code.

231Unit Testing with JUnit

6. See http://junit.org/.

7. At least, when you use the Eclipse plugin. If you use webAppCreator, you’ll have to pass the

-junit parameter to it.

 Download from www.wowebook.com

http://junit.org/

ptg

package com.fkereki.mvpproject.client;

// ...imports...

public class KeyValueMap

extends HashMap<String, String> {

private static final long serialVersionUID = 5225712868559413562L;

public KeyValueMap() {

this("");

}

public KeyValueMap(final String params) {

initializeWithString(params);

}

public final void initializeWithString(final String params) {

clear();

if ((params != null) && !params.isEmpty()) {

String[] args = params.split("&");

for (String element : args) {

int equalIndex = element.indexOf("=");

if (equalIndex == -1) {

put(element, "");

} else {

put(element.substring(0, equalIndex), element

.substring(equalIndex + 1));

}

}

}

}

@Override

public String toString() {

String result = "";

String separator = "";

for (String key : keySet()) {

result += separator + key + "=" + get(key);

separator = "\n";

}

return result;

}

}

232 Chapter 13 Testing Your GWT Application

 Download from www.wowebook.com

ptg

To test this class, we might write code such as the following. All the @Test marked
methods will be run, but the order cannot be defined. We could use the setUp(...)
and tearDown(...) methods to prepare the environment for the whole set of tests, but
we won’t be needing them in this particular example.

package com.fkereki.mvpproject.client;

// ...imports...

public class KeyValueMapTest {

@Before

public void setUp()

throws Exception {

}

@After

public void tearDown()

throws Exception {

}

A first test would verify whether a KeyValueMap, initialized with an empty string, is
empty.8

@Test

public void testKeyValueMap() {

final KeyValueMap kvm0 = new KeyValueMap("");

assertTrue(kvm0.isEmpty());

}

We could then move on to testing KeyValueMap objects, initialized with one or
more key=value pairs, to check if they have the correct sizes and contents.9

@Test

public void testKeyValueMapString() {

final KeyValueMap kvm1 = new KeyValueMap("lincoln=1865");

assertEquals(1, kvm1.size());

final KeyValueMap kvm2 = new KeyValueMap("lincoln=1865&darwin=1882");

assertEquals(2, kvm2.size());

assertTrue(kvm2.containsKey("lincoln"));

233Unit Testing with JUnit

8. Some people prefer naming the test so it says what it will test (and possibly even what

results it would expect) such as testKeyValueMapWithEmptyString(...) and

testKeyValueMapWithEmptyStringShouldReturnEmpty(...)—I go for shorter names,

but to each his own poison!

9. There are two Assert classes; see http://stackoverflow.com/questions/291003/differences-

between-2-junit-assert-classes for more on picking one.

 Download from www.wowebook.com

http://stackoverflow.com/questions/291003/differencesbetween-2-junit-assert-classes
http://stackoverflow.com/questions/291003/differencesbetween-2-junit-assert-classes

ptg

assertTrue(kvm2.containsKey("darwin"));

assertEquals("1865", kvm2.get("lincoln"));

assertEquals("1882", kvm2.get("darwin"));

}

The toString(...) method also requires some tests. Note that we don’t check the
complete string, because we cannot be sure about in which order the keys will be returned.
(And, in fact, we do not actually care about the order.) Be careful not to write “fragile”
tests, which fail even when we haven’t changed anything that should impact them.10

@Test

public void testToString() {

final KeyValueMap kvm0 = new KeyValueMap("");

assertEquals("", kvm0.toString());

final KeyValueMap kvm1 = new KeyValueMap("lincoln=1865");

assertEquals("lincoln=1865", kvm1.toString());

final KeyValueMap kvm2 = new KeyValueMap(

"lincoln=1865&darwin=1882&einstein=1955");

final String kvmst2 = kvm2.toString();

assertTrue(kvmst2.contains("lincoln=1865"));

assertTrue(kvmst2.contains("darwin=1882"));

assertTrue(kvmst2.contains("einstein=1955"));

assertTrue(kvmst2.contains("\n"));

}

}

Running the code (with Eclipse, select the test directory, right-click it, and select
Run As, and then JUnit Test) produces the much desired green bar that shows all tests
ran as hoped. (See Figure 13.1.) If you had more tests in the directory, they would have
been executed as well. You can create a suite of your own,11 but the automatic way
(running all @Test annotated methods) is easier.

If you changed, say, the first lines in testKeyValueMapString to read (note the
wrong size check) as follows:

public void testKeyValueMapString() {

final KeyValueMap kvm1 = new KeyValueMap("lincoln=1865");

assertEquals(5, kvm1.size());

then the test run would have produced a different result, a red bar, and an explanation of
the failed test, showing what was expected and what was actually seen. See Figure 13.2
for such a failure.

234 Chapter 13 Testing Your GWT Application

10. See http://xunitpatterns.com/Fragile%20Test.html for a discussion on this; in particular, the

“Sensitive Equality” section directly applies to our example.

11. See http://junit.org/apidocs/junit/framework/TestSuite.html for an explanation of Test Suites.

 Download from www.wowebook.com

http://xunitpatterns.com/Fragile%20Test.html
http://junit.org/apidocs/junit/framework/TestSuite.html

ptg

Figure 13.1 If all tests run as desired, you’ll get a green bar, plus a
report showing which tests were run, and some timing details.

235Unit Testing with JUnit

Figure 13.2 A wrong test produces a red bar instead and an explanation
of the failed condition.

Other JUnit methods of interest (and the names are quite self-documented) include
assertArrayEquals(...), assertNull(...) and assertNotNull(...),
assertSame(...) and assertNotSame(...), and assertTrue(...) and

 Download from www.wowebook.com

ptg

assertFalse(...), among others. If you wanted to test an exception, you could use
fail(...) as per the following pattern.12

Try {

// do something that should raise an exception

fail();

} catch (TheExpectedException e) {

// OK, this should be the case

} catch (Exception e) {

// oops, an unexpected exception

fail();

}

If the code doesn’t produce the expected exception, or if it produces an unexpected
one, the fail(...) calls will produce a red bar.

However, a question pops up: How thorough was our test? Let’s get to this before
moving on to more complex cases.

Test Coverage with Emma
There are several measures of to which degree you have tested your code, and the most
basic one is called Statement Coverage, which answers the question “Has every sentence
in the program been executed at least once?” Statement coverage is presented as a per-
centage, from 0% (you haven’t actually tested anything!) to 100% (all the parts in your
code have been exercised at least once.)13

For Eclipse GWT programming, you can use the EclEmma plugin, which produces a
visual map showing with colors what parts of your tested code were or weren’t executed,
after any test run.14

Let’s apply it to the test we just developed; was it complete, did we miss anything?
After installing the plugin, a new option appears in the menu. Select your test directory,
right-click it, and pick Coverage As, JUnit Test, and you’ll get a report showing how
much of your code was run, and a view of the source code highlighting in green the
executed parts, and in the red the missed ones. See Figure 13.3. 15

236 Chapter 13 Testing Your GWT Application

12. In JUnit 4 (but not with GWTTestCase) you could also write @Test(expected=

TheExpectedException) and do away with the try...catch block.

13. Though this is not a sufficient condition to ensure testing thoroughness, it should be clear that

if your tests haven’t managed to execute a given sentence, that particular sentence could actually

be anything, and you wouldn’t notice. Not having 100% coverage permits errors; however, don’t read

this as “100% coverage guarantees no errors”!

14. See www.eclemma.org for more on this.

15. Note that depending on the current versions of the plugin, you might have to patch it according

to instructions on http://code.google.com/webtoolkit/doc/latest/DevGuideTestingCoverage.html.

This may change in the future, so check it out carefully before proceeding.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideTestingCoverage.html
www.eclemma.org

ptg

Figure 13.3 A statement coverage run shows that our tests actually
missed trying out two parts of the code, the empty KeyValueMap()

constructor and the first put(...) call in the
initializeWithString(...) method.

EclEmma noted that not all the KeyValueMap code had been tested, and the result is
correct: We missed trying out the basic parameter-less constructor, and we also didn’t try
initializing an object with a string such as curly&larry&moe&stooges=3, which would
store empty values for the first three keys. We can fix this by adding a few more tests,
such as the following.

@Test

public void testKeyValueMapNoParameters() {

final KeyValueMap kvm = new KeyValueMap();

assertTrue(kvm.isEmpty());

}

237Unit Testing with JUnit

 Download from www.wowebook.com

ptg

@Test

public void testKeyValueMapNoValues() {

final KeyValueMap kvm = new KeyValueMap("curly&larry&moe&stooges=3");

assertEquals(4, kvm.size());

assertTrue(kvm.containsKey("curly"));

assertTrue(kvm.containsKey("larry"));

assertTrue(kvm.containsKey("moe"));

assertTrue(kvm.containsKey("larry"));

assertEquals("", kvm.get("curly"));

assertEquals("", kvm.get("larry"));

assertEquals("", kvm.get("moe"));

assertEquals("3", kvm.get("stooges"));

}

Rerunning the coverage test now produces a round 100% score for our class, so we
can be more satisfied about our testing. However, note that while low coverage values do
point to inadequate testing, high coverage values do not guarantee the absence of errors
and are probably not cost-effective. (For example, trying to produce all possible runtime
exceptions can be a hard job, and direct code examination may prove to be better.)
Usually, values around 80% to 90% are expected, but you shouldn’t go overboard with
this; when tests start getting complicated, try to focus more on coding more clearly and
finding bugs than on achieving higher coverage values.16

What we have seen up to now is standard fare for JUnit programmers, and it’s easy to
see how it would apply to server-side code, or to such methods as previously shown,
which do not deal with users, input fields, graphic objects, and the like. How would we
apply JUnit to such code? Let’s turn to MVP code, which is far more interesting.

Testing MVP Code
It might not be obvious at the beginning, but there are many reasons why you couldn’t
directly test GWT form code with JUnit. First, JUnit depends on reflection, and GWT
compiled code doesn’t provide it, so that’s a showstopper. If your code runs JavaScript
(maybe through JSNI, as in Chapter 8, “Mixing in JavaScript,” or by using some DOM
or History methods, as in Chapter 4) then JUnit won’t be able to deal with it; it can
work only with stand-alone Java code, which cannot run JavaScript. Using any DOM-
related methods is also a no-no; JUnit doesn’t have access to a browser, so that code
couldn’t even be executed. Finally, using GWT.Create(...) also won’t work, leaving out

238 Chapter 13 Testing Your GWT Application

16. See www.bullseye.com/minimum.html for a good study on this and for actual requirements for

several industries.

 Download from www.wowebook.com

www.bullseye.com/minimum.html

ptg

RPC and many other GWT features.17 So, how do you get to test any forms with
JUnit? We already saw the answer in Chapter 5, “Programming the User Interface”;
MVP lets you separate concerns by testing the important Presenter code (based on pure
Java) and leaving for later the mostly trivial View code.

Testing with Mock Objects
You can get around all the preceding limitations if your code is 100% functional, with
no side effects, and deals with the rest of the system only through its input parameters.
We are going to use a well-known technique and use mock objects to simulate and verify
all the interactions between the tested object and the rest of the system.

Going back to an already mentioned example, how would you test a method that
shows a Window.alert(...) message, in a fully automatic way, with no other tools but
Java? A method that produces such an alert is breaking the stated rule given: It is access-
ing and using something (namely, Window static methods) that it didn’t receive as a
parameter. Another example: How would you test code that sends “tweets,” or that
makes online payments? These two examples are even worse; whenever you tested your
program, it would start annoying people everywhere with test tweets, or freely making
orders and spending your money!

If, however, your object under test had received an object, itself with a method that
could simulate (but not actually do) the desired behavior, then your code would be
testable. (The object under test would use the received object, and the latter could after-
ward let us know whether it was called, with which parameters, in what order, and so.)
The received object would probably not do any kind of real work (thus, it’s actually a
mock object) but rather “keep score” so we can later see what happened.

Of course, writing many of these mock objects would be quite a chore. Moreover, if
we need to run several different tests on the same object, then we would probably need
several sets of the same mock objects; that much programming would more likely make
you do without testing!

There are several kinds of objects used in testing other than mocks, according to the
usual Software Engineering literature; let’s briefly consider some of those, in growing
scale of complexity.18

239Unit Testing with JUnit

17. This isn’t actually 100% true; there are some cases that can be tested despite what was asserted

in the text. If your code can be tested even with a null object (that is, receiving null instead of an

actual object) you can surround a GWT.create(...) call with GWTMockUtilities.disarm()

and GWTMockUtilities.restore() calls, and no object will be created. Of course, you won’t be

able to run all kind of tests if the object is null, but for some restricted tests it could be a good aid.

18. Sometimes, all these objects are generically called “test doubles,” for they replace real objects

in the same way as a “stunt double” replaces an actor for some scenes in a movie.

 Download from www.wowebook.com

ptg

n Dummy objects are passed around only to fill parameter lists but never are actually
used.

n Stubs provide “canned” answers to calls. The possibilities range from constant
answers (the method always returns the same value) to matching the received value
to a predefined list to decide what value to return.

n Fake objects actually do work, but usually with some restrictions, such as using
RAM for storing data instead of a database. Developing these objects can be as
hard as developing the actual classes themselves.

What we are dealing with, mock objects, are objects preprogrammed with expecta-
tions specifying the calls that are to be made upon them, and the values they should
return. For our tests, both stubs and mock objects could do as well, but in the first case
we must do the verifications (was the method called? What values did it receive?) by
ourselves, whereas in the second case, the mock library takes care of that. Just for the
sake of making the difference clear, we’ll use both stubs and mocks in our MVP tests.

EasyMock
EasyMock can construct objects for interfaces by using Java’s proxy mechanism. It can
also work with objects through a special class extension. (We are working with classes,
such as Environment, so we shall at least part of the time require this extension.)
Because of how expectations are recorded, it’s likely that refactoring your code won’t
affect your EasyMock based tests, which is a good advantage.19

Let’s test a login presenter, the last one we built before using UiBinder. (UiBinder
itself neither helps nor hampers our testing, because it’s View-oriented, and we are test-
ing Presenter code.) We last saw this in Chapter 5; let’s remember what our Presenter
code looked like:

package com.fkereki.mvpproject.client.login2;

// ...imports...

public class LoginFormPresenter

extends Presenter<LoginFormDisplay> {

static String PLACE = "login";

LoginServiceAsync loginService;

SimpleCallback<String> loginSuccessCallback;

240 Chapter 13 Testing Your GWT Application

19. Some other similar mocking libraries (which even use a similar way for specifying expectations)

are Mockito (at http://mockito.org/) and jMock (at www.jmock.org/). As usual, “you makes your

choices, and you takes your chances.”

 Download from www.wowebook.com

http://mockito.org/
www.jmock.org/

ptg

public LoginFormPresenter(

final String params, final LoginFormDisplay loginDisplay,

final Environment environment,

final SimpleCallback<String> callback) {

super(params, loginDisplay, environment);

loginSuccessCallback = callback;

loginService = getEnvironment().getModel().getRemoteLoginService();

final SimpleCallback<Object> commonBlurHandler =

new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

final String name = LoginFormPresenter.this.getDisplay()

.getName();

final String pass = LoginFormPresenter.this.getDisplay()

.getPassword();

final boolean canLogin = !(name.isEmpty()) & !(pass.isEmpty());

(LoginFormPresenter.this.getDisplay())

.enableLoginButton(canLogin);

}

};

loginDisplay.setNameBlurCallback(commonBlurHandler);

loginDisplay.setPasswordBlurCallback(commonBlurHandler);

loginDisplay.setName("federico");

loginDisplay.setPassword("");

commonBlurHandler.goBack(null);

loginDisplay.setLoginCallback(new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

final String name = LoginFormPresenter.this.getDisplay()

.getName();

final String pass = LoginFormPresenter.this.getDisplay()

.getPassword();

LoginFormPresenter.this.getDisplay().enableLoginButton(false);

loginService.getSomething(name, pass,

new AsyncCallback<String>() {

public void onFailure(final Throwable caught) {

LoginFormPresenter.this.getEnvironment().showAlert(

"Failed login");

241Unit Testing with JUnit

 Download from www.wowebook.com

ptg

LoginFormPresenter.this.getDisplay().enableLoginButton(

true);

loginSuccessCallback.onFailure(new Throwable());

}

public void onSuccess(final String result) {

loginSuccessCallback.goBack(result);

}

});

}

});

}

}

As is, our code is good for testing, because
n It interacts with a remote servlet to do the login but gets the needed reference by

means of the provided Environment parameter rather than directly accessing an
actual server.

n It shows some alerts, but it also does it through the received Environment parame-
ter, allowing us to check whether alerts were produced but without stopping the
test waiting for user interaction.

n It works with the View in MVP fashion, but it doesn’t directly deal with widgets
or handlers, rather going through the View interface. Furthermore, the View is
received as a parameter by the Presenter constructor, which is also good (because
the actual View interacts with the DOM and with JavaScript code, which would
prohibit the kind of tests we are striving for).

We will test the Presenter by providing several mock objects; for example, one such
object will simulate connecting to the server and trying a login, a second will make do
as if it had shown an alert, whereas yet a third one will stand for the View, and fake all
calls from the Presenter and also invoke all its blur and click methods. Just for the sake of
showing different ways of working, we shall mock most of the objects with EasyMock
but use a stub for the remote login and the successful log callback.

We shall do a simple login attempt test. We shall simulate that the user enters a pass-
word, then clicks on the login button, and the service will approve the attempt. We are
going to implement our own mock login service object, which will use a wasCalled
variable to record that the service was truly called, and two more variables (calledName
and calledPass) to store the received values, so we can later test what they actually
were. Boolean variable didReturn will be used to check whether the Presenter did or
didn’t call the successful login callback.20

242 Chapter 13 Testing Your GWT Application

20. The name LoginFormPresenter2Test has to do with our testing the second version of the

LoginFormPresenter, from Chapter 5.

 Download from www.wowebook.com

ptg

package com.fkereki.mvpproject.client.login2;

// ...imports...

public class LoginFormPresenter2Test {

boolean didReturn = false;

boolean wasCalled = false;

String calledName = "";

String calledPass = "";

Now, let’s write our test. We shall be using EasyMock objects for the Environment,
for the Model that the Environment will be asked to return, and for the View; we create
all these with createMock(...). If we cared for the strict sequence of calls (more on
this later) we would have rather used createStrictMock(...), and if we didn’t care to
provide return values for all calls and could stand returning standard values (zeroes, nulls,
and falses), createNiceMock(...) would have been appropriate.

@Test

public void testLoginPresenter1() {

final Environment environmentMock = createMock(Environment.class);

final Model modelMock = createMock(Model.class);

final LoginFormDisplay loginViewMock =

createMock(LoginFormDisplay.class);

As promised, we’ll create the login service mock object by hand, just to show it can
be done—and that it’s probably more work than needed! For example, we must code
otherwise unneeded methods (which will fail(...) if called, so we’ll notice the unex-
pected call). We must also record whether we were called, and fail the test if the login
service happens to be called more than once, because in this particular test we are
assuming the login will be successful.

final LoginServiceAsync loginServiceMock = new LoginServiceAsync() {

@Override

public void changePassword(

final String name,

final String encryptedNewPassword,

final String nonce,

final String parametersHash,

final AsyncCallback<Void> callback) {

fail(); // this shouldn't be called!

}

243Unit Testing with JUnit

 Download from www.wowebook.com

ptg

@Override

public void getSessionKey(

final String name,

final String nonce,

final String passHash,

final AsyncCallback<SessionKeyServiceReturnDto> callback) {

fail(); // this shouldn't be called!

}

@Override

public void getSomething(

final String name,

final String pass,

final AsyncCallback<String> callback) {

if (wasCalled) {

fail();

} else {

wasCalled = true;

calledName = name;

calledPass = pass;

}

}

};

Now, let’s start setting our expectations. From what we know about the Presenter,
it shall require getting a reference to the underlying Model object; our Environment
must expect a getModel(...) call and return modelMock. Likewise, modelMock must
expect a call asking for the remote login service object and must return our hand-build
loginServiceMock. If any of these calls fails to happen, or happens more than once, the
test will fail.

expect(environmentMock.getModel()).andReturn(modelMock);

expect(modelMock.getRemoteLoginService()).andReturn(

loginServiceMock);

The Presenter will also call setNameBlurCallback(...) and similar methods so the
View will know what to call on blur and click events. We must store whatever values are
provided for callbacks, to use them later when needed. EasyMock provides the
Capture<...> class and capture(...) methods to simplify this oft-required task.
When the corresponding methods are invoked, the received parameters will get stored.

final Capture<SimpleCallback<Object>> nameBlurCapture =

new Capture<SimpleCallback<Object>>();

244 Chapter 13 Testing Your GWT Application

 Download from www.wowebook.com

ptg

final Capture<SimpleCallback<Object>> passwordBlurCapture =

new Capture<SimpleCallback<Object>>();

final Capture<SimpleCallback<Object>> callbackCapture =

new Capture<SimpleCallback<Object>>();

loginViewMock

.setNameBlurCallback(EasyMock.capture(nameBlurCapture));

loginViewMock.setPasswordBlurCallback(EasyMock

.capture(passwordBlurCapture));

loginViewMock.setLoginCallback(EasyMock.capture(callbackCapture));

Now, from what we know, the Presenter will initialize the name field with "federico"
(guess why?) and will empty the password field. The following two lines set up expecta-
tions for the mock objects, which will later be verified.

loginViewMock.setName("federico");

loginViewMock.setPassword("");

We know that at the beginning, the Presenter will check the values of the name and
password fields and therefore decide whether to enable or disable the login button.
When the getName(...) method gets called, we want it to return "federico"
(because nobody modified it); likewise, getPassword(...) should return an empty
string, and thus we should expect the Presenter to disable the login button. If you want
to test an exception, you could use andThrow(...) instead of andReturn(...).21

expect(loginViewMock.getName()).andReturn("federico");

expect(loginViewMock.getPassword()).andReturn("");

loginViewMock.enableLoginButton(false);

When we construct the Presenter object, we must provide it with a callback, which
the Presenter should call when the login succeeds. We could do something along the
lines of

final SimpleCallback<String> callbackMock = new

SimpleCallback<String>() {

@Override

public void goBack(final String result) {

assertFalse(didReturn);

didReturn = true;

}

};

245Unit Testing with JUnit

21. EasyMock also provides more elaborate matchers, such as anyObject(...), anyString(...),

anyInt(...), and so on, which accept any parameter of the said type; notNull(...), which

accepts any non-null value; and matches(...), which can be used for pattern matching the

received value. You can use these matchers on a parameter-by-parameter basis.

 Download from www.wowebook.com

ptg

Back to the test expectations, we shall be simulating that the user entered a password,
and the password blur method will be fired. We know the presenter will have to check
both the name and password fields to decide whether to enable the login button, and
this time it will pass a true value.

expect(loginViewMock.getName()).andReturn("federico");

expect(loginViewMock.getPassword()).andReturn("eduardo");

loginViewMock.enableLoginButton(true);

Now, because all pieces are in place, and all expectations were set, let’s get the ball
rolling. The replay(...) method puts all objects in expect/check mode, so whenever
they get called, parameters will be tested, values will be returned, all according with our
setup.

EasyMock.replay(modelMock);

EasyMock.replay(loginViewMock);

EasyMock.replay(environmentMock);

Creating the Presenter object starts the replay. We can right away check whether it
provided a non-null callback for clicks on the login button and if it stored the
loginServiceMock we provided.22

final LoginFormPresenter lp = new LoginFormPresenter("",

loginViewMock, environmentMock, callbackMock);

assertTrue(callbackCapture.getValue() != null);

assertTrue(lp.loginService != null);

assertTrue(lp.loginService == loginServiceMock);

Calling the password blur handler simulates the data entry, and calling the login but-
ton handler simulates the final click.

passwordBlurCapture.getValue().goBack(null);

callbackCapture.getValue().goBack(null);

Now, all we have to do to finish our tests is check whether our handmade mock
objects were actually called as expected.

assertTrue(didReturn);

assertTrue(wasCalled);

assertEquals(calledName, "federico");

assertEquals(calledPass, "eduardo");

}

}

246 Chapter 13 Testing Your GWT Application

22. This isn’t that usual; normally, we just test things that are available through a declared inter-

face… but why not? Having the test class and the tested class in the same package allows for

these kind of “inner checks.”

 Download from www.wowebook.com

ptg

All the other checks, such as if a method were called unexpectedly, or with unexpected
parameters, are done by EasyMock, so it’s still possible that the test will fail, even if it
didn’t produce an error so far.

Using EasyMock is a great way to simplify your tests, and gives you enough latitude
to provide for the most complicated test situations. (Note, for example, how much
shorter and easy to understand were our EasyMock tests than our hand-written login
service mock?) If you manage to set up the Presenter tests with EasyMock, the usually
most complex parts of your applications will be easily tested, and at full speed, which
doesn’t happen with the browser-based tests we shall be considering in the next sections.

Integration Testing with GWTTestCase
JUnit tests can be applied only to server-side code and to part (hopefully, most) of the
client-side code. However, this is not enough; you should test, for example, whether a
complex view actually does what it should do, or if a remote service can actually be
called and produce the correct results. For all these tests, you need to simulate your
actual environment, for the code runs in a browser.

GWTTestCase acts like a bridge between JUnit and GWT. Previous versions of GWT
used actual browsers to run unit tests, but since 2, HtmlUnit is used as a built-in
browser. As HtmlUnit is written in Java, you can debug GWT tests in development
mode, which is an advantage. Also, you can test the results of integrating several classes
(including classes that require JavaScript) and find problems that might have escaped you
if you only did browser-less testing.

On the negative side, because it’s not an actual browser, there can be subtle problems;
you will have to use Selenium or similar tools for doing tests on actual compiled code.
Also, delays are more significant, because a development mode shell has to be started, and
the actual runs will also take longer if you communicate with a server. Finally, you won’t
be able to mock objects automatically with EasyMock or the like, which require some
Java features such as reflection, that aren’t available with GWT; you’ll have to do that
work by yourself.

Setup is also a bit more complex; you have to include the source directories in the
Class path; see Figure 13.4.

Let’s study a couple of examples of this kind of testing and check both a View and a
Remote Servlet.

Testing a View
We’ve tested a login presenter; let’s now do some tests of the login view. You could try to
do all kinds of tests (layout, rendering, events, callbacks, and more) but remember to
think in terms of economy and focus on the most important tests!

247Integration Testing with GWTTestCase

 Download from www.wowebook.com

ptg

Figure 13.4 For GWTTestCase testing, you must include the source
directories in the Classpath; click on Advanced... then Add Folder to do so.

As a reminder, the code to be tested was

package com.fkereki.mvpproject.client.login2;

// ...imports...

public class LoginFormView

extends View

implements LoginFormDisplay {

AsyncCallback<Object> loginCallback;

AsyncCallback<Object> nameBlurCallback;

AsyncCallback<Object> passwordBlurCallback;

final TextBox nameTextBox = new TextBox();

final TextBox passwordTextBox = new PasswordTextBox();

final Button loginButton = new Button("Log in");

final FlexTable flex = new FlexTable();

final DockPanel dock = new DockPanel();

248 Chapter 13 Testing Your GWT Application

 Download from www.wowebook.com

ptg

public LoginFormView() {

// add a click handler to the login button

// add a blur handler to the name and password fields

// set up all fields onscreen and "init" the widget

}

@Override

public void enableLoginButton(final boolean b) {

loginButton.setEnabled(b);

}

@Override

public final String getName() {

return nameTextBox.getValue();

}

@Override

public final String getPassword() {

return passwordTextBox.getValue();

}

@Override

public final void setLoginCallback(final SimpleCallback<Object> acb) {

loginCallback = acb;

}

@Override

public final void setName(final String s) {

nameTextBox.setValue(s);

}

@Override

public void setNameBlurCallback(final SimpleCallback<Object> acb) {

nameBlurCallback = acb;

}

@Override

public final void setPassword(final String s) {

passwordTextBox.setValue(s);

}

@Override

public void setPasswordBlurCallback(final SimpleCallback<Object> acb) {

passwordBlurCallback = acb;

}

}

249Integration Testing with GWTTestCase

 Download from www.wowebook.com

ptg

Our test class must now extend GWTTestCase. Note we use the same package as the
original view’s, so we can take advantage of visibility rules.

package com.fkereki.mvpproject.client.login2;

// ...imports...

public class LoginFormViewGWTTest

extends GWTTestCase {

We use a pair of Boolean variables to learn whether specific callbacks were invoked.
(Previously we did a similar thing.)

boolean loginWasCalled;

boolean blurWasCalled;

All GWTTestCase instances must include a getModuleName(...) that just returns
the complete name of the unit to be tested.

@Override

public String getModuleName() {

return "com.fkereki.mvpproject.Mvpproject";

}

With all this out of the way, let’s start our testing. After creating the View object, we
must set its callbacks, but note that they don’t actually do anything, but just record they
were called.23

@Test

public void testLoginView() {

final LoginFormView lv = new LoginFormView();

final SimpleCallback<Object> blurCB = new SimpleCallback<Object>() {

@Override

public void goBack(final Object result) {

blurWasCalled = true;

}

};

lv.setNameBlurCallback(blurCB);

lv.setPasswordBlurCallback(blurCB);

lv.setLoginCallback(new SimpleCallback<Object>() {

250 Chapter 13 Testing Your GWT Application

23. GWTTestCase is derived from JUnit 3, so the @Test annotations aren’t actually necessary;

instead, test methods should begin with “test.” I have followed both conventions in the text, so

when GWTTestCase catches up with JUnit 4, my code will be ready.

 Download from www.wowebook.com

ptg

@Override

public void goBack(final Object result) {

loginWasCalled = true;

}

});

Now, we can start using the View’s methods and check if they work as expected. The
first tests actually use the real fields; you could argue that you shouldn’t get down to this
level and access any widgets (but rather work only through interfaces) but in any case
you’ll have to, in order to fire click and blur events. Also, there’s no other way to test
whether the login button was actually enabled or disabled.

lv.nameTextBox.setValue("urk");

lv.passwordTextBox.setValue("ork");

assertEquals("urk", lv.getName());

assertEquals("ork", lv.getPassword());

lv.setName("federico");

lv.setPassword("");

assertEquals("federico", lv.getName());

assertEquals("", lv.getPassword());

lv.enableLoginButton(false);

assertFalse(lv.loginButton.isEnabled());

lv.enableLoginButton(true);

assertTrue(lv.loginButton.isEnabled());

Testing events require some DOM manipulation. Note the
DomEvent.fireNativeEvent(...) method, which is quite interesting.

final Document doc = com.google.gwt.dom.client.Document.get();

final NativeEvent evt1 = doc.createBlurEvent();

DomEvent.fireNativeEvent(evt1, lv.nameTextBox);

assertTrue(blurWasCalled);

blurWasCalled = false;

DomEvent.fireNativeEvent(evt1, lv.passwordTextBox);

assertTrue(blurWasCalled);

final NativeEvent evt2 = doc.createClickEvent(0, 0, 0, 0, 0, false,

false, false, false);

DomEvent.fireNativeEvent(evt2, lv.loginButton);

assertTrue(loginWasCalled);

}

}

If wanted, you could have linked the view to an actual presenter and provided an
actual Model to work with, and so on. You shouldn’t, however, try to do a full accept-
ance test because tools such as Selenium make shorter work out of that.

251Integration Testing with GWTTestCase

 Download from www.wowebook.com

ptg

Testing a Servlet
Our previous test didn’t require a servlet, but at some time you’ll have to write such
tests. (Otherwise, how would you detect mismatched parameters, a wrong setup, or any
other such problems?) The main problem here is the need for a wait, because RPC
works asynchronously. If you just did a RPC and then went on to test results, you would
fail, because they wouldn’t have arrived.

Let’s test a pair of methods in the World servlet. Note that for this, you must have
preloaded the database with countries, states, and cities (as we saw in Chapter 6,
“Communicating with Your Server”). You should probably be running your own data-
base; you wouldn’t want to run tests against production data, would you? Also, you’ll
have to modify the gwt.xml file a bit to include the path to the servlet.

<servlet path='/world'

class='com.fkereki.mvpproject.server.WorldServiceImpl'/>

The start of our test class is similar to the one we just saw for a view.

package com.fkereki.mvpproject.client.rpc;

//...imports...

public class WorldServiceGWTTest

extends GWTTestCase {

final Model model = new Model();

@Override

public String getModuleName() {

return "com.fkereki.mvpproject.Mvpproject";

}

As a minimal test, we could try getting back all cities in Soriano, a department
(region code 17) in Uruguay (country code UY) and verify whether “Darwin” is
included in the list. (We already saw this city in Chapter 6; also see Figure 13.6 farther
on in this chapter.) Although this test is clearly not enough, the most important part is
the delayTestFinish(...) call, so the servlet will have time to return, and the
finishTest(...) call after the servlet callback. Also, note that the result tests must be
verified in the callback.

@Test

public void testGetCities() {

model.getCities("UY", "17", 0, 1000,

new SimpleCallback<LinkedHashMap<String, ClientCityData>>() {

@Override

public void goBack(

final LinkedHashMap<String, ClientCityData> result) {

252 Chapter 13 Testing Your GWT Application

 Download from www.wowebook.com

ptg

assertTrue(result.size() > 0);

assertEquals("Darwin",

result.get("darwin").cityAccentedName);

finishTest();

}

});

delayTestFinish(5000); // 5 seconds

}

The test for countries is almost the same.

@Test

public void testGetCountries() {

model

.getCountries(new SimpleCallback<LinkedHashMap<String, String>>() {

@Override

public void goBack(final LinkedHashMap<String, String> result) {

assertTrue(result.size() > 0);

assertTrue(result.containsKey("UY"));

finishTest();

}

});

delayTestFinish(5000);

}

}

Because of the servlet delays, you shouldn’t do more than one call at once. (In some
freak situations, the second call might finish before the first one, and results would be
totally unexpected.) If you need do a second RPC, include it in the callback for the first
call. To wrap this up, let’s verify what I said about the delays. (See Figure 13.5.)

Running these tests took about 49 seconds; the greater part of that was internal
GWT setup work. It’s a fact that with GWTTestCase you can test parts and interactions
of your code that you would miss otherwise, but because of the longer times, do try to
test as much of the code with pure JUnit and leave special tests for GWTTestCase.

Acceptance Testing with Selenium
With the tools we have already seen, it should be clear that you could test most of your
application, if not all (file uploads can get tricky, for example), using a mixture of JUnit
(for server-side code, and for nonvisual parts of client-side code) and GWTTestCase (for
the visual parts of your code). However, let’s give a quick look at an oft-used tool,
Selenium, that helps writing and running tests for a complete web application. Though
we won’t be getting in full detail (Selenium is quite vast, with dozens of commands)
we’ll show how to use it and some caveats you should take into account.

253Acceptance Testing with Selenium

 Download from www.wowebook.com

ptg

Figure 13.5 GWTTestCase testing usually requires much longer setup
times, though the tests themselves may be fast.

Three different software pieces compose Selenium, but we’ll mostly consider the first
one, which lets you create and run tests individually; however, you’ll probably sooner or
later decide that the other two tools, which have to do with automating large scale tests
on different browsers, are also of interest.

n Selenium IDE is a Firefox add-on that provides a simple interface for building and
running tests, either on its own or as part of complete test suites. You can record
your actions and checks, and store them as a script that can be played back. If you
want, you can even write your tests from scratch (the test language is actually quite
simple) but the IDE helps a lot.

n Selenium RC (Remote Control) enables you to use Java and other programming
languages for extending your tests. Selenium IDE can run only static (i.e., prede-
fined) tests; if you want to iterate through a result set or do arithmetic or other
tests, you can program them in Java while using Selenium commands to get the
data, for example. Using a programming language would also allow setting up a
complex environment before running the actual tests. Also, Selenium RC enables
you to run tests on browsers that are not supported by the IDE. Thus, you get to
use Selenium as a “starter kit,” and then do the rest of your work in Java, with all
its development tools.

n Selenium Grid enables you to run several instances of Selenium RC at the same
time, even under different operating systems and with different browsers. This is
more useful for large series of tests, which can be run in parallel.

You should use Selenium only on the compiled application (see Chapter 15,
“Deploying Your Application”) as the last (“acceptance”) kind of test. Reading between
lines, this already suggests a first consideration; you shouldn’t probably start with

254 Chapter 13 Testing Your GWT Application

 Download from www.wowebook.com

ptg

Selenium until you are fairly confident that the user interface won’t be changing too
much; otherwise, you might have to redo the completed tests almost from scratch.

A Very Simple Example
Let’s remember our City Browsing form. If we browsed to “Uruguay,” and picked
“Soriano” department, the first 20 cities would be as shown in Figure 13.6.

255Acceptance Testing with Selenium

Figure 13.6 The cities browsing form will be tested with Selenium.

Given the data we loaded, a possible test would be
n Open the correct URL.
n Wait for the country data to come in.
n Click on it, and select Uruguay.
n Wait again for the states data.
n Click it, and select Soriano.
n Click the First 20 Cities button.

 Download from www.wowebook.com

ptg

n Wait for the table to get populated.
n Check that “darwin” appeared in the list.

You can use Selenium to record these actions and tests, and if you opt to run the test,
you’ll get a green result. (See Figure 13.7.) You can save this test, and later run it as a part
of a general suite.

256 Chapter 13 Testing Your GWT Application

Figure 13.7 Running our short test produces a green result; everything
checked out okay.

Note that you had little to type or specify to create and run this test; you could also
have managed with GWTTestCase, but this is easier to set up, and furthermore you can
run it in different browsers and under different operating systems.

There are far more options available for testing, including the possibility of writing
your own tests and wait conditions in JavaScript, so you could, for example, test if the list
of Uruguayan departments is 19 elements long, or whether the United States shows 50
states. Check the Selenium documentation for a complete list of commands.24

24. You can find it at http://seleniumhq.org/docs/04_selenese_commands.html#chapter04-reference.

 Download from www.wowebook.com

http://seleniumhq.org/docs/04_selenese_commands.html#chapter04-reference

ptg

What Can Go Wrong?
We just scratched the surface of Selenium with our previous example, but let’s anyway
consider several problems that you might find.

The most important point is that the logic Selenium uses to decide what locator to use
for a given screen object frequently causes problems, because simple or trivial changes in
the form may cause Selenium to refer to a different field. The best solution is to assign
your own IDs with DOM.setElementAttribute(someWidget.getElement(),
"id", "theNewId"); and use it as the locator.25 However, note that this can quickly
become tiresome.26

GWT applications are (by definition) heavy on DHTML and Ajax, meaning that
most of the time, the interface gets created dynamically, depending on data received from
the server. You should get used to including waitFor... Selenium commands, because
otherwise your tests will run too fast, missing widgets or values it should find.

As a plus, you can add extra functionality to Selenium by either writing your own
extensions, or by using already developed ones.27 (You can even do unstructured testing
with goto statements. How about that, in modern times?) Other extensions help work-
ing with frames and windows, so even if you at first cannot run the tests you want, you
can probably manage by means of extending Selenium, or using Selenium RC.

Summary
We have seen three different methods for automatic testing of GWT applications: a spe-
cific one, GWTTestCase, and two generic ones: JUnit and Selenium. Although you
won’t be able to use Selenium until your application is stable (which, on the other hand,
isn’t such a problem because Selenium is geared toward acceptance tests, and you don’t
run those if the application is only halfway there!) the complete trio of tools do provide
a strong base for your tests.

257Summary

25. An alternative: Consider using the ensureDebugId(...) method; read http://google-web-

toolkit.googlecode.com/svn/javadoc/2.0/index.html?com/google/gwt/user/client/ui/UIObject.html

for more on this.

26. Unhappily, you won’t be able to assign the id attribute with UIBinder.

27. You can find a repository of such extensions at http://wiki.openqa.org/display/SEL/

Contributed+User-Extensions, whereas instructions for writing your own are at http://

release.seleniumhq.org/selenium-core/1.0/reference.html#extending-selenium.

 Download from www.wowebook.com

http://wiki.openqa.org/display/SEL/
http://release.seleniumhq.org/selenium-core/1.0/reference.html#extending-selenium
http://google-webtoolkit.googlecode.com/svn/javadoc/2.0/index.html?com/google/gwt/user/client/ui/UIObject.html
http://google-webtoolkit.googlecode.com/svn/javadoc/2.0/index.html?com/google/gwt/user/client/ui/UIObject.html
http://release.seleniumhq.org/selenium-core/1.0/reference.html#extending-selenium

ptg

This page intentionally left blank

 Download from www.wowebook.com

ptg

14
Optimizing for

Application Speed

You can never have a too speedy application, and in this chapter we’ll consider design
patterns that let you take advantage of spare time, and measuring tools that let you find
out where your application is spending most of its processing time. The combination of
both these programming techniques and benchmarking tools will enable you to optimize
your application in often surprising ways.

We are going to consider several ways to speed up your application. We’ll start with
some design patterns that will enable your application to use background processing to
provide or process data more quickly. We’ll also be including the new GWT 2 bundles,
which let you save time by sending several kinds of data from the server to the client in
a single trip. And finally, as more general solutions, we’ll also introduce several bench-
marking tools that will let you detect bottlenecks in your application.

Design Patterns for Speed
Let’s start by stating our goals clearly. We want to consider design patterns that will allow
greater speed from the user’s point of view. In truth, we are not saying the patterns will
make the application faster, but at least that it will seem faster to the user; an important
difference! As always, it will be a matter of trade-offs; we use some extra (client) memory,
but we can skip doing repeated calls to the server, or we speculate and get some data
from the server just in case the user wants it.

Given our preceding definition, the prevalidation pattern (that we saw in Chapter 6,
“Communicating with Your Server”) could equally as well have been included here,
because it allows faster feedback and better usability. Yet again the same could be said of
the code splitting feature we’ll see in the next chapter, for it allows a much faster load
process, that is balanced, to be sure, with some delays down the line.

 Download from www.wowebook.com

ptg

Caching
GWT usually makes your application perform better, but there is one area in which it
can actually make performance worse: caching. Whenever your browser requests data
(such as a page) from a server, it first looks into its own cache, to check whether it
already has the data. If the required results are found in memory, the browser will forego
calling the server and just provide the data from the cache. (Of course, several conditions
must be fulfilled before something is kept in the cache, but that’s not relevant here.) The
problem here is that whenever GWT calls a remote servlet, it implements the RPC by
means of a noncacheable Ajax call, so even if your program asks for the same data over
and over again, the browser won’t store it in its cache and will require it anew from the
server every time.

If your application requires the same (constant) data that it has already received earlier,
you could enhance performance by setting up a local cache of your own, bypassing the
browser’s one. The pattern of usage would require, before calling the server, to check if
the asked-for data is already in the cache, and if so, just skip the call. There are two points
to consider:

n Never use a cache for information that changes often.
n If you are using a cache for information that can go stale over time, consider using

a timestamp so that you’ll avoid using old data.1

The general pattern for using a cache would be as follows.

Class_with_cache:

Define class attributes for the cache

Set the cache to empty initially

Whenever data are required:

Check if the asked for data are already in the cache

If so,

Get the data from the cache, and return it

Otherwise,

Use RPC, Ajax, or whatever, to get the data

On callback:

Put the data in the cache, and return it

Let’s illustrate this pattern with our CountryState object, which we used in our
cities browsing form in Chapter 6. The simplest application of this pattern has to do
with the countryCode ListBox. In this case, we can make do with a static object in
which to store the received country list; whenever we ask for the countries list, we first
check if the list is already loaded, and if so, we just return it. Changes in the Model class
code are minimal with regard to the code we saw earlier in the book. (In Chapter 6 we
had mentioned that it would be better if no other part of the application knew the actual

260 Chapter 14 Optimizing for Application Speed

1. This is, in essence, how browsers manage their own internal caches.

 Download from www.wowebook.com

ptg

details of how to connect to any service. Using methods such as getCountries(...)
effectively encapsulates those details and furthermore allows optimizations as we shall see.)

static LinkedHashMap<String, String> countriesCache = null;

public void getCountries(

final AsyncCallback<LinkedHashMap<String, String>> cb) {

if (countriesCache == null) {

getRemoteWorldService().getCountries(

new AsyncCallback<LinkedHashMap<String, String>>() {

@Override

public void onFailure(final Throwable caught) {

// ...error...

}

@Override

public void onSuccess(

final LinkedHashMap<String, String> result) {

countriesCache = result;

cb.onSuccess(result);

}

});

} else {

cb.onSuccess(countriesCache);

}

}

The countries cache is null at the beginning. The first time you call getCountries(...),
the resulting list will be stored in the cache, and all further calls will just produce the
data from there, with no delays.

Working with states is just a tad more complex, because we’ll have to use some kind
of collection; storing just the states from a single country wouldn’t do. Whenever we get
asked for the states of a given country, we must check if statesCache already contains
that country as a key; if so, we already got the data and don’t have to go to the server.
This code is also in the Model.

static LinkedHashMap<String, LinkedHashMap<String, String>> statesCache =

new LinkedHashMap<String, LinkedHashMap<String, String>>();

public void getStates(

final String country,

final AsyncCallback<LinkedHashMap<String, String>> cb) {

if (!statesCache.containsKey(country)) {

getRemoteWorldService().getStates(country,

new AsyncCallback<LinkedHashMap<String, String>>() {

261Design Patterns for Speed

 Download from www.wowebook.com

ptg

@Override

public void onFailure(final Throwable caught) {

// ...error...

}

@Override

public void onSuccess(

final LinkedHashMap<String, String> result) {

statesCache.put(country, result);

cb.onSuccess(result);

}

});

} else {

cb.onSuccess(statesCache.get(country));

}

}

If you are worried about total RAM requirements, you could apply some kind of
LRU (least recently used) logic and just store states for the more recently used, say, 10 or
20 countries.

The same kind of change could be applied to the cities fetching logic, and the
changes are relatively minor. The only point deserving attention is the way we build up
the cache key by concatenating the country, state, and start position parameters, separated
by colons.2

/*

* The cache key is COUNTRY:REGION:STARTING_CITY_NUMBER and the associated

* value is a LinkedHashMap<String,ClientCityData>

*/

static LinkedHashMap<String, LinkedHashMap<String, ClientCityData>>

citiesCache = new LinkedHashMap<String,

LinkedHashMap<String, ClientCityData>>();

The rest of the code follows the same pattern we used earlier. Let’s include it so we
can add more changes to it in the following section.

public void getCities(

final String country,

final String state,

final int pStart,

final int pCount,

final AsyncCallback<LinkedHashMap<String, ClientCityData>> cb) {

if (!country.isEmpty() && !state.isEmpty()) {

262 Chapter 14 Optimizing for Application Speed

2. We are assuming here that pCount is always constant. If this weren’t true, handling the cache

would just be a tad harder, but we need not care about the details for this example.

 Download from www.wowebook.com

ptg

if (!citiesCache

.containsKey(country + ":" + state + ":" + pStart)) {

getRemoteWorldService().getCities(country, state, pStart,

pCount,

new AsyncCallback<LinkedHashMap<String, ClientCityData>>() {

// ...onFailure() definition...

public void onSuccess(

final LinkedHashMap<String, ClientCityData> result) {

citiesCache.put(country + ":" + state + ":" + pStart,

result);

cb.onSuccess(result);

}

});

} else {

cb.onSuccess(citiesCache.get(country + ":" + state + ":"

+ pStart));

}

}

}

Now, we’ll study other patterns that we could apply in that case, to speed up
sequences of consecutive calls.

Prefetching
Whenever your client-side application is going to need lots of data from the server,
you’ll have to implement some kind of chunking or paging, and that means the user will
have to wait for each new “batch” of data. If you could foretell which data a user was
going to require, you could use Ajax mechanisms and “get ahead of the game,” getting
the data from the server before actually required, and thus providing a much more
responsive interface. Of course, you cannot always guess what the user will finally ask for,
so you must take into account the possibility that you’ll guess wrongly and get some
unneeded data; that is a certain risk that you must balance with the sure delays that the
user will have to endure if you opt to not prefetch.

Prefetching just means trying to anticipate your user needs and call for data before
the user actually requires it. However, you must be careful with this pattern: If you just
go overboard by prefetching everything in sight, you’ll just make things worse! Since the
times of limited-speed, dial-up modems, all browsers have limited the maximum allowed
number of client-to-server connections. (As a matter of fact, that limitation even got
included as part of the HTTP version 1.1 standard, which reads “A single-user client
SHOULD NOT maintain more than 2 connections with any server or proxy.”) If you make

263Design Patterns for Speed

 Download from www.wowebook.com

ptg

several requests for data to your server, you should assume that at most only two of them
will go out (in parallel) while the rest will be queued for even longer-than-usual delays.3

The simplest pattern for prefetching is as follows:

Class_with_cache_and_prefetching:

Define class attributes for the cache

Set the cache to empty initially

Whenever data are required:

Check if the asked for data are already in the cache

If so,

Get the data from the cache, and return it

Otherwise,

Use RPC, Ajax, or whatever, to get the data

and also to prefetch extra data

On callback:

Store the data in the cache

If data were needed (as opposed to prefetched)

Return it

We can apply this kind of logic to the cities browser application. We will implement a
cache along the lines shown in the previous section, but we will also be storing extra
data as a prevision for the future. Note in particular that the first check at the cache
looks for cities starting at position pStart+pCount; if the user steps through the data
consecutively, that will mean that the required data will already be loaded in memory.4

public void getCities(

final String country,

final String state,

final int pStart,

final int pCount,

final AsyncCallback<LinkedHashMap<String, ClientCityData>> cb) {

if (!country.isEmpty() && !state.isEmpty()) {

if (!citiesCache.containsKey(country + ":" + state + ":"

+ (pStart + pCount))) {

getRemoteWorldService().getCities(country, state,

pStart + pCount, pCount,

264 Chapter 14 Optimizing for Application Speed

3. Modern browsers have upped the limit from the original value of two, but the principle remains the

same: You shouldn’t hog all communication “just in case,” and should the user be working with a

browser that allowed a smaller number of connections than you expected, performance would suffer.

4. Once again, we are assuming pCount never changes.

 Download from www.wowebook.com

ptg

new AsyncCallback<LinkedHashMap<String, ClientCityData>>() {

public void onFailure(final Throwable caught) {

// ...error...

}

public void onSuccess(

final LinkedHashMap<String, ClientCityData> result) {

citiesCache.put(country + ":" + state + ":"

+ (pStart + pCount), result);

}

});

}

The rest of the code is exactly the same as in the cache-only version, which we saw
at the end of the previous section.

if (!citiesCache

.containsKey(country + ":" + state + ":" + pStart)) {

// ...as in the "cache only" version...

}

}

}

Note that the code works by doing two calls: the first to prefetch some data and load
the cache, and the second to provide the actually asked-for data. Of course, the calls are
done only if the involved data aren’t already in the cache.

If you foresee the possibility of the user browsing many different countries and states,
applying some kind of limits to the cache would prove to be wise; a simple though pos-
sibly a bit too extreme solution would be going through the whole cache and simply
purging any data coming from a country other than the one the user is currently
examining.

As is, the user will experiment a certain delay when he calls for the first group of
cities, but then, if he just takes a little while before asking for the next page, he will
notice no delays at all, for the required data will have already been brought from the
server to the client.

For even more impressive results, whenever the “states” listbox value changes, you
could add a call such as the following, so the first cities (that is, when start is zero) for
the given country and state would already be loaded even before the user clicked on the
First Cities button. (See the cities browsing Presenter, from where this was taken.) Note
that the callback doesn’t do anything!5

265Design Patterns for Speed

5. Why so many get(...) calls? You have to go through the Environment to get at the Model and

then ask it to get cities from the server. For the RPC parameters, the Presenter needs the Display to

get the Country and State widget, and then get the Country (or State) from it.

 Download from www.wowebook.com

ptg

getEnvironment().getModel().getCities(

getDisplay().getCountryState().getCountry(),

getDisplay().getCountryState().getState(),
0, CitiesBrowserView.CITIES_PAGE_SIZE,

new SimpleCallback<LinkedHashMap<String, ClientCityData>>() {

@Override

public void goBack(

LinkedHashMap<String, ClientCityData> result) {

// ...do nothing!

}

});

If you are feeling even more adventurous, you could wait just a bit before getting the
cities, just in case the user changes its mind and picks a different state; you’ll probably
want to use a timer, as we will be using in the next section though for different purposes.

Thread Simulation
Consider any CPU-intensive task, such as parsing and processing large amounts of XML,
or displaying lots of data on screen. If a process takes too long, the end user will be
shown a message such as Internet Explorer’s “Stop running this script? A script on this
page is causing Internet Explorer to run slowly. If it continues to run, your computer
may become unresponsive” or Firefox’s own “A script on this page may be busy, or it
may have stopped responding. You can stop the script now, or you can continue to see if
the script will complete.” What’s worse, if the user actually pays heed to the warning, he
will stop the wayward script, and thus cancel your GWT application!

Using threads would be a standard solution for this problem, but GWT won’t allow
it, because JavaScript provides just a single thread of execution, implying that compiled
threaded code wouldn’t work as expected. Ajax would also provide a solution, if you
required server-side processes but is no good for your client-side problem.

Luckily, there are two solutions for this problem: You could use timers and parcel your
script in several small pieces, or you can go one step better, and use GWT’s own deferred
commands, which actually provide even better performance. Let’s apply both of them to
showing the cities data in our cities browsing application.

A Timer-Based Solution
JavaScript provides simple timers, and GWT provides an equivalent Timer class, with a
schedule(...) method that works in similar fashion like JavaScript’s setTimeOut(...)
method.

The idea for this solution is to do just a bit of work and store values so the process
can seamlessly continue after a timeout, but freeing the CPU in the meantime. Of
course, before resuming the process, check if the process needs to go on; the user might
have changed the country or state, or paged forward and backward, and it wouldn’t do if
your application ignored that, and kept showing old data.

266 Chapter 14 Optimizing for Application Speed

 Download from www.wowebook.com

ptg

The general pattern is as follows:

define a class that extends Timer:

define attributes so it can save its parameters

define attributes so it can save local variables from run to run

define attributes so it can save form field values

on construction:

save the received parameters

initialize local variables for the process

save the current form field values

run() method:

if the current form field values match the saved values:

execute some process, updating the local variables

if there's still more work to be done

schedule another process in a short while

whenever you want to simulate a thread with a timed method:

create an object of the new class above, with appropriate parameters

execute its run() method

Let’s apply this pattern to our cities browsing example, and in particular, to the logic
that actually displays the cities’ data onscreen.6 Most of the code will be left as was, so
we shall just highlight the main points. Also (and this supports some things we said about
MVP) note that only the Presenter needs any changes.

package com.fkereki.mvpproject.client.citiesBrowser3;

// ...imports...

public class CitiesBrowserPresenter

extends Presenter<CitiesBrowserDisplay> {

public static String PLACE = "citybrowse";

We shall implement a Command pattern7 by extending the Timer class. (Note we are
referring to the GWT one at com.google.gwt.user.client.Timer and not to the
standard java.util.Timer class.) The cities’ display process will be parceled into several
short, spaced processes, so the end user will feel the browser to be “more responsive.”

private class TimedCitiesDisplay

extends Timer {

final NumberFormat nf = NumberFormat.getDecimalFormat();

LinkedHashMap<String, ClientCityData> citiesList = null;

267Design Patterns for Speed

6. Okay, this particular code is fast enough so you could do without this pattern, but on the other

hand, it provides a simple way of showing how to apply this optimization scheme.

7. See http://c2.com/cgi/wiki?CommandPattern for a fuller description.

 Download from www.wowebook.com

http://c2.com/cgi/wiki?CommandPattern

ptg

Iterator<String> currentCity = null;

int currentRow = 0;

We shall store the original country, state, and start position, because the user could
change to a different country or state, or advance to a different set of cities, and it
wouldn’t do to keep displaying the old data. Before we get to display anything, we’ll
make sure it matches what the user is seeing onscreen.

String originalCountry = null;

String originalState = null;

int originalStart = 0;

This method will be used to display a whole page of cities. We shall be using an itera-
tor to step through the list of cities; it will be the link between a part of the process and
the next part. We shall also update the three variables we mentioned in the previous
paragraph, and display Loading... texts before anything else gets shown. (Of course,
this presupposes that displaying just that text is much faster than displaying the whole
city data; if not, you would be just exchanging a delay for another!)

public TimedCitiesDisplay(

final LinkedHashMap<String, ClientCityData> pCitiesList) {

citiesList = pCitiesList;

currentCity = pCitiesList.keySet().iterator();

currentRow = 0;

originalCountry = getDisplay().getCountryState().getCountry();

originalState = getDisplay().getCountryState().getState();

originalStart = currentStart;

displayEmptyCities(0, "Loading...");

}

The run(...) method will display a few cities, and if there are any other remaining
ones (see the someMore variable) it will schedule a new process that will continue with
the current display. Should there have been any change (different country, state, or start
position) the process just won’t do anything, and it won’t schedule a new run either. The
CITIES_AT_A_TIME constant defines how many cities will get shown per run (another
constant, CITIES_DELAY_IN_MS, is used to specify how many milliseconds apart is a
run from the next) and the currentRow variable is used to count the rows, for display
purposes.

@Override

public void run() {

boolean someMore =

originalCountry.equals(

getDisplay().getCountryState().getCountry())

&& originalState.equals(

getDisplay().getCountryState().getState())

&& originalStart == currentStart;

268 Chapter 14 Optimizing for Application Speed

 Download from www.wowebook.com

ptg

for (int i = 0; someMore && i < CITIES_AT_A_TIME; i++) {

if (currentCity.hasNext()) {

final ClientCityData cd = citiesList.get(currentCity.next());

currentRow++;

getDisplay().setCityData(currentRow, cd.cityName,

nf.format(cd.population), nf.format(cd.latitude),

nf.format(cd.longitude));

} else {

/*

* If there are no more cities, display empty lines

* (a fast process) and disable the next timer call

*/

displayEmptyCities(currentRow, "");

someMore = false;

}

}

/*

* If there are still some more cities to display,

* schedule a new display process in a short while.

*/

if (someMore) {

schedule(CITIES_DELAY_IN_MS);

}

}

}

static final int CITIES_AT_A_TIME = 10;

static final int CITIES_DELAY_IN_MS = 250;

Here things start getting back to normal, and the rest of the original Presenter code is
pretty much unchanged, except for the getAndDisplayCities(...) that now uses our
TimedCitiesDisplay class.

void getAndDisplayCities() {

if (currentStart < 0) {

currentStart = 0;

}

displayEmptyCities(0, "Loading...");

getEnvironment().getModel().getCities(

getDisplay().getCountryState().getCountry(),

getDisplay().getCountryState().getState(), currentStart,

CitiesBrowserView.CITIES_PAGE_SIZE,

new SimpleCallback<LinkedHashMap<String, ClientCityData>>() {

@Override

public void goBack(

final LinkedHashMap<String, ClientCityData> result) {

269Design Patterns for Speed

 Download from www.wowebook.com

ptg

new TimedCitiesDisplay(result).run();

}

});

}

}

We can see this solution caught just between runs of our timed process in Figure 14.1.8

270 Chapter 14 Optimizing for Application Speed

8. A small confession is in order: I had to set CITIES_DELAY_IN_MS to a far larger value so that I

could use my screen capture program and get the shown image.

Figure 14.1 A part of the cities list has already been shown, and a timer-
based command will fire shortly, to continue the display.

This is a solution much along the lines of “classic” JavaScript programming, but GWT
actually provides an even better alternative, as we shall see in the next section.

A Deferred Command-Based Solution
Deferred commands are a GWT-specific feature, which make for an even better solution.
These commands are queued for execution when the CPU is free, so if you do a small

 Download from www.wowebook.com

ptg

part of the process, and use a deferred command to resume processing, GWT will run it
as soon as possible, for a better throughput. (With the timer-based solution, if the user
isn’t actually doing anything, the time between runs of the display process will simply be
wasted.) The general pattern of usage for this solution would be as follows.

define a class that extends IncrementalCommand:

define attributes so it can save its parameters

define attributes so it can save local variables from run to run

define attributes so it can save form field values

on construction:

save the received parameters

initialize local variables for the process

save the current form field values

on execute() method:

if the current form field values match the saved values:

execute some process, updating the local variables

if there's still more work to be done

return true, so it will run again shortly afterwards

otherwise,

return false (the job is done)

otherwise,

return false (situation changed)

whenever you want to simulate a thread with a deferred command:

create an object of the new class above, with appropriate parameters

use the addCommand() to add your new object to the processing queue

Back to the code, once again we’ll leave most of our Presenter unchanged. For the
Timer-based solution, note that now we use IncrementalCommand instead. However, if
you compare both this version and the one in the previous section, you’ll find more
coincidences than differences.

package com.fkereki.mvpproject.client.citiesBrowser4;

// ...imports...

public class CitiesBrowserPresenter

extends Presenter<CitiesBrowserDisplay> {

public static String PLACE = "citybrowse";

private class DeferredCitiesDisplay

implements IncrementalCommand {

final NumberFormat nf = NumberFormat.getDecimalFormat();

LinkedHashMap<String, ClientCityData> citiesList = null;

Iterator<String> currentCity = null;

int currentRow = 0;

271Design Patterns for Speed

 Download from www.wowebook.com

ptg

String originalCountry = null;

String originalState = null;

int originalStart = 0;

public DeferredCitiesDisplay(

final LinkedHashMap<String, ClientCityData> pCitiesList) {

citiesList = pCitiesList;

currentCity = pCitiesList.keySet().iterator();

currentRow = 0;

originalCountry = getDisplay().getCountryState().getCountry();

originalState = getDisplay().getCountryState().getState();

originalStart = currentStart;

displayEmptyCities(0, "Loading...");

}

Now we have an execute(...) method instead of a run(...) one, but the actual
code is pretty much unchanged. Whenever the execute(...) method is run, if it
returns true, it means it has to be run again; if it returns false, the command is con-
sidered to be done, and execution will cease.

public boolean execute() {

boolean someMore = originalCountry.equals(getDisplay()

.getCountryState().getCountry())

&& originalState.equals(getDisplay().getCountryState()

.getState()) //

&& originalStart == currentStart;

for (int i = 0; someMore && i < CITIES_AT_A_TIME; i++) {

if (currentCity.hasNext()) {

final ClientCityData cd = citiesList.get(currentCity.next());

currentRow++;

getDisplay().setCityData(currentRow, cd.cityName,

nf.format(cd.population), nf.format(cd.latitude),

nf.format(cd.longitude));

} else {

displayEmptyCities(currentRow, "");

someMore = false;

}

}

return someMore;

}

}

272 Chapter 14 Optimizing for Application Speed

 Download from www.wowebook.com

ptg

Of course, we must change getAndDisplayCities(...) so it will use our new
DeferredCommand class; the difference is in the last executable sentence shown here.

void getAndDisplayCities() {

if (currentStart < 0) {

currentStart = 0;

}

displayEmptyCities(0, "Loading...");

getEnvironment().getModel().getCities(

getDisplay().getCountryState().getCountry(),

getDisplay().getCountryState().getState(), currentStart,

CitiesBrowserView.CITIES_PAGE_SIZE,

new SimpleCallback<LinkedHashMap<String, ClientCityData>>() {

@Override

public void goBack(

final LinkedHashMap<String, ClientCityData> result) {

DeferredCommand

.addCommand(new DeferredCitiesDisplay(result));

}

});

}

}

In terms of the user experience, this solution may feel much like the Timer-based
one, but display will actually be faster and smoother. If the user isn’t interacting with the
browser, successive runs will be scheduled as soon as possible, taking the most advantage
of the available CPU power.

Bundling Data
Since GWT 1.4, you could use “image bundles” to improve application load perform-
ance, by making fewer calls to the server to get whichever images were required for your
site. We already mentioned earlier in this chapter that your client page won’t be able to
do any number of simultaneous calls to the server, and this implies that if your applica-
tion requires many images or icons, there will be a delay while the browser queues all
calls to the server. (You could use Speed Tracer or any other of the tools that we will
study later in this chapter to see the sequence of short load times in action.)

This is not the only problem. Because the kind of images you will use will surely be
small (you wouldn’t want to be downloading large files in any case, would you?) then
HTTP will add a not trivial-sized overhead; it could even surpass the size of a given
icon! And, even if your pictures won’t be changing (just how often do you redesign your
icons?) the browser will have to do a request to check whether the cached image may be
considered still fresh.

The ImageBundle interface provided a way to solve all these problems by building a
single package out of many files, and providing access to it through a Java object, in a

273Design Patterns for Speed

 Download from www.wowebook.com

ptg

way similar to the use of the Constants i18n interface that we saw in Chapter 12,
“Internationalization and Localization.”9 This interface has now been deprecated, and
replaced by ClientBundle, which allows including other types of files, not necessarily
images.10 A ClientBundle interface can give access to:

n DataResource elements, which provide an URL that enables getting the file con-
tents at runtime.

n TextResource elements provide access to the contents of a text file, which are
included in the compiled file.

n ExternalTextResource elements are similar to TextResource ones, but the text
is obtained at runtime via Ajax.

n CssResource lets you inject CSS files into your application.11

n Finally, ImageResource is the familiar type for ImageBundle users; it provides
access to an image.

Let’s work out a simple example, using several of the types mentioned. I downloaded
several of the images used in Google’s GWT web site and also created a PDF out of the
ClientBundle documentation page.12 I listed a directory’s contents into text files (in
long and short formats) to provide more variety.

The first part is creating an interface, as when working with Constants.

package com.kereki.clientbundles.client;

// ...imports...

public interface SampleResource

extends ClientBundle {

We can take advantage of a static variable to use this interface as a Singleton.

public static final SampleResource RESOURCE = GWT

.create(SampleResource.class);

Now, as in i18n work (see Chapter 12) you must define a method for each file you
want to access. The @Source(...) annotation is used to specify the file’s name; by
default, they are to be placed in the client directory. Note that i18n applies here; if you
specify a file named something.txt, and your locale is es_UY, GWT will first look for
something_es_UY.txt, then for something_es.txt, and finally for something.txt.

274 Chapter 14 Optimizing for Application Speed

9. Web programmers know this technique as CSS sprites and that was what GWT applied internally.

10. As with constants, you also have a ClientBundleWithLookup interface, which allows getting

resources by name.

11. This is actually an understatement; see http://code.google.com/webtoolkit/doc/latest/

DevGuideClientBundle.html#CssResource for other extra functionalities.

12. See http://code.google.com/webtoolkit/doc/latest/DevGuideClientBundle.html for the original.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideClientBundle.html#CssResource
http://code.google.com/webtoolkit/doc/latest/DevGuideClientBundle.html
http://code.google.com/webtoolkit/doc/latest/DevGuideClientBundle.html#CssResource

ptg

@Source("gwt_large_logo.png")

public ImageResource gwtLargeLogo();

@Source("gwt_small_logo.png")

public ImageResource gwtSmallLogo();

@Source("download_gwt.png")

public ImageResource gwtDownload();

@Source("learn_more.gif")

public ImageResource gwtLearnMore();

@Source("read_the_docs.gif")

public ImageResource gwtReadTheDocs();

@Source("ClientBundleDoc.pdf")

public DataResource clientBundleDocumentation();

@Source("detailed_list.txt")

public TextResource longListing();

@Source("short_list.txt")

public ExternalTextResource shortListing();

}

Using this bundle is easy. Let’s just create a single page that will show all icons, the
PDF file, and both listings. The final page will look as shown in Figure 14.2.

The code for this application is quite simple; I didn’t worry much about elegance!
First, we create some panels: a vertical one for general layout and a horizontal one for
the icons.

package com.kereki.clientbundles.client;

// ...imports...

public class Clientbundles

implements EntryPoint {

@Override

public void onModuleLoad() {

final VerticalPanel vp = new VerticalPanel();

final HorizontalPanel hp1 = new HorizontalPanel();

hp1.add(new Image(SampleResource.RESOURCE.gwtLargeLogo()));

hp1.add(new Image(SampleResource.RESOURCE.gwtSmallLogo()));

hp1.add(new Image(SampleResource.RESOURCE.gwtDownload()));

hp1.add(new Image(SampleResource.RESOURCE.gwtReadTheDocs()));

hp1.add(new Image(SampleResource.RESOURCE.gwtLearnMore()));

vp.add(hp1);

275Design Patterns for Speed

 Download from www.wowebook.com

ptg

Figure 14.2 A sampler application, showing the usage of resource
bundles to display some images, a PDF file, and text files by two

different means.

Using a DataResource is simple; we will create a Frame and load it with the PDF
file we created.

final Frame showPdf = new Frame(SampleResource.RESOURCE

.clientBundleDocumentation().getUrl());

showPdf.setSize("540px", "200px");

vp.add(showPdf);

For a TextResource, it’s even easier, for you can directly access its text with the
getText(...) method.

final TextArea showListing1 = new TextArea();

showListing1.setText(SampleResource.RESOURCE.longListing()

.getText());

showListing1.setSize("540px", "100px");

vp.add(showListing1);

276 Chapter 14 Optimizing for Application Speed

 Download from www.wowebook.com

ptg

Things become a bit more complicated with ExternalTextResource types, for you
must do an Ajax call to get the file’s contents, and that also allows for errors and excep-
tions. We initialize an area with a Loading... text, and after showing it, we get the file
text with a getText(...) call, which requires a ResourceCallback<TextResource>
object. In its onSuccess(...) method, we’ll actually load the text into the screen
widget; otherwise, we’ll report a failure.

final TextArea showListing2 = new TextArea();

showListing2.setText("Loading...");

showListing2.setSize("540px", "100px");

vp.add(showListing2);

RootPanel.get().add(vp);

try {

SampleResource.RESOURCE.shortListing().getText(

new ResourceCallback<TextResource>() {

public void onError(final ResourceException e) {

}

public void onSuccess(final TextResource r) {

showListing2.setText(r.getText());

}

});

} catch (final ResourceException e) {

showListing2.setText("Failure!");

}

}

}

As a final step, you will have to add the line <inherits name="com.google.gwt
.resources.Resources" /> to your gwt.xml file.

Using bundles is obviously a judgment call; you will exchange speed for size because
your generated code will be larger. (The converse of this is code splitting, which we will
analyze in Chapter 15, “Deploying Your Application.”) However, if you do require many
(hopefully small) files, you will discover that the speed advantages during normal execu-
tion (and the faster future visits, due to the cached data) justify the somewhat larger ini-
tial download time.

Speed Measurement Tools
The preceding patterns we saw are to be used at source code level, knowing that they
will produce speed improvements. Let’s now examine tools that will let you analyze the
actual running code, to determine where your application is actually spending its time,
and which are the causes of your possible slowdowns.

277Speed Measurement Tools

 Download from www.wowebook.com

ptg

We will consider several browser general (meaning they could also be used for non-
GWT applications) measurement tools. Personally, I find no “top” tool, so I regularly use
all of them. It’s likely they will converge over time, but for the time being they don’t
exactly offer the same functionality or suggestions.13

Speed Tracer
Speed Tracer is the first of our “browser general measurement tools” we spoke about ear-
lier. It is provided as an extension for the Google Chrome that enables you to find per-
formance problems in any web application by enabling you to visualize and analyze low
level metrics.14

This tool will show you a graphic picture indicating clearly where your application
spends most time and will also pinpoint specific problems and provide suggestions for
fixing them.

Installing Speed Tracer isn’t hard15 but you must remember to add the --enable-
extension-timeline-api parameter when you open Google Chrome. Using it is sim-
ple; just navigate to the page you want to analyze, and click the green stopwatch button
to start capturing events and times; the red button will stop the data capture. I analyzed
an actual (i.e., in production) small GWT application. See Figure 14.3.

The graphic at the top shows you the “peaks” of processing, with the corresponding
timeline. You can focus on a specific period by dragging the selection bars, or by clicking
and dragging. This should be the first information you study, because it can help focus
on the “hot spots”; the tall, wide areas, and in particular, the short vertical marks that
pinpoint specific problems. (Height stands for activity, so the rule to apply is simple:
High is bad, low is good.) You can hover the mouse over a spot to get details on the par-
ticular event. If you are interested in only certain types of events, click the magnifying
glass, and a filter bar will appear and let you specify your selection criteria.

If you select the Network view, you can see what resources (downloaded images,
called services, and so on) were actually used. (See Figure 14.4.) You get a separate time-
line for each resource. Also, if there is a hint or suggestion, a severity-color-coded icon
(red=serious problem; orange=warning; green=hint) appears next to each resource,
matching vertical marks in the timeline. By clicking a line you can get even more
detailed information.

278 Chapter 14 Optimizing for Application Speed

13. If you are willing to modify your project’s source code to get runtime statistics, you might want

to consider the “Lightweight Metrics System” at http://code.google.com/webtoolkit/doc/latest/

DevGuideLightweightMetrics.html used with gwt-debug-panel at http://code.google.com/p/gwt-

debug-panel/. Setting it up requires several steps, and then you also have to add appropriate calls

at the places you want to measure, but on the positive side, it will provide you with information you

couldn’t get otherwise.

14. See http://code.google.com/webtoolkit/speedtracer/.

15. See http://code.google.com/webtoolkit/speedtracer/get-started.html#downloading.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/speedtracer/
http://code.google.com/webtoolkit/speedtracer/get-started.html#downloading
http://code.google.com/webtoolkit/doc/latest/DevGuideLightweightMetrics.html
http://code.google.com/webtoolkit/doc/latest/DevGuideLightweightMetrics.html
http://code.google.com/p/gwtdebug-panel/
http://code.google.com/p/gwtdebug-panel/

ptg
Figure 14.3 Speed Tracer’s “Sluggishness” report shows you where time

was spent and what was being done.

279Speed Measurement Tools

Figure 14.4 In Network mode, you can see what resources were used
and their timeline.

Finally, Speed Tracer also offers a Hints mode, in which it highlights your page’s
“speed bumps” and possibly suggests appropriate measures. See Figure 14.5.

Speed Tracer is the most recent newcomer, but the information it provides is quite to
the point and can help getting extra speed.

 Download from www.wowebook.com

ptg

Figure 14.5 The Hints document shows your application speed bumps
and suggests some ways around them.

YSlow
YSlow (as in “Why Slow?”) is a plugin for Firefox’s Firebug, developed by the people at
Yahoo!16 It’s geared toward suggesting ways of improving the performance of your
application by applying sets of rules for well-optimized pages.

After starting YSlow (which is itself included in Firebug) you can pick which set of
rules to apply (currently there are three sets—small sites and blogs, Classic V1, and YSlow
V2—involving 22 rules) and by clicking them you can see which rules it would apply.17

You can even create your own set; for example, if you aren’t planning to use a Content
Delivery Network (CDN) you can simply create a new set (possibly based in an existing
one) but skipping that rule; that way, you will avoid being nagged all the time with the
“get a CDN” suggestion.

I applied YSlow to the same application as with Speed Tracer (see Figure 14.6) with
the “small site and blogs” set, and it graded each rule in typical school fashion, from “A”
(excellent) to “F” (fail).

Clicking each rule produces an explanation of the problem, a brief suggestion of the
steps you should take to solve the problem, and a Read More link to a fuller description
of the rule, what it implies, and how to fix the particular problem.

280 Chapter 14 Optimizing for Application Speed

16. See http://developer.yahoo.com/yslow/ for more on this tool.

17. See http://developer.yahoo.com/performance/rules.html for the latest version of the rules that

YSlow applies.

 Download from www.wowebook.com

http://developer.yahoo.com/yslow/
http://developer.yahoo.com/performance/rules.html

ptg

Figure 14.6 YSlow grades your application on up to 22 rules and
suggests measures you should take to optimize it.

Next to the Grade tab, you get the Components tab (see Figure 14.7) that shows all
the types of resources your application uses (HTML, CSS, and JavaScript files, plus
images and icons, and more) with detailed information as to their size, whether they
were compressed, the URL they came from, their Expires date, and so on. You can click
the magnifying glass icon to get even more detailed information on the specific resource.

281Speed Measurement Tools

Figure 14.7 The Components tab shows you all the server resources
that were required by your application.

 Download from www.wowebook.com

ptg

You can get a resume of the information in the Components tab, by selecting the
Statistics tab. This produces a display (see Figure 14.8) with two pie charts showing what
would be loaded with an empty cache browser, or what would be loaded if the cache
had been already primed. If you are using expiration parameters correctly, the second
chart would show that much less data has to be downloaded.

282 Chapter 14 Optimizing for Application Speed

Figure 14.8 The Statistics tab shows you how much data would be
downloaded with an empty or primed cache.

Finally, the Tools tab provides many options, some of which are of interest.
n JSLint runs this analyzer18 on all your JavaScript code. Note that it won’t be useful

for most of your code—the GWT generated part—and you will probably be able
to use it only for external libraries. As the JSLint creators point out, “JSLint will
hurt your feelings” but its suggestions are worth it.

n All JS Minified lets you see the JavaScript code, as it would look if minified. GWT
takes care of doing it for its own code, so once again you will only use this for
external libraries.

n All Smush.it runs this Yahoo! tool19 that can apply a lossless transformation to
reduce the size of your image files without affecting their quality, letting you
download equivalent optimized versions of them.

n Printable View presents all the information in the Grade, Components, and
Statistics tabs in a single printable page.

YSlow thus offers not only a good analysis of your page, but also suggests ways of fix-
ing whatever problems it found, even providing sometimes (as with JavaScript minifica-
tion and image optimization) the full solutions you require.

18. See www.jslint.com/ for more on JSLint.

19. See http://developer.yahoo.com/yslow/smushit/ for information on how Smush.it works.

 Download from www.wowebook.com

http://developer.yahoo.com/yslow/smushit/
www.jslint.com/

ptg

Page Speed
Google’s own Page Speed20 is another Firebug plugin, in some aspects quite similar to
YSlow, but worthy enough of your attention; in fact, I usually apply both, to make sure
I’m not missing anything.

For Page Speed to analyze a page, you’ll have to start FireBug, pick Page Speed, and
click Analyze Performance. The main result it will provide is a page score, from 0 to 100,
which reflects the quality (in terms of the predefined rules) of your application. See
Figure 14.9.

283Speed Measurement Tools

20. See http://code.google.com/speed/page-speed/ for the Page Speed site.

21. See http://code.google.com/speed/page-speed/docs/rules_intro.html for the list of applied

rules.

Figure 14.9 Page Speed grades your application from 0 to 100 and
points out its problematic areas in terms of unsatisfied web design rules.

Each rule includes an icon (red for serious problems, yellow for warnings, green for
approved parts, and blue for information) and by clicking on the plus sign next to the
icon, you can get a more detailed explanation of the problem and a suggestion as to the
required fix.21 See Figure 14.10.

 Download from www.wowebook.com

http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/docs/rules_intro.html

ptg

Figure 14.10 Clicking a rule provides further explanation as to the
problem and a suggestion or fix.

The Page Speed menu bar provides a Performance tab (whose results we have already
seen) and a Resources tab. The latter shows you all the resources (images, files, and more)
that were downloaded from the server, with further information as to URL, size, and so
on. (See Figure 14.11.) You should study this page, and check whether most of the fixed
resources could be loaded from the cache, and if files are being compressed; not satisfying
these conditions would negatively impact the performance of your application.

Finally, a Page Speed Activity extra tool is provided (see Figure 14.12) that produces a
detailed timeline showing all the requests to the server, color coded by type, and with
bars proportional to their actual times. Having many of these bars roughly at the same
time would indicate the need for joining files together (possibly by using bundles) or for
caching, whereas long bars could possibly point out server delay problems or too long
processes.

As we said, Page Speed is quite similar to YSlow (and even to Speed Tracer, though
that runs on a different browser) but being able to apply different sets of rules and taking
different measurements is the equivalent of going to several different doctors to confirm
a diagnosis, so I’d insist on using all tools, even if at times there is some considerable
overlap between them.

284 Chapter 14 Optimizing for Application Speed

 Download from www.wowebook.com

ptg

Figure 14.11 The Resources tab provides information on every request
to the server.

285Speed Measurement Tools

Figure 14.12 The Page Speed Activity lets you analyze a timeline for your
application, detecting bottlenecks and too many concurrent calls.

JavaScript Debuggers
Let’s finish the analysis of browser-based tools with JavaScript’s own debuggers. Firefox’s
Firebug, which we have already seen, has a Net panel that can produce a detailed list of
all events and resources invoked by your application (see Figure 14.13). This isn’t as good
as Speed Tracer’s analysis, for example, but it can do as a starting point.

In a similar vein, you could use Safari’s debugger, or Opera’s DragonFly debugger (see
Figure 14.14), which can also produce a detailed timeline of events. Of course, because
you cannot at the time use Opera for GWT Development mode, it’s less likely that you
would want to use this browser.

 Download from www.wowebook.com

ptg

Figure 14.13 Firefox’s Firebug debugger includes a Net tab, which shows
all events and their durations.

286 Chapter 14 Optimizing for Application Speed

Figure 14.14 Opera’s DragonFly debugger can also help; the only
problem is that you cannot use Opera for GWT development.

Debuggers aren’t specifically geared toward optimization, but on the other hand, they
are always available as you do your development, so why miss using them?

Summary
We have seen three ways of enhancing the performance of your application: design pat-
terns, some GWT 2 new features, and browser speed measurement tools. By combining
all these solutions, you can find bottlenecks, detect slowdowns, and generally squeeze
much more performance out of your application. There’s no single “silver bullet” that
can fix all possible problems, but applying what we have seen here, you are on your way
to a far more responsive application.

 Download from www.wowebook.com

ptg

15
Deploying Your Application

This chapter explores the final steps in your development process: how to compile and
deploy your application, how to create your own shareable modules, and how to reduce
the load time for your application by splitting the code.

In the past chapters, we have been dealing with ways to write efficient, streamlined,
modern Internet applications, but it happens there still are some ways to squeeze out yet
a bit more of speed and get a faster page load, so we need to look into that. And, obvi-
ously, if you cannot deploy your application, all your work will have been for naught;
let’s also see how to “finish the job” and set up your page for production.

Compilation
With standard GWT development techniques, you won’t have to compile your program
until you actually want to publish it. Because of how deferred binding works, several dif-
ferent versions of the final JavaScript code will be produced: the number of supported
browsers (currently, six, but the number may change from GWT version to version) times
the number of supported locales (in our case, four: see Chapter 12, “Internationalization
and Localization”). See Figure 15.1.

You can use many compiler options to speed up compilation, to enhance the quality
of the produced code, or just to inspect what kind of code is generated; let’s turn to
this now.

Plenty of compiler options aren’t that well documented, so let’s give a glance at least
to the most important ones, meaning those you are likely to use.

n -compileReport creates the Story of Your Compile report; we’ll be using this for
code splitting. This option used to read -soyc but the name was quickly changed.

n -draftCompile enables a faster, but with fewer optimizations, compilation
process. You should use this option while developing, but leave it out when pro-
ducing the definitive, production code.

n -ea enables assert checks; otherwise, assert statements would be ignored.
n -extra aDirectory allows you to specify to which directory should extra files (not

meant to be deployed) be written.

 Download from www.wowebook.com

ptg

Figure 15.1 The GWT compile process produces a distinct permutation
for each combination of browser type and locale. The numbers match

those shown in Figure 15.2 but might change from compile to compile.

n -localWorkers someNumber lets you specify how many local workers (i.e., com-
piling processes) to run at the same time; by default, it’s just one. You should exper-
iment a bit with this; depending on the number of CPUs in your machine, you
could get faster compiles by setting it to a higher value.

n -logLevel lets you set the level of messages (ALL, DEBUG, ERROR, INFO, SPAM,
TRACE, or WARN) you will get when compiling.

n -module someModules lets you specify which module(s) to compile.
n -out aDirectory lets you specify to which directory to write output files.
n -style outputStyle lets you set the output JavaScript style to DETAILED, OBF

(obfuscated, the default value), or PRETTY.
n -treeLogger produces log output in a graphical tree form.
n -validateOnly performs a complete validation of all source code, without actu-

ally compiling anything. You could use it as a fast check before a long compile.

288 Chapter 15 Deploying Your Application

en
_G

B

en es

0 6 12 18

1 7 13 19

2 8 14 20

3 9 15 21

4 10 16 22

5 11 17 23

IE8

D
ef

au
lt

Safari

Gecko1_8

Gecko

Opera

IE6

 Download from www.wowebook.com

ptg

n -war aDirectory lets you set to which directory should deployable output files be
written; by default, it is “war”.

n -workDir aDirectory allows you to specify which directory should be used by the
compiler for internal use; by default, it is the system’s temporary directory, and in
any case, it should be writeable.

n -XdisableAggressiveOptimization disables aggressive optimizations.
n -XdisableCastChecking foregoes checking if a cast operation—as in
(someCast)anObject.someMethod(...)—can throw a ClassCastException,
thus speeding method calls.

n -XdisableClassMetadata disables the usage of the getName(...) method but
allows reducing the final code size because GWT doesn’t have to include any class
information within the produced JavaScript code.

n -XdisableRunAsync disables code splitting. (We’ll be studying this in more
detail.)

Adding compiler options with Eclipse just requires clicking the red Google Compile
box, and then clicking Advanced, and entering the desired options in the Additional
Compiler Arguments box.

If you want to compile your code in the fastest way, you should experiment by using
-draftCompile -localWorkers someNumber -XdisableAggressiveOptimization
and also add in your application’s gwt.xml file lines such as the following, so only one
code version will be produced.1

<set-property name="user.agent" value="gecko"/>

<set-property name="locale" value="en" />

On the other hand, if you care for the final produced code performance, you should
rather consider including -XdisableCastChecking -XdisableClassMetadata
-style OBF so that your code will be as compact as possible.

Modules
While developing an application, it’s a given that you will develop classes (tools, widgets,
whatever) that you will want to reuse in other applications. GWT lets you package your
classes as modules for future reuse, but there are some particularities that you need to be
aware of.

289Modules

1. The default suggestion for implementing this was creating a new module that inherited your

original module (i.e., the one defined in the gwt.xml file), adding the <set-property...>

elements to it, changing your host HTML file so it would refer to this new module, and compiling it

instead of the original one... but I do think the method shown in the text is easier. We saw this

briefly in Chapter 3, but see “Renaming Modules” at http://code.google.com/webtoolkit/doc/

latest/DevGuideOrganizingProjects.html#DevGuideModuleXml for more on it.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideOrganizingProjects.html#DevGuideModuleXml
http://code.google.com/webtoolkit/doc/latest/DevGuideOrganizingProjects.html#DevGuideModuleXml

ptg

The main problem here is that you won’t be able to produce a jar file and simply
reuse it as you were used to with common Java development, because GWT requires the
actual source code of your class to compile it into JavaScript. (Of course, for server pack-
ages, this doesn’t apply, and you can use your standard, run-of-the-mill jar files without
further ado.) To test this out, let’s create a separate module for the KeyValueMap class
that we wrote in Chapter 4, “Working with Browsers”.

1. First, create a new empty project: KeyValueMap is a good name, and the package
can be com.kereki.keyvaluemap. Edit its gwt.xml file to remove the <entry-
point...> element. (Actually, you could have an entry point, if your class imple-
mented the EntryPoint interface. When you load a project including two or
more entry points, the code from all the onModuleLoad(...) methods gets
executed before anything else.)

2. Move the KeyValueMap.java file from the original project to the client directory
in our new project. (Red error marks should pop up all over your original project,
showing that the KeyValueMap class is now missing.)

3. Compile the new project, so it will generate a class file in the war output direc-
tory. We will require this file for our module, together with its source file.

4. Create a temporary directory somewhere in your machine, and copy both the
source and class files to it:

md /tmp/newmodule

cd /tmp/newmodule

cp -R /home/fkereki/workspace/KeyValueMap/src/com/ .

cp -R /home/fkereki/workspace/KeyValueMap/war/WEB-INF/classes/com/ .

5. Create a jar file for your module by doing

jar -cvf KeyValuemap.jar .

added manifest

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/keyvaluemap/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/keyvaluemap/client/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/keyvaluemap/client/KeyValueMap.java(in = 1627)
(out= 714)(deflated 56%)

adding: com/kereki/keyvaluemap/client/KeyValueMap.class(in = 2108)
(out= 1145)(deflated 45%)

adding: com/kereki/keyvaluemap/shared/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/keyvaluemap/server/(in = 0) (out= 0)(stored 0%)

adding: com/kereki/keyvaluemap/KeyValueMap.gwt.xml(in = 947)
(out= 398)(deflated 57%)

6. Add a modules directory to your old project at the same level as src, and copy
the newly created jar file to it. You would use this directory for all modules you
add to a project.

290 Chapter 15 Deploying Your Application

 Download from www.wowebook.com

ptg

7. Add an <inherits name='com.kereki.keyvaluemap.KeyValueMap'/> line
to the gwt.xml file in your old project.

8. Add the new jar to the classpath of your old project. (The red error marks should
now disappear.) You are done!

If you study step 7, you will notice that this is exactly the same way GWT requires
that you include com.google.gwt.user.User and other modules for your application!

Code Splitting
If your application grows (and that’s a tendency hard breaking off from!) the initial
download will become large enough to become too noticeable, and the user will not
appreciate it. Since version 2, GWT provides Dead For Now (DFN) code splitting,
which lets you download first only what you need, and then get the rest on demand, if
and when it is needed. Of course, if you require the same code a second time, no further
downloads will be required, because the code will already be in memory; there will be a
trade-off between a shorter initial download time and small future extra downloads, but
the cost will be paid only once per code split.2

To split your code, you’ll just use the GWT.runAsync(...) method. This will call the
server, download the required code, and then onSuccess(...) execute it.3 The stan-
dard pattern will then be

GWT.runAsync(new RunAsyncCallback() {

@Override

public void onFailure(Throwable caught) {

// ...warn about the download failure...

}

@Override

public void onSuccess() {

// ...this is where the original code goes...

}

});

You may have scope problems, because your original code will now be running in
the RunAsyncCallback object scope, but they are usually simple to solve. Let’s try some
actual experiments with the Environment menu handling code; given that it’s highly
likely that not all menu functions will be used (at least, in the same session) by a user, it

291Code Splitting

2. You can read more of the official word on Code Splitting at http://code.google.com/webtoolkit/doc/

latest/DevGuideCodeSplitting.html.

3. A not minor point: You should plan for failure—onFailure(...)—because the code download

might fail. There is, frankly, little than you can do, but at least you should explain to the user why he

isn’t getting the form he expected.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideCodeSplitting.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCodeSplitting.html

ptg

stands to reason that these code splits will help.4 A part of the menu code (see Chapter 4)
used to read:

...} else if (token.equals(CitiesBrowserPresenter.PLACE)) {

panel.add(new CitiesBrowserPresenter(args,

new CitiesBrowserView(), this).getDisplay().asWidget());

} ...

We could split off the Cities Browsing code, by rewriting the else as

...} else if (token.equals(CitiesBrowserPresenter.PLACE)) {

final Panel myPanel = panel;

final String myArgs = args;

GWT.runAsync(new RunAsyncCallback() {

@Override

public void onFailure(final Throwable reason) {

Environment.this

.showAlert("Couldn't run the Cities Browser code!");

}

public void onSuccess() {

myPanel.add(new CitiesBrowserPresenter(myArgs,

new CitiesBrowserView(), Environment.this).getDisplay()

.asWidget());

}

});

}...

We had to add some final attributes to get at the panel and args variables, but other
than that, the transition is simple; we also had to change the this reference to
Environment.this because of closure problems.

We could even do some refactoring to simplify splitting off more parts of the code.
First, we could extend the RunAsyncCallback(...) interface by writing:5

abstract class MyRunAsyncCallback

implements RunAsyncCallback {

Let’s have a few attributes to store the arguments that are required for the code. We’ll
pass the said arguments to our new constructor.

292 Chapter 15 Deploying Your Application

4. And, if you feel it will be quite likely that a certain piece of code will get used, but didn’t want to

load it right at the beginning because of download time reasons, you could apply a variation of the

prefetching pattern we used earlier in the book: Do a GWT.runAsync(...) call with an empty

onSuccess(...) method, and thus use background time to get the code loaded in advance of its

being required.

5. Yes, and I admit the MyRunAsyncCallback name is kind of lame...

 Download from www.wowebook.com

ptg

String myOwnArgs;

Panel myOwnPanel;

Environment myOwnEnvironment;

String myOwnErrorMessage;

public MyRunAsyncCallback(

final String args,

final Panel panel,

final Environment environment,

final String errorMessage) {

myOwnArgs = args;

myOwnPanel = panel;

myOwnEnvironment = environment;

myOwnErrorMessage = errorMessage;

}

The onFailure(...) method is now trivial.

@Override

public void onFailure(final Throwable reason) {

myOwnEnvironment.showAlert(myOwnErrorMessage);

}

}

Using this code requires writing the onSuccess(...) method. For example, we
might split off the Cities Creator form, by means of

...} else if (token.equals(CityCreatorPresenter.PLACE)) {

GWT.runAsync(new MyRunAsyncCallback(args, panel, this,

"Couldn't load the cities browser code") {

@Override

public void onSuccess() {

myOwnPanel.add(new CityCreatorPresenter(myOwnArgs,

new CityCreatorView(), myOwnEnvironment)

.getDisplay().asWidget());

}

});

}...

If you compile both versions of the code (with and without the code split) you will
notice that some files get smaller, but several more files are produced. In these examples,
because the Cities Browsing and Creation classes aren’t used elsewhere, all their code will
be removed from the initial download, reducing its size. But how can you know for sure?
Let’s analyze an important tool, the Compile Reports, which for a short while were
known as Story Of Your Compile, or SOYC—and this will also help understand the
compile process.

293Code Splitting

 Download from www.wowebook.com

ptg

Turning on the Compile Reports option will produce a directory with a set of
HTML files, which comprise the required report. These reports will give you a graphical
representation of the results of the compile process and provide you information to find
possible code reduction hints to analyze code splitting problems and to let you work out
further code optimizations.6

The Compile Report is a group of static HTML pages and can be found at the extras
directory (in my case, at my home directory, at workspace/mvpproject/extras) in the
mvpproject/soycReport directory; you can examine it by opening the index.html
file that is situated there. (See Figure 15.2.) In our case, because we were creating code

294 Chapter 15 Deploying Your Application

6. Official usage notes on Compile Reports can be found at http://code.google.com/webtoolkit/

doc/latest/DevGuideCompileReport.html.

Figure 15.2 The basic compile report shows all permutations that were
generated by the compilation process. The permutation numbers match

those shown in Figure 15.1 but might vary.

 Download from www.wowebook.com

http://code.google.com/webtoolkit/doc/latest/DevGuideCompileReport.html
http://code.google.com/webtoolkit/doc/latest/DevGuideCompileReport.html

ptg

for four locales (the default one, plus the three ones we defined in Chapter 12), and
GWT always produces code for six browser types, we should get 24 permutations, num-
bered 0 to 23.

If we click on a specific permutation, we can see its size details. (See Figure 15.3.)

295Code Splitting

Figure 15.3 Each permutation report shows the full code size (without
any splits), the initial download size, and more data on each split.

The Full code size value represents the total size of the code: 224,402 bytes in this
case. You can see that the initial download size, given the two code splits we made, would
be 203,161 bytes, representing about a 9% reduction in size; not bad for such a small
change! The rest of the code is comprised of two code splits (at 11,323 and 4,578 bytes),
plus a “left over” split (5,340 bytes) with some general code, not associated specifically
with any split; you can check that the sum works out. By clicking on a “report” link, you
can get (see Figures 15.4 and 15.5) further reports showing in more detail how the code
size is achieved.

By clicking on the package links, you can eventually get to see why a specific class is
included; this is a good help in case something unexpected happens, and you don’t get
the size savings you hoped for.

If sizes do not match your expectation (you tried to create a separate fragment for a
specific part of the code, but GWT insists on downloading it from the beginning) exam-
ining the dependencies will let you find why you failed in separating it. (The most com-
mon reason is that, somehow, you use a class that you wanted to split, from an unsplit
part of the code.) You’ll have to reorder or reorganize part of your code so this won’t
happen, and there isn’t any specific technique for this, but hopefully you’ll work it out.

 Download from www.wowebook.com

ptg

Figure 15.4 Clicking on a Report link shows in higher detail how the
code size is divided.

296 Chapter 15 Deploying Your Application

Figure 15.5 An analysis of a specific code split. In this case, all the
present code comes from a single class, which we wanted to split, so we

got what we wanted.

You should get used to studying the Compile Report; even if your code is in tip-top
shape, some new programmer might introduce a change that disrupts your splits. Before
distributing an updated version of your application, check that the code downloads are
still what they used to be; a perfectly valid statement might go so far as to pull up all of

 Download from www.wowebook.com

ptg

your splits into “initial download country,” and while the program would still work the
same, the user would feel a throwback to worse performance.

Deployment
After all we did earlier in this chapter, deploying your application is trivially easy. The
compiler produces code files following the WAR rules, which makes it simple to deploy.
Whether you are working with GWT only for client-side coding, or you are going the
“Java way” with server-side code, getting your application on the web will require copy-
ing only a few directories and files.7 Let’s start with the simpler case first.8

Working with Client-Only GWT
If you don’t have Java-based server-side coding (as with a web service-based architecture)
you can easily deploy the HTML and JavaScript files that are produced by the GWT
compiler to a web server such as Apache, though the details would be similar for other
programs.

By default, in Linux you can usually find Apache’s pages at /srv/www/htdocs (for
OpenSUSE) or /var/www/html, and you can actually set it to store its pages at any
other place; check the configuration files. If you do not have any remote servlets, you’ll
just have to copy the files in the output war directory to the correct location for your
home page, and you’ll be set.

Working with Client-Plus-Server GWT
If you are going to have servlets (i.e, Java server-side coding) you will need an appropri-
ate web container. GWT produces a standard deployment configuration, so even though
in this section we will be working with Tomcat (version 6.0.20) as a web container,
changing to other container wouldn’t be much of a problem.9 We won’t be covering
how to set up that part of the software stack, but there’s plenty of documentation every-
where for that. Of course, if your application depends on web services, Enterprise Java
Beans, or any other such technology, you’ll also have to set them up.

Working with OpenSUSE, Tomcat stores the web pages at /srv/tomcat6/webapps;
other Linux distributions, and of course Windows and Mac versions, may store them at
different locations. All we have to do is copy (and surely rename; I chose mvpproject)
the war directory in our project to a directory in the Tomcat directory. To run the

297Deployment

7. You could also work with the generated Ant scripts to build or deploy your application; in my case,

I prefer working exclusively within Eclipse.

8. While I’m not an Ant user, it should be said that you can automate both compilation and deploy-

ment with it, and there are many GWT developers who swear by it!

9. See http://tomcat.apache.org/ for more on Tomcat.

 Download from www.wowebook.com

http://tomcat.apache.org/

ptg

application, you’ll have to navigate to http://yourOwnServer:8080/mvpproject/
Mvpproject.html and you will get something like Figure 15.6.10

298 Chapter 15 Deploying Your Application

10. A slight detail: with the current version of the Eclipse plugin, the war directory is both used as

input and output, but this is expected to be fixed soon.

Figure 15.6 Running our Tomcat-deployed application on Linux-based
Google Chrome shows our deployment was successful.

Of course you could configure Tomcat to find the host HTML page anywhere on
your web server, but mind that all resources should be placed so as to mirror the project
paths, because references to them are relative.

If you are using servlets, GWT will automatically deploy them to the WEB-INF/
classes directory. In our example, you could do

cd /srv/tomcat6/webapps/mvpproject/

cd WEB-INF/classes/com/fkereki/mvpproject/server

ls -ld *

-rw-r--r-- 1 root root 3847 2010-03-12 05:16 FileProcess.class

-rw-r--r-- 1 root root 1611 2010-03-12 05:16 FileProduce.class

-rw-r--r-- 1 root root 3458 2010-03-12 05:16 LoginServiceImpl.class

-rw-r--r-- 1 root root 3182 2010-03-12 05:16 Security.class

-rw-r--r-- 1 root root 1642 2010-03-12 05:16 ServerCityData.class

-rw-r--r-- 1 root root 7620 2010-03-12 05:16 WorldServiceImpl.class

-rw-r--r-- 1 root root 2986 2010-03-12 05:16 XhrProxyImpl.class

and check that all remote servlet code is present and up to date. If you required any
other server-side classes, you would also place them in this directory. The web.xml file
(which we created with the GWT project; see Chapter 2, “Getting Started with GWT 2”)

 Download from www.wowebook.com

http://yourOwnServer:8080/mvpproject/Mvpproject.html
http://yourOwnServer:8080/mvpproject/Mvpproject.html

ptg

will have to provide all necessary definitions and mappings. Its final version for our
application could be as follows.11

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>loginServlet</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.LoginServiceImpl

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>loginServlet</servlet-name>

<url-pattern>/mvpproject/login</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>worldServlet</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.WorldServiceImpl

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>worldServlet</servlet-name>

<url-pattern>/mvpproject/world</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>xhrProxyServlet</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.XhrProxyImpl

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>xhrProxyServlet</servlet-name>

<url-pattern>/mvpproject/xhrproxy</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>fileProcess</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.FileProcess

</servlet-class>

</servlet>

299Deployment

11. Note that with previous versions of GWT, you had to do this in the application gwt.xml file.

 Download from www.wowebook.com

ptg

<servlet-mapping>

<servlet-name>fileProcess</servlet-name>

<url-pattern>/mvpproject/fileprocess</url-pattern>

</servlet-mapping>

<servlet>

<servlet-name>fileProduce</servlet-name>

<servlet-class>com.fkereki.mvpproject.server.FileProduce

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>fileProduce</servlet-name>

<url-pattern>/mvpproject/fileproduce</url-pattern>

</servlet-mapping>

<!-- Default page to serve -->

<welcome-file-list>

<welcome-file>Mvpproject.html</welcome-file>

</welcome-file-list>

</web-app>

Finally, note that if your application uses RPC, GWT will take care of copying the
gwt-servlet.jar file to the WEB-INF/lib directory, but if you require any other jars,
you’ll have to copy them by yourself.

Summary
In this chapter we have finished the complete application development cycle, by actually
compiling and deploying our code. We have also seen a method for optimizing the appli-
cation download code, by means of splitting it into significant parts, and also for analyz-
ing and fixing any situations that might lead to worse-than-expected reductions in size.
By combining this method with the previously seen techniques, you will make true the
promise of web applications that feel so responsive as if they were actually deployed and
installed on the user’s PC, rather than downloaded from the Internet and executed on a
client-server basis.

300 Chapter 15 Deploying Your Application

 Download from www.wowebook.com

ptg

Index

Numbers and Symbols
007. See Bond, James

$('a'), as selector, 142

A
Acceptance testing, with Selenium

example of, 255–256
overview, 253–255
potential problems, 257

"Access Control Specification," 121

Accounting, security and, 178

Accuweather, 158

actualUrl value, 175

addCity(...) function

coding server side services and, 90
WorldService remote service and, 85

addValueChangeHandler method, 97

aDirectory, compilation and, 287, 288, 289

Agile Software Methodologies, 7, 10

Ajax

caching and, 260
ExternalTextResource types and,

277
receiving/processing XML and,

127–128
security controls and, 179
sending XML via, 136
stateless server-side coding and,

183–184

 Download from www.wowebook.com

ptg

AjaxLoader API, 160–161

<all>...</all> construct, 45

Albany, a city in NY, USA, 108, 175

Alt+Backspace/Back button problem

creating menus, 41–43
displaying forms in pop-ups, 37–38
History class, 33–34
overview, 31–32
passing parameters, 38–41
setting up HTML page, 32
starting application, 34–37

American Museum of Natural History,
168–170, 173–174

andReturn(...) method, 245–246

animateAllLinks(...) function, 143

Ángel S. Adami, 158

Animations, JSNI and, 143

Annotations, 215

Antique browsers, 52–53, 120–121

<any>...</any> construct, 45

Apache

client-only GWT deployment and, 297
Commons Lang component, 183,

200–202
Tomcat servlet container, deployment

and, 297–300
appendChild(...) method, 134–135

Application deployment

with client-only GWT 2, 297
with client-plus-server GWT 2,

297–300
code splitting, 291–297
compilation, 287–289
getting started, 20
modules, 289–291
overview, 287
summary, 300

Application development

GWT advantages, 4–5
overview, 1
Rich Internet Applications and, 1–4
software methodologies for, 5–8
summary, 8

Application Programming Interfaces (APIs),
adding

dashboard visualizations, 162–168
overview, 157
summary, 175
weather vane, 157–162
working with maps. See Maps

Application speed, optimizing

design patterns for. See Design patterns,
for speed

measurement tools for. See Speed
measurement tools

overview, 259
Application testing

acceptance testing with Selenium,
253–257

integration testing with
GWTTestCase, 247–253

JUnit and. See JUnit testing
overview, 229
reasons for, 229–231
summary, 257

ARCFOUR, 180–183

AreaChart objects, 164, 167

arguments, JSNI and, 140

Assembly language, 139

assertArrayEquals(...) methods, 235

assertFalse(...) methods

EasyMock and, 245
GWTTestCase and, 251
JUnit testing and, 236

302 AjaxLoader API

 Download from www.wowebook.com

ptg

AsyncCallback function

callbacks and, 59
coding server side services and, 89
JSONP and, 154–155

Authentication, security and, 178

Authorization, security and, 178

Automatic testing of GWT. See Application
testing

Automatically tested code, 229–231

Availability, security and, 178

B
Back button/Alt+Backspace problem

creating menus, 41–43
displaying forms in pop-ups, 37–38
History class, 33–34
overview, 31–32
passing parameters, 38–41
setting up HTML page, 32
starting application, 34–37

baseUrl method, 136

Beta testing, 7–8

Bond, James, 144–145, 226

Browser recognition

classic way, 43–44
deferred binding way, 44–47
disabled JavaScript and, 53
of older IE, 52–53
overview, 43

Browser(s)

based measurement tools. See Speed
measurement tools

Country/State cities, 101–108
differences, 4–5
GWT Developer Plugin to operate,

28–30
HTMLUnit, 247

older, 52–53, 120–121
security, SOP restriction and, 119–121
"Web as Platform" and, 2
XML parser, 125–127

Browsers, working with

Back button problem. See Back button/
Alt+Backspace problem

code generation, 47–52
detecting user's. See Browser recognition
overview, 31
summary, 53

BufferedReader function, 129

Bug prevention, 229–231. See also Security;
Security, servers and

Bundles, resource

annotations and, 215
internationalization and, 212–213
localization and, 224–227
UiBinder-based internationalization

and, 219–223
using constants and, 213–214

Bundling data, for application speed,
273–277

Button function, JSON and, 147–150

C
Caching

application speed and, 260–263
prefetching and, 264–265

Callbacks

EasyMock testing and, 245–246
enabling/disabling Login button and,

67–69
GWTTestCase testing and, 252–253
JSON usage and, 149–151
JSONP and, 153–155
Login button, 186–187
MVP implementation and, 59–60

303Callbacks

 Download from www.wowebook.com

ptg

Callbacks (continued)

Presenter, 98
uploading files and, 197–200

callback=yourownfunction(...)
parameter, 153

calledName variable, 242

Calls, from JavaScript, 140–141

Capture<.> class, 244–245

Cascading Style Sheets (CSS), 113–115

Challenges, security

AAA for, 178
Ajax problems, 179
full SSL security and, 177–178
overview, 177

changePassword(...) method,
192–193

Changing passwords, security and, 190–193

CheckStyle plugin, 18

Cities Browsing class, 292–293

Cities updating application, 121–125

CITIES_AT_A_TIME constant, 268–269

CitiesBrowserView.ui.xml file,
102–104, 106–108

CITIES_DELAY_IN_MS constant, 268–269

CITIES_PAGE_SIZE constant, 103,
106–107

City browser application

sample form, 101
Selenium testing and, 255
thread simulation and, 266–270

<city> element

city update application and, 123–124
creating XML and, 132

City input form, 112–113

cityExists(...) function

coding server side services and, 91
WorldService remote service and, 85

cityList function, 127

Classes

java.lang package, 14
java.sql package, 15
java.util package, 15–16

Classic browser detection, 43–44

Classical methodologies, 5–7

classname, JSNI and, 140

clearAllCities(...) method, 123

clearCities(...) method, 105–106

Client-only GWT, deployment with, 297

Client-plus-server GWT, deployment with,
297–300

ClientBundle interface, 273–277

ClientCityData classes

code sharing and, 86–88
coding server side services and, 90, 92

Cloaking, 10

Closure Library, 5

Cloud Computing, 3

Code, automatically tested, 229–231

Code generators, 47–52

Code Inlining

compiler and, 13
JSON usage and, 152

Code sharing, 86–88

Code splitting

application deployment and, 291–297
compiler and, 12

Code writing, 17–18

codeDecode(...) method, 181–182

Codes, pattern, 225–227

Command objects, 41–43, 47–52

Command pattern, 267, 270

Common operations, security

changing password, 190–193
logging in, 185–190

304 Callbacks

 Download from www.wowebook.com

ptg

Communicating with other servers

city update application, 121–125
overview, 119
producing XML, 131–135
receiving/processing XML, 125–131
sending XML, 135–137
SOP restriction and, 119–121
summary, 137

Communicating with your server

introduction to RPC. See Remote
Procedure Calls (RPC), introduction

RPC patterns of usage. See Remote
Procedure Calls (RPC), usage

Compilation, deployment and, 287–289

Compile process, in GWT 2, 287–289

Compile Reports tool, 293–296

Compiler, Java-to-JavaScript, 12–14

-compileReport, compilation option, 287

Complex UiBinder examples

dealing with constructors, 74–75
presetting properties, 73
using your own widgets, 73–74
working with complex layouts, 75

Components

compiler, 12–14
JRE Emulation Library, 14–16
overview, 12
UI library, 17

Components tab, 281–282

Composite widgets

Country/State, 101–108
interactive maps and, 171
MVP and, 95

Confidentiality, security and, 178

Constant Folding, 13

Constants interface, 213–214

ConstantsWithLookup interface

internationalization and, 213–214
translating error codes and, 215–217

Constructors

code sharing and, 86–88
dealing with, 74–75
invoking Java, 141

Controller role, in MVC, 56–57

<coords> element

city update application and, 123–125
creating XML and, 132–134

Copy Propagation, 13

Country/State cities browser, 101–108

CountryState object, 260–263

CountryStateView widgets

Country/State cities browser and,
102–104, 107–108

UiBinder code and, 95–97
createElement(...) method, 134–135

CreateMock(...) methods, 243

createTextNode(...) method, 134–135

Creating XML

overview, 131–132
with strings, 132–133
through DOM, 133–135

Cryptography

encryption, 180–183
hashing, 180
hashing with JavaScript, 142–143
overview, 179

CssResource elements, 274

Currencies, localization and, 226

currentRow variable, 268–269

CustomFieldSerializer class, 80

D
Darwin, Charles, 144, 225, 233–234

Darwin (cities), 122–124, 252–253, 256

305Darwin (cities)

 Download from www.wowebook.com

ptg

Dashboard visualizations

Google Visualization API, 164–167
handling events, 167–168
overview, 162–164

Data

bundling, 273–277
prevalidation, 112–116

Data tables, 165–167

Data transfer object (DTO), 186–189

Database-related widgets, 94–100

DataResource elements, 274–276

Date and Time formats, 224–226

Dates, serialization of, 80

Dead Code Elimination, 12

Dead For Now (DFN) code splitting, 291

"Death of the Desktop" concept, 4

Debuggers, JavaScript, 285–286

Declarative UI

basic UiBinder example, 70–73
complex UiBinder examples, 73–75
overview, 69

Default value, 215, 218

defaultLocale attribute, 220

@DefaultStringValue(...) function,
215

Deferred binding replacement technique

browser detection with, 44–47
dashboard visualizations and, 164
using constants and, 214

Deferred commands, 270–273

delayTestFinish(...) call, 252–253

Demeter, Law of, 62

Dependency Injection, 56

description attribute, 221–223

deserialize(...) method, 82

Design patterns, for speed

bundling data, 273–277

caching, 260–263
overview, 259
prefetching, 263–266
thread simulation. See Thread simulation

Desktops, 4

Developing GWT applications. See
Application development

Development mode, 27–30

DFN (Dead For Now) code splitting, 291

Direct Evaluation RPC (deRPC), 83–84

disableLogin(...) method, 67

Display interface

changing password, 191
city update application, 123
file download form, 205
interactive maps, 168–169
uploading files, 197

displayCities(...) method

Country/State cities browser and,
105–107

processing XML using Ajax and, 128
producing/sending XML and, 132

displayEmptyCities(...) method,
105–107

displayNews(...) method, 152

<div>

interactive maps and, 170
UiBinder and, 220–221
widgets and, 145

<div id> function, 144–146

$doc, 142

Document Object Model (DOM)

creating XML through, 133–135
GWTTestCase and, 251

doGet(...) method

file producing servlet and, 207–208
providing feedback and, 202–204

306 Dashboard visualizations

 Download from www.wowebook.com

ptg

Dojo Toolkit, 5, 11

DOM. See Document Object Model (DOM)

DomEvent.fireNativeEvent(...)
method, 251

doPost(...) method, 201–202

Downloading files

file download form, 204–207
file producing servlet, 207–208
overview, 204

-draftCompile, compilation option, 287,
289

DragonFly debugger, in Opera, 285–286

drawZoomAndCenter(...) method,
172–173

DTO (Data transfer object), 186–189

Dummy objects, 240

E
-ea, compilation option, 287

EasyMock testing, 19, 240–247

EclEmma plugin, 19, 236–238

Eclipse

debugger, and JSNI, 140
JUnit testing and, 234, 236–238
for writing code, 17–18

Einstein, Albert, 234

EjbAccess remote servlet, 116–117

--enable-extension-timeline-api
parameter, 278

enableLoginButton(...) method, 67–68

Encryption

defined, 179
security and, 180–183

Enterprise Java Beans (EJB), 116–118

<entry-point> element

modules and, 290
project structure and, 25–26

Enumerations, serialization of, 80

Environment object

changing passwords and, 192
EasyMock testing and, 240–247
MVP implementation and, 60–63,

66–67
Error codes, translating, 215–217

Exceptions

GWT 2 and, 13
java.lang package, 14
JavaScript code and Java, 141
java.util package, 15

execute(...) method, 272–273

Extensible Markup Language (XML)

city update application and, 123–125
creating, overview, 131–132
creating through DOM, 133–135
creating with strings, 132–133
receiving and processing, 125–131
sending, overview, 131–132, 135–136
sending through Ajax, 136
sending through proxy, 136–137

ExternalTextResource elements,
274–275, 277

-extra, compilation option, 287

Extreme Programming (XP), 229

F
fail(...) methods

EasyMock testing and, 243
JUnit testing and, 236

Fake objects, 240

Feed, weather, 159–160

Feedback information, 202–204

File processing servlet, 200–202

File producing servlet, 206

307File producing servlet

 Download from www.wowebook.com

ptg

Files, moving

downloading, 204–208
overview, 195
summary, 209
uploading. See Uploading files

FileUpload form, 195–200

final attributes, 80

finishTest(...) call, 252–253

Firebug

debugger, 285–286
Page Speed and, 283–285
YSlow and, 280–282

Firefox

cross scripting request and, 135
Firebug, 280–286
SOP restriction and, 121

firstResultPosition attribute, 147

Fixed maps, 173–175

Flash library, 164

FlexTable function, 170

Floating point numbers, 13

FormPanel parameters, 196–198

Forms

city browser, 101, 255
ClientBundle sampler application,

276
file download, 204–207
file upload, 195–200
passing parameters to, 38–41
in pop-ups, 37–38
UiBinder-based internationalization,

219–223
Full code size value, 295

G
Generators, code, 47–52

Generic resource bundles, 212–213

GenericServiceReturnDto class,
187–188

GeoNames, 158

GET calls

file download form and, 205–206
processing XML using Ajax and,

127–128
providing feedback and, 203–204
SOP restriction and, 121

getAge(...) method, 152

getAndDisplayCities(...) method,
269, 273

getAttributeNode(...) method, 127

getCities(...) function, 85

getCityName(...) method, 109

getCityPopulation(...) method

city update application and, 123
producing/sending XML and,

131–132
getCountries(...) function

caching and, 261
database-related widgets and, 97
WorldService remote service and, 85

getCountryState(...) method, 102,
104–107

getDescription(...) method, 141

getDisplay() method, 131–132

getDocumentElement(...) method,
125–127

getElementsByTagName(...) method,
127

getFeed(...) routine, 162

getFormat(...) method, 225

getFromUrl(...) method, 129

getLatitude(...) method, 171

getLongitude(...) method, 171

getModel(...) method

EasyMock testing and, 243
MVP implementation and, 60

308 Files, moving

 Download from www.wowebook.com

ptg

getModuleName(...) method, 250

getName(...) method, 141

getName(...) method

EasyMock testing and, 245–246
file processing servlet and, 202

GetNewsCallback(...) function,
149–150

getNodeValue(...) method, 127

getPassword(...) method, 245–246

getSelections(...) method, 168

getSessionKey(...) method, 187–189

getSize(...) method, 202

getSomething(...) method

logging in and, 185–187
MVP implementation and, 62–63, 67

getStates(...) function

database-related widgets and, 97
WorldService remote service and, 85

getSummary(...) method, 152

getText(...) call, 277

goBack(...) method, 59–60

Google AJAX Feed API, 159

Google Chart API, 163

Google Chrome

Speed Tracer and, 278–280
Tomcat-deployed application,

297–300
Google Gears, 2

Google Maps, 168

Google Plugin for Eclipse

coding server side services and, 89
GWT project creation with, 21–22
UiBinder templates and, 70
for writing code, 17–18

Google Testing Blog, 229

Google Visualization API, 163, 164–167

Google Web Toolkit 2. See GWT 2 (Google
Web Toolkit 2), getting started

google.feeds variable, 162

goto. statements, 257

Grade tab, 281

GreetingServiceImpl class, 81

GWT 2 (Google Web Toolkit 2), getting started

advantages/disadvantages, 9–11
components, 12–17
defined, 9
setting up, 17–20
summary, 20

GWT advantages

HTML ubiquity/browser differences,
4–5

Java, 10
JavaScript, 5
overview of, 9–11

GWT AjaxLoader API

getting weather feed and, 160
steps for using, 160–161

GWT Developer Plugin, 28–30

gwt.ajaxloader.jar files, 160–161

GWT.create(...)

creating widgets with, 74
invoking messages with, 217

GWT.getHostpageBaseURL(...)
function, 128

GWT.runAsync(...) method, 291–293

gwttest directory, 23

GWTTestCase, integration testing and

overview, 247
setup times, 254
testing login view, 247–251
testing servlets, 252–253

gwt.xml files

creating modules and, 290–291
Google Visualization API and, 164
GWT AjaxLoader API and, 160–161
GWTTestCase testing and, 252

309gwt.xml files

 Download from www.wowebook.com

ptg

H
Hashing

changing passwords and, 191–193
defined, 179
with JavaScript, 142–143
logging in and, 185–190
security and, 180

hashword.length(...) method, 180

Hints mode, 279–280

History class, 32, 33–34

Host, 119–120

HTML (HyperText Markup Language)

setting up page, 32
ubiquity of, 4–5
widgets, 46–47

HTMLPanel function, 147–149

HTMLUnit web browser, 247

Humble Dialog (Humble Object), 56

Hýbl, Cestmír, 144, 146

Hyperlink widgets, 43

HyperText Markup Language. See HTML
(HyperText Markup Language)

I
i18n. See Internationalization (i18n)

IE. See Internet Explorer (IE)

ImageBundle interface, 273–274

ImageResource elements, 274–275

IncrementalCommand function, 271

<inherits> element, 25

initialize methods, 81

initializeWithString(...) method, 40

instance objects, 140

instance.@classname::field, 141

Integration testing, with GWTTestCase

overview, 247

testing login view, 247–251
testing servlets, 252–253

Interactive maps, 168–173

Internationalization (i18n)

annotations tricks, 215
bundling data and, 274
messages and, 217–219
overview, 211–212
resource bundles and, 212–213
summary, 227
translating error codes, 215–217
UiBinder, 219–223
using constants, 213–214

Internet Explorer (IE)

recognizing old versions of, 52–53
SOP restriction and, 120–121

IsSerializable interface, 86–88

J
jar file, 290

Java

advantages of, 10
JavaScript interaction with, 139–141
server-side code, 88–94
UiBinder and, 72–73

Java Cryptography Architecture (JCA), 180

Java-to-JavaScript compiler, 12–14

Java Virtual Machine parameters, 140–141

java.io package, 14

java.lang package, 14–15

JavaScript

debuggers, 285–286
deficiencies of, 5
disabled, 53
Java interaction with, 139–141
stateless server-side coding and, 183–184

310 Hashing

 Download from www.wowebook.com

ptg

JavaScript library

dashboard visualizations and, 164
loading, 160, 161

JavaScript, mixing in

JSNI and. See JavaScript Native
Interface (JSNI)

JSON. See JavaScript Object
Notation (JSON)

JSONP, 153–155
overview, 139
summary, 155

JavaScript Native Interface (JSNI)

basic usage of, 140–141
browser detection and, 44
getting feed with, 162
hashing with, 142–143
overview, 139–140
Steampunk display widgets and,

143–146
JavaScript Object Notation (JSON)

feed data, 161
news reader completion using,

148–153
news reader view using, 147–148
overview, 146–147
weather information and, 158–159

JavaScript Object Notation with Padding
(JSONP), 153–155

JavaScriptException objects, 141

JavaScriptObject function, 170

java.sql package, 15

java.util package, 15–16

JCA (Java Cryptography Architecture), 180

Jetty web server, 79

Johnston, Paul, 142

jQuery JavaScript Library, 5, 11, 143

JRE Emulation Library

java.io package, 14

java.lang package, 14–15
java.sql package, 15
java.util package, 15–16

JSLint, 282

JSMin, 282

JSNI. See JavaScript Native Interface (JSNI)

JSON. See JavaScript Object Notation (JSON)

JSONP (JavaScript Object Notation with
Padding), 153–155

JSONParser methods, 151

JsonpRequestBuilder class, 154–155

JsonUtils.escapeValue(...) method,
147

JsonUtils.unsafeEval(...) method,
151

JUnit testing

basic example of, 231–236
EasyMock and, 240–247
with mock objects, 239–240
MVP code testing, 238–239
overview, 19, 231
test coverage with Emma, 236–238

K
@Key(...) annotation

key attribute and, 220
resource bundles and, 215

key attribute, 219–223

Keys

annotations tricks and, 215
resource bundles and, 212–213
translating error codes and, 216

KeyValueMap class

EclEmma coverage test with,
236–238

JUnit testing of, 231–236
module for, 290–291

311KeyValueMap class

 Download from www.wowebook.com

ptg

L
l10n. See Localization (l10n)

Launcher, improved, 37–38

Layouts, complex, 75

Lazy evaluation, 100–101

Least recently used (LRU) logic, 262

Libraries

Closure, 5
Flash, 164
JavaScript, 160, 161, 164
jQuery, 5, 11, 143
JRE Emulation, 14–16

Lincoln, Abraham, 144–145, 148, 225,
233–234

LinkedHashMap(...) method, 93–94

Linux

client-only GWT deployment and,
297

SOP restriction and, 121
ListBox widgets, 93, 94–99

Live suggestions, 108–112

Loading.texts

bundling data and, 277
thread simulation and, 268–269

Localization (l10n)

overview, 211
process of, 223–227
summary, 227

-localWorkers, compilation option, 288,
289

Logging in, security and, 185–190

Login button, 67–69

Login procedure, 34–35

Login service, 242–247

Login view, 247–251

LoginFormPresenter class, 60, 62, 64,
66

LoginFormView class

MVP implementation and, 60, 64–66
UiBinder and, 70, 72, 74

LoginFormView.ui.xml files, 70, 72

loginServiceMock(...) function,
243–244, 246

LoginView class, 60–61, 63

-logLevel, compilation option, 288

long variables, 13

<longitude> method, 134–135

LRU (least recently used) logic, 262

M
Magic naming, 78

Management Information Systems (MIS)
applications, 162

Maps

fixed, 173–175
interactive, 168–173
overview, 168

MD5 (Message-Digest algorithm 5), 142–143,
180

Measurement tools, speed

JavaScript debuggers, 285–286
overview, 277–278
Page Speed, 283–285
Speed Tracer, 278–280
YSlow, 280–282

Memory leaks, 139

Menus, 41–43

Message-Digest algorithm 5 (MD5)

hashing and, 180
hashing with JavaScript and, 142–143
logging in and, 186–190

Messages, dynamic, 217

method, 140

Method parameters, 140–141

312 l10n

 Download from www.wowebook.com

ptg

Microsoft Bing Maps, 168

MIS (Management Information Systems)
applications, 162

Mock objects testing, 239–240, 242–243,
245–246

Model

caching and, 260–261
MVP implementation and, 61
role in MVC, 56–57
role in MVP, 57–58
RPC usage and, 100–101

Model-View-Controller (MVC) design pattern,
56–57

Model-View-Presenter (MVP)

code testing, 238–239
Composite widgets and, 95
database-related widgets and, 94–100
design pattern overview, 57–58

Model-View-Presenter (MVP) implementation

callbacks and, 59–60
details, 60–66
overview, 59

modelMock call, 243–244, 246

-module, compilation option, 288

Modules

application deployment and, 289–291
project structure and, 24–25

Montevideo, 157-159

mouseOver events, 167

moveMarker(...) method, 172–173

Moving files

downloading, 204–208
overview, 195
summary, 209
uploading. See Uploading files

Multithreading, 14

MultiWordSuggestOracle widgets,
108–112

MVC (Model-View-Controller) design pattern,
56–57

MVP. See Model-View-Presenter (MVP)

MyMessages interface, 217–219

N
nameBlurCallback attribute, 68

Net tab, 285–286

Network mode, 278–279

new(...) syntax, 151

newCityList function, 131–132

NewsFeed object

JSON and, 151–152
JSONP and, 155

NewsReaderDisplay interface, 149–150

NewsReaderPresenter function,
148–150

NewsReaderView files, 147–149

Nixie display widgets, 143–144

NixieDisplay class, 144–146

Non-repudiation, 178

Nonce

changing passwords and, 192–193
encryption and, 183
logging in and, 185–190

<none>...</none> construct, 45

<noscript> tag, 53

-noserver parameter, 120

NoSuchAlgorithmException(...)
function, 180

NumberFormat function, 226

O
onAttach(...) method, 171

onFailure(...) method

callbacks and, 59
code splitting and, 291–293

313onFailure(...) method

 Download from www.wowebook.com

ptg

onModuleLoad(...) method, 290

onSuccess(...) method

bundling data and, 277
callbacks and, 59
code splitting and, 291–293
interactive maps and, 175

onVisualizationLoadCallback(...)
method, 164

OOPHM (Out Of Process Hosted Mode), 27

Open Laszlo, 9

openSUSE, 297

Opera, DragonFly debugger, 285–286

Optimizations, code, 12–13

Optimizing, for application speed

design patterns for. See Design patterns,
for speed

measurement tools for. See Speed
measurement tools

overview, 259
summary, 286

Options class, 165–166

OPTIONS request, 135

Out Of Process Hosted Mode (OOPHM), 27

OutputStream request, 207

outputStyle, compilation and, 288

Overlays

getting at feed data with, 161
JSON usage and, 151–152

P
Page Speed, 283–285

PanelPopup object, 37–38

Pando, 113

Panels

bundling data and, 275
displaying forms in pop-up, 37–38
UI library and, 17

panToLatLon(...) method, 172–173

Parameters, 38–41

parse(...) method, 227

parseStrict(...) method, 226

passwordBlurCallback attribute, 68

Passwords

changing, security and, 190–193
logging in and, 185–190

Pattern codes, 225–227

Performance tab, 283–284

Permutation report, 295

Perpetual beta, 7–8

PieChart objects

dashboard visualizations and, 167–168
Google Visualization API and, 164

PieChart.Options specifications,
165–166

Placeholders, 222

@PluralCount annotation, 218

Pop-up panels, 37–38

Port(s)

changes, SOP restriction and, 119–121
processing XML using Ajax and, 128

POST methods

file producing servlet and, 208
processing XML using Ajax and,

127–128, 130
SOP restriction and, 121

postToUrl(...) method, 129

Prefetching, 263–266

Presenter

changing passwords and, 191–193
city update application and, 123
Country/State cities browser and, 102,

105, 107–108
data prevalidation and, 114–115
database-related widgets and, 97–98

314 onModuleLoad(...) method

 Download from www.wowebook.com

ptg

EasyMock testing and, 240–247
enabling/disabling Login button and,

67–69
file download form and, 206
interactive maps and, 169
live suggestions and, 108, 110–111
MVP implementation and, 60–66
receiving/processing XML and, 126
role in MVP, 57–58
thread simulation and, 267, 269
uploading files and, 199–200

PresenterDisplay interface, 62–63

Pretty code, 153

Prevalidation, data, 112–116

Primitive types, 79

Printable View, 282

Processing XML. See Receiving/processing
XML

processWeather(...) method, 162

Progressive enhancement, 10–11

Project creation

with Google Plugin for Eclipse, 21–22
with GWT shell script, 22–23
overview, 21

Project structure, 23–27

Projects and development, understanding

Development mode, running applica-
tion, 27–30

overview, 21
project creation, 21–23
project structure, 23–27
summary, 30

.properties files, 212–213, 215

Properties, presetting widget, 73

Protocol changes, SOP restriction and,
119–120

Prototype JavaScript Framework, 5, 11

Proxy

getting weather feed with, 159
RemoteServlet as, 129–131
sending XML via, 136–137

pStart+pCount position, 264–265

<public> element, 25–26

public static void deserialize
(...), 81

public static void serialize
(...), 81

Pyjamas project, 2, 9

Q–R
RC4 encryption, 180–183

readString(...) method, 82

Receiving/processing XML

overview, 125–127
through proxy, 129–131
using Ajax, 127–128

Remote Procedure Calls (RPC), introduction

Direct Evaluation RPC, 83–84
implementation, 78–79
overview, 77
serialization, 79–83

Remote Procedure Calls (RPC), usage

code sharing, 86–88
coding server side services, 88–94
Country/State cities browser, 101–108
data prevalidation, 112–116
database-related widgets, MVP and,

94–100
deployment and, 300
Enterprise Java Beans, 116–118
GWTTestCase testing and, 252–253
live suggestions, 108–112
looking at Model class, 100–101
overview, 84

315Remote Procedure Calls (RPC), usage

 Download from www.wowebook.com

ptg

Remote Procedure Calls (RPC), usage
(continued)

summary, 118
world cities service, 84–85

@RemoteServiceRelativePath(...)
annotation, 78

RemoteServlet function

Enterprise Java Beans and, 116–118
as proxy, 129–131
RPC implementation and, 79

removeWhitespace(...) method, 126

rename-to attribute, 25

replay(...) method, 246

Report link, 295–296

Representational State Transfer (REST) API,
173–175

RequestBuilder class, 203–204

requestSuggestions(...) method,
110–112

Resource bundles

annotations and, 215
internationalization and, 212–213
localization and, 224–227
UiBinder-based internationalization

and, 219–223
using constants and, 213–214

ResourceCallback<TextResource>
object, 277

Resources tab, 284–285

ResultSet object, 147

RIAs. See Rich Internet Applications (RIAs)

Rich Internet Applications (RIAs)

Cloud Computing, 3
desktop death, 4
overview, 1–2
Web 2.0, 2–3

RPC. See Remote Procedure Calls (RPC),
introduction; Remote Procedure Calls
(RPC), usage

RpcResponse objects, 81

RSS weather feeds, 157–159

run(...) method, 267–270

RunAsyncCallback(...) interface,
291–293

Running applications

Development mode for, 27–30
getting started, 19–20

Ryan, Ray, 32

S
SAAS (Software as a Service), 3

Safari debugger, 285

Same Origin Policy (SOP) restriction

JSONP and, 153–155
server communication and, 119–121

Sampler application, ClientBundle, 276

SayAge(...)string, 218

schedule(...) method, 266–269

<script> element

hashing with JavaScript and, 142
project structure and, 26

Scrum, 229

Searching

live suggestions and, 108–112
with simple news reader, 147–149
weather vane, 157–159
Yahoo's services for, 146–147

Secure Sockets Layer (SSL) communica-
tions, 178

Security

GWT 2 and, 11
hashing for, 142–143
SOP restriction for, 119–121

Security, servers and

AAA for, 178
Ajax problems, 179

316 Remote Procedure Calls (RPC), usage

 Download from www.wowebook.com

ptg

common operations and. See
Common operations, security

cryptography, 179–183
full SSL security and, 177–178
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

select events, 167

Selenium, acceptance testing and

example of, 255–256
overview, 253–255
potential problems, 257

Sending XML

overview, 131–132, 135–136
through Ajax, 136
through proxy, 136–137

Serialization, RPC, 79–83

serialize(...) method, 82

Server, communication with

introduction to RPC. See Remote
Procedure Calls (RPC), introduction

RPC patterns of usage. See Remote
Procedure Calls (RPC), usage

Server side services, 88–94

ServerCityData classes, 86–88, 90

Servers, communication with other

city update application, 121–125
overview, 119
producing XML, 131–135
receiving/processing XML, 125–131
sending XML, 135–137
SOP restriction and, 119–121
summary, 137

Servers, working with

challenges in, 177–183
common operations and. See

Common operations, security

cryptography, 179–183
overview, 177
stateless vs. stateful coding, 183–184
summary, 193

Service-Oriented Architectures (SOA), 3

<servlet> element

client-plus-server GWT 2 and,
299–300

file processing and, 200
RPC implementation and, 78

Servlet mapping, 78

<servlet-mapping> element, 78

Servlet(s)

calling remote, 79
deployment and, 297–300
file download form, 204–207
file processing, 200–202
file producing, 207–208
GWTTestCase testing, 252–253

Session keys

changing passwords and, 192–193
logging in and, 185–190

setAttribute(...) method, 134–135

set.Callback(...) method, 123

setCitiesOracle(...) method, 109,
111

setCityData(...) method

city update application and, 123
Country/State cities browser and, 102,

104, 106–107
receiving/processing XML and, 127

setCoordinates(...) method,
171–173

setCountryList(...) function, 97–98

setNameBlurCallback(...) method,
244–245

setStateList(...) function, 97–98

317setStateList(...) function

 Download from www.wowebook.com

ptg

setText(...) method, 145–146

Setting up GWT

overview, 17
running and deploying, 19–20
version control management/testing,

19, 20
writing code, 17–18

setUp(...) methods, 233

setYGeoPoint(...) method, 172–173

Shell script, webAppCreator, 22–23

show(...) method, 37–38

signature parameters, 140

Simple city browser application, 101

Selenium testing and, 255
thread simulation and, 266–270

Simple city input form, 112–113

Simple news reader, 147–148

Sluggishness report, 278–279

Smush.it, 282

SOA (Service-Oriented Architectures), 3

Software as a Service (SAAS), 3

Software methodologies

Agile Software Methodologies, 7
classic development problems, 5–7
perpetual beta, 7–8

somefile.txt text file, 208

someModules, compilation and, 288

someMore variable, 268

someNumber, compilation and, 288, 289

SOP. See Same Origin Policy (SOP) restric-
tion

Soriano, 124, 252, 255

@Source(...) annotation, 274–275

<source> element, 23, 25–26

-soyc parameter, 221

Speed, design patterns for. See Design pat-
terns, for speed

Speed measurement tools

JavaScript debuggers, 285–286
overview, 277–278
Page Speed, 283–285
Speed Tracer, 278–280
YSlow, 280–282

Speed Tracer, 278–280

src directory

JUnit test directory and, 231
modules directory and, 290
project structure and, 23, 24

SSL (Secure Sockets Layer) communica-
tions, 178

Starting, GWT application, 34–37

Stateless server coding vs. stateful, 183–184

Statement Coverage, 236

statesCache function, 261

static object

bundling data and, 274
caching and, 260–262

Statistics tabs, 282

Steampunk display widgets, 143–145

Stooges. See Three Stooges, The

stop(...) method, 143

Streams, reading/writing to, 82

strictfp keyword, 13

String Interning, 13

Strings

creating XML with, 132–133
DOM structure and, 133–135
dynamic messages and, 217–219
localization and, 224–227
resource bundles as, 212–215
sending XML, 135–136
serialization of, 80
weather feed, 159

Stubs, 240

318 setText(...) method

 Download from www.wowebook.com

ptg

-style, compilation option, 288

<stylesheet> element, 26

Submit event code, 203–204

Subversion, for version control management, 19

SuggestBox widgets, 108–109, 112

SuggestionItem class, 110–111

Super-validationProblems(...)
function, 86–88

SupportsCDATASection(...) method,
126

T
TDD (Test-driven development), 229

tearDown(...) methods, 233

Templates

creating several, 75
creating UiBinder, 70–72

test directory, 23

Test-driven development (TDD), 229

@Test methods, 233–236

Testing

applications. See Application testing
getting started, 19, 20
test/gwttest directories for, 23

TextBox function, 147–149, 171

TextResource elements, 274–277

Thread simulation

deferred command-based solution,
270–273

overview, 266
Timer-based solution, 266–270

Three Stooges, The, 237–238

Time formats, 224–226

TimedCitiesDisplay class, 269–270

Timer function

live suggestions and, 112
thread simulation and, 266–270

Tokens, 33, 34–37

Tools tab, 282

toString(...) methods, 133, 135, 234

totalResultsAvailable attribute, 147

transient attributes, 80

Translating error codes, 215–217

-treeLogger, compilation option, 288

U
<u:attribute> element, 221

u:field attribute, 70, 72–73

UI. See User Interface (UI), programming

UI library, 17

UI patterns

MVC classic pattern, 56–57
MVP pattern, 57–58
overview, 55–56

UiBinder

changing password and, 190
Country/State cities browser and,

102–104
data prevalidation and, 113–114
dealing with constructors, 74–75
internationalization, 219–223
Java defined in, 72–73
overview, 69
presetting widget properties, 73
template defined in, 70–72
using your own widgets, 73–74
working with complex layouts, 75

@UiField annotation

JSON and, 149
UiBinder and, 71–73
uploading files and, 198
widgets and, 74, 97, 103

@UiHandler annotation

Country/State cities browser and,
104–105

data prevalidation and, 114

319@UiHandler annotation

 Download from www.wowebook.com

ptg

@UiTemplate annotation

JSON and, 149
UiBinder and, 71–72, 75
uploading files and, 198
widgets and, 96, 103

ui.xml files

internationalization and, 219–223
UiBinder and, 70, 72

<u:msg> element, 220–222

Unicode Transformation Format (UTF-8), 213

Unified Modeling Language (UML), 61

Uniform Resource Locator (URL)

fixed maps and, 173–175
JSONP and, 155
news search service and, 150–153
receiving/processing XML and,

127–130
sending XML via Ajax and, 136–137
for weather search, 158

Upload form, 195–200

Uploading files

file processing servlet, 200–202
overview, 195
providing feedback, 202–204
upload form, 195–200

URL.encode(...) method, 136–137

User Interface (UI), programming

declarative UI, 69–75
extensions, 67–69
MVP implementation. See Model-

View-Presenter (MVP) implementa-
tion

overview, 55
summary, 76
UI patterns, 55–58

UTF-8 (Unicode Transformation Format), 213

Utility methods, 15

<u:Uibinder> element

city browser and, 102
defining templates and, 69, 71, 73
internationalization and, 220
JSON and, 148
widgets and, 96

V
-validateOnly, compilation option, 288

Validation, 86–88

ValueChangeHandler method

data prevalidation and, 114
database-related widgets and, 95

Version control management, 19

VerticalPanel function, 170

View

changing password and, 190–191
Country/State cities browser and,

102–104, 106–108
data prevalidation and, 114
database-related widgets and, 98, 100
EasyMock testing and, 242–246
FileUpload, 195–198
GWTTestCase and, 247–251
interactive maps and, 170
live suggestions and, 108–109
MVP implementation and, 60–61
role in MVC, 56–57
role in MVP, 57–58
simple news reader, 147–148

Visualization options, 165, 168

Visualizations, dashboard

Google Visualization API, 164–167
handling events, 167–168
overview, 162–164

VisualizationUtils package, 164

320 @UiTemplate annotation

 Download from www.wowebook.com

ptg

W
W3C "Access Control Specification," 121

waitFor. commands, 257

-war, compilation option, 289

war directory, 297

war folder, 24

wasCalled variable, 242–246

Waterfall Model, for development process,
5–7

The Weather Channel, 158–159

Weather vane

getting at feed data with overlays, 161
getting everything together, 160–161
getting feed, 159–160
getting feed with JSNI, 162
getting weather data, 157–159
overview, 157

WeatherFeed data, 161

Web 2.0, 2–3

"Web as Platform" concept, 2

webAppCreator shell script, 22–23

webAppGenerator, 53

web.xml file, 298

Where On Earth ID (WOEID) code, 158

Widgets

Composite, 95, 101–108, 171
FileUpload, 196–198
HTML, 46–47
Hyperlink, 43
interactive maps and, 170–171
ListBox, 93, 94–99
MultiWordSuggestOracle, 111
MVP and database-related, 94–100
presetting properties of, 73
Steampunk display, 143–144
SuggestBox, 108–109, 112

UI library and, 17
using your own, 73–74
weather vane, 157–162

Window.alert(...) message, 13, 239

$wnd

getting feed data and, 162
hashing with JavaScript and, 142–143
interactive maps and, 172–173

-workDir, compilation option, 289

World cities service, 84–85

WorldService remote service, 84–85

WorldService remote servlet, 78

WorldService.java interface, 88–89

writeString(...) method, 82

X
-XdisableAggressiveOptimization,

compilation option, 289

-XdisableCastChecking, compilation
option, 289

-XdisableClassMetadata, compilation
option, 289

-XdisableRunAsync, compilation option,
289

XhrProxy servlet, 129–131, 175

XML. See Extensible Markup Language (XML)

XMLHttpRequest method, 136

XMLParser.parse(...) method,
125–127

XP (Extreme Programming), 229

Y–Z
Yahoo!

Maps, 168–175
news search using, 146–147
Weather RSS Feed, 157–159
Yahoo Pipes, 159

321Yahoo!

 Download from www.wowebook.com

ptg

yahooMap attribute, 172

YGeoPoint object, 172–173

YMap function, 172

yourownfunction(...) method, 154

YSlow, 280–282

YUI Library, 5

322 yahooMap attribute

 Download from www.wowebook.com

	Contents
	Preface
	Acknowledgments
	About the Author
	1 Developing Your Application
	Rich Internet Applications
	Web 2.0
	Cloud Computing
	The "Death of the Desktop"

	Advantages of GWT
	HTML Ubiquity and Browser Differences
	JavaScript Deficiencies

	Software Methodologies to Apply
	Classic Development Problems
	Agile Methodologies
	Forever Beta?

	Summary

	2 Getting Started with GWT 2
	Why Use GWT?
	Why Java?
	Some Actual Disadvantages

	The GWT Components
	Compiler
	JRE Emulation Library
	UI Library

	Setting Up GWT
	Writing Code
	Version Control Management
	Testing
	Running and Deploying

	Summary

	3 Understanding Projects and Development
	Creating a Project
	Using the Google Plugin for Eclipse
	Using the GWT Shell Script

	Project Structure
	Running Your Application: Development Mode
	Summary

	4 Working with Browsers
	The Back Button Problem
	Setting Up Your HTML Page
	The History Class
	Starting Your Application
	Showing Forms in Pop-Ups
	Passing Parameters
	Creating a Menu

	Detecting the User's Browser
	The Classic Way
	The Deferred Binding Way
	Recognizing Older Explorers
	No JavaScript?

	Summary

	5 Programming the User Interface
	Thinking About UI Patterns
	MVC: A Classic Pattern
	MVP: A More Suitable Pattern

	Implementing MVP
	Callbacks Galore
	Implementation Details

	Some Extensions
	Declarative UI
	A Basic UiBinder Example
	More Complex Examples

	Summary

	6 Communicating with Your Server
	Introduction to RPC
	Implementation
	Serialization
	Direct Evaluation RPC

	RPC Patterns of Usage
	The World Cities Service
	Code Sharing
	Coding the Server Side Services
	Database-Related Widgets and MVP
	A Look at MVP
	A Country/State Cities Browser
	Live Suggestions
	Data Prevalidation
	Enterprise Java Beans

	Summary

	7 Communicating with Other Servers
	The Same Origin Policy (SOP) Restriction
	Our City Update Application
	Receiving and Processing XML
	Using Ajax Directly
	Going Through a Proxy

	Producing and Sending XML
	Creating XML with Strings
	Creating XML Through the DOM
	Sending the XML Data
	Sending XML Through Ajax
	Sending XML Through a Proxy

	Summary

	8 Mixing in JavaScript
	JSNI
	Basic JSNI Usage
	Hashing with JavaScript
	Animations Beyond GWT
	A Steampunk Display Widget
	JSON
	JSONP
	Summary

	9 Adding APIs
	A Weather Vane
	Getting Weather Data
	Getting the Feed
	Getting Everything Together
	Getting at the Feed Data with an Overlay
	Getting the Feed with JSNI

	Dashboard Visualizations
	Using the Google Visualization API
	Handling Events

	Working with Maps
	Interactive Maps
	Fixed Maps

	Summary

	10 Working with Servers
	The Challenges to Meet
	Before Going Any Further
	Security
	Ajax Problems

	Cryptography
	Hashing
	Encrypting

	Stateless Versus Stateful Servers
	Common Operations
	Logging In
	Changing Your Password

	Summary

	11 Moving Around Files
	Uploading Files
	An Upload Form
	A File Processing Servlet
	Providing Feedback to the User

	Downloading Files
	A File Download Form
	A Sample File Producing Servlet

	Summary

	12 Internationalization and Localization
	Internationalization (i18n)
	Resource Bundles
	Using Constants
	Messages
	UiBinder Internationalization

	Localization (l10n)
	Summary

	13 Testing Your GWT Application
	Why Testing?
	Advantages of Automatically Tested Code
	And if a Bug Appears?

	Unit Testing with JUnit
	A Basic JUnit Example
	Test Coverage with Emma
	Testing MVP Code
	Testing with Mock Objects
	EasyMock

	Integration Testing with GWTTestCase
	Testing a View
	Testing a Servlet

	Acceptance Testing with Selenium
	A Very Simple Example
	What Can Go Wrong?

	Summary

	14 Optimizing for Application Speed
	Design Patterns for Speed
	Caching
	Prefetching
	Thread Simulation
	Bundling Data

	Speed Measurement Tools
	Speed Tracer
	YSlow
	Page Speed
	JavaScript Debuggers

	Summary

	15 Deploying Your Application
	Compilation
	Modules
	Code Splitting
	Deployment
	Working with Client-Only GWT
	Working with Client-Plus-Server GWT

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

