
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Jon Duckett

Duckett

 $34.99 USA
 $41.99 CAN

Since the web was first created, the languages used to build web sites
have been constantly evolving. Now a set of best practices has emerged
using HTML or XHTML to create your basic web pages, CSS to control
their appearance and make them look attractive, and JavaScript to add
interactivity. Without assuming any previous experience, this valuable
resource makes it easy to learn how to build web sites using the most up-
to-date web standards. Whether you’re a beginner eager to start writing
your first web page or a more experienced programmer seeking to update
your skills, you will find practical introductions to these essential lan-
guages, as well as invaluable tips and techniques used by experienced web
professionals.

• How to create HTML and XHTML pages that incorporate links, images,
tables, audio, and video

• Ways to use CSS to control text, colors, backgrounds, and page layout

• Design principles employed by experienced designers to create attractive layouts

• The basics of JavaScript and working with AJAX libraries

• How to build sites that are accessible, easy to use, and will work
on a variety of devices including mobile phones

• How to test your web site and put it on the web

• First-hand experience of coding practices commonly used in the real world

• The elements of basic text formatting

• Text markup and character entities for special characters

Jon Duckett has spent over a decade helping a wide range of companies implement
innovative web strategies. Taking a hands-on approach, he designs many of the
projects he works on and helps to code them. During this time, Jon has written
several books covering web design, programming, accessibility and usability.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

Web Site Development

Learn to create attractive
web sites that are easy to use

Beginning
HTML, XHTML,
CSS, and JavaScript®

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Beginning

H
TM

L, X
H

TM
L, CSS,

and JavaScript
®

www.allitebooks.com

http://www.allitebooks.org

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning CSS: Cascading Style Sheets for Web Design, 2nd Edition
ISBN: 978-0-470-09697-0
This comprehensive introduction clearly shows you how to combine Cascading Style Sheets (CSS) with HTML, XHTML, or XML to create
rich, aesthetically compelling web designs. Packed with detailed examples in syntax-colored code and showing the resulting web pages
in color, the second edition will help you discover how and why CSS works.

Beginning JavaScript, 4th Edition
ISBN: 978-0-470-52593-7
Serving as a great introduction to JavaScript, this book offers all you need to start using JavaScript on your web pages right away. It’s
fully updated and covers utilizing JavaScript with the latest versions of the Internet Explorer, Firefox, and Safari browsers and walks you
through the basics of JavaScript: what it is, how it works, and what you can do with it.

Beginning JavaScript and CSS Development with jQuery
ISBN: 978-0-470-22779-4
With this unique, project-oriented book, author Richard York teaches even the most novice of JavaScript users how to quickly get started
utilizing the JavaScript jQuery Library to decrease the amount of code that needs to be written and tested. A four-color code syntax
highlighting system provides a visual reinforcement and allows you to see the nuts and bolts that comprise each line and section of code.
With this helpful guide and hands-on exercises, you’ll be able to put jQuery to work for you and avoid having to write code from scratch.

JavaScript Programmer’s Reference
ISBN: 978-0-470-34472-9
This book covers the JavaScript language in its entirety, showing you how to leverage its many features to create the next generation of
standards-compliant Rich Internet Applications (RIAs) using Ajax, JSON, and much more. Alexei White, a veteran programming instructor,
provides you with both a practical tutorial and an easily accessible reference to a range of topics from basic JavaScript syntax and core
functions to advanced topics such as animation, debugging, remote server interaction, and offline storage.

Professional JavaScript for Web Developers, 2nd Edition
ISBN: 978-0-470-22780-0
This book covers JavaScript from its very beginning to the present-day incarnations that include support for the DOM and Ajax. It also
shows you how to extend this powerful language to meet specific needs and create seamless client-server communication without inter-
mediaries such as Java or hidden frames. You’ll explore the components that make up a JavaScript implementation, with specific focus on
standards such as ECMAScript and DOM. You’ll also learn how to utilize regular expressions and build dynamic user interfaces. This valu-
able insight will help you apply JavaScript solutions to the business problems faced by Web developers everywhere.

Professional JavaScript Frameworks: Prototype, YUI, ExtJS, Dojo and MooTools
ISBN: 978-0-470-38459-6
Packed with coverage of many of the most popular JavaScript frameworks, this authoritative guide examines how these frameworks can
present unique and varying approaches to problems in web development. This unparalleled team of authors has assembled some of the
most active and popular JavaScript frameworks available and they walk you through common web development tasks addressed by each
framework, while also examining how the framework approaches a particular set of tasks. Practical examples and clear explanations
demonstrate the many aspects of contemporary web development and exactly what the selection of JavaScript frameworks has to offer
so that you can get up and running quickly

www.allitebooks.com

http://www.allitebooks.org

Beginning HTML, XHTML, CSS, and JavaScript®

Introduction. xxi

Chapter 1: Structuring Documents for the Web . 1
Chapter 2: Links and Navigation . 55
Chapter 3: Images, Audio, and Video . 79
Chapter 4: Tables . 131
Chapter 5: Forms . 167
Chapter 6: Frames . 215
Chapter 7: Cascading Style Sheets . 243
Chapter 8: More Cascading Style Sheets . 307
Chapter 9: Page Layout . 357
Chapter 10: Design Issues . 421
Chapter 11: Learning JavaScript . 481
Chapter 12: Working with JavaScript . 533
Chapter 13: Putting Your Site on the Web . 587
Chapter 14: Checklists . 627
Appendix A: Answers to Exercises . 641
Appendix B: XHTML Element Reference . 677
Appendix C: CSS Properties . 713
Appendix D: Color Names and Values . 741
Appendix E: Character Encodings . 749
Appendix F: Special Characters . 753
Appendix G: Language Codes . 767
Appendix H: Mime Media Types . 771
Appendix I: Deprecated and Browser - Specific Markup 783

Index. 815

ffirs.indd iffirs.indd i 11/20/09 7:59:14 PM11/20/09 7:59:14 PM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 11/20/09 7:59:15 PM11/20/09 7:59:15 PM

www.allitebooks.com

http://www.allitebooks.org

Beginning
HTML, XHTML, CSS,

and JavaScript®

Jon Duckett

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 11/20/09 7:59:15 PM11/20/09 7:59:15 PM

www.allitebooks.com

http://www.allitebooks.org

Beginning HTML, XHTML, CSS, and JavaScript®
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-54070-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web
site is referred to in this work as a citation and/or a potential source of further information does not mean
that the author or the publisher endorses the information the organization or Web site may provide or
recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work
may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Control Number: 2009937840

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. JavaScript is a
registered trademark of Sun Microsystems, Inc. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd ivffirs.indd iv 11/20/09 7:59:16 PM11/20/09 7:59:16 PM

www.allitebooks.com

http://www.allitebooks.org

About the Author
Jon Duckett has spent over a decade helping a wide range of companies implement innovative web
strategies. Taking a hands-on approach, he designs many of the projects he works on and helps to code
them. During this time, Jon has written several books covering web design, programming, accessibility,
and usability.

About the Tech Editor
Chris Ullman is a freelance web developer and technical editor/author who has spent many years
working in web technologies. Coming from a computer science background, he gravitated towards MS
technologies during the summer of ASP (1997). He cut his teeth on Wrox Press ASP guides, and since
then has edited or contributed to more than 30 books, most notably as lead author for Wrox’s bestselling
Beginning ASP/ASP.NET 1.x/2 series. He lives in Cornwall and spends his non-computing time running,
writing music, and attempting — with his wife, Kate — to curb the enthusiasm of three very
boisterous young children.

ffirs.indd vffirs.indd v 11/20/09 7:59:16 PM11/20/09 7:59:16 PM

www.allitebooks.com

http://www.allitebooks.org

Credits
Executive Editor
Carol Long

Project Editor
William Bridges

Technical Editor
Chris Ullman

Production Editor
Daniel Scribner

Copy Editor
Nancy Rapoport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefi eld

Marketing Manager
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy Hanger

Indexer
Robert Swanson

Cover Designer
Michael E. Trent

Cover Image
© istockphoto.com/ Daft_Lion_Studio

ffirs.indd viffirs.indd vi 11/20/09 7:59:16 PM11/20/09 7:59:16 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

Introduction xxi

Chapter 1: Structuring Documents for the Web 1

A Web of Structured Documents 1
Introducing HTML and XHTML 2

Tags and Elements 4
Separating Heads from Bodies 5
Attributes Tell Us About Elements 7
Learning from Others by Viewing Their Source Code 8
Elements for Marking Up Text 9

Basic Text Formatting 10
White Space and Flow 10
Creating Headings Using <hn> Elements 11
The align Attribute (Deprecated) 13
Creating Paragraphs Using the <p> Element 15
Creating Line Breaks Using the
 Element 15
Creating Preformatted Text Using the <pre> Element 16

Presentational Elements 19
The Element 20
The <i>Element 20
The <u>Element (Deprecated) 21
The <s> and <strike> Elements (Deprecated) 21
The <tt> Element 21
The <sup> Element 22
The <sub> Element 22
The <big> Element 22
The <small> Element 22
The <hr /> Element 23

Phrase Elements 23
The Element Adds Emphasis 24
The Element Adds Strong Emphasis 24
The <address> Element Is for Addresses 24
The <abbr> Element Is for Abbreviations 25
The <acronym> Element Is for Acronym Use 25
The <dfn> Element Is for Special Terms 26

ftoc.indd viiftoc.indd vii 11/20/09 11:34:14 PM11/20/09 11:34:14 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

viii

The <blockquote> Element Is for Quoting Text 26
Using the cite Attribute with the <blockquote> Element 27
The <q> Element Is for Short Quotations 27
The <cite> Element Is for Citations 27
The <code> Element Is for Code 28
The <kbd> Element Is for Text Typed on a Keyboard 29
The <var> Element Is for Programming Variables 30
The <samp> Element Is for a Program Output 30

Lists 30
Using the Element to Create Unordered Lists 31
Ordered Lists 31
Definition Lists 33
Nesting Lists 34

Editing Text 38
Using Character Entities for Special Characters 39
Comments 40
The Element (Deprecated) 40
Understanding Block and Inline Elements 41
Grouping Elements with <div> and 42

The XML Declaration 43
Document Type Declaration 43

Core Elements and Attributes 45
The <html> Element 45
The <head> Element 45
The <title> Element 46
The <body> Element 47

Attribute Groups 47
Core Attributes 47
Internationalization 49
UI Events 51

Summary 51
Exercises 52

Chapter 2: Links and Navigation 55

Basic Links 55
Linking to Other Web Pages 56
Linking to E-mail Addresses 58

Understanding Directories and Directory Structures 61
Understanding URLs 62

Absolute and Relative URLs 63
The <base> Element 66

ftoc.indd viiiftoc.indd viii 11/20/09 11:34:14 PM11/20/09 11:34:14 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

ix

Creating Links with the <a> Element 66
Creating a Source Anchor with the href Attribute 66
Creating a Destination Anchor Using the name and id Attributes
(Linking to a Specific Part of a Page) 67
The <a> Element’s Other Attributes 70

Advanced E-mail Links 76
Summary 78
Exercises 78

Chapter 3: Images, Audio, and Video 79

Adding Images Using the Element 79
The src Attribute 80
The alt Attribute 80
The height and width Attributes 81
The align Attribute (Deprecated) 83
The border Attribute (Deprecated) 84
The hspace and vspace Attributes (Deprecated) 84
The ismap and usemap Attributes 85
The longdesc Attribute 85
The name Attribute (Deprecated) 86

Using Images as Links 88
Image Maps 89

Client-Side Image Maps 90
Server-Side Image Maps 94

Choosing the Right Image Format 95
GIF Images 97
Animated GIFs 100
JPEG Images 101
PNG Images 102
Keeping File Sizes Small 102

Adding Flash, Video, and Audio to Your Web Pages 104
Adding Flash Movies to Your Site 106
Adding Videos to Your Site 113
Adding Videos Using Flash Video 115
Video Size 117
Adding Audio to Your Site 118
Automatically Playing Audio and Video When a Page Loads 123
A Closer Look at the <object> and <param> Elements 123
The <param> Element 126

Summary 127
Exercises 128

ftoc.indd ixftoc.indd ix 11/20/09 11:34:15 PM11/20/09 11:34:15 PM

Contents

x

Chapter 4: Tables 131

Introducing Tables 131
Basic Table Elements and Attributes 139

The <table> Element Creates a Table 139
The <tr> Element Contains Table Rows 144
The <td> and <th> Elements Represent Table Cells 146

Adding a <caption> to a Table 151
Grouping Sections of a Table 151

Spanning Columns Using the colspan Attribute 151
Spanning Rows Using the rowspan Attribute 153
Splitting Up Tables Using a Head, Body, and Foot 154
Grouping Columns Using the <colgroup> Element 157
Columns Sharing Styles Using the <col> Element 158

Nested Tables 158
Accessible Tables 160

How to Linearize Tables 160
Using the id, scope, and headers Attributes 161

Summary 164
Exercises 165

Chapter 5: Forms 167

Introducing Forms 168
Creating a Form with the <form> Element 171

The action Attribute 171
The method Attribute 172
The id Attribute 172
The name Attribute (Deprecated) 172
The onsubmit Attribute 172
The onreset Attribute 173
The enctype Attribute 173
The accept-charset Attribute 174
The accept Attribute 174
The target Attribute 174
White Space and the <form> Element 174

Form Controls 175
Text Inputs 175
Buttons 180
Checkboxes 183
Radio Buttons 185

ftoc.indd xftoc.indd x 11/20/09 11:34:15 PM11/20/09 11:34:15 PM

Contents

xi

Select Boxes 187
File Select Boxes 193
Hidden Controls 194
Object Controls 195

Creating Labels for Controls and the <label> Element 198
Structuring Your Forms with <fieldset> and <legend> Elements 200
Focus 202

Tabbing Order 202
Access Keys 204

Disabled and Read-Only Controls 205
Sending Form Data to the Server 207

HT TP get 207
HT TP post 208

Summary 211
Exercises 212

Chapter 6: Frames 215

Introducing the Frameset 216
When To Use Frames 218
The <frameset> Element 219

The cols Attribute 220
The rows Attribute 222
Browser-Specific Extensions to the <frameset> Element 222

The <frame> Element 225
The src Attribute 225
The name Attribute 226
The frameborder Attribute 226
The marginwidth and marginheight Attributes 226
The noresize Attribute 227
The scrolling Attribute 227
The longdesc Attribute 227

The <noframes> Element 228
Creating Links Between Frames 228
Setting a Default Target Frame Using the <base> Element 230
Nested Framesets 231
Inline or Floating Frames with <iframe> 234

The <iframe> Element 235
Summary 240
Exercises 240

ftoc.indd xiftoc.indd xi 11/20/09 11:34:15 PM11/20/09 11:34:15 PM

Contents

xii

Chapter 7: Cascading Style Sheets 243

Introducing CSS 244
A Basic Example 245
Inheritance 249

Where You Can Add CSS Rules 250
The <link> Element 250
The <style> Element 252
Advantages of External CSS Style Sheets 253

CSS Properties 254
Controlling Text 255

The font-family Property 257
The font-size Property 259
The font-weight Property 261
The font-style Property 262
The font-variant Property 262
The font-stretch Property 263
The font-size-adjust Property 263

Text Formatting 264
The color Property 264
The text-align Property 265
The vertical-align Property 266
The text-decoration Property 267
The text-indent Property 268
The text-shadow Property 269
The text-transform Property 269
The letter-spacing Property 270
The word-spacing Property 271
The white-space Property 271
The direction Property 272

Text Pseudo-Classes 273
The first-letter Pseudo-Class 273
The first-line Pseudo-Class 274

Selectors 276
Universal Selector 277
The Type Selector 277
The Class Selector 277
The ID Selector 278
The Child Selector 278
The Descendant Selector 278
The Adjacent Sibling Selector 279

ftoc.indd xiiftoc.indd xii 11/20/09 11:34:16 PM11/20/09 11:34:16 PM

Contents

xiii

The General Sibling Selector 279
Using Child and Sibling Selectors To Reduce Dependence on Classes in Markup 279
Attribute Selectors 281

Lengths 283
Relative Units 283
Absolute Units 284
Percentages 284

Introducing the Box Model 285
An Example Illustrating the Box Model 286
The Border Properties 288
The padding Property 291
The margin Property 292
Dimensions of a Box 294
Internet Explorer Box Model Bug 299

Summary 304
Exercises 304

Chapter 8: More Cascading Style Sheets 307

Links 308
Backgrounds 309

The background-color Property 310
The background-image Property 310
The background-repeat Property 312
The background-position Property (for Fixing Position of Backgrounds) 314
The background-attachment Property (for Watermarks) 316
The background Property (the Shorthand) 316

Lists 317
The list-style-type Property 317
The list-style-position Property 318
The list-style-image Property 319
The list-style Property (the Shorthand) 320

Tables 320
Table-Specific Properties 322
The border-collapse Property 323
The border-spacing Property 324
The empty-cells Property 324
The caption-side Property 326
The table-layout Property 327

Outlines 328
The outline-width Property 329
The outline-style Property 329

ftoc.indd xiiiftoc.indd xiii 11/20/09 11:34:16 PM11/20/09 11:34:16 PM

Contents

xiv

The outline-color Property 329
The outline Property (the Shorthand) 329

The :focus and :active Pseudo-Classes 330
Generated Content 331

The :before and :after Pseudo-Elements 331
The content Property 332

Miscellaneous Properties 335
The cursor Property 335
The display Property 337
The visibility Property 337

Additional Rules 338
The @import Rule: Modularized Style Sheets 338
The !important Rule 339
The @charset Rule 340

Positioning and Layout with CSS 340
Normal Flow 341
The position Property 342
Box Offset Properties 342
Relative Positioning 343
Absolute Positioning 344
Fixed Positioning 345
The z-index Property 346
Floating Using the float Property 348
The clear Property 349

Summary 355
Exercises 355

Chapter 9: Page Layout 357

Understanding the Site’s Audience 358
Who Will Visit the Site? 358
Why Have They Visited Your Site? 359
What Does a Visitor Need to Achieve a Goal? 361
How Often Will People Want to Visit? 362
Things You Want the Site to Do 362
Prioritizing Information 362
Grouping and Categorization 363
Creating a Site Map 364
Identifying Key Elements for Each Page 365

Page Size (and Screen Resolution) 365
Understanding Screen Sizes 366
Fixed-Width vs. Liquid Designs 367

ftoc.indd xivftoc.indd xiv 11/20/09 11:34:16 PM11/20/09 11:34:16 PM

Contents

xv

Designing Pages 373
Composition and Grids 374
Sketching the Placement of Elements 380
How Visitors Look at a Page 387

Coding Your Design 391
The IE Box Model Bug 391
Working with a Grid 392
Multi-Column Layouts 394

Developing for Mobile Devices 408
Understanding the Medium and How It Is Used 408
How to Approach Mobile Development 410
Building a Mobile Site 413

Summary 419
Exercises 419

Chapter 10: Design Issues 421

Typography 422
Line Length — A Measure 422
Font Sizes 424
Choosing Fonts 426
Line Height — Leading 427
CSS Resets 429
Line Height — Baseline Grids 430
Space Between Letters — Tracking 434
White Space 434
Chunking 436
Contrast 437

Navigation 440
Menus 440
Links 449
Site Search Features 452

Tables 454
Padding 454
Headings 455
Shading Alternate Rows 456

Forms 456
Before Designing the Form 457
Designing the Form 459
Layout of Forms 464

Summary 479
Exercises 479

ftoc.indd xvftoc.indd xv 11/20/09 11:34:17 PM11/20/09 11:34:17 PM

Contents

xvi

Chapter 11: Learning JavaScript 481

What Is Programming About? 482
How to Add a Script to Your Pages 484

Comments in JavaScript 486
The <noscript> Element 487

The Document Object Model 488
Accessing Values Using Dot Notation 490
The Document Object 491
The Forms Collection 493
Form Elements 495
Images Collection 498
Different Types of Objects 500

Starting to Program with JavaScript 501
Variables 502

Assigning a Value to a Variable 502
Lifetime of a Variable 503

Operators 503
Arithmetic Operators 504
Assignment Operators 504
Comparison Operators 505
Logical or Boolean Operators 506
String Operator (Using + with Strings) 506

Functions 506
How to Define a Function 507
How To Call a Function 507
The Return Statement 508

Conditional Statements 508
if Statements 508
if . . . else Statements 509
switch Statement 510

Looping 511
while 512
do . . . while 512
for 513
Infinite Loops and the break Statement 514

Events 514
Built-in Objects 516

String 516
Date 520
Math 523

ftoc.indd xviftoc.indd xvi 11/20/09 11:34:17 PM11/20/09 11:34:17 PM

Contents

xvii

Array 525
Window 526

Writing JavaScript 528
A Word About Data Types 529
Keywords 530

Summary 530
Exercises 531

Chapter 12: Working with JavaScript 533

Practical Tips for Writing Scripts 533
Has Someone Already Written This Script? 533
Reusable Functions 534
Using External JavaScript Files 534
Place Scripts in a Scripts Folder 534

Form Validation 535
When to Validate 535
What You Can Check For 535
How to Check a Form 536
Checking Text Fields 536
Select Box Options 551
Radio Buttons 553
Checkboxes 554

Form Enhancements 556
Focus on First Form Item 556
Auto-Tabbing Between Fields 557
Disabling a Text Input 558
Case Conversion 560
Trimming Spaces from Beginning and End of Fields 560
Selecting All the Content of a Text Area 562
Check and Uncheck All Checkboxes 562

JavaScript Libraries 570
Animated Effects Using Scriptaculous 571
Drag-and-Drop Sortable Lists Using Scriptaculous 574
Creating a Lightbox 575
Creating a Modal Window 577
Sortable Tables with MochiKit 578
Creating Calendars with YUI 581
Auto-Completing Text Inputs with YUI 582

Summary 584
Exercises 585

ftoc.indd xviiftoc.indd xvii 11/20/09 11:34:17 PM11/20/09 11:34:17 PM

Contents

xviii

Chapter 13: Putting Your Site on the Web 587

Meta Tags 588
name and content Attributes 588
http-equiv and content 591
The scheme Attribute 593

Testing Your Site 593
Validating HTML, XHTML, and CSS 594
Link Checking 596
Checking Color Depths 598
Accessibility Checkers 598
Checking in Different Versions of Browsers 599
Pilot Testing 599
Proofreading 601

Taking the Leap to Live 601
Getting a Domain Name 601
Hosting 602
Key Considerations for Choosing a Host 602
Putting Your Site on a Server Using FTP 604
The Importance of Directory Structure and Relative URLs 606

Telling the World about Your Site 607
Always Mention Your URL 608
Content Is King 608
Forums, Communities, and Social Networks 608
Check for Trade Sites and Directories 608
Reciprocal Links 609
Look at Your Competition 609
Make It Easy for People to Link to You 609
Pay-per-click Advertising 610
Display Advertising 612
Create an E-mail Newsletter 612

Understanding Your Visitors 613
Ten Things to Check in Google Analytics 614
Measuring Everything 615

What Next? 616
Tools 617
Introducing Other Technologies 620

Summary 626

ftoc.indd xviiiftoc.indd xviii 11/20/09 11:34:17 PM11/20/09 11:34:17 PM

www.allitebooks.com

http://www.allitebooks.org

Contents

xix

Chapter 14: Checklists 627

Search Engine Optimization Checklist 627
On-Page Techniques 628
Identifying Keywords and Phrases 628
Off-Page Techniques 631

Accessibility Checklist 631
Setting Up Your Document 631
Structural and Semantic Markup 632
Links and Navigation 632
Images and Multimedia 632
Color 633
Tables 633
Forms 634
Style Sheets 634
JavaScript 634
Skip Links 634

Differences Between HTML and XHTML 635
All Tag Names and Attribute Names Must Be Written in Lowercase 635
All Attributes Must Have a Value Given in Double Quotation Marks 636
Elements Must Nest; There Must Be No Overlapping 636
Empty Elements Must Contain a Closing Slash 636
Scripts Should Live in a CDATA Section 636

HTML 5 637
Language Compatibility in HTML 5 637
Stylistic Markup Will Be Removed 637
New Semantic Elements 638
New Values for the <input> Element’s type Attribute 639
New Multimedia Elements 639
New APIs 640

Appendix A: Answers to Exercises 641

Appendix B: XHTML Element Reference 677

Appendix C: CSS Properties 713

Appendix D: Color Names and Values 741

ftoc.indd xixftoc.indd xix 11/20/09 11:34:18 PM11/20/09 11:34:18 PM

Contents

xx

Appendix E: Character Encodings 749

Appendix F: Special Characters 753

Appendix G: Language Codes 767

Appendix H: MIME Media Types 771

Appendix I: Deprecated and Browser - Specific Markup 783

Index 815

ftoc.indd xxftoc.indd xx 11/20/09 11:34:18 PM11/20/09 11:34:18 PM

 Introduction

 There are a lot of books about designing and building web pages, so thank you for picking up this one.
During the relatively short life of the Web, many technologies have been introduced to help you create
web pages, some of which have lasted, others of which have disappeared. Now the dust is beginning to
settle, and commonly accepted best practices are emerging; so the aim of this book is to teach you how
to create pages for the Web as it is today and will be for the next few years.

 This book is different from many books because it teaches you more than just the code you need to learn
to write web pages; I wanted to share some of the practical experience I have gained designing and
building web sites over the past 12 years. Therefore, alongside the usual technical information, you will
see advice on topics that range from how to approach the task of creating a new site to chapters that let
you in on the techniques used by designers to make their pages more attractive. You will also find
information about important topics such as accessibility and usability that any professional web
programmer needs to understand. And, once you have worked through this book, it should continue to
serve as a helpful reference text you can keep nearby and dip into as you need to.

 As the title of this book suggests, you will be learning a few different languages in order to create
effective and attractive web pages:

 HTML and XHTML are needed to explain the structure of any web pages. If you look at this
page it is made up of a lot of words. On web pages it is the job of HTML and XHTML to explain
the structure of the words — which words form a heading, where paragraphs start and end, and
which text should have bullet points. These languages also specify links between different web
pages and where images should appear.

 This book focuses mainly on teaching you XHTML, but you will be glad to know that by
learning XHTML you will automatically be able to write HTML (because you can consider
XHTML to be exactly the same as HTML, but with a few extra rules added — making it a little
more strict). At the end of the book is a preview of HTML 5, the next version of HTML.

 CSS is used to control how your pages look. For example, you can use CSS to specify that a
typeface should be a large, bold Arial typeface or that the background of a page should be
a light green. You can also use CSS to control where different items appear on a page, such as
placing three columns of text next to each other.

 JavaScript can add interactivity to your web pages. JavaScript is a huge topic in itself, so it is not
covered in the same depth as XHTML and CSS, but I will teach you just enough JavaScript to
write your own basic scripts and to enable you to incorporate many of the thousands of
JavaScripts that are available for free on the Web.

 About the Book
 As you have already seen, you ’ ll be learning how to control the structure of a web page using XHTML,
how to style it using CSS, and how to add interactivity using JavaScript. Learning how this code works
will give you a solid foundation for building web sites, and alongside this you will see plenty of practical
advice that helps you learn about issues you are likely to meet when you start building sites.

❑

❑

❑

flast.indd xxiflast.indd xxi 11/20/09 11:19:14 PM11/20/09 11:19:14 PM

Introduction

xxii

 While learning how to code, you will see lots of advice on usability — how to build web sites that are
easy to use and enable visitors to achieve what they came for. In several parts of the book I also discuss
issues regarding accessibility — making a site available to as many users as possible (in particular,
people with disabilities, who may have impaired vision or difficulty using a mouse). In the same way
that many countries have laws requiring architects to design buildings that are accessible, there are strict
accessibility guidelines for building web sites to ensure they do not exclude visitors. A little careful
thought before you build your web site means that people with vision impairments can either view your
site with larger text or have it read to them by a piece of software called a screen reader . Whole books are
dedicated to the topics of usability and accessibility and are aimed at web developers who need to learn
how to make their code more accessible and usable. My aim is to teach you to code with these principles
in mind from the start.

 In addition to learning how to code usable and accessible web sites, I will also be sharing lots of tips and
techniques that professional web designers use when creating new sites. These techniques make it easier
for anyone to lay out pages in a more attractive way.

 You will even learn about creating sites that work on devices such as mobile phones and game consoles,
which are increasingly being used to access the Web. You will probably be relieved to know that many of
the browsers on such devices employ the same languages that you will be learning in this book — and
that by learning to use XHTML with CSS you will be able to create web sites that work on a variety of
platforms, and will therefore last much longer than those written in older versions of HTML.

 While it is important to learn the latest practices for creating web pages using these languages, if you
intend to create web sites that anyone can access, you will also have to learn some older aspects of the
languages you meet. This is important because not everyone has the latest web browser installed on his
or her computer; as a result, the latest features may not work for everyone, and in such cases you need to
learn techniques that will work in some older browsers that are still popular today. In order to make sure
pages work in older browsers, you will see several occasions throughout the book where certain features
of a language are marked as deprecated ; this means that while this feature should still work in modern
browsers, you are being warned that software might not support it much longer.

 By the end of this book, you will be writing web pages that not only use the latest technologies, but also are
still viewable by older browsers — pages that look great, and can also be accessed by those with visual and
physical impairments. These are pages that not only address the needs of today ’ s audiences but can also
work on emerging technologies — and therefore the skills you will learn should be relevant longer.

 Whom This Book Is For
 This book is written for anyone who wants to learn how to create web pages, and for people who may
have dabbled in writing web pages (perhaps using some kind of web - page authoring tool), but who want
to really understand the languages of the Web, to give them more control over the pages they create.

 More experienced web developers can also benefit from this book because it teaches some of the latest
technologies and encourages you to embrace web standards that not only meet the needs of the new
devices that access the Web, but also help make your sites available to more visitors.

 You don ’ t need any previous programming experience to work with this book. This is one of the first
steps on the programming ladder. Whether you are just a hobbyist or want to make a career of web
programming, this book will teach you the basics of programming for the Web. Sure, the term

flast.indd xxiiflast.indd xxii 11/20/09 11:19:16 PM11/20/09 11:19:16 PM

Introduction

xxiii

 “ programmer ” might be associated with geeks, but as you will see by the end of the book, even if you
would prefer to be known as a web designer, you need to know how to code in order to create great
web sites.

 What This Book Covers
 By the end of this book, you will be able to create professional-looking and well - coded web pages.

 Not only will you learn the code that makes up markup languages such as HTML and XHTML, but you
will also see how to apply this code so you can create sophisticated layouts for your pages, positioning
text and images where you would like them to appear and getting the colors and fonts you want. Along
the way, you will see how to make your pages easy to use and available to the biggest audience possible.
You will also learn practical techniques such as how to make your web site available on the Internet and
how to get search engines to recognize your site.

 The main technologies covered in this book are HTML, XHTML, and CSS. You will also learn the basics
of JavaScript — enough to work on some examples that add interactivity to your pages and allow you to
work with basic scripts. Along the way I introduce and point you to other technologies you might want
to learn in the future.

 The code I will encourage you to write is based on what are known as web standards; HTML, XHTML,
and CSS are all created and maintained by the World Wide Web Consortium, or W3C (http://www.w3
.org/), an organization dedicated to the development of the Web. You will also learn about some
features that are not in these standards; it is helpful to know about some of these in case you come
across such markup and need to know what it does. Where these are introduced, I make it clear they are
not part of the standard.

 What You Need to Use This Book
 All you need to work through this book is a computer with a web browser (preferably Firefox 2 or
higher, Safari 2 or higher, or Internet Explorer 6 or higher), and a simple text editor such as Notepad on
Windows or TextEdit on Mac.

 If you have a web - page editor program, such as Macromedia Dreamweaver or Microsoft FrontPage, you
are welcome to use it. I will not be teaching you how to use these programs; rather, I will be teaching
you how to write by hand the code that these programs produce. Even if you use one of these tools,
when you understand the code it generates you can then go in and edit it, which means you have much
greater control over how your sites look and the ability to make them more attractive.

 How This Book Is Organized
 The first chapter of this book will show you that the main task in creating a web site is marking up the text you
want to appear on your site, using elements and attributes . As you will see, these elements and attributes
describe the structure of a document (what is a heading, what is a paragraph of text, what is a link, and so on).

 The first six chapters of the book describe the different elements and attributes that make up HTML and
XHTML and how you can use them to write web pages. These chapters are organized into task - related areas,
such as structuring a document into headings and paragraphs; creating links between pages; adding images,

flast.indd xxiiiflast.indd xxiii 11/20/09 11:19:16 PM11/20/09 11:19:16 PM

Introduction

xxiv

audio and video; and displaying tables. With each task or topic that is introduced, you will see an example
first to give you an idea of what is possible; then you can look at the elements and attributes used in detail.

 When you first read this book, you do not need to closely read the detailed explanations of every single
element. As long as you understand the gist of the markup, feel free to move on, and then come back
and look at the finer detail when you need it.

 Each chapter ends with exercises designed to get you working with the concepts you ’ ve just learned. Don ’ t
worry if you have to go back and review the content of the chapter in order to complete the exercises: this
book has been created with the intention that it should be a helpful reference for years to come, so don ’ t feel
that you need to learn everything by heart. Along the way, you ’ ll see which browsers support each element
and you ’ ll learn plenty of handy tips, tricks, and techniques for creating professional web pages.

 Once you have seen how to create and structure a document using HTML and XHTML, you will then learn
how to make your pages look more attractive using CSS. For example, you ’ ll learn how to change the
typefaces and size of fonts, color of text backgrounds, and borders that go around items. In addition, you ’ ll
learn how to control where items appear on the page, which will allow you to create attractive layouts.

 Having worked through the two chapters on CSS, and using the examples in the book, you should be
able to write quite complex web pages. The chapters up to that point can then act as a helpful reference
you can keep coming back to, and the examples will act as a toolkit for building your own sites.

 Chapters 9 and 10 start to build on the theory you learned in the first half of the book, with practical
advice on how to approach the creation of a new web site, determine who it is aimed at, and ensure that
it meets the needs of its target audience.

 These chapters also introduce many key issues regarding the design of web pages and how to make
them more attractive. The design sections cover both the bigger picture — how to lay out your page —
 and also more detailed aspects, such as how to create effective navigation that allows users to find the
pages they want on your site, and how to create effective forms to gather information from visitors.

 Chapters 11 and 12 introduce you to JavaScript, a programming language that enables you to add
interactivity to your pages. While the entire JavaScript language is too large to teach you in two chapters,
you will learn how to create your own basic scripts and also how to integrate scripts other people have
written into your pages. Thousands of free JavaScripts are already available on the Web, and having
learned the basics of JavaScript, you ’ ll see how easy it can be to add some very complex functionality to
your site with just a few lines of code.

 Chapter 13 prepares you to put your site on the Internet and covers web hosting, FTP, and validating
your code. Finally, I will give you some ideas about where you can go next once you ’ ve worked through
this book; there are lots of other things that you might want to add to your site or learn in order to
advance your web skills, and this chapter gives you an idea of what else is possible.

 The final chapter, Chapter 14, includes some checklists. These bring together some topics that are dotted
throughout the book, such as accessibility and the differences between HTML and XHTML.

 I have also included several helpful appendices, including a reference to XHTML elements and CSS
properties. There is an appendix that explains how XHTML and CSS specify colors. Other appendices
show you available character encodings, language codes, and escape characters that can be used with
HTML, XHTML, CSS, and JavaScript. Finally, there is an appendix on old markup that should not really
be used any longer — but that you might still come across when working on a site.

flast.indd xxivflast.indd xxiv 11/20/09 11:19:16 PM11/20/09 11:19:16 PM

Introduction

xxv

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, I ’ ve used a number of
conventions throughout the book.

 Try It Out

 The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

 I highlight new terms and important words when we introduce them.

 I show keyboard strokes like this: Ctrl+A.

 I show file names, URLs, and code within the text like so: persistence.properties .

 Code appears like this:

In a monospaced font.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at http://www.wrox.com . Once at the site, simply locate the book ’ s title
(either by using the Search box or by using one of the title lists) and click the Download Code link on the
book ’ s detail page to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 54070 - 1.

 Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

❑

❑

❑

❑

flast.indd xxvflast.indd xxv 11/20/09 11:19:17 PM11/20/09 11:19:17 PM

Introduction

xxvi

 Errata
 I ’ ve made every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in this book, such as a spelling mistake or faulty piece of
code, I would be very grateful for your feedback. By sending in errata you may save another reader hours
of frustration, and at the same time you will be helping to provide even higher quality information.

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors.

 A complete book list including links to errata is also available at www.wrox.com/misc-pages/
booklist.shtml .

 If you don ’ t spot “ your ” error on the Errata page, click the Errata Form link and complete the form to
send us the error you have found. We ’ ll check the information and, if appropriate, post a message to the
book ’ s errata page and fix the problem in subsequent editions of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviflast.indd xxvi 11/20/09 11:19:17 PM11/20/09 11:19:17 PM

1
Structuring Documents

for the Web

 In this chapter, you learn the key concept of creating any web page: how to give it structure . You
need to add structure to a document so that web browsers can present the page to people who visit
your site in a way they will understand. For example, imagine a news article that contains a
headline (or title) and several paragraphs of text; if you wanted to put this article on the Web, you
would need to add structure to the words in the document so that the browser knows which
words are the headline, and where each paragraph starts and ends. To give a document structure,
you ’ ll need to learn how to create web pages using HTML. Or, to be a little more precise, this book
focuses on a type of HTML known as XHTML.

 In this chapter you will:

 Create several example web pages in XHTML.

 See how a web page describes its structure to a web browser.

 Discover the meaning of some key terms used by web designers, such as elements ,
 attributes , tags , and markup .

 By the end of the chapter, you will have learned the basic building blocks needed to build a web
page, and will have put this into practice with several examples.

 A Web of Structured Documents
 Before we create our first web page, let ’ s just take a moment to look at the printed information we
see every day, and how it compares to what we see on the Web. Every day, you come across all
kinds of printed documents — newspapers, train timetables, insurance forms. You can think of the
Web as being a sea of documents that all link together, and bear a strong similarity to the printed
documents that you meet in everyday life.

❑

❑

❑

c01.indd 1c01.indd 1 11/20/09 3:45:29 PM11/20/09 3:45:29 PM

Chapter 1: Structuring Documents for the Web

2

 Every morning I used to read a newspaper. A newspaper is made up of several stories or articles (and
probably a fair smattering of advertisements, too). Each story has a headline and then some paragraphs,
perhaps a subheading, and then some more paragraphs; it may also include a picture or two.

 I don ’ t buy a daily paper anymore, as I tend to look at news online, but the structure of articles on news
web sites is very similar to the structure of articles in newspapers. Each article is made up of headings,
paragraphs of text, and some pictures (sometimes the pictures might be replaced by a video). The
parallel is quite clear; the only real difference is that in a newspaper you may have several stories on a
single page, whereas on the Web each story tends to get its own page. The news web sites also often use
homepages that display the headline and a brief summary of the stories.

 Consider another example: Say I ’ m catching a train to see a friend, so I check the schedule or timetable to
see what time the trains go that way. The main part of the schedule is a table telling me what times trains
arrive and when they depart from different stations. You can probably think of several types of
documents that use tables. From the listings in the financial supplement of your paper to the TV
schedule, you come across tables of information every day — and often when this information is put on
the Web, these tables are recreated.

 Another common type of printed document is a form. For example, on my desk at the moment, I have a
form (which I really must mail) from an insurance company. This form contains fields for me to write my
name, address, and the amount of coverage I want, along with checkboxes to indicate the number of
rooms in the house and what type of lock I have on my front door. There are lots of forms on the Web,
from simple search boxes that ask what you are looking for to the registration forms you are required to
go through before you can place an online order for books or CDs.

 As you can see, there are many parallels between the structure of printed documents you come across
every day and pages you see on the Web. When it comes to writing web pages, it is the XHTML code
you start learning in this chapter that tells the web browser how the information you want to display is
structured — what text to put in a heading, or in a paragraph, or in a table, and so on — so that the
browser can present it properly to the user.

 Introducing HTML and XHTML
 Even if you have never seen any HTML (Hypertext Markup Language) code, you may be familiar with
the fact that it is used to create most web pages. There have been several versions of HTML since the
Web began, and the development of the language is overseen by an organization called the W3C (World
Wide Web Consortium).

 The last major version of HTML was HTML 4.01 in December 1999. In January 2000, some stricter rules
were added to HTML 4.01, creating what is known as XHTML (Extensible Hypertext Markup
Language), and it is this version of the language that we will be focusing on throughout this book.
Generally, you will see the term XHTML used in the rest of this book. Unless otherwise mentioned, the
same rules apply to HTML.

 I use this stricter XHTML syntax because it can be processed by more applications than HTML 4.01. If
you are interested, there is a summary of the differences between HTML 4 and XHTML 1.0 in Chapter
14. There is also a brief look forward to what will be the next version of HTML, HTML 5, in another
section of Chapter 14.

c01.indd 2c01.indd 2 11/20/09 3:45:30 PM11/20/09 3:45:30 PM

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Structuring Documents for the Web

3

 As its name suggests, XHTML is a markup language , which may sound complicated, until you realize
that you come across markup every day. When creating a document in a word processor, you can add
styles to the text to explain the document ’ s structure. For example, you can distinguish headings from
the main body of the text using a heading style (usually with a larger font). You can use the Return
(or Enter) key to start a new paragraph. You can insert tables into your document to hold data, or create
bulleted lists for a series of related points, and so on. While this does affect the presentation of the
document, the key purpose of this kind of markup is to provide a structure that makes the document
easier to understand.

 When marking up documents for the Web, you are performing a very similar process, except you do it
by adding things called tags to the text. With XHTML, the key thing to remember is that you are adding
the tags to indicate the structure of the document (not how you want it to be presented); for example,
which part of the document is a heading, which parts are paragraphs, what belongs in a table, and so on.
Browsers such as Internet Explorer, Firefox, and Safari all use this markup to help present the text in a
familiar fashion, similar to that of a word processor — main headings are bigger than the text in
paragraphs, there is space above and below each paragraph, lists of bullet points have a circle in front of
them. But the XHTML specification does not specify which font should be used or what size that font
should be.

 While earlier versions of HTML allowed you to control the presentation of a document — such as which
typefaces and colors a document should use — XHTML markup is not supposed to be used to style the
document; that is the job of CSS, which you meet in Chapter 7.

 Let ’ s have a look at a very simple web page. As I mentioned in the Introduction, you don ’ t need any
special programs to write web pages — you can simply use a text editor such as Notepad on Windows
or TextEdit on a Mac, and save your files with the .html file extension. You can download this example
along with all the code for this book from the Wrox web site at www.wrox.com ; the example is in the
Chapter 1 folder (along with other examples from this chapter) and is called ch01_eg01.html .

 < html >
 < head >
 < title > Popular Websites: Google < /title >
 < /head >
 < body >
 < h1 > About Google < /h1 >
 < p > Google is best known for its search engine, although
 Google now offers a number of other services. < /p >
 < p > Google’s mission is to organize the world’s
 information and make it universally accessible and
 useful. < /p >
 < p > Its founders Larry Page and Sergey Brin started
 Google at Stanford University. < /p >
 < /body >
 < /html >

 This may look a bit confusing at first, but it will all make sense soon. As you can see, there are several
sets of angle brackets with words or letters between them, such as < html > , < head > , < /title > , and
 < /body > . These angle brackets and the words inside them are known as tags , and these are the markup I
have been talking about. Figure 1 - 1 illustrates what this page would look like in a web browser.

c01.indd 3c01.indd 3 11/20/09 3:45:31 PM11/20/09 3:45:31 PM

Chapter 1: Structuring Documents for the Web

4

 As you can see, this document contains the heading “ About Google ” and a paragraph of text to
introduce the company. Note also that it says “ Popular Websites: Google ” in the very top - left of the
browser window; this is known as the title of the page (to the right it says Mozilla Firefox, which is
the browser this page was opened in).

 To understand the markup in this first example, you need to look at what is written between the angle
brackets and compare that with what you see in the figure, which is what you will do next.

 Tags and Elements
 If you look at the first and last lines of the code for the last example, you will see pairs of angle brackets
containing the letters “ html ” Starting on the first line, the first angled bracket looks like a less - than sign,
then there are the letters “ html ,” followed by a second angled bracket, which looks like a greater - than
sign. The two brackets and all of the characters between them are known as a tag .

 In this example, there are lots of tags and they are all in pairs; there are opening tags and closing tags . The
closing tag is always slightly different from the opening tag in that it has a forward slash after the first
angled bracket: < /html > .

 A pair of tags and the content these include are known as an element . In Figure 1 - 2, you can see the
heading for the page of the last example.

Figure 1-1

Figure 1-2

<h1>About Google</h1>

Element

Opening
tag

Closing
tag

c01.indd 4c01.indd 4 11/20/09 3:45:31 PM11/20/09 3:45:31 PM

Chapter 1: Structuring Documents for the Web

5

 The opening tag says “ This is the beginning of a heading ” and the closing tag says “ This is the end of a
heading. ” Like most tags in XHTML, the text inside the angled brackets explains the purpose of the
tag — here h1 indicates that it is a level 1 heading (or top - level heading). As you will see shortly, there
are also tags for subheadings (< h2 > , < h3 > , < h4 > , < h5 > , and < h6 >). If we had not put tags around the
words “ About Google ,” it would just be another bit of text; it would not be clear that these words formed
the heading.

 Now look at the three paragraphs of text about the company; each one is placed between an opening < p >
tag and a closing < /p > tag. And, you guessed it, the p stands for paragraph.

 The basic distinction between tags and elements is very important to understand:
a tag is made up of a left - and right - angle bracket and letters and numbers
between those brackets, whereas elements are the opening and closing tags plus
anything between the two tags.

 As you can see, the tags throughout this example actually describe what you will find between them,
creating the structure of the document. The text between the < h1 > and < /h1 > tags is a heading, and
between the opening < p > and closing < /p > tags make up paragraphs. Indeed, the whole document is
contained between opening < html > and closing < /html > tags.

 You will often find that terms from a family tree are used to describe the relationships between elements.
For example, an element that contains another element is known as the parent , while the element that ’ s
between the parent element ’ s opening and closing tags is called a child of that element. So, the < title >
element is a child of the < head > element, the < head > element is the parent of the < title > element, and
so on. Furthermore, the < title > element can be thought of as a grandchild of the < html > element.

 It is worth noting that the tags in this example are all in lowercase characters; you will sometimes see
web pages written in HTML where tags are uppercase (or a mix of uppercase and lowercase letters).
When XHTML was introduced, with its stricter rules, it stated that all tags were written in lowercase.

 Just to emphasize, XHTML tags should always be written in lowercase letters.

 Separating Heads from Bodies
 Whenever you write a web page in XHTML, the whole of the page is contained between the opening
 < html > and closing < /html > tags, just as it was in the last example. Inside the < html > element, there are
two main parts to the page:

c01.indd 5c01.indd 5 11/20/09 3:45:32 PM11/20/09 3:45:32 PM

Chapter 1: Structuring Documents for the Web

6

 The < head > element: Often referred to as the head of the page, this contains information about
the page (this is not the main content of the page). For example, it might contain a title and a
description of the page, or instructions on where a browser can find CSS rules that explain how
the document should look. It consists of the opening < head > tag, the closing < /head > tag, and
everything in between.

 The < body > element: Often referred to as the body of the page, this contains the information
you actually see in the main browser window. It consists of the opening < body > tag, closing
< /body > tag, and everything in between.

 Together, the < html > , < head > , and < body > elements make up the skeleton of an XHTML document —
 they are the foundation upon which every web page is built.

 Inside the < head > element of the first example page, you can see a < title > element:

 < head >
 < title > Popular Websites: Google < /title >
 < /head >

 Between the opening < title > tag and the closing < /title > tag are the words Popular Websites:
Google , which is the title of this web page. When I introduced Figure 1 - 1, which showed the screenshot
of this page, I called your attention to the words right at the top of the browser window. This is where
browsers such as Internet Explorer, Firefox, and Safari display the title of a document; it is also the name
they use when you save a page in your favorites, and it helps search engines understand what your page
is about.

 The real content of your page is held in the < body > element, which is what you want users to read, and
this is shown in the main browser window.

 The < head > element contains information about the document, which is not
displayed within the main page itself. The < body > element holds the actual
content of the page that is viewed in your browser.

 You may have noticed that the tags in this example appear in a symmetrical order. If you want to have
one element inside another, then both the element ’ s opening and closing tags must be inside the
containing element. For example, the following is allowed:

 < p > This paragraph contains some < em > emphasized text. < /em > < /p >

whereas the following is wrong because the closing < /em > tag is not inside the paragraph element:

 < p > This paragraph contains some < em > emphasized text. < /p > < /em >

 In other words, if an element is to contain another element, it must wholly contain that element. This is
referred to as nesting your elements correctly.

❑

❑

c01.indd 6c01.indd 6 11/20/09 3:45:32 PM11/20/09 3:45:32 PM

Chapter 1: Structuring Documents for the Web

7

 Attributes Tell Us About Elements
 What really differentiates web documents from standard documents are the links (or hyperlinks) that
take you from one web page to another. Let ’ s take a look at a link by adding one to the example you just
looked at. Links are created using an < a > element (the a stands for anchor).

 Here we will add a link from this page to Google in a new paragraph at the end of the document. There
is just one new line in this example (code sample ch01_eg02.html) and that line is highlighted:

 < html >
 < head >
 < title > Popular Websites: Google < /title >
 < /head >
 < body >
 < h1 > About Google < /h1 >
 < p > Google is best known for its search engine, although Google now offers a
 number of other services. < /p >
 < p > Google’s mission is to organize the world’s information and make it
 universally accessible and useful. < /p >
 < p > Its founders Larry Page and Sergey Brin started Google at Stanford
University. < /p >

 < p > < a href=”http://www.Google.com/” > Click here to visit Google’s Web
 site. < /a > < /p >

 < /body >
 < /html >

 Inside this new paragraph is the < a > element that creates the link. Between the opening < a > tag and the
closing < /a > tag is the text that you can click on, which says “ Click here to visit Google ’ s Web site. ”
Figure 1 - 3 shows you what this page looks like in a browser.

Figure 1-3

c01.indd 7c01.indd 7 11/20/09 3:45:32 PM11/20/09 3:45:32 PM

Chapter 1: Structuring Documents for the Web

8

 If you look closely at the opening tag of the link, it carries something called an attribute . In this case, it ’ s
the href attribute; this is followed by an equal sign, and then a pair of quotation marks which contain
the URL for Google ’ s web site. In this case, the href attribute is telling you where the link should take
you. You ’ ll look at links in greater detail in the next chapter, but for the moment this illustrates the
purpose of attributes.

 Attributes are used to say something about the element that carries them, and they always appear on the
opening tag of the element that carries them. All attributes are made up of two parts: a name and a value :

 The name is the property of the element that you want to set. In this example, the < a > element
carries an attribute whose name is href , which you can use to indicate where the link should
take you.

 The value is what you want the value of the property to be. In this example, the value was
the URL of the site that the link should take you to, so the value of the href attribute is
http://www.Google.com .

 The value of the attribute should always be put in double quotation marks, and it is separated from the
name by the equal sign. If you wanted the link to open in a new window, you could add a target
attribute to the opening < a > tag as well, and give it a value of _blank :

 < a href=”http://www.Google.com” target=”_blank” >

 This illustrates that elements can carry several attributes, although an element should never have two
attributes of the same name.

 All attributes are made up of two parts, the attribute ’ s name and its value,
separated by an equal sign. Values should be held within double quotation
marks. All XHTML attribute names should be written in lowercase letters.

 Learning from Others by Viewing Their Source Code
 When HTML first came out, a lot of people learned how to create pages by using a very handy feature
that you ’ ll find in most common browsers — the ability to look at the source code that made the page.

 If you go to the View menu in your browser, and then look for an option that says View Source or Page
Source, you should be able to see the code that created the page.

 If you want to see how the author of a page achieved something on a page, this can be a very handy
technique. Figure 1 - 4 shows how to look at the source of the Google homepage (the window on the right
contains the source for the page).

❑

❑

c01.indd 8c01.indd 8 11/20/09 3:45:33 PM11/20/09 3:45:33 PM

Chapter 1: Structuring Documents for the Web

9

 Elements for Marking Up Text
 You now know that an XHTML page (also sometimes referred to as an XHTML document) is made up of
elements that describe how its content is structured. Each element describes what you will find between
its opening and closing tags. The opening tags can also carry attributes that tell you more about that
particular element.

 Equipped with this knowledge, you'll find that much of learning XHTML is a matter of learning what
elements you can use, what each of these elements does, and what attributes each can carry.

 You ’ ve already seen that every XHTML document starts off using the < html > , < head > , and < body >
elements. You will come back to look at these elements in more detail near the end of the chapter, at
which point you will also meet some attributes called universal attributes (so called because they can
appear on every element). But I want to get you building pages as quickly as possible, so you ’ re going to
spend most of the remaining part of this chapter learning the different elements you can use to describe
the structure of text:

 The six levels of headings: < h1 > , < h2 > , < h3 > , < h4 > , < h5 > , and < h6 >

 Paragraphs < p > , preformatted sections < pre > , line breaks < br / > , and addresses < address >

 Presentational elements: < b > , < i > , < u > , < s > , < tt > , < sup > , < sub > , < strike > , < big > , < small > ,
and < hr / >

 Phrase elements such as < em > , < strong > , < abbr > , < acronym > , < dfn > , < blockquote > , < q > ,
 < cite > , < code > , < kbd > , < var > , < samp > , and < address >

 Lists such as unordered lists using < ul > and < li > , ordered lists using < ol > and < li > , and
definition lists using < dl > , < dt > , and < dd >

❑

❑

❑

❑

❑

Figure 1-4

c01.indd 9c01.indd 9 11/20/09 3:45:33 PM11/20/09 3:45:33 PM

Chapter 1: Structuring Documents for the Web

10

 Editing elements such as < ins > and < del >

 Grouping elements: < div > and < span >

 That may sound like a lot of elements, but I hope you ’ ll be surprised at how quickly we can move
through them.

 Basic Text Formatting
 Because almost every document you create will contain some form of text, the elements you are about to
meet are likely to feature in most pages that you will build. In this section, you learn how to use what are
known as basic text formatting elements :

 < h1 > , < h2 > , < h3 > , < h4 > , < h5 > , < h6 >

 < p > , < br / > , < pre >

 As you read through this section, it is worth being aware that, while one browser might display each of
these elements in a certain way, another browser could display the same page in a slightly different way;
for example, the typefaces used, the font sizes, and the spaces around these elements may differ between
browsers (and therefore the amount of space a section of text takes up can vary, too).

 Before you look at the elements themselves, it helps to know how text is displayed by default, without
any elements. This will help demonstrate the importance of using markup to tell the browser if you want
it to treat text differently.

 White Space and Flow
 Before you start to mark up your text, it ’ s best to understand what XHTML does when it comes across
spaces and how browsers treat long sentences and paragraphs of text.

 You might think that if you put several consecutive spaces between two words, the spaces would appear
between those words onscreen, but this is not the case; by default, only one space will be displayed. This
is known as white space collapsing . Similarly, if you start a new line in your source document, or you have
consecutive empty lines, these will be ignored and simply treated as one space, as will tab characters. For
example, consider the following paragraph (taken from ch01_eg03.html in the code samples):

 < p > This paragraph shows how multiple spaces between words are
treated as a single space. This is known as white space collapsing, and
the big spaces between some of the words will not appear in the
browser.

It also demonstrates how the browser will treat multiple carriage returns
(new lines) as a single space, too. < /p >

 As you can see in Figure 1 - 5, the browser treats the multiple spaces and several carriage returns (where
text appears on a new line) as if there were only one single space. It also allows the line to take up the
full width of the browser window.

❑

❑

❑

❑

c01.indd 10c01.indd 10 11/20/09 3:45:33 PM11/20/09 3:45:33 PM

Chapter 1: Structuring Documents for the Web

11

 Now look at the code for this example again, and compare where each new line starts in the code with
where each new line starts onscreen. As Figure 1 - 5 shows, unless told otherwise, when a browser
displays text it will automatically take up the full width of the screen and wrap the text onto new lines
when it runs out of space. You can see the effect of this even better if you open this example in a browser
yourself and try resizing the browser window (making it smaller and larger) and notice how the text
wraps at new places on the screen (this example is available with the rest of the download code for this
book at www.wrox.com).

 White space collapsing can be particularly helpful because it allows you to add extra spaces into your
XHTML that will not show up when viewed in a browser. These spaces can be used to indent your code,
which makes it easier to read. The first two examples in this chapter demonstrated indented code, where
child elements are indented from the left to distinguish them from their parent elements. I do this
throughout this book to make the code more readable. (If you want to preserve the spaces in a document,
you need to use either the < pre > element, which you learn about later in the chapter, or an entity
reference such as & nbsp;, which you learn about in Appendix F.)

 Now that you know how multiple spaces and line breaks are collapsed, you can see why it is important
that you learn how to use the elements in the rest of this chapter to break up and control the presentation
of your text.

 Creating Headings Using < hn > Elements
 No matter what sort of document you ’ re creating, most documents have headings in one form or
another. Newspapers use headlines, a heading on a form tells you the purpose of the form, the title of a
table of sports results tells you the league or division the teams play in, and so on.

 In longer pieces of text, headings can also help structure a document. If you look at the table of contents
for this book, you can see how different levels of headings have been arranged to add structure to the
book, with subheadings under the main headings.

 XHTML offers six levels of headings, which use the elements < h1 > , < h2 > , < h3 > , < h4 > , < h5 > , and < h6 > .
Browsers display the < h1 > element as the largest of the six and < h6 > as the smallest (although you will
see in Chapter 7 that CSS can be used to override the size and style of any of the elements). The levels of
heading would look something like those in Figure 1 - 6 (ch01_eg04.html).

Figure 1-5

c01.indd 11c01.indd 11 11/20/09 3:45:34 PM11/20/09 3:45:34 PM

Chapter 1: Structuring Documents for the Web

12

Most browsers display the contents of the < h1 > , < h2 > , and < h3 > elements larger
than the default size of text in the document. The content of the < h4 > element
would be the same size as the default text, and the content of the < h5 > and < h6 >
elements would be smaller unless you instruct them otherwise using CSS.

 Here is another example of how you might use headings to structure a document (ch01_eg05.html),
where the < h2 > elements are subheadings of the < h1 > element (this actually models the structure of this
section of the chapter):

 < h1 > Basic Text Formatting < /h1 >

 < p > This section is going to address the way in which you mark up text.
Almost every document you create will contain some form of text, so this
will be a very important section. < /p >

 < h2 > Whitespace and Flow < /h2 >

 < p > Before you start to mark up your text, it is best to understand what
XHTML does when it comes across spaces and how browsers treat long sentences
and paragraphs of text. < /p >

 < h2 > Creating Headings Using hn Elements < /h2 >

 < p > No matter what sort of document you are creating, most documents have
headings in some form or other... < /p >

 Figure 1 - 7 shows how this will look.

Figure 1-6

c01.indd 12c01.indd 12 11/20/09 3:45:34 PM11/20/09 3:45:34 PM

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Structuring Documents for the Web

13

 For each XHTML element, I will list the attributes it can carry, which will be helpful for future reference.

 The six heading elements can all carry the universal attributes that you will meet at the end of the
chapter as well as an attribute called align :

align class id style title dir lang xml:lang

 The align Attribute (Deprecated)
 The align attribute indicates whether the heading appears to the left, center, or right of the page (the
default is the left). It can take the three values discussed in the table that follows.

 You ’ ll have noticed that the word “ deprecated ” appears in parentheses in the heading of this section.
This indicates that the align attribute has been marked for removal from future versions of the HTML
and XHTML specifications. You will see several elements and attributes in the book that have been
deprecated, and it ’ s best to avoid using them.

 Despite being deprecated, I mention the align attribute here because you may still see it used on
various elements. It has been marked as deprecated because it does not help describe the structure of the
document — rather it is used to affect the presentation of the page. The align attribute has been
replaced by two CSS properties: the text - alig n property to align text, and float to position larger
items on a page (as you will see in Chapter 7).

Figure 1-7

c01.indd 13c01.indd 13 11/20/09 3:45:35 PM11/20/09 3:45:35 PM

Chapter 1: Structuring Documents for the Web

14

 Value Meaning

 left The heading is displayed to the left of the
browser window (or other containing element if
it is nested within another element). This is the
default value if the align attribute is not used.

 center The heading is displayed in the center of the
browser window (or other containing element if
it is nested within another element).

 right The heading is displayed to the right of the
browser window (or other containing element if
it is nested within another element).

 Here is an example of using the deprecated align attribute (ch01_eg06.html):

 < h1 align=”left” > Left-Aligned Heading < /h1 >

 < p > This heading uses the align attribute with a value of left. < /p >

 < h1 align=”center” > Centered Heading < /h1 >

 < p > This heading uses the align attribute with a value of center. < /p >

 < h1 align=”right” > Right-Aligned Heading < /h1 >

 < p > This heading uses the align attribute with a value of right. < /p >

 Figure 1 - 8 shows the effect of the align attribute in a browser.

Figure 1-8

c01.indd 14c01.indd 14 11/20/09 3:45:35 PM11/20/09 3:45:35 PM

Chapter 1: Structuring Documents for the Web

15

 Creating Paragraphs Using the < p > Element
 The < p > element offers another way to structure your text. Each paragraph of text should go in between
an opening < p > and closing < /p > tag, as in this example (ch01_eg07.html):

 < p > Here is a paragraph of text. < /p >
 < p > Here is a second paragraph of text. < /p >
 < p > Here is a third paragraph of text. < /p >

 When a browser displays a paragraph, it usually inserts a new line before the next paragraph and adds a
little bit of extra vertical space, as in Figure 1 - 9.

Figure 1-9

 The < p > element can carry all the universal attributes and the deprecated align attribute:

align class id style title dir lang xml:lang

 Creating Line Breaks Using the < br / > Element
 Whenever you use the < br / > element, anything following it starts on the next line. The < br / >
element is an example of an empty element ; you don ’ t need opening and closing tags, because there is
nothing to go in between them.

 Note that the < br / > element has a space between the characters br and the forward slash.

 You will often see these written like so: < br > , which is the way it was written in earlier versions of
HTML, but in XHTML the characters < br are followed by a space and a forward slash before the closing
angled bracket.

 You could use multiple < br / > elements to push text down several lines, and many designers use two
line breaks between paragraphs of text rather than using the < p > element to structure text, as follows:

Paragraph one < br / > < br / >
Paragraph two < br / > < br / >
Paragraph three < br / > < br / >

c01.indd 15c01.indd 15 11/20/09 3:45:35 PM11/20/09 3:45:35 PM

Chapter 1: Structuring Documents for the Web

16

 While two < br / > elements look very similar to using a < p > element, remember that XHTML markup is
supposed to describe the structure of the content. So if you use two < br / > elements between
paragraphs, you are not describing the document structure.

 Strictly speaking, < br / > elements should not be used to position text, and they should be used only
within what is known as a block - level element. The < p > element is a block - level element; you will learn
more about these near the end of this chapter.

 Here you can see an example of the < br / > element in use within a paragraph (ch01_eg08.html):

 < p > When you want to start a new line you can use the line break element.
So, the next < br / > word will appear on a new line. < /p >

 Figure 1 - 10 shows you how the line breaks look after the words “ next ” and “ do. ”

Figure 1-10

 The < br / > element can carry the following attributes (the clear attribute has been deprecated and is
covered in Appendix I).

clear class id style title

 Creating Preformatted Text Using the < pre > Element
 Sometimes you want your text to follow the exact format of how it is written in the XHTML
document — you don ’ t want the text to wrap onto a new line when it reaches the edge of the browser;
you don ’ t want it to ignore multiple spaces; and you want the line breaks where you put them.

c01.indd 16c01.indd 16 11/20/09 3:45:36 PM11/20/09 3:45:36 PM

Chapter 1: Structuring Documents for the Web

17

 Any text between the opening < pre > tag and the closing < /pre > tag will preserve the formatting of the
source document. You should be aware, however, that most browsers would display this text in a
monospaced font by default. (Courier is an example of a monospaced font, because each letter of the
alphabet takes up the same width. In non - monospaced fonts, an i is usually narrower than an m .)

 The most common uses of the < pre > element are to represent computer source code. For example, the
following shows some JavaScript inside a < pre > element (ch01_eg09.html):

 < pre >
function testFunction(strText){
 alert (strText)
}
 < /pre >

 You can see in Figure 1 - 11 how the content of the < pre > element is displayed in the monospaced font;
more important, you can see how it follows the formatting shown inside the < pre > element — the white
space is preserved.

Figure 1-11

 While tab characters can have an effect inside a < pre > element, and a tab is supposed to represent eight
spaces, the implementation of tabs varies across browsers, so it is advisable to use spaces instead.

 You will come across more elements that can be used to represent code later in this chapter in the section
 “ Phrase Elements, ” which covers the < code > , < kbd > , and < var > elements.

 Firefox, IE, and Safari support an extension to the XHTML recommendation that prevents line breaks:
the < nobr > element. (This retains the normal style of its containing element and does not result in the
text being displayed in a monospaced font.) Because it is an extension, it is not part of the XHTML
specification. The < nobr > element is covered in Appendix I.

c01.indd 17c01.indd 17 11/20/09 3:45:36 PM11/20/09 3:45:36 PM

Chapter 1: Structuring Documents for the Web

18

Try It Out Basic Text Formatting

 Now that you ’ ve seen the basic elements that you will be using to format your text — headings and
paragraphs — it ’ s time to try putting that information to work.

 In this example, you create a page for a fictional caf é called Example Caf é . We will be working on this
example throughout the book to build up an entire site. This page is going to be the homepage for the
site, introducing people to the cafe:

 1. Add the skeleton of the document: the < html > , < head > , < title > , and < body > elements.

 < html >
 < head >
 < title > Example Cafe - community cafe in Newquay, Cornwall, UK < /title >
 < /head >
 < body >
 < /body >
 < /html >

 The entire page is contained in the < html > element. The < html > element can contain only two child
elements: the < head > element and < body > element. The < head > element contains the title for the
page, and you should be able to tell from the title of the page the type of information the page will
contain.

 Meanwhile, the < body > element contains the main part of the web page — the part that viewers will
actually see in the main part of the web browser.

 2. Your page will have a main heading and some level 2 headings; these headings add structure to the
information on the page:

 < body >
 < h1 > EXAMPLE CAFE < /h1 >
 < h2 > A community cafe serving home cooked, locally sourced, organic food < /h2 >
 < h2 > This weekend’s special brunch < /h2 >
 < /body >

 3. You can now fill out the page with some paragraphs that follow the headings:

 < body >
 < h1 > EXAMPLE CAFE < /h1 >
 < p > Welcome to example cafe. We will be developing this site
throughout the book. < /p >
 < h2 > A community cafe serving home cooked, locally sourced, organic food < /h2 >
 < p > With stunning views of the ocean, Example Cafe offers the perfect
environment to unwind and recharge the batteries. < /p >
 < p > Our menu offers a wide range of breakfasts, brunches and lunches,
including a range of vegetarian options. < /p >
 < p > Whether you sip on a fresh, hot coffee or a cooling smoothie, you
never need to feel rushed - relax with friends or just watch
the world go by. < /p >
 < h2 > This weekend’s special brunch < /h2 >

c01.indd 18c01.indd 18 11/20/09 3:45:36 PM11/20/09 3:45:36 PM

Chapter 1: Structuring Documents for the Web

19

 < p > This weekend, our season of special brunches continues with scrambled egg
on an English muffin. Not for the faint-hearted, the secret to these eggs is
that they are made with half cream and cooked in butter, with no more than
four eggs in the pan at a time. < /p >
 < /body >
 < /html >

 4. Save the file as index.html and then open it in a web browser. The result should look something
like Figure 1 - 12. The name index.tml is often given to the homepage of sites built in XHTML.

Figure 1-12

 Presentational Elements
 If you use a word processor, you will be familiar with the ability to make text bold, italic, or underlined;
these are just three of the ten options available to indicate how text can appear in XHTML. The full list is
bold, italic, monospaced, underlined, strikethrough, teletype, larger, smaller, superscripted, and
subscripted text.

c01.indd 19c01.indd 19 11/20/09 3:45:36 PM11/20/09 3:45:36 PM

Chapter 1: Structuring Documents for the Web

20

 Technically speaking, these elements affect only the presentation of a document and the markup is of no
other use. You can also achieve a similar appearance using CSS. However, they are still commonly used.

 All the following presentational elements can carry the universal attributes and the UI event attributes
that are covered at the end of the chapter.

 Let ’ s start by meeting the < b > , < i > , < u > , < s > , and < tt > elements. They are all demonstrated in ch01_
eg10.html and you can see how they look in Figure 1 - 13.

Figure 1-13

 The < b > Element
 Anything that appears in a < b > element is displayed in bold, like the word “ bold ” here:

The following word uses a bold typeface.

 For those very interested in typography, it is worth noting that this does not necessarily mean the
browser will use a boldface version of a font; some browsers use an algorithm to take a normal version
of a font and make the lines thicker (giving it the appearance of being bold).

 The contents of a < b > element will be displayed in the same way as the contents of the < strong >
 element. You will meet the < strong > element later; it is used to indicate that its contents have strong
emphasis.

 The < i > Element
 The content of an < i > element is displayed in italicized text, like the word “ italic ” here:

The following word uses an <i>italic</i> typeface.

 This does not necessarily mean the browser will look for an oblique or italicized version of the font. Most
browsers use an algorithm to put the lines on a slant to simulate an italic font.

 The contents of an < i > element will be displayed in the same way as the contents of the < em > element.
You will meet the < em > element later; it is used to indicate that its contents have emphasis.

c01.indd 20c01.indd 20 11/20/09 3:45:37 PM11/20/09 3:45:37 PM

Chapter 1: Structuring Documents for the Web

21

 The < u > Element (Deprecated)
 The content of a < u > element is underlined with a simple line:

The following word would be < u > underlined < /u >

 The < u > element is deprecated, although it is still supported by current browsers.

 The < s > and < strike > Elements (Deprecated)
 The content of an < s > or < strike > element is displayed with a strikethrough, which is a thin line
through the text (< s > is just the abbreviated form of < strike >).

The following word would have a < s > strikethrough < /s > .

 Both the < s > and < strike > elements are deprecated, although they are still supported by current
browsers.

 The < tt > Element
 The content of a < tt > element is written in monospaced font (like that of a teletype machine).

The following word will appear in a < tt > monospaced < /tt > font.

 Now let ’ s take a look at the < sup > , < sub > , < big > , < small > , and < hr / > elements. They are all
demonstrated in ch01_eg11.html and you can see what they look like in a browser in Figure 1 - 14.

Figure 1-14

c01.indd 21c01.indd 21 11/20/09 3:45:37 PM11/20/09 3:45:37 PM

Chapter 1: Structuring Documents for the Web

22

 The < sup > Element
 The content of a < sup > element is written in superscript; it is displayed half a character ’ s height above
the other characters and is also often slightly smaller than the text surrounding it.

Written on the 31 < sup > st < /sup > February.

 The < sup > element is especially helpful in adding exponential values to equations, and adding the st , nd ,
 rd , and th suffixes to numbers such as dates. However, in some browsers, you should be aware that it can
create a taller gap between the line with the superscript text and the line above it.

 The < sub > Element
 The content of a < sub > element is written in subscript; it is displayed half a character ’ s height beneath
the other characters and is also often slightly smaller than the text surrounding it.

The EPR paradox < sub > 2 < /sub > was devised by Einstein, Podolsky, and Rosen.

 The < sub > element is particularly helpful to create footnotes.

 The < big > Element
 In early versions of HTML there were 7 standard sizes of text, and the < big > element was introduced to
make the contents of this element one font size larger than the rest of the text surrounding it (up to the
largest size — size 7). These days you should avoid using this element because it only has an effect on
the look of the document; it does not help describe the document ’ s structure or meaning. Instead you
should use CSS to change the size of text.

The following word should be < big > bigger < /big > than those around it.

 When this element is used, it is possible to nest several < big > elements inside one another, and the
content of each will get one size larger for each element.

 The < small > Element
 The < small > element is the opposite of the < big > element, and its contents are displayed one font size
smaller than the rest of the text surrounding it. If the font is already the smallest, it has no effect. You can
nest several < small > elements inside one another, and the content of each gets one size smaller for
each element.

The following word should be < small > smaller < /small > than those around it.

 The use of this element is frowned upon, and you should aim to use CSS to change the size of text, rather
than the < small > element.

c01.indd 22c01.indd 22 11/20/09 3:45:37 PM11/20/09 3:45:37 PM

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Structuring Documents for the Web

23

 The < hr / > Element
 The < hr / > element creates a horizontal rule across the page. It is an empty element, rather like the
< br / > element.

 < hr / >

 This is frequently used to separate distinct sections of a page where a new heading is not appropriate.

 Phrase Elements
 Some of the elements in this section are displayed in a manner similar to the Presentational Elements
 < b > , < i > , < pre > , and < tt > that you have just read about, but the following elements are not just for
presentational purposes; they also describe something about their content. For example, the words
written in an < em > element will look just like the words in an < i > element, but the < em > element is
supposed to indicate the addition of emphasis.

 This section covers the following elements:

 < em > and < strong > for emphasis

 < blockquote > , < cite > , and < q > for quotations and citations

 < abbr > , < acronym > , and < dfn > for abbreviations, acronyms, and key terms

 < code > , < kbd > , < var > , and < samp > for computer code and information

 < address > for addresses

 Several of these phrase elements were introduced after the presentational elements you just met. Some
developers who learned HTML before these elements were introduced ignore them and just use the
presentational elements because the results look the same. But you should be aware of them and
preferably get into the habit of using these phrase elements where appropriate. For example, where you
want to add emphasis to a word within a sentence you should use the < em > and < strong > elements
rather than the presentational elements you just met; there are several good reasons for this, such as:

 Applications such as screen readers (which can read pages to web users with visual
impairments) could add suitable intonation to the reading voice so that users with visual
impairments could hear where the emphasis should be placed.

 Automated programs could be written to find the words with emphasis and pull them out as
keywords within a document, or specifically index those words so that a user could find
important terms in a document.

 As you can see, appropriate use of these elements adds more information to a document (such as which
words should have emphasis, which are parts of programming code, which parts are addresses, and so
on) rather than just saying how it should be presented visually.

 All the following phrase elements can carry the universal attributes and the UI event attributes covered
at the end of the chapter.

❑

❑

❑

❑

❑

❑

❑

c01.indd 23c01.indd 23 11/20/09 3:45:38 PM11/20/09 3:45:38 PM

Chapter 1: Structuring Documents for the Web

24

 The < em > Element Adds Emphasis
 The content of an < em > element is intended to be a point of emphasis in your document, and it is usually
displayed in italicized text. The kind of emphasis intended is on words such as “ must ” in the following
sentence:

 < p > You < em > must < /em > remember to close elements in XHTML. < /p >

 You should use this element only when you are trying to add emphasis to a word, not just because you
want to make the text appear italicized. If you just want italic text for stylistic reasons — without adding
emphasis — you can use either the < i > element, or preferably use CSS.

 The < strong > Element Adds Strong Emphasis
 The < strong > element is intended to show strong emphasis for its content — stronger emphasis than
the < em > element. As with the < em > element, the < strong > element should be used only when you want
to add strong emphasis to part of a document. Most visual browsers display the strong emphasis in a
bold font.

 < p > < em > Always < /em > look at burning magnesium through protective colored
glass as it < strong > can cause blindness < /strong > . < /p >

 Figure 1 - 15 shows how the < em > and < strong > elements are rendered in Firefox (ch01_eg12.html).

 You need to remember that how the elements are presented (italics or bold) is largely irrelevant. You
should use these elements to add emphasis to phrases, and therefore give your documents greater
meaning, rather than to control how they appear visually. As you will see in Chapter 7, it is quite simple
with CSS to change the visual presentation of these elements — for example, to highlight any words
inside an < em > element with a yellow background and make them bold rather than italic.

Figure 1-15

 The < address > Element Is for Addresses
 Many documents need to contain a snail - mail address, and there is a special < address > element that is
used to contain addresses. For example, here is the address for Wrox, inside an < address > element
(ch01_eg13.html):

 < address > Wrox Press, 10475 Crosspoint Blvd, Indianapolis, IN 46256 < /address >

c01.indd 24c01.indd 24 11/20/09 3:45:38 PM11/20/09 3:45:38 PM

Chapter 1: Structuring Documents for the Web

25

 A browser can display the address differently than the surrounding document IE, Firefox, and Safari
display it in italics, as you can see in Figure 1 - 16 (although you can override this with CSS).

Figure 1-16

 The < abbr > Element Is for Abbreviations
 You can indicate when you are using an abbreviated form by placing the abbreviation between opening
 < abbr > and closing < /abbr > tags.

 When possible, consider using a title attribute whose value is the full version of the abbreviations. For
example, if you want to indicate that Bev is an abbreviation for Beverly, you can use the < abbr > element
like so:

I have a friend called < abbr title=”Beverly” > Bev < /abbr > .

 If you are abbreviating a foreign word, you can also use the xml:lang attribute to indicate the
language used.

 The < acronym > Element Is for Acronym Use
 The < acronym > element allows you to indicate that the text between opening < acronym > and closing
< /acronym > tags is an acronym.

 When possible, use a title attribute on opening < acronym > tags whose value is the full version of the
acronym. For example, if you want to indicate that XHTML was an acronym, you can use the < acronym >
element like so (ch01_eg14.html):

This chapter covers marking up text in < acronym title=”Extensible Hypertext
Markup Language” > XHTML < /acronym > .

 As you can see from Figure 1 - 17, Firefox gives the < abbr > and < acronym > elements a dashed underline,
and when you hover your cursor over the word, the value of the title attribute shows as a tooltip.
Internet Explorer does not change the appearance of the element, although it does show the title
as a tooltip.

 If the acronym is in a different language, you can include an xml:lang attribute to indicate which
language it is in.

c01.indd 25c01.indd 25 11/20/09 3:45:38 PM11/20/09 3:45:38 PM

Chapter 1: Structuring Documents for the Web

26

 The < dfn > Element Is for Special Terms
 The < dfn > element allows you to specify that you are introducing a special term. Its use is similar to the
italicized notes in this book used to introduce important new concepts.

 Typically, you would use the < dfn > element the first time you introduce a key term and only in that
instance. Most recent browsers render the content of a < dfn > element in an italic font.

 For example, you can indicate that the term “ XHTML ” in the following sentence is important and should
be marked as such:

This book teaches you how mark up your documents for the Web using
 < dfn > XHTML < /dfn > .

 Figure 1 - 17 shows the use of the < dfn > element (ch01_eg14.html).

Figure 1-17

 The < blockquote > Element Is for Quoting Text
 When you want to quote a passage from another source, you should use the < blockquote > element.
Note that there is a separate < q > element for use with smaller quotations, as discussed in the next
section. Here ’ s ch01_eg15.html :

 < p > The following description of XHTML is taken from the W3C Web site: < /p >
 < blockquote > XHTML 1.0 is the W3C’s first Recommendation for XHTML,
following on from earlier work on HTML 4.01, HTML 4.0, HTML 3.2 and HTML
2.0. < /blockquote >

 Text inside a < blockquote > element is usually indented from the left and right edges of the
surrounding text, and some browsers uses an italicized font. (It should be used only for quotes — if you

c01.indd 26c01.indd 26 11/20/09 3:45:38 PM11/20/09 3:45:38 PM

Chapter 1: Structuring Documents for the Web

27

simply want an indented paragraph of text, you should use CSS. You can see what this looks like in
Figure 1 - 18.

 Using the cite Attribute with the < blockquote > Element
 You can use the cite attribute on the < blockquote > element to indicate the source of the quote. The
value of this attribute should be a URL pointing to an online document, if possible, the exact place in that
document. Browsers do not currently do anything with this attribute, but it means the source of the
quote is there should you need it in the future (ch01_eg15.html).

 < blockquote cite=”http://www.w3.org/markup/” > XHTML 1.0 is the W3C’s first
Recommendation for XHTML, following on from earlier work on HTML 4.01, HTML
4.0, HTML 3.2 and HTML 2.0. < /blockquote >

 The < q > Element Is for Short Quotations
 The < q > element is intended to be used when you want to add a quote within a sentence, rather than as
an indented block on its own (ch01_eg15.html):

 < p > As Dylan Thomas said, < q > Somebody’s boring me. I think it’s me < /q > . < /p >

 The XHTML recommendation says that the text enclosed in a < q > element should begin and end in
double quotes. Firefox inserts these quotation marks for you, but IE8 was the first version of Internet
Explorer to support the < q > element. So, if you want your quote to be surrounded by quotation marks,
be warned that IE7 and earlier versions of IE will not display them.

 The < q > element can also carry the cite attribute. The value should be a URL pointing to the source of
the quote.

 The < cite > Element Is for Citations
 If you are quoting a text, you can indicate the source by placing it between an opening < cite > tag and
closing < /cite > tag. As you would expect in a print publication, the content of the < cite > element is
rendered in italicized text by default (ch01_eg15.html).

This chapter is taken from < cite > Beginning Web Development < /cite > .

 If you are referencing an online resource, you should place your < cite > element inside an < a > element,
which, as you ’ ll see in Chapter 2, creates a link to the relevant document.

 There are several applications that potentially could make use of the < cite > element. For example, a
search application could use < cite > tags to find documents that reference certain works, or a browser
could collect the contents of < cite > elements to generate a bibliography for any given document,
although at the moment it is not widely enough used for either feature to exist.

 You can see the < blockquote > , < q > , and < cite > elements in Figure 1 - 18.

c01.indd 27c01.indd 27 11/20/09 3:45:39 PM11/20/09 3:45:39 PM

Chapter 1: Structuring Documents for the Web

28

 The < code > Element Is for Code
 If your pages include any programming code (which is not uncommon on the Web), the following four
elements will be of particular use to you. Any code to appear on a web page should be placed inside a
 < code > element. Usually the content of the < code > element is presented in a monospaced font, just like
the code in most programming books (including this one).

 Note that when trying to display code on a web page (for example, if you were
creating a page about web programming), and you wanted to include angled
brackets, you cannot just use the opening and closing angle brackets inside these
elements, because the browser could mistake these characters for actual markup.
Instead you should use & lt; instead of the left - angle bracket (<), and you should
use & gt; instead of the right - angle bracket (>). These replacement sets of
characters are known as escape codes or character entities, and a full list of them
appears in Appendix F.

Figure 1-18

c01.indd 28c01.indd 28 11/20/09 3:45:39 PM11/20/09 3:45:39 PM

Chapter 1: Structuring Documents for the Web

29

 Here you can see an example of using the < code > element to represent an < h1 > element and its content
in XHTML (ch01_eg16.html):

 < p > < code > & lt;h1 & gt;This is a primary heading & lt;/h1 & gt; < /code > < /p >

 Figure 1 - 19 shows you how this would look in a browser.

Figure 1-19

 The < code > element is often used in conjunction with the < pre > element so that the formatting of the
code is retained.

 The < kbd > Element Is for Text Typed on a Keyboard
 If, when talking about computers, you want to tell a reader to enter some text, you can use the < kbd >
element to indicate what should be typed in, as in this example (ch01_eg16.html):

 < p > To force quit an application in Windows, hold down the < kbd > ctrl < /kbd > ,
 < kbd > alt < /kbd > and < kbd > delete < /kbd > keys together. < /p >

 The content of a < kbd > element is usually represented in a monospaced font, rather like the content of
the < code > element. Figure 1 - 19 shows you what this would look like in a browser.

c01.indd 29c01.indd 29 11/20/09 3:45:39 PM11/20/09 3:45:39 PM

Chapter 1: Structuring Documents for the Web

30

 The < var > Element Is for Programming Variables
 The < var > element is another of the elements added to help programmers. It is usually used in
conjunction with the < pre > and < code > elements to indicate that the content of that element is a
variable that can be supplied by a user (ch01_eg16.html).

 < p > < code > document.write(“ < var > user-name < /var > ”) < /code > < /p >

 Typically, the content of a < var > element is italicized, as you can see in Figure 1 - 19. If you are not
familiar with the concept of variables, they are covered in Chapter 11.

 The < samp > Element Is for a Program Output
 The < samp > element indicates sample output from a program, script, or the like. Again, it is mainly used
when documenting programming concepts. For example (ch01_eg16.html):

 < p > The following line uses the & lt;samp & gt; element to indicate the output
from a script or program. < /p >
 < p > < samp > This is the output from our test script. < /samp > < /p >

 This tends to be displayed in a monospaced font, as you can see in Figure 1 - 19.

 That brings you to the end of the phrase elements, but not quite the end of all the text elements.

 Lists
 There are many reasons you might want to add a list to your pages, from putting your five favorite
albums on your homepage to including a numbered set of instructions for visitors to follow (like the
steps you follow in the Try It Out examples in this book).

 You can create three types of lists in XHTML:

 Unordered lists , which are like lists of bullet points

 Ordered lists , which use a sequence of numbers or letters instead of bullet points

 Definition lists , which allow you to specify a term and its definition

 I ’ m sure you will think of more uses for the lists as you meet them and start using them.

❑

❑

❑

c01.indd 30c01.indd 30 11/20/09 3:45:40 PM11/20/09 3:45:40 PM

Chapter 1: Structuring Documents for the Web

31

 Using the < ul > Element to Create Unordered Lists
 If you want to make a list of bullet points, you write the list within the < ul > element (which stands for
unordered list). Each bullet point or line you want to write should then be contained between opening
 < li > tags and closing < /li > tags (the li stands for list item).

 You should always close the < li > element. Even though you might see some HTML pages that leave off
the closing tag, this is a bad habit you should avoid.

 If you want to create a bulleted list, you can do so like this (ch01_eg17.html):

 < ul >
 < li > Bullet point number one < /li >
 < li > Bullet point number two < /li >
 < li > Bullet point number three < /li >
 < /ul >

 In a browser, this list would look something like Figure 1 - 20.

Figure 1-20

 The < ul > and < li > elements can carry all the universal attributes and UI event attributes.

 Ordered Lists
 Sometimes, you want your lists to be ordered. In an ordered list, rather than prefixing each point with a
bullet point, you can use either numbers (1, 2, 3), letters (A, B, C), or Roman numerals (i, ii, iii) to prefix
the list item.

 An ordered list is contained inside the < ol > element. Each item in the list should then be nested inside
the < ol > element and contained between opening < li > and closing < /li > tags (ch01_eg18.html).

 < ol >
 < li > Point number one < /li >
 < li > Point number two < /li >
 < li > Point number three < /li >
 < /ol >

 The result should be similar to what you see in Figure 1 - 21.

c01.indd 31c01.indd 31 11/20/09 3:45:40 PM11/20/09 3:45:40 PM

Chapter 1: Structuring Documents for the Web

32

 If you would rather have letters or Roman numerals than Arabic numbers, you can use the now -
 deprecated type attribute on the < ol > element.

 Using the type Attribute to Select Numbers, Letters, or Roman
Numerals in Ordered Lists (Deprecated)

 The type attribute on the < ol > element enables you to change the ordering of list items from the default
of numbers to the options listed in the table that follows, by giving the type attribute the corresponding
character.

 Value for type Attribute Description Examples

 1 Arabic numerals (the default) 1, 2, 3, 4, 5

 A Capital letters A, B, C, D, E

 a Small letters a, b, c, d, e

 I Large Roman numerals I, II, III, IV, V

 i Small Roman numerals i, ii, iii, iv, v

 For example, the following is an ordered list that uses small Roman numerals (ch01_eg18.html):

 < ol type=”i” >
 < li > Point number one < /li >
 < li > Point number two < /li >
 < li > Point number three < /li >
 < /ol >

 You can see what this might look like in Figure 1 - 22.

 The type attribute has been deprecated in favor of the CSS list - style - type property.

Figure 1-21

c01.indd 32c01.indd 32 11/20/09 3:45:40 PM11/20/09 3:45:40 PM

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Structuring Documents for the Web

33

 You also used to be able to use the type attribute on < li > elements, which would override the value in
the < ol > element, but it has been deprecated and its use should be avoided. All the universal attributes
and UI event attributes can be used with the < ol > elements, and also a special attribute start , to control
the number at which a list starts.

 Using the start Attribute to Change the Starting Number in Ordered
Lists (Deprecated)

 If you want to specify the number that a numbered list should start at, you can use the start attribute
on the < ol > element. The value of this attribute should be the numeric representation of that point in the
list, so a D in a list that is ordered with capital letters would be represented by the value 4 (ch01_eg18.
html).

 < ol type=”A” start=”4” >
 < li > Point number one < /li >
 < li > Point number two < /li >
 < li > Point number three < /li >
 < /ol >

 You can see the result in Figure 1 - 23.

Figure 1-22

Figure 1-23

 Definition Lists
 The definition list is a special kind of list for providing terms followed by a short text definition or
description for them. Definition lists are contained inside the < dl > element. The < dl > element then

c01.indd 33c01.indd 33 11/20/09 3:45:41 PM11/20/09 3:45:41 PM

Chapter 1: Structuring Documents for the Web

34

contains alternating < dt > and < dd > elements. The content of the < dt > element is the term you will be
defining. The < dd > element contains the definition of the previous < dt > element. For example, here is a
definition list that describes the different types of lists in XHTML (ch01_eg19.html):

 < dl >
 < dt > Unordered List < /dt >
 < dd > A list of bullet points. < /dd >
 < dt > Ordered List < /dt >
 < dd > An ordered list of points, such as a numbered set of steps. < /dd >
 < dt > Definition List < /dt >
 < dd > A list of terms and definitions. < /dd >
 < /dl >

 In a browser, this would look something like Figure 1 - 24 (ch01_eg19.html).

Figure 1-24

 Each of these elements can carry the universal attributes and UI event attributes covered at the end of
this chapter.

 Nesting Lists
 You can nest lists inside other lists. For example, you might want a numbered list with separate points
corresponding to one of the list items. Each nested list will be numbered separately unless you specify
otherwise using the start attribute. And each new list should be placed inside a < li > element (ch01_
eg20.html):

 < ol type=”I” >
 < li > Item one < /li >
 < li > Item two < /li >
 < li > Item three < /li >
 < li > Item four
 < ol type=”i” >
 < li > Item 4.1 < /li >
 < li > Item 4.2 < /li >
 < li > Item 4.3 < /li >
 < /ol >
 < /li >
 < li > Item Five < /li >
 < /ol >

 In a browser, this will look something like Figure 1 - 25.

c01.indd 34c01.indd 34 11/20/09 3:45:41 PM11/20/09 3:45:41 PM

Chapter 1: Structuring Documents for the Web

35

 Try It Out Using Text Markup

 Now that you ’ ve looked at the different elements and attributes you can use to mark up text, it is time
to put them into practice. In this example, you use a selection of markup to create a page for our caf é
site that displays a recipe for the world ’ s best scrambled eggs. So open up your text editor or web
page authoring tool and follow these steps:

 1. Add the skeleton elements for the document: < html > , < head > , < title > , and < body > :

 < html >
 < head >
 < title > Wrox Recipes - World’s Best Scrambled Eggs < /title >
 < /head >
 < body >
 < /body >
 < /html >

 You have seen the skeleton several times now, so let ’ s move on to add some content.

 2. Add some appropriate heading elements into the body of the document; these help add
structure to the page:

 < body >
 < h1 >Wrox Recipes - World’s Best Scrambled Eggs < /h1 >
 < h2 > Ingredients < /h2 >
 < h2 > Instructions < /h2 >
 < /body >

 3. After the < h1 > element that tells you the recipe is for scrambled eggs, there will be a bit of an expla-
nation about the recipe (and why it is the World ’ s Best). You can see that several of the elements you
have met so far are used in these two paragraphs.

Figure 1-25

c01.indd 35c01.indd 35 11/20/09 3:45:41 PM11/20/09 3:45:41 PM

Chapter 1: Structuring Documents for the Web

36

 < h1 > Wrox Recipes - World’s Best Scrambled Eggs < /h1 >
 < p > I adapted this recipe from a book called
 < cite cite=”http://www.amazon.com/exec/obidos/tg/detail/-
 /0864119917/” > Sydney Food < /cite > by Bill Grainger. Ever since tasting
 these eggs on my 1 < sup > st < /sup > visit to Bill’s restaurant in Kings
 Cross, Sydney, I have been after the recipe. I have since transformed
 it into what I really believe are the < em > best < /em > scrambled eggs
 I have ever tasted. < /p >
 < p > This recipe is what I call a < q > very special breakfast < /q > ; just look at
 the ingredients to see why. It has to be tasted to be believed. < /p >

 In the first sentence, the < cite > element has been used to indicate a reference to the book this recipe is
adapted from. The next sentence makes use of the < sup > element so you can write “ 1 st ” and use
superscript text — although you might like to note that this makes the gap between the first line and
the second line of text larger than the gap between the second and third lines of text (as the superscript
letters poke above the line). In the final sentence of the first paragraph there is emphasis on the word
 “ best, ” as these really are the best scrambled eggs I have ever tasted.

 In the second paragraph, another of the elements is at work; the < q > element is used for a quote.

 4. After the first < h2 > element, you will list the ingredients in an unordered list:

 < h2 > Ingredients < /h2 >
 < p > The following ingredients make one serving: < /p >
 < ul >
 < li > 2 eggs < /li >
 < li > 1 tablespoon of butter (10g) < /li >
 < li > 1/3 cup of cream <i>(2 3/4 fl ounces) </i> < /li >
 < li > A pinch of salt < /li >
 < li > Freshly milled black pepper < /li >
 < li > 3 fresh chives (chopped) < /li >
 < /ul >

 In the line that describes how much cream you need, there is an alternative measure provided
in italics.

 5. Add the instructions after the second < h2 > element; these will go in a numbered list:

 < h2 > Instructions < /h2 >
 < ol >
 < li > Whisk eggs, cream, and salt in a bowl. < /li >
 < li > Melt the butter in a non-stick pan over a high heat <i>(taking care
 not to burn the butter) </i> < /li >
 < li > Pour egg mixture into pan and wait until it starts setting around
 the edge of the pan (around 20 seconds). < /li >
 < li > Using a wooden spatula, bring the mixture into the center as if it
 were an omelet, and let it cook for another 20 seconds. < /li >

c01.indd 36c01.indd 36 11/20/09 3:45:41 PM11/20/09 3:45:41 PM

Chapter 1: Structuring Documents for the Web

37

 < li > Fold contents in again, leave for 20 seconds, and repeat until
 the eggs are only just done. < /li >
 < li > Grind a light sprinkling of freshly milled pepper over the eggs
 and blend in some chopped fresh chives. < /li >
< /ol >
< p > You should only make a < strong > maximum < /strong > of two servings per
 frying pan. < /p >

 You might note that the numbered list contains an italicized comment about not burning the butter,
and the final paragraph contains a strong emphasis that you should cook no more than two batches of
these eggs in a pan.

 6. Save this example as recipes.html . When you open it in a browser you should see something like
Figure 1 - 26.

 Figure 1 - 26

 I hope you will enjoy the eggs — go on, you know you want to try them now.

c01.indd 37c01.indd 37 11/20/09 3:45:42 PM11/20/09 3:45:42 PM

Chapter 1: Structuring Documents for the Web

38

 Editing Text
 When working on a document with others, it helps if you can see changes that another person has made.
Even when working on your own documents, it can be helpful to keep track of changes you make. There
are two elements specifically designed for revising and editing text:

 The < ins > element for when you want to add text (usually shown underlined in a browser)

 The < del > element for when you want to delete some text (usually shown crossed out in a
browser)

 Here you can see some changes made to the following XHTML (ch01_eg21.html):

 < h1 > How to Spot a Wrox Book < /h1 >
 < p > Wrox-spotting is a popular pastime in bookshops. Programmers like to find
the distinctive < del > blue < /del > < ins > red < /ins > spines because they know that
Wrox books are written by < del > 1000 monkeys < /del > < ins > Programmers < /ins > for
Programmers. < /p >
 < ins > < p > Both readers and authors, however, have reservations about the use
of photos on the covers. < /p > < /ins >

 This example would look something like Figure 1 - 27 in a browser.

❑

❑

Figure 1-27

 These features would also be particularly helpful as editing tools, to note changes and modifications
made by different authors.

 If you are familiar with Microsoft Word, the < ins > and < del > elements are very similar to a feature
called Track Changes (which you can find under the Tools menu). The track changes feature underlines
new text additions and crosses through deleted text.

 You must be careful when using < ins > and < del > to ensure that you do not end up with what is
known as a block - level element (such as a < p > or an < h2 > element) inside what is known as an inline
element (such as a < b > or < i > element). You learn more about block - level elements and inline elements
at the end of the chapter.

c01.indd 38c01.indd 38 11/20/09 3:45:42 PM11/20/09 3:45:42 PM

Chapter 1: Structuring Documents for the Web

39

 You can use the title attribute to provide information as to who added the < ins > or < del > element
and why it was added or deleted; this information is offered to users as a tooltip in the major browsers.

 You might also use the cite attribute on the < ins > and < del > element to indicate the source or reason
for a change, although this attribute is quite limiting, as the value must be a URI.

 The < ins > and < del > elements can also carry a datetime attribute whose value is a date and time in
the following format:

YYYY-MM-DDThh:mm:ssTZD

 This formula breaks down as follows:

 YYYY represents the year.

 MM represents the month.

 DD represents the day of the month.

 T is just a separator between the date and time.

 hh is the hour.

 mm is the number of minutes.

 ss is the number of seconds.

 TZD is the time zone designator.

 For example, 2009 - 04 - 16T20:30 - 05:00 represents 8:30 p.m. on April 16, 2009, according to U.S.
Eastern Standard Time.

 As you can see, the datetime attribute is rather long to be entered by hand, and thus is more likely to
be entered by a program that allows users to edit web pages.

 When you learn how to use CSS, you will see how it is possible to show and hide the inserted and
deleted content as required.

 Using Character Entities
for Special Characters

 You can use most alphanumeric characters in your document and they will be displayed without a
problem. There are, however, some characters that have special meaning in XHTML, and for some
characters there is not a keyboard equivalent you can enter. For example, you cannot use the angle
brackets that start and end tags, as the browser can mistake them for markup. You can, however, use a
set of different characters known as a character entity to represent these special characters. Sometimes you
will also see character entities referred to as escape characters .

 All special characters can be added into a document using the numeric entity for that character, and
some also have named entities, as you can see in the table that follows.

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 39c01.indd 39 11/20/09 3:45:42 PM11/20/09 3:45:42 PM

Chapter 1: Structuring Documents for the Web

40

 Character Numeric Entity Named Entity

 “ & #034; & quot;

 & & #038; & amp;

 < & #060; & lt;

 > & #062; & gt;

 A full list of character entities (or special characters) appears in Appendix F.

 Comments
 You can put comments between any tags in your XHTML documents. Comments use the following
syntax:

 < !-- comment goes here -- >

 Anything after < ! - - until the closing - - > will not be displayed. It can still be seen in the source code for
the document, but it is not shown onscreen.

 It is good practice to comment your code, especially in complex documents, to indicate sections of a
document, and any other notes to anyone looking at the code.

 You can even comment out whole sections of code. For example, in the following snippet of code you
would not see the content of the < h2 > element. You can also see there are comments indicating the
section of the document, who added it, and when it was added.

 < !-- Start of Footnotes Section added 04-24-04 by Bob Stewart -- >
 < !-- < h2 > Character Entities < /h2 > -- >
 < p > < strong > Character entities < /strong > can be used to escape special
 characters that the browser might otherwise think have special meaning. < /p >
 < !-- End of Footnotes section -- >

 The < font > Element (Deprecated)
 The < font > element allows you to control the presentation of text — its size, the typeface, and color. It
has been deprecated, so its use should be avoided, but you are likely to come across it. If you want to
read more about how to use the < font > element, it is covered in Appendix I. You might see the < font >
element used like so:

 < h3 > Using the & lt;font & gt; element < /h3 >
 < font face=”arial, verdana, sans-serif” size=”2” color=”#666666” > The
 & lt;font & gt; element has been deprecated since HTML 4.0. You should now use
CSS to indicate how text should be styled. < /font >

c01.indd 40c01.indd 40 11/20/09 3:45:43 PM11/20/09 3:45:43 PM

Chapter 1: Structuring Documents for the Web

41

 Understanding Block and Inline Elements
 Now that you have seen many of the elements that can be used to mark up text, it is important to make
an observation about all the elements that live inside the < body > element, because each one can fall into
one of two categories:

 Block - level elements

 Inline elements

 This is quite a conceptual distinction, but it will have important ramifications for other features of
XHTML.

 Block - level elements appear on the screen as if they have a carriage return or line break before and after
them. For example, the < p > , < h1 > , < h2 > , < h3 > , < h4 > , < h5 > , < h6 > , < ul > , < ol > , < dl > , < pre > , < hr / > ,
 < blockquote > , and < address > elements are all block - level elements. They all start on their own new
lines, and anything that follows them appears on its own new line, too.

 Inline elements, on the other hand, can appear within sentences and do not have to appear on new lines
of their own. The < b > , < i > , < u > , < em > , < strong > , < sup > , < sub > , < big > , < small > , < ins > , < del > ,
 < code > , < cite > , < dfn > , < kbd > , and < var > elements are all inline elements.

 For example, look at the following heading and paragraph; both of these elements start on new lines and
anything that follows them goes on a new line, too. Meanwhile, the inline elements in the paragraph are
not placed on their own new lines. Here is the code (ch02_eg22.html):

 < h1 > Block-Level Elements < /h1 >
 < p > < strong > Block-level elements < /strong > always start on a new line. The
 < code > & lt;h1 & gt; < /code > and < code > & lt;p & gt; < /code > elements will not sit
 on the same line, whereas the inline elements flow with the rest of the
 text. < /p >

 You can see what this looks like in Figure 1 - 28.

❑

❑

Figure 1-28

c01.indd 41c01.indd 41 11/20/09 3:45:43 PM11/20/09 3:45:43 PM

Chapter 1: Structuring Documents for the Web

42

 Strictly speaking, inline elements may not contain block - level elements, and can appear only within
block - level elements (so you should not have a < b > element outside a block - level element). Block - level
elements, meanwhile, can contain other block - level elements, and inline elements.

 Grouping Elements with < div > and < span >
 The < div > and < span > elements allow you to group several elements to create sections or subsections of
a page. On their own, they will not affect the appearance of a page, but they are commonly used with
CSS to allow you to attach a style to a section of a page (as you will see in Chapter 7). For example, you
might want to put all the footnotes on a page within a < div > element to indicate that all the elements
within that < div > element relate to the footnotes. You might then attach a style to this < div > element so
that the footnotes appear using a special set of style rules.

 The < div > element is used to group block - level elements:

 < div class=”footnotes” >
 < h2 > Footnotes < /h2 >
 < p > 1 The World Wide Web was invented by Tim Berners-Lee < /p >
 < p > 2 The W3C is the World Wide Web Consortium which maintains many
Web standards < /p >
 < /div >

 It is considered good practice to use a class attribute whose value describes the contents of this group
of elements when using a < div > . As you can see here, the value footnotes helps describe the contents
of the < div > .

 The < span > element, on the other hand, can be used to group inline elements only. So, if you had a part
of a sentence or paragraph you wanted to group, you could use the < span > element. Here you can see
that I have added a < span > element to indicate which content refers to an inventor. It contains both a
bold element and some text:

 < div class=”footnotes” >
 < h2 > Footnotes < /h2 >
 < p > < span class=”inventor” > < b > 1 < /b > The World Wide Web was invented by Tim
 Berners-Lee < /span > < /p >
 < p > < b > 2 < /b > The W3C is the World Wide Web Consortium which maintains many Web
 standards < /p >
 < /div >

 On its own, this would have no effect at all on how the document looks visually, but it does add extra
meaning to the markup, which now groups the related elements, and it ’ s particularly helpful to attach
special styles to these elements using CSS rules.

c01.indd 42c01.indd 42 11/20/09 3:45:43 PM11/20/09 3:45:43 PM

www.allitebooks.com

http://www.allitebooks.org

Chapter 1: Structuring Documents for the Web

43

 The < div > and < span > elements can carry all the universal attributes and UI event attributes, as well as
the deprecated align attribute.

 The XML Declaration
 At this point in the chapter, you have already learned a lot of markup that allows you to describe the
structure of text in your pages, including headings and paragraphs, presentational and phrase elements,
and lists. To wrap up this chapter, let ’ s now spend a few pages looking at some aspects of XHTML
which, to be completely honest, are both a little dull and have little effect upon how your pages will
look. They are, however, very important in terms of writing pages according to the rules (especially if
you want to create pages commercially), and there are some attributes that apply to most of the
elements you have already met, and that you are likely to meet in the coming few chapters.

 To start with, you ’ ll sometimes see a line at the beginning of an XHTML document, a line known as the
XML Declaration. The XHTML language was actually written using another language called Extensible
Markup Language (XML). XML is used to create markup languages, and any XML document can begin
with this optional XML declaration:

 < ?xml version=”1.0” encoding=”UTF-8” ? >

 Because it is optional, some authors do not start their documents with it. If you include the XML
declaration, it must be right at the beginning of the document; there must be nothing before it, not even a
space. The encoding attribute indicates the encoding used in the document.

 An encoding (short for character encoding) attribute represents how a program or operating system
stores characters that you might want to display. Because different languages have different characters,
and indeed because some programs support more characters than others, there are several different
encodings.

 Document Type Declaration
 As mentioned, XHTML employs a stricter syntax than previous versions of HTML. For example, element
and attribute names in XHTML must all be written in lowercase (whereas earlier versions of HTML were
not case - sensitive), every element that has some content must have a corresponding closing element, and
some of the elements and attributes may be marked as deprecated — meaning that they are likely to be
phased out in future versions of HTML or XHTML.

 While a web browser will usually display a page without a Document Type Declaration (indeed, none of
the examples to date in this chapter included one), each XHTML page should really begin with a
 DOCTYPE declaration to indicate to a browser (or any other program) the version of HTML or XHTML
that is being used in that page. We will therefore be including one in each example for the rest of
the book.

c01.indd 43c01.indd 43 11/20/09 3:45:44 PM11/20/09 3:45:44 PM

Chapter 1: Structuring Documents for the Web

44

 While I have been talking about XHTML as one language, when it was created there were actually three
versions or flavors of XHTML released — this was done to help existing web developers make the
transition from HTML to XHTML:

 Transitional XHTML 1.0 , which still allows developers to use the deprecated markup from
HTML 4.1 (even though it is likely to be phased out). It does, however, require the author to use
the new stricter syntax.

 Strict XHTML 1.0 , which was to signal the path forward for XHTML, without the deprecated
stylistic markup. It also obeys the new stricter syntax.

 Frameset XHTML 1.0 , which is used to create web pages that use something called frames (you
meet frames in Chapter 6).

 If by now you are feeling a little overwhelmed by all the different versions of HTML and XHTML, don ’ t
be! Throughout this book, you will be primarily learning Transitional XHTML 1.0. In the process, you will
learn which elements and attributes have been marked as deprecated and what the alternatives for are. If
you avoid the deprecated elements and attributes, you will automatically be writing Strict XHTML 1.0.

 The DOCTYPE declaration goes before the opening < html > tag in a document, and after the optional XML
Declaration if you have used it.

 If you are writing Transitional XHTML 1.0 (and include stylistic markup in your document), then your
 DOCTYPE declaration should look like this:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 If you are writing Strict XHTML 1.0, your DOCTYPE declaration will look like this:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >

 For frameset documents (discussed in Chapter 6), your DOCTYPE declaration would look like this:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd” >

 A Strict XHTML document must contain the DOCTYPE declaration before the root
element; however, you are not required to include the DOCTYPE declaration if you
are creating a transitional or frameset document.

 Having learned Transitional XHTML 1.0, you will be able to understand older versions of HTML and be
safe in the knowledge that (unless specifically warned) your XHTML code will work in the majority of
browsers used on the Web today.

❑

❑

❑

c01.indd 44c01.indd 44 11/20/09 3:45:44 PM11/20/09 3:45:44 PM

Chapter 1: Structuring Documents for the Web

45

 Core Elements and Attributes
 Now let ’ s take a closer look at the four main elements that form the basic structure of every
document: < html > , < head > , < title > , and < body > . These four elements should appear in every
XHTML document that you write, and you will see them referred to throughout this book as the skeleton of
the document.

 The < html > Element
 The < html > element is the containing element for the whole XHTML document. After the optional XML
declaration and required DOCTYPE declaration, each XHTML document should have an opening < html >
tag and each document should end with a closing < /html > tag.

 If you are writing Strict XHTML 1.0, the opening tag must also include something known as a namespace
identifier . The concept of namespaces may seem a little odd at first, until you realize that anyone can
create a markup language (for example, there are several industry-specific markup languages that allow
different people in the industry to share data in a standard format). Since anyone can create a markup
language, different markup languages end up using the same tag names, so namespaces help clarify
which element belongs to which language. For example, you have seen the < big > and < small > XHTML
elements already in this chapter; now imagine that a clothing company has a markup language for
describing its products that includes the < big > , < medium > , and < small > elements for sizes. The purpose
of a namespace is to specify which markup language the elements belong to.

 The purpose of the namespace identifier for XHTML is to indicate that the markup in the document
belongs to the XHTML 1.0 namespace. Therefore, the opening tag should look like this:

 < html xmlns=”http://www.w3.org/1999/xhtml” >

 While it is not strictly required in Transitional XHTML documents, it is a good practice to use it on all
XHTML documents.

 The < html > element can also carry the following attributes, which you will meet in the “ Attribute
Groups ” section later in this chapter:

id dir lang xml:lang

In earlier versions of HTML, a version attribute could be used to indicate which
version of HTML the document is written in, although it is usually left off.
XHTML documents should use the DOCTYPE declaration along with the xmlns
attribute to indicate which version of XHTML they use.

 The < head > Element
 The < head > element is just a container for all other header elements. It is the first thing to appear after
the opening < html > tag.

c01.indd 45c01.indd 45 11/20/09 3:45:44 PM11/20/09 3:45:44 PM

Chapter 1: Structuring Documents for the Web

46

 Each < head > element should contain a < title > element indicating the title of the document, although it
may also contain any combination of the following elements, in any order:

 < base > , which you will meet in Chapter 2.

 < object > , which is designed to include images, JavaScript objects, Flash animations, MP3 files,
QuickTime movies, and other types of files in a page. It is covered in Chapter 3.

 < link > to link to an external file, such as a style sheet or JavaScript file, as you will see in
Chapter 7.

 < style > to include CSS rules inside the document; it is covered in Chapter 7.

 < script > for including script in the document, which you ’ ll see in Chapter 11.

 < meta > , which includes information about the document such as keywords and a description,
which are particularly helpful for search applications; this is covered in Chapter 13.

 The opening < head > tag can carry the following attributes:

id dir lang xml:lang profile

 The profile attribute is not actually in use yet; the other attributes are covered in the “ Attribute
Groups ” section later in this chapter.

 The < title > Element
 You should specify a title for every page that you write using the < title > element (which, as you saw
earlier in the chapter, is a child of the < head > element). It is presented and used in several ways:

 At the very top of a browser window (as you saw in the first example and Figure 1 - 1)

 As the default name for a bookmark in browsers such as IE, Firefox, and Safari

 By search engines that use its content to help index pages

 Therefore, it is important to use a title that really describes the content of your site. For example, the
homepage of this book should not just say “ HomePage; ” rather it should describe what your site is
about. Rather than just saying Wrox Homepage, it is more helpful to write:

 < title > Wrox: Programming Books, Learn XHTML, CSS, ASP.Net, PHP < /title >

 The test for a good title is whether visitors can tell what they will find on that page just by reading the
title, without looking at the actual content of the page, and whether it uses words that people would use
if they were going to search for this kind of information.

 The < title > element should contain only the text for the title; it may not contain any other elements. The
 < title > element can carry the following attributes, which are covered in the following Attribute
Groups section:

id dir lang xml:lang

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 46c01.indd 46 11/20/09 3:45:44 PM11/20/09 3:45:44 PM

Chapter 1: Structuring Documents for the Web

47

 The < body > Element
 The < body > element appears after the < head > element and as you have already seen, it contains the part
of the web page that you actually see in the main browser window, which is sometimes referred to as
 body content . The < body > element may carry all of the attributes from the attribute groups you are about to
meet in the next section. You may also see the following deprecated attributes used on the < body >
element in older HTML documents (they are covered in Appendix I):

background bgcolor alink link vlink text

 You might also see several browser - specific attributes used on the < body > element; these are also
covered in Appendix I:

language, topmargin, bottommargin, leftmargin, rightmargin, scroll,
bgproperties, marginheight, marginwidth

 Attribute Groups
 As you have seen, attributes live on the opening tag of an element and provide extra information about
the element that carries them. All attributes consist of a name and a value ; the name reflects a property of
the element the attribute is describing, and the value is a value for that property. For example, the xml:
lang attribute describes the language used within that element; a value such as EN - US would indicate
that the language used inside the element is U.S. English. Many of the elements in XHTML can carry
some or all of the attributes you will meet in this section; at first some of them may sound a little
abstract, although they will make more sense as you see them used throughout the book. So don ’ t worry
if they do not make much sense at first.

 There are three groups of attributes that many of the XHTML elements can carry:

 Core attributes: The class , id , and title attributes

 Internationalization attributes: The dir , lang , and xml:lang attributes

 UI events: Attributes associated with events such as onclick , ondoubleclick , onmousedown ,
 onmouseup , onmouseover , onmousemove , onmouseout , onkeypress , onkeydown , and
 onkeyup (these are covered in more detail in Chapter 11)

Together, the core attributes and the internationalization attributes are known as
 universal attributes .

 Core Attributes
 The four core attributes that can be used on the majority of XHTML elements (although not all) are:

id title class style

❑

❑

❑

c01.indd 47c01.indd 47 11/20/09 3:45:45 PM11/20/09 3:45:45 PM

Chapter 1: Structuring Documents for the Web

48

 Throughout the rest of the book, where these attributes occasionally have special meaning for an element
that differs from the description given here, I revisit them; otherwise their use can generally be described
as you see in the subsections that follow.

 The id Attribute
 The id attribute can be used to uniquely identify any element within a page. You might want to
uniquely identify an element so that you can link to that specific part in the document, or to specify that
a CSS style or piece of JavaScript should apply to the content of just that one element within the
document.

 The syntax for the id attribute is as follows (where string is your chosen value for the attribute):

id=” string ”

 For example, the id attribute could be used to distinguish between two paragraph elements, like so:

 < p id=”accounts” > This paragraph explains the role of the accounts
department. < /p >
 < p id=”sales” > This paragraph explains the role of the sales department. < /p >

 Note that there are some special rules for the value of the id attribute. It must:

 Begin with a letter (A – Z or a – z) and can then be followed by any number of letters, digits (0 – 9),
hyphens, underscores, colons, and periods (you may not start the value with a digit, hyphen,
underscore, colon, or period).

 Remain unique within that document; no two id attributes may have the same value within one
XHTML page.

 Before the id attribute was introduced, the name attribute served a similar purpose in HTML documents,
but its use was deprecated in HTML 4.01, and now you should generally use the id attribute in XHTML
documents. If you need to use the name attribute, it is available in Transitional XHTML, but not Strict
XHTML (unless specifically stated for a particular element).

 The class Attribute
 The class attribute is used to specify that an element belongs to a class of elements. For example, you
might have a document that contains many paragraphs, and a few of those paragraphs might contain a
summary of key points, in which case you could add a class attribute whose value is summary to the
relevant < p > elements, to differentiate those paragraphs from the rest in the document.

 < p class=”summary” > Summary goes here < /p >

 It is commonly used with CSS, so you will learn more about the use of the class attribute in Chapter 7,
which introduces CSS. The syntax of the class attribute is as follows:

class=” className ”

 The value of the attribute may also be a space - separated list of class names. For example:

class=” className1 className2 className3 ”

❑

❑

c01.indd 48c01.indd 48 11/20/09 3:45:45 PM11/20/09 3:45:45 PM

Chapter 1: Structuring Documents for the Web

49

 The title Attribute
 The title attribute gives a suggested title for the element. The syntax for the title attribute is as
follows:

title=” string ”

 The behavior of this attribute will depend upon the element that carries it, although it is often displayed
as a tooltip or while the element is loading.

 Not every element that can carry a title attribute really needs one, so when we meet an element that
particularly benefits from use of this attribute, I will show you the behavior it has when used with
that element.

 The style Attribute (Deprecated)
 The style attribute allows you to specify CSS rules within the element. You meet CSS in Chapter 7, but
for now, here is an example of how it might be used:

 < p style=”font-family:arial; color:#FF0000;” > Some text. < /p >

 As a general rule, however, it is best to avoid the use of this attribute. This attribute is marked as
deprecated in XHTML 1.0 (which means it will be removed from future versions of HTML and XHTML).
If you want to use CSS rules to govern how an element appears, it is better to use a separate style sheet
instead. You will see each of these techniques in Chapter 7, which introduces CSS.

 Internationalization
 There are three internationalization attributes that help users write pages for different languages and
character sets, and they are available to most (although not all) XHTML elements (which is important in
multilingual documents).

dir lang xml:lang

 We will look at each in turn next, but it is worth noting that even in current browsers, support for these
attributes is still very patchy, therefore where possible you should specify a character set that will create
text in the direction you require.

 Here is the web address of a helpful W3C document that describes internationalization issues in greater
detail, although we will briefly look at each of these attributes next:

 http://www.w3.org/TR/i18n - html - tech - char/

 The internationalization attributes are sometimes referred to as the i18n attributes, an odd name that
comes from the draft - ietf - html - i18n specification in which they were first defined.

c01.indd 49c01.indd 49 11/20/09 3:45:45 PM11/20/09 3:45:45 PM

Chapter 1: Structuring Documents for the Web

50

 The dir Attribute
 The dir attribute allows you to indicate to the browser the direction in which the text should flow; left to
right or right to left. When you want to indicate the directionality of a whole document (or the majority
of the document), it should be used with the < html > element rather than the < body > element for two
reasons: Its use on the < html > element has better support in browsers, and it will apply to the header
elements as well as those in the body. The dir attribute can also be used on elements within the body of
the document if you want to change the direction of a small portion of the document.

 The dir attribute can take one of two values, as you can see in the table that follows.

 Value Meaning

 ltr Left to right (the default value)

 rtl Right to left (for languages such as Hebrew or Arabic that are read right to left)

 The lang Attribute
 The lang attribute allows you to indicate the main language used in a document. It was kept in XHTML
only for backwards compatibility with earlier versions of HTML, and has been replaced by the xml:
lang attribute in new XHTML documents (which are covered in the next section). However, the XHTML
recommendation suggests that you use both the lang and the xml:lang attributes on the < html >
element in your XHTML 1.0 documents (to achieve maximum compatibility across different browsers).

 The lang attribute was designed to offer language - specific display to users, although it has little effect in
the main browsers. The real benefits of using the lang attribute are with search engines (which can tell
the user which language the document is authored in), screen readers (which might need to pronounce
different languages in different ways), and applications (which can alert users when they either do not
support that language or it is a different language than their default language). When used with the
 < html > element the attribute applies to the whole document, although it can be used on other elements,
in which case it just applies to the content of those elements.

 The values of the lang attribute are ISO - 639 standard two - character language codes. If you want to
specify a dialect of the language, you can follow the language code with a dash and a subcode name. The
table that follows offers some examples.

 Value Meaning

 ar Arabic

 en English

 en - us U. S. English

 zh Chinese

 A list of language codes for most of the main languages in use today can be found in Appendix G.

c01.indd 50c01.indd 50 11/20/09 3:45:45 PM11/20/09 3:45:45 PM

Chapter 1: Structuring Documents for the Web

51

 The xml:lang Attribute
 The xml:lang attribute is the XHTML replacement for the lang attribute. It is an attribute that is
available in all languages that are written in XML (you may remember earlier in the chapter that I
mentioned that XHTML was written in XML), which is why it is prefixed by the characters xml: . The
value of the xml:lang attribute should be an ISO - 639 country code like those listed in the previous
section; a full list appears in Appendix G.

 While it has no effect in the main browsers, other XML - aware applications and search engines may use
this information, and it is good practice to include the xml:lang attribute in your documents. When
used with the < html > element, it applies to the whole document, although it can be used on other
elements, in which case it just applies to the content of those elements.

 UI Events
 The UI event attributes allow you to associate an event , such as a key press or the mouse being moved
over an element, with a script (a portion of programming code that runs when the event occurs). For
example, when someone moves a mouse over the content of a certain element you might use a script to
make it change color.

 You will meet the UI events in more detail in Chapter 12, although their names indicate quite clearly
what event they are associated with; for example, onclick fires when a user clicks on that element ’ s
content, onmousemove fires when a mouse moves, and onmouseout fires when a user moves the mouse
out of the content of a particular element.

 There are ten events, known collectively as common events :

onclick ondoubleclick onmousedown onmouseup onmouseover onmousemove
onmouseout onkeypress onkeydown onkeyup

 The < body > and < frameset > elements also have the following events for when a page opens
or is closed:

onload onunload

 Finally, there are a number of events that work with forms only (which are mentioned in Chapter 5 and
again in Chapter 12):

onfocus onblur onsubmit onreset onselect onchange

 Summary
 In this chapter, you have seen how there are often similarities between web pages and print documents;
for example, a news story in print or on the Web is made up of a headline, some paragraphs of text,
maybe some sub headings, and one or more pictures. On the Web you need to explain the structure of
these documents, and you do that using XHTML.

c01.indd 51c01.indd 51 11/20/09 3:45:46 PM11/20/09 3:45:46 PM

Chapter 1: Structuring Documents for the Web

52

 You have learned that the contents of a web page is marked up using elements that describe the structure
of the document. These elements consist of an opening tag, a closing tag, and some content between the
opening and closing tags. In order to alter some properties of elements, the opening tag may carry
attributes, and attributes are always written as name value pairs. You know that XHTML can be thought
of as the latest version of HTML, and that there are three different flavors of XHTML — in order to tell
the browser which you are using, you can use a DOCTYPE declaration.

 You also met a lot of new elements and learned the attributes they can carry. You ’ ve seen how every
XHTML document should contain at least the < html > , < head > , < title > , and < body > elements, and
how the < html > element should carry a namespace identifier.

 The rest of this chapter dealt with elements that describe the structure of text:

 The six levels of headings: < h1 > , < h2 > , < h3 > , < h4 > , < h5 > , and < h6 >

 Paragraphs < p > , preformatted sections < pre > , line breaks < br / > , and addresses < address >

 Presentational elements < b > , < i > , < u > , < s > , < tt > , < sup > , < sub > , < strike > , < big > , < small > ,
and < hr / >

 Phrase elements such as < em > , < strong > , < abbr > , < acronym > , < dfn > , < blockquote > , < q > ,
 < cite > , < code > , < kbd > , < var > , < samp > , and < address >

 Lists such as unordered lists using < ul > and < li > , ordered lists using < ol > and < li > , and
definition lists using < dl > , < dt > , and < dd >

 Editing elements such as < ins > and < del >

 Grouping elements < div > and < span >

 You will obviously use some of these elements more than others, but where an element fits the content
you are trying to mark up, from paragraphs to addresses, you should try to use it, because structuring
your text properly will help it last longer than if you just format it using line breaks and presentational
elements.

 Exercises
 The answers to all of the exercises are in Appendix A.

 1. Mark up the following sentence with the relevant presentational elements.

The 1 st time the bold man wrote in italics , he underlined several key words.

 2. Mark up the following list, with inserted and deleted content:

 Ricotta pancake ingredients:

 ❑ 1 1/2 3/4 cups ricotta

❑ 3/4 cup milk

❑ 4 eggs

❑ 1 cup plain white flour

❑

❑

❑

❑

❑

❑

❑

c01.indd 52c01.indd 52 11/20/09 3:45:46 PM11/20/09 3:45:46 PM

Chapter 1: Structuring Documents for the Web

53

❑ 1 teaspoon baking powder

❑ 75g 50g butter

❑ pinch of salt

 3. You have already created the homepage for the Example Caf é site that we will be building
throughout the book. You also created a recipes page. Now you need to create three more pages
so that we can continue to build the site in coming chapters. Each page should start like the
homepage, with a level 1 heading saying “ Example Caf é , ” followed by the paragraph:
“ Welcome to Example Caf é . We will be developing this site throughout the book. ” After this:

 a. For a menu page, add a level 2 heading saying “ Menu. ” This should be followed by a
paragraph saying, “ The menu will go here. ” Update the content of the < title > element to
reflect that this page will feature the menus at the café. Save the file with the name menu.
html .

 b. For an opening times page, add a level 2 heading saying “ Opening hours. ” This should be
followed by a paragraph saying “ Details of opening hours and how to find us will go
here. ” Update the < title > element to reflect that the page tells visitors opening hours
and where to find the caf é . Save the file with the name opening.html .

 c. For the contact page, add a level 2 heading saying “ Contact. ” This page should contain the
address: 12 Sea View, Newquay, Cornwall, UK. Update the < title > element to reflect that
the page tells visitors how to contact the cafe.

c01.indd 53c01.indd 53 11/20/09 3:45:46 PM11/20/09 3:45:46 PM

c01.indd 54c01.indd 54 11/20/09 3:45:46 PM11/20/09 3:45:46 PM

2
 Links and Navigation

 What really distinguishes the Web from other mediums is the way in which a web page can
contain links (or hyperlinks) that you can click on to be taken from one page to another page. The
link can be a word, phrase, or image.

 When you link to another page in your own web site, the link is known as an internal link . When
you link to a different site, it is known as an external link . In this chapter you will learn how to
create both types of link. You will also see how you can link to a specific point within a page.

 While you will learn the basics of linking from one Web page to another fairly quickly, it is also
helpful to learn some other concepts, such as how to structure your site well by storing different
files into separate folders or directories . Once you understand directory structure, you can link
between pages of your own site using shorter links called relative URLs .

 In this chapter, you learn the following:

 How to link between pages of your site

 How to link to other sites

 How to structure the folders on your web site

 How to link to specific parts of a page in your site

 Basic Links
 A link is specified using the < a > element. Anything between the opening < a > tag and the closing
 < /a > tag becomes part of the link that users can click in a browser.

❑

❑

❑

❑

c02.indd 55c02.indd 55 11/20/09 3:54:37 PM11/20/09 3:54:37 PM

Chapter 2: Links and Navigation

56

 Linking to Other Web Pages
 To link to another web page, the opening < a > tag must carry an attribute called href ; the value of the
 href attribute is the name of the file you are linking to.

 As an example, here is the < body > of the page ch02_eg01.html , which is in the code download for this
chapter at www.wrox.com. This page contains a link to a second page called index.html:

 < body >
 < p > Return to the < a href=”index.html” > home page < /a > . < /p >
 < /body >

 As long as index.html is in the same folder as ch02_eg01.html , when you click the words “ home
page, ” the index.html page will be loaded into the same window, replacing the current
ch02_eg01.html page. As you can see from Figure 2 - 1, the content of the < a > element forms the link.

Figure 2-1

 This is how the links for the download code for this chapter work. Remember that you can click the View
menu in your browser and then select the View Source or Page Source option at any time to see what is
going on in an XHTML page. Why not try it on the download code now?

 If you want to link to a different site, you can use the < a > element again, but this time you specify the
full web address for the page you want to link to rather than just the filename. Here is an example of a
link that will take you to an external site, in this case the Wrox web site (ch02_eg02.html):

 < body >
 < p > Why not visit the < a href=”http://www.wrox.com/” > Wrox web site < /a > ? < /p >
 < /body >

 As you can see, the value of the href attribute is what you would type into a browser if you wanted to
visit the Wrox web site; the full web address is often referred to as a URL (Uniform Resource Locator).

 When creating any link, you should try to make it concise and use words that let people know what they
will see if they click on the link. One reason for this is that links are usually presented in a different color
than the surrounding text, which makes them stick out more than the text around them. As a result,
many people scan pages for links when they want to go to the next page without really reading the entire
page. Therefore, people are more likely to keep exploring your web site if the links are easy to read and
have a better explanation than just “ click here. ”

c02.indd 56c02.indd 56 11/20/09 3:54:38 PM11/20/09 3:54:38 PM

Chapter 2: Links and Navigation

57

 Many web designers also use images inside the <a> element, which is something you will see in the next
chapter. When you use an image, you should make sure that the image gives a clear indication of where
the link will take you.

 You can also use the title attribute on a link; the value of the title attribute should be a description of
what the link will take you to, which will be displayed in a tooltip when you hover over the link. This
can be especially helpful if you do use an image for a link.

 The following is a link to the Google homepage (ch02_eg03.html):

 < p > < a href=”http://www.Google.com/” title=”Search the Web with
Google” > Google < /a >
is a very popular search engine. < /p >

 Figure 2 - 2 shows the title attribute, which gives further information about the link to the user, when
the mouse is held over the link.

Figure 2-2

Figure 2-3

 You should be aware that everything inside the < a > element gets rendered as a link, including white
space around the text or images. Therefore it is best to avoid spaces directly after an opening < a > tag or
before the closing < /a > tag. For example, consider the following link with spaces just inside the < a >
element (ch02_eg04.html):

Why not visit the < a href=”http://www.wrox.com/” > Wrox Web site < /a > ?

 As you can see in Figure 2 - 3, these spaces in the link will be underlined.

c02.indd 57c02.indd 57 11/20/09 3:54:38 PM11/20/09 3:54:38 PM

Chapter 2: Links and Navigation

58

 It is far better to use white space outside of these tags, like so:

Why not visit the < a href=”http://www.wrox.com/” > Wrox Web site < /a > ?

 Of course, you should still have spaces between words inside the < a > element; it ’ s just best if they are
not inside the beginning or end of the link.

 Linking to E - mail Addresses
 You ’ ve probably seen a link that shows an e - mail address, which when clicked on opens a new e - mail in
your e - mail program, ready for you to send an e - mail to that address.

 To create a link to an e - mail address, you need to use the following syntax with the < a > element:

 < a href=”mailto:name@example.com” > name@example.com < /a >

 Here, the value of the href attribute starts with the keyword mailto , followed by a colon, and then the
e - mail address you want the mail sent to. As with any other link, the content of the < a > element is the
visible part of the link shown in the browser, so this would also work:

 < a href=”mailto:name@example.com” > E-mail us < /a > .

 There is one drawback to putting your e - mail address on a web page: some less scrupulous inhabitants
of the Web use little programs to automatically search web sites for e - mail addresses. After they have
found e - mail addresses on web sites, they will start sending spam to those addresses.

 There are alternatives to creating a link to an e - mail address:

 Use an e - mail form that visitors fill out instead, because automated programs cannot use contact
forms to collect e - mail addresses. The drawback is that an e - mail form requires a script to run on
the web server (written in a language such as ASP.NET or PHP). Chapter 5 provides an example
of an e - mail form.

 Write your e - mail address into the page using JavaScript (covered in Chapter 13). The idea
behind this technique is that the programs that scour the Web for e - mail addresses cannot read
the JavaScript version of an address.

Try It Out Creating Simple Links

Now it ’ s your turn to create a page that has three types of link: an internal link, an external link, and
an e - mail link. We will be developing the Example Caf é site we started in the last chapter, so open up
the contact.html page that is in the sample application folder from Chapter 1:

 1. Check that the page looks like this:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >

❑

❑

c02.indd 58c02.indd 58 11/20/09 3:54:39 PM11/20/09 3:54:39 PM

Chapter 2: Links and Navigation

59

 < title > Example Cafe - community cafe in Newquay, Cornwal, UK < /title >
 < meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” / >
 < /head >

 < body >

 < h1 > EXAMPLE CAFE < /h1 >
 < p > Welcome to Example Cafe. We will be developing this site throughout
 the book. < /p >

 < h2 > Contact < /h2 >
 < p > < address > 12 Sea View, Newquay, Cornwall, UK < /address > < /p >

 < /body >
 < /html >

 2. We are going to start by adding navigation between the pages of the site. To start, replace the
first paragraph (after the < h1 > element) with links to the three other pages of the site. Each
 < a > element should contain the name of the page it links to, as shown here. We will group
these links inside a < div > element:

 < h1 > EXAMPLE CAFE < /h1 >
 < div >
 < a href=”” > HOME < /a >
 < a href=”” > MENU < /a >
 < a href=”” > RECIPES < /a >

 < /div >

 3. Add the name of the contact page, but do not make it a link (because this is the page that the
user is already on, they do not need a link to it):

 < h1 > EXAMPLE CAFE < /h1 >
 < div >
 < a href=”” > HOME < /a >
 < a href=”” > MENU < /a >
 < a href=”” > RECIPES < /a >
 CONTACT
 < /div >

 4. Add the filename of each of these pages as the value of the href attribute:

 < h1 > EXAMPLE CAFE < /h1 >
 < div >
 < a href=”index.html” > HOME < /a >
 < a href=”menu.html” > MENU < /a >
 < a href=”recipes.html” > RECIPES < /a >
 CONTACT
 < /div >

c02.indd 59c02.indd 59 11/20/09 3:54:39 PM11/20/09 3:54:39 PM

Chapter 2: Links and Navigation

60

 Since these pages are all in the same folder, you only need to specify the file name; you do not
need a full URL.

 5. Under the address, add a link to the following page on Google Maps, like so: info@
examplecafe.com :

 < p > < a href=”http://maps.google.com/maps?q=newquay” > Find us on Google
Maps < /a > < /p >

 This time the value of the href attribute is the web address you would type into your browser
in order to find a map of Newquay in Google Maps.

 6. Under the address, add a link to send an e - mail to info@examplecafe.com :

 < p > < a href=”mailto:info@examplecafe.com” > Mail Example Cafe < /a > < /p >

 This time the value of the href attribute begins with mailto: and this is followed by the e - mail
address.

7. Save this file as contact.html in the same folder as the sample application for this chapter.
Then open it up and take a look at it in your browser. You should end up with something that
looks like Figure 2 - 4.

Figure 2-4

 You have now seen how to create basic types of links, and you are ready to delve into the more in - depth
topics. But first you need to read through a few pages that explain more about how you should organize
the files in your web site into folders, and also understand the anatomy of a URL (the address that
identifies pages and other resources on your web site).

c02.indd 60c02.indd 60 11/20/09 3:54:39 PM11/20/09 3:54:39 PM

Chapter 2: Links and Navigation

61

 Understanding Directories
and Directory Structures

 A directory is simply another name for a folder on a web site; in the same way that your hard drive
contains different folders, a web site can be said to contain directories. Usually you will find that a
web site contains several directories, and that each directory contains different parts of a web site. For
example, a big site with several subsections will have a separate directory for each section of that site,
and also different directories for different types of files (for example, images may live in one directory
and style sheets in another).

 In the same way that you probably organize the files on your hard drive into separate folders, it is
important to organize the files on yourweb site into directories so that you can find what you are looking
for more easily and keep control of all the files. As you can imagine, if all the files used in a web site
resided in the same directory, that directory would quickly get very large and complicated.

 Figure 2 - 5 shows an example directory structure for a news site, with separate folders for each section.
Note also how the Music section has its own folders for subsections about Features, MP3s, and Reviews.
In addition, the main folder has separate folders for different types of files used in the site: images,
scripts, and style sheets.

Figure 2-5

c02.indd 61c02.indd 61 11/20/09 3:54:39 PM11/20/09 3:54:39 PM

Chapter 2: Links and Navigation

62

 When you start to build any web site you should create a good directory structure that can withstand
growth; it ’ s surprising how a small web site can quickly grow and contain many more files than you
initially imagined.

 As you learn about linking, it ’ s helpful to learn some of the terms that are used in describing directory
structures and the relationships between directories, so look back at Figure 2 - 5 to see an example
directory structure:

 The root directory (or root folder) is the main directory that holds the whole of you web site; in
this case, it is called exampleNewsSite.com.

 A subdirectory is a directory that is within another directory. Here, Film is a subdirectory of
Entertainment.

 A parent directory is a directory that contains another directory. Here, Entertainment is the parent
directory of Arts, Film, Music, and TV.

 Understanding URLs
 A URL or Uniform Resource Locator specifies where you can find a resource on the web; you are probably
most used to thinking of them as web addresses. As you move around the Web, you will see the URL of
each web page in the address bar of your browser.

 If you look at the example URL in Figure 2 - 6, there are three key parts to the URL: the scheme, the host
address, and the filepath.

❑

❑

❑

Figure 2-6

http://www.wrox.com/index.html

Host address

Scheme Filepath

 Let ’ s look at each of these in turn.

 The scheme identifies the way a file is transmitted. Most web pages use something called the Hypertext
Transfer Protocol (HTTP) to pass information to you, which is why most web pages start with http:// ,
although you might have noticed other prefixes such as https:// when doing banking online (which is
a more secure form of http) or ftp:// when downloading large files.

 The host address is usually the domain name for the site, e.g., wrox.com . Often you will see www before
the domain name, although it is not actually part of the domain name itself. The host address can also be
a number called an IP address.

 All computers connected to the Internet can be found using an IP address. An IP address is a set of up
to 12 digits separated by a period (full stop) symbol. When you enter a domain name into a browser,
behind the scenes the name gets converted into the IP address for the computer(s) that stores the web site.

c02.indd 62c02.indd 62 11/20/09 3:54:40 PM11/20/09 3:54:40 PM

Chapter 2: Links and Navigation

63

This is done by consulting a domain name server (DNS), which keeps a directory of domain names and
the corresponding IP addresses.

 The filepath always begins with a forward slash character, and may consist of one or more directory
names (remember, a directory is just another name for a folder on the web server). The filepath may end
with a filename at the end. Here, BeginningXHTML.html is the filename:

/books/BeginningXHTML.html

 The filepath will usually correspond to the directory structure of the web site, so in this case the
 BeginningXHTML.html page would be found in a directory called books .

 In fact it is not just web pages that have their own URLs; every file on the Web, including each image,
has its own URL. So the filename could be an image rather than an XHTML page.

 If a filename is not given, the web server will usually do one of three things (depending upon how it is
configured):

 Look for a default file and return that. For web sites written in XHTML, the default file is usually
 index.html ; if no filepath is specified, the server will look for a file called index.html in the
root folder, or if a directory is specified it will look for an index.html file in that directory.

 Offer a list of files in that directory .

 Show a message saying that the page cannot be found or that you cannot browse the files
in a folder .

 When linking to pages on your own web site, you do not need to use all of three parts of the URL — you
can just use the filepath and filename, as you will see in the next section.

 Absolute and Relative URLs
 An absolute URL contains everything you need to uniquely identify a particular file on the Internet. This
is what you would type into the address bar of your browser in order to find a page. For example, to get
the page about film on the fictional news site you met earlier in the chapter, you might type in the
following URL (you may find it helpful to refer back to Figure 2 - 5 to see how the filepath corresponds to
the directory structure):

 http://www.exampleNewsSite.com/Entertainment/Film/index.html

 As you can see, absolute URLs can quickly get quite long, and every page of a web site can contain many
links. When linking to a page on your own site, however, you can use a shorthand form: relative URLs.

 A relative URL indicates where the resource is in relation to the current page. The examples earlier in this
chapter, which link to another page in the same directory, are examples of relative URLs. You can also
use relative URLs to specify files in different directories. For example, imagine you are looking at the
homepage for the entertainment section of the following fictional news site:

 http://www.exampleNewsSite.com/Entertainment/index.html

❑

❑

❑

c02.indd 63c02.indd 63 11/20/09 3:54:41 PM11/20/09 3:54:41 PM

Chapter 2: Links and Navigation

64

 You want to add a link to the index pages for each of the subsections: Film, TV, Arts, and Music. Rather
than including the full URL for each page, you can use a relative URL. For example:

 Film/index.html
 TV/index.html
 Arts/index.html
 Music/index.html

 As I am sure you agree, this is a lot quicker than having to write out the following:

 http://www.exampleNewsSite.com/Entertainment/Film/index.html
 http://www.exampleNewsSite.com/Entertainment/TV/index.html
 http://www.exampleNewsSite.com/Entertainment/Arts/index.html
 http://www.exampleNewsSite.com/Entertainment/Music/index.html

 You might be interested to know that your web browser still requests the full URL, not the shortened
relative URL, but it is the browser that is actually doing the work of turning the relative URLs into full
absolute URLs.

 Another benefit to using relative URLs within your site is that you can develop the site on your desktop
or laptop without having bought a domain name. You can also change your domain name or copy a
subsection of one site over to a new domain name without having to change all of the links, because each
link is relative to other pages within the same site.

 Relative URLs work only on links within the same web site; you cannot use them to link to pages on
other domain names.

 The subsections that follow provide a summary of the different types of relative URLs you can use.

 Same Directory
 When you want to link to, or include, a resource from the same directory, you can just use the name of
that file. For example, to link from the homepage (index.html) to the “ contact us ” page (contactUs.
html), you can use the following:

contactUs.html

 Because the file lives in the same folder, you do not need to specify anything else.

 Subdirectory
 The Film, TV, Arts, and Music directories from Figure 2 - 5 were all subdirectories of the Entertainment
directory. If you are writing a page in the Entertainment directory, you can create a link to the index page
of the subdirectories like so:

c02.indd 64c02.indd 64 11/20/09 3:54:41 PM11/20/09 3:54:41 PM

Chapter 2: Links and Navigation

65

 Film/index.html
 TV/index.html
 Arts/index.html
 Music/index.html

 You must include the name of the subdirectory, followed by a forward slash character, and the name of
the page you want to link to.

 For each additional subdirectory, just add the name of the directory followed by a forward slash
character. So, if you are creating a link from a page in the root folder of the site (such as the site ’ s main
homepage), use a relative URL such as the following to reach the same pages:

 Entertainment/Film/index.html
 Entertainment/TV/index.html
 Entertainment/Arts/index.html
 Entertainment/Music/index.html

 Parent Directory
 If you want to create a link from one directory to its parent directory (the directory that it is in), you use
the ../ notation of two periods or dots followed by a forward slash character. For example, from a page
in the Music directory to a page in the Entertainment directory, your relative URL looks like this:

../index.html

 If you want to link from the Music directory to the root directory, you repeat the notation:

../../index.html

 Each time you repeat the ../ notation, you go up another directory.

 From the Root
 It is also possible to indicate a file relative to the root folder of the site. So, if you wanted to link to the
 contactUs.html page from any page within the site, you use its path preceded by a forward slash. For
example, if the Contact Us page is in the root folder, you just need to enter:

/contactUs.html

 Alternatively, you can link to the Music section ’ s index page from anywhere within that site using the
following:

/Entertainment/Music/index.html

 The forward slash at the start indicates the root directory, and then the path from there is specified.

c02.indd 65c02.indd 65 11/20/09 3:54:41 PM11/20/09 3:54:41 PM

Chapter 2: Links and Navigation

66

 The < base > Element
 As I mentioned earlier, when a browser comes across a relative URL, it actually transforms the relative
URL into a full absolute URL. The < base > element allows you to specify a base URL for a page that all
relative URLs will be added to when the browser comes across a relative URL.

 You specify the base URL as the value of the href attribute on the < base > element. For example, you
might indicate a base URL for http://www.exampleSite2.com/ as follows:

 < base href=”http://www.exampleSite2.com/” / >

 In this case, a relative URL like this one:

Entertainment/Arts/index.html

ends up with the browser requesting this page:

 http://www.exampleSite2.com/Entertainment/Arts/index.html

 Apart from the href attribute, the only other attribute a < base > element can carry is the id attribute.

 Creating Links with the < a > Element
 You have already seen examples of using the < a > element to create links. For the rest of the chapter
we ’ ll look more closely at the < a > element, and you ’ ll see how it can be used to link to a specific
part of a page.

 As with all journeys, links have a starting point known as the source , and a finishing point known as the
 destination ; in XHTML both points are called anchors . Each link that you see on a page that you can click
is a source anchor , created using the < a > element. You can also use the < a > element to create markers in
parts of your pages that allow you to link directly to that part of the page. These markers are called
 destination anchors .

 Creating a Source Anchor with the href Attribute
 The source anchor is what most people think of when talking about links on the Web — whether the link
contains text or an image. It is something you can click expecting, to be taken somewhere else.

c02.indd 66c02.indd 66 11/20/09 3:54:41 PM11/20/09 3:54:41 PM

Chapter 2: Links and Navigation

67

 As you have already seen, any text contained between the opening < a > tag and closing < /a > tag forms
part of the link that a user can click on. The URL the user should be taken to is specified as the value of
the href attribute.

 For example, when you click the words Wrox Web site (which you can see are inside the < a > element)
the link takes you to http://www.wrox.com/ :

Why not visit the < a href=”http://www.wrox.com/” > Wrox Web site < /a > to
find out about some of our other books?

 If the following link were placed on the homepage of the fictional news site we have been looking at, it
would take you to the main Film page of that site:

You can see more films in the < a href=”Entertainment/Film/index.html” > film
section < /a > .

 By default, the link looks something like the one shown in Figure 2 - 7, underlined and in blue text.

 You need to specify a destination anchor only if you want to link to a specific part of a page, as described
in the next section.

Figure 2-7

 Creating a Destination Anchor Using the name and id
Attributes (Linking to a Specific Part of a Page)

 If you have a long web page, you might want to link to a specific part of that page in order to save the
user from having to scroll up and down the page to find the relevant part. The destination anchor allows
the page author to mark specific points in a page that a source anchor can point to.

 Common examples of linking to a specific part of a page that you might have seen used on web
pages include:

 “ Back to top ” links at the bottom of a long page

 A list of contents on a page that takes the user to the relevant section of that page

 Links within text to footnotes or definitions

❑

❑

❑

c02.indd 67c02.indd 67 11/20/09 3:54:42 PM11/20/09 3:54:42 PM

Chapter 2: Links and Navigation

68

Figure 2-8

 You create a destination anchor using the < a > element again, but when it acts as a destination anchor
rather than using an href attribute, you use the id attribute.

 If you are looking at the source code of some older web pages, you may see a name attribute used as
well, or even instead of the id attribute. You may remember from Chapter 1 that the name and id
attributes were two of the universal attributes that most elements can carry. The id attribute is now the
preferred way to create a destination anchor, but it was only introduced in version 4 of HTML, and
the name attribute was used to perform the same function in previous versions.

 By way of example, imagine that you have a long page with a main heading and several subheadings.
The whole page does not fit on the screen at once, forcing the user to scroll, so you want to add links at
the top of the page that take readers directly to each of the section headings on that page.

c02.indd 68c02.indd 68 11/20/09 3:54:42 PM11/20/09 3:54:42 PM

Chapter 2: Links and Navigation

69

Figure 2-9

 Before you can create links to each section of the page (using the source anchors), you have to add the
destination anchors. Here you can see that inside the < h2 > subheading elements, there is an < a > element
with the id attribute whose value identifies each section (remember that a page should not contain two
 id attributes that have the same value):

 < h1 > Linking and Navigation < /h1 >
 < h2 > < a id=”URL” > URLs < /a > < /h2 >
 < h2 > < a id=”SourceAnchors” > Source Anchors < /a > < /h2 >
 < h2 > < a id=”DestinationAnchors” > Destination Anchors < /a > < /h2 >
 < h2 > < a id=”Examples” > Examples < /a > < /h2 >

 With destination anchors in place, it ’ s now possible to add source anchors to link to these sections. To
link to a particular section, the value of the href attribute in the source anchor should be the same as the
value of the id attribute on the corresponding destination element, preceded by a pound or hash sign (#).

c02.indd 69c02.indd 69 11/20/09 3:54:43 PM11/20/09 3:54:43 PM

Chapter 2: Links and Navigation

70

 < p > This page covers the following topics:
 < ul >
 < li > < a href=”#URL” > URLs < /a > < /li >
 < li > < a href=”#SourceAnchors” > Source Anchors < /a > < /li >
 < li > < a href=”#DestinationAnchors” > Destination Anchors < /a > < /li >
 < li > < a href=”#Examples” > Examples < /a > < /li >
 < /ul >
 < /p >

 If you take a look at Figure 2 - 8, you can see how the page has several links to the sections of the page;
and in Figure 2 - 9, you can see what happens when the user clicks on the second link and is taken directly
to that section of the page. You can see the full code for this example in the download code for this
chapter, available from the Wrox web site; the file is ch02_eg06.html .

 It is important for destination anchors to always have some content; otherwise some browsers will not
find the destination. For example, you should not use the following to indicate the top of the page:

 < a id=”top” > < /a >

 Rather, you should put this around the main heading or some other content, like so:

 < h1 > < a id=”top” > Linking and Navigation < /a > < /h1 >

 If someone wanted to link to a specific part of this web page from a different web site (such as the section
on Source Anchors), he or she would add the full URL for the page, followed by the pound or hash sign
and then the value of the id attribute, as follows:

 http://www.example.com/HTML/links.html#SourceAnchors

 The value of a name or id attribute should be unique within the page, and source
anchors should use the same combination of uppercase and lowercase characters as
used in the destination anchors.

 The < a > Element ’ s Other Attributes
 The < a > element can carry several attributes that we have not yet met. While these attributes are not
used as much as those covered up to this point, for completeness it is worth quickly looking at them.

 The < a > element supports all of the universal attributes, the UI event attributes, and the following
attributes:

accesskey charset coords href hreflang rel rev shape style tabindex target
type

 The accesskey Attribute
 The accesskey attribute creates a keyboard shortcut that can be used to activate a link. For example, if
you gave the accesskey attribute a value of t , when the user presses the T key along with either the Alt
or Ctrl key (depending on the operating system), the link gets activated.

c02.indd 70c02.indd 70 11/20/09 3:54:43 PM11/20/09 3:54:43 PM

Chapter 2: Links and Navigation

71

 In some browsers, when a link is activated the browser immediately follows the link. In some other
browsers, the link is just highlighted, and the user has to press the Enter (or Return) key for the link
to be followed.

 The accesskey attribute should be specified on the source anchor. For example, if you want to follow a
link to the top of the page when the user presses the T key on his keyboard (with either Alt or Ctrl) you
use the accesskey attribute like so:

 < a id=”bottom” accesskey=”t” > Back to top < /a >

 Note that the key is case - insensitive. You will see more about the accesskey attribute (and some
examples) when you look at forms in Chapter 5.

 The charset Attribute
 The charset attribute indicates the character encoding of the document the URL points to. It is typically
used only when you are linking to a page in a different language that uses a different character set.

 The value must be a string that identifies the character set, such as UTF - 8 or ISO - 8859 - 1. (See Appendix E
for the list of character sets.) This example links to a document in the Japanese character set:

 < a href=”http://www.amazon.co.jp/” charset=”ISO-2022-JP” > Amazon Japan < /a >

 This is particularly useful when linking to foreign language sites written in character encodings that
some users might not be able to understand (or might not even be able to view — for example, not all
American computers have the characters installed that are required in order to view Japanese text).

 The coords Attribute
 The coords attribute is designed for use on a source anchor when it contains an image. It allows you to
create something known as an image map , which is where different parts of the same image link to
different places. The value of the coords attribute will be a set of x and y coordinates that indicates
which part of the image should follow the link. You will learn more about using images as links in
Chapter 3.

 The hreflang Attribute
 The hreflang attribute indicates which language the page you are linking to is written in. It ’ s designed
to be used when linking to a page in a different language from the current document, and the value of
this attribute is a two-letter language code . For example:

 < a href=”http://www.amazon.co.jp/” hreflang=”JA” > Amazon Japan < /a >

 Appendix G lists the language codes that are possible values for this attribute.

 The rel Attribute
 The rel attribute is used on the source anchor to indicate the relationship between the current document
and the resource specified by the href attribute. The major browsers do not currently make any use of
this attribute, although it is possible that automated applications could be written to use this

c02.indd 71c02.indd 71 11/20/09 3:54:43 PM11/20/09 3:54:43 PM

Chapter 2: Links and Navigation

72

information. For example, the following link uses the rel attribute to indicate that its destination is a
glossary of terms used in the document:

For more information, please read the < a href=”#glossary”
rel=”glossary” > glossary < /a > .

 See the table that follows for possible values of the rel attribute.

 Value Description

 toc (or contents) A document that is a table of contents for the current document

 index A document that is an index for the current document

 glossary A document containing a glossary of terms that relate to the
current document

 copyright A document containing the copyright statement for the
current document

 start A document that is the first in a series of ordered documents, of which
this is one document

 next A document that is the next in a series of ordered documents, of which
this is one document

 prev (or previous) A document that is the previous in a series of ordered documents, of
which this is one document

 help A document that helps users understand or navigate the page
and/or site

 chapter A document that acts as a chapter within a collection of documents

 section A document that acts as a section in a collection of documents

 subsection A document that acts as a subsection in a collection of documents

 appendix A document that acts as an appendix in a collection of documents

 The rev Attribute
 The rev attribute provides the same role as the rel attribute but is used on the destination anchor to
describe the relation between the destination and the source. It is currently not supported by major
browsers.

 The shape Attribute
 If you want to create an image map, the shape attribute can be used to indicate the shape of an area that
becomes a clickable hotspot . The shape attribute is covered in detail in Chapter 3, where you learn how
to create image maps.

c02.indd 72c02.indd 72 11/20/09 3:54:44 PM11/20/09 3:54:44 PM

Chapter 2: Links and Navigation

73

 The tabindex Attribute
 To understand the tabindex attribute, you need to know what it means for an element to gain focus .
Any element that a user can interact with can gain focus. If the user clicks the Tab key on his or her
keyboard when a page has loaded, the browser moves focus between the parts of the page that the user
can interact with. The parts of the page that can gain focus include links and some parts of forms (such
as the boxes that allow you to enter text). When a link receives focus, and the user presses Enter on the
keyboard, the link is activated.

 You can see focus working on the Google web site; if you repeatedly press the Tab key, you should see
focus pass between links on the page. After it has passed across each link in turn, it goes onto the box
where you enter search terms, across the site ’ s buttons, and usually ends up back where you typed in the
URL. Then it cycles around the same elements again as you keep pressing Tab.

 The tabindex attribute allows you to specify the order in which, when the Tab key is pressed, the links
(or form controls) obtain focus. So, when the user clicks the Tab key, you may want the focus to land on
the key items on the page that the user might want to interact with (skipping some of the less - used
features).

 The value of the tabindex attribute is a number between 0 and 32767. A link whose tabindex attribute
has a value of 1 receives focus before a link with a tabindex value of 20 (and if a value of 0 is used,
the links appear in the order in which they appear in the document). Chapter 5 shows some examples of the
 tabindex being used with forms.

 The target Attribute
 By default, when you use the < a > element to create a link, the document you are linking to will open in
the same browser window. If you want the link to open in a new browser window, you can use the
 target attribute with a value of _blank .

 < a href=”Page2.html” target=”_blank” > Page 2 < /a >

 The title Attribute
 As mentioned at the start of the chapter, it is good to use a title attribute on any links that contain
images. It can also help provide additional information to visitors in the form of a visual text tooltip in
most browsers or an auditory clue in voice browsers for the visually impaired. Figure 2 - 2 near the
beginning of this chapter showed you what the title attribute looks like in Firefox when a user hovers
over the link.

 The type Attribute
 The type attribute specifies the MIME type of the link. MIME types can be compared to file extensions,
but are more universally accepted across different operating systems. For example, an HTML page
would have the MIME type text/html , whereas a JPEG image would have the MIME type img/jpeg .
(Appendix H includes a list of common MIME types.)

The following is an example of the type attribute being used to indicate that the document the link
points to is an HTML document:

Index

c02.indd 73c02.indd 73 11/20/09 3:54:44 PM11/20/09 3:54:44 PM

Chapter 2: Links and Navigation

74

Theoretically, the browser could use the information in the type attribute to either display it differently
or indicate to the user what the format of the destination is, although none use it at present.

 Try It Out Creating Links Within Pages

 Now it ’ s your turn to try making a long page with links between different parts of the page. In this
example, you are going to create the menu for our Example Caf é . So open the menu.html page from
the sample application in your text editor or authoring tool:

 1. The page should look like this when you begin:

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >

 < head >
 < title > Example Cafe - community cafe in Newquay, Cornwal, UK < /title >
 < /head >
 < body >
 < h1 > EXAMPLE CAFE < /h1 >
 < p > Welcome to Example cafe. We will be developing this site throughout
 the book. < /p >

 < h2 > Menu < /h2 >
 < p > The menu will go here. < /p >
 < /body >
 < /html >

 2. After the heading, replace the first paragraph with the links for the navigation, just like the ones you
created in the last Try It Out for the contact.html page. The only difference this time is that the
 CONTACT option will be a link, but the MENU option will not be a link.

 < a href=”index.html” > HOME < /a >
 MENU
 < a href=”recipes.html” > RECIPES < /a >
 < a href=”opening.html” > OPENING < /a >
 < a href=”contact.html” > CONTACT < /a >

 3. Below this, add the headings for the different courses on offer. Each heading should have a destina-
tion anchor so that you can link directly to that part of the page, and the value of the id attribute
will describe that section. The main heading also needs a destination anchor because it will be used
for “ Back to top ” links. Remember that destination anchors require some content, so these anchors
contain the text for the heading:

 < h1 > < a id=”top” > Example Cafe Menu < /a > < /h1 >
 < h2 > < a id=”starters” > Starters < /a > < /h2 >
 < h2 > < a id=”mains” > Main Courses < /a > < /h2 >
 < h2 > < a id=”desserts” > Desserts < /a > < /h2 >

c02.indd 74c02.indd 74 11/20/09 3:54:44 PM11/20/09 3:54:44 PM

Chapter 2: Links and Navigation

75

 4. Under the heading for the Example Caf é Menu, add links to the destination anchors for each course.

These should go inside a < p > element:

 < p > < a href=”#” > Starters < /a > | < a href=”#mains” > Main Courses < /a > | < a
href=”#desserts” > Desserts < /a > < /p >

 5. At the bottom of the page, you will have a note that states any items marked with a letter v are suit-
able for vegetarians. Links next to vegetarian items will point to this note, so it needs to have a des-
tination anchor:

 < p > < a id=”vege” > Items marked with a (v) are suitable for vegetarians. < /a > < /p >

 6. You can just add in the items on the menu in a bulleted list. Note how the vegetarian items have a
link down to the description of vegetarian dishes. Don ’ t forget to add the “ Back to top ” links
under each list.

 < h2 > < a id=”starters” > Starters < /a > < /h2 >
 < ul >
 < li > Chestnut and Mushroom Goujons (< a href=”#vege” > v < /a >) < /li >
 < li > Goat Cheese Salad (< a href=”#vege” > v < /a >) < /li >
 < li > Honey Soy Chicken Kebabs < /li >
 < li > Seafood Salad < /li >
 < /ul >
 < p > < small > < a href=”#top” > Back to top < /a > < /small > < /p >

 < h2 > < a id=”mains” > Main courses < /a > < /h2 >
 < ul >
 < li > Spinach and Ricotta Roulade (< a href=”#vege” > v < /a >) < /li >
 < li > Beef Tournados with Mustard and Dill Sauce < /li >
 < li > Roast Chicken Salad < /li >
 < li > Icelandic Cod with Parsley Sauce < /li >
 < li > Mushroom Wellington (< a href=”#vege” > v < /a >) < /li >
 < /ul >
 < p > < small > < a href=”#top” > Back to top < /a > < /small > < /p >

 < h2 > < a id=”desserts” > Desserts < /a > < /h2 >
 < ul >
 < li > Lemon Sorbet (< a href=”#vege” > v < /a >) < /li >
 < li > Chocolate Mud Pie (< a href=”#vege” > v < /a >) < /li >
 < li > Pecan Pie (< a href=”#vege” > v < /a >) < /li >
 < li > Selection of Fine Cheeses from Around the World < /li >
 < /ul >
 < p > < small > < a href=”#top” > Back to top < /a > < /small > < /p >

 7. Save your example as menu.html and take a look at it in your browser. You should end up with
something that looks like Figure 2 - 10.

c02.indd 75c02.indd 75 11/20/09 3:54:44 PM11/20/09 3:54:44 PM

Chapter 2: Links and Navigation

76

 Advanced E - mail Links
 As you saw at the beginning of the chapter, you can make a link open up the user ’ s default e - mail editor,
and automatically address an e - mail to you — or any other e - mail address you give. This is done like so:

 < a href=”mailto:info@example.org” > info@example.org < /a >

 You can also specify some other parts of the message, such as the subject, body, and e - mail addresses
that should be CC ’ d or BCC ’ d on the message.

Figure 2-10

c02.indd 76c02.indd 76 11/20/09 3:54:45 PM11/20/09 3:54:45 PM

Chapter 2: Links and Navigation

77

 To control other properties of the e - mail, you place a question mark after the e - mail address and then use
name/value pairs to specify the additional properties. The name and the value are separated by an
equal sign.

 For example, to make the subject line of the e - mail Inquiry , you would add the subject property name
followed by an equals sign, and then the term Inquiry , like so:

 < a href=”mailto:info@example.org?subject=Inquiry” >

 You can specify more than one property by separating the name/value pairs with an ampersand. Here
you can see that the subject and a CC address have been added in:

 < a href=”mailto:info@example.org?subject=XHTML & cc=sales@example.org” > < /a >

 The table that follows includes a full list of properties you can add.

 Property Purpose

 subject Adds a subject line to the e - mail; you can add this to encourage the user
to use a subject line that makes it easier to recognize where the mail has
come from.

 body Adds a message into the body of the e - mail, although you should be aware
that users would be able to alter this message.

 cc Sends a carbon copy of the mail to the CC ’ d address; the value must be a
valid e - mail address. If you want to provide multiple addresses you simply
repeat the property, separating it from the previous one with an
ampersand.

 bcc Secretly sends a carbon copy of the mail to the BCC ’ d address without any
recipient seeing any other recipients; the value must be a valid e - mail
address. If you want to provide multiple addresses, you simply repeat the
property, separating it from the previous one with an ampersand.

 If you want to add a space between any of the words in the subject line, you should add %20 between the
words instead of the space. If you want to create a line break in the body of the message, you should add
 %0D%0A (where 0 is a zero, not a capital O).

 While an e - mail link can create an e - mail with all of these properties set, it does not stop the user from
editing the values in their e - mail program.

 It is common practice to add only the e - mail address in e - mail links. If you want to add subject lines or
message bodies you may decide to use an e - mail form instead, like the one you will see in Chapter 5
(although these do require a script on the server that can process the form and send the e - mail).

c02.indd 77c02.indd 77 11/20/09 3:54:45 PM11/20/09 3:54:45 PM

Chapter 2: Links and Navigation

78

 Summary
 In this chapter you learned about links. Links enable users to jump between pages and even between
parts of an individual page (so that they don ’ t have to scroll to find the place they need).

 You have seen that you can use the < a > element to create source anchors, which are what most people
think of when you mention links on the Web. The content of the source anchor is what users can click —
 and this should usually be an informative, concise description of what the user will see when they click
on the link (rather than text such as “ click here ”), or it can be an image (as you will see in Chapter 3).

 You can also use the < a > element to create destination anchors. Destination anchors are a little like index
points or special markers, because they allow you to create links that take visitors directly to that part of
the page. Destination anchors should always have some content.

 Along the way, you learned more about URLs, in particular the difference between an absolute URL, as
with those that appear in the address bar of your browser, and relative URLs, which describe where a
resource is in relation to the document containing it. Learning the different ways in which relative URLs
can be used will also be helpful as you head to the next chapter and learn about adding images and
other objects into your documents.

 Exercises
 You can find the answers to all of the exercises in Appendix A.

 1. Look back at the Try It Out example where you created a menu, and create a new page that links
directly to each course on the menu. Then add a link to the main Wrox web site (www.wrox.com).
The page should look something like Figure 2 - 11.

Figure 2-11

 2. Go back to the pages in the sample application and make sure that you have updated the navi-
gation for each page.

c02.indd 78c02.indd 78 11/20/09 3:54:45 PM11/20/09 3:54:45 PM

 3
Images, Audio, and Video

 In this chapter, you ’ ll learn how to add images, animations, audio, and video to your site. This
should start to breathe some life into the pages we ’ ve been creating so far.

 You will start by learning how to add images to your documents using the < img > element. You
also learn how to make an image a link, and even how to divide an image up into sections so that
different parts of the image link to different pages — this is known as an image map .

 Then we ’ ll take a look at some of the main image formats that are used on the Web (JPEG, GIF, and
PNG) and learn which image format to use for different types of images. This is very important
because it can greatly affect the speed with which your web pages load (and as we all know, slow
web sites frustrate users).

 Once we have finished with images, we ’ ll go on to look at how to add some more multimedia
content to your site in the form of Flash, video, and audio. In doing so, we will meet the < object > ,
 < param > , and < embed > elements. As you will see, Flash is used to embed more video and audio
into web pages than any other technology.

 By the end of the chapter, your pages should be looking a lot more exciting.

 Adding Images Using the < img > Element
 Images are added to a site using the < img > element, which has to carry at least two attributes: the
 src attribute, indicating the source of the image, and an alt attribute, which provides a
description of the image.

 For example, the following line would add the image called logo.gif into the page (in this case,
the image lives in a directory called images). You can find this code at ch03_eg01.html .

 < img src=”logo.gif” alt=”Wrox logo” / >

c03.indd 79c03.indd 79 11/21/09 12:09:51 AM11/21/09 12:09:51 AM

Chapter 3: Images, Audio, and Video

80

 In addition to carrying all the universal attributes and the UI event attributes (which you met in
Chapter 1), the < img > element can carry the following attributes:

src alt align border height width hspace vspace ismap usemap longdesc name

 The src Attribute
 The src attribute tells the browser where to find the image. The value is a URL and, just like the links
you met in the last chapter, the URL can be an absolute URL or a relative URL.

 < img src=”logo.gif” / >

 Generally speaking, images for your site should always reside on your server. It is not good practice to
link to images on other sites because if the owner of the other site decides to move that image, your users
will no longer be able to see the image. Since the images are on your server, rather than being an absolute
URL, the value is more likely to be a relative URL that uses the same shorthand notations you met in the
last chapter when relative URLs were introduced.

 Most web page authors create a separate directory (or folder) in the web site for images. If you have a
very large site, you might even create different folders for different types of images. For example, you
might keep any images that are used in the design of the interface (such as logos or buttons) separate
from images that are used in the content of the site.

 The alt Attribute
 The alt attribute must appear on every < img > element and its value should be a text description of
the image.

 < img src=”logo.gif” alt=”Wrox logo” / >

 Often referred to as alt text , it is important that the value of this attribute really describe the
image because:

Figure 3-1

 Figure 3 - 1 shows you what this image looks like in a browser.

c03.indd 80c03.indd 80 11/21/09 12:09:52 AM11/21/09 12:09:52 AM

Chapter 3: Images, Audio, and Video

81

 If the browser cannot display the image, this text alternative will be shown instead.

 Web users with visual impairments often use software called a screen reader to read a page to
them, in which case the alt text describes the image they cannot see.

 While search engines are very clever, they cannot yet describe or index the contents of an image;
therefore, providing a text alternative helps search engines index your pages and helps visitors
find your site.

 Sometimes images do not convey any information, and are only used to enhance the layout of the
page. (For example, you might have an image that is just a decorative element but does not add any
information to the page.) In such a case, the alt attribute should still be used but given no value,
as follows:

 < img src=”stripy_page_divider.gif” alt=”” / >

 The height and width Attributes
 The height and width attributes specify the height and width of the image, and the values for these
attributes are almost always shown in pixels (if you are not familiar with the concept of pixels, we will
look at this in the section “ Choosing the Right Image Format ” later in the chapter).

 < img src=”logo.gif” alt=”Wrox Logo” height=”120” width=”180” / >

 Technically, the values of these attributes can be a percentage of the browser screen. Or if the image is
inside an element that takes up only part of the page, known as a containing element , then it would be
a percentage of the containing element. If you do use a percentage, the number will be followed by a
percent sign, but this is very rare, and showing an image at any size other than the size at which it was
created can result in a distorted or fuzzy image.

 Specifying the size of the image is considered good practice, so you should try to use these attributes on
any image that you put on your pages. It also helps a page to load faster and more smoothly, because the
browser knows how much space to allocate to the image and it can correctly render the rest of the page
while the image is still loading.

 While you can tell the browser to display images smaller or larger than they really are (by telling the
browser that the width and height are different from what they really are), you should avoid doing this
because your image will not be as clear. Rather, you should aim to create versions of images at the same
size that you will use them on your web pages. Programs such as Photoshop, Photoshop Elements, Paint
Shop Pro, or GIMP will help you do this.

 It is also important not to use images that are bigger than they are shown on screen (for example, you
should not use an image that is 800 pixels by 800 pixels if you will only be showing it at 100 pixels by 100
pixels on the screen), because the smaller an image, the smaller the size of the file (in terms of kilobytes).
And the smaller the file size, the quicker the image loads in the browser. Also, when it comes to putting
your site on the Web for others to see, it might save you money because you are often charged in relation
to the total size of all the files you send to the people who visit your site.

 Likewise, it is important not to show images larger than they really are. If you had a small image
(say 100 pixels by 100 pixels) and tried to display it much larger (say 300 pixels by 300 pixels) it would
appear grainy.

❑

❑

❑

c03.indd 81c03.indd 81 11/21/09 12:09:52 AM11/21/09 12:09:52 AM

Chapter 3: Images, Audio, and Video

82

 While it is not a good idea to do so, if you just specify the height or width attribute and leave out the other
one, your browser will show the image to scale. Assume for a moment that you had an image that was 200
pixels wide by 100 pixels tall. If you just specified the width of the image as 200 pixels, it would try to show
the image at its correct size: 200 pixels wide by 100 pixels tall. However, if you said that the image was 100
pixels wide and did not specify the height, the browser would try to make the image 50 pixels tall. Because it
is 50 percent the width of the original image, it would display the image at 50 percent of its height. In other
words, it maintains the aspect ratio of an image (its width divided by its height).

 You could even distort images by providing a different width in relation to height.

 Figure 3 - 2 shows an image at its actual size (top: 130 pixels by 130 pixels); the image magnified (middle:
the width attribute is given a value of 160 pixels); and the image distorted (bottom: the width attribute
is given a value of 80 pixels and the height attribute a value of 150 pixels).

Figure 3-2

 Here is the code for this example (ch03_eg02.html):

 < p > Fixed size: width 130 height 130 < /p >
 < img src=”images/apple.jpg” alt=”Photo of red apple” width=”130”
 height=”130” / >
 < p > Enlarged: width 160 (no height specified) < /p >
 < img src=”images/apple.jpg” alt=”Photo of red apple” width=”160” / >

c03.indd 82c03.indd 82 11/21/09 12:09:53 AM11/21/09 12:09:53 AM

Chapter 3: Images, Audio, and Video

83

 < p > Stretched: width 80 height 150 < /p >
 < img src=”images/apple.jpg” alt=”Photo of red apple” width=”80” height=”150” / >

 The rest of the attributes in this section are either deprecated (being phased out of use) or are rarely used,
but they are mentioned here because you may come across them in older pages.

 The align Attribute (Deprecated)
 The align attribute was created to align an image within the page (or if the image is inside an element
that is smaller than the full page, it aligns the image within that element).

 The align attribute was particularly used by authors who wanted text to flow around an image; if you
look at Figure 3 - 3 you can see three examples of text around the same image.

Figure 3-3

c03.indd 83c03.indd 83 11/21/09 12:09:53 AM11/21/09 12:09:53 AM

Chapter 3: Images, Audio, and Video

84

 The align attribute can take one of the values in the table that follows. You may also come across the
values absbottom , texttop , absmiddle , and baseline , which are not part of the XHTML
specification; rather, they were added by the browser manufacturers and therefore can produce
inconsistent results.

 Value Purpose

 top The top of the image is aligned with top of the current line of text.

 middle The middle of the image is aligned with the current text baseline.

 bottom The bottom of the image is aligned with the baseline of the current line of text (the
default), which usually results in images rising above the text.

 left The image is aligned to the left side of the containing window or element and any
text flows around it.

 right The image is aligned to the right side of the containing window or element and any
text flows around it.

 The border Attribute (Deprecated)
 A border is a line that can appear around an image or other element. By default, images do not have
borders, so you would only have used this attribute if you wanted to create a border around an image.
The border attribute was created to specify the width of the border in pixels:

 < img src=”images/logo.gif” alt=”Wrox Logo” border=”2” / >

 Although images on their own do not have borders, you should be aware that Internet Explorer gives
images a border when they are used as links; as a result, you commonly see code where border= ” 0 ” is
used on images that are used inside links. This attribute has been replaced by the CSS border property.

 The hspace and vspace Attributes (Deprecated)
 The hspace and vspace attributes can be used to control the amount of white space around an image.

 < img src=”images/logo.gif” alt=”Wrox Logo” hspace=”10” vspace=”14” / >

 The value is the amount in pixels of white space that should be left around the edge of the image. It is
similar to the image having a border around the image that is the same color as the background of the
page. Before CSS, the hspace and vspace attributes were particularly helpful; they could create a gap
between an image and text that flows around it. Without such a gap, the text becomes hard to read and
doesn ’ t look as professional. Figure 3 - 4 illustrates this idea (ch03_eg04.html).

c03.indd 84c03.indd 84 11/21/09 12:09:53 AM11/21/09 12:09:53 AM

Chapter 3: Images, Audio, and Video

85

 These attributes have been deprecated, and you can achieve the same result by using the border or
 margin properties in CSS.

 The ismap and usemap Attributes
 The ismap and usemap attributes are used with image maps. Image maps are covered in the “ Image
Maps ” section later in the chapter.

 The longdesc Attribute
 The longdesc attribute is used to indicate the URL of a document (or part of a document) containing a
description for the image in more detail.

longdesc=”../accessibility/profit_graphs.html”

 Sometimes images can contain a lot of information — in particular graphs and charts. By providing a
long description of the image, not only are you helping search engines understand information that they
would not otherwise be able to process, but you are also helping those users who cannot see the image
(because of visual impairment).

 Unfortunately, the longdesc attribute is not supported by any of the major browsers, so in the meantime
it is acceptable to place a link next to the image that takes you to a long description of the image. The link
just has a letter D between the opening < a > tag and closing < /a > tag (which stands for description). You
can see an example of this in Figure 3 - 5 (ch03_eg05.html), where the link points to a description at the
bottom of the same page. This is just like the internal links you met in the last chapter; if the entire page
fits into the browser window you will not see anything happen, but if the page is longer than the
browser window, when the user clicks on the link the browser will scroll to the bottom of the page.

Figure 3-4

c03.indd 85c03.indd 85 11/21/09 12:09:54 AM11/21/09 12:09:54 AM

Chapter 3: Images, Audio, and Video

86

 The name Attribute (Deprecated)
 The name attribute allows you to specify a name for the image so that it can then be referenced from
script code. It is the predecessor to, and has been replaced by, the id attribute.

name=”image_name”

Figure 3-5

c03.indd 86c03.indd 86 11/21/09 12:09:54 AM11/21/09 12:09:54 AM

Chapter 3: Images, Audio, and Video

87

Try It Out Adding Images to a Document

 In this example, you ’ re going to add some images to our caf é example. We will add a logo for the caf é ,
and also a picture of the special brunch offer. So, open the homepage in a text editor or web - page
authoring tool and follow these steps:

 1. Replace the < h1 > heading with the logo.gif that is in the images folder of the sample
application.

 < img src=”images/logo.gif” alt=”example cafe” width=”194” height=”80” / >

 The src attribute indicates the URL for the image. The URLs in this example are all relative
URLs pointing to an images directory that is inside the folder that the example page is in.

 The alt attribute should be used on every < img > element you write. The contents of the alt
attribute will be shown if the browser cannot load the image and will describe the image to
those who have vision impairments and cannot see it. It will also help search engines
understand the content of your site.

 2. Add the following after the navigation and before the < h2 > element:

 < img src=”images/scrambled_eggs.jpg” width=”622” height=”370” alt=”Photo of
 scrambled eggs on an English muffin” align=”left” / >

 The width and height attributes tell the browser how big the image should be displayed. By
including these attributes, the browser can lay out the page more smoothly, because it can
continue to display other items on the page in the correct place without waiting for the image
to download. While you can use these attributes to stretch or scale up an image, it is best to
have the image the size you want to use it. If you want to make the image smaller, you should
save a new version of it rather than just using these attributes. This will save your viewers ’
time and bandwidth.

 3. Save the file and open it in your browser. You should end up with something that resembles
Figure 3 - 6.

c03.indd 87c03.indd 87 11/21/09 12:09:54 AM11/21/09 12:09:54 AM

Chapter 3: Images, Audio, and Video

88

 Using Images as Links
 It ’ s easy to turn an image into a link; rather than putting text between the opening < a > tag and the
closing < /a > tag (as you saw in the last chapter), you simply place an image inside these tags. Images are
often used to create graphical buttons or links to other pages, as follows (ch03_eg06.html):

 < a href=”../index.html” title=”Click here to return to the home page” >
 < img src=”images/logo.gif” width=”338” height=”79” alt=”Wrox Logo” / >
 < /a >

 You can see what this looks like in Figure 3 - 7. This screenshot was purposely taken in IE to show you
how IE draws a blue border around any image that is inside an < a > element. There is nothing in the
XHTML specification that says a border should be drawn around images that are links, and none of the
other browsers do this.

Figure 3-6

c03.indd 88c03.indd 88 11/21/09 12:09:55 AM11/21/09 12:09:55 AM

Chapter 3: Images, Audio, and Video

89

 This border doesn ’ t look very nice, so you could use the border attribute on the < img > element with a
value of 0 pixels, or preferably use CSS to indicate that any < img > elements that are inside an < a >
element should have no border (you learn how to do this in Chapter 7).

 Image Maps
 Image maps allow you to add multiple links to the same image, with each link pointing to a different
page. They are particularly helpful when the image needs to be divided up in irregular shapes
(such as maps). Each of these clickable areas is known as a hotspot .

 In practice there are relatively few times when you will need to use an image map, but they are covered
here because they are a type of image that can act as a link. Feel free to skim over this section to the
discussion of file types and come back to the topic of image maps if you ever need to learn how to
create one.

 Figure 3 - 8 shows a GIF that you will see turned into an image map. When users click the circle, they see
a page about the cafe; when they click the garden, they see a page about the sculpture garden, and when
they click the studios, they see a page about the studios.

Figure 3-7

Figure 3-8

c03.indd 89c03.indd 89 11/21/09 12:09:55 AM11/21/09 12:09:55 AM

Chapter 3: Images, Audio, and Video

90

 Obviously, you do not want to make hotspots too small; otherwise users would have difficulty in
selecting the area they want. If this happens, they will soon get frustrated and leave your site. Image
maps can also be difficult for people with visual impairments and motor control difficulties to navigate,
so if the image map is an important tool for visitors to your site you should also offer text links as an
option, too (and indicate the presence of these links in the alt text).

 The way that image maps work is based upon x and y coordinates, measured from the top left - hand
corner of the image. These coordinates are used in two ways:

 To specify where the hotspots are

 To work out where the user is clicking on the image.

 By comparing the coordinates of the hotspots with the coordinates where the user clicks, the user can be
sent to the link specified for that hotspot.

 There are actually two types of image maps, both of which do the same job. The difference is how they
work out which hotspot you clicked on.

 Client - side image maps: The web browser works out which part of the image the user has
clicked on and takes the user to the appropriate page.

 Server - side image maps: The browser sends the server the coordinates, saying which part of the
image the user clicked on, and these are processed by a script file on the server that determines
which page the user should be sent to.

 Client - Side Image Maps
 Client - side image maps use XHTML code to tell the browser how the image will be divided up; then the
browser can tell what part of the image someone clicks on and can send the user to the appropriate link.
There are two methods to create a client - side image map:

 Using the < map > and < area > elements inside an < img > element

 Using the < map > element inside the < object > element

 Let ’ s look at each in turn.

 Client - Side Image Maps Using < map > and < area >
 This is the earlier of the two ways to create client - side image maps, and has been supported in browsers
since Netscape 4 and IE4. The image that is going to form the map is inserted into the page using the
 < img > element just like any other image. An attribute called usemap is then added to the < img > element
to indicate that this image needs to use the information held in the corresponding < map > element to turn
the image into an image map. The < map > element then contains the information used to tell the browser
how to split up the image so that it can send the user to the correct page.

❑

❑

❑

❑

❑

❑

c03.indd 90c03.indd 90 11/21/09 12:09:56 AM11/21/09 12:09:56 AM

Chapter 3: Images, Audio, and Video

91

 The value of the usemap attribute begins with a pound or hash sign, followed by the value of the name
attribute on the < map > element it uses.

 The < map > element usually follows directly after the < img > element. It needs to carry only the name
attribute to identify itself. The < map > element then contains two or more < area > elements, and it is these
 < area > elements that actually define the clickable hotspots.

 The < area > element does this by specifying the shape and the coordinates that define the boundaries of
each clickable hotspot. Here ’ s an example from the image map that was used for the image in Figure 3 - 8
(the code for this example is in ch03_eg07.html).

 < img src=”cafe_map.gif” alt=”Cafe Map” width=”500” height=”300”
 border=”0” usemap=”#cafe” / >
 < map name=”gallery” >
 < area shape=”circle” coords=”154,150,59” href=”cafe.html” target=”_self”
 alt=”Cafe” >
 < area shape=”poly” coords=”272,79,351,79,351,15,486,15,486,218,272,218,292,
 166,292,136x,270,76” href=”courtyard.html” target=”_self”
 alt=”Courtyard” / >
 < area shape=”rect” coords=”325,224,488,286” href=”kitchens.html”
 target=”_self” alt=”Kitchens” / >
 < /map >

 If you look at the < img > element, the value of the usemap attribute is #gallery ; this corresponds to the
value of the name attribute on the subsequent < map > element. Inside this, the < area > elements actually
define the sections of the image that are clickable.

 If you look at the < area > elements, the shape attribute indicates what kind of shape the hotspot will be,
while the coords attribute specifies the position and size of the shape. For example, here the shape is a
rectangle, and the coords attribute indicates the top - left and bottom - right corners of the rectangle:

 < area shape=”rect” coords=”325,224,488,286” href=”workshop.html”
 target=”_self” alt=”Artists workshops” / >

 The href and target attributes perform exactly the same function that they do when used on the < a >
element. The attributes that the < area > element uses to create image maps are covered in the material
that follows.

accesskey alt shape coords href nohref target tabindex taborder notab

 The shape Attribute
 The value of the shape attribute actually affects how the browser will use the coordinates specified in
the coords attribute, and is therefore required. If you do not specify a shape attribute, the default value
is a rectangle.

c03.indd 91c03.indd 91 11/21/09 12:09:56 AM11/21/09 12:09:56 AM

Chapter 3: Images, Audio, and Video

92

 The table that follows shows the possible values of the shape attribute.

 Value Shape Created

 default The whole of the image not defined in an area (should be specified last)

 rectangle or rect Rectangle

 polygon or poly Polygon

 circle or circ Circle

 You are better off using the abbreviated versions of the values, as they are better supported in older
browsers. The value default should be used on the last < area > element if you want to indicate any
sections of the image not otherwise indicated by an < area > element that has defined an area — it ’ s like a
catch - all for the rest of the image.

 The coords Attribute
 The coords attribute specifies the area that is the clickable hotspot. The number of coordinates you
specify depends on the shape you are creating (and have specified in the shape attribute).

 A rectangle contains four coordinates. The first two coordinates represent the top left of the
rectangle, and the second two the bottom right.

 A circle contains three coordinates; the first two are the center of the circle, while the third is the
radius in pixels.

 A polygon contains two coordinates for each point of the polygon. So a triangle would contain
six coordinates, a pentagon would contain ten, and so on. You do not need to specify the first
coordinates again at the end because the shape is automatically closed.

 Some web authoring and image - editing programs will help work out the coordinates of an image map
for you; they provide a tool that allows you to select the areas you want to turn into a map and they use
those shapes to create the coordinates for you. Figure 3 - 9 shows you Dreamweaver ’ s Image Map
tool — because each program is different, you should look in the help files for that program to see how
yours creates an image map.

❑

❑

❑

c03.indd 92c03.indd 92 11/21/09 12:09:56 AM11/21/09 12:09:56 AM

Chapter 3: Images, Audio, and Video

93

 If you have two areas that overlap each other, the first one in the code will take precedence.

 The href and nohref Attributes
 The href attribute works just like the href attribute for an < a > element; its value is the URL of the page
you want to load when the user clicks that part of the image.

 If you do not want part of the image to link anyway, you should use the nohref attribute on that space
to indicate that the area will not take you anywhere. If you use this attribute, you should give it a value
of nohref . For example, if you wanted to make sure that the Kitchens area of the map did not link
anywhere, the < area > element representing it should look like this:

 < area shape=”rect” coords=”325,224,488,286” nohref=”nohref” / >

 The alt Attribute
 The alt attribute specifies a text alternative for that section of the image and works just like the alt
attribute on the < img > element. It will actually override the alt text specified for the image when the
user rolls over the area.

Figure 3-9

c03.indd 93c03.indd 93 11/21/09 12:09:57 AM11/21/09 12:09:57 AM

Chapter 3: Images, Audio, and Video

94

 The target Attribute
 The target attribute specifies which frame or window the page should be loaded into. Possible values
are the same as for the target attribute of the < a > element.

 The tabindex Attribute
 The tabindex attribute allows you to specify the order in which users can tab through items on a page.
The value is a number between 1 and 32,767. It is discussed in full in Chapter 5.

 Client - Side Image Maps Using the < object > Element
 HTML 4 started to promote the use of the < object > element rather than the < img > element for adding
image maps to your documents (although you can still use the < img > element in Strict XHTML 1.0).
Unfortunately, IE8, Firefox 3, and Safari 3 were the first versions of major browsers to support the
creation of image maps using this approach, so for the moment you are better off sticking to the method
described in the previous section, but I will describe the new technique anyway so that you know how
it works.

 The technique is very similar to the one you just met, but this time it is the < object > element that carries
the usemap attribute (whose value is the value of the name attribute on the < map > element preceded by
the pound or hash sign). Inside the < object > element, you use the familiar < map > element with the
 name attribute. Then inside the < map > element are standard < a > elements rather than < area > elements.

 < object data=”cafe_map.gif” type=”image/gif” alt=”Cafe Map” width=”500”
 height=”300” border=”0” usemap=”#cafe” / >
 < map name=”cafe” >
 < a shape=”circle” coords=”154,150,59” href=”cafe.html” target=”_self” > Cafe < /a >
 < a shape=”poly”
coords=”272,79,351,79,351,15,486,15,486,218,272,218,292,166,292,136,270,76”
 href=”courtyard.html” target=”_self” > Courtyard < /a >
 < a shape=”rect” coords=”325,224,488,286” href=”kitchens.html” target=”_
self” >
 Kitchens < /a >
 < /map >

 Server - Side Image Maps
 With server - side images, the < img > element sits inside an < a > element just like any image that is a link.
But the < img > element carries a special ismap attribute, which tells the browser to send the server x , y
coordinates representing what part of the image the user ’ s mouse was on when he or she clicked the
image map. Then a script on the server is used to determine which page the user should be sent to,
based on the coordinates fed to it.

 For example, look at the following link, where the < img > element carries the ismap attribute with a
value of ismap :

c03.indd 94c03.indd 94 11/21/09 12:09:57 AM11/21/09 12:09:57 AM

Chapter 3: Images, Audio, and Video

95

 < a href=”../location/map.aspx” > < img src=”../images/states.gif” alt=”map
of US States” border=”0” ismap=”ismap” / > < /a >

 Now, if the user clicks the image 50 pixels to the right of the top - left corner of the image and 75 pixels
down from that same corner, the browser will send this information with the URL like so:

http://www.example.org/location/map.aspx?50,75

 You can see the coordinates appended at the end of the URL that is specified in the < a > element.

 If you look at the code for other people ’ s image maps, you may see some image maps whose ismap attri-
bute does not have a value. This is because in early versions of HTML, the attribute did not require a
value. However, in XHTML every attribute requires a value, so the value of the ismap attribute became
 ismap . A server-side image map needs something on the server (a script, map file, or application) that
can process the coordinates and determine which page the user should then be sent to. Because server - side
image maps are processed on the server, the implementation of them is not covered by HTML or XHTML
recommendations, and unfortunately there is not space to cover different possible implementations for
each different platform here.

 Choosing the Right Image Format
 Images and graphics can really bring your site to life, but it is important to learn how to prepare images
for the Web. Otherwise, they can significantly increase the time it takes for a page to load.

 When writing sites on your desktop or laptop computer, you may not realize how long a page will take
to load; files that are sitting on your computer will load a lot faster than they would if they were on the
Internet. Therefore, choosing the right image format and saving your images correctly will ensure that
when you put your site on the Web for people to see, it will not be unnecessarily slow — and this should
result in happier visitors. That is why we ’ re going to round off this section on images by spending a few
pages learning about image formats and how to pick the right one.

 For practice purposes, you can download images from other sites by right - clicking the image
(or Ctrl - clicking) and selecting either the download image to disk or save image as
options. Remember, however, that images are subject to copyright, and you could land yourself in legal
trouble if you use other people ’ s images on your site.

 Most static images on the Web are classified as bitmapped images . Bitmapped images divide a picture into
a grid of pixels and specify the color of each pixel individually. If you look very closely at your computer
screen you may be able to see the pixels that make up the screen. There are several different bitmap
formats; common ones include JPEG, GIF, TIFF, PNG, and the rather confusingly named bitmap or BMP.

 If you look at Figure 3 - 10, you can see an example of a bitmap image with one section that has been
modified so that you can see how pixels make up the image.

c03.indd 95c03.indd 95 11/21/09 12:09:57 AM11/21/09 12:09:57 AM

Chapter 3: Images, Audio, and Video

96

 The number of pixels in every square inch of the image is referred to as the resolution of the image. It is
normal to save images that will be used on the Web at a resolution of 72 pixels per inch as this
corresponds with the number of pixels in a square inch on your computer screen. By contrast, images
used in print are usually supplied to printers at 300 dots per inch.

 The more pixels or dots per inch an image contains, the larger the size (in KB) of the file, and the larger
the file, the longer it takes to transfer over the Web. Therefore, any images that you use on the Web
should be saved at a resolution of 72 dots per inch. If you saved them any larger, this would create
unnecessarily large files that would take longer to download.

 Note that while you can easily save an image that is 300 dots per inch at 72 pixels per inch for the Web,
you cannot simply increase an image from 72 pixels per inch to 300 dots per inch, because you do not
know what color the 228 pixels that are missing from every square inch should be. If you just try to
increase the resolution of the image, it will often look grainy. Therefore, when you have a high - resolution
300 - dots - per - inch picture, you should make a copy of it for use on the Web and keep the original ver-
sion separately.

 Browsers tend to support three common bitmap graphics formats, and most graphics programs will save
images in these formats:

 GIF: Graphics Interchange Format (pronounced either “ gif ” or “ jif ”)

 JPEG: Joint Photographic Experts Group Format (pronounced “ jay peg ”)

 PNG: Portable Network Graphics (pronounced “ pee en gee ” or “ ping ”)

 Let ’ s take a quick look at each of these, because understanding how the format works helps you choose
how to save an image.

❑

❑

❑

Figure 3-10

c03.indd 96c03.indd 96 11/21/09 12:09:58 AM11/21/09 12:09:58 AM

Chapter 3: Images, Audio, and Video

97

 GIF Images
 GIF (or Graphics Interchange Format) images are created using a palette of up to 256 colors, and each
pixel of the image is one of these 256 colors. Every different GIF image can have a different palette of 256
colors selected from a range of over 16 million colors. The program that saves the image also selects the
palette that will best represent the images.

 The GIF file stores the palette of colors in what is called a lookup table, and each pixel references the
color information in the lookup table rather than each pixel having to specify its own color information.
The advantage of this technique is that, if many pixels use the same colors, the image does not have to
repeat the same color information and the result is a smaller file size. This makes GIF images more suited
to graphics (where there are often areas of the same color — known as a flat color) and less suited to
photographs (where there are often many more different colors).

 This way of storing images is known as an indexed color format . Figure 3 - 11 shows a GIF file being created
in Adobe Photoshop. You can see the color palette that is being used for this image represented in the set
of squares halfway down the image on the right.

Figure 3-11

 If a GIF contains fewer than 16 colors (in which case it can be referred to as a 4 - bit GIF), the image will be
less than half the file size of a GIF using 256 colors (known as an 8 - bit GIF). Therefore, if you are creating
an image that uses fewer than 16 colors, it is worth checking whether your program automatically saves
your image as a 4 - bit GIF, because this will result in a smaller file that ’ s quicker to download than an
8 - bit GIF.

 Even if your image looks as though it just features two colors, say a black and white line drawing, it
may use many more colors. For example, if you have a line drawing where the edges have been smoothed
out by the graphics program (a process known as anti - aliasing), your image will contain more than two
colors, because the edges use a variety of other colors to make them look smooth.

c03.indd 97c03.indd 97 11/21/09 12:09:59 AM11/21/09 12:09:59 AM

Chapter 3: Images, Audio, and Video

98

 If the GIF needs to use more than 256 colors, then most graphics programs, when saving GIFs, will use a
technique called dithering to better represent the extra colors. This means that they use two or more
colors in adjacent pixels to create an effect of a third color. Dithering has the following two drawbacks:

 If you place a flat color next to a dithered color you will be able to see where the change occurs
(because the dithered color is really made up of more than one color).

 It can result in some banding in colors. For example, when there is a smooth transition between
one color and another color (referred to as a gradient), many more than 256 shades may be
required to show the gradient; therefore, dithering would be used, but the result might be that
the smooth gradient now looks like a series of stripes.

 Figure 3 - 12 illustrates how even a simple gradient, when saved as a GIF, can result in banding because
the image contains more than 256 colors. The bottom part of this image zooms into an area of the
gradient where you can see that the gradient had vertical lines rather than a smooth transition from
black to white.

❑

❑

Figure 3-12

 Because GIFs support only 256 colors and have to use dithering to achieve any further colors, they are
not really suitable for detailed photographs, which tend to contain many more than 256 colors. If you
have a photograph, gradient, or any image with similar shades of the same color next to each other,
you are often better off using a JPEG, which can support unlimited colors, or sometimes a PNG — both
of which you ’ ll learn about shortly.

 GIFs do have another handy feature: you can specify one or more colors in a GIF to represent a
 transparent background — in parts of the image that are the specified colors, the background will be
allowed to show through.

c03.indd 98c03.indd 98 11/21/09 12:09:59 AM11/21/09 12:09:59 AM

Chapter 3: Images, Audio, and Video

99

 This technique works best with images that have perfectly straight edges, because when you have a
curved edge, an image editing program will often anti - alias the edge (use several shades) to make the
image look smooth, as shown in Figure 3 - 13.

Figure 3-13

 However, in a transparent GIF each pixel is either on or off, opaque or transparent — there are no
degrees of transparency. As a result, if you try to use it with curved corners, the corners may appear
pixelated. To help overcome this problem, you should try to make the transparency color as close to the
background color as possible (or if you are using Photoshop, you can use the matte feature).

 Figure 3 - 14 shows how a pixelated effect is created when a GIF is not created on a suitable background
(notice the lighter pixels around the corners in particular).

Figure 3-14

 To make GIF files smaller, they are compressed using a technique called LZW compression , which scans
rows of the image looking for consecutive pixels that share the same color. When it comes across pixels
that are the same color it indicates that, from this point, x number of pixels should be written using the
same color.

c03.indd 99c03.indd 99 11/21/09 12:09:59 AM11/21/09 12:09:59 AM

Chapter 3: Images, Audio, and Video

100

 LZW compression is known as a lossless compression technique because no data is lost and therefore there
is no loss of quality. This is contrasted with lossy compression techniques where some of the data is
discarded during compression and therefore cannot be recovered from the compressed file.

 Animated GIFs
 GIF images can store more than one frame (or copy of the image) within a file, allowing the GIF to rotate
between the versions/frames and create a simple animation. It works in a similar way to a flip - book
animation, where the drawing on each page of the book changes slightly from the previous one, so that
when a user flips the pages it looks as if the images are moving.

 This works well if your animated image contains large areas of flat color, since when the image is
compressed after the initial frame has been recorded only the pixels that have changed need to be stored
with each subsequent frame. It is far less suitable, however, for photographic images because many more
of the pixels change, resulting in a very large image.

 It is also worth mentioning that attention - grabbing animated GIFs are often frowned upon by profes-
sional web designers, who tend to use them only sparingly.

 Figure 3 - 15 shows you an animated GIF being created in Adobe Image Ready. The window on the right
shows you that there are three dots on separate layers of the image. The window at the bottom shows
you that in frame 1 of the animation, only the bottom dot shows, in frame two the bottom and middle
dots show, and in the third frame all three dots show. Under each frame of the animation you can see
how long each frame should appear (in each case it is 1 second).

Figure 3-15

c03.indd 100c03.indd 100 11/21/09 12:10:00 AM11/21/09 12:10:00 AM

Chapter 3: Images, Audio, and Video

101

 JPEG Images
 The JPEG image format was developed as a standard for storing and compressing images such as
photographs that use a wide range of colors. When you save a JPEG, you can usually specify by how
much, if at all, you want to compress the image — which depends upon the image quality you want. The
process of compressing a JPEG involves discarding color data that people would not normally perceive,
such as small color changes. However, because the image format discards this data when the image is
compressed, some of the data is lost and the original cannot be recreated from a compressed version —
 hence it is known as lossy compression .

 The amount of compression you apply will change from image to image, and you can only judge how
much to compress a JPEG by looking at it. Hence the size of the file varies depending upon how much
you compress the image. When you are saving the image, you will often be asked for a percentage of
quality to be used; 100 percent does not compress the picture at all, and for a photo you can often get
down to around 60 – 70 percent (but not usually much lower). Some programs use words such as
excellent, very good, good, and so on instead of percentages to describe the image quality.

 A good image - editing program enables you to compare the original image side by side with the
compressed version as you choose how much compression to add. Figure 3 - 16 shows you how Adobe
Photoshop lets you compare two versions of the image next to each other as you prepare to save the
JPEG for the Web. On the left, you have the original image, and on the right is the version that it is
saving for use on the Web.

Figure 3-16

 Because the JPEG format was designed to work with photo - realistic images, it does not work so well
with images that have large amounts of flat color, or high - contrast hard edges (such as lettering and line
drawings). As you increase compression in a JPEG you may also see banding start to show in colors that
are very similar.

c03.indd 101c03.indd 101 11/21/09 12:10:00 AM11/21/09 12:10:00 AM

Chapter 3: Images, Audio, and Video

102

 PNG Images
 The Portable Network Graphics format is the most recent format on the block. It was developed in the
late 1990s because the company that owns the patent for GIFs (Unisys) decided to charge companies that
developed software for creating and viewing GIFs a license fee to use the technology. While web
designers and web surfers are not directly affected by this charge, the companies that make the software
they use are.

 The PNG format was designed for the same uses as GIF images, but while it was being created the
designers decided to solve what they thought were some of the disadvantages with the GIF format. The
result is two types of PNG. The 8 - bit PNG has the same limitations as an 8 - bit GIF — only 256 colors,
and when transparency is used each pixel is either on or off. Then there is the enhanced PNG - 24, a 24 - bit
version, which has two major advantages:

 The number of colors available for use in an image is not restricted, so any color can be included
without losing any data.

 A map (like the lookup table that indicates the color of each pixel in GIFs) is used to provide
different levels of transparency for every pixel, which allows for softer, anti - aliased edges.

 Furthermore, all PNGs tend to compress better than a GIF equivalent. The real drawback with the PNG
format, however, is that some older browsers that are still in use today do not fully support the format.
While basic support was offered in early versions of browsers, some of the more advanced features took
longer to be implemented. For example, Internet Explorer was unable to deal with transparency correctly
until version 7.

 Keeping File Sizes Small
 You will usually want to save the images for your site in the format that best compresses the image and
therefore results in a smaller file size. Not only will your pages load faster, but you can save on the
charges to host your site.

 Usually one or another format will be the obvious choice for you. The rule of thumb is:

 Use JPEGs for photo - realistic pictures with a lot of detail, or subtle shade differences you want
to preserve.

 Use GIFs or PNGs for images with flat color (rather than textured colors), and hard edges, such
as diagrams, text, or logos.

 Look at the following images (see Figure 3 - 17) — one a photograph of autumn leaves, and the second the
logo of a fictional company called Wheels that uses only two colors.

❑

❑

❑

❑

c03.indd 102c03.indd 102 11/21/09 12:10:01 AM11/21/09 12:10:01 AM

Chapter 3: Images, Audio, and Video

103

 The following table shows you the file size of each of these saved as a GIF and as a JPEG (where the
JPEG is saved at 60 percent quality).

 Image JPEG GIF

 Leaves 54.81k 116.3 k

 Wheels 8.26 k 6.063k

 As you can see, the Wheels logo has areas of flat, plain color, whereas the photo of the forest uses lots of
different shades. Therefore, the logo is better suited to the GIF or PNG formats, while the photo of the
forest with all its shadows is suited better to the JPEG format.

 Good image editing software is very helpful if you use a lot of images on your site. Adobe Photoshop is
the most popular software used by professionals, although it is very expensive. There is, however, a
limited functionality version called Photoshop Elements that includes many of the common features —
 including the Save for Web options. Two other popular image - editing programs are Paint Shop Pro
(available from Corel at www.corel.com) and a free image - editing program called Gimp (which you
can download from www.gimp.org).

 If you have to include many large, complex photographic images on your site, it ’ s good practice to offer
users smaller versions of the images when the pages first load and then add a link to the larger version.
These smaller images are often referred to as thumbnails , and you will usually see them in image galleries
or on pages that contain summaries of information (such as the homepages of news sites and pages that
list several products, from which you link to a page with more detail and larger images). Figure 3 - 18
shows you an example of using thumbnails in an image gallery (the small images at the bottom are
smaller in physical size and file size than the counterparts that will show at the top).

Figure 3-17

c03.indd 103c03.indd 103 11/21/09 12:10:01 AM11/21/09 12:10:01 AM

Chapter 3: Images, Audio, and Video

104

 When creating the smaller version, scale the image down in an image - editing program. Do not simply
alter the width and height attributes of the < img > or < object > elements, because users still have to
download the full - sized image even though they are getting to see only a smaller version of it. (The full -
 sized image takes longer to download.) By creating a special thumbnail of any smaller images you use,
your pages will load a lot quicker.

 You may hear of a format called Vector format, which is more popular in illustration and animation soft-
ware. Flash, SVG, and Silverlight all employ vector graphics. Vector formats store information in terms
of coordinates, between which lines are drawn. Inside these lines a colored fill may be specified. Because
they are based on coordinates, it is easy to increase the physical size of the image by increasing the gap
between each point that the coordinates are plotted against. By default, browsers do not support Vector
formats without the use of a plug - in. You learn more about plug - ins when we come to look at Flash later
in the chapter.

 Adding Flash, Video, and Audio
to Your Web Pages

 Having spent the first half of the chapter looking at adding images to your web pages, in the second half
of the chapter we are going to look at adding Flash animations, video, and audio to your pages.
Collectively, these are often referred to as rich media .

Figure 3-18

c03.indd 104c03.indd 104 11/21/09 12:10:01 AM11/21/09 12:10:01 AM

Chapter 3: Images, Audio, and Video

105

 When it comes to showing Flash animations, video, and audio on your site, things get a little more
complicated for two reasons:

 First, there are many different formats to learn about. Flash is fairly easy because there is just the
one format for Flash animations, but there are many different formats for video, including AVI,
Flash Video, MPEG, QuickTime, and Windows Media, and several formats for audio such as
MP3 and WAV.

 Second, while browsers are built to display text and images, they do not automatically show the
different formats of rich media. Instead browsers rely on additional programs known as players
or plug - ins , and these players do not play every format (just as a DVD player would not be able
to play a VHS video or a vinyl record). So, your choice of which format to use might be
restricted by how many people have the player installed.

 Some plug - ins are installed by default when you get a new computer, and when they are not installed
users can download them (usually for free) from the web sites of the companies who make them. For
example, the Flash plug - in is usually installed on new computers, but it can also be downloaded for free
from the Adobe web site.

 When considering which format to use for your rich media, you will want to consider the number of
people who are likely to have the required plug - in installed on their computers. This is important
because you cannot assume that people will download a plug - in just to access some content on your site.

 In the next version of HTML (HTML 5) you are likely to see two new elements: < audio > for adding
audio files to web pages and < video > for adding video files. The < audio > element will be used to make
it easier to add MP3 and WAVE files to pages; however, at the time of this writing the browser manufac-
turers were having trouble agreeing on the format of videos specified as using the < video > element. In
either case, it is likely to take several years before either of these elements is widely used, because it will
take a long time for web users to adopt the new browsers that will support these elements. (HTML 5 is
discussed in more detail in Chapter 14.)

 In order to show rich media on your pages, you will need to learn a new element, the < object > element.
We will have a detailed look at the < object > element at the end of the chapter when we have looked at
how to use some of the different formats of rich media. But for now, you just need to know that the
 < object > element can tell the browser several things, including:

 The name of the file and where to find it

 The format of the file

 The type of plug - in used to play the file

 Inside the < object > element, you can use the < param > element to pass extra information to the player
(for example, you might want to tell a player to start playing automatically when the page loads, rather
than waiting for the user to press a play button).

 The < param > element is not the only markup you are likely to see inside the < object > element. But any
other markup you see inside the < object > element is only likely to be shown if the browser cannot
render the object (and the most common reason why it would not render the object would be because the
required player is not installed). For example, you will commonly see the < embed > element used inside
the < object > element.

❑

❑

❑

❑

❑

c03.indd 105c03.indd 105 11/21/09 12:10:02 AM11/21/09 12:10:02 AM

Chapter 3: Images, Audio, and Video

106

 Strictly speaking, the < embed > element was never part of the HTML or XHTML specifications, but years
ago Microsoft used the < object > element for a technology called ActiveX (which only worked in IE),
and as a result, other browser manufacturers used the < embed > element to embed items such as audio
and video in a page instead. Therefore, you often find the < embed > element included inside the
 < object > element to ensure that if an older browser does not understand the < object > element it can
try to display the content using the < embed > element.

 When the < embed > element has to pass extra information to plug - ins, rather than using the < param >
element it uses attributes; you will see examples of this shortly.

 So for the remainder of this chapter we are going to look at:

 How to add Flash animations into your web pages

 How to display video in your web pages (and which format you should use)

 How to add audio to your pages (and which format you should use)

 The syntax of the < object > element.

 When looking at video and audio, we will have a discussion about the different formats you can use, and
the players that you need in order to play the different formats.

 Adding Flash Movies to Your Site
 Flash started off as a way to add animations into web pages, but quickly evolved to offer a high level of
interactivity and the ability to deal with images, audio, and video. Now, not only is Flash widely used to
add animation and interactivity to web pages, it is also the most popular way of displaying audio and
video within web pages (for example, most of YouTube ’ s and MySpace ’ s video and audio is provided
in Flash).

 Most Flash files are created using the Flash authoring environment, which Adobe charges for, although
there are a lot of sites that offer tools such as MP3 players, video players, slideshows, and more, all
written in Flash, which you can use on your site without purchasing a copy of this program. While
creating your own Flash files from scratch is beyond the scope of this book, I will show you how to
include in your XHTML pages Flash files that have already been written.

 If you do work on a project using the Flash authoring tool, your projects will be saved with the .fla file
extension (and they are commonly referred to as FLA files). But before you can use such a file on the Web
you will have to export it in the .swf format. When files have been exported into the .swf format, they
go by one of two names, either SWF files or Flash movies (rather confusingly, they can be called Flash
movies even if they do not contain any video).

 The major browsers don ’ t play SWF files by themselves; rather, they rely on a free plug - in called the
 Flash Player . The Flash Player is often pre - installed on computers, but it can also be downloaded from the
 Adobe.com web site. It is estimated that over 98 percent of web users have the Flash Player installed.

❑

❑

❑

❑

c03.indd 106c03.indd 106 11/21/09 12:10:02 AM11/21/09 12:10:02 AM

Chapter 3: Images, Audio, and Video

107

 Let ’ s briefly recap what you have learned about Flash, as there was quite a lot to take in there:

 You pay for the Flash authoring environment that allows you to create and edit FLA files. These
files are saved with the .fla file extension.

 When you want to use Flash files on the Web, you export them to SWF files or Flash movies.
These files have the .swf file extension.

 The free Flash Player plug - in needs to be installed in order for the browser to play the SWF files.
It is estimated that over 98 percent of people have the Flash Player.

 So let ’ s look at the code used to add Flash to a page, by considering three different examples. We will
start by looking at how to embed the YouTube player in a page you have written.

 Adding the YouTube Flash Video Player to a Page
 As I mentioned, the YouTube Player is written in Flash, and YouTube has made it very easy for users to
embed the YouTube Player on their own pages. This is done simply by copying and pasting a line of
code from the YouTube site into any web page; Figure 3 - 19 shows you where to find this line of code.

❑

❑

❑

Figure 3-19

c03.indd 107c03.indd 107 11/21/09 12:10:03 AM11/21/09 12:10:03 AM

Chapter 3: Images, Audio, and Video

108

 If you try this example on your desktop or laptop computer at home, you may get a warning message
because the Flash Player is trying to communicate with a server on the Web (which can sometimes be
considered a security risk). If you press “ OK ” the example may work; otherwise you may need to follow
the instructions to alter your settings. If you ran this example on a server on the Web, you would not see
this error message.

 So let ’ s look a little closer at the code YouTube offers to embed videos from YouTube (ch03_eg08.html):

 < object width=”425” height=”344” >
 < param name=”movie”
 value=”http://www.youtube.com/v/dMH0bHeiRNg & hl=en & fs=1” > < /param >
 < param name=”allowFullScreen” value=”true” > < /param >
 < param name=”allowscriptaccess” value=”always” > < /param >
 < embed src=”http://www.youtube.com/v/dMH0bHeiRNg & hl=en & fs=1”
 type=”application/x-shockwave-flash” allowscriptaccess=”always”
 allowfullscreen=”true” width=”425” height=”344” > < /embed >
 < /object >

 On the opening < object > tag, you can see the width and height attributes specify the size of the Flash
movie; these behave just like the width and height attributes on the < img > element, indicating how
much space this item needs.

 We will have a look at all the attributes the < object > element can carry at the end of this section, but it
is worth mentioning here that YouTube ’ s use of the < object > element is a little unusual because it
does not carry a classid or a type attribute.

 Inside the < object > element, you can see three < param > elements, each of which has a name and
value attribute:

 The first indicates that a movie is to be loaded, along with the URL for the movie.

 The second indicates whether the player should allow the user to view the movie in full - screen
mode.

 The third is a special property which, in this case, is used to ensure that the Flash movie can be
played from different web sites (not just from the YouTube servers).

 Note that these parameters are specific to this video player and do not necessarily apply to all Flash
movies. Other parameters may be specific to a version of Flash; for example, the ability to show full -
 screen Flash movies was only introduced in Flash 9, which was released in 2006.

 As mentioned at the start of this section, an < object > element often contains an < embed > element, and
this is no exception. You may have noticed that the < embed > element does not contain any < param >
elements; rather, it uses attributes on the opening tag to provide the same information. The first attribute
is an src attribute — just like the one used on the < img > element indicating where to find the Flash file.

❑

❑

❑

c03.indd 108c03.indd 108 11/21/09 12:10:03 AM11/21/09 12:10:03 AM

Chapter 3: Images, Audio, and Video

109

This is followed by a type attribute indicating that the file is a Flash movie. The next two attributes
match the < param > elements you just met. The last two, width and height , specify the size of the
Flash movie.

 By adding this one line of code to your page, you will see the YouTube Player embedded on your page.
The result should look like the screenshot in Figure 3 - 20.

Figure 3-20

 There are lots of sites that allow you to embed Flash tools in your own pages, for example:

 ActiveDen.net features the work of many Flash programmers, including music players, video
players, image galleries, and other animations.

 Flickr.com and Slide.com both allow you to upload your own pictures to their site and then
add Flash slideshows of these pictures to your own pages.

 Last.fm allows you to add music players to your page that feature songs it has uploaded to its
servers.

 All these sites provide you with the code that you need to add Flash movies into your pages, but to
help you understand that code, I will show you how to add a basic Flash animation that I created to
your page.

❑

❑

❑

c03.indd 109c03.indd 109 11/21/09 12:10:04 AM11/21/09 12:10:04 AM

Chapter 3: Images, Audio, and Video

110

 Adding Flash to a Page Using < object > and < embed > Elements
 Copying the code from the YouTube web site is an easy way to add one of its videos to your site, but as I
mentioned, the code that you see on the YouTube web site is slightly different from the code you might
see used to add other Flash movies to your pages. Therefore, in this section you will see how to add a
basic Flash animation to a web page using a slightly different technique. This simple animation was
created using Flash 8, and when the FLA file was exported to create the SWF file, Flash also created the
code to add the SWF file into a web page.

 Flash 8 is not the latest version of Flash, but I am using this version because it demonstrates another way
to add a Flash movie to a page using the < object > and < embed > elements, which you are likely to
come across if you work with Flash (ch03_eg09.html):

 < object classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
 width=”300” height=”200”
 codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/
 swflash.cab” >
 < param name=”movie” value=”motion/flash_sample.swf” / >
 < param name=”play” value=”true” / >
 < param name=”loop” value=”false” / >
 < embed src=”motion/flash_sample.swf” width=”300” height=”200” play=”true”
 loop=”false” quality=”best” type=”application/x-shockwave-flash”
 pluginspage=”http://www.macromedia.com/shockwave/download/index.cgi?
 P1_Prod_Version=ShockwaveFlash” > < /embed >
 < /object >

 One interesting thing to note about this example is that the < object > element specifies classid and
 codebase attributes, both of which are commonly used on the < object > element (the YouTube example
was an exception to this rule).

 The classid attribute is there to specify which application should play the file (in this case the classid
attribute identifies the Flash Player, but if you wanted to play a file using the Windows Media plug - in,
you would use a different value of 6BF52A52 - 394A - 11D3 - B153 - 00C04F79FAA6).

 The codebase attribute specifies where the plug - in or program required to play this file can be found if
the user does not have it installed.

 Inside are three < param > elements:

 The first specifies the Flash movie to play.

 The second specifies that the movie should play automatically.

 The third indicates that the movie should loop (when it comes to the end, it should start again).

 The < embed > element provides similar information, but it does so using attributes:

 The src attribute indicates where the Flash movie can be found.

 The width and height attributes indicate how much space the player should take up.

❑

❑

❑

❑

❑

c03.indd 110c03.indd 110 11/21/09 12:10:04 AM11/21/09 12:10:04 AM

Chapter 3: Images, Audio, and Video

111

 The play attribute indicates that the movie should start automatically when the page loads.

 The loop attribute indicates that when the movie has finished playing it should go back to the
start and play again.

 The quality attribute indicates how high quality the Flash movie should be (this is not
commonly used any more).

 The pluginspage attribute indicates where the Flash Player plug - in can be downloaded from if
the user does not have it installed.

 You can see what this looks like in Figure 3 - 21.

❑

❑

❑

❑

Figure 3-21

 Adding Flash to a Page Using SWFObject
 Recently, there has been a growing trend to use JavaScript to include Flash movies in pages, rather than
the < object > and < embed > elements.

 When adopting this technique, you create the page using a < div > element to hold the Flash movie and
you should use CSS to make sure that the < div > element is the same width and height as the SWF file
you want to include (you learn how to set the size of a < div > element in Chapter 7). This < div > element
should also have an id attribute to uniquely identify that element.

 Inside that < div > element you can use text and images that will be shown to users who do not have
Flash installed.

 A JavaScript is then added to the page; this script checks whether the browser has the Flash player
installed. If it is installed, the JavaScript replaces the content of the specified element < div > with
the SWF file.

 In fact, the JavaScript not only checks that the user has the Flash player installed, but also that it is the
required version. As you might have guessed, over the years there have been several versions of Flash,
and the latest versions have new and improved features. But not everyone has the latest version of the
plug - in, and if a browser does not have the minimum version required to play the SWF file, then
the JavaScript will not attempt to load the Flash, leaving behind the content of the < div > element.

c03.indd 111c03.indd 111 11/21/09 12:10:04 AM11/21/09 12:10:04 AM

Chapter 3: Images, Audio, and Video

112

 The most popular script for this is called SWFObject, and it can be downloaded from http://code
.google.com/p/swfobject/ . You do not really need any experience with JavaScript to use this
technique. Let ’ s look at an example; we will load exactly the same Flash movie that you saw in the last
example, but this time we will use SWFObject (version 2.1) to include it in the page (ch03_eg10.html):

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en” >
 < head >
 < title > Adding a flash movie with SWF Object < /title >
 < script type=”text/javascript” src=”swfobject.js” > < /script >
 < script type=”text/javascript” >
 swfobject.embedSWF(“flash/flash_sample.swf”, “flash_movie”, “300”,
 “200”, “8.0.0”);
 < /script >
 < /head >
 < body >
 < div id=”flash_movie” > This element can contain content that search
 engines can index, and which is helpful to those who do not have Flash
 installed. < /div >
 < /body >
 < /html >

While the code is quite different, in the browser this example looks just like the last one; the only
difference is the title of the page indicating that it has been written using SWFObject.

 In this example, the < div > element carries an id attribute with a value of ” flash_movie ” (the id
attribute is used to uniquely identify an element within a web page). It is this element that will be
replaced with the Flash movie if the user has the appropriate version of Flash player installed.

 At the top of the page, you can see two < script > elements. The first includes a separate JavaScript file
whose location is specified using the src attribute (just as the src attribute on an image specifies where
the image can be found):

 < script type=”text/javascript” src=”swfobject.js” > < /script >

 As you can see, it is loading a file called swfobject.js , and it is this file that does most of the work. You
do not need to understand the content of this file or how it works, but if you are curious you can have a
look at it in a text editor or any XHTML editing tool. The second < script > element calls the script that
was included in the previous line and tells it four things so that it can do its job:

 < script type=”text/javascript” >
 swfobject.embedSWF(“ flash/flash_sample.swf ”, “ flash_movie ”,
 “ 300 ”, “ 200 ”, “8.0.0”);
 < /script >

 The four parameters being passed in are shown in bold:

 “ flash/flash_sample.swf ” is the location of the Flash movie to be played.

 “ flash_movie ” is the value of the id attribute of the element that is to be replaced.

❑

❑

c03.indd 112c03.indd 112 11/21/09 12:10:05 AM11/21/09 12:10:05 AM

Chapter 3: Images, Audio, and Video

113

 “ 300 ” indicates the width of the movie in pixels.

 “ 200 ” indicates the height of the movie in pixels.

 “ 8.0.0 ” is the minimum version of Flash Player required to play the movie.

 This approach has two additional advantages not mentioned yet:

 It is considered to be better for search engines. Because search engines cannot index Flash
content well, they will see the XHTML content that would have been replaced.

 It is also considered good for accessibility purposes, because if users have disabled Flash there is
alternative content for them.

 As I already mentioned, there are several places where you can download Flash movies that you can use
on your own sites (without necessarily using the Flash authoring tool). A good starting place is
http://ActiveDen.net/ , which features works by many authors.

 You may have also heard of a technology called Silverlight, which has been developed by Microsoft.
Silverlight is very similar to Flash; however, the first version was only released in 2006 and therefore far
fewer people have the Silverlight plug - in installed compared with the number of people who have
Flash Player installed. Until it has significantly more users, it is unlikely to challenge Flash on
mainstream sites.

 Now that you ’ ve seen how to include Flash movies in a web page, let ’ s look at how to add films and
audio into our pages. This starts to get a little more complicated, because while there is only one format
for Flash movies (.swf) and one player (Adobe ’ s Flash Player), there are several audio and video
formats, many of which require different plug - ins.

 Adding Videos to Your Site
 One of the easiest ways to feature video on your site is to upload your video to a site such as YouTube,
and then embed the YouTube player in your page using the code YouTube provides. However, you
might decide that you don ’ t want to have your video on YouTube or you might not want a YouTube -
 branded player on your site, so let ’ s look at some alternatives.

 When you want to play a video on the web there are two things you need to consider:

 File format : You need to choose the format of the video, and there are lots of different formats to
choose from, including AVI, Flash Video, MPEG, QuickTime, and Windows Media. Which
format you choose can influence the size of the file that users have to download and the quality
of the picture they get to watch (because the formats use different compression techniques to
create smaller files).

 Plug - in needed to play that type of file : Different formats require different plug - ins to play the
movie. Some plug - ins are more popular than others (and are installed on a greater percentage of
computers). Examples include Flash Player, QuickTime Player, RealPlayer, and Windows
Media Player.

❑

❑

❑

❑

❑

❑

❑

c03.indd 113c03.indd 113 11/21/09 12:10:05 AM11/21/09 12:10:05 AM

Chapter 3: Images, Audio, and Video

114

 To tell a browser what kind of video you are going to play, you can use the type attribute on the
 < object > element. Its value is something known as a MIME type (for example, the MIME type of a
QuickTime Movie is video/x - mov). You can think of MIME types as being a little like file extensions, in
that they describe the format of the content. The browser can then check if it has a program needed to
play that file format — and if so use that program to play the file.

 To tell a browser what kind of plug - in to use, you can use the classid attribute. Its value is a rather long
set of numbers/letters used to identify that plug - in. For example, the classid of the QuickTime Player
plug - in is 02BF25D5 - 8C17 - 4B23 - BC80 - D3488ABDDC6B .

 The following table gives a rundown of the most common video formats on the Web, the file extensions
they use, the MIME type, and default players on PC and Mac.

 File format File Extension MIME Type
 Default
Player PC

 Default
Player Mac

 Flash Video
player

 .swf application/
x - shockwave -
 flash

 Flash Player
(often pre -
 installed)

 Flash Player
(often pre -
 installed)

 MPEG .mpg or .mpeg video/mpeg (Usually)
Windows
Media Player

 (Usually) Quick
Time Player

 Windows
Media Video

 .wmv video/
x - ms - wmv

 Windows
Media Player
pre - installed

 User must
download
Windows Media
components

 QuickTime
Movie

 .mov video/
quicktime

 User must
download
plug - in

 QuickTime
Player pre -
 installed

 AVI .avi video/
x - msvideo

 Windows
Media Player
pre - installed

 User must
download
Windows Media
components

 Real Media .rm application/
vnd.rn -
 realmedia

 Real Player
(often needs
to be
downloaded)

 Real Player
(needs to be
downloaded)

 When it comes to choosing which of these formats to show your video in, for most people the deciding
factor is how many people will have the plug - in required to view that format (because you cannot expect
people to download a plug - in just to watch a video on your site). For example, a Windows machine is
likely to come with Windows Media Player already installed, but the latest versions of Windows Media
Player are not being made for Mac. Likewise, Macs come with QuickTime installed, but you are likely to

c03.indd 114c03.indd 114 11/21/09 12:10:06 AM11/21/09 12:10:06 AM

Chapter 3: Images, Audio, and Video

115

have to download a plug - in to play QuickTime files on a Windows machine. Here is a quick run - down of
these formats (in estimated order of popularity).

 FLV or Flash video is by far the most popular format for showing videos on the Web, largely
because the Flash Player plug - in is installed on more computers than any of the other plug - ins
needed to show video. People familiar with the Flash authoring environment can easily create
their own video players (which are in turn shown within the Flash Player plug - in), allowing
them to control the look and feel of the player. The format also compresses well for use on
the Web.

 MPEG is a format that takes its name from the group who developed it, the Motion Picture
Experts Group. Most computers will have a player capable of playing MPEG movies because
they can be played in Windows Media Player or QuickTime Player. The drawback of the MPEG
format is that, even though it can be compressed in many ways, files often end up much larger
than FLV formats (up to twice the size).

 WMV or Windows Media Video is part of the Microsoft Windows Media suite, and requires
Windows Media to play it — which comes with new PCs but requires users on other platforms
to download a plug - in.

 MOV files are based on QuickTime which was initially developed for Mac. It can be played on
most other operating systems but again requires users to download a plug - in.

 MP4 makes very small file sizes, but users need to install QuickTime to view it.

 AVI (audio/video interleaved) was originally developed as a rival to QuickTime for Windows.
It is known as a container format because it contains a video compressed with another codec.
This means that your computer may play some AVI files, and not others.

 RealVideo was one of the first formats used for showing video online. It requires a plug - in
called RealPlayer to be installed on the computer. It is free but can be tricky to install. It is
rapidly falling in popularity and is generally being replaced by FLV.

 Since Flash Video is by far the dominant form of showing video on the web, that is the format we will
focus on in this chapter.

 Adding Videos Using Flash Video
 There are several reasons why Flash Video is the most popular way to add video to a web site.
These include:

 The Flash player is installed on more computers that are connected to the Web than players that
show other video formats, which means that more people can view the FLV files.

 You can easily control the appearance of the player (the controls such as Play and Stop as
well as the window around the video) using Flash, which means that people can create
branded players.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 115c03.indd 115 11/21/09 12:10:06 AM11/21/09 12:10:06 AM

Chapter 3: Images, Audio, and Video

116

 FLV files compress well, which means that the same piece of video in FLV format can be much
smaller than in MPEG - 1 format with minimal loss in quality. In turn this means that:

❑ The videos are quicker to load and play.

❑ It costs less to run a web site that uses FLV than one using larger formats, because when
you have a web site you are usually charged for bandwidth (the amount of data you send
from your site to people viewing it).

 Another factor that has contributed to FLV being the most popular video format on the Web would be its
use on sites like YouTube and MySpace, which show all their videos in Flash. When you upload a video
to one of these sites you can do so in several formats (such as AVI, MPEG, and QuickTime), and the web
sites will then convert the videos into the FLV format and play them in their own players.

 If you would rather not upload your video to one of these sites, then you need to do two things:

 Convert the video from another format (such as AVI, MPEG, or QuickTime) and turn it into an
FLV format.

 Write or download an FLV player. Remember that these are just Flash movies (like any other
SWF file) that are written to play FLV files.

 There are two common ways you can convert a video from other formats into FLV format:

 Using Adobe software: Since version 8 of Flash, Adobe, which makes the Flash authoring
environment, has provided another piece of software specifically for converting video formats
to FLV.

 Third - party software: There are several companies that have made software to convert
different video formats into FLV files. One example is the Riva FLV encoder available from:
 http://rivavx.de/?encoder .

 Rather than writing your own FLV player, you can download one. There are several players you can use
even if you do not own the Flash authoring tool, such as:

 OS FLV Player : www.osflv.com/

 JW FLV Player: www.longtailvideo.com/players/jw-flv-player/

 Flow Player: http://flowplayer.org

 SlideShowPro: http://slideshowpro.net/

 Each of these players has its own way of specifying where to find the FLV file (and some also allow you
to have playlists of multiple videos), so it is important to check the documentation that comes with the
player in order to see how to incorporate the FLV file. There is also a range of other video players, which
you can purchase on ActiveDen.net .

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 116c03.indd 116 11/21/09 12:10:06 AM11/21/09 12:10:06 AM

Chapter 3: Images, Audio, and Video

117

 Here you can see an example of an OS FLV player being embedded in a page using the SWF Object
technique that you just met in the previous section (ch03_eg11.html).

 < head >
 < script type=”text/javascript” src=”swfobject.js” > < /script >
 < script type=”text/javascript” >
 swfobject.embedSWF(“flash/os_flv_player.swf?movie=video.flv”,
 “flash_video”, “400”, “340”, “8.0.0”);
 < /script >
 < /head >
 < body >
 < div id=”flash_video” > The content of this element would be shown
 if the user does not have Flash installed. It should therefore be
 an image and short description of what the video is about. < /div >
 < /body >

 You can see what this looks like in Figure 3 - 22:

Figure 3-22

 Video Size
 When showing any video, you need to be aware of the physical size at which you are showing the video.
It might be nice to show the video as large as possible, but the larger the video the larger the file size,
and big files can be an issue for a couple of reasons:

 The smaller the file, the faster it downloads. Users are less likely to watch videos that take a long
time to download, or keep pausing when the viewer is trying to watch them.

 The bigger the file, the more “ bandwidth ” you are using (bandwidth is the total size of files sent
to visitors to your site). Because companies that host web sites often charge for bandwidth, you
could end up with large bills if your video is popular. (This is a reason why many people will
host their videos on sites such as YouTube — not only is it easy to upload video content and put
it on your page, it is also cheaper.)

❑

❑

c03.indd 117c03.indd 117 11/21/09 12:10:07 AM11/21/09 12:10:07 AM

Chapter 3: Images, Audio, and Video

118

 So there is always a balancing act between having a video big enough to show people what you want
them to see, but not so big that it will not play smoothly on the average broadband connection.

 It is also worth noting that version 9 of Flash introduced an option to make Flash movies play in a full -
 screen mode, which means that the player takes up the entire screen. In this mode, Flash Player can take
a relatively small FLV video and use clever techniques to smooth the picture so that it can be watched at
a much larger size. While the results can look a little grainy when sitting close to the computer monitor,
the results can be more watchable from a distance. Most recent players have an option that allows users
to watch videos in this full - screen mode.

 If you have a long video, you might also want to consider splitting it into sections. By doing this you are
less likely to pay for viewers to download an entire video that they may not watch to the end.

 Adding Audio to Your Site
 As with videos, when you want to add audio to your site you need to consider:

 File format : Different types of audio files are saved using different compression techniques,
which can affect the quality of the recording and file size.

 Plug - in needed to play that type of file : As with video, visitors to your site need the right kind
of player installed to play your chosen format. Luckily, there is a selection of file formats that
you can play on most computers, so this is less of an issue than it is with video.

 The most popular file types are:

 MP3 : This is like the sound part of the MPEG video format. MP3 is one of the most popular
formats for music recordings, and combines good compression with fairly good quality. Files are
stored with the .mp3 file extension and will play in most browsers. The MIME type for MP3s is
 audio/mpeg .

 WAVE: This format was developed by IBM and Microsoft, and again plays in most web
browsers. WAVE files are stored with the .wav file extension. Typically, WAVE files are not
compressed, so their quality is much better than MP3 (but users need good-quality speakers in
order to hear the difference). The disadvantage with the uncompressed nature of the WAVE files
is that the file sizes tend to be far larger than MP3s. The MIME type for WAVE files is
 audio/x - wav .

 Three other formats that are used on the Web, all of which require their own plug - ins, are:

 Windows Media Audio , which requires the Windows Media plug - in

 QuickTime , which requires the QuickTime plug - in

 Real Audio , which requires the Real Media plug - in

 In most cases you should use the MP3 format because it is most widely supported and has largely
become the default standard for playing music on the Web, because MP3 files compress to relatively
small file sizes while retaining a good sound quality. There are two main exceptions when you might like
to look at a different format:

❑

❑

❑

❑

❑

❑

❑

c03.indd 118c03.indd 118 11/21/09 12:10:07 AM11/21/09 12:10:07 AM

Chapter 3: Images, Audio, and Video

119

 If you need premium-quality audio, and you know that a lot of visitors to your site will
have very good speakers attached to their computers (allowing them to benefit from the
higher-quality audio), then you might want to consider WAVE files.

 If you need to control the number of times users can play the file, or prevent them from passing
an audio file to another user, then you might need to consider audio formats that allow for
Digital Rights Management or DRM (such as Windows Media Audio or Real Audio). DRM is
a complex topic, which is beyond the scope of this book, but there is a lot of information about
it online.

 If the audio you want to play is not already in MP3 format, there are several tools that can help you
create an MP3 from other audio formats. You can just search for “ MP3 converter ” in your favorite
search engine.

 You may also come across MIDI files. Rather than storing audio, MIDI files are a little more like a digi-
tal version of a score, and are used to tell your sound card (or other synthesizer) information about how
to play a piece of music. It can indicate the different parts to be played on different instruments, give
tempo information, and suggest how hard each instrument should play each note. The quality of sounds
produced depends on the quality of the sound card.

 Adding Audio Using Default Media Players
 In some browsers, you do not need to download any extra plug - ins to play an MP3 or WAVE file. For
example, you can just use the < object > element to include the audio file in the page, and the browser
will automatically determine the type of plug - in needed to play your file by checking the value you have
given for the type attribute (which is used to specify the MIME type of the file that you want to play).

 Unfortunately, this technique is very unreliable because different versions of browsers expect slightly
different usage of the < object > element, and there are also several preferences and settings that users
can set on their computers that can affect whether a track will play. So even if you can get an < object >
element to play an audio file on a page that is running on your computer, you cannot expect it to work
the same on other machines.

Getting consistent results can be very problematic. To help reach a greater percentage of browsers, you
may see the < embed > element used inside an < object > element. You may even come across examples
where the < embed > element has been used without an < object > element, but this is also unlikely to
work on as many browsers.

 Here is an example of adding an MP3 to a web page; note how the type attribute on the < object >
element has the value audio/mpeg (ch03_eg12.html):

 < object width=”300” height=”42” type=”audio/mpeg” data=”audio/my_music.mp3” >
 < param name=”src” value=”audio/my_music.mp3” / >
 < param name=”autoplay” value=”true” / >
 < param name=”autostart” value=”1” / >
 < embed src=”audio/my_music.mp3” width=”300” height=”42” > < /embed >
 < /object >

 As you can see from Figure 3 - 23, you get various results in different browsers. A player will be displayed
in some browsers, but not in others, and when one does appear it can look different (and take up a
different amount of space) than the next.

❑

❑

c03.indd 119c03.indd 119 11/21/09 12:10:07 AM11/21/09 12:10:07 AM

Chapter 3: Images, Audio, and Video

120

 This example also shows that it is possible to control the size that the player appears using the width
and height attributes, but it is important to bear in mind that the controls on different players may be of
different sizes, so it is best not to make them too small. You may have also noticed the < param > elements
that tell the player to automatically start playing when the audio file loads. The first, autoplay , is used
by QuickTime Player, while autoStart is understood by Windows Media and RealPlayer. (The
 < embed > element uses the equivalent attributes.)

 Some people try to resolve this problem by specifying which player to use by adding the classid
attribute onto the < object > element. As you may remember, the value of this attribute is a long set of
numbers/letters that identifies a particular player. However, if you specify a player, and users do
not have that player installed, they will not be able to hear the audio without downloading the
required plug - ins:

Figure 3-23

c03.indd 120c03.indd 120 11/21/09 12:10:08 AM11/21/09 12:10:08 AM

Chapter 3: Images, Audio, and Video

121

 classid for Windows Media 7+: clsid:6BF52A52 - 394A - 11D3 - B153 - 00C04F79FAA6

 classid for QuickTime: clsid:02BF25D5 - 8C17 - 4B23 - BC80 - D3488ABDDC6B

 classid for Real Player: clsid:CFCDAA03 - 8BE4 - 11cf - B84B - 0020AFBBCCFA

 While it is possible to hide the player (you can use CSS to hide the < object > element, and the
 < embed > element can have a type attribute whose value is hidden), this is generally frowned upon
because a user should be given the option to stop any audio that is played on a page.

 You may also have come across web sites that simply link to MP3 or WAV files. Some sites do this
because it is more likely that the browser will be able to play the file if it links directly to it (rather than
using the < object > and < embed > elements). When you click on the link, the browser plays the MP3 or
WAVE files in the browser ’ s default media player; for example, the following links would open up the
files specified in the href attribute:

 < a href=”test.mp3” > test mp3 < /a >
 < a href=”test.wav” > test wav < /a >

 The drawback with both these techniques is that you have no control over the appearance of the player ’ s
interface. Therefore, a lot of people again turn to Flash when they want to create a player for audio files.

 Adding MP3s to Your Pages Using Flash
 In the same way that Flash has become the most popular way for showing videos on the Web (because
more people have the Flash Player installed than any other media player), it has also become the most
popular way to add an MP3 player to a web page. Not only do you have the advantage that it is far more
likely to work in a visitor ’ s browser, but you can also control the appearance of the interface for the
player, and some Flash MP3 players allow you to create playlists that feature multiple tracks.

 While you could write an MP3 player from scratch using the Flash authoring tool, several have already
been written and are ready for use in your pages, such as:

 http://musicplayer.sourceforge.net/

 http://www.wimpyplayer.com/

 http://code.google.com/p/mp3player/

 http://developer.yahoo.com/mediaplayer/

 There are also a variety of customizable players you can purchase from ActiveDen.net .

 Here is an example of using the free Music Player from SourceForge.net (ch03_eg13.html):

 < object type=”application/x-shockwave-flash” width=”400” height=”170”
 data=” mp3_player.swf?playlist_url=playlist.xspf” >
 < param name=”movie” value=”mp3_player.swf?playlist_url=playlist.xspf” / >
 < /object >

❑

❑

❑

❑

❑

❑

❑

c03.indd 121c03.indd 121 11/21/09 12:10:08 AM11/21/09 12:10:08 AM

Chapter 3: Images, Audio, and Video

122

 In this example, you can see that the < object > element carries four attributes:

 A type attribute, indicating that the player is a Flash movie .

 The height and width attributes, indicating how much space this player will take up .

 A data attribute, which tells the browser where to find the Flash movie that plays the MP3 files
(mp3_player.swf). It also tells the Flash movie where to find a playlist of the MP3s that it
should play called playlist.xspf (you can find out more about the playlist format if you
download the player from SourceForge).

 Inside the < object > element is a < param > element. This < param > element again passes the location of
the Flash movie and the playlist. Figure 3 - 24 shows you what this would look like in a browser.

❑

❑

❑

Figure 3-24

 When you download a Flash MP3 player, it is likely to come with the code that the authors of the player
recommend you use to embed the player in your page. The various players often require that you set
different parameters to control the appearance and settings of the player, so it is best to check the
instructions for using the player on the web site you download the player from. For example, some Flash
MP3 players allow you to control such things as:

 The colors of the player

 Setting a list of tracks to play (rather than just one track)

 Whether to automatically start the MP3 playing when the page is loaded

 When picking a player it is worth looking at the features offered by different players to see which one
suits you best.

 If your chosen player does not come with instructions for using the player with SWF Object, and you
want to use this technique for including Flash in your pages, you can usually adapt the code to work
with SWF Object. For example, here is an example of how to include the same Flash MP3 player you just
met in your page using SWF Object (ch03_eg14.html):

❑

❑

❑

c03.indd 122c03.indd 122 11/21/09 12:10:09 AM11/21/09 12:10:09 AM

Chapter 3: Images, Audio, and Video

123

 < head >
 < title > Adding an MP3 player using Flash < /title >
 < script type=”text/javascript” src=”swfobject.js” > < /script >
 < script type=”text/javascript” >

swfobject.embedSWF(“flash/xspf_player.swf?playlist_url=flash/playlist.xspf”,
 “flash_mp3_player”, “400”, “170”, “8.0.0”);
 < /script >
 < /head >
 < body >
 < div id=”flash_mp3_player” > Here is where the Flash MP3 Player goes. < /div >
 < /body >

 Automatically Playing Audio and Video
When a Page Loads

 Having seen several techniques that allow you to add audio and video to your page, it is important to
consider the issue of whether the audio or video should play automatically when the page loads.

 More people are likely to watch or listen to a file if it starts up automatically than if they are
forced to interact with a player. However, some visitors to your site might leave the page very
quickly if the browser starts to play audio when they were not expecting it to (particularly if
they are browsing your site at work). If a visitor has anticipated hearing audio on your site, this
is less likely to be an issue. (A site owned by a record label or video production company is far
more likely to have audio than a site owned by an accountant or a builder.) So when deciding
whether to play audio or video when a page loads, consider what your users would expect
to see.

 If you do automatically play audio or video when a page loads, always offer a clear pause or
mute button that allows the user to turn off the sound.

 People can tire of hearing the same track repeatedly, so if you expect people to regularly visit
your site or spend a long time on it, try to avoid repetitious use of the same tracks, and offer
clear options for the user to turn off the music.

 If the audio and video files are hosted on your server, you will be paying for the bandwidth of
the files being played. Therefore, if the file starts automatically when the page loads, you might
be paying for people to watch and listen to files that they aren ’ t interested in.

 Because the < embed > element is deprecated, it is covered in Appendix I.

 A Closer Look at the < object > and < param > Elements
 Now that you have seen several examples of how to add rich media to your web pages, we ’ ll finish off
the chapter with a closer look at the < object > and < param > elements in the same way that we have
covered the syntax of other elements in previous chapters. Because the < embed > element is deprecated, it
is covered in Appendix I.

❑

❑

❑

❑

c03.indd 123c03.indd 123 11/21/09 12:10:09 AM11/21/09 12:10:09 AM

Chapter 3: Images, Audio, and Video

124

 The < object > element can carry all the universal attributes, the UI event attributes, and the following
attributes:

archive border classid codebase codetype data declare height width hspace
vspace name standby tabindex usemap

 We ’ ll take a look at each of these here, although the ones you will most commonly use are the classid
attribute, the type attribute, and the id attributes (discussed in Chapter 1).

 The archive Attribute
 The archive attribute is of particular use with Java - based applications. The value should be a
space-separated list of URLs to the resources the object needs in order to run (such as Java classes).

 The border Attribute (Deprecated)
 The border attribute specifies the width of the border to appear around the object; the value is specified
in pixels. However, it is deprecated and you should use the border property in CSS instead.

 The classid Attribute
 The classid attribute is designed to specify the type of application that is required (such as the type of
media player) in order for the browser to process a file.

 For example, when you want to include a Flash movie the classid attribute would use a special value
that indicates the object loaded should be the Flash Player. If you wanted to play a QuickTime movie you
may indicate that the QuickTime plug - in should be loaded. When you are working with Java, the value
of this attribute is likely to be the Java class you want to include.

 The following is an example of a classid to embed a player to show a QuickTime movie:

classid=”clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B”

 The codebase Attribute
 If the browser does not have the required plug - in (or other code) required to display the file specified in the
 < object > element, then the codebase attribute specifies the base URL where a plug - in can be downloaded.
The idea is that if the browser cannot display the file it will offer the user the option to download the
necessary files. For example, if you were working with Java, it might look like this:

codebase=”http://www.example.org/javaclasses/”

 The codetype Attribute
 The codetype attribute specifies the MIME type of the application or code required to play the file (not
to be confused with the MIME type of the file itself). For example, if you wanted to embed an Excel
spreadsheet into a web page, you would have a codetype attribute like this:

 < object data=”sales.xls” codetype=”application/vnd.ms-excel” >

 Browsers can use the codetype attribute to skip over unsupported media types without having to
download unnecessary objects. Appendix H covers MIME types.

c03.indd 124c03.indd 124 11/21/09 12:10:09 AM11/21/09 12:10:09 AM

Chapter 3: Images, Audio, and Video

125

 The declare Attribute
 The declare attribute is used to declare an object without instantiating it. It saves you from having to
download an object until it is actually required.

 It is a Boolean attribute, and while it does not need a value in HTML, all attributes in XHTML require a
value, so you would use the following:

declare=”declare”

 The data Attribute
 If the object has a file to process or play, then the data attribute specifies the URL for that file. For
example, here is a URL to an MP3:

data=”http://www.example.com/mp3s/newsong.mp3”

 This is similar to the src attribute that is used on the < img > element, and the value can be a
relative URL.

 The height and width Attributes
 The height and width attributes specify the height and width of an object. The values should be in
pixels or a percentage of the containing element. They are treated just like height and width attributes
of the < img > element. The use of these attributes should make the page load faster because the browser
can lay out the rest of the page without completely loading the object.

 The hspace and vspace attributes (Deprecated)
 The hspace and vspace attributes specify the amount of white space that should appear around an
object, just as when they are used with the < img > element. They have been replaced by the margin and
 border properties of CSS.

 The name Attribute (Deprecated)
 The name attribute provides a name that can be used to refer to the object, in particular for use in scripts.
It has been replaced by the id attribute in XHTML.

 The standby Attribute
 The standby attribute specifies a text string that will be used when the object is loading:

standby=”Trailer for Harry Potter 27 is loading”

 The value should be a meaningful description of the object that is loading.

 The tabindex Attribute
 The tabindex attribute indicates the tab index of the object within a page. Tabbing order is discussed
in Chapter 5.

c03.indd 125c03.indd 125 11/21/09 12:10:10 AM11/21/09 12:10:10 AM

Chapter 3: Images, Audio, and Video

126

 The usemap Attribute
 The usemap attribute indicates that the object is an image map containing defined areas that are
hyperlinks. Its value is the map file used with the object. It can be a complete URL to an external file or a
reference to the value of an inline <map> element’s name attribute. See the “ Image Maps ” section earlier
in this chapter.

 The < param > Element
 The < param > element is used to pass parameters to an object. The kinds of parameters an object requires
depend upon what the object does; for example, if an object has to load a Flash MP3 player into the page,
you will probably need to specify where the MP3 file can be found. Alternatively, if you are adding a
video to a page, your object might allow you to tell it whether to automatically play the video when the
page loads, or whether to wait for the user to press a play button in order for it to start.

 In addition to the universal attributes and basic events, the < param > element can carry the following
attributes:

name type value valuetype

 The name and value Attributes
 The name and value attributes act as a name/value pair (rather like attributes themselves). The name
attribute provides a name for the parameter you are passing to the application, while the value gives
the value of the parameter.

 Here are a couple of examples, taken from a QuickTime movie. The first parameter indicates the source
of the file being loaded to play, while the second indicates that the movie should start playing
automatically as it is loading (without the user having to start it):

 < param name=”src” value=”movieTrailer.mov” / >
 < param name=”autoplay” value=”true” / >

 If you were working with a Java applet, you could use the name and value attribute to pass values
into a method.

 The valuetype Attribute
 If your object accepts parameters, then the valuetype attribute indicates whether the parameter will be
a file, URL, or indeed another object. The table that follows shows the possible values.

c03.indd 126c03.indd 126 11/21/09 12:10:10 AM11/21/09 12:10:10 AM

Chapter 3: Images, Audio, and Video

127

 Value Purpose

 data The parameter value is a simple string — this is the default value.

 ref The parameter value is a URL.

 object The parameter value is another object.

 The type Attribute
 This specifies the MIME type of the content being used in the object. For example, you might want to
specify that you were passing an MP3 file, in which case you would use the value attribute like so:

value=”audio/mpeg”

 Summary
 In this chapter, you have learned how to make your pages look a lot more exciting by adding images and
other multimedia objects.

 Images can really add life to a page, but they can also increase the time it takes to load a page. Therefore
it pays to save any images you want to show on the Web in either JPEG, GIF, or PNG formats, which
compress well (creating smaller files) while retaining quality.

 The GIF and PNG formats are the formats of choice for images with flat colors, while JPEGs are better for
photographic images and graphics with gradients of the same color.

 When looking at images, you also learned how to make image links, and how to create an image map,
which divides an image into separate parts that you can click on.

 Moving on, you saw how to add Flash movies, video, and audio to your site. You learned that there are
two important factors in adding video and audio to your site; first, the format you are going to add the
content in (the file type), and second, the kind of technology you would use to play the files.

 For adding videos to web pages, you found that FLV is the most popular format, and that FLVs are
played in a Flash Movie (which in turn requires the Flash Player plug - in to be installed on your
machine).

 For audio, MP3 is the most common format, and many web programmers prefer to use Flash to play
their MP3 files because it has more consistent results in different browsers, and also allows them to
control the appearance of the interface for the player.

 Now you should be well - equipped to add images and rich media to your pages, which should make
them look more appealing and attract more visitors.

c03.indd 127c03.indd 127 11/21/09 12:10:10 AM11/21/09 12:10:10 AM

Chapter 3: Images, Audio, and Video

128

 Exercises
 The answers to all the exercises are in Appendix A.

 1. Add the images of icons that represent a diary, a camera, and a newspaper to the following
example. All of the images are provided in the images folder in the download code for
Chapter 3.

 < h1 > Icons < /h1 >
 < p > Here is an icon used to represent a diary. < /p >
 < img src=”images/diary.gif” alt=”Diary” width=”150” height=”120” / > < br / >

 < p > Here is an icon used to represent a picture. < /p >
Camera image goes here < br / >

 < p > Here is an icon used to represent a news item. < /p >
Newspaper image goes here < br / >

 Your finished page should resemble Figure 3 - 25.

Figure 3-25

c03.indd 128c03.indd 128 11/21/09 12:10:11 AM11/21/09 12:10:11 AM

Chapter 3: Images, Audio, and Video

129

 2. Look at the images shown in Figures 3 - 26 and 3 - 27 and decide whether you are more likely to
get smaller file sizes and better quality images if you save them as GIFs or JPEGs.

Figure 3-26

Figure 3-27

 3. Go through the files for the sample application and replace the main heading with the logo on
each page. On every page except for the homepage, make sure that the image links back to the
 index.html page.

c03.indd 129c03.indd 129 11/21/09 12:10:11 AM11/21/09 12:10:11 AM

c03.indd 130c03.indd 130 11/21/09 12:10:12 AM11/21/09 12:10:12 AM

 4
 Tables

 Tables display information in rows and columns; they are commonly used to display all
manner of data that fits in a grid such as train schedules, television listings, financial reports,
and sports results. In this chapter, you learn when to use tables, and the markup that you need
to create them.

 To begin this chapter, we ’ ll look at some examples of tables, then quickly move onto the basic
elements that are used to create them. Having learned the basics, you can then go on to learn
some of the more advanced features of tables such as adding captions and headings, and how to
achieve more complicated table layouts. Along the way, you will also learn some deprecated
markup that was designed to control the appearance of tables because, even though it is
preferable to use CSS to control the way a page looks, you may sometimes come across pages
that use the older markup.

 The chapter ends with a discussion of accessibility issues that relate to tables, because it is
important to understand how a screen reader would read the contents of a table to users with
visual impairments.

 Introducing Tables
 In order to work with tables, you need to start thinking in grids , so let ’ s start off by looking at some
examples of how popular web sites use tables.

c04.indd 131c04.indd 131 11/20/09 4:13:52 PM11/20/09 4:13:52 PM

Chapter 4: Tables

132

 In Figure 4 - 1 you can see the NFL web site. This page shows the standings for each team in a table. You
can see a list of teams down the left, and for each team there are columns providing different stats,
including number of games won, lost, or tied.

Figure 4-1

c04.indd 132c04.indd 132 11/20/09 4:13:53 PM11/20/09 4:13:53 PM

Chapter 4: Tables

133

 Figure 4 - 2 shows the Bloomberg web site. This page shows major stock markets. In this case, there are
tables for different regions around the world (in this screenshot, you can see North and Latin America as

Figure 4-2

the first region, followed by Europe, Africa, and the Middle East). Each table contains the major indexes
trading in that region down the left - hand side, followed by columns that show the current value,
fluctuations in values, and date/time of the stats.

c04.indd 133c04.indd 133 11/20/09 4:13:54 PM11/20/09 4:13:54 PM

Chapter 4: Tables

134

 In Figure 4 - 3 you can see the web site for the Heathrow Express, a train between Central London and
London ’ s Heathrow Airport. The tables on this page show the times that the trains run.

Figure 4-3

c04.indd 134c04.indd 134 11/20/09 4:13:54 PM11/20/09 4:13:54 PM

Chapter 4: Tables

135

 In Figure 4 - 4, you can see the New York Times web site. On this page, the tables provide
television listings.

Figure 4-4

 I hope these examples give you a better idea of what a table is and when you might want to use one.
I am not suggesting that every web site that displays stock market data or television listings should use
a table — rather that you should consider using a table when you need to display information that sits
well in a grid of rows and columns. If you are looking at a web page and want to know whether that
page is using a table to control how the data is laid out, you can always look at the source for that page
and look for the elements you are about to read about in this chapter.

c04.indd 135c04.indd 135 11/20/09 4:13:55 PM11/20/09 4:13:55 PM

Chapter 4: Tables

136

Figure 4-5

COLUMN 1

ROW 1

COLUMN 2

ROWS

C
O

LU
M

N
S

ROW 1

COLUMN 3

ROW 1

COLUMN 4

ROW 1

COLUMN 1

ROW 2

COLUMN 2

ROW 2

COLUMN 3

ROW 2

COLUMN 4

ROW 2

COLUMN 1

ROW 3

COLUMN 2

ROW 3

COLUMN 3

ROW 3

COLUMN 4

ROW 3

COLUMN 1

ROW 4

COLUMN 2

ROW 4

COLUMN 3

ROW 4

COLUMN 4

ROW 4

COLUMN 1

ROW 5

COLUMN 2

ROW 5

COLUMN 3

ROW 5

COLUMN 4

ROW 5

Figure 4-6

Y ou can think of a table as being very similar to a spreadsheet because it is made up of rows and
columns, as shown in Figure 4 - 5.

 Here you can see a grid of rectangles. Each rectangle is known as a cell . A row is made up of a set
of cells on the same line from left to right, and a column is made up of a line of cells going from top
to bottom.

 Let ’ s look at an example of a very basic XHTML table so that you can see how they are created
(see Figure 4 - 6).

 You create a table in XHTML using the < table > element. Inside the < table > element, the table
is written out row by row. A row is contained inside a < tr > element — which stands for table row .
Each cell is then written inside the row element using a < td > element — which stands for
table data .

c04.indd 136c04.indd 136 11/20/09 4:13:56 PM11/20/09 4:13:56 PM

Chapter 4: Tables

137

 Here is the code that was used to create this basic table (ch04_eg01.html):

 < table border=”1” >
 < tr >
 < td > Row 1, Column 1 < /td >
 < td > Row 1, Column 2 < /td >
 < /tr >
 < tr >
 < td > Row 2, Column 1 < /td >
 < td > Row 2, Column 2 < /td >
 < /tr >
 < /table >

 When writing code for a table in a text editor, I ’ m always extra careful to start each row and cell on a
new line and to indent table cells inside table rows as shown. If you are using a web page authoring tool
such as Dreamweaver, it will probably automatically indent the code for you.

 Many web page authors find it particularly helpful to indent the code for a table because leaving off just
one tag in a table can prevent the entire table from being displayed properly. Indenting the code makes it
easier to keep track of the opening and closing of each element.

 Take a look at the same code again. This time, it has not been split onto separate lines or indented, and
I ’ m sure you will agree it ’ s much harder to read.

<table border=”1”><tr><td>Row 1, Column 1</td><td>Row 1, Column 2</td></tr><tr>
<td>Row 2, Column 1</td><td>Row 2, Column 2</td></tr></table>

 All tables will follow this basic structure, although there are additional elements and attributes that
allow you to control the presentation of tables. If a row or column should contain a heading, a < th >
element should be used in place of the < td > element for the cells that contain a heading. By default, most
browsers render the content of a < th > element in bold text.

 Each cell must be represented by either a < td > or a < th > element in order for the
table to display correctly, even if there is no data in that cell.

 Let ’ s take a look at a slightly more complicated table (see Figure 4 - 7). This time the table includes
headings. In this example, the table shows a financial summary for a small company.

Figure 4-7

c04.indd 137c04.indd 137 11/20/09 4:13:56 PM11/20/09 4:13:56 PM

Chapter 4: Tables

138

 Here is the code that was used to create this table (ch04_eg02.html):

<table border=”1”>
 <tr>
 <td></td>
 <th>Outgoings ($)</th>
 <th>Receipts ($)</th>
 <th>Profit ($)</th>
 </tr>
 <tr>
 <th>Quarter 1 (Jan-Mar)</th>
 <td>11200.00</td>
 <td>21800.00</td>
 <td>10600.00</td>
 </tr>
 <tr>
 <th>Quarter 2 (Apr-Jun)</th>
 <td>11700.00</td>
 <td>22500.00</td>
 <td>10800.00</td>
 </tr>
 <tr>
 <th>Quarter 3 (Jul - Sep)</th>
 <td>11650.00</td>
 <td>22100.00</td>
 <td>10450.00</td>
 </tr>
 <tr>
 <th>Quarter 4 (Oct - Dec)</th>
 <td>11850.00</td>
 <td>22900.00</td>
 <td>11050.00</td>
 </tr>
</table>

 The first row is made entirely of headings for outgoings, receipts, and profit. Note how the top - left cell in
Figure 4 - 7 is empty; in the code for the table, we still need an empty < td > element to tell the browser
that this cell is empty (otherwise it has no way of knowing that there is an empty cell here).

 In each row, the first cell is also a table heading cell (indicated using a < th >), which states which quarter
the results are for. Then the remaining three cells of each row contain table data and are contained inside
the < td > elements.

 The figures showing the profit (in the right - hand column) are contained within a < b > element, which
shows the profit figures in a bold typeface. This demonstrates how any cell can, in fact, contain all
manner of markup. The only constraint on placing markup inside a table is that it must nest within the
table cell element (be that a < td > or a < th > element). You cannot have an opening tag for an element
inside a table cell and a closing tag outside that cell — or vice versa.

c04.indd 138c04.indd 138 11/20/09 4:13:57 PM11/20/09 4:13:57 PM

Chapter 4: Tables

139

 When creating tables, many people do not actually bother with the < th > element and instead use the
 < td > element for every cell — including headers. You should, however, aim to use the < th > element
whenever you have a table heading.

 As you can see from the examples so far in this chapter, tables can take up a lot of space and make a doc-
ument longer, but clear formatting of tables makes it much easier to see what is going on in your code.
No matter how familiar the code looks when you write it, you will be glad that you made good use of
structure if you have to come back to it a year later.

 Basic Table Elements and Attributes
 Now that you ’ ve seen how basic tables work, this section describes the elements in a little more detail,
introducing the attributes they can carry. Some of the attributes allow you to create more sophisticated
table layouts. Feel free to skim through this section fairly quickly; once you know what is possible to do
with the markup, you can always come back again and study the markup more closely in order to see
how to achieve what you want.

 The < table > Element Creates a Table
 The < table > element is the containing element for all tables. It can carry the following attributes:

 All the universal attributes

 Basic event attributes for scripting

 The < table > element can carry the following deprecated attributes. Even though they are deprecated,
you will still see many of them in use today:

align bgcolor border cellpadding cellspacing dir frame rules summary width

 The align Attribute (Deprecated)
 Although it is deprecated, the align attribute is still frequently used with tables. When used with the
 < table > element, it indicates whether the table should be aligned to the left (the default), right , or
 center of the page. (When used with cells, as you will see shortly, it aligns the content of that cell.) You
use the attribute like so:

 < table align=”center” >

 You can put a whole table inside a single cell of another table (or inside other block - level elements), and
if a table is contained within another element, the align attribute will indicate whether the table should
be aligned to the left, right, or center of that element.

❑

❑

c04.indd 139c04.indd 139 11/20/09 4:13:57 PM11/20/09 4:13:57 PM

Chapter 4: Tables

140

 When the align attribute is used on a table, text should flow around it (rather like it can flow around an
image). For example, here is a left - aligned table that is followed by some text (ch04_eg03.html):

 < table border=”1” align=”left” >
 < tr >
 < td > Row 1, Column 1 < /td >
 < td > Row 1, Column 2 < /td >
 < /tr >
 < tr >
 < td > Row 2, Column 1 < /td >
 < td > Row 2, Column 2 < /td >
 < /tr >
 < /table >
Lorem ipsum dolor sit amet, consectetuer adipiscing elit...

 The text should flow around the table, as shown in the first table in Figure 4 - 8.

Figure 4-8

 If you do not want the text to flow around the table, you can use the CSS clear property on the element
after it (you will learn about this in Chapter 8). Alternatively, you could place a line break after the table
and add the clear attribute, which is also deprecated < br clear= ” left ” / > (although the CSS clear
property would be the preferred method). This is demonstrated in the second table of Figure 4 - 8.

c04.indd 140c04.indd 140 11/20/09 4:13:58 PM11/20/09 4:13:58 PM

Chapter 4: Tables

141

 < /table >
 < br clear=”left” / >
Lorem ipsum dolor sit amet, consectetuer adipiscing elit...

 The clear attribute indicates how the browser should display the next line after the line break. With the
value of left , the text can begin only when there is nothing positioned on the left margin of the browser
window (or containing element). The clear attribute is covered in more detail in Appendix I.

 The bgcolor Attribute (Deprecated)
 The bgcolor attribute sets the background color for the table. The value of this attribute should either be
a color name or a six - digit code known as a hex code . The way in which colors are specified in XHTML
and CSS is covered in Appendix D. (The bgcolor attribute has been replaced by the background -
 color property in CSS.)

 The syntax is as follows:

bgcolor=”red”

 The border Attribute (Deprecated)
 If you use the border attribute, a border will be created around both the table and each individual cell.
The value for this attribute is the width you want the outside border of the table to be, in pixels. If you
give this attribute a value of 0 , or if you do not use this attribute, then you should not get any borders on
either the table or any cells. (This has been replaced by the border property in CSS.)

border=”0”

While this attribute is deprecated, it has been used in several of the examples in this
chapter so that you can clearly see where the edge of each table cell is.

 The cellpadding Attribute (Deprecated)
 The cellpadding attribute is used to create a gap between the edges of a cell and its contents. The value
for this attribute determines the amount of space or padding inside each wall of the cell, specified either
in pixels or as a percentage value (where the percentage is a percentage of the width of each cell).

cellpadding=”5” or cellpadding=”2%”

 As you can imagine, if two table cells sat next to each other and both contained writing, there could be a
problem. If there were not a gap between the edge of the cells and the writing, the words would butt up
against each other, making them hard to read. Similarly, if there were a border around each cell and the
text touched the border, it could be hard to read. Therefore, adding padding to cells makes their contents
easier to read.

c04.indd 141c04.indd 141 11/20/09 4:13:58 PM11/20/09 4:13:58 PM

Chapter 4: Tables

142

 This attribute has been replaced by the padding property in CSS.

 The cellspacing Attribute (Deprecated)
 The cellspacing attribute is used to create a space between the borders of each cell. The value for
this attribute can be either the amount of space you want to create between the cells, in pixels, or a
percentage value.

cellspacing=”6” or cellspacing=”2%”

 This attribute has been replaced by the margin property in CSS.

 The dir Attribute
 The dir attribute is supposed to indicate the direction of text that is used in the table. Possible values are
 ltr for left to right text and rtl for right to left (for languages such as Hebrew and Arabic):

dir=”rtl”

 If you use the dir attribute with a value of rtl on the < table > element, then the cells appear from the
right first, and each consecutive cell is placed to the left of that one.

 The frame Attribute (Deprecated)
 The frame attribute is supposed to control the appearance of the outermost border of the whole table,
referred to here as its frame , with greater control than the border attribute. If both the frame and border
attributes are used, the frame attribute takes precedence. The syntax is:

frame=” frameType ”

 The following table shows the possible values for the frame attribute.

 Value Purpose

 void No outer border (the default)

 above A border on the top only

 below A border on the bottom only

 hsides A border on the top and bottom

 lhs A border on the left side of table

 rhs A border on the right side of table

 vsides A border on the left and right sides of table

 box A border on all sides

 border A border on all sides

c04.indd 142c04.indd 142 11/20/09 4:13:59 PM11/20/09 4:13:59 PM

Chapter 4: Tables

143

 Support for the frame attribute is not perfect across browsers, and its role has been replaced by the CSS
 border property, which can give better results.

 The rules Attribute (Deprecated)
 The rules attribute is used to indicate which inner borders of the table should be displayed. For
example, you can just specify that the rows or columns should have lines between each of them. Here is
the syntax; the default value is none .

rules=” ruleType ”

 The following table shows the possible values for the rules attribute:

 Value Purpose

 none No inner borders (the default)

 groups Displays inner borders between all table groups (groups are created by the
 < thead > , < tbody > , < tfoot > , and < colgroup > elements)

 rows Displays horizontal borders between each row

 cols Displays vertical borders between each column

 all Displays horizontal and vertical borders between each row and column

 Again, support for this attribute is not perfect, and it has been deprecated in favor of the CSS border
property, which achieves better results.

 The summary Attribute
 The summary attribute is supposed to provide a summary of the table ’ s purpose and structure for non -
 visual browsers such as speech browsers or Braille browsers. The value of this attribute is not rendered
in IE or Firefox, but if the text before the table doesn ’ t clearly explain what will be found in the table, you
should aim to use it in your pages:

summary=”Table shows the operating profit for the last four quarters. The
first column indicates the quarter, the second indicates outgoings, the
third indicates receipts, and the fourth indicates profit.”

 The width Attribute (Deprecated)
 The width attribute is used to specify the width of the table, and usually its value is given in pixels.

width=”500”

 It is also possible to use a percentage of the available space, the available space generally being the width
of the browser, unless the table sits inside another element within the body of the page, in which case it
is a percentage of the size of the containing element.

width=”90%”

c04.indd 143c04.indd 143 11/20/09 4:13:59 PM11/20/09 4:13:59 PM

Chapter 4: Tables

144

 The < tr > Element Contains Table Rows
 The < tr > element is used to contain each row in a table. Anything appearing within a < tr > element
should appear on the same row. It can carry five attributes, three of which have been deprecated in favor
of using CSS.

align bgcolor char charoff valign

 The align Attribute (Deprecated)
 The align attribute specifies the position of the content of all of the cells in the row.

align=” alignment ”

 The table that follows lists the possible values for the align attribute:

 Value Purpose

 left Content is left - aligned.

 right Content is right - aligned.

 center Content is centered horizontally within the cell.

 justify Text within the cell is justified to fill the cell.

 char Cell contents are aligned horizontally around the first instance of a specific
character (for example, numbers could be aligned around the first instance of a
decimal point).

 By default, any < td > cells are usually left - aligned, whereas any < th > cells are usually centered.
While Firefox 2+ supports justified text, IE does not, and neither IE nor Firefox support the
value char .

 The bgcolor Attribute (Deprecated)
 The bgcolor attribute sets the background color for the row. The value of this attribute should be either
a color name or a hex code or color value, as discussed in Appendix D.

bgcolor=”red”

 The bgcolor attribute is commonly used on the < tr > element to shade alternate rows of a table with
different colors, thus making it easier to read across each row.

 The char Attribute
 If the align attribute has been given a value of char , then the char attribute is used to specify that the
contents of each cell within the row will be aligned around the first instance of a particular character

c04.indd 144c04.indd 144 11/20/09 4:14:00 PM11/20/09 4:14:00 PM

Chapter 4: Tables

145

known as an axis character . The default character for this attribute is the decimal place, and the idea is
that decimal figures would be aligned by the decimal point like so:

13412.22
 232.147
 2449.6331
 2.12

 The syntax is as follows:

char=”.”

 Unfortunately, this potentially very helpful attribute is not supported at the time of this writing, and
there is no requirement for browsers to support it.

 The charoff Attribute
 The charoff attribute is used in association with the char attribute, and indicates an offset for
the char attribute. For example, if it is given a value of 2 , then the elements are aligned with the
character that is two characters along from the one specified by the char attribute. It can also
take a negative value.

 If this attribute is omitted, the default behavior is to make the offset the equivalent of the longest amount
of text content that appeared before the character specified in the char attribute.

charoff=”2”

 Unfortunately, this attribute is not supported at the time of this writing, and there is no requirement for
browsers to support it.

 The valign Attribute (Deprecated)
 The valign attribute specifies the vertical alignment of the contents of each cell in the row. The syntax is
as follows:

valign=” verticalPosition ”

 The table that follows shows the possible values of the valign attribute:

 Value Purpose

 top Aligns content with the top of the cell

 middle (Vertically) aligns content in the center of a cell

 bottom Aligns content with the bottom of the cell

 baseline Aligns content so that the first line of text in each cell starts on the same
horizontal line

c04.indd 145c04.indd 145 11/20/09 4:14:00 PM11/20/09 4:14:00 PM

Chapter 4: Tables

146

 The < td > and < th > Elements Represent Table Cells
 Every cell in a table will be represented by either a < td > element for cells containing table data or a < th >
element for cells containing table headings.

 By default, the contents of a < th > element are usually displayed in a bold font, horizontally aligned in
the center of the cell. The content of a < td > element, meanwhile, will usually be displayed left - aligned
and not in bold (unless otherwise indicated by CSS or another element).

 The < td > and < th > elements can both carry the same set of attributes, and the attribute only applies to
that one cell carrying it. Any effect these attributes have will override settings for the table as a whole or
any containing element (such as a row).

 In addition to the universal attributes and the basic event attributes, the < td > and < th > elements can
also carry the following attributes:

abbr align axis bgcolor char charoff colspan headers
height nowrap rowspan scope valign width

 The abbr Attribute
 The abbr attribute is used to provide an abbreviated version of the cell ’ s content.

abbr=”description of services”

 While the major browsers do not currently support this attribute, it ’ s possible that it will be used by
some of the increasing number of devices with small screens accessing the Internet. For example, if a
browser with a small screen is being used to view the page, the content of this attribute could be
displayed instead of the full content of the cell.

 The align Attribute (Deprecated)
 The align attribute sets the horizontal alignment for the content of the cell.

align=” alignment ”

 The possible values for the align attribute are left , right , center , justify , and char , each of which
was described earlier in “The < tr > Element Contains Table Rows” section.

 The axis Attribute
 The axis attribute allows you to add conceptual categories to cells and therefore represent n -
 dimensional data. The value of this attribute would be a comma - separated list of names for each
category the cell belonged to.

axis=”heavy, old, valuable”

 Rather than having a visual formatting effect, this attribute allows you to preserve data, which then may
be used programmatically, such as querying for all cells belonging to a certain category.

c04.indd 146c04.indd 146 11/20/09 4:14:00 PM11/20/09 4:14:00 PM

Chapter 4: Tables

147

 The bgcolor Attribute (Deprecated)
 The bgcolor attribute sets the background color for the cell. The value of this attribute should be either
a color name or a hex code — both are covered in Appendix D.

bgcolor=”red”

 It has been replaced by the background - color property in CSS.

 The char Attribute
 The char attribute specifies a character, the first instance of which should be used to horizontally align
the contents of a cell. (See the full description in the “ The char Attribute ” subsection within the “ The
 < tr > Element Contains Table Rows ” section earlier in the chapter.)

 The charoff Attribute
 The charoff attribute specifies the number of offset characters that can be displayed before the
character specified as the value of the char attribute. (See the full description in the “ The charoff
Attribute ” subsection within the “ The < tr > Element Contains Table Rows ” section earlier in the chapter.)

 The colspan Attribute
 The colspan attribute is used when a cell should span across more than one column. The value of the
attribute specifies how many columns of the table a cell will span across. (See the section “ Spanning
Columns Using the colspan Attribute ” later in this chapter.)

colspan=”2”

 The headers Attribute
 The headers attribute is used to indicate which headers correspond to that cell. The value of the
attribute is a space - separated list of the header cells ’ id attribute values:

headers=”income q1”

 The main purpose of this attribute is to support voice browsers. When a table is being read to you, it can
be hard to keep track of which row and column you are on; therefore, the header attribute is used to
remind users which row and column the current cell ’ s data belongs to.

 The height Attribute (Deprecated)
 The height attribute allows you to specify the height of a cell in pixels, or as a percentage of the available space:

height=”20” or height=”10%”

 It has been replaced by the CSS height property.

 The nowrap Attribute (Deprecated)
 The nowrap attribute is used to stop text from wrapping onto a new line within a cell. You would use
 nowrap only when the text really would not make sense if it were allowed to wrap onto the next line (for
example, a line of code that would not work if it were spread across two lines). When it was initially

c04.indd 147c04.indd 147 11/20/09 4:14:01 PM11/20/09 4:14:01 PM

Chapter 4: Tables

148

introduced in HTML, it was used without an attribute value, but that would not be allowed in XHTML.
Rather, you would have to use the following:

nowrap=”nowrap”

 The rowspan Attribute
 The rowspan attribute specifies the number of rows of the table a cell will span across, the value of the
attribute being the number of rows the cell stretches across. (See the example in the section “ Spanning
Rows Using the rowspan Attribute ” later in this chapter.)

rowspan=”2”

 The scope Attribute
 The scope attribute can be used to indicate which cells the current header provides a label or header
information for. It can be used instead of the headers attribute in basic tables, but does not have much
support.

scope=” range ”

 The table that follows shows the possible values of the attribute:

 Value Purpose

 row Cell contains header information for that row.

 col Cell contains header information for that column.

 rowgroup Cell contains header information for that rowgroup (a group of cells in a row created
using the < thead > , < tbody > , or < tfoot > elements).

 colgroup Cell contains header information for that colgroup (a group of columns created
using the < col > or < colgroup > element, both of which are discussed later in
the chapter).

 The valign Attribute (Deprecated)
 The valign attribute allows you to specify the vertical alignment for the content of the cell. Possible
values are top , middle , bottom , and baseline , each of which was discussed earlier in the chapter
in the subsection entitled “ The valign Attribute ” within the section “ The < tr > Element Contains
Table Rows . ”

 The width Attribute (Deprecated)
 The width attribute allows you to specify the width of a cell in pixels, or as a percentage of the table:

width=”150” or width=”30%”

c04.indd 148c04.indd 148 11/20/09 4:14:01 PM11/20/09 4:14:01 PM

Chapter 4: Tables

149

 You only need to specify the width attribute for the cells in the first row of a table, and the rest of the
rows will follow the first row ’ s cell widths.

 If you had already specified a width attribute for the < table > element, and the widths of individual
cells add up to more than that width, most browsers will squash those cells to fit them into the width of
the table.

 You can also add a special value of * , which means that this cell will take up the remaining space
available in the table. So if you have a table that is 300 pixels wide and the first two cells in a row are
specified as being 50 pixels wide, if the third cell has a value of * , it will take up 200 pixels — the
remaining width of the table. If the width of the table had not been specified, then the third column
would take up the remaining width of the browser window.

 It is worth noting that you cannot specify different widths for different < td > elements that belong
in the same column. So, if the first row of a table had three < td > elements whose widths were
100 pixels, the second row could not have one < td > element whose width was 200 pixels and two that
were 50 pixels.

Try It Out An Opening Hours Table

 In this example, you will create a table that shows the opening hours of the Example Caf é web site we
have been working on throughout the book. The table will look like the one shown in Figure 4 - 9.

 Figure 4 - 9

 1. Start off by opening the contact.html file in your text or XHTML editor; we will be adding a
table to show serving hours beneath the e-mail link.

 2. The table is contained within the < table > element and its content is then written out a row at
a time. The table has three rows and eight columns.

c04.indd 149c04.indd 149 11/20/09 4:14:01 PM11/20/09 4:14:01 PM

Chapter 4: Tables

150

 Starting with the top row, you have eight table heading elements. The first < th > element is
empty because the top - left corner cell of the table is empty. The next seven elements contain
the days of the week.

 In the second row of the table, the first cell acts as a heading for that row, indicating the meal
(breakfast). The remaining cells show what times these meals are served. The third row
follows the same format as the second row but shows times for lunch.

 < table >
 < tr >
 < th > < /th >
 < th > Monday < /th >
 < th > Tuesday < /th >
 < th > Wednesday < /th >
 < th > Thursday < /th >
 < th > Friday < /th >
 < th > Saturday < /th >
 < th > Sunday < /th >
 < /tr >
 < tr >
 < th > Breakfast < /th >
 < td > 7:00am - 10:00am < /td >
 < td > 7:00am - 10:00am < /td >
 < td > 7:00am - 10:00am < /td >
 < td > 7:00am - 10:00am < /td >
 < td > 7:00am - 11:00am < /td >
 < td > 8:00am - 11:30pm < /td >
 < td > 8:00am - 11:30pm < /td >
 < /tr >
 < tr >
 < th > Lunch < /th >
 < td > 11:30am - 2:30pm < /td >
 < td > 11:30am - 2:30pm < /td >
 < td > 11:30am - 2:30pm < /td >
 < td > 11:30am - 2:30pm < /td >
 < td > 11:30am - 2:30pm < /td >
 < td > 11:30am - 3:30pm < /td >
 < td > 11:30am - 3:30pm < /td >
 < /tr >
 < /table >
 < /body >

 As long as you accept that each row is written out in turn, you will have no problem creating
quite complex tables.

 3. Save your file as contact.html.

c04.indd 150c04.indd 150 11/20/09 4:14:02 PM11/20/09 4:14:02 PM

Chapter 4: Tables

151

 Adding a < caption > to a Table
 Whether your table shows results for a scientific experiment, values of stocks in a particular market, or what is
on television tonight, each table should have a caption so that visitors to your site know what the table is for.

 Even if the surrounding text describes the content of the table, it is good practice to give the table a
formal caption using the < caption > element. By default, most browsers will display the contents of this
element centered above the table, as shown in Figure 4 - 10 in the next section.

 The < caption > element appears directly after the opening < table > tag; it should come before the
first row:

 < table >
 < caption > Opening hours for the Example Cafe < /caption >
 < tr >

 By using a < caption > element, rather than just describing the purpose of the table in a previous or
subsequent paragraph, you are directly associating the content of the table with this description — and
this association can be used by screen readers and by applications that process web pages (such as
search engines).

 Grouping Sections of a Table
 In this section, you are going to look at some techniques that allow you to group together cells, rows,
and columns of a table, and learn the advantages that doing this can bring. In particular, you will see
how to do the following:

 Use the rowspan and colspan attributes to make cells stretch over more than one row
or column

 Split a table into three sections: a head, body, and foot

 Group columns using the < colgroup > element

 Share attributes between unrelated columns using the < col > element

 Spanning Columns Using the colspan Attribute
 As you saw when looking at the < td > and < th > elements, both can carry an attribute called colspan
that allows the table cell to span (or stretch) across more than one column.

 If you look at Figure 4 - 10, you can see a table that has three rows; the cells of the table are shaded to
illustrate the colspan attribute in action:

 The first row has three columns of equal width, and there is one cell for each column.

 In the second row, the first cell is the width of one column, but the second cell spans the width
of two columns.

 The third row has just one cell that spans all three columns.

❑

❑

❑

❑

❑

❑

❑

c04.indd 151c04.indd 151 11/20/09 4:14:02 PM11/20/09 4:14:02 PM

Chapter 4: Tables

152

 Let ’ s take a look at the code for this example to see how the colspan attribute is used. This example also
uses the deprecated border , width , height , and bgcolor attributes in order to illustrate a point
visually (ch04_eg04.html):

 < table border=”1” >
 < caption > Spanning columns using the colspan attribute < /caption >
 < tr >
 < td bgcolor=”#efefef” width=”100” height=”100” > & nbsp; < /td >
 < td bgcolor=”#999999” width=”100” height=”100” > & nbsp; < /td >
 < td bgcolor=”#000000” width=”100” height=”100” > & nbsp; < /td >
 < /tr >
 < tr >
 < td bgcolor=”#efefef” width=”100” height=”100” > & nbsp; < /td >
 < td colspan=”2” bgcolor=”#999999” > & nbsp; < /td >
 < /tr >
 < tr >
 < td colspan=”3” bgcolor=”#efefef” height=”100” > & nbsp; < /td >
 < /tr >
 < /table >

 In the first row, you can see that there are three < td > elements, one for each cell.

 In the second row, there are only two < td > elements, and the second of these elements carries a colspan
attribute. The value of the colspan attribute indicates how many columns the cell should stretch across.
In this case, the second cell spans two columns; therefore, it has a value of 2 .

 In the final row, there is just one < td > element, and this time the colspan attribute has a value of 3 ,
which indicates that it should take up three columns.

Figure 4-10

c04.indd 152c04.indd 152 11/20/09 4:14:02 PM11/20/09 4:14:02 PM

Chapter 4: Tables

153

 As I mentioned at the start of this chapter, when dealing with tables you have to think in terms of grids.
This grid is three cells wide and three rows tall, so the middle row could not have two equal - sized cells
(because they would not fit in the grid — you cannot have a cell spanning 1.5 columns).

 An example of where the colspan attribute might be useful is in creating a timetable or schedule where
the day is divided into hours — some slots lasting one hour, others lasting two to three hours.

 You might also have noticed the use of the non - breaking space character (& nbsp;) in the cells, which is
included so that the cell has some content; without content for a table cell, some browsers will not
display the background color (whether that color is specified using CSS or the deprecated bgcolor
attribute).

 Spanning Rows Using the rowspan Attribute
 The rowspan attribute does much the same thing as the colspan attribute, but it works in the opposite
direction: it allows cells to stretch vertically across cells. You can see the effect of the rowspan attribute in
Figure 4 - 11.

Figure 4-11

 When you use a rowspan attribute, the corresponding cell in the row beneath it must be left out
(ch04_eg05.html):

 < table border=”1” >
 < caption > Spanning rows using the colspan attribute < /caption >
 < tr >
 < td bgcolor=”#efefef” width=”100” height=”100” > & nbsp; < /td >
 < td bgcolor=”#999999” width=”100” height=”100” > & nbsp; < /td >
 < td rowspan=”3” bgcolor=”#000000” width=”100” height=”100” > & nbsp; < /td >
 < /tr >
 < tr >
 < td bgcolor=”#efefef” height=”100” > & nbsp; < /td >
 < td rowspan=”2” bgcolor=”#999999” > & nbsp; < /td >

c04.indd 153c04.indd 153 11/20/09 4:14:03 PM11/20/09 4:14:03 PM

Chapter 4: Tables

154

 < /tr >
 < tr >
 < td bgcolor=”#efefef” height=”100” > & nbsp; < /td >
 < /tr >
 < /table >

 The rowspan and colspan attributes were popular with designers who used tables to control the
layout pages, but tables are rarely used to lay out pages these days, and this technique has largely been
replaced by the use of CSS to control layouts.

 Splitting Up Tables Using a Head, Body, and Foot
 There are occasions when you may wish to distinguish between the body of a table (where most of the
data is held) and the headings or maybe even the footers. For example, think of a bank statement: you
may have a table where the header contains column headings, the body contains a list of transactions,
and the footer contains the balance in the account.

 If the table is too long to show on a screen, then the header and footer might remain in view all the time,
while the body of the table gains a scrollbar. Similarly, when printing a long table that spreads over more
than one page, you might want the browser to print the head and foot of a table on each page.
Unfortunately, the main browsers do not yet support these ideas.

 However, if you add these elements to your tables, you can use CSS to attach different styles to the
contents of the < thead > , < tbody > , and < tfoot > elements. It can also help those who use aural
browsers, which read pages to users.

 The three elements for separating the head, body, and foot of a table are:

 < thead > to create a separate table header

 < tbody > to indicate the main body of the table

 < tfoot > to create a separate table footer

 A table may also contain several < tbody > elements to indicate different “ pages ,” or groups of data.

Note that the < tfoot > element must appear before the < tbody > element in the
source document.

 Here you can see an example of a table that makes use of these elements (ch04_eg06.html):

 < table >
 < thead >
 < tr >
 < th > Transaction date < /th >
 < th > Payment type and details < /th >
 < th > Paid out < /th >

❑

❑

❑

c04.indd 154c04.indd 154 11/20/09 4:14:03 PM11/20/09 4:14:03 PM

Chapter 4: Tables

155

 < th > Paid in < /th >
 < th > Balance < /th >
 < /tr >
 < /thead >
 < tfoot >
 < tr >
 < td > < /td >
 < td > < /td >
 < td > $1970.27 < /td >
 < td > $2450.00 < /td >
 < td > $8940.88 < /td >
 < /tr >
 < /tfoot >
 < tbody >
 < tr >
 < td > 12 Jun 09 < /td >
 < td > Amazon.com < /td >
 < td > $49.99 < /td >
 < td > < /td >
 < td > $8411.16 < /td >
 < /tr >
 < tr >
 < td > 13 Jun 09 < /td >
 < td > Total < /td >
 < td > $60.00 < /td >
 < td > < /td >
 < td > $8351.16 < /td >
 < /tr >
 < tr >
 < td > 14 Jun 09 < /td >
 < td > Whole Foods < /td >
 < td > $75.28 < /td >
 < td > < /td >
 < td > $8275.88 < /td >
 < /tr >
 < tr >
 < td > 14 Jun 09 < /td >
 < td > Visa Payment < /td >
 < td > $350.00 < /td >
 < td > < /td >
 < td > $7925.88 < /td >
 < /tr >
 < tr >
 < td > 15 Jun 09 < /td >
 < td > Cheque 122501 < /td >
 < td > < /td >
 < td > $1450.00 < /td >
 < td > $9375.88 < /td >
 < /tr >
 < /tbody >
 < tbody >
 < tr >

c04.indd 155c04.indd 155 11/20/09 4:14:04 PM11/20/09 4:14:04 PM

Chapter 4: Tables

156

 < td > 17 Jun 09 < /td >
 < td > Murco < /td >
 < td > $60.00 < /td >
 < td > < /td >
 < td > $9315.88 < /td >
 < /tr >
 < tr >
 < td > 18 Jun 09 < /td >
 < td > Wrox Press < /td >
 < td > < /td >
 < td > $1000.00 < /td >
 < td > $10315.88 < /td >
 < /tr >
 < tr >
 < td > 18 Jun 09 < /td >
 < td > McLellans Bakery < /td >
 < td > $25.00 < /td >
 < td > < /td >
 < td > $10290.88 < /td >
 < /tr >
 < tr >
 < td > 18 Jun 09 < /td >
 < td > Apple Store < /td >
 < td > $1350.00 < /td >
 < td > < /td >
 < td > $8940.88 < /td >
 < /tr >
 < /tbody >
 < /table >

 Figure 4 - 12 shows what this example looks like in Firefox, which supports the thead , tbody , and tfoot
elements. Note that this example uses CSS to give the header and footer of the table a background shade.

Figure 4-12

c04.indd 156c04.indd 156 11/20/09 4:14:04 PM11/20/09 4:14:04 PM

Chapter 4: Tables

157

 All three elements carry the same attributes. In addition to the universal attributes, they can carry the
following attributes (each of which was covered in the earlier section “ Basic Table Elements and Attributes ”):

align char charoff valign

 Grouping Columns Using the < colgroup > Element
 If two or more columns are related, you can use the < colgroup > element to explain that those columns
are grouped together.

 For example, in the following table, there would be six columns. The first four columns are in the first
column group, and the next two columns are in the second column group (ch04_eg07.html):

 < table >
 < colgroup span=”4” class=”mainColumns” / >
 < colgroup span=”2” class=”subTotalColumns” / >
 < tr >
 < td > 1 < /td >
 < td > 2 < /td >
 < td > 3 < /td >
 < td > 4 < /td >
 < td > 5 < /td >
 < td > 6 < /td >
 < /tr >
 < /table >

 When the < colgroup > element is used, it comes directly after the opening < table > tag and carries a
 span attribute, which is used to indicate how many columns the group contains.

 In this example, the class attribute is used to attach CSS rules that tell the browser the width of each
column in the group and the background color for each cell. You will learn more about CSS in Chapter 7,
but it is worth noting that some browsers support only a subset of the CSS rules for this element.

 You can see what this example looks like in Figure 4 - 13.

Figure 4-13

 In addition to the universal attributes, the < colgroup > element can carry the following attributes:

align char charoff span valign width

c04.indd 157c04.indd 157 11/20/09 4:14:04 PM11/20/09 4:14:04 PM

Chapter 4: Tables

158

 Columns Sharing Styles Using the < col > Element
 The < col > element was introduced to specify attributes of the columns in a < colgroup > (such as width
or alignment of cells within that column). Unlike the < colgroup > element, the < col > element does not
imply structural grouping and is therefore more commonly used for presentational purposes.

 The < col > elements are always empty elements, which means they do not have any content, although
they do carry attributes.

 For example, the following table would have six columns, and the first five, while not a group in their
own right, could be formatted differently than the last column because it belongs to a separate set
(ch04_eg08.html):

 < table >
 < colgroup span=”6” >
 < col span=”5” class=”mainColumns” / >
 < col span=”1” class=”totalColumn” / >
 < /colgroup >
 < tr >
 < td > < /td >
 ...
 < td > < /td >
 < /tr >
 < /table >

 You can see what this looks like in Figure 4 - 14.

Figure 4-14

 The attributes that the < col > element can carry are the same as for the < colgroup > element.

 Nested Tables
 As mentioned earlier in the chapter, you can include markup inside a table cell, as long as the whole
element is contained within that cell. This means you can even place another entire table inside a table
cell, creating what ’ s called a nested table . Figure 4 - 15 shows you an example of a table that shows a
schedule for a weekend of activities.

c04.indd 158c04.indd 158 11/20/09 4:14:05 PM11/20/09 4:14:05 PM

Chapter 4: Tables

159

 In the bottom - right cell of this table is a second table that divides up the attendees into two groups.
(ch04_eg09.html):

 < table >
 < tr >
 < th > < /th >
 < th > Morning < /th >
 < th > Afternoon < /th >
 < /tr >
 < tr >
 < th > Saturday < /th >
 < td > Cycling < /td >
 < td > Fishing < /td >
 < /tr >
 < tr >
 < th > Sunday < /th >
 < td > Rowing < /td >
 < td >
 < table >
 < tr >
 < th > Group 1 < /th >
 < th > Group 2 < /th >
 < /tr >
 < tr >
 < td > Water ski-ing < /td >
 < td > Wake boarding < /td >
 < /tr >
 < /table >
 < /td >
 < /tr >
 < /table >

 Now that you ’ ve seen how to create a nested table, it is worth noting that they should be used very
sparingly, because they are quite hard for those who rely upon screen readers to follow. You are about to
see this in the next section.

Figure 4-15

c04.indd 159c04.indd 159 11/20/09 4:14:05 PM11/20/09 4:14:05 PM

Chapter 4: Tables

160

 Accessible Tables
 By their nature, tables can contain a lot of data and they provide a very helpful visual representation of
this information. When looking at a table, it is easy to scan across rows and up and down columns to
find a particular value or compare a range of values. If you think back to the examples you saw at the
very start of the chapter (the NFL sports results or the train timetable), you would not need to read all
the content of the table just to find out how your team is doing this season or when a train is leaving.

 However, for those who listen to pages on a voice browser or a screen reader, tables can be much harder
to understand. For example, if you imagine having a table read to you, it would be much more difficult
to compare entries across a row or column because you have to remember what you have heard so far (it
is not as easy to scan back and forth).

 Yet with a little thought or planning, you can make tables a lot easier for all to understand. Here are
some things you can do to ensure your tables are easy to understand:

 Add captions to your tables. The < caption > element clearly associates a caption with a table,
and the screen reader will read the caption to the user before they see the table so that they
know what to expect. If the listener knows what to expect, it will be easier to understand the
information.

 Always try to use the < th > element to indicate a table heading.

 Always put headings in the first row and the first column.

 Avoid using nested tables (like the one you saw in the previous section), as this will make it
harder for the user of a screen reader to follow.

 Avoid using rowspan and colspan attributes, which again make it harder for the user with a
screen reader to follow. If you do use them, make sure that you use the scope and headers
attributes, which are discussed shortly.

 Learn how a voice browser or screen reader would read a table, and the order in which the cells
are read out; this will help you to understand how to structure your tables for maximum ease of
use (we will see examples of this in the following section).

 If you use the scope and headers attributes to clearly indicate which headings apply to which
rows and columns, then screen readers can help users retrieve headings for a particular cell. If
you imagine someone having a table read to him or her, the screen reader will often give the
user an option to hear the headers that are relevant to that cell again (without having to go up
to the first row or back to the first cell in the column to hear the heading that corresponds with
that cell).

 You already saw how to add a caption to a table, so let ’ s move on and see how tables are read to a user,
or how they are linearized.

 How to Linearize Tables
 When a screen reader is being used to read a table, it will tend to perform what is known as linearization,
which means that the reader starts at the first row and reads the cells in that row from left to right, one
by one, before moving on to the next row, and so on until the reader has read each row in the table.
Consider the following simple table (ch04_eg10.html):

❑

❑

❑

❑

❑

❑

❑

c04.indd 160c04.indd 160 11/20/09 4:14:05 PM11/20/09 4:14:05 PM

Chapter 4: Tables

161

 < table border=”1” >
 < tr >
 < td > Column 1, Row 1 < /td >
 < td > Column 2 Row 1 < /td >
 < /tr >
 < tr >
 < td > Column 1, Row 2 < /td >
 < td > Column 2, Row 2 < /td >
 < /tr >
 < /table >

 Figure 4 - 16 shows what this simple table would look like in a browser.

Figure 4-16

 The order in which the cells in Figure 4 - 16 would be read is therefore:

 Column 1 Row 1

 Column 2 Row 1

 Column 1 Row 2

 Column 2 Row 2

 This small example is fairly easy to follow. But imagine a larger table: the headings will be read first,
followed by a row of data. If the table had several more columns, it would be very hard to remember
which column you were in. (Even worse, if you use nested tables, it becomes far harder for users to
follow where they are, because one table cell can contain an entirely new table that often has different
numbers of rows or columns.)

 Luckily, most screen readers are able to remind the user of the column and row they are currently in, but
this works far better when the table uses < th > elements for headers. And if you are building a complex
table, you can also enhance this information using the id , scope , and headers attributes, covered in the
following section.

 Using the id, scope, and headers Attributes
 The id , scope , and headers attributes have already been mentioned in this chapter, when we looked at
the attributes that the < td > and < th > elements can carry. Here we will take a look at how they can be
used to record the structure of a table better and make it more accessible.

 When you make a cell a heading, adding the scope attribute to the < th > element, helps you indicate
which cells that element is the heading for. If you give it a value of row , you are indicating that this

❑

❑

❑

❑

c04.indd 161c04.indd 161 11/20/09 4:14:06 PM11/20/09 4:14:06 PM

Chapter 4: Tables

162

element is the header for that row; given the value of column, it indicates that it is the header for that
column. You can also have values for a rowgroup or columngroup .

 Value Purpose

 row Cell contains header information for that row.

 col Cell contains header information for that column.

 rowgroup Cell contains header information for that rowgroup — a group of cells in a row
created using the < thead > , < tbody > , or < tfoot > elements. (There is no
corresponding element for columns like the < colgroup > element.)

 colgroup Cell contains header information for that colgroup (a group of columns created using
the < col > or < colgroup > element, both of which are discussed later in the chapter).

 The headers attribute performs the opposite role to the scope attribute, because it is used on < td >
elements to indicate which headers correspond to that cell. The value of the attribute is a space - separated
list of the header cells ’ id attribute values, so here you can tell that the headers for this cell would have
 id attributes whose values are income and q1 .

headers=”income q1”

 The main purpose of this attribute is to support voice browsers. When a table is being read to you, it can
be hard to keep track of which row and column you are on; therefore, the header attribute is used to
remind users which row and column the current cell ’ s data belongs to.

 Try It Out An Accessible Timetable

 In this Try It Out, you are going to create a new page for the Example Caf é web site featuring a
timetable for a weekend cookery course, with morning and afternoon sessions over two days. It
should look like the screenshot in Figure 4 - 17.

Figure 4-17

c04.indd 162c04.indd 162 11/20/09 4:14:06 PM11/20/09 4:14:06 PM

Chapter 4: Tables

163

 While you cannot see it from this screenshot, the table is specifically designed to be accessible for those
with visual impairments.

 1. Because this example contains deprecated attributes, you need to set up the skeleton of this
page to handle a Transitional XHTML 1.0 document:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > Ultimate brunch course < /title >
 < /head >
 < body >
 < /body >
 < /html >

 2. The table has three rows and three columns; the first row and the left column contain
headings and therefore use < th > elements. The remaining table cells use a < td > element.
While you are adding these elements, you ’ ll add in some content for the table, too:

 < body >
 < table >
 < tr >
 < th > < /th >
 < th > Tuesday < /th >
 < th > Wednesday < /th >
 < /tr >
 < tr >
 < th > Morning < /th >
 < td > Baking bread: loaves, croissants and muffins. < /td >
 < td > Sweet treats: pancakes and waffles. < /td >
 < /tr >
 < tr >
 < th > Afternoon < /th >
 < td > Eggs 4 ways: boiled, scrambled, poached, fried. < /td >
 < td > Fry pan specials: Fritters and hash browns. < /td >
 < /tr >
 < /table >
 < /body >

 3. The next stage is to add id attributes to the < th > elements that have content, and header
attributes to the < td > elements to indicate which headers apply to those elements; this
approach improves accessibility for visitors who use screen readers. The value of the header
attributes should correspond to the values of the id attributes indicating which headings
correspond to each cell:

 < table >
 < tr >
 < th > < /th >
 < th id=”Saturday” > Saturday < /th >
 < th id=”Sunday” > Sunday < /th >

c04.indd 163c04.indd 163 11/20/09 4:14:07 PM11/20/09 4:14:07 PM

Chapter 4: Tables

164

 < /tr >
 < tr >
 < th id=”Morning” > Morning < /th >
 < td headers=”Saturday Morning” abbr=”Bread” > Baking bread: loaves,
croissants and muffins. < /td >
 < td headers=”Sunday Morning” abbr=”Eggs” > Eggs 4 ways: boiled,
scrambled, poached, fried < /td >
 < /tr >
 < tr >
 < th id=”Afternoon” > Afternoon < /th >
 < td headers=”Saturday Afternoon” abbr=”Sweet breakfasts” > Sweet treats:
pancakes and waffles. < /td >
 < td headers=”Sunday Afternoon” abbr=”Fried foods” > Fry pan specials:
Fritters and hash browns. < /td >
 < /tr >
 < /table >

 4. Save your file as course.html . To be honest, this example is quite a bit more complex than
most tables you will come across. Not many people have gotten into the practice of using the
 id and header attributes on < table > elements, but it makes tables a lot easier to use for
those with visual impairments, in particular on larger tables that have a lot of columns and
rows. Neither will you often see the abbr attribute used on table cells. In fact, if you look at
the code for other people ’ s web sites, you are still more likely to come across the use of lots of
deprecated attributes rather than these attributes.

Including attributes like these will help set you apart from other coders who have not yet learned to
make their tables more accessible. Furthermore, awareness of accessibility issues is required in an
increasing number of jobs, so you should learn how to use such attributes.

Summary
 In this chapter, you have seen how tables can be a powerful tool when creating pages. You have seen
how all tables are based on a grid pattern and use the four basic elements: < table > , which contains each
table; < tr > , which contains the rows of a table; < td > , which contains a cell of table data; and < th > ,
which represents a cell that contains a heading.

 You have also seen how you can add headers, footers, and captions to tables. It is particularly helpful to
add a < thead > and < tfoot > element to any table that may be longer than a browser window or sheet
of printed paper, as these could help a reader relate between the content and the information in
headers or footers.

 You can now make cells span both columns and rows, although you should avoid doing this in tables
that contain data, as it makes them harder for aural browsers to read to a user. You have also seen how to
group columns so that you can preserve structure, and so they can share styles and attributes.

 Finally, you saw some of the accessibility issues regarding use of tables. It is important to be aware of the
process of linearization, which a screen reader performs before reading a table to a user, so that your

c04.indd 164c04.indd 164 11/20/09 4:14:07 PM11/20/09 4:14:07 PM

Chapter 4: Tables

165

Figure 4-18

Figure 4-19

sites are accessible to users with visual impairments. You also need to know how you can provide extra
information that indicates the headers for each cell.

 In the next chapter, you learn about using forms to collect information from visitors.

 Exercises
 The answers to all of the exercises are in Appendix A.

 1. Where should the < caption > element for a table be placed in the document and, by default,
where is it displayed?

 2. In what order would the cells in Figure 4 - 18 be read out by a screen reader?

 3. Create a table to hold the data shown in Figure 4 - 19. To give you a couple of clues, the document
must be Transitional XHTML 1.0 because the width attribute is used on the cells of the first row
of the table. You have also seen examples of how the border is generated in this chapter, using
another deprecated attribute, but on the < table > element rather than the cells.

c04.indd 165c04.indd 165 11/20/09 4:14:07 PM11/20/09 4:14:07 PM

c04.indd 166c04.indd 166 11/20/09 4:14:17 PM11/20/09 4:14:17 PM

 5
Forms

 Almost every time you want to collect information from a visitor to your site, you need to use a
 form . Some forms are quite complex, such as those that allow you to book plane tickets or purchase
insurance online. Others are quite simple, such as the search box on the homepage of Google.

 Many of the forms you will fill out online bear a strong resemblance to paper forms you have to fill
out. On paper, forms are made up of areas to enter text, boxes to check (or tick), options to choose
from, and so on. Similarly, on the Web you can create a form by combining what are known as form
controls , such as textboxes (to enter text into), checkboxes (to place a cross in), select boxes and
radio buttons (to choose from different options), and so on. In this chapter, you learn how each of
these different types of controls can be combined into a form.

 In this chapter then, you ’ ll learn the following:

 How to create a form using the < form > element

 The different types of form controls you can use to make a form — such as text input
boxes, radio buttons, select boxes, and submit buttons

 What happens to the data a user enters

 How to make your forms accessible

 How to structure the content of your forms

 By the end of the chapter, you will be able to create all kinds of forms to collect information from
visitors to your site.

 XHTML is used only to present the form to the user; it does not allow you to say what happens
with that data once it has been collected. To get a better idea of what happens to the data once it
has been collected from a form, you will need to look at a book on a server - side language, such as
ASP.NET or PHP (you can see a range of books on these topics at www.wrox.com).

❑

❑

❑

❑

❑

c05.indd 167c05.indd 167 11/20/09 4:19:38 PM11/20/09 4:19:38 PM

Chapter 5: Forms

168

 Introducing Forms
 Let ’ s start by looking at a couple of examples of forms. First, Figure 5 - 1 shows you the Google
homepage. This contains two kinds of form controls:

 A text input , which is where you enter your search term.

 Submit buttons , which are used to send the form to the server. There are two on this form:
you can see the words “ Google Search ” written on the first one and “ I ’ m Feeling Lucky ” on
the second.

❑

❑

 Figure 5 - 1

 Now let ’ s look at a more complicated example. Figure 5 - 2 shows part of an insurance form, which
actually spreads over several pages. It shows many more types of form controls:

 Select boxes , sometimes referred to as drop - down lists, such as the one in the top left of
Figure 5 - 2 to say how long you have been driving.

 Radio buttons , such as the ones in the top - right corner with Yes or No options. When you have
a group of radio buttons, you can only pick one response.

 Checkboxes , such as the ones at the bottom of the screenshot indicating how you can be
contacted (by e - mail, post, or phone). When you have a group of checkboxes, you can pick more
than one response.

 Text inputs , to enter a date of birth and registration number.

❑

❑

❑

❑

c05.indd 168c05.indd 168 11/20/09 4:19:39 PM11/20/09 4:19:39 PM

Chapter 5: Forms

169

 There are two additional types of form controls not shown in these examples: a text area (which is a
multi - line text input), and file select boxes (which allow you to upload files), both of which you will meet
later in the chapter.

 Any form that you create will live inside an element called < form > , and the form controls (the text input
boxes, drop - down boxes, checkboxes, a submit button, and so on) live between the opening < form > and
closing < /form > tags. A < form > element can also contain other XHTML markup as you would find in
the rest of a page.

 Once users have entered information into a form, they usually have to click what is known as a submit
button (although the actual text on the button may say something different such as Search, Send, or
Proceed — and often pressing the Return key on the keyboard has the same effect as clicking this
button). This indicates that the user has filled out the form, and this usually sends the form data to a
web server.

Figure 5-2

c05.indd 169c05.indd 169 11/20/09 4:19:39 PM11/20/09 4:19:39 PM

Chapter 5: Forms

170

 Once form data arrives at the server, a script or other program processes the data and sends a new web
page back to you. The returned page will respond to a request you have made or acknowledge an action
you have taken.

 For example, you might want to add the search form shown in Figure 5 - 3 to your page
(ch05_eg01.html).

Figure 5-3

Figure 5-4

 You can see that this form contains a textbox for the user to enter the keywords of what he or she is
searching for, and a submit button, which has been set to have the word “ Search ” on it. When the user
clicks the Search button, the information is sent to the server. The server then processes the data and
generates a new page for that user telling what pages meet the search criteria (Figure 5 - 4).

 When a browser sends data to the server, it is transmitted in name/value pairs. The name corresponds to
the name of the form control, and the value is what the user has entered (if the user can type an answer)
or the value of the option selected (if there is a list of options to choose from).

 Each item needs both a name and a value because, if you have five textboxes on a form, you need to
know which data corresponds to which textbox. The processing application can then process the
information from each form control individually.

c05.indd 170c05.indd 170 11/20/09 4:19:39 PM11/20/09 4:19:39 PM

Chapter 5: Forms

171

 Here is the code for the simple search form shown in Figure 5 - 3:

 < form action=”http://www.example.org/search.aspx” method=”get” >
 < h3 > Search the site < /h3 >
 < input type=”text” name=”txtSearchItem” / >
 < input type=”submit” value=”Search” / >
 < /form >

 The < form > element carries an attribute called action whose value is the URL of the page on the web
server that handles search requests. Meanwhile, the method attribute indicates which of two HTTP
methods will be used in getting the form data to the server. (You learn the difference between the get
and post methods later in the chapter.)

 In order to start creating forms, you first need to look at the < form > element in a little more detail,
and then go through each of the different types of form controls and see how they sit inside the
< form > element.

 Creating a Form with the < form > Element
 As you have already seen, forms live inside an element called < form > . The < form > element can also
contain other markup, such as paragraphs, headings, and so on, although it may not contain another
 < form > element.

 Providing you keep your < form > elements separate from each other (and no < form > element contains
another < form > element), your page may contain as many forms as you like. For example, you might
have a login form, a search form, and a form to subscribe to a newsletter, all on the same page. If you
do have more than one form on a page, users will be able to send the data from only one form at a time
to the server.

 Every < form > element should carry at least two attributes:

action method

 A < form > element may also carry all of the universal attributes, the UI event attributes, and the
following attributes:

enctype accept accept-charset onsubmit onreset

 The action Attribute
 The action attribute indicates what happens to the data when the form is submitted. Usually, the value
of the action attribute is a page or program on a web server that will receive the information.

 For example, if you had a login form consisting of a username and password, the details the user enters
may get passed to a page written in ASP.NET on the web server called login.aspx , in which case the
 action attribute could read as follows:

 < form action=”http://www.example.org/membership/login.aspx” >

c05.indd 171c05.indd 171 11/20/09 4:19:40 PM11/20/09 4:19:40 PM

Chapter 5: Forms

172

 The method Attribute
 Form data can be sent to the server in two ways, each corresponding to an HTTP method :

 The get method, which sends data as part of the URL

 The post method, which hides data in something known as the HTTP headers

 You learn more about these two methods later in the chapter, where you will learn what they mean and
when you should use each one.

 The id Attribute
 The id attribute allows you to uniquely identify the < form > element within a page, just as you can use it
to uniquely identify any element on a page.

 It is good practice to give every < form > element an id attribute, because many forms make use of style
sheets and scripts, which may require the use of the id attribute to identify the form.

 The value of the id attribute should be unique within the document, and it should also follow the other
rules for values of the id attribute mentioned in Chapter 1. Some people start the value of id and name
attributes for forms with the characters frm and then use the rest of the value to describe the kind of data
the form collects — for example, frmLogin or frmSearch .

 The name Attribute (Deprecated)
 As you have already seen through its use on other elements, the name attribute is the predecessor to the
 id attribute, and as with the id attribute, the value should be unique to the document.

 Generally, you will not need to use this attribute, but when you do use it you can give it the same value
as the id attribute. You will often see the value of this attribute begin with the characters frm followed
by the purpose of the form (such as frmLogin or frmSearch).

 The onsubmit Attribute
 At some point, you have probably filled in a form on a web site, and then, as soon as you have clicked
the button to send the form data (even before the page is sent to the server), been shown a message
telling you that you have missed entering some data, or entered the wrong data. When this happens, the
chances are you have come across a form that uses the onsubmit attribute to run a script in the browser
that checks the data you entered before the form is sent to the server.

 When a user clicks a submit button, something called an event fires. It is rather like the browser raising
its hand and saying, “ Hey, I am sending this form data to the server. ” The idea behind these events is
that a script (usually written in JavaScript) can be run before the data is sent to the server to check that
users have filled in the necessary parts of the form in a format the server expects. The value of the
 onsubmit attribute should be a script function that would be used when this event fires.

❑

❑

c05.indd 172c05.indd 172 11/20/09 4:19:40 PM11/20/09 4:19:40 PM

Chapter 5: Forms

173

 So, an onsubmit attribute on the < form > element might look like this:

onsubmit=”validateFormDetails();”

 We will look at scripts in Chapters 11 and 12, but for the moment all you need to know is that, in the line
of code above, the onsubmit attribute tells the browser that when the user presses the submit button, the
browser should run the script called validateFormDetails() , and that this script is probably in the
 < head > element.

 There are two key advantages to making some checks on the form before it is sent to the server:

 If users have missed information, they do not have to wait the extra time it would take for the
page to be sent to the server and then returned with details of their errors. It is far quicker if it is
checked in the browser first.

 The server does not have to receive as many forms with errors, because the browser will have
already made some checks before it receives the data (therefore, saving the load on the server).

 The onreset Attribute
 Some forms contain a reset button that empties the form of all details, although the button might
say something like clear form instead; when this button is pressed, an onreset event fires and a script
can be run.

 When the onreset attribute is used, its value is a script (as with the onsubmit attribute) that is executed
when the user clicks the button that calls it.

 The onreset event and attribute are used a lot less than onsubmit . If you offer a Clear Form button,
however, it is good to confirm with users that they did intend to clear the form before performing the
action (in case they have pressed it by accident).

 The enctype Attribute
 If you use the HTTP post method to send data to the server, you can use the enctype attribute to
specify how the browser encodes the data before it sends it to the server. Browsers tend to support two
types of encoding:

 application/x - www - form - urlencoded , which is the standard method most forms use.
Browsers use this because some characters, such as spaces, the plus sign, and some other non -
 alphanumeric characters cannot be sent to the web server. Instead, they are replaced by other
characters which are used to represent them.

 multipart/form - data , which allows the data to be sent in parts, where each consecutive part
corresponds to a form control, in the order it appears in the form. It is commonly used when
visitors have to upload files (such as photos) to a server. Each part can have an optional content -
 type header of its own indicating the type of data for that form control.

❑

❑

❑

❑

c05.indd 173c05.indd 173 11/20/09 4:19:40 PM11/20/09 4:19:40 PM

Chapter 5: Forms

174

 If this attribute is not used, browsers use the first value. As a result, you are likely to use this attribute
only if your form allows users to upload a file (such as an image) to the server, or if they are going to use
non - ASCII characters, in which case the enctype attribute should be given the second value:

enctype=”multipart/form-data”

 The accept - charset Attribute
 Different languages are written in different character sets or groups of characters. However, when creating
web sites, developers do not always build them to understand all different languages. The idea behind
the accept - charset attribute is that it specifies a list of character encodings that a user may enter and
that the server can then process. Values should be a space - separated or comma - delimited list of character
sets (as shown in Appendix E).

 For example, the following indicates that a server accepts UTF - 8 encodings:

accept-charset=”utf-8”

 The accept Attribute
 The accept attribute is similar to the accept - charset attribute except it takes a comma - separated list
of content types (or file types) that the server processing the form can handle. Unfortunately, none of the
main browsers supports this feature.

 The idea is that a user would not be able to upload a file of a different content type other than those
listed. Here, you can see that the only types intended to be uploaded are images that are GIFs or JPEGs:

accept=”image/gif, image/jpg”

 Since the main browsers currently ignore this attribute, if you were to use it visitors would still be able to
upload any file. A list of MIME types appears in Appendix H.

 The target Attribute
 The target attribute is usually used with the < a > element to indicate which frame or browser window
the link should be loaded into. It can also be used with a form to indicate which frame or window the
form results open in when the user has submitted a form (frames are covered in the next chapter).

 White Space and the < form > Element
 You should also be aware that when a browser comes across a < form > element it often creates extra
white space around that element. This can particularly affect your design if you want a form to fit in
a small area, such as putting a search form in a menu bar. If CSS will not cure this problem in the
browsers you are targeting, the only way to avoid the problem is through careful placement of
the < form > element.

c05.indd 174c05.indd 174 11/20/09 4:19:41 PM11/20/09 4:19:41 PM

Chapter 5: Forms

175

 To avoid the extra space created, you can try either placing the < form > element near the start or end of
the document, or, if you are using tables for layout purposes in a Transitional XHTML 1.0 document,
between the < table > and < tr > elements. (You should be aware that this latter approach is a cheat, and
therefore it might cause an error if you tried to validate the page. However, most browsers will still
display the table and form as you intended.)

 Form Controls
 You ’ ve met the < form > element, so this section goes on to cover the different types of form controls that
live inside the < form > element to collect data from a visitor to your site. You will see:

 Text input controls

 Buttons

 Checkboxes and radio buttons

 Select boxes (sometimes referred to as drop - down menus and list boxes)

 File select boxes

 Hidden controls

 Text Inputs
 Text input boxes are used on many web pages. Possibly the most famous text input box is the one right
in the middle of the Google homepage that allows you to enter what you are searching for.

 On a printed form, the equivalent of a text input is a box or line in or on which you write a response.

 There are actually three types of text input used on forms:

 Single - line text input controls: Used for items that require only one line of user input, such as
search boxes or e - mail addresses. They are created using the < input > element and sometimes
referred to simply as “ textboxes. ”

 Password input controls: These are just like the single - line text input, except they mask the
characters a user enters so that the characters cannot be seen on the screen. They tend to either
show an asterisk or a dot instead of each character the user types, so that someone cannot
simply look at the screen to see what a user types in. Password input controls are mainly used
for entering passwords on login forms or sensitive details such as credit card numbers. They are
also created using the < input > element.

 Multi - line text input controls: Used when the user is required to give details that may be longer
than a single sentence. Multi - line input controls are created with the < textarea > element.

 Let ’ s take a look at each of these types of text input in turn.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 175c05.indd 175 11/20/09 4:19:41 PM11/20/09 4:19:41 PM

Chapter 5: Forms

176

 Single - Line Text Input Controls
 Single - line text input controls are created using an < input > element whose type attribute has a value of
 text . Here is a basic example of a single - line text input used for a search box (ch05_eg02.html):

 < form action=”http://www.example.com/search.aspx” method=”get”
 name=”frmSearch” >
 Search:
 < input type=”text” name=”txtSearch” value=”Search for” size=”20”
 maxlength=”64” / >
 < input type=”submit” value=”Submit” / >
 < /form >

 Figure 5 - 5 shows what this form looks like in a browser.

Figure 5-5

 Just as some people try to start form names with the characters frm , it is also common to start text
input names with the characters txt to indicate that the form control is a textbox. This can be particu-
larly handy when working with the data on the server, to remind you what sort of form control sent that
data. However, some programmers prefer not to use this notation, so if you are working with someone
else on a project, it is worth discussing that person ’ s preference at the start of the work.

 The table that follows lists the attributes the < input > element can carry when creating a text input
control. Note how the purpose of the name attribute is quite specific on this element, and different from
its use on other elements you have met already.

 Attribute Purpose

 type This attribute is required, and indicates the type of input control you want to create.
The value for this attribute should be text when you want to create a single - line text
input control. The attribute is required because the < input > element is also used to
create other form controls such as radio buttons and checkboxes.

 name This attribute is also required, and is used to give the name part of the name/value
pair that is sent to the server (remember, each control on a form is represented as a
name/value pair where the name identifies the form control and the value is what
the user entered).

c05.indd 176c05.indd 176 11/20/09 4:19:41 PM11/20/09 4:19:41 PM

Chapter 5: Forms

177

 Attribute Purpose

 value Provides an initial value for the text input control that the user will see when the
form loads. You would only use this attribute if you want something to be written in
the text input when the page loads (such as a cue to tell the user what he or she
should be entering).

 size Allows you to specify the width of the text input control in terms of characters; the
search box in the earlier example is 20 characters wide. The size property does not
affect how many characters users can enter (in this case they could enter 40 characters
even when the size property has a value of 20); it just indicates how many
characters wide the input will be. If users enter more characters than the size of the
input, they can scroll right and left to see what they have entered using the arrow
keys.

 maxlength Allows you to specify the maximum number of characters a user can enter into the
text box. Usually after the maximum number of characters has been entered, even if
the user keeps pressing more keys, no new characters will be added.

 When an < input > element ’ s type attribute has a value of text , it can also carry the following attributes:

 All of the universal attributes

 disabled , readonly , tabindex , and accesskey , which are covered later in the chapter

 Password Input Controls
 If you want to collect sensitive data such as passwords and credit card information, you can use the
password input. The password input masks the characters the user types on the screen by replacing
them with either a dot or asterisk, so that they would not be visible to someone looking over the
user ’ s shoulder.

 Password input controls are created almost identically to the single - line text input controls, except that
the type attribute on the < input > element is given a value of password .

 Here you can see an example of a login form that combines a single - line text input control and a
password input control (ch05_eg03.html):

 < form action=”http://www.example.com/login.aspx” method=”post” >
 Username:
 < input type=”text” name=”txtUsername” value=”” size=”20” maxlength=”20” / >
 < br / >
 Password:
 < input type=”password” name=”pwdPassword” value=”” size=”20”
 maxlength=”20” / >
 < input type=”submit” value=”Submit” / >
 < /form >

 As you can see, it is common to start the name of any password with the characters pwd so that when
you come to deal with the data on the server, you know the associated value came from a password
input box.

❑

❑

c05.indd 177c05.indd 177 11/20/09 4:19:42 PM11/20/09 4:19:42 PM

Chapter 5: Forms

178

 Figure 5 - 6 shows you how this login form might look in a browser when the user starts entering details.

Figure 5-6

 While passwords are hidden on the screen, they are still sent across the Internet as clear text, which is
not considered very secure. In order to make them secure you should use an SSL connection between
the client and server and encrypt any sensitive data (such as passwords and credit card details). SSL
connections and encryption should be covered in a book about server - side languages such as ASP.NET
and PHP.

 Multiple - Line Text Input Controls
 If you want to allow a visitor to your site to enter more than one line of text, you should create a
multiple - line text input control using the < textarea > element.

 Here is an example of a multiple - line text input used to collect feedback from visitors to a site
(ch05_eg04.html):

 < form action=”http://www.example.org/feedback.aspx” method=”post” >
 Please tell us what you think of the site and then click submit: < br / >
 < textarea name=”txtFeedback” rows=”20” cols=”50” >
Enter your feedback here.
 < /textarea >
 < br / >
 < input type=”submit” value=”Submit” / >
 < /form >

 Note that the text inside the < textarea > element is not indented (in the same way that other code in
this book is indented). Anything written between the opening and closing < textarea > tags is treated
as if it were written inside a < pre > element, and formatting of the source document is preserved. If
the words “ Enter your feedback here ” were indented in the code, they would also be indented in the
resulting multi - line text input on the browser.

 Figure 5 - 7 shows what this form might look like.

c05.indd 178c05.indd 178 11/20/09 4:19:42 PM11/20/09 4:19:42 PM

Chapter 5: Forms

179

 In the figure, you can see the writing between the opening < textarea > and closing < /textarea > tags,
which is shown in the text area when the page loads. Users can delete this text before adding their own
text, and if they do not delete the text from the textbox it will be sent to the server when the form is
submitted. Users often just type after any text written in a < textarea > element, so you may choose to
avoid adding anything in between the elements, but you should still use both opening and closing
 < textarea > tags; otherwise, older browsers may not render the element correctly.

 The < textarea > element can take the attributes shown in the table that follows.

 Attribute Purpose

 name The name of the control. This is used in the name/value pair that is sent to the
server.

 rows Used to specify the size of a < textarea > ; it indicates the number of rows of text a
 < textarea > element should have and therefore corresponds to the height of the
text area.

 cols Used to specify the size of a < textarea > ; it specifies the number of columns of
text and therefore corresponds to the width of the box. One column is the average
width of a character.

 The < textarea > element can also take the following attributes:

 All of the universal attributes

 disabled , readonly , tabindex , and accesskey , which are covered later in the chapter

 The UI event attributes

❑

❑

❑

Figure 5-7

c05.indd 179c05.indd 179 11/20/09 4:19:43 PM11/20/09 4:19:43 PM

Chapter 5: Forms

180

 By default, when a user runs out of columns in a < textarea > , the text is wrapped onto the next line
(which means it just flows onto the next line as text in a word processor does), but the server will receive
it as if it were all on one line. Because some users expect the sentences to break where they see them
break on the screen, the major browsers also support an extra attribute called wrap that allows you to
indicate how the text should be wrapped. Possible values are as follows:

 off (the default), which means scrollbars are added to the box if the user ’ s words take up more
space than the allowed width, and users have to scroll to see what they have entered

 virtual , which means that wherever the text wraps, users see it on the new line but it is
transmitted to the server as if it were all on the same line unless the user has pressed the Enter
key, in which case it is treated as a line break

 physical , which means that wherever the user sees the text start on a new line, so will
the server

 The wrap attribute is not, however, part of the XHTML specification.

 Buttons
 Buttons are most commonly used to submit a form, although they are sometimes used to clear or reset a
form and even to trigger client - side scripts. (For example, on a basic loan calculator form within the
page, a button might be used to trigger the script that calculates repayments without sending the data to
the server.) You can create a button in three ways:

 Using an < input > element with a type attribute whose value is submit , reset , or button

 Using an < input > element with a type attribute whose value is image

 Using a < button > element

 With each different method, the button will appear slightly different.

 Creating Buttons Using the < input > Element
 When you use the < input > element to create a button, the type of button you create is specified using
the type attribute. The type attribute can take the following values to create a button:

 submit , which creates a button that submits a form when pressed

 reset , which creates a button that automatically resets form controls to their initial values as
they were when the page loaded

 button , which creates a button that is used to trigger a client - side script when the user clicks
that button

 Here you can see examples of all three types of button (ch05_eg05.html)

 < input type=”submit” name=”btnVoteRed” value=”Vote for reds” / >
 < input type=”submit” name=”btnVoteBlue” value=”Vote for blues” / >
 < br / > < br / >
 < input type=”reset” value=”Clear form” / > < br / > < br / >
 < input type=”button” value=”calculate” onclick=”calculate()” / >

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 180c05.indd 180 11/20/09 4:19:43 PM11/20/09 4:19:43 PM

Chapter 5: Forms

181

 Figure 5 - 8 shows what these buttons might look like in Firefox on a PC (a Mac displays them in the
standard Mac style for buttons).

Figure 5-8

 The table that follows shows the attributes used by the buttons.

 Attribute Purpose

 type Specifies the type of button you want and takes one of the following values:
 submit , reset , or button .

 name Provides a name for the button. You need to add only a name attribute to a
button if there is more than one button on the same form (in which case it helps
to indicate which of the buttons was clicked). It is considered good practice,
however, to give the button a name anyway to provide an indication of what
the button does.

 value Enables you to specify what the text on the button should read. If a name
attribute is given, the value of the value attribute is sent to the server as part
of the name/value pair for this form control. If no value is given, then no
name/value pair is sent for this button.

 onclick Used to trigger a script when the user clicks the button; the value of this
attribute is the script that should be run.

 In the same way that you can trigger a script when the user clicks a button, you can also trigger a script
when the button gains or loses focus with the onfocus and onblur event attributes.

 When an < input > element has a type attribute whose value is submit , reset , or button , it can also
take the following attributes:

 All the universal attributes

 disabled , readonly , tabindex , and accesskey , which are discussed later in the chapter

 The UI event attributes

❑

❑

❑

c05.indd 181c05.indd 181 11/20/09 4:19:43 PM11/20/09 4:19:43 PM

Chapter 5: Forms

182

 If you do not use the value attribute on the submit button, you may find that a browser displays text
that is inappropriate to the purpose of the form — for example, IE displays the text Send Query , which
is not ideal for a login button form.

 Using Images for Buttons
 You can use an image for a button rather than using the standard button that a browser renders for you.
Creating an image button is very similar to creating any other button, but the type attribute has a value
of image :

 < input type=”image” src=”submit.jpg” alt=”Submit” name=”btnImage” / >

 Note how you can start the value of a name attribute for a button with the characters btn , in keeping with
the naming convention that I mentioned earlier. (When you refer to the name of the form control in other
code, the use of this prefix will help remind you what type of form control the information came from.)

 Because you are creating a button that has an image, you need to have two additional attributes, which
are listed in the table that follows.

 Attribute Purpose

 src Specifies the source of the image file.

 alt Provides alternative text for the image. This will be displayed when the image
cannot be found and also read to people using voice browsers. (It was first
supported only in IE5 and Netscape 6.)

 If the image button has a name attribute, when you click it, the browser sends a name/value pair to the
server. The name will be what you provide for the name attribute and the value will be a pair of x and y
coordinates for where on the button the user clicked (just as you saw when dealing with server - side
image maps in Chapter 3).

 In Figure 5 - 9, you can see a graphical submit button. Both Firefox and IE change the cursor when the
user hovers over one of these buttons to help users know that they can click on it.

Figure 5-9

c05.indd 182c05.indd 182 11/20/09 4:19:44 PM11/20/09 4:19:44 PM

Chapter 5: Forms

183

 Creating Buttons Using the < button > Element
 The < button > element is a more recent introduction that allows you to specify what appears on a button
between an opening < button > tag and a closing < /button > tag. So you can include textual markup or
image elements between these tags.

 This element was first supported in IE4 and Netscape 6, but the browsers that do support this
element also offer a relief (or 3D) effect on the button, which resembles an up or down motion when
the button is clicked.

 Here are some examples of using the < button > element (ch06_eg06.html):

 < button type=”submit” > Submit < /button >
 < br / > < br / >
 < button type=”reset” > Clear this form , I want to start again < /button >
< br / > < br / >
 < button type=”button” > < img src=”submit.gif” alt=”submit” / > < /button >

 As you can see, the first submit button just contains text, the second reset button contains text and other
markup (in the form of the < b > element), and the third submit button contains an < img > element.

 Figure 5 - 10 shows what these buttons would look like.

Figure 5-10

 Checkboxes
 Checkboxes are just like the little boxes on paper forms in which you can place a cross or tick. As with
light switches, they can be either on or off. When they are checked they are on — the user can simply
toggle between on and off positions by clicking the checkbox.

 Checkboxes can appear individually, with each having its own name, or they can appear as a group of
checkboxes that share a control name and allow users to select several values for the same property.

 Checkboxes are ideal form controls when you need to allow a user to:

 Provide a simple yes or no response with one control (such as accepting terms and conditions)

 Select several items from a list of possible options (such as when you want a user to indicate all
the skills they have from a given list)

❑

❑

c05.indd 183c05.indd 183 11/20/09 4:19:44 PM11/20/09 4:19:44 PM

Chapter 5: Forms

184

 A checkbox is created using the < input > element whose type attribute has a value of checkbox .
Following is an example of some checkboxes that use the same control name (ch05_eg07.html):

 < form action=”http://www.example.com/cv.aspx” method=”get” name=”frmCV” >
Which of the following skills do you possess? Select all that apply.
 < input type=”checkbox” name=”chkSkills” value=”xhtml” / > XHTML < br / >
 < input type=”checkbox” name=”chkSkills” value=”CSS” / > CSS < br / >
 < input type=”checkbox” name=”chkSkills” value=”JavaScript” / > JavaScript < br / >
 < input type=”checkbox” name=”chkSkills” value=”aspnet” / > ASP.Net < br / >
 < input type=”checkbox” name=”chkSkills” value=”php” / > PHP
 < /form >

 For consistency with the naming convention we have used for form elements throughout the chapter,
you can start the name of checkboxes with the letters chk .

 Figure 5 - 11 shows how this form might look in a browser. Note how there is a line break after each
checkbox, so that it clearly appears on each line (if you have checkboxes side by side, users are likely to
get confused about which label applies to which checkbox).

Figure 5-11

 Because all the selected skills will be sent to the processing application in the form of name/value pairs,
if someone selects more than one skill there will be several name/value pairs sent to the server that all
share the same name.

 In contrast, here is a single checkbox, acting like a simple yes or no option:

 < form action=”http://www.example.org/accept.aspx” name=”frmTandC”
method=”get” >
 < input type=”checkbox” name=”chkAcceptTerms” checked=”checked” / >
 I accept the < a href=”terms.htm” > terms and conditions < /a > . < br / >
 < input type=”submit” / >
 < /form >

 Note how the < input > element that creates this checkbox does not carry a value attribute. In the
absence of a value attribute, the value is on . In this example, you can also see an attribute called
 checked , with a value of checked , which indicates that when the page loads the checkbox is selected.

c05.indd 184c05.indd 184 11/20/09 4:19:44 PM11/20/09 4:19:44 PM

Chapter 5: Forms

185

 The table that follows shows the attributes that an < input > element whose type attribute has a value of
 checkbox can carry.

 Attribute Purpose

 type Indicates that you want to create a checkbox.

 name Gives the name of the control. Several checkboxes may share the same name, but
this should happen only if you want users to have the option of selecting several
items from the same list — in which case, they should be placed next to each
other on the form.

 value The value that will be sent to the server if the checkbox is selected.

 checked Indicates that when the page loads the checkbox should be selected.

 Checkboxes can also carry the following attributes:

 All universal attributes

 disabled , readonly , tabindex , and accesskey which are discussed later in the chapter

 UI event attributes

 Radio Buttons
 Radio buttons are similar to checkboxes in that they can be either on or off, but there are two
key differences:

 When you have a group of radio buttons that share the same name, only one of them can be
selected. Once one radio button has been selected, if the user clicks another option, the new
option is selected and the old one deselected.

 You should not use radio buttons for a single form control where the control indicates on or off,
because once a lone radio button has been selected it cannot be deselected again (without
writing a script to do that).

 Therefore, a group of radio buttons are ideal if you want to provide users with a number of options from
which they must pick only one. In such situations, an alternative is to use a drop - down select box that
allows users to select only one option from several. Your decision between whether to use a select box or
a group of radio buttons depends on three things:

 User expectations: If your form models a paper form where users would be presented with
several checkboxes, from which they can pick only one, then you should use a group of
radio buttons.

 Seeing all the options: If users would benefit from having all the options in front of them before
they pick one, you should use a group of radio buttons.

 Space: If you are concerned about space, a drop - down select box will take up far less space than
a set of radio buttons.

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 185c05.indd 185 11/20/09 4:19:45 PM11/20/09 4:19:45 PM

Chapter 5: Forms

186

 The term “ radio buttons ” comes from old radios. On some old radios, you could press only one button
at a time to select the radio station you wanted to listen to from the ones that had been set. You could not
press two of these buttons at the same time on your radio, and pressing one would pop the other out.

 The < input > element is again called upon to create radio buttons, and this time the type attribute
should be given a value of radio . For example, here radio buttons are used to allow users to select
which class of travel they want to take (ch05_eg08.html):

 < form action=”http://www.example.com/flights.aspx” name=”frmFlightBooking”
 method=”get” >
 Please select which class of travel you wish to fly: < br / >
 < input type=”radio” name=”radClass” value=”First” / > First class < br / >
 < input type=”radio” name=”radClass” value=”Business” / > Business class < br / >
 < input type=”radio” name=”radClass” value=”Economy” / > Economy class < br / >
 < /form >

 As you can see, the user should be allowed to select only one of the three options, so radio buttons are
ideal. You can also start the name of a radio button with the letters rad . Figure 5 - 12 shows you what this
might look like in a browser.

Figure 5-12

 The table that follows lists the attributes for an < input > element whose type attribute has a value
of radio .

 Attribute Purpose

 type To indicate that you want a radio button form control.

 name The name of the form control.

 value Used to indicate the value that will be sent to the server if this option is selected.

 checked Indicates that this option should be selected by default when the page loads.
Remember that there is no point using this with a single radio button as a user can ’ t
deselect the option. If you use this attribute, the value should also be checked in
order for the attribute to be XHTML - compliant.

 size This attribute indicates the size of the radio button in pixels, but this attribute does
not work in IE8 or Firefox 3.

c05.indd 186c05.indd 186 11/20/09 4:19:45 PM11/20/09 4:19:45 PM

Chapter 5: Forms

187

 Radio buttons can also take the following attributes:

 All the universal attributes

 All the UI event attributes

 disabled , tabindex , and accesskey , which are covered later in the chapter

 When you have a group of radio buttons that share the same name, some browsers will automatically
select the first option as the page loads , even though they are not required to do so in the HTML specifi-
cation. Therefore, if your radio buttons represent a set of values — say for a voting application — you
might want to set a medium option to be selected by default so that, should some users forget to select
one of the options, the results are not overly biased by the browser ’ s selection. To do this, you should use
the checked attribute.

 Select Boxes
 A drop - down select box allows users to select one item from a drop - down menu. Drop - down select
boxes can take up far less space than a group of radio buttons.

 Drop - down select boxes can also provide an alternative to single - line text input controls where you want
to limit the options that a user can enter. For example, imagine that you were asking which country
someone was from. If you had a textbox, visitors from the United States could enter different options
such as U.S.A., U.S., United States, America, or North America , whereas with a select box you could
control the options they could enter.

 A drop - down select box is contained by a < select > element, while each individual option within that
list is contained within an < option > element. For example, the following form creates a drop - down
select box for the user to select a color (ch05_eg09.html):

 < select name=”selColor” >
 < option selected=”selected” value=”” > Select color < /option >
 < option value=”red” > Red < /option >
 < option value=”green” > Green < /option >
 < option value=”blue” > Blue < /option >
 < /select >

 As you can see here, the text between the opening < option > tags and the closing < /option > tags is
used to display options to the user, while the value that would be sent to the server if that option were
selected is given in the value attribute. You can also see that the first < option > element does not have a
value and that its content is Select color ; this is to indicate to the user that he or she must pick one of
the color choices. Finally, notice again the use of the letters sel at the start of the name of a select box.

 Figure 5 - 13 shows what this would look like in a browser.

❑

❑

❑

c05.indd 187c05.indd 187 11/20/09 4:19:45 PM11/20/09 4:19:45 PM

Chapter 5: Forms

188

 Note that the width of the select box will be the width of the longest option displayed to the user; in this
case, it will be the width of the text Select color .

 The < select > Element
 The < select > element is the containing element for a drop - down list box; it can take the attributes
shown in the table that follows:

 Attribute Purpose

 name The name for the control.

 size Can be used to present a scrolling list box, as you will see shortly. Its value would
be the number of rows in the list that should be visible at the same time.

 multiple Allows a user to select multiple items from the menu. If the attribute is not
present, the user may select only one item. In earlier versions of HTML, this
attribute did not have a value. However, to be valid XHTML it should be given the
value of multiple (i.e., < select multiple= ” multiple ” >). Note that the use of
this attribute will change the presentation of the select box, as you will see in the
section “ Selecting Multiple Options with the multiple Attribute ” later in this
chapter.

 According to the XHTML specification, a < select > element must contain at least one < option >
element, although in practice it should contain more than one < option > element. After all, a drop - down
list box with just one option might confuse a user.

 The < option > Element
 Inside any < select > element, you will find at least one < option > element. The text between the
opening < option > and closing < /option > tags is displayed to the user as the label for that option.
The < option > element can take the attributes shown in the table that follows.

Figure 5-13

c05.indd 188c05.indd 188 11/20/09 4:19:46 PM11/20/09 4:19:46 PM

Chapter 5: Forms

189

 Attribute Purpose

 value The value that is sent to the server if this option is selected.

 selected Specifies that this option should be the initially selected value when the page
loads. This attribute may be used on several < option > elements even if the
 < select > element does not carry the multiple attribute. Although earlier
versions of XHTML did not require a value for this attribute, in order to be valid
XHTML you should give this attribute a value of selected .

 label An alternative way of labeling options, which uses an attribute rather than
element content. This attribute is particularly useful when using the < optgroup >
element, which is covered a bit later in this chapter.

 Creating Scrolling Select Boxes
 As I mentioned earlier, it ’ s possible to create scrolling menus where users can see a few of the options in
a select box at a time. In order to do this, you just add the size attribute to the < select > element. The
value of the size attribute is the number of options you want to be visible at any one time.

 While scrolling select box menus are rarely used, they can give users an indication that several possible
options are open to them and allow them to see a few of the options at the same time. For example,
the following is the code for a scrolling select box that allows the user to select a day of the week
(ch05_eg10.html):

 < form action=”http://www.example.org/days.aspx” name=”frmDays” method=”get” >
 < select size=”4” name=”selDay” >
 < option value=”Mon” > Monday < /option >
 < option value=”Tue” > Tuesday < /option >
 < option value=”Wed” > Wednesday < /option >
 < option value=”Thu” > Thursday < /option >
 < option value=”Fri” > Friday < /option >
 < option value=”Sat” > Saturday < /option >
 < option value=”Sun” > Sunday < /option >
 < /select >
 < br / > < br / > < input type=”submit” value=”Submit” / >
 < /form >

 As Figure 5 - 14 shows, the user can clearly see that he or she has several options; to save space only a few
of the available options are shown.

Figure 5-14

c05.indd 189c05.indd 189 11/20/09 4:19:46 PM11/20/09 4:19:46 PM

Chapter 5: Forms

190

 Note that the multiple attribute, which you meet in the next section is not used on this element.

 Selecting Multiple Options with the multiple Attribute
 The multiple attribute allows users to select more than one item from a select box. The value of the
 multiple attribute should be the word multiple in order for it to be valid XHTML (although earlier
versions of HTML allowed this attribute to appear without a value). When you use this attribute it is
always a good idea to tell people how to select multiple items: by holding down the control key and
clicking on the items they want to select.

 The addition of this attribute automatically makes the select box look like a scrolling select box. Here you
can see an example of a multiple - item select box that allows users to select more than one day of the
week (ch05_eg11.html):

 < form action=”http://www.example.org/days.aspx” method=”get” name=”frmDays” >
 Please select more than one day of the week (to select multiple days
 hold down the control key and click on your chosen days): < br / >
 < select name=”selDays” multiple=”multiple” >
 < option value=”Mon” > Monday < /option >
 < option value=”Tue” > Tuesday < /option >
 < option value=”Wed” > Wednesday < /option >
 < option value=”Thu” > Thursday < /option >
 < option value=”Fri” > Friday < /option >
 < option value=”Sat” > Saturday < /option >
 < option value=”Sun” > Sunday < /option >
 < /select >
 < br / > < br / > < input type=”submit” value=”Submit” >
 < /form >

 The result is shown in Figure 5 - 15, where you can see that even without the addition of the size
attribute, the select box is still represented in the same way as a scrolling one.

Figure 5-15

c05.indd 190c05.indd 190 11/20/09 4:19:47 PM11/20/09 4:19:47 PM

Chapter 5: Forms

191

 Grouping Options with the < optgroup > Element
 If you have a very long list of items in a select box, you can group them together using the < optgroup >
element, which acts just like a container element for all the elements you want within a group.

 The < optgroup > element can carry a label attribute whose value is a label for that group of options.
In the following example, you can see how the options are grouped in terms of type of equipment
(ch05_eg12.html):

 < form action=”http://www.example.org/info.aspx” method=”get” name=”frmInfo” >
 Please select the product you are interested in: < br / >
 < select name=”selInformation” >
 < optgroup label=”Hardware” >
 < option value=”Desktop” > Desktop computers < /option >
 < option value=”Laptop” > Laptop computers < /option >
 < /optgroup >
 < optgroup label=”Software” >
 < option value=”OfficeSoftware” > Office software < /option >
 < option value=”Games” > Games < /option >
 < /optgroup >
 < optgroup label=”Peripherals” >
 < option value=”Monitors” > Monitors < /option >
 < option value=”InputDevices” > Input Devices < /option >
 < option value=”Storage” > Storage < /option >
 < /optgroup >
 < /select >
 < br / > < br / > < input type=”submit” value=”Submit” / >
 < /form >

 You will find that different browsers display < optgroup > elements in different ways. Figure 5 - 16 shows
you how Safari on a Mac displays options held by < optgroup > elements, whereas Figure 5 - 17 shows
you the result in Firefox on a PC.

Figure 5-16

c05.indd 191c05.indd 191 11/20/09 4:19:47 PM11/20/09 4:19:47 PM

Chapter 5: Forms

192

 An alternative option for grouping elements is to add an < option > element that carries the disabled
attribute, which you will learn about shortly (ch05_eg13.html):

 < form action=”http://www.example.org/info.aspx” method=”get” name=”frmInfo” >
 Please select the product you are interested in: < br / >
 < select name=”selInformation” >
 < option disabled=”disabled” value=”” > — Hardware — < /option >
 < option value=”Desktop” > Desktop computers < /option >
 < option value=”Laptop” > Laptop computers < /option >
 < option disabled=”disabled” value=”” > — Software — < /option >
 < option value=”OfficeSoftware” > Office software < /option >
 < option value=”Games” > Games < /option >
 < option disabled=”disabled” value=”” > — Peripherals — < /option >
 < option value=”Monitors” > Monitors < /option >
 < option value=”InputDevices” > Input Devices < /option >
 < option value=”Storage” > Storage < /option >
 < /select >
 < br / > < br / > < input type=”submit” value=”Submit” / >
 < /form >

 As you will see later in the chapter, the use of the disabled attribute prevents a user from selecting the
option that carries it. With the careful use of a couple of dashes, the groups of options become more
clearly defined, as you can see in Figure 5 - 18.

Figure 5-17

Figure 5-18

c05.indd 192c05.indd 192 11/20/09 4:19:47 PM11/20/09 4:19:47 PM

Chapter 5: Forms

193

 You may occasionally see drop - down list boxes used for navigation, and sometimes they use JavaScript
to take you directly to that page. The use of JavaScript to take you to a page without pressing a submit
button is considered bad usability. One of the main reasons for this is that users can select the wrong
section by accident; for example, if a user tries to select options using his or her up and down arrow
keys, the script may fire as soon as he or she comes across the first option.

 Attributes for Select Boxes
 For completeness, the following is the full list of attributes that the < select > element can carry:

 name , size , and multiple , all of which you have met

 disabled and tabindex , which are covered later in the chapter

 All universal attributes

 UI event attributes

 Meanwhile, the < option > element can carry the following attributes:

 label , which you have already seen

 disabled , which you learn more about later in the chapter

 All universal attributes

 UI event attributes

 File Select Boxes
 If you want to allow a user to upload a file to your web site from his or her computer, you will need to
use a file upload box , also known as a file select box . This is created using the < input > element (again),
but this time you give the type attribute a value of file (ch05_eg14.html):

 < form action=”http://www.example.com/imageUpload.aspx” method=”post”
 name=”fromImageUpload” enctype=”multipart/form-data” >
 < input type=”file” name=”fileUpload” accept=”image/*” / >
 < br / > < br / > < input type=”submit” value=”Submit” / >
 < /form >

 When you are using a file upload box, the method attribute of the < form > element must be post .

 There are some attributes in this example that you learned about at the beginning of the chapter.

 The enctype attribute has been added to the < form > element with a value of multipart/
form - data so that each form control is sent separately to the server. This is required on a form
that uses a file upload box.

 The accept attribute has been added to the < input > element to indicate the MIME types of the
files that can be selected for upload. In this example, the accept attribute is indicating that any
image format can be uploaded, as the wildcard character (the asterisk) has been used after the
 image/ portion of the MIME type. Unfortunately, this is not supported by Firefox 3 or IE8,
which means that any file at all (not just images) could be uploaded.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd 193c05.indd 193 11/20/09 4:19:48 PM11/20/09 4:19:48 PM

Chapter 5: Forms

194

 In Figure 5 - 19 you can see that when you click the Browse button in Firefox, a file dialog box opens up
enabling you to browse to a file and select which one you want to upload. It is worth noting that
different browsers sometimes show this control in slightly different ways (for example, Safari has a
button saying Choose File instead of Browse).

Figure 5-19

 An < input > element whose type attribute has a value of file can take the following attributes:

 name , value , and accept , which you have already seen

 tabindex , accesskey , disabled , and readonly , which are covered later in the chapter

 All universal attributes

 UI event attributes

 Hidden Controls
 Sometimes you will want to pass information between pages without the user seeing it; to do this, you
can use hidden form controls. It is important to note, however, that while users cannot see them in the
web page, if they were to look at the source code for the page they would be able to see the values in the
code. Therefore, hidden controls should not be used for any sensitive information that you do not want
the user to see.

❑

❑

❑

❑

c05.indd 194c05.indd 194 11/20/09 4:19:48 PM11/20/09 4:19:48 PM

Chapter 5: Forms

195

 You may have come across forms on the Web that span more than one page. Long forms can be
 confusing and splitting them up can help a user. In such cases, it will often be necessary to pass values
that a user has entered into the first form (on one page) onto the form in the second page, and then onto
another page. Hidden elements are one way in which programmers can pass values between pages.

 You create a hidden control using the < input > element whose type attribute has a value of hidden . For
example, the following form contains a hidden form control indicating which section of the site the user
was on when he or she filled in the form (ch05_eg15.html):

 < form action=”http://www.example.com/vote.aspx” method=”get” name=”fromVote” >
 < input type=”hidden” name=”hidPageSentFrom” value=”home page” / >
 < input type=”submit” value=”Click if this is your favorite page of our
 site.” / >
 < /form >

 Hidden form controls need both the name and value attributes in order to be sent with the rest of
a form.

 Figure 5 - 20 shows that the hidden form control is not shown on the page, but it is available in the source
for the page.

Figure 5-20

 As you will see in Chapter 8, you can also hide form controls using the CSS display and
 visibility properties.

 Object Controls
 The HTML 4.0 specification introduced the capability to use objects — embedded in an < object >
element — inside the < form > element. For example, you may want to use an object that enables some
kind of graphical interaction, and then store its value with the name of the object. However, this feature
is not implemented in the main browsers at the time of this writing.

c05.indd 195c05.indd 195 11/20/09 4:19:48 PM11/20/09 4:19:48 PM

Chapter 5: Forms

196

Try It Out Creating a Contact Form

 In this example, you are going to combine several of the form controls to make up a contact form for
our Example Caf é .

 1. Create a new Transitional XHTML 1.0 document, with the skeleton in place. Then add a
heading:

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en” >
 < head >
 < title > Contact Us < /title >
 < /head >
 < body >

 < h1 > Contact Us < /h1 >
 < p > Use the following form to send a message to Example Cafe < /p >

 < /body >
 < /html >

 2. The form is going to be placed in a table with two columns so that the instructions are
in the left column, and the form controls are aligned in the right column. (Without this, the
form controls would look uneven across the page.) This is quite a common technique in
writing forms.

 In the first two rows you can add a text input for the visitor ’ s e - mail address using an
 < input > element whose type attribute has a value of text. You can also set the size of the
form control and the maximum number of characters a user can enter.

 Add the following table under the paragraph that tells people to use the form to send
a message:

 < table >
 < tr >
 < td > Your email < /td >
 < td > < input type=”text” name=”txtFrom” id=”emailFrom”
 size=”20” maxlength=”250” / > < /td >
 < /tr >

 3. This first row of the table is followed by a second row containing a text area for their message.
The size of the text area is specified using the rows and cols attributes:

c05.indd 196c05.indd 196 11/20/09 4:19:49 PM11/20/09 4:19:49 PM

Chapter 5: Forms

197

 < tr >
 < td > Message < /td >
 < td > < textarea name=”txtBody” id=”emailBody” cols=”50”
 rows=”10” > < /textarea > < /td >
 < /tr >

 4. In the next row, you can add a select box so that the user can tell you how they heard of
the caf é :

 < tr >
 < td > How did you hear of us? < /td >
 < td >
 < select name=”selReferrer” >
 < option value=”google” > Google < /option >
 < option value=”ad” > Local newspaper ad < /option >
 < option value=”friend” > Friend < /option >
 < option value=”other” > Other < /option >
 < /select >
 < /td >
 < /tr >

 5. In the final row, add a checkbox to indicate whether the visitor wants to sign up for e - mail
updates. This is created with the < input > element, whose type attribute has a value of
 checkbox . The checkbox should be selected by default, and this is indicated using the
 checked attribute:

 < tr >
 < td > Newsletter < /td >
 < td > < input type=”checkbox” name=”chkBody” id=”newsletterSignup”
 checked=”checked” / >
 Ensure this box is checked if you would like to
 receive email updates < /td >
 < /tr >
 < /table >

 6. Finally, you need to add a submit button, again using the < input > element so that the visitor
can send the message to the caf é :

 < input type=”submit” value=”Send message” / >

 7. Save the file as emailForm.html and open it in your browser; it should look something like
Figure 5 - 21.

c05.indd 197c05.indd 197 11/20/09 4:19:49 PM11/20/09 4:19:49 PM

Chapter 5: Forms

198

 Now that you ’ ve seen the basics of forms, it is time to look at more advanced features that you can use
to enhance your forms.

 Creating Labels for Controls and the
 < label > Element

 Forms can be confusing enough at the best of times. I ’ ve received many insurance and tax forms that
have left me scratching my head, and I ’ m sure I ’ m not the only one.

 If you are creating a form for your site, it is worth spending time to provide good labeling so that the
user knows what data he or she should be entering where. If visitors have difficulty understanding your
form, they will be less likely to complete the form (in particular if they are purchasing something), or
they are more likely to make a mistake when filling it in.

 Some form controls, such as buttons, already have labels. For the majority of form controls, however, you
will have to provide the label yourself.

 For controls that do not have a label, you should use the < label > element. This element does not
affect the form in any way other than telling users what information they should be entering
(ch05_eg16.html).

Figure 5-21

c05.indd 198c05.indd 198 11/20/09 4:19:50 PM11/20/09 4:19:50 PM

Chapter 5: Forms

199

 < form action=”http://www.example.org/login.aspx” method=”post”
name=”frmLogin” >
 < table >
 < tr >
 < td > < label for=”Uname” > User name < /label > < /td >
 < td > < input type=”text” id=”Uname” name=”txtUserName” / > < /td >
 < /tr >
 < tr >
 < td > < label for=”Pwd” > Password < /label > < /td >
 < td > < input type=”password” id=”Pwd” name=”pwdPassword” / > < /td >
 < /tr >
 < /table >
 < /form >

 You can see that this form has been placed inside a table; this ensures that even if the labels are of
 different lengths, the text inputs are aligned in their own column. If a list of text inputs is not aligned,
it can be harder to use.

 As you can see here, the < label > element carries an attribute called for , which indicates the form
control associated with the label. The value of the for attribute should be the same as the value of the id
attribute on the corresponding form control. For example, the textbox form control, where a user enters
his or her username, has an id attribute whose value is Uname , and the label for this textbox has a for
attribute whose value is also Uname .

 Figure 5 - 22 shows you what this login screen looks like.

Figure 5-22

 The label may be positioned before or after the control. For textboxes and drop - down select boxes, it is
generally good practice to have the label on the left or above the form control, whereas for checkboxes
and radio buttons it is often easier to associate the label with the correct form control if they are on the
right.

 You should have a new < label > element for each form control.

 Another way to use the < label > element is as a containing element. When you use the < label > element
this way, you do not need to use the for attribute because it applies to the form element that is inside it.
This kind of label is sometimes known as an implicit label . For example:

 < form action=”http://www.example.org/login.aspx” method=”post”
name=”frmLogin” >
 < label > Username < input type=”text” id=”Uname” name=”txtUserName” / > < /label >
 < label > Password < input type=”password” id=”Pwd” name=”pwdPassword” / >
 < /label >
 < /form >

c05.indd 199c05.indd 199 11/20/09 4:19:50 PM11/20/09 4:19:50 PM

Chapter 5: Forms

200

 The drawback to this approach is that you cannot control where the label appears in relation to the form
control, and you certainly cannot have the label in a different table cell from the form control, as the
markup would not nest correctly.

 Structuring Your Forms with < fieldset > and
 < legend > Elements

 Large forms can be confusing for users, so it ’ s good practice to group together related form controls. The
 < fieldset > and < legend > elements do exactly this — help you group controls.

 The < fieldset > element creates a border around the group of form controls to show that they
are related.

 The < legend > element allows you to specify a caption for the < fieldset > element, which acts
as a title for the group of form controls. When used, the < legend > element should always be the
first child of the < fieldset > element.

 Figure 5 - 23 shows these elements in action. You can see that the form has been divided into four sections:
Contact Information, Competition Question, Tiebreaker Question, and Enter Competition.

❑

❑

Figure 5-23

c05.indd 200c05.indd 200 11/20/09 4:19:50 PM11/20/09 4:19:50 PM

Chapter 5: Forms

201

 Let ’ s take a look at the code for this example. You can see how the < fieldset > elements create borders
around the groups of form controls, and how the < legend > elements are used to title the groups of
controls. Remember, when you use the < legend > element, it must be the first child of the < fieldset >
element (ch05_eg17.html).

 < form action=”http://www.example.org/competition.aspx” method=”post”
name=”frmComp” >
 < fieldset >
 < legend > < em > Contact Information < /em > < /legend >
 < label > First name: < input type=”text” name=”txtFName” size=”20” / >
 < /label > < br / >
 < label > Last name: < input type=”text” name=”txtLName” size=”20” / > < /label >
 < br / >
 < label > E-mail: < input type=”text” name=”txtEmail” size=”20” / > < /label >
 < br / >
 < /fieldset >
 < fieldset >
 < legend > < em > Competition Question < /em > < /legend >
 How tall is the Eiffel Tower in Paris, France? < br / >
 < label > < input type=”radio” name=”radAnswer” value=”584” / >
 584ft < /label > < br / >
 < label > < input type=”radio” name=”radAnswer” value=”784” / >
 784ft < /label > < br / >
 < label > < input type=”radio” name=”radAnswer” value=”984” / >
 984ft < /label > < br / >
 < label > < input type=”radio” name=”radAnswer” value=”1184” / >
 1184ft < /label > < br / >
 < /fieldset >
 < fieldset >
 < legend > < em > Tiebreaker Question < /em > < /legend >
 < label > In 25 words or less, say why you would like to win $10,000:
 < textarea name=”txtTiebreaker” rows=”10” cols=”40” > < /textarea >
 < /label >
 < /fieldset >
 < fieldset >
 < legend > < em > Enter competition < /em > < /legend >
 < input type=”submit” value=”Enter Competition” / >
 < /fieldset >
 < /form >

 The < fieldset > element can take the following attributes:

 All the universal attributes

 The basic event attributes

❑

❑

c05.indd 201c05.indd 201 11/20/09 4:19:50 PM11/20/09 4:19:50 PM

Chapter 5: Forms

202

 If you use a table to format your form, the entire < table > element must appear inside the < fieldset >
element. If a < fieldset > resides within a table that is used to format the page, then the entire fieldset
must reside within the same cell.

 The < legend > element can take the following attributes:

 accesskey , which you will learn about in the next section.

 align , which you have seen already, and is deprecated — you should use CSS positioning
instead.

 All the universal attributes.

 UI event attributes.

 Focus
 When a web page featuring several links or several form controls loads, you may have noticed that you
are able to use your Tab key to move between those elements (or Shift+Tab to move backward through
elements). As you move between them, the web browser tends to add some type of border or
highlighting to that element (be it a link or a form control). This is known as focus .

 Only elements that a user can interact with, such as links and form controls, can receive focus. Indeed, if
a user is expected to interact with an element, that element must be able to receive focus.

 An element can gain focus in three ways:

 An element can be selected using a pointing device such as a mouse or trackball.

 Elements that can gain focus can be navigated between using the keyboard — often
using the Tab key (or Shift+Tab to move backward through elements). As you are about to
see, the elements in some documents can be given a fixed tabbing order , indicating the order in
which elements gain focus when the user pressed the tab key.

 A web - page author can indicate that an element should receive focus when a user presses a
keyboard shortcut known as an access key . For example, if the page author set the access key on a
search box to be the key for the letter s , on a PC you would likely press the Alt key plus the
access key (Alt+S), whereas on a Mac you would press the Control key with an access key
(Control+S), and the corresponding form control would gain focus.

 Tabbing Order
 If you want to control the order in which elements can gain focus, you can use the tabindex attribute to
give that element a number between 0 and 32767, which becomes part of the tabbing order. Every time
the user presses the Tab key, the focus moves to the element with the next highest tabbing order (and
again, Shift+Tab moves focus in reverse order).

❑

❑

❑

❑

❑

❑

❑

c05.indd 202c05.indd 202 11/20/09 4:19:51 PM11/20/09 4:19:51 PM

Chapter 5: Forms

203

 The following elements can carry a tabindex attribute:

 < a > < area > < button > < input > < object > < select > < textarea >

 After a user has tabbed through all elements in a document that can gain focus, then focus may be given
to other browser features (most commonly the address bar).

 To demonstrate how tabbing order works, the following example gives focus to the checkboxes in a
different order than you might expect (ch05_eg18.html):

 < form action=”http://www.example.com/tabbing.aspx” method=”get”
 name=”frmTabExample” >
 < input type=”checkbox” name=”chkNumber” value=”1” tabindex=”3” / > One < br/ >
 < input type=”checkbox” name=”chkNumber” value=”2” tabindex=”7” / > Two < br/ >
 < input type=”checkbox” name=”chkNumber” value=”3” tabindex=”4” / > Three < br / >
 < input type=”checkbox” name=”chkNumber” value=”4” tabindex=”1” / > Four < br/ >
 < input type=”checkbox” name=”chkNumber” value=”5” tabindex=”9” / > Five < br/ >
 < input type=”checkbox” name=”chkNumber” value=”6” tabindex=”6” / > Six < br/ >
 < input type=”checkbox” name=”chkNumber” value=”7” tabindex=”10” / > Seven < br / >
 < input type=”checkbox” name=”chkNumber” value=”8” tabindex=”2” / > Eight < br / >
 < input type=”checkbox” name=”chkNumber” value=”9” tabindex=”8” / > Nine < br/ >
 < input type=”checkbox” name=”chkNumber” value=”10” tabindex=”5” / > Ten < br/ >
 < input type=”submit” value=”Submit” / >
 < /form >

 In this example, the checkboxes receive focus in the following order:

4, 8, 1, 3, 10, 6, 2, 9, 5, 7

 Figure 5 - 24 shows how Firefox 2 for PC will, by default, give a yellow outline to form elements as they
gain focus (other browsers give different outlines — Internet Explorer uses blue lines). I have zoomed in
on the item in focus so you can see it in closer detail.

Figure 5-24

c05.indd 203c05.indd 203 11/20/09 4:19:51 PM11/20/09 4:19:51 PM

Chapter 5: Forms

204

 Elements that could gain focus but do not have a tabindex attribute are automatically given a value
of 0 ; therefore, when you specify a tabindex value, it should be 1 or higher, rather than 0 .

 If two elements have the same value for a tabindex attribute, they will be navigated in the order in
which they appear in the document. So, once the elements that have a tabindex of 1 or more have been
cycled through, the browser will cycle through the remaining elements (which have a value
of 0) in the order in which they appear in the page.

 Note that if an element is disabled, it cannot gain focus and does not participate in the tabbing order.
Also, if you use a Mac you may need to check your Keyboard Shortcuts settings in system preferences;
at the bottom of the window where it says “ Full Keyboard Access, ” this needs to have the “ All Controls ”
option selected.

 Access Keys
 Access keys act just like keyboard shortcuts. The access key is a single character from the document ’ s
character set that is expected to appear on the user ’ s keyboard. When this key is used in conjunction
with another key or keys (such as Alt with IE on Windows, Alt and Shift with Firefox on Windows, and
Control on an Apple), the browser automatically goes to that section. (Exactly which key must be used in
conjunction with the access key depends upon the operating system and browser.)

 The access key is defined using the accesskey attribute. The value of this attribute is the character (and
key on the keyboard) you want the user to be able to press (in conjunction with the other key/keys that
are dependent upon the operating system and browser).

 The following elements can carry an access key attribute:

 < a > < area > < button > < input > < label > < legend > < textarea >

 To see how access keys work, you can revisit the example of a competition form (ch05_eg17.html),
which was covered in the section “ Structuring Your Forms with < fieldset > and < legend > Elements ”
earlier in this chapter. Now the accesskey attributes can be added to the < legend > elements:

 < legend accesskey=”c” > < u > C < /u > ontact Information < /legend >
 < legend > Competition Question < /legend >
 < legend accesskey=”t” > < u > T < /u > iebreaker Question < /legend >
 < legend > Enter competition < /legend >

 The new version of this file is ch05_eg19.html in the download code. (Extra < br / > elements have
been added to show how the screen scrolls to the appropriate section when an access key is used.) As a
hint to users that they can use the access keys as shortcuts, information has also been added to the
information in the < legend > element by underlining the access key. Figure 5 - 25 shows how this updated
example looks in a browser.

c05.indd 204c05.indd 204 11/20/09 4:19:51 PM11/20/09 4:19:51 PM

Chapter 5: Forms

205

 The effect of an access key being used depends upon the element that it is used with. With < legend >
elements, such as those shown previously, the browser scrolls to that part of the page automatically and
gives focus to the first form control in the section. When used with form controls, those elements gain
focus. As soon as the element gains focus, the user should be able to interact with it (either by typing in
text controls or pressing the Enter or Return key with other form controls).

 When using letters a – z, it does not matter whether you specify an uppercase or lowercase access key,
although, strictly speaking, it should be lowercase.

 Disabled and Read - Only Controls
 Throughout the chapter, you have seen that several of the elements can carry attributes called disabled
and readonly :

 The readonly attribute prevents users from changing the value of the form controls themselves,
although it may be modified by a script. The name and value of any readonly control will be
sent to the server. The value of this attribute should be readonly .

 The disabled attribute disables the form control so that users cannot alter it. A script can be
used to re - enable the control, but unless a control is re - enabled, the name and value will not
be sent to the server. The value of this attribute should be disabled .

❑

❑

Figure 5-25

c05.indd 205c05.indd 205 11/20/09 4:19:52 PM11/20/09 4:19:52 PM

Chapter 5: Forms

206

 A readonly control is particularly helpful when you want to stop visitors from changing a part of the
form, perhaps because it must not change (for example, if you put terms and conditions inside a
text area).

 The disabled attribute is particularly helpful when preventing users from interacting with a
control until they have done something else. For example, you might use a script to disable a submit
button until all of the form fields contain a value.

 The following table indicates which form controls work with the readonly and disabled attributes.

 Element readonly disabled

 < textarea > Yes Yes

 < input type= ” text ” / > Yes Yes

 < input type= ” checkbox ” / > No Yes

 < input type= ” radio ” / > No Yes

 < input type= ” submit ” / > No Yes

 < input type= ” reset ” / > No Yes

 < input type= ” button ” / > No Yes

 < select > No Yes

 < option > No Yes

 < button > No Yes

 The following table indicates the main differences between the readonly and disabled attributes.

 Attribute readonly disabled

 Can be modified Yes by script, not by user Not while disabled

 Will be sent to server Yes Not while disabled

 Will receive focus Yes No

 Included in tabbing order Yes No

c05.indd 206c05.indd 206 11/20/09 4:19:52 PM11/20/09 4:19:52 PM

Chapter 5: Forms

207

 Sending Form Data to the Server
 When your browser requests a web page and when the server sends a page back to the browser, you use
the Hypertext Transfer Protocol (HTTP).

 There are two methods that a browser can use to send form data to the server — HTTP get and HTTP
 post — and you specify which should be used by adding the method attribute on the < form > element.

 If the < form > element does not carry a method attribute, then by default the get method will be
used. If you are using a file upload form control, you must choose the post method (and you must set
the enctype attribute to have a value of multipart/form - data). Let ’ s take a closer look at each of
these methods.

 HT TP get
 When you send form data to the server using the HTTP get method, the form data is appended to the
URL that is specified in the action attribute of the < form > element.

 The form data is separated from the URL using a question mark. Following the question mark, you get
the name/value pairs for each form control. Each name/value pair is separated by an ampersand (&).

 For example, take the following login form, which you saw when the password form control was
introduced:

 < form action=”http://www.example.com/login.aspx” method=”get” >
 Username:
 < input type=”text” name=”txtUsername” value=”” size=”20” maxlength=”20” > < br / >
 Password:
 < input type=”password” name=”pwdPassword” value=”” size=”20” maxlength=”20” >
 < input type=”submit” / >
 < /form >

 When you click the submit button, your username and password are appended to the URL http://
www.example.com/login.aspx in what is known as the query string . It should look like this:

http://www.example.com/login.aspx?txtUsername=Bob & pwdPassword=LetMeIn

 Note that when a browser requests a URL with any spaces or unsafe characters such as /, \ , =, & , and +
(which have special meanings in URLs), they are replaced with a hex code to represent that character.
This is done automatically by the browser, and is known as URL encoding . When the data reaches the
server, the server will usually un - encode the special characters automatically.

 One of the advantages of passing form data in a URL is that it can be bookmarked. If you look at
searches performed on major search engines such as Google, they tend to use the get method so that the
page can be bookmarked.

 The get method, however, has some disadvantages. Indeed, when sending sensitive data such as the
password shown here, or credit card details, you should not use the get method because the sensitive
data becomes part of the URL and is in full view to everyone (and could be bookmarked).

c05.indd 207c05.indd 207 11/20/09 4:19:52 PM11/20/09 4:19:52 PM

Chapter 5: Forms

208

 You should not use the HTTP get method when:

 You are dealing with sensitive information, such as passwords or credit card details (because the
sensitive form data would be visible as part of a URL).

 You are updating a data source such as a database or spreadsheet (because someone could make
up URLs that would alter your data source).

 Your form contains a file upload control (because uploaded files cannot be passed in the URL).

 Your users might enter non - ASCII characters such as Hebrew or Cyrillic characters.

 In these circumstances, you should use the HTTP post method.

 HT TP post
 When you send data from a form to the server using the HTTP post method, the form data is sent
transparently in what is known as the HTTP headers . While you do not see these headers, they are not,
strictly speaking, secure on their own. If you are sending sensitive information such as credit card
details, the data should be sent under a Secure Sockets Layer , or SSL , and they should be in encrypted.

 If the login form you just saw was sent using the post method, it could be represented like this in the
HTTP headers:

User-agent: MSIE 7
Content-Type: application/x-www-form-urlencoded
Content-length: 35
...other headers go here...
txtUserName=Bob & pwdPassword=LetMeIn

 Note that the last line is the form data, and that it is in exactly the same format as the data after the
question mark in the get method — it would also be URL - encoded so any spaces or unsafe characters
such as /, \ , =, & , and + (which have special meanings in URLs) are replaced with a hex code to
represent that character as they were in HTTP get requests.

 There is nothing to stop you from using the post method to send form data to a page that also contains a
query string. For example, you might have one page to handle users who want to subscribe to or
unsubscribe from a newsletter, and you might choose to indicate whether a user wanted to subscribe
or unsubscribe in the query string. Meanwhile, you might want to send their actual contact details in a
form that uses the post method because you are updating a data source. In this case, you could use the
following < form > element:

 < form action=”http://www.example.com/newsletter.asp?action=subscribe”
 method=”post” >

 The only issue with using the HTTP post method is that the information the user entered on the form
cannot be bookmarked in the same way it can when it is contained in the URL. So you cannot use it to
retrieve a page that was generated using specific form data as you can when you bookmark a page
generated by most search engines, but it is good for security reasons.

❑

❑

❑

❑

c05.indd 208c05.indd 208 11/20/09 4:19:53 PM11/20/09 4:19:53 PM

Chapter 5: Forms

209

 Try It Out Contact Form Revisited

 It is time to revisit the contact form from the earlier Try It Out section in this chapter. This time,
you will use techniques learned in the later part of the chapter to add a new field and to make it
more usable.

 1. Open the file emailForm.html that you made earlier in the chapter and save it as
 emailForm2.html so that you have a different copy to work with.

 2. You should place < label > elements around the instructions that described the purpose of the
form control. This < label > element should carry the for attribute, whose value is the value
of the id attribute on the corresponding form control, like this one:

 < tr >
 < td > < label for=”emailFrom” > Your email < /label > < /td >
 < td > < input type=”text” name=”txtFrom” id=”emailFrom”
 size=”20” tabindex=”1” maxlength=”250” / > < /td >
 < /tr >

 3. Add in a new single - line text input to the beginning of the form, indicating to whom the
message is being sent. This input should be read - only:

 < tr >
 < td > < label for=”emailTo” > To < /label > < /td >
 < td > < input type=”text” name=”txtTo” readonly=”readonly”
 id=”emailTo” size=”20” value=”Example Cafe” / > < /td >
 < /tr >

 4. Set the tab index so that the input that allows visitors to enter their e - mail addresses receives
focus first, followed by the text area where the visitors enter their messages:

 < tr >
 < td > < label for=”emailFrom” > Your email < /label > < /td >
 < td > < input type=”text” name=”txtFrom” id=”emailFrom” size=”20”
 tabindex=”1” maxlength=”250” / > < /td >
 < /tr >

 < tr >
 < td > < label for=”emailBody” > Message < /label > < /td >
 < td > < textarea name=”txtBody” id=”emailBody” cols=”50” rows=”10”
 tabindex=”2” > < /textarea > < /td >
 < /tr >

 5. Now it is time to split the form into two sections using the < fieldset > element. In order to
make sure that the elements nest correctly, each fieldset will need its own table. The first
section will indicate that it is for information about the visitor ’ s message.

c05.indd 209c05.indd 209 11/20/09 4:19:53 PM11/20/09 4:19:53 PM

Chapter 5: Forms

210

 < fieldset >
 < legend > Your message: < /legend >
 < table >
 < tr >
 < td > < label for=”emailTo” > To < /label > < /td >
 < td > < input type=”text” name=”txtTo” readonly=”readonly” id=”emailTo”
 size=”20” value=”Example Cafe” / > < /td >
 < /tr >

 < tr >
 < td > < label for=”emailFrom” > Your email < /label > < /td >
 < td > < input type=”text” name=”txtFrom” id=”emailFrom” size=”20”
 tabindex=”1” maxlength=”250” / > < /td >
 < /tr >

 < tr >
 < td > < label for=”emailBody” > Message < /label > < /td >
 < td > < textarea name=”txtBody” id=”emailBody” cols=”50” rows=”10”
 tabindex=”2” > < /textarea > < /td >
 < /tr >

 < /table >
 < /fieldset >

 The second section is for information about the company (how the user found the site and if
the user wants to be on the mailing list):

 < fieldset >
 < legend > How you found us: < /legend >
 < table >
 < tr >
 < td > < label for=”emailBody” > How did you hear of us < /label > < /td >
 < td >
 < select name=”selReferrer” >
 < option value=”google” > Google < /option >
 < option value=”ad” > Local newspaper ad < /option >
 < option value=”friend” > Friend < /option >
 < option value=”other” > Other < /option >
 < /select >
 < /td >
 < /tr >

 < tr >
 < td > < label for=”newsletterSignup” > Newsletter < /label > < /td >
 < td > < input type=”checkbox” name=”chkBody” id=”newsletterSignup”

 checked=”checked” / > Ensure this box is checked if you would like
 to receive email updates < /td >
 < /tr >
 < /table >
 < /fieldset >

 This extended registration form is now a lot more usable. If you save the file again and open it in your
browser, you should find something that resembles Figure 5 - 26.

c05.indd 210c05.indd 210 11/20/09 4:19:53 PM11/20/09 4:19:53 PM

Chapter 5: Forms

211

 Summary
 This chapter has introduced you to the world of creating online forms, which are a vital part of many
sites. In most cases, when you want or need to directly collect information from a visitor to your site
you will use a form, and you have seen several different examples of forms in this chapter.

 You have learned how a form lives inside a < form > element and that inside a form there are one or more
form controls. You have seen how the < input > element can be used to create several kinds of form
controls, namely single - line text input controls, checkboxes, radio buttons, file upload boxes, buttons,
and hidden form controls. There are also the < textarea > elements for creating multiple line text
inputs and the < select > and < option > elements for creating select boxes.

 Once you have created a form with its form controls, you need to ensure that each element is labeled
properly so that users know what information they should enter or which selection they will be making.
You can also organize larger forms using the < fieldset > and < label > elements and aid navigation
with tabindex and accesskey attributes.

 Finally, you learned when you should use the HTTP get or post methods to send form data to
the server.

Figure 5-26

c05.indd 211c05.indd 211 11/20/09 4:19:54 PM11/20/09 4:19:54 PM

Chapter 5: Forms

212

 Next, it is time to look at the last of our core XHTML chapters, which covers framesets. You will see more
about form design in Chapter 12, which covers some design issues that will make your forms easier to
understand.

 Exercises
 The answers to all the exercises are in Appendix A.

 1. Create an e - mail feedback form that looks like the one shown in Figure 5 - 27.

Figure 5-27

 Note that the first textbox is a readonly textbox so that the user cannot alter the name of the
person the mail is being sent to.

 2. Create a voting or ranking form that looks like the one shown in Figure 5 - 28.

c05.indd 212c05.indd 212 11/20/09 4:19:54 PM11/20/09 4:19:54 PM

Chapter 5: Forms

213

 Note that the following < style > element was added to the < head > of the document to make
each column of the table the same fixed width, with text aligned in the center (you ’ ll see more
about this in Chapter 7).

 < head >
 < title > Voting < /title >

 < style type=”text/css” > td {width:100; text-align:center;} < /style >

 < /head >

Figure 5-28

c05.indd 213c05.indd 213 11/20/09 4:19:54 PM11/20/09 4:19:54 PM

c05.indd 214c05.indd 214 11/20/09 4:19:54 PM11/20/09 4:19:54 PM

 6
 Frames

 Frames divide a browser window into two or more separate pieces or panes, with each pane
containing a separate web page. One of the key advantages that frames offer is that you can load
and reload single panes without having to reload the entire contents of the browser window. A
collection of frames in the browser window is known as a frameset .

 A frameset divides the window into rows and columns (rather like a table). The simplest of
framesets might just divide the screen into two rows, whereas a complex frameset could use
several rows and columns.

 There is also a special kind of frame called an iframe which is a single window that can sit
anywhere inside a page.

 In this chapter you learn the following:

 How to create a frameset document with multiple frames

 How to create inline frames (or iframes), which are single windows that sit within
another page

 How to deal with users whose browsers cannot use frames

 I should warn you early on that there are actually very few cases in which most
developers consider using frames. I will explain the main reasons why in the second
section of this chapter, after showing a simple example that helps you understand
what frames are. You are more likely to use iframes, which are covered near the end
of the chapter.

❑

❑

❑

c06.indd 215c06.indd 215 11/20/09 4:46:39 PM11/20/09 4:46:39 PM

Chapter 6: Frames

216

 Introducing the Frameset
 To help you understand frames, let ’ s look at an example. Figure 6 - 1 shows you a frameset document in a
browser. This frameset divides the page into three parts, and each separate part of the page is a separate
XHTML document.

Figure 6-1

 You may remember from Chapter 1 that you can start an XHTML page with a DOCTYPE declaration to
explain which version of XHTML you are using: transitional, strict, or frameset. When creating a page
that uses frames, you should use the frameset DOCTYPE declaration because you will be using a few
elements in different ways than other XHTML documents.

 First, you use the < frameset > element instead of the < body > element, as this defines the rows and
columns your page is divided into. Each frame is then represented by a < frame > element.

 You also need to learn the < noframes > element, which provides a message for users whose browsers do
not support frames.

 To get a better idea of how frames work, here is the code for the frameset shown previously in Figure 6 - 1
(ch06_eg01.html):

c06.indd 216c06.indd 216 11/20/09 4:46:40 PM11/20/09 4:46:40 PM

Chapter 6: Frames

217

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd” >
 < html >
 < head >
 < title > Frames example < /title >
 < /head >
 < frameset rows=”150, *, 100” >
 < frame src=”top_frame.html” / >
 < frame src=”main_frame.html” / >
 < frame src=”bottom_frame.html” / >
 < noframes > < body >
 This site uses a technology called frames. Unfortunately, your
 browser does not support this technology. Please upgrade
 your browser and visit us again!
 < /body > < /noframes >
 < /frameset >
 < /html >

 If you look at the start of the code, you can see the frameset DOCTYPE declaration is used, which allows
you to use these frame - related elements in the rest of the page. The < body > element has been replaced
with the < frameset > element; also, there should be no markup between the closing < /head > tag and
the opening < frameset > tag, other than a comment if you want to include one.

 As you will see shortly, the < frameset > element must carry the two attributes rows and cols , which
specify the number of rows and columns that make up the frameset. In our example there are just three
rows, the first being 150 pixels high, the third just 100 pixels high, and the second taking up the rest of
the page (the asterisk is used to indicate that the remaining part of the page should be used in this place).

 < frameset rows=”150, *, 100” >

 Inside the < frameset > element are the empty < frame > elements. The < frame > elements indicate a URL
of the document that will be loaded into that frame; the URL is specified using the src attribute (this is
very similar to the way an image file is specified in an < img > element). There is also a < noframes >
element whose contents will be displayed if the user ’ s browser does not support frames.

 In this example, the pages that are loaded into the top frame, middle frame, and bottom frame are:

 top_frame.html

 main_frame.html

 bottom_frame.html

 To see a slightly more complicated example, take a look at Figure 6 - 2, which uses another frameset in the
middle frame containing vertical frames.

❑

❑

❑

c06.indd 217c06.indd 217 11/20/09 4:46:41 PM11/20/09 4:46:41 PM

Chapter 6: Frames

218

 Before you take a closer look at the syntax, let ’ s just have a look at when you might want to use frames.

 When To Use Frames
 It is quite rare to see frames in use these days. Personally, there are very few (if any) circumstances in
which I would suggest that you use frames in a page. Here are some of the drawbacks you should be
aware of when it comes to using frames:

 One of the fundamental concepts when the Web was created was that every page should
correspond to a single URL — with a frameset you have a single page made up of several URLs.

 Search engines can have difficulty indexing the content of individual frames; some just index the
frameset document. This means that the only content that they see is the contents of the
 < noframes > element, so you should include any content or keywords that you want indexed
within the < noframes > element (not just a message that warns users that the site uses frames).

 Imagine you put your logo and links between pages of the site in one frame, and the content of
the site in a second frame; these are just two normal web pages. Should a search engine find the
URL for one of these pages (perhaps someone else links directly to one of these pages), the
search engine would show only the content of the individual frame — not the frameset
document — so the user might see only the navigation or only the content.

❑

❑

❑

Figure 6-2

c06.indd 218c06.indd 218 11/20/09 4:46:41 PM11/20/09 4:46:41 PM

Chapter 6: Frames

219

 The browser ’ s Back button might not work as users expect (taking them to something else).

 Some smaller devices cannot cope with frames.

 If you have a frame that contains navigation, then it ’ s hard to indicate which page is “ on ”
(because content could load in one frame without telling the navigation frame which page
it is showing).

 You need to have a separate web page for each frame in the browser window, which means your
site will be made up of more pages, making maintenance more difficult.

 It ’ s much harder for users with screen readers to navigate pages that use frames.

 The cases in which you are most likely to want to consider using frames include:

 If you want to display a lot of content in one single page and you cannot split the document into
separate pages, then a frame might be useful to create a navigation bar that links to the
subsections of the long document.

 When you have a lot of data in one part of the page that you do not want the user to have to
reload while another part of the page changes. Examples might include a photography site
where you have lots of thumbnails in one frame, and the main picture in another. Rather than
reloading the thumbnails each time a visitor wants to look at a new main picture, the browser
can just reload the main picture.

 In both cases, you can achieve the same results using JavaScript.

 While you know my opinion on frames, you may have a project that requires them, so let ’ s take a look at
the syntax for using frames in a little more detail.

 The < frameset > Element
 The < frameset > element replaces the < body > element in frameset documents. It is the attributes of the
 < frameset > element that specify how the browser window will be divided up into rows and columns.
These attributes are as follows:

 cols specifies how many columns are in the frameset.

 rows specifies how many rows are in the frameset.

 The < frameset > element contains a < frame > element for each frame of the document (each cell of the
grid constructed by the < frameset > element) and a < noframes > element to indicate what should be
displayed if the user ’ s browser does not load frames.

 In addition to the rows and cols attributes, the frameset element can also take the following attributes:

class id onload onunload rows style title

❑

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd 219c06.indd 219 11/20/09 4:46:41 PM11/20/09 4:46:41 PM

Chapter 6: Frames

220

 Most browsers also support the following attributes (which are covered here because of their
popularity), even though they are not part of the XHTML specification.

onblur onfocus border bordercolor frameborder framespacing

 The cols Attribute
 The cols attribute specifies both the number of columns in the frameset and the width of each column.
Because you have to specify the width of each of the columns (separated by a comma), the number of
values you provide automatically tells the browser how many columns there are in the frameset. For
example, here are three values indicating that there are also three columns:

cols=”20%, 60%, 20%”

 Here, the first column takes up 20 percent of the width of the browser window, the second takes up 60
percent, and the third takes the last 20 percent.

 You can specify the width of a column in four ways:

 Pixels, which specify a fixed size for each column

 A percentage of the browser window

 Relative widths, which are an alternative way to express percentages of the browser window

 A wildcard symbol, which is used to represent the remaining part of the page not specified
using one of the other methods

 You can mix and match these different ways of specifying column widths, but if you do mix them you
should be aware of the precedence they take (discussed after the four methods).

 If you do not specify a cols attribute, the default value is 100 percent, so if you do not add the cols
attribute, then there will be one column that takes up 100 percent of the width of the browser.

 Absolute Values in Pixels
 To specify the width of a column in pixels, you just use a number. (You do not need to use px or any
other characters after the number.) For example, here are three columns: the first is 100 pixels, the second
is 500 pixels, and the third takes up the remainder of the page (using the wildcard symbol *).

cols=”100, 500, *”

 If you just use pixels for each of the columns, and the width of the window is less or more than the
specified values, then the browser will adjust the width of each column in proportion to the width of the
browser window. So, if you want three columns of 100 pixels, you might try to specify it like this:

cols=”100, 100, 100”

❑

❑

❑

❑

c06.indd 220c06.indd 220 11/20/09 4:46:41 PM11/20/09 4:46:41 PM

Chapter 6: Frames

221

 However, if the browser window were 600 pixels wide, you would end up with three columns of 200
pixels. Therefore, if you really want to specify fixed widths that won ’ t grow, use a wildcard character
after the third column and either make the content of the fourth frame blank (or do not include a
 < frame > element for it):

cols=”100, 100, 100, *”

 Interestingly, if you have four columns 200 pixels wide, and the browser window is only 600 pixels wide,
your columns would all be squashed proportionately to 150 pixels wide; the window will not use
scrollbars to make the page 800 pixels wide.

 A Percentage of the Browser Window or Parent Frame
 To specify the width of a column as a percentage of a window you use a number followed by the percent
sign. For example, the following attribute value specifies two columns, one of 40 percent and another of
60 percent of the browser window:

cols=”40%, 60%”

 If you specify widths as percentages, and they add up to more or less than 100 percent, the browser will
adjust widths proportionately.

 Relative Widths Between Columns
 As an alternative to percentages, you can use relative widths of the browser window, which are best
illustrated with an example. Here, the window is divided into sixths: the first column takes up half of the
window, the second takes one-third, and the third takes one-sixth:

cols=”3*, 2*, 1*”

 You can tell that the window is divided up into sixths by adding up the values of the relative widths.

 The Wildcard Symbol
 The asterisk, or wildcard symbol, indicates the “ rest of the window. ” Here, the first column is 400 pixels
wide and the second frame takes up the remainder of the browser window:

cols=”400, *”

 If two rows or columns are given the wildcard symbol, then the remaining width is divided by
these two columns.

 Mixing Measurements and Resizing Windows
 If you mix measurements, you should be aware that widths specified in pixels always take priority
over percentages, relative widths, and the wildcard symbol. Consider the following example with
three columns:

cols=”250, *, 250”

c06.indd 221c06.indd 221 11/20/09 4:46:42 PM11/20/09 4:46:42 PM

Chapter 6: Frames

222

 If the browser window is only 510 pixels wide, then the center frame will be only 10 pixels wide. This
demonstrates that you have to be careful when designing framesets, otherwise there might not be
enough space for users to see what you want them to see.

 Furthermore, if the user resizes his or her window to less than 500 pixels wide, the browser will try to
show as much of the columns defined using absolute widths as possible, ignoring any columns defined
using relative widths.

 Whenever a user resizes his or her window, percentages and relative widths are recalculated, but
absolute widths remain the same.

 Remember that each column should have a corresponding < frame > element. If you specify too many
columns and not enough frame < frame > elements, the rightmost columns end up being a blank space;
whereas if you specify too many < frame > elements the extra ones will be ignored.

 The rows Attribute
 The rows attribute works just like the cols attribute and can take the same values, but it is used to
specify the rows in the frameset. For example, the following rows attribute will specify three rows: the
top row should be 100 pixels tall, the second should be 80 percent of the screen, and the bottom row
should take up the screen that is left (if anything):

rows=”100, 80%, *”

 The default value for the rows attribute is 100 percent, so if you do not specify a rows attribute, one row
will take up 100 percent of the height of the browser.

 Browser - Specific Extensions to the < frameset > Element
 Most common browsers (such as IE, Firefox, and Safari) support some very important extensions to the
 < frameset > element that really deserve mention here. As you may have noticed in the first example, by
default, a frame creates a border and you will likely want to control the appearance of this border. While
you can now use CSS to control these properties, you may come across some of these attributes if you
look at older code that uses frames.

 The border Attribute
 The border attribute specifies the width of the border of each frame in pixels.

border=”10”

 Figure 6 - 3 shows you what the first example looks like with a border of 10 pixels. If you compare this
with Figure 6 - 2, you will be able to see a taller gray line between each of the frames (ch06_eg02.html):

c06.indd 222c06.indd 222 11/20/09 4:46:42 PM11/20/09 4:46:42 PM

Chapter 6: Frames

223

 If you do not want a border, you can give this attribute a value of 0 .

 When you are first creating a frameset document, it can be a good idea to set this attribute to have a
value of 1, even if you do not want borders, as it makes it easier to see where the frames are; you can
easily remove them by altering this one attribute on the < frameset > element.

 The frameborder Attribute
 The frameborder attribute specifies whether a border should be displayed between frames. The
following indicates that there should not be any borders (which is the same as if the border attribute is
given a value of 0):

frameborder=”0”

 The table that follows shows possible values for the frameborder attribute.

Figure 6-3

c06.indd 223c06.indd 223 11/20/09 4:46:42 PM11/20/09 4:46:42 PM

Chapter 6: Frames

224

 Value Purpose

 1 or yes Indicates borders should be shown, the default value (yes is not part of
HTML 4 but is still supported by common browsers)

 0 or no Indicates borders should not be shown (no is not part of HTML 4 but is still
supported by common browsers)

 Figure 6 - 4 shows what the frames would look like without a border — you cannot see where one frame
ends and another begins unless you have different background colors or background images for the
pages in the frames (ch06_eg04.html).

Figure 6-4

 The framespacing Attribute
 The framespacing attribute only works in Internet Explorer; it specifies the amount of space between
frames in a frameset. The value should be given in pixels and the default value is 2 if not otherwise
specified.

framespacing=”25”

c06.indd 224c06.indd 224 11/20/09 4:46:42 PM11/20/09 4:46:42 PM

Chapter 6: Frames

225

 Figure 6 - 5 shows what the first example from this chapter (shown in Figure 6 - 1) would look like with a
 framespacing attribute indicating a 25 - pixel gap between frames (ch06_eg05.html).

Figure 6-5

 Several other browser - specific attributes are covered in Appendix I.

 The < frame > Element
 The < frame > element indicates what goes in each frame of the frameset. It is always an empty element,
and therefore should not have any content, although each < frame > element should always carry one
attribute, src , to indicate the page that should represent that frame.

 The < frame > element can carry any of the universal attributes and the following attributes:

frameborder marginwidth marginheight noresize scrolling longdesc src name

 There are no CSS styles related to the < frame > element.

 The src Attribute
 The src attribute indicates the file that should be used in the frame.

src=”main_frame.html”

c06.indd 225c06.indd 225 11/20/09 4:46:43 PM11/20/09 4:46:43 PM

Chapter 6: Frames

226

 The value for the src attribute is a normal web page, so you must have a corresponding page for each
 < frame > element.

 While the value of this attribute will generally be a file on your server, its value can be any URL, so you
can use the src attribute to specify another site.

 You might find that some search engines on the Internet (such as the image search on Google) will create
a frameset whereby the top of the page remains the search site and the bottom of the page is the page of
the site that features the image.

 If you use a frame like this, it is good practice to offer a link that will close the top frame and allow the
viewer to view just the content of the main frame (as Google does).

 The name Attribute
 The name attribute allows you to give a name to a frame. The name is used when you create links in one
frame that load pages into a second frame, in which case the second frame needs a name to identify itself
as the target of the link. You will see more about making links between frames later in the chapter.

name=”main_frame”

 You should note that the name attribute has not been replaced by the id attribute (as opposed to the way
that the name attribute on some other HTML elements was replaced by the id attribute when XHTML
was introduced as the successor to HTML).

 The frameborder Attribute
 The frameborder attribute specifies whether or not the borders of that frame are shown; it overrides the
value given in the frameborder attribute on the < frameset > element if one is given, and the possible
values are the same. The table that follows shows the possible values of the frameborder attribute.

 Value Purpose

 1 or yes Indicates borders should be shown, the default value. (yes is not part of HTML
4 but is still supported by IE and Netscape.)

 0 or no Indicates borders should not be shown. (no is not part of HTML 4 but is still
supported by IE and Netscape.)

 The marginwidth and marginheight Attributes
 The margin is the space between the three - dimensional border of a frame and its contents.

 The marginwidth attribute enables you to specify the width of the space between the left and right of
the frame ’ s borders and the frame ’ s content. The value is given in pixels.

c06.indd 226c06.indd 226 11/20/09 4:46:43 PM11/20/09 4:46:43 PM

Chapter 6: Frames

227

 The marginheight attribute enables you to specify the height of the space between the top and bottom
of the frame ’ s borders and its contents. The value is given in pixels.

marginheight=”10” marginwidth=”10”

 The noresize Attribute
 By clicking and dragging on the borders of a frame, you are usually able to resize that frame. This is
helpful if users cannot read everything in a frame, but it does make it harder for the designer to control
the layout of the page.

 The noresize attribute prevents a user from resizing the frame. It should take a value of noresize :

noresize=”noresize”

 Bear in mind that if you use the noresize attribute, users who cannot see the entire content of a frame
can ’ t resize the frames to view the missing material.

 The scrolling Attribute
 If the content of a frame does not fit in the space it has been allocated, the browser will likely provide
users with scrollbars so they can read the rest of the content for that frame.

 You can control the appearance of the scrollbars that appear on the frame using the scrollbar attribute:

scrolling=”yes”

 This attribute can take one of three possible values, as listed in the table that follows.

 Value Purpose

 yes Indicates that the frame must always contain a set of scrollbars whether or not
they are required, although IE just shows a vertical scrollbar and Firefox acts as
if it were just set to auto .

 no Indicates that the frame must not contain a set of scrollbars even if the content
does not fit into the frame.

 auto Indicates that the browser should include scrollbars when the content does not
fit in the frame, but otherwise should not show them.

 The longdesc Attribute
 The longdesc attribute enables you to provide a link to another page containing a long description of
the contents of the frame. The value of this attribute should be the URL pointing to where that
description will be found.

c06.indd 227c06.indd 227 11/20/09 4:46:44 PM11/20/09 4:46:44 PM

Chapter 6: Frames

228

longdesc=”framedescription.html”

 The W3C indicates that the value of this URL must not be an anchor within the same page.

 The < noframes > Element
 If a user ’ s browser does not support frames (which is very rare these days), the contents of the
 < noframes > element should be displayed to the user.

 You should place a < body > element inside the < noframes > element because if a browser does not
understand the < frameset > element, it should ignore the < frameset > element and the < noframes >
element, then display what is inside the < body > element contained in the < noframes > element.

 You should think very carefully about how you phrase the contents of this element. You should not just
write something like this element:

 < noframes > < body > This site requires frames. < /body > < /noframes >

 First, this will make little sense to average users as it is unlikely that they have studied XHTML and
know what frames are. Rather, you should offer a more descriptive example content, along these lines:

 < noframes > < body > This site makes uses of a technology called frames.
Unfortunately, the browser you are using does not support this technology.
We recommend that you update your browser. We apologize for any
inconvenience this causes. < /body > < /noframes >

 Second, because search engines have difficulty indexing the content of the individual frames, you can
add information that they will understand inside the < noframes > element to help them to record what
your site is about.

 You can use other XHTML markup within the < body > element if you want to present your
message nicely.

In an ideal world, if you used frames you would have a non - frames version of the site as well.
Realistically, this requires a lot of work, so a helpful alternative is to provide links to the pages that
make up the frames so that the user can still see the content of the site.

 Creating Links Between Frames
 One of the most popular uses of frames is to place navigation bars in one frame and then load the pages
with the content into a separate frame. This is particularly helpful in three situations:

c06.indd 228c06.indd 228 11/20/09 4:46:44 PM11/20/09 4:46:44 PM

Chapter 6: Frames

229

 When your main document is very long and the navigation bar provides shortcuts to parts of
the main document (acting like a table of contents that is always in view).

 When your navigation bar contains files that take a while to load (such as thumbnails of
photographs in a gallery). By using frames, the user does not need to reload the navigation bar
each time he or she views a new page.

 When you do not want to reload the whole page.

 As you have already seen, each < frame > element can carry the name attribute to give each frame a name.
This name is used in the links to indicate which frame the new page should load into. Consider this very
simple example:

 < frameset cols=”200, *” >
 < frame src=”frames/linksNav.html” / >
 < frame src=”frames/linksMain.html” name=”main_page” / >
 < /frameset >

 There are two columns in this example, and only one row. The left - hand frame containing the navigation
bar is 200 pixels wide. The right - hand frame where the content goes takes up the remaining part of the
page. When you click on the links in the left - hand frame, the content opens up in the right-hand frame as
you can see in Figure 6 - 6:

❑

❑

❑

Figure 6-6

c06.indd 229c06.indd 229 11/20/09 4:46:44 PM11/20/09 4:46:44 PM

Chapter 6: Frames

230

 In order to specify that links should open up in the right - hand frame, the second < frame > element
(which creates the right-hand frame) carries a name attribute whose value is main_page . The links in the
navigation carry the target attribute whose value is set to main_page to indicate that the links should
open in the < frame > element whose name attribute has a value of main_page . Here are the links in the
 linksNav.html file:

 < a href=”http://www.wrox.com” target=”main_page” > Wrox Press < /a > < br / > < br / >
 < a href=”http://www.google.com” target=”main_page” > Google < /a > < br / > < br / >
 < a href=”http://www.microsoft.com” target=”main_page” > Microsoft < /a > < br / > < br / >
 < a href=”http://news.bbc.co.uk/” target=”main_page” > BBC News < /a > < br / > < br / >

 The target attribute can also take the attribute values listed in the table that follows.

 Value Purpose

 _self Loads the page into the current frame.

 _blank Loads a page into a new browser window, opening a new window (same as
using a target that doesn ’ t exist).

 _parent Loads the page into the parent window, which in the case of a single frameset
is the main browser window (the page will replace all the frames), or in nested
frames it replaces the frame that the frameset lives inside.

 _top Loads the page into the browser window, replacing any current frames.

 If you are creating links to external pages, you should usually use the _top value for the target
attribute so that the external site replaces your whole site; after all, your users probably don ’ t want to
view other web sites in frames of your site. Or, if you do not want the user to leave your site, you should
open external sites in new windows.

Forgetting to add the name attribute to the < frame > element or the target attribute
to the < a > element are the most common reasons why beginners have problems
creating web sites that use frames. If either is missing, the browser just loads the
link in that frame.

 Setting a Default Target Frame
Using the < base > Element

 You can set a default target frame using the < base > element in any page that contains links that should
open in another frame (the < base > element lives inside the < head > element). The < base > element
should carry an attribute called target , whose value is the name for the frame you want the content to
be loaded into. So you could add the following to linksNav.html to specify a default frame target:

c06.indd 230c06.indd 230 11/20/09 4:46:44 PM11/20/09 4:46:44 PM

Chapter 6: Frames

231

 < head >
 < base target=”main_page” / >
 < /head >

 Nested Framesets
 You have seen that a single frameset gives you a fixed grid - like structure of rows and columns rather like
a table. If you want to create a more complex design, you might choose to use a nested frameset.

 You create a nested frameset by using a second < frameset > element in the place of one of the < frame >
elements. Take a look at the following example (ch06_eg07.html):

 < frameset rows=”*, 300, *” >
 < frame src=”frames/top_frame.html” / >
 < frameset cols=”*, 400, *” >
 < frame src=”frames/blank.html” / >
 < frame src=”frames/main_frame.html” / >
 < frame src=”frames/blank.html” / >
 < /frameset >
 < frame src=”frames/bottom_frame.html” / >
 < /frameset >

 This example creates a set of three rows. In the middle row is a nested frameset with three columns. You
can see that the two side columns actually share the same file. Figure 6 - 7 shows what this example looks
like in a browser.

Figure 6-7

c06.indd 231c06.indd 231 11/20/09 4:46:45 PM11/20/09 4:46:45 PM

Chapter 6: Frames

232

Try It Out A Frame - Based Play Viewer

 We don ’ t have a need for frames on our caf é site, so in this Try It Out you ’ re going to create a frame -
 based viewer for finding the different acts of Shakespeare ’ s A Comedy of Errors .

 The idea behind the viewer is that you have one long page that contains the entire play, and then there
is a frame on the right that allows you to navigate between the scenes of the play.

 Before you start to build the example, it would help to have a look at what you are going to create. You
can see the page in Figure 6 - 8.

Figure 6-8

Three files actually make up this example:

❑ viewer.html , which contains the frameset for play and navigation

 ❑ navigation.html , which is the right - hand frame

❑ comedyoferrors.html , which is the page with the play

c06.indd 232c06.indd 232 11/20/09 4:46:45 PM11/20/09 4:46:45 PM

Chapter 6: Frames

233

You will work through these pages in this order:

 1. Start your text editor or web page editor and create a skeleton of a frameset document,
remembering that this will be slightly different from the documents you have been creating so
far. The following code is for viewer.html :

?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > A Comedy of Errors < /title >
 < /head >
 < /html >

 2. Divide the page up into two frames. The one on the right is fixed at 200 pixels wide, while the
one on the left takes up the remaining part of the screen.

 As you can see, this requires the use of a < frameset > element instead of a < body > element,
which divides the page into the two columns.

 The < frameset > element holds two < frame > elements, one for each column.

 < frameset cols=”*,250” >
 < frame src=”comedyoferrors.html” name=”main_page” / >
 < frame src=”navigation.html” scrolling=”no” / >
 < /frameset >
 < noframes > < body >
 This site uses a technology called frames. Unfortunately, your
 browser does not support this technology. Please upgrade your
 browser and visit us again! < a href=”comedyoferrors.html” > Click
 here to view A Comedy of Errors without links to scenes. < /a >
 < body > < /noframes >

 3. The A Comedy of Errors file is created for you (you probably don ’ t have time to type it all out),
but it is worth noting that it contains id attributes that indicate the start of each section. The
next step is to create a new file called navigation.html to form the content of the navigation
frame in the right pane.

 This is just a normal XHTML document, so start the skeleton as you usually would.

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Navigation < /title >
 < /head >
 < body >
 < /body >
 < /html >

c06.indd 233c06.indd 233 11/20/09 4:46:46 PM11/20/09 4:46:46 PM

Chapter 6: Frames

234

 4. In the navigation.html page, there are links to each scene in each act of the play. Note how the
 target attribute has a value of main_frame to ensure that the link opens in the left - hand pane:

Act 1
 < ul >
 < li > < a href=”comedyoferrors.html#act1_scene1” target=”main_frame” > Act 1,
 Scene 1: A hall in DUKE SOLINUS’S palace. < /a > < /li >
 < li > < a href=”comedyoferrors.html#act1_scene2” target=”main_frame” > Act 1,
 Scene 2: The Mart. < /a > < /li >
 < /ul >

Try the file by opening viewer.html ; the result should look like the screen shot you saw at
the beginning of the chapter.

 Inline or Floating Frames with < iframe >
 There is another kind of frame known as an iframe (sometimes referred to as an inline frame or floating
frame), which can appear anywhere within a standard XHTML page; it does not need to appear either in
a < frameset > element or even in a document that uses the frameset document type declaration.

 An iframe acts like a window cut into an XHTML page through which you can see another web page. You
can specify the URL of the page to appear in the window, the width and height of the window, and
whether or not it should have borders. Any text that surrounds the frame would flow around it in the same
way text can flow around an image. You create an iframe with the < iframe > element, and you specify the
URL of the page to appear in the iframe using the src attribute (just as you would with an image).

 The following is a simple example of a floating frame. If you look at the src attribute you can tell that
the iframe embeds a Google map into the page, while the width and height attributes indicate the size
of the iframe (ch06_eg08.html):

 < body >
 < h1 > Floating frame < /h1 >
 < p > Here you can see a map.
 < iframe src=”http://maps.google.co.uk/maps?q=Newquay,+Cornwall,+United+
Kingdom &
 output=embed”
 width=”425” height=”350” >
 Cannot see the map?
 < a href=” http://maps.google.co.uk/maps?q=Newquay,+Cornwall,+United+
Kingdom” >
 Click here to view our location on Google Maps < /a > .
 < /iframe >
It should show you where to find us. < /p >
 < /body >

 When creating an iframe, you should use both an opening < iframe > tag and a closing < /iframe > (it
should not be an empty element). Anything between these is shown only to those whose browsers do
not support iframes (in this example you can see that a link to the map has been offered to users that do
not see the iframe). If your iframe contained information that you would want a search engine to index,
you could include the text that you want it to index in here.

c06.indd 234c06.indd 234 11/20/09 4:46:46 PM11/20/09 4:46:46 PM

Chapter 6: Frames

235

 You can see what this page looks like in Figure 6 - 9.

Figure 6-9

 Let ’ s take a closer look at the syntax for the < iframe > element.

 The < iframe > Element
 The < iframe > element sits in the middle of a normal XHTML page to create an inline frame. The only
attribute it must carry is the src attribute, whose value is the URL of the page to be included (wherever
the < iframe > element is in the document), although it is also good to add the height and width
attributes to control its size. Remember that this element does not have to be part of the frameset
document type.

 In addition to the universal attributes, the < iframe > element can carry these attributes:

align height width frameborder longdesc marginwidth marginheight name
scrolling src

 There are no events or CSS styles that are particular to the < iframe > element.

c06.indd 235c06.indd 235 11/20/09 4:46:46 PM11/20/09 4:46:46 PM

Chapter 6: Frames

236

 The src Attribute
 The src attribute is required on the < iframe > element as it indicates where the browser can find the
page to show in the iframe, just as it does on the < frame > element.

 The align Attribute (Deprecated)
 The align attribute indicates how the text that is outside of the floating frame will appear. It can take
one of the values listed in the table that follows.

 Value Purpose

 left The frame will be aligned with the left margin of the page, allowing the text to flow
around it to the right.

 right The frame will be aligned with the right margin of the page, allowing the text to
flow around it to the left.

 top The top of the frame will be inline with the text around it.

 middle The middle of the frame will be inline with the text around it.

 bottom The bottom of the frame will be inline with the text around it (the default setting as
you can see from Figure 6 - 9).

 The height and width Attributes
 The height and width attributes enable you to specify the height and width of a frame just as you
would with an image.

height=”250” width=”500”

 The value of the height and width attributes can be given in pixels (as in the preceding line of code) or
in percentages of the browser or parent element if it is contained by another element (as in the line of
code that follows).

height=”20%” width=”40%”

 Keep in mind, however, that users with different screen resolutions will see different amounts of
the screen. If you do not specify a height or width, the browser works out a size based on the full size
of the screen.

c06.indd 236c06.indd 236 11/20/09 4:46:47 PM11/20/09 4:46:47 PM

Chapter 6: Frames

237

 The frameborder Attribute
 The frameborder attribute specifies whether the borders of the frame are shown; the value should be
the number of pixels the border should be. A value of 0 means that there would be no border.

frameborder=”0”

 The longdesc Attribute
 The longdesc attribute allows you to specify a link to another page where there is a description in text
of what would otherwise be in the frame. This is particularly helpful if you are putting images, charts, or
graphs in the frame, as they make your site accessible to those with visual impairments. It can also be
used if the user is having trouble loading the frame.

longdesc=”../textDescriptions/iframe1.html”

 The marginheight and marginwidth Attributes
 The marginheight and marginwidth attributes allow you to specify the distance in pixels between the
border of the frame and the content of the frame.

marginewidth=”8” marginheight=”8”

 The marginwidth attribute allows you to specify the distance between left and right borders and the
content, while the marginheight attribute specifies the distance between top and bottom borders and
the content.

 The scrolling Attribute
 If the iframe is not big enough to show all of the content, then the scrolling attribute specifies whether
the frame should have scrollbars (just as it does for the < frame > element).

 Try It Out Adding a Map to the Caf é

 In this example you will use an iframe to add a Google map to the contact page of the Example Caf é .

 1. Open the contact page for the Example Caf é . The map will go just before the link to the
Google Maps web site:

 < h2 > Contact < /h2 >
 < p > < address > 12 Sea View, Newquay, Cornwall, UK < /address > < /p >
 < p > < a href=”http://maps.google.com/maps?q=newquay” > Find us on Google
 Maps < /a > < /p >
 < p > < a href=”mailto:info@examplecafe.com” > Email Example Cafe < /a > < /p >

 2. Go to maps.google.com and enter a location for your caf é . When you have a map loaded,
click the link that says “link” just above the top right-hand corner of the map. You should see
a textbox containing an iframe, as in Figure 6 - 10.

c06.indd 237c06.indd 237 11/20/09 4:46:47 PM11/20/09 4:46:47 PM

Chapter 6: Frames

238

 3. After the first paragraph, paste the code from the Google Maps site. You may find that there is
a lot more code than we used in the version earlier in the chapter.

 < iframe width=”425” height=”350” frameborder=”0” scrolling=”no” marginheight=”0”
 marginwidth=”0” src=”http://maps.google.co.uk/maps?source=ig & amp;hl=en & amp;
 q=Newquay,+Cornwall,+United+Kingdom & amp;ie=UTF8 & amp;cd=1 & amp;
 geocode=FShAAQMdHG-y_w & amp;split=0 & amp;sll=53.800651,-4.064941 & amp;
 sspn=6.881357,14.941406 & amp;ll=50.420058,-5.079117 & amp;
 spn=0.018513,0.038624 & amp;t=h & amp;z=14 & amp;iwloc=A & amp;output=embed” >
 < /iframe > < br / >
 < small >
 < a href=”http://maps.google.co.uk/maps?source=embed & amp;hl=en & amp;
 q=Newquay,+Cornwall,+United+Kingdom & amp;ie=UTF8 & amp;cd=1 & amp;
 geocode=FShAAQMdHG-y_w & amp;split=0 & amp;sll=53.800651,-4.064941 & amp;
 sspn=6.881357,14.941406 & amp;ll=50.420058,-5.079117 & amp;spn=0.018513,
 0.038624 & amp;t=h & amp;z=14 & amp; iwloc=A” style=”color:#0000FF;
 text- align:left” >
 View Larger Map < /a > < /small >

Figure 6-10

c06.indd 238c06.indd 238 11/20/09 4:46:47 PM11/20/09 4:46:47 PM

Chapter 6: Frames

239

 4. Note how this code uses the attributes we have met:

❑ width and height specify the size of the frame.

❑ The frameborder attribute has a value of 0 so that the iframe does not have the default border.

❑ The scrolling attribute is set to no because the map is larger than the size of the window and
you do not want scrollbars on this frame.

❑ marginheight and marginwidth have a value of 0 to prevent gaps inside the frame.

❑ This is followed by a long URL that contains a lot of information about the location even
though the following would be enough: http://maps.google.co.uk/maps?q=newquay,
+Cornwall,+United+Kingdom & output=embed

 Your new contact page should look like Figure 6 - 11.

Figure 6-11

c06.indd 239c06.indd 239 11/20/09 4:46:48 PM11/20/09 4:46:48 PM

Chapter 6: Frames

240

 Summary
 In this chapter, you learned about frames, which allow you to divide a browser window into separate
panes. Each of these panes contains a discrete XHTML document that can be loaded and reloaded
separately from the other frames.

 Frames are particularly helpful if part of your page ’ s content remains the same while the main body
changes ; for example, when either the main body is long (and you want the navigation to remain in
view) or the navigation takes a long time to load (and you do not want to reload it for each page).

 The chapter covered two types of frames:

 The more traditional frameset document, which uses the < frameset > element to divide the
screen into rows and columns. The < frameset > element then contains a < frame > element
corresponding to each part of the window. These frames belong to the frameset document type
and require a different DOCTYPE declaration than other XHTML documents because the
 < frameset > element replaces the < body > element.

 The more recent inline or floating frame, which lives in a normal XHTML page, and allows only
the content of the frame to be reloaded. Inline frames can appear anywhere within the
document.

 As I have already mentioned, frames are often replaced by the use of JavaScript (or AJAX) to reload
parts of pages.

 Exercises
 The answers to all of the exercises are in Appendix A.

 1. Create a frameset like the one shown in Figure 6 - 12, where clicking a fruit loads a new page in
the main window. When the page loads in the main window, it will carry the details for the ap-
propriate fruit (to save time, you can use the images and fruit description pages in the code
download, but try to create the frameset and navigation on your own).

❑

❑

c06.indd 240c06.indd 240 11/20/09 4:46:48 PM11/20/09 4:46:48 PM

Chapter 6: Frames

241

 2. Create an < iframe > like the one shown in Figure 6 - 12, where you can load two different docu-
ments inside the iframe window in the current page.

Figure 6-12

Figure 6-13

c06.indd 241c06.indd 241 11/20/09 4:46:48 PM11/20/09 4:46:48 PM

c06.indd 242c06.indd 242 11/20/09 4:46:49 PM11/20/09 4:46:49 PM

 7
Cascading Style Sheets

 Having learned how to structure the content of your documents using XHTML ’ s wide variety of
elements and attributes, you ’ re now going to start making your pages look a lot more exciting.

 You ’ re going to learn how to use cascading style sheets (or CSS for short) to take control of the style
of your pages, including the colors and size of fonts, the width and colors of lines, and the amount of
space between items on the page. The cascading style sheets specification works by allowing you
to specify rules that say how the content of elements within your document should appear. For
example, you can specify that the background of the page is a cream color, the contents of all < p >
elements should be displayed in gray using the Arial typeface, and that all < h1 > elements should
be in red using the Times New Roman typeface.

 In this chapter you learn the following:

 What makes up a CSS rule

 How to place CSS rules within your document and how to link to an external CSS
document

 How properties and values control presentation of different elements within your
document

 How to control the presentation of text using CSS

 How CSS is based on a box model, and how you set different properties for these boxes
(such as width and styles of borders)

 By the end of the chapter, you should be confidently writing CSS style sheets and should have
learned many of the properties you can use to affect the presentation of any document using CSS.

❑

❑

❑

❑

❑

c07.indd 243c07.indd 243 11/20/09 4:49:13 PM11/20/09 4:49:13 PM

Chapter 7: Cascading Style Sheets

244

 In the next chapter, you will continue to learn more CSS properties, as well as how CSS can be used to
position the content of elements within a page.

 Introducing CSS
 CSS works by allowing you to associate rules with the elements that appear in a web page. These rules
govern how the content of those elements should be rendered. Figure 7 - 1 shows you an example of a
CSS rule, which is made up of two parts:

 The selector , which indicates which element or elements the declaration applies to (if it applies to
more than one element, you can have a comma - separated list of several elements)

 The declaration , which sets out how the elements referred to in the selector should be styled

❑

❑

Figure 7-1

td

Declaration

Property

Selector

Value

{width:36px;}

 The rule in Figure 7 - 1 applies to all < td > elements and indicates that they should be 36 pixels wide.

 The declaration is also split into two parts, separated by a colon:

 A property , which is the property of the selected element(s) that you want to affect, in this case
the width property.

 A value , which is a specification for this property; in this case it is that the table cells should be 36
pixels wide.

 This is very similar to the way that HTML/XHTML elements can carry attributes and how the attribute
controls a property of the element; the attributes ’ value would be the setting for that property. For
example, a < td > element could have a width attribute whose value is the width you want the table to
be:

 < td width=”36” > < /td >

 With CSS, however, rather than your having to specify the attribute on each instance of the < td >
element, the selector indicates that this one rule applies to all < td > elements in the document.

❑

❑

c07.indd 244c07.indd 244 11/20/09 4:49:26 PM11/20/09 4:49:26 PM

Chapter 7: Cascading Style Sheets

245

 Here is an example of a CSS rule that applies to several different elements (in this example, the < h1 > ,
 < h2 > , and < h3 > elements). A comma separates the name of each element that this rule will apply to. The
rule also specifies several properties for these elements with each property - value pair separated by a
semicolon. Note how all the properties are kept inside the curly braces:

h1, h2, h3 {
 font-weight:bold;
 font-family:arial;
 color:#000000;
 background-color:#FFFFFF;}

 Even if you have never seen a CSS rule before, you should now have a good idea of what this rule is
doing. There are three heading elements named in the selector (< h1 > , < h2 > , and < h3 >), and this rule says
that where these headings are used they will be written in a bold Arial font in black with a white
background.

 If there is only one property - value pair in the declaration, you do not need to end it with a semicolon.
However, because a declaration can consist of several property - value pairs, and each property - value pair
within a rule must be separated by a semicolon, it is good practice to start adding semicolons every time
you write a rule in case you want to add another rule later. If you forget to add the semicolon, any fur-
ther property - value pairs will be ignored.

 A Basic Example
 Let ’ s have a look at an example that shows how a set of CSS rules can transform the look of an XHTML
page. CSS rules can live inside the XHTML document, although for this example we will be making a
separate file to hold the CSS rules, and the XHTML page will contain a link to this file, which is known
as a style sheet .

 Before we meet the CSS style sheet, take a look at Figure 7 - 2, which shows the XHTML page we will be
styling on its own before the CSS rules have been attached.

Figure 7-2

c07.indd 245c07.indd 245 11/20/09 4:49:27 PM11/20/09 4:49:27 PM

Chapter 7: Cascading Style Sheets

246

 Here is the code for the page you saw in Figure 7 - 2 (ch07_eg01.html). It contains a heading, a
paragraph, and a table. Inside the < head > element is a < link > element that tells the browser where to
find the style sheet that will style this page; the location of the style sheet is given as the value of the
 href attribute. Also look at how some of the < td > elements carry a class attribute whose value is code ;
this is used to distinguish the table cells that contain code from other < td > elements in the document.

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > CSS Example < /title >

 < link rel=”stylesheet” type=”text/css” href=”ch07_eg01.css” / >

 < /head >
 < body >
 < h1 > Basic CSS Font Properties < /h1 >
 < p > The following table shows you the basic CSS font properties that allow
you to change the appearance of text in your documents. < /p >
 < table >
 < tr >
 < th > Property < /th >
 < th > Purpose < /th >
 < /tr >
 < tr >
 < td class=”code” > font-family < /td >
 < td > Specifies the font used. < /td >
 < /tr >
 < tr >

 < td class=”code” > font-size < /td >

 < td > Specifies the size of the font used. < /td >
 < /tr >
 < tr >
 < td class=”code” > font-style < /td >
 < td > Specifies whether the font should be normal, italic or oblique. < /td >
 < /tr >
 < tr >
 < td class=”code” > font-weight < /td >
 < td > Specifies whether the font should be normal, bold, bolder,
 or lighter < /td >
 < /tr >
 < /table >
 < /body >
 < /html >

 Now let ’ s take a look at how to style this page. Figure 7 - 3 shows how the page will look with the style
sheet attached.

c07.indd 246c07.indd 246 11/20/09 4:49:27 PM11/20/09 4:49:27 PM

Chapter 7: Cascading Style Sheets

247

 You can create a CSS style sheet in the same editor you are using to create your XHTML pages; once you
have created a CSS file it is saved with the file extension .css.

 The style sheet for this example, ch07_eg01.css , uses several CSS rules; we will go through them one
at a time so that you can see what each one does.

 Before the first rule, however, there is a comment to tell us which file this style sheet was written for.
Anything between the opening /* and closing */ will be ignored by the browser and therefore will not
have an effect on the appearance of the page:

/* Style sheet for ch07_eg01.html */

 After the comment, the first rule applies to the < body > element. It specifies that the default color of any
text and lines used on the page will be black and that the background of the page should be in white.
The colors here are represented using a hex code (the different ways to specify colors are covered in
detail in Appendix D). It also states that typeface used throughout the document should be Arial. If Arial
is not available, Verdana will be used instead; failing that, it will use its default font group that
corresponds to that generic font group.

body {
 color: #000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif; }

 I always specify a background - color property for the body of a document because some people
change the default background color of the windows on their computers (so that it is not a glaring
white); if you do not set this property, the background color of those users ’ browsers will be whatever
color they have selected.

Figure 7-3

c07.indd 247c07.indd 247 11/20/09 4:49:28 PM11/20/09 4:49:28 PM

Chapter 7: Cascading Style Sheets

248

 The next two rules simply specify the size of the contents of the < h1 > and < p > elements, respectively (as
you will see later in the chapter pt stands for points — a method for specifying the sizes of fonts):

h1 {font-size:18pt;}
p {font-size:12pt;}

 Next, it is time to add a few settings to control the appearance of the table. First we give it a light gray
background. Then, we draw a border around the edge. Three properties are used to describe the
border — the first says it is a solid line (rather than a dashed or dotted line), the second says it should
be 1 pixel thick, and the third specifies that it should be light gray:

table {
 background-color:#efefef;
 border-style:solid;
 border-width:1px;
 border-color:#999999;}

 Within the table, the table headings should have a medium gray background color (slightly darker than
the main body of the table), the text should appear in a bold font, and between the edge of the cell and
the text there should be 5 pixels of padding. (As you will see in more detail later in the chapter, padding is
the term used for space between the edge of a box and the content inside it.)

th {
 background-color:#cccccc;
 font-weight:bold;
 padding:5px;}

 The individual table data cells also have 5 pixels of padding (like the headings). Adding this space
makes the text much easier to read, and without it the text in one column might run up right next to the
text in the neighboring column:

td {padding:5px;}

 Finally, you may have noticed in Figure 7 - 3 that the cells of the table that contained the names of CSS
properties were in a Courier font. If you look at the corresponding table cells in the XHTML document,
they carried a class attribute whose value was code . On its own, the class attribute does not change
the display of the document (as you can see from Figure 7 - 2), but the class attribute does allow you to
associate CSS rules with elements whose class attribute has a specific value. Therefore, the following
rule applies only to < td > elements that carry a class attribute whose value is code , not to all < td >
elements:

td.code {
 font-family:courier, courier-new, serif;
 font-weight:bold;}

 When you want to specify an element whose class attribute has a specific value, you put the value of
that class attribute preceded by a period (or full stop) symbol.

 There you have the first example; you can find the code for this example with the download code for the
rest of the book. This example provides you with an overview of how CSS works. Therefore, for the rest
of this chapter, and the following chapter we need to look at:

c07.indd 248c07.indd 248 11/20/09 4:49:28 PM11/20/09 4:49:28 PM

Chapter 7: Cascading Style Sheets

249

 The properties you can use to control the appearance of various elements, and the values they
can take. The different properties are grouped throughout this chapter and the next. For
example, the properties that affect the appearance of fonts are together, and those that affect
borders are together and so on.

 Different selectors that allow you to specify which elements these properties apply to; the basic
example featured just a few of the many methods you can use to indicate which elements are
controlled by which style rules.

 How CSS treats each element in a web page as if it were in its own box and how this affects the
way in which you lay out web pages.

 Along the way you will also see where you can use CSS rules in your documents, the units of
measurements used in CSS (such as pixels, and percentages), and a very powerful concept called
inheritance.

 If you have used the View Source option in your browser to see how other people have built their web
pages, you will probably be glad to hear that you can also look at other people ’ s style sheets. To do this,
you need to look at the source code for a web page and find the URL for the style sheet (note that it may
be a relative URL); you can then enter the full URL for the stylesheet into the address bar of your
browser and the rules will either appear in the window or your browser will ask if you want to down-
load the style sheet.

 Inheritance
 One of the powerful features of CSS is that, when a property has been applied to one element, it will
often be inherited by child elements (elements contained within the element that the rules were declared
upon). For example, once the font - family property had been declared for the < body > element in the
previous example, it applied to all of the elements inside the < body > element. This saves you from
having to repeat the same rules for every single element that makes up a web page.

 If another rule is more specific about which elements it applies to, then it will override any properties
associated with the < body > element or any other containing element. In the preceding example, most of
the text was in an Arial typeface, as specified in the rule associated with the < body > element, although
there were a few table cells that used a Courier typeface. The table cells that were different had a class
attribute whose value was code :

 < td class=”code” > font-size < /td >

 Here you can see the rule associated with these elements:

td.code {
 font-family:courier, courier-new, serif;
 font-weight:bold;}

 This rule takes precedence over the one associated with the < body > element because the selector is more
specific about which element it applies to.

❑

❑

❑

c07.indd 249c07.indd 249 11/20/09 4:49:28 PM11/20/09 4:49:28 PM

Chapter 7: Cascading Style Sheets

250

 The way in which some properties inherit saves you from having to write out rules and all the property -
 value pairs for each element and makes for a more compact style sheet. Appendix C contains a handy
reference to CSS properties and tells you which ones do and do not inherit.

 Where You Can Add CSS Rules
 The example that you saw at the beginning of the chapter placed the CSS rules in a separate file known
as an external style sheet . CSS rules can also appear in two places inside the XHTML document:

 Inside a < style > element, which sits inside the < head > element of a document

 As a value of a style attribute on any element that can carry the style attribute

 When the style sheet rules are held inside a < style > element in the head of the document, they are
referred to as an internal style sheet.

 < head >
 < title > Internal Style sheet < /title >

 < style type=”text/css” >

 body {
 color:#000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif; }
 h1 {font-size:18pt;}
 p {font-size:12pt;}

 < /style >

 < /head >

 When style attributes are used on XHTML elements, they are known as inline style rules . For example:

 < td style=”font-family:courier; padding:5px; border-style:solid;
border-width:1px; border-color:#000000;” >

 Here you can see that the properties are added as the value of the style attribute. You still need to
separate each property from its value with a colon and each of the property - value pairs from each other
with a semicolon. However, there is no need for a selector here (because the style is automatically
applied to the element that carries the style attribute), and there are no curly braces.

 The style attribute was deprecated in Transitional XHTML and is not allowed in Strict XHTML 1.0
because it introduces stylistic markup to the web page, when it should only contain markup that
explains semantics and structure of the document.

 The < link > Element
 The < link > element is used in web pages to describe the relationship between two documents; for
example, it can be used in an XHTML page to specify a style sheet that should be used to style a page.
You may also see the < link > element used in XHTML pages for other purposes, for example to specify
an RSS feed that corresponds with a page.

❑

❑

c07.indd 250c07.indd 250 11/20/09 4:49:29 PM11/20/09 4:49:29 PM

Chapter 7: Cascading Style Sheets

251

 It is a very different kind of link than the < a > element because the two documents are automatically
associated — the user does not have to click anything to activate the link.

 The < link > element is always an empty element, and when used with style sheets it must carry
three attributes: type , rel , and href . Here is an example of the < link > element used in an XHTML
page indicating that it should be styled by a CSS file called interface.css , which lives in a
subdirectory called CSS :

 < link rel=”stylesheet” type=”text/css” href=”../CSS/interface.css” / >

 In addition to the core attributes, the < link > element can also take the following attributes:

charset dir href hreflang media rel rev style target type

 You have met many of these already, so the more important ones are discussed in the following sections
along with some of the less common ones.

 The rel Attribute
 The rel attribute is required and specifies the relationship between the document containing the link
and the document being linked to. The key value for working with style sheets is stylesheet .

rel=”stylesheet”

 The other possible values for this element are discussed in Chapter 1.

 The type Attribute
 The type attribute specifies the MIME type of the document being linked to; in this case, we are dealing
with a CSS style sheet, so the MIME type is text/css :

type=”text/css”

 The other MIME types are listed in Appendix H.

 The href Attribute
 The href attribute specifies the URL for the document being linked to.

href=”../stylesheets/interface.css”

 The value of this attribute can be an absolute or relative URL (which were covered in Chapter 2), but it is
usually a relative URL because the style sheet is part of the site.

 The hreflang Attribute
 The hreflang attribute specifies the language that the resource specified is written in. When used, its
value should be one of the language codes specified in Appendix G.

hreflang=”en-US”

c07.indd 251c07.indd 251 11/20/09 4:49:29 PM11/20/09 4:49:29 PM

Chapter 7: Cascading Style Sheets

252

 The media Attribute
 The media attribute specifies the output device that is intended for use with the document:

media=”screen”

 While this attribute is not always used, it is becoming increasingly important as people access the
Internet in different ways using different devices. See the following table for the possible values.

 Value Uses

 screen Non - paged computer screens (such as desktop computers and laptops)

 tty Media with a fixed - pitch character grid, such as teletypes, terminals, or
portable devices with limited display capabilities

 tv TV devices with low - resolution, color screens, and limited ability to scroll
down pages

 print Printed documents, which are sometimes referred to as paged media (and
documents shown onscreen in print preview mode)

 projection Projectors

 handheld Handheld devices, which often have small screens, rely upon bitmapped
graphics, and have limited bandwidth

 braille Braille tactile feedback devices

 embossed Braille paged printers

 aural Speech synthesizers

 all Suitable for all devices

 The < style > Element
 The < style > element is used inside the < head > element to contain style sheet rules within a web page,
rather than linking to an external document. It is also sometimes used when a single page needs to
contain just a few extra rules that do not apply to the other pages of the site which all share the same
style sheet.

 For example, here is a style sheet attached to the XHTML document using the < link > element you just
learned about, as well as a < style > element containing an additional rule for < h1 > elements:

 < head >
 < title >
 < link rel=”stylesheet” type=”text/css” href=”../styles/mySite.css” / >

 < style type=”text/css” >
 h1 {color:#FF0000;}
 < /style >

 < /head >

c07.indd 252c07.indd 252 11/20/09 4:49:30 PM11/20/09 4:49:30 PM

Chapter 7: Cascading Style Sheets

253

 When you use the < style > element it should always carry the type attribute. Here is a full list of the
attributes it can carry:

dir lang media title type

 Some browsers also support the id and src attributes although they are not part of any W3C
recommendation.

 Advantages of External CSS Style Sheets
 If two or more documents are going to use a style sheet, you should use an external style sheet. There are
several reasons for this, including:

 It saves you repeating the same style rules in each page.

 You can change the appearance of several pages by altering just the style sheet rather than each
individual page. This means it is easier to update your site if you want to, for example, change
the style of font used in all headings or alter the color of all links.

 Once a visitor to your site has downloaded the CSS style with the first page of your site that
uses it, subsequent pages will be quicker to load (because the browser retains a copy of the CSS
style sheet and the rules do not have to be downloaded for every page). This also puts less strain
on the server (the computer that sends the web pages to the people viewing the site) because the
pages it sends out are smaller.

 The style sheet can act as a style template to help different authors achieve the same style of
document without learning all of the individual style settings.

 Because the web pages do not contain the style rules, different style sheets can be attached to the
same document. So you can use the same XHTML document with one style sheet when the
viewer is on a desktop computer, another style sheet when the user has a handheld device,
another style sheet when the page is being printed, another style sheet when the page is being
viewed on a TV, and so on. You can reuse the same document with different style sheets for
different visitors ’ needs.

 A style sheet can import and use styles from other style sheets, allowing for modular
development and good reuse. (For example, I have a style sheet that I import into other style
sheets whenever I want to include examples of programming code in a web page — I do not need
to write the style rules again and again.)

 If you remove the style sheet, you can make the site more accessible for those with visual
impairments, because you are no longer controlling the fonts and color schemes.

 It is fair to say, therefore, that whenever you are writing a whole site, you should be using an external
style sheet to control the presentation of it (rather than putting CSS rules in the individual web pages),
although as you will see in the next chapter you might use several external style sheets for different
aspects of the site.

❑

❑

❑

❑

❑

❑

❑

c07.indd 253c07.indd 253 11/20/09 4:49:30 PM11/20/09 4:49:30 PM

Chapter 7: Cascading Style Sheets

254

 CSS Properties
 You now know that styling a web page using CSS involves creating rules, and that these rules contain
two parts: firstly, a selector to indicate which elements the rule applies to, and secondly, one or more
properties which control the presentation of these elements.

 So, if there is a part of the page that you want to make a certain color or size, then you need to find the
corresponding property to control those elements.

 The properties are grouped together into related functionality; for example, there are properties that
allow you to control the presentation of tables, lists, and backgrounds. The following table shows the
main properties available to you, all of which you meet in this chapter or Chapter 8.

FONT

font

font-family

font-size

font-size-adjust

font-stretch

font-style

font-variant

font-weight

TEXT

color

direction

letter-spacing

text-align

text-decoration

text-indent

text-shadow

text-transform

unicode-bidi

white-space

word-spacing

BACKGROUND

background

background-attachment

background-color

background-image

background-position

background-repeat

BORDER

border

border-color

border-style

border-width

border-bottom

border-bottom-color

border-bottom-style

border-bottom-width

border-left

border-left-color

border-left-style

border-left-width

border-right

border-right-color

border-right-style

border-right-width

border-top

border-top-color

border-top-style

border-top-width

MARGIN

margin

margin-bottom

margin-left

margin-right

margin-top

PADDING

padding

padding-bottom

padding-left

padding-right

padding-top

c07.indd 254c07.indd 254 11/20/09 4:49:30 PM11/20/09 4:49:30 PM

Chapter 7: Cascading Style Sheets

255

DIMENSIONS

height

line-height

max-height

max-width

min-height

min-width

width

POSITIONING

bottom

clip

left

overflow

right

top

vertical-align

z-index

OUTLINES

outline

outline-color

outline-style

outline-width

TABLE

border-collapse

border-spacing

caption-side

empty-cells

table-layout

LIST and MARKER

list-style

list-style-image

list-style-position

list-style-type

marker-offset

GENERATED CONTENT

content

counter-increment

counter-reset

quotes

CLASSIFICATION

clear

cursor

display

float

position

visibility

 There are some properties that I will not be covering in this book either because they are very rarely used
or because there is little support for them. (For example, I avoid covering aural style sheets because there
are not many aural browsers that support them.) You can find out more about these properties on the
following web sites or you can pick up a book dedicated to CSS:

 www.w3.org/style/css/

 www.devguru.com/Technologies/css/quickref/css_index.html

 www.w3schools.com/css/css_reference.asp

 Controlling Text
 Several properties allow you to control the appearance of text in your documents. These can be split into
two groups:

 Those that directly affect the font and its appearance (including the typeface used, whether it is
regular, bold or italic, and the size of the text)

 Those that would have the same effect on the text irrespective of the font used (these include
color of the text and the spacing between words or letters)

❑

❑

❑

❑

❑

c07.indd 255c07.indd 255 11/20/09 4:49:31 PM11/20/09 4:49:31 PM

Chapter 7: Cascading Style Sheets

256

 The following table lists the properties that directly affect the font (the first of these two groups):

 Property Purpose

 font Allows you to combine several of the following properties
into one

 font - family Specifies the typeface or family of font that should be used

 font - size Specifies the size of a font

 font - weight Specifies whether the font should be normal or bold

 font - style Specifies whether the font should be normal, italic, or oblique

 font - stretch Allows you to control the width of the actual characters in a font

 font - variant Specifies whether the font should be normal or small caps

 font - size - adjust Allows you to alter the aspect ratio of the size of the font's
characters

 Before looking at these properties in detail, it helps to understand some key terms used in typography.
Perhaps most importantly, a font is not the same thing as a typeface:

 A typeface is a family of fonts, such as the Arial family.

 A font is a specific member of that family, such as Arial 12 - point bold.

 You will often see the terms used interchangeably, but it is helpful to be aware of the distinction.

 Typefaces tend to belong to one of two groups: serif and sans - serif fonts. Serif fonts have extra curls on
letters. For example, if you look at Figure 7 - 4, the first l contains a serif on the top of the letter and at the
bottom of the letter, whereas sans - serif fonts have straight ends to the letters, such as in the second
example. The third common style of a typeface is a monospaced serif font. Every letter in a monospaced
font is the same width, whereas non - monospaced fonts have different widths for different letters. (For
example, in serif and sans - serif fonts, the l tends to be narrower than the m .)

❑

❑

Figure 7-4
serif font sans-serif font monospace font

c07.indd 256c07.indd 256 11/20/09 4:49:31 PM11/20/09 4:49:31 PM

Chapter 7: Cascading Style Sheets

257

 Serif fonts are generally assumed to be easier to read for long periods of printed text. But on the Internet
many people find serif fonts harder to read for long stretches, largely because the resolution of a
computer screen is not as good as printed documents, which makes the less detailed sans - serif fonts
easier to read.

 So that we can study the properties that affect fonts, most of the examples in the following section will
use a similar structure; paragraphs of text will be repeated, and each < p > element will carry a class
attribute with a different value — for example:

 < p class=”one” > Here is some text in a sans-serif font. < /p >
 < p class=”two” > Here is some text in a serif font. < /p >
 < p class=”three” > Here is some text in a monospaced font. < /p >

 You can then see how different properties affect each < p > element by writing a separate rule for each
paragraph. You can use the value of the class attributes in the CSS selectors to create rules that apply
just to one < p > element at a time.

 The font - family Property
 The font - family property allows you to specify the typeface that should be used for any text inside the
element(s) that a CSS rule applies to.

 When choosing typefaces it is important to know that browsers can only display XHTML text in the font
you have specified if that typeface is installed on that computer. So, if you specified a font such as Futura
or Garamond, and I do not have them on my computer, I would see the text in a different font — not the
one you specified.

 This is why, if you look at a selection of web sites, you will notice that most rely heavily on a very small
selection of typefaces installed on most computers that access the Web, in particular Arial, Courier/
Courier New, Georgia, Times/Times New Roman, and Verdana. (From this list, Arial and Verdana are
particularly popular because they are considered easy to read online.)

 To help matters, you can specify a list of typefaces so that, if the user does not have your first choice of
typeface installed on their computer, the browser can try to show the text in your second or third choice.
Each typeface in the list is separated by a comma, and if the name contains spaces (such as times new
roman or courier new) you should place the name of the typeface in double quotation marks (ch07_
eg02.css), like so:

p.one {font-family:arial, verdana, sans-serif;}
p.two {font-family:times, “times new roman”, serif;}
p.three {font-family:courier, “courier new”, monospace;}

 Figure 7 - 5 shows what this example would look like in a browser; you can see the different types of fonts
used for each paragraph (ch07_eg02.html).

c07.indd 257c07.indd 257 11/20/09 4:49:32 PM11/20/09 4:49:32 PM

Chapter 7: Cascading Style Sheets

258

 You may notice that each list of typefaces in the previous example ends with so - called generic font names
(sans - serif, serif, and monospace). The idea behind these is that each computer will have a font that
corresponds to one of five generic font groups (sans - serif, serif, monospace, cursive, and fantasy), and if
it cannot find the typefaces you have specified, it can use its choice of font that corresponds to that
generic font group:

 Generic font name Type of font Example

 serif Fonts with serifs Times

 sans - serif Fonts without serifs Arial

 monospace Fixed - width fonts Courier

 cursive Fonts that emulate handwriting Comic Sans

 fantasy Decorative fonts for titles and so on Impact

 One thing to keep in mind when choosing a list of fonts is that each font can be of different heights or
widths, so you will probably want to choose a list of fonts that are of a similar size (otherwise the layout
could look very different to what you would expect). For example, Courier New is quite short and wide,
so if this was your first choice it would not be good to have Impact as a second choice because Impact is
quite tall and narrow.

 When designers want to use a specific typeface that is not likely to be on the majority of users ’
computers, they often use a GIF image for that text. It is generally frowned upon to use images for large
sections of text, but for logos or headings and other small amounts of text, this is a good solution. If you
do this, remember that you must provide the text that would be seen in the image as the value of the alt
attribute.

Figure 7-5

c07.indd 258c07.indd 258 11/20/09 4:49:32 PM11/20/09 4:49:32 PM

Chapter 7: Cascading Style Sheets

259

 There are several efforts to allow web designers to use fonts that the public are not likely to have on their
computers. Apart from using images, two you might like to consider are: SIFR, which uses a combination of
Flash and JavaScript (http://novemberborn.net/sifr), and Typekit (http://typekit.com/).

 The font - size Property
 The font - size property enables you to specify a size for the font. You will often see the value for this
property specified in pixels, like so:

p.twelve {font-size:12px;}

 However, there are many other ways you can provide a value:

 Length (along with pixels, there are several other units of length which you will learn about in
the section “ Lengths ” later in this chapter)

px em ex pt in cm pc mm

 Absolute size (each of these values corresponds to a fixed size)

xx-small x-small small medium large x-large xx-large

 Relative size (this value is relative to the surrounding text)

smaller larger

 Percentage (a percentage is calculated as a proportion of the element that contains the text)

2% 10% 25% 50% 100%

 The use of percentages rather than pixels is becoming increasingly widespread because it allows users to
increase and decrease the sizes of fonts if they are having trouble reading them.

 Here is an example of each of these ways to specify a value for the font - size property:

p.one {font-size:xx-small;}
p.twelve {font-size:12px;}
p.thirteen {font-size:3pc;}
p.fourteen {font-size:10%;}

 Figure 7 - 6 shows you how a selection of these font sizes work in the browser. (ch07_eg03.html
and ch07_eg03.css contain several examples of different ways of specifying size and compare how
they look.)

❑

❑

❑

❑

c07.indd 259c07.indd 259 11/20/09 4:49:32 PM11/20/09 4:49:32 PM

Chapter 7: Cascading Style Sheets

260

Figure 7-6

c07.indd 260c07.indd 260 11/20/09 4:49:33 PM11/20/09 4:49:33 PM

Chapter 7: Cascading Style Sheets

261

 The font - weight Property
 Most fonts have different variations, such as bold and italic. When typographers create a new font, it is
not unusual for them to individually craft a separate, thicker version of each character for the bold
variation.

 Despite all this careful work, rather than finding the bold version of a typeface, browsers tend to use an
algorithm that takes the normal version of the font and makes it thicker. Because it uses an algorithm, it
means you can also create a lighter version of fonts, too. This is what the font - weight property is for.

 The possible values for font - weight are:

normal bold bolder lighter 100 200 300 400 500 600 700 800 900

 The following example uses several of these values (ch07_eg04.css):

p.one {font-weight:normal;}
p.two {font-weight:bold;}
p.three {font-weight:normal;}
p.three span {font-weight:bolder;}
p.four {font-weight:bold;}
p.four span {font-weight:lighter;}
p.five {font-weight:100;}
p.six {font-weight:200;}

 Figure 7 - 7 shows you how these values appear in the browser (ch07_eg04.html).

Figure 7-7

 Of these values, bold is most commonly used, although you might also come across the use of normal
(especially if a large section of text is already bold and an exception has to be created where just a few
words are not in bold).

c07.indd 261c07.indd 261 11/20/09 4:49:33 PM11/20/09 4:49:33 PM

Chapter 7: Cascading Style Sheets

262

 The font - style Property
 The font - style property allows you to specify that a font should be normal , italic , or oblique , and
these are the values of the font - style property; for example:

p.one {font-style:normal;}
p.two {font-style:italic;}
p.three {font-style:oblique;}

 Figure 7 - 8 shows you how these values appear in the browser (from ch07_eg05.css).

Figure 7-8

 In typography, an italic version of a font would normally be a specifically stylized version of the font
based on calligraphy, whereas an oblique version of font would take the normal version of the font and
place it at an angle. In CSS, when you specify a font - style property should be italic , browsers will
usually take the normal version of the font and simply render it at an angle (as you would expect with
an oblique version of a font).

 The font - variant Property
 There are two possible values for the font - variant property: normal and small - caps . A small caps
font looks like a smaller version of the uppercase letterset.

 For example, look at the following paragraph, which contains a < span > with a class attribute (ch07_
eg06.html):

 < p > This is a normal font, but then < span class=”smallcaps” > there
are some small caps < /span > in the middle. < /p >

 Now look at the style sheet (ch07_eg06.css):

p {font-variant:normal;}
span.smallcaps {font-variant:small-caps;}

 As you can see from Figure 7 - 9, the rule associated with the < span > element indicates that its content
should be shown in small caps.

c07.indd 262c07.indd 262 11/20/09 4:49:33 PM11/20/09 4:49:33 PM

Chapter 7: Cascading Style Sheets

263

 The font - stretch Property
 At the time of this writing, there was no support for this property in the main browsers (IE8 and Firefox
3), but I shall mention it for those interested in type. In the same way that some typefaces have
condensed and extended versions with thinner or thicker characters, the font - stretch property sets
the width of the characters in a font. It can take the following fixed values:

ultra-condensed extra-condensed condensed semi-condensed semi-expanded
expanded extra-expanded ultra-expanded

 Or it can take relative values, where the value is in relation to that of the containing element:

normal wider narrower

 For example, if it were supported, you would be able to make a condensed Arial font using the
following syntax:

p {font-family:arial; font-stretch:condensed;}

 The font - size - adjust Property
 At the time of this writing, the font - size - adjust property does not have any support in the main
browsers (IE8 and Firefox 3), but its purpose is to allow you to change a font ’ s aspect value, which is the
ratio between the height of a lowercase letter x in the font and the height of the font.

 For example, Verdana has an aspect value of 0.58 (which means that when the font ’ s size is 100 px, its
x - height is 58 pixels). Times New Roman has an aspect value of 0.46 (which means that when the font ’ s
size is 100 px, its x - height is 46 pixels). This makes Verdana easier to read at smaller sizes than Times
New Roman. By altering a font ’ s aspect value you can, therefore, change its height.

Figure 7-9

c07.indd 263c07.indd 263 11/20/09 4:49:34 PM11/20/09 4:49:34 PM

Chapter 7: Cascading Style Sheets

264

 Text Formatting
 In addition to the properties that affect the font, there are several properties to affect the appearance
or formatting of your text (independently from the font it is shown in). They are listed in the table
that follows.

 Property Purpose

 color Specifies the color of the text

 text - align Specifies the horizontal alignment of the text within its
containing element

 vertical - align Specifies the vertical alignment of text within containing element

 text - decoration Specifies whether the text should be underlined, overlined,
strikethrough, or blinking text

 text - indent Specifies an indent from the left border for the text

 text - transform Specifies that the content of the element should all be uppercase,
lowercase, or capitalized

 text - shadow Specifies that the text should have a drop shadow

 letter - spacing Controls the width between letters (known to print designers as tracking)

 word - spacing Controls the amount of space between each word

 white - space Specifies whether the white space should be collapsed, preserved,
or prevented from wrapping

 direction Specifies the direction of text (similar to the dir attribute)

 The color Property
 The color property allows you to specify the color of the text. The value of this property can either be a
hex code for a color or a color name. (The way in which colors are specified for the Web is discussed
further in Appendix D.)

 For example, the following rule would make the content of paragraph elements red (ch07_eg07.html):

p {color:#ff0000;}

c07.indd 264c07.indd 264 11/20/09 4:49:34 PM11/20/09 4:49:34 PM

Chapter 7: Cascading Style Sheets

265

 The text - align Property
 The text - alig n property works like the deprecated align attribute would with text. It aligns the text
within its containing element or the browser window. The table that follows displays possible values.

 Value Purpose

 left Aligns the text with the left border of the containing element

 right Aligns the text with the right border of the containing element

 center Centers the content in the middle of the containing element

 justify Spreads the width across the whole width of the containing element

 Figure 7 - 10 shows you how these would work in a table that is 500 pixels wide.

Figure 7-10

 Here are the rules for each row of this example (ch07_eg08.css):

.leftAlign {text-align:left;}

.rightAlign {text-align:right;}

.center {text-align:center;}

.justify {text-align:justify;}

c07.indd 265c07.indd 265 11/20/09 4:49:34 PM11/20/09 4:49:34 PM

Chapter 7: Cascading Style Sheets

266

 The vertical - align Property
 The vertical - align property is useful when working with inline elements, in particular images
and portions of text. It allows you to control their vertical positioning within the containing element,
for example:

span.footnote {vertical-align:sub;}

 It can take several values, as you can see in the table that follows.

 Value Purpose

 baseline Everything should be aligned on the baseline of the parent element (this is the
default setting).

 sub Makes the element subscript. With images, the top of the image should be on
the baseline. With text, the top of the font body should be on the baseline.

 super Makes the element superscript. With images, the bottom of the image should be
level with the top of the font. With text, the bottom of the descender (the parts
of letters such as g and p that go beneath the line of text) should align with the
top of the font body.

 top The top of the text and the top of the image should align with the top of the
tallest element on the line.

 text - top The top of the text and the top of the image should align with the top of the
tallest text on the line.

 middle The vertical midpoint of the element should be aligned with the vertical
midpoint of the parent.

 bottom The bottom of the text and the bottom of the image should align with the
bottom of the lowest element on the line.

 text - bottom The bottom of the text and the bottom of the image should align with the
bottom of the lowest text on the line.

 This property may also accept a length and a percentage value.

 You can try out all of these in your browser using ch07_eg09.html .

 Figure 7 - 11 shows you some of these values.

c07.indd 266c07.indd 266 11/20/09 4:49:35 PM11/20/09 4:49:35 PM

Chapter 7: Cascading Style Sheets

267

 The text - decoration Property
 The text - decoration property allows you to specify the values shown in the following table.

 Value Purpose

 underline Adds a line under the content.

 overline Adds a line over the top of the content.

 line - through Adds a line through the middle of the content, such as strikethrough text. In
general, this should be used only to indicate text that is marked for deletion.

 blink Creates blinking text (which is generally frowned upon and considered
annoying).

Figure 7-11

c07.indd 267c07.indd 267 11/20/09 4:49:35 PM11/20/09 4:49:35 PM

Chapter 7: Cascading Style Sheets

268

 Here are these properties used on separate paragraphs (ch07_eg10.css):

p.underline {text-decoration:underline;}
p.overline {text-decoration:overline;}
p.line-through {text-decoration:line-through;}
p.blink {text-decoration:blink;}

 Figure 7 - 12 shows you what they look like in Firefox. Note that the blink property works in Firefox but
not in Internet Explorer.

Figure 7-12

 The text - indent Property
 The text - indent property allows you to indent the first line of text within an element. In the following
example it has been applied to the second paragraph:

 < p > This paragraph should be aligned with the left-hand side of the browser. < /p >
 < p class=”indent” > Just the first line of this paragraph should be indented by
3 em, this should not apply to any subsequent lines in the same paragraph. < /p >

 Now, here is the rule that indents the second paragraph (ch08_eg11.css):

.indent {text-indent:3em;}

 You can see what this looks like in Figure 7 - 13.

Figure 7-13

c07.indd 268c07.indd 268 11/20/09 4:49:35 PM11/20/09 4:49:35 PM

Chapter 7: Cascading Style Sheets

269

 The text - shadow Property
 The text - shadow property is supposed to create a drop shadow , which is a dark version of the word just
behind it and slightly offset. This has often been used in print media, and its popularity has meant that is
has gained its own CSS property. The value for this property is quite complicated because it can take a
color followed by three lengths:

.dropShadow {text-shadow: #999999 10px 10px 3px;}

 After the color has been specified, the first two lengths specify how far from the original text the drop
shadow should fall (using X and Y coordinates), while the third specifies how blurred the drop shadow
should be.

 At the time of this writing, this property does not work in IE8 or Firefox 3 (although support is likely to
be added in future versions). The property does work in recent versions of Safari (on Mac), Opera, and
Konqueror. Figure 7 - 14 shows what this example (ch07_eg12.css) looks like in Safari on a Mac.

Figure 7-14

 The text - transform Property
 The text - transform property allows you to specify the case for the content of an element. The possible
values are shown in the table that follows.

 Value Purpose

 none No change should take place.

 capitalize The first letter of every word should be capitalized.

 uppercase The entire content of the element should be uppercase.

 lowercase The entire content of the element should be lowercase.

c07.indd 269c07.indd 269 11/20/09 4:49:35 PM11/20/09 4:49:35 PM

Chapter 7: Cascading Style Sheets

270

 To demonstrate this property, in the following example there are four paragraphs:

 < p class=”none” > This text has not been transformed < /p >
 < p class=”capitalize” > The first letter of each word will be capiltalized < /p >
 < p class=”uppercase” > All of this text will be uppercase < /p >
 < p class=”lowercase” > ALL OF THIS TEXT WILL BE LOWERCASE < /p >

 Here you can see the four different values for the text - transform property in use (ch07_eg13.css):

p.none {text-transform:none;}
p.capitalize {text-transform:capitalize;}
p.uppercase {text-transform:uppercase;}
p.lowercase {text-transform:lowercase;}

 Figure 7 - 15 shows you how the paragraphs would appear in a browser with these styles applied.

Figure 7-15

 The letter - spacing Property
 The letter - spacing property controls something that print designers refer to as tracking : the gap
between letters. Loose tracking indicates that there is a lot of space between letters, whereas tight
tracking refers to letters being squeezed together. No tracking refers to the normal gap between letters
for that font.

 If you want to increase or decrease the spacing between letters, you are most likely to specify this in
pixels or something known as an em (although it can be any unit of length that CSS supports — and we
will be looking at the CSS units of length later in the chapter).

 If you have a section of text where letter spacing has been altered, then you can specify that an element
should have no tracking using the keyword normal .

 The first paragraph of the following example shows normal tracking. The second paragraph shows a gap
of 3 pixels being used between each letter. The third paragraphs shows a gap between each letter of 0.5
em. The final paragraph shows spacing cut by 1 pixel from what it would have been in normal tracking
(ch07_eg14.css):

.two {letter-spacing:3px;}

.three {letter-spacing:0.5em;}

.four {letter-spacing:-1px;}

c07.indd 270c07.indd 270 11/20/09 4:49:36 PM11/20/09 4:49:36 PM

Chapter 7: Cascading Style Sheets

271

 Figure 7 - 16 gives you an indication of what this looks like in a browser.

Figure 7-16

 The word - spacing Property
 The word - spacing property sets the gap between words, and its value should be a unit of length. In the
example that follows (ch07_eg15.css), in the first paragraph there is a standard gap between each of
the words. In the second paragraph the gap is 10 pixels between each of the words. In the final
paragraph the gap has been cut to 1 pixel less than normal spacing:

.two {word-spacing:20px;}

.three {word-spacing:-1px;}

 Figure 7 - 17 gives you an indication of what this looks like.

Figure 7-17

 The white - space Property
 As you saw in Chapter 1, browsers change any two or more spaces next to each other into a single space
and make any carriage returns a single space, too. The white - space property controls whether or not
white space is preserved, offering the same results as the XHTML < pre > element where white space is
preserved and the nowrap attribute where text is only broken onto a new line if explicitly told to. See the
table that follows for the possible values for this property.

c07.indd 271c07.indd 271 11/20/09 4:49:36 PM11/20/09 4:49:36 PM

Chapter 7: Cascading Style Sheets

272

 Value Meaning

 normal Normal white space collapsing rules are followed.

 pre White space is preserved just as in the < pre > element of XHTML, but the
formatting is whatever is indicated for that element (it is not a monospaced font by
default like the < pre > element).

 nowrap Text is broken onto a new line only if explicitly told to with a < br / > element;
otherwise text does not wrap.

 For example, you can use the white - space property like so (ch07_eg16.css):

.pre {white-space:pre;}

.nowrap {white-space:nowrap;}

 You can see both of these properties working in Figure 7 - 18.

Figure 7-18

 The direction Property
 The direction property is rather like the dir attribute and specifies the direction in which the text
should flow. The following table shows the possible values.

 Value Meaning

 ltr The text flows from left to right.

 rtl The text flows from right to left.

 inherit The text flows in the same direction as its parent element.

c07.indd 272c07.indd 272 11/20/09 4:49:36 PM11/20/09 4:49:36 PM

Chapter 7: Cascading Style Sheets

273

 For example, here are rules for two paragraphs indicating different directions for the text (ch07_eg17.
css used with ch07_eg17.html):

p.ltr {direction:ltr;}
p.rtl {direction:rtl;}

 In practice, both IE and Firefox use this property much as the align attribute is used. The value rtl will
simply right - align text, as you can see in Figure 7 - 19. Note, however, that the period (or full stop) is to
the left of the sentence in the paragraph that is supposed to be running right to left.

Figure 7-19

 Text Pseudo - Classes
 While you are learning about text, there are two pseudo - classes that can help you work with text. These
pseudo - classes allow you to render either the first letter or the first line of an element in a different way
than the rest of that element.

 The first - letter Pseudo - Class
 The first - letter pseudo - class allows you to specify a rule just for the first letter of an element. This is
most commonly used on the first character of a new page, either in some magazine articles or in books.

 Here is an example of the first - letter pseudo - class applied to a < p > element that has a class
attribute whose value is introduction . Note how the selector for the element and the first - letter
pseudo - class are separated by a colon (ch07_eg18.css used with ch07_eg18.html):

p.introduction:first-letter {font-size:42px;}

 You can see the effect of this first - letter pseudo - class in Figure 7 - 20 (which also shows the next
pseudo - class we will be looking at).

c07.indd 273c07.indd 273 11/20/09 4:49:37 PM11/20/09 4:49:37 PM

Chapter 7: Cascading Style Sheets

274

 The first - line Pseudo - Class
 The first - line pseudo - class should allow you to render the first line of any paragraph differently
from the rest of the paragraph. Commonly this might be in a bold font so that the reader can clearly see
an introduction (for articles) or the first line (for poems).

 The name of the pseudo - class is separated from the selector for the element by a colon:

p.introduction:first-line {font-weight:bold;}

 It is worth trying this example out in a browser, because if you resize the window so that there is less text
on the first line, you will see how only the first line of text in the browser will be given this new style.
You can see the first - line pseudo - class in action in Figure 7 - 20, which also demonstrates the first -
 letter pseudo - class.

Try It Out Styling the Example Caf é Text

 Now that you ’ ve learned about using CSS to format text, it is time to try putting what you have
learned into practice by starting to add styles to the Example Caf é web site.

 1. We will be creating an external style sheet, so start your text editor and create a file called
 interface.css , and save it in a folder called css along with the rest of the Example Caf é
files. At the beginning of the style sheet add a comment to explain what the style sheet is for:

/* style sheet for Example Cafe */

 2. We want the default font family to be Arial. If the user does not have Arial installed, then we
can suggest Verdana, failing which the computer ’ s default sans - serif font.

body {font-family:arial, verdana, sans-serif;}

 3. It would be nice to have the headings stand out in a different font, so we will have Georgia as
the first choice for headings, and then Times, and finally the default Serif font. I would also
like them to appear in gray rather than black, so we can specify a color for the headings using

Figure 7-20

c07.indd 274c07.indd 274 11/20/09 4:49:37 PM11/20/09 4:49:37 PM

Chapter 7: Cascading Style Sheets

275

the color property (which is discussed in more detail in the following chapter). Because we
are making all headings the same, we should specify the styles in a single rule like so:

h2 {georgia, times, serif;
 color:#666666;}

 4. The paragraphs of text might look a little better slightly smaller than the default size of text,
let ’ s make them 90% of the default size. We will also make the text dark gray rather than
black.

p {font-size:90%;
 color:#333333;}

 5. Now let ’ s look at the navigation. In particular, we want to control the appearance of the links
in the navigation. In order to do this, we are going to have to open the XHTML pages and add
an id attribute to the < div > element that contains the navigation.

 < div id=”navigation” >
 HOME
 < a href=”menu.html” > MENU < /a >
 < a href=”recipes.html” > RECIPES < /a >
 < a href=”opening.html” > OPENING < /a >
 < a href=”contact.html” > CONTACT < /a >
 < /div >

 6. Now we need to add a selector, which will specify that we only want to select < a > elements
that live inside an element that has an id attribute whose value is navigation ; we do this
using the hash or pound symbol followed by the value of the id attribute. We will specify that
these links should be a light blue to match the logo:

#navigation a {color:#3399cc;}

 7. By default, links appear with underlines; we can remove these by using the text -
 decoration property with a value of none :

#navigation a {color:#3399cc;
 text-decoration:none;}

 8. Finally, in the XHTML pages we need to add the < link > element, which will associate the
style sheet with the pages; this should be added to every page:

 < link rel=”stylesheet” type=”text/css” href=”css/interface.css” / >

Now all of the pages in the example should be using this same style sheet and your homepage should
look a little more like the example in Figure 7 - 21.

c07.indd 275c07.indd 275 11/20/09 4:49:37 PM11/20/09 4:49:37 PM

Chapter 7: Cascading Style Sheets

276

Figure 7-21

 Selectors
 So far, you have seen lots of examples of properties that affect the presentation of text, and you have seen
how these properties are applied to elements using style rules. Before we continue to look at more
properties, we need to look at some more fundamental issues. We will start by looking at how you can
use different types of selector to specify which elements a style sheet rule will apply to before going on to
look at the different units of measurements used in CSS.

 You can specify which elements a style sheet rule applies to in several ways, not just by using the names
of the elements as you have seen so far in this chapter (which is, incidentally, known as a simple selector),
or using the value of the class attribute or id attribute. Let ’ s take a look at the different types of selector
that are available to specify which element(s) a CSS rule applies to.

c07.indd 276c07.indd 276 11/20/09 4:49:38 PM11/20/09 4:49:38 PM

Chapter 7: Cascading Style Sheets

277

 Universal Selector
 The universal selector is an asterisk; it is like a wildcard and matches all element types in the document.

*{}

 If you want a rule to apply to all elements, you can use this selector. Sometimes it is used for default
values that will apply to the whole of the document (such as a font - family and font - size) unless
another more specific selector indicates that an element should use different values for these same
properties.

 It is slightly different from applying default styles to the < body > element, as the universal selector
applies to every element and does not rely on the property being inherited from the rules that apply to
the < body > element.

 The Type Selector
 The type selector matches all of the elements specified in the comma - delimited list. It allows you to apply
the same rules to several elements. For example, if you wanted to apply the same rules to different sized
heading elements, the following would match all h1 , h2 , and h3 elements:

h1, h2, h3 {}

 The Class Selector
 The class selector allows you to match a rule with an element (or elements) carrying a class attribute
whose value matches the one you specify in the class selector. For example, imagine you had a < p >
element with a class attribute whose value was BackgroundNote , like so:

 < p class=”BackgroundNote” > This paragraph contains an aside. < /p >

 You can use a class selector in one of two ways here. One way is to simply assign a rule that applies to
any element that has a class attribute whose value is BackgroundNote , like so, preceding the value of
the class attribute with a period or full stop:

.BackgroundNote {}

 Or you can create a selector that selects only the < p > elements that carry a class attribute with a value
of BackgroundNote (not other elements) like so:

p.BackgroundNote {}

 If you have several elements that can all carry a class attribute with the same value (for example a < p >
element and a < div > element could both use the class attribute with the same value) and you want the
content of these elements to be displayed in the same manner, you will want to use the former notation.
If the styles you are defining are specific to just the < p > element whose class attribute has a value of
 BackgroundNote , then you should use the latter notation.

 A class attribute can also contain several values separated by a space — for example:

 < p class=”important code” >

c07.indd 277c07.indd 277 11/20/09 4:49:38 PM11/20/09 4:49:38 PM

Chapter 7: Cascading Style Sheets

278

 You can use the following syntax to indicate an element that has a class attribute whose value contains
both important and code (although IE7 was the first version of Internet Explorer to support this
syntax).

p.important.code {}

 The ID Selector
 The id selector works just like a class selector, but works on the value of id attributes. Rather than using a
period or full stop before the value of the id attribute, you use a hash or pound sign (#). So an element
with an id attribute whose value is abstract can be identified with this selector.

#abstract

 Because the value of an id attribute should be unique within a document, this selector should apply
only to the content of one element (and you should not have to specify the element name).

 The Child Selector
 The child selector matches an element that is a direct child of another. In this case it matches any
 < b > elements that are direct children of < td > elements. The names of the two elements are separated by a
greater - than symbol to indicate that b is a child of td (>) which is referred to as a combinator :

td > b {}

 This would enable you to specify a different style for < b > elements that are direct children of the < td >
element compared with < b > elements that appear elsewhere in the document.

 As a direct child of the < td > element, no other tags would sit between the opening < td > tag and the
 < b > element. For example, the following selector does not make sense because the < b > element should
not be a direct child of a < table > element (instead, a < tr > element is more likely to be the direct child of
a < table > element):

table > b {}

 IE7 was the first version of Internet Explorer to support the child selector.

 The Descendant Selector
 The descendant selector matches an element type that is a descendant of another specified element (or
nested inside another specified element), not just a direct child. While the greater - than symbol is the
combinator for the child selector, for the descendent selector the combinator is the space. Take a look at
this example:

table b {}

 In this case, the selector matches any < b > element that is a child of the < table > element, which means it
would apply to < b > elements both in < td > and < th > elements.

c07.indd 278c07.indd 278 11/20/09 4:49:39 PM11/20/09 4:49:39 PM

Chapter 7: Cascading Style Sheets

279

 This is a contrast to the child selector because it applies to all of the children of the < table > element,
rather than just the direct children.

 The Adjacent Sibling Selector
 An adjacent sibling selector matches an element type that is the next sibling of another. For example, if
you want to make the first paragraph after any level 1 heading a different style from other < p >
elements you can use the adjacent sibling selector like so to specify rules for just the first < p > element to
come after any < h1 > element:

h1+p {}

 IE7 was the first version of Internet Explorer to support the adjacent sibling selector.

 The General Sibling Selector
 The general sibling selector matches an element type that is a sibling of another, although it does not have
to be the directly preceding element. So, if you had two < p > elements that are siblings of an < h1 >
element, they would both use the rules of this selector.

h1~p {}

 The general sibling selector is part of CSS3; IE7 was the first version of Internet Explorer to support the
general sibling selector and Firefox 2 was the first version of Firefox to support it.

 Using Child and Sibling Selectors To Reduce Dependence
on Classes in Markup

 The child and adjacent sibling selectors are both very important because they can reduce the number of
 class attributes you need to add into an XHTML document.

 It is very easy to add classes for all kinds of eventualities. For example, if you wanted the first paragraph
after an < h1 > element to be shown in bold, you might have been tempted to add a class attribute to the
first < p > element after every < h1 > element. While this would work, your markup can be littered with all
kinds of classes that are only there to make it easier to control the presentation of the pages.

 If you then decided you wanted the first two < p > elements after every < h1 > element to be bold, you
might have to go back and add in new class attributes for the second < p > elements after every < h1 >
element. So the child and adjacent sibling selectors add a lot of flexibility to how you style documents
and can make for much cleaner markup.

 Take a look at the following XHTML content (ch07_eg19.html):

c07.indd 279c07.indd 279 11/20/09 4:49:39 PM11/20/09 4:49:39 PM

Chapter 7: Cascading Style Sheets

280

 < p > Paragraph One: not inside a div element. < /p >
 < div >
 < p > Paragraph One: inside a div element < /p >
 < p > Paragraph Two: inside a div element < /p >
 < p > Paragraph Three: inside a div element < /p >
 < p > Paragraph Four: inside a div element < /p >
 < p > Paragraph Five: inside a div element < /p >
 < /div >

 Using the adjacent and adjacent sibling and child selectors only, you are going to create a page that looks
like the one shown in Figure 7 - 22.

Figure 7-22

 The three different paragraph styles are as follows:

 The first paragraph has no border or background color.

 The paragraphs inside the < div > element all have borders.

 The last three paragraphs have a gray background as well as their border.

 I have not used three different classes to specify different paragraph styles; rather, I have one rule that
controls the font used for all paragraphs:

p {font-family:arial, verdana, sans-serif;}

 The following is the second rule for any paragraph that is a child of a < div > element. (Because the first
paragraph is not inside a < div > element, the rule does not apply to the first paragraph.)

div > p {border:1px solid #000000;}

 The third rule matches any paragraph that is also a third consecutive < p > element. (Because the fourth
and fifth < p > elements have two previous < p > elements, this rule applies to them, as well as the third
 < p > element inside the < div > .)

p+p+p {background-color:#999999;}

 Remember that this example will not work in IE6 or earlier versions of Internet Explorer, as these
selectors were first introduced in IE7.

❑

❑

❑

c07.indd 280c07.indd 280 11/20/09 4:49:39 PM11/20/09 4:49:39 PM

Chapter 7: Cascading Style Sheets

281

 Attribute Selectors
 Attribute selectors enable you to use the attributes that an element carries, and their values, in the
selector. There are several types of attribute selector and they allow far more complex ways of selecting
elements in a document.

 The use of attribute selectors is fairly limited because they have only been supported in the latest
versions of browsers. Some of the attribute selectors in the following table are from CSS3, which has not
yet been completed.

 Name Example Matches

 Existence selector p[id] Any < p > element carrying an attribute
called id .

 Equality selector p[id= ” summary ”] Any < p > element carrying an attribute
called id whose value is summary .

 Space selector p[class~= ” XHTML ”] Any < p > element carrying an attribute
called class , whose value is a list of
space - separated words, one of which is
exactly the same as XHTML .

 Hyphen selector p[language|= ” en ”] Any < p > element carrying an attribute
called language whose value begins
with en and is followed with a hyphen
(this particular selector is designed for
use with language attributes).

 Prefix selector (CSS3) p[attr^ ” b ”] Any < p > element carrying any attribute
whose value begins with b . (CSS3)

 Substring selector (CSS3) p[attr* ” on ”] Any < p > element carrying any attribute
whose value contains the letters on .
(CSS3)

 Suffix selector (CSS3) p[attr$ ” x ”] Any < p > element carrying any attribute
whose value contains the ends in the
letter x . (CSS3)

 Internet Explorer implemented these attribute selectors in IE7, and in order for them to work,
the XHTML document must have the strict !DOCTYPE declaration. Firefox started to support them
in Firefox 2.

 Let ’ s have a look at an example of using these attribute selectors; here are seven different paragraph
elements, each carrying different attributes/attribute values (ch07_eg20.html):

c07.indd 281c07.indd 281 11/20/09 4:49:40 PM11/20/09 4:49:40 PM

Chapter 7: Cascading Style Sheets

282

 < p id=”introduction” > Here’s paragraph one; each paragraph has different
attributes. < /p >
 < p id=”summary” > Here’s paragraph two; each paragraph has different
attributes. < /p >
 < p class=”important XHTML” > Here’s paragraph three; each paragraph has
different attributes. < /p >
 < p language=”en-us” > Here’s paragraph four; each paragraph has different
attributes. < /p >
 < p class=”begins” > Here’s paragraph five; each paragraph has different
attributes. < /p >
 < p class=”contains” > Here’s paragraph six; each paragraph has different
attributes. < /p >
 < p class=”suffix” > Here’s paragraph seven; each paragraph has different
attributes. < /p >

 Now let ’ s look at a CSS style sheet that uses attribute selectors to associate different style rules with each
of these elements (ch 07_eg20.css):

p[id] {border:1px solid #000000;}
p[id=”summary”] {background-color:#999999;}
p[class~=”XHTML”] {border:3px solid #000000;}
p[language|=”en”] {color:#ffffff; background-color:#000000;}
p[class^=”b”]{border:3px solid #333333;}
p[class*=”on”] {color:#ffffff; background-color:#333333;}
p[class$=”x”] {border:1px solid #333333;}

 You can see the result in Firefox 3.0 in Figure 7 - 23.

Figure 7-23

 Because XHTML is case - sensitive, all selectors should match the case of the element name that they are
supposed to match.

c07.indd 282c07.indd 282 11/20/09 4:49:40 PM11/20/09 4:49:40 PM

Chapter 7: Cascading Style Sheets

283

 Lengths
 You have already seen that the values of some CSS properties are given as lengths (such as the size of
fonts, height of lines of text, and gaps between words and letters), and you will come across more
properties whose values are expressed as lengths later in the chapter. So, let ’ s take a moment to look at
the three ways lengths can be specified in CSS:

 Relative units

 Absolute units

 Percentages

 Relative Units
 There are three types of relative units: pixels, which relate to the resolution of the screen, and em ’ s and
ex ’ s both of which relate to the size of fonts.

 px
 The pixel , referred to in code as px , is by far the most commonly used unit of length in CSS. A pixel is the
smallest unit of resolution on a screen and if you look very closely at your screen you might just be able
to see the square dots that are the pixels.

 Technically, the size of a layout that uses pixels as a unit of measurement can depend upon the viewing
medium (keep reading to see why I say “ can ”), which is why it is counted as a relative unit.

 Most computer screens have a resolution of 72 dots per inch (dpi), but you will find that laser and bubble
jet printers are usually set with a higher resolution — my current printer runs at 300 dpi. In contrast,
mobile devices can have a lower resolution than computer screens or (in the case of some smart phones
such as the iPhone) a higher resolution.

 So, a table that is 500 pixels wide could be 9.9444 inches wide on a 72 dpi screen, 1.666 inches wide at
300 dpi, or 13.888 inches wide on a 32 dpi screen (and a screen that is only 32 dpi is unlikely to be that
much over 13 inches wide).

 In reality, when you print a web page from your browser, it will adjust the pixels to present a readable
version of the document. In fact, CSS recommends that in such cases user agents rescale pixel units so
that reading at arm ’ s length 1 pixel would correspond to about 0.28 mm or 1

90 of an inch.

 em
 An em is equivalent to the height of the current font, and because the size of fonts can vary throughout a
document, the height of the em unit can be different in different parts of the document. Furthermore,
because users can change the size of text in their browser, the em unit is capable of varying in relation to
the size of the text that the user has selected.

 This means that the em unit is most commonly used for measurements of elements that contain text and
for controlling spacing between text (for example it can be used in the line - height property to set the
gaps between lines of text in relation to their height).

❑

❑

❑

c07.indd 283c07.indd 283 11/20/09 4:49:40 PM11/20/09 4:49:40 PM

Chapter 7: Cascading Style Sheets

284

 While the em unit is equivalent to the height of a font, it is often thought to have derived from the width
of a lowercase m ; you may also hear the term en , which equates to half an em .

 ex
 The ex should be the height of a lowercase x . Because different fonts have different proportions, the ex is
related to the font size and the type of font. In Figure 7 - 24, you can see the x in the Courier typeface is
smaller than the x in the Impact typeface.

Figure 7-24

 Absolute Units
 Generally speaking, absolute units are used far less than relative units (and you will rarely come across
designs that use these units of measurement). The following table shows the absolute units that are used
in some CSS properties.

 Unit Full Name

 pt A point

 pc A pica

 in An inch

 cm A centimeter

 mm A millimeter

 I shouldn ’ t really need to clarify inches, millimeters, or centimeters, but the other two are more
interesting. A point is 1

72 of an inch (the same as a pixel in most computer screen resolutions), and a pica
is 1

12 of an inch (12 points). Typographers tend to use points to measure font sizes and leading (the gaps
between lines), while picas are used to measure line lengths.

 Percentages
 Percentages give a value in relation to another value. For example, if your page only contained two
paragraphs, and you wanted each to take up half of the width of the browser, then the paragraphs might
be given a width property with a value of 50% . However, if the < p > element were inside another element
that you knew was 500 pixels wide, they would take up 50 percent of the width of that containing
element (or 250 pixels) each.

c07.indd 284c07.indd 284 11/20/09 4:49:41 PM11/20/09 4:49:41 PM

Chapter 7: Cascading Style Sheets

285

 Introducing the Box Model
 The box model is a very important concept in CSS because it determines how elements are positioned
within the browser window. It gets its name because CSS treats every element as if it were in a box .

 As you can see in the table that follows, every box has three properties you must be aware of.

 Property Description

 border Even if you cannot see it, every box has a border. This separates the edge of one
box from other surrounding boxes.

 margin The margin is the distance between the border of a box and the box next to it.

 padding This padding is the space between the content of the box and its border.

 You can get a better idea of these properties in Figure 7 - 25, which shows the various parts of the box
(the black line is the border).

Figure 7-25

margin–top

padding–top

margin–bottom

padding–bottom

m
a
r
g
i
n
–
r
i
g
h
t

p
a
d
d
i
n
g
–
r
i
g
h
tm

a
r
g
i
n
–
l
e
f
t

p
a
d
d
i
n
g
–
l
e
f
t

 You can use CSS to individually control the border, margin, and padding on each side of a box; you can
specify a different width, line - style and color for each side of the boxes ’ border.

 The padding and margin properties are especially important in creating what designers refer to as white
space ; this is the space between the various parts of the page. For example, if you have a box with a black
border and the box contains black text, you would not want the text to touch the border because it
would make the text harder to read. Giving the box padding helps separate the text from the line around
the edge.

 Meanwhile, suppose you have two boxes next to each other, both with borders. If there is not a margin
between them the boxes will run into each other, and the line where the boxes meet could look thicker
than the other lines.

c07.indd 285c07.indd 285 11/20/09 4:49:41 PM11/20/09 4:49:41 PM

Chapter 7: Cascading Style Sheets

286

 There is, however, an interesting issue with margins: when a bottom margin of one element meets the
top margin of another, only the larger of the two will show. (If they are the same size, then the margin
will be equivalent to the size of just one of the margins.) Figure 7 - 26 shows the vertical margins of two
adjacent boxes collapsing (note that this only applies to vertical margins; the same is not true for left and
right margins).

Figure 7-26

Here is a box
with some
content

Here is a box
with some
content

Vertical margins
have collapsed

margin-top

margin-top

padding-top

m
a
r
g
i
n
-
l
e
f
t padding-top

padding-bottom

p
a
d
d
i
n
g
-
r
i
g
h
t

m
a
r
g
i
n
-
r
i
g
h
t

p
a
d
d
i
n
g
-
r
i
g
h
t

m
a
r
g
i
n
-
r
i
g
h
t

padding-bottom

margin-bottom

p
a
d
d
i
n
g
-
l
e
f
t

m
a
r
g
i
n
-
l
e
f
t

p
a
d
d
i
n
g
-
l
e
f
t

 To really understand how the box model works with elements, take a look at the example in
the next section.

 An Example Illustrating the Box Model
 To illustrate the box model we will add a border to each of the elements in a web page. The < body >
element creates one box that contains the whole page, and inside that box each heading, paragraph,
image, or link creates another box. First, here is the XHTML for the page (ch09_eg21.html):

<?xml version=”1.0” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
 <title>Understanding the Box Model</title>
 <link rel=”stylesheet” type=”text/css” href=”ch07_eg19.css” />
</head>
<body>
 <h1>Thinking Inside the Box</h1>
 <p class=”description”>When you are styling a web page with CSS you
 must start to think in terms of boxes.</p>
 <p>Each element is treated as if it generates a new box. Each box can have
 new rules associated with it.</p>

 <p>As you can see from the diagram above, each box has a border.
 Between the content and the border you can have padding, and
 outside of the border you can have a margin to separate this box
 from any neighboring boxes.</p>
</body>
</html>

c07.indd 286c07.indd 286 11/20/09 4:49:42 PM11/20/09 4:49:42 PM

Chapter 7: Cascading Style Sheets

287

 Using just one CSS rule you can see how each element involved with the body of the document —
 < body > , < h2 > , < p > , < img > , and < b > — gets treated as if it were in a separate box. You can do this by
adding a CSS rule that will add a border around each of these elements, you will learn more about these
properties shortly (ch07_eg21.css).

body, h1, p, img, b {
 border-style:solid;
 border-width:2px;
 border-color:#000000;
 padding:2px;}

 Each box can be presented differently, for example we can give the < h1 > and < bold > elements a gray
background to help distinguish them from other elements.

h1, b {background-color:#cccccc;}

 Figure 7 - 27 shows you what this page looks like in a browser. While it is not too attractive, the lines
show you the borders of the boxes (and demonstrate how boxes are created for each element).

Figure 7-27

 You may remember from Chapter 1 that there is a difference between block level elements and inline
elements ; the difference becomes quite important when working with CSS because it determines how
each box is displayed.

 The < h1 > and < p > elements are examples of block - level elements. Each block level element
starts on a new line, and the box around a block level element takes up the full width of the
browser (or the full width of the element it sits inside).

 The < b > element is an example of an inline element. Its box sits in the middle of the paragraph
and it does not take up the width of a whole line (it flows within its containing element).

❑

❑

c07.indd 287c07.indd 287 11/20/09 4:49:42 PM11/20/09 4:49:42 PM

Chapter 7: Cascading Style Sheets

288

 The < img / > element may look like it is a block - level element because it starts on its own line, but it is
actually an inline element. You can tell this because the border around it takes up only the width of the
image; if it were a block - level element, the border would reach across the full width of the browser. The
image is on its own line only because the elements on either side of it are block - level elements (and
therefore the surrounding elements appear on their own lines).

 In Strict XHTML, this image element should be placed inside a block - level element, as you are only
supposed to have block - level elements as children of the < body > element. While it does not matter in
Transitional XHTML, you could simply fix this issue by putting the element inside a < div > element
(which you might remember is a block - level grouping element).

 Now that you know how each element is treated as if it were in its own box, let ’ s take a look at the
properties that control the borders, margins, and padding for each box.

 The Border Properties
 The border properties allow you to specify how the border of the box representing an element should
look. There are three properties of a border you can change:

 border - color to indicate the color a border should be

 border - style to indicate whether a border should be a solid, dashed, or double line, or one of
the other possible values

 border - width to indicate the width a border should be

 The border - color Property
 The border - color property allows you to change the color of the border surrounding a box.
For example:

p {border-color:#ff0000;}

 The value can be a color name or a hex code for the color (colors are discussed in greater detail in
Appendix D). It can also be expressed as values for red, green, and blue; between 0 and 255; or
percentages of red, green, and blue. See the table that follows for examples.

 Color Name hex RGB Values RGB Percentages

 red #ff0000 rgb (255 , 0 , 0) rgb (100% , 0 , 0)

 green #00ff00 rgb (0 , 255 , 0) rgb (0 , 100% , 0)

 blue #0000ff rgb (0 , 0 , 255) rgb (0 , 0 , 100%)

❑

❑

❑

c07.indd 288c07.indd 288 11/20/09 4:49:43 PM11/20/09 4:49:43 PM

Chapter 7: Cascading Style Sheets

289

 You can individually change the color of the bottom, left, top, and right sides of a box ’ s border using the
following properties:

 border - bottom - color

 border - right - color

 border - top - color

 border - left - color

 The border - style Property
 The border - style property allows you to specify the line style of the border:

p {border-style:solid;}

 The default value for this property is none , so no border would be shown automatically. The table that
follows shows the possible values.

 Value Description

 none No border. (Equivalent of border - width:0 ;)

 solid Border is a single solid line.

 dotted Border is a series of dots.

 dashed Border is a series of short lines.

 double Border is two solid lines; the value of the border - width property creates the sum
of the two lines and the space between them.

 groove Border looks as though it is carved into the page.

 ridge Border looks the opposite of groove .

 inset Border makes the box look like it is embedded in the page.

 outset Border makes the box look like it is coming out of the canvas.

 hidden Same as none , except in terms of border - conflict resolution for table elements.

 Figure 7 - 28 shows an example of what each of these would look like (taken from ch07_eg22.html).
Note that even though the last four examples in Figure 7 - 27 look very similar, they are different, and you
can try them for yourself with the download code for this example.

 You can individually change the style of the bottom, left, top, and right borders of a box using the
following properties:

❑

❑

❑

❑

c07.indd 289c07.indd 289 11/20/09 4:49:43 PM11/20/09 4:49:43 PM

Chapter 7: Cascading Style Sheets

290

 border - bottom - style

 border - right - style

 border - top - style

 border - left - style

❑

❑

❑

❑

Figure 7-28

 The border - width Property
 The border - width property allows you to set the width of your borders; usually the width is specified
in pixels.

p {border-style:solid;}
 border-width:4px;}

 The value of the border - width property cannot be given as a percentage, although you could use any
absolute unit or relative unit, or one of the following values:

 thin

 medium

 thick

 The actual width of the thin , medium , and thick values are not specified in the CSS recommendation in
terms of pixels; so the actual width that corresponds to these keywords is dependent on the browser.

 You can individually change the width of the bottom, top, left, and right borders of a box using the
following properties:

 border - bottom - width

 border - right - width

 border - top - width

 border - left - width

❑

❑

❑

❑

❑

❑

❑

c07.indd 290c07.indd 290 11/20/09 4:49:43 PM11/20/09 4:49:43 PM

Chapter 7: Cascading Style Sheets

291

 Expressing Border Properties Using Shorthand
 The border property allows you to specify color, style, and width of lines in one property:

p {border: 4px solid red;}

 If you use this shorthand, the values should not have anything (other than a space) between them. You
can also specify the color, style, and width of lines individually for each side of the box in the same way
using these properties:

 border - bottom

 border - top

 border - left

 border - right

 The padding Property
 The padding property allows you to specify how much space should appear between the content of an
element and its border:

td {padding:5px;}

 The value of this property is most often specified in pixels, although it can use any of the units of length
we met earlier, a percentage, or the word inherit .

 The padding of an element will not inherit by default, so if the < body > element has a padding property
with a value of 50 pixels, this will not automatically apply to all other elements inside it. If the value
 inherit is applied to any elements, only then will they have the same padding as their parent elements.

 If a percentage is used, the percentage is of the containing box, and if the value of 10 percent is specified,
there would be 5 percent of each side of the box as padding.

 You can specify different amounts of padding inside each side of a box using the following properties:

 padding - bottom

 padding - top

 padding - left

 padding - right

 The padding attribute is especially helpful in creating white space between the content of an element
and any border it has. Take a look at the following two paragraphs in Figure 7 - 29.

❑

❑

❑

❑

❑

❑

❑

❑

c07.indd 291c07.indd 291 11/20/09 4:49:44 PM11/20/09 4:49:44 PM

Chapter 7: Cascading Style Sheets

292

 If you look at the CSS rules for these two paragraph elements, you can see that by default the first
paragraph has no padding; it must be specified if you want a gap like the one shown in the second
paragraph (ch07_eg23.css).

.a, .b {border-style:solid;
 border-color:#000000;
 border-width:2px;
 width:100px;}
.b {padding:5px;}

 Sometimes an element may not have a visible border, but it will have a background color or pattern; in
such cases giving the box some padding will help make your design more attractive.

 The margin Property
 The margin property controls the gap between boxes, and its value is either a length, a percentage, or
 inherit , each of which has exactly the same meaning as it did for the padding property you just saw.

p {margin:20px;}

 As with the padding property, the values of the margin property are not inherited by child elements
unless you use the value inherit .

 Also, remember that when one box sits on top of another box, only the larger of the two margins will
show (or if both are equal the size of one margin).

 You can also set different values for the margin on each side of the box using the following properties:

 margin - bottom

 margin - top

 margin - left

 margin - right

❑

❑

❑

❑

Figure 7-29

c07.indd 292c07.indd 292 11/20/09 4:49:44 PM11/20/09 4:49:44 PM

Chapter 7: Cascading Style Sheets

293

 If you look at the following example (see Figure 7 - 30, which shows ch07_eg24.html), you can see three
paragraphs, which look as if they are spaced equally. However, they have taller margins on the top than
the bottom, and therefore where two boxes meet, the bottom margin is ignored: the margins are collapsed
(note that this only happens to the vertical margins, not the left and right margins).

 The example also shows how to set the left and right margins on the side of inline elements — where you
see the highlighted words. Again, this is not the most attractive example, but it illustrates how both
block and inline boxes use margins.

 The words in the paragraphs that are emphasized using the < em > element have margin - left and
 margin - right properties set. Because these < em > elements also have a background color set, you can
really see (in Figure 7 - 30) how the margins to the left and the right separate the words from the
surrounding words.

Figure 7-30

 Here are the rules from ch07_eg24.css :

body {
 color:#000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}
p {
 margin-top:40px;
 margin-bottom:30px;
 margin-left:20px;
 margin-right:20px;
 border-style:solid;

c07.indd 293c07.indd 293 11/20/09 4:49:44 PM11/20/09 4:49:44 PM

Chapter 7: Cascading Style Sheets

294

 border-width:1px;
 border-color:#000000;}
em {
 background-color:#cccccc;
 margin-left:20px;
 margin-right:20px;}

 Dimensions of a Box
 Now that you ’ ve seen the border that surrounds every box, the padding that can appear inside the
border of each box, and the margin that can go outside the border, it is time to look at the properties that
allow you to control the dimensions of boxes.

 Property Purpose

 height Sets the height of a box

 width Sets the width of a box

 line - height Sets the height of a line of text (like leading in a layout program)

 max - height Sets the maximum height for a box

 min - height Sets the minimum height for a box

 max - width Sets the maximum width for a box

 min - width Sets the minimum width for a box

 The height and width Properties
 The height and width properties allow you to set the height and width for boxes. They can take values
of a length, a percentage, or the keyword auto (the default value being auto, which means the box is
just large enough to house its contents).

 Here you can see the CSS rules for two paragraph elements, the first with a class attribute whose value
is one and the second whose class attribute has a value of two (ch07_eg25.css):

p.one {
 width:200px; height:100px;
 padding:5px; margin:10px;
 border-style:solid; border-color:#000000; border-width:2px;}
p.two {
 width:300px; height:100px;
 padding:5px; margin:10px;
 border-style:solid; border-color:#000000; border-width:2px;}

c07.indd 294c07.indd 294 11/20/09 4:49:45 PM11/20/09 4:49:45 PM

Chapter 7: Cascading Style Sheets

295

 As you can see in Figure 7 - 31, the first paragraph will be 200 pixels wide and 100 pixels high, while the
second paragraph will be 300 pixels wide and 100 pixels high.

Figure 7-31

 The most common unit of measurement for boxes is pixels, although percentages and ems are often used
in layouts that stretch and contract to fit the size of the browser window.

 The line - height Property
 The line - height property is one of the most important properties when laying out text. It allows you
to increase the space between lines of text (known to print designers as leading).

 The value of the line - height property can be a length or a percentage. It is a good idea to specify this
property in the same measurement in which you specify the size of your text.

 Here you can see two rules setting different line - height properties (ch07_eg26.css):

p.two {
 line-height:16px;}
p.three {
 line-height:28px;}

 As you can see in Figure 7 - 32, the first paragraph does not have a line - height attribute, whereas the
second and third paragraphs correspond to the preceding rules. Adding some extra height between each
line of text can often make it more readable, especially in longer articles.

c07.indd 295c07.indd 295 11/20/09 4:49:45 PM11/20/09 4:49:45 PM

Chapter 7: Cascading Style Sheets

296

 In long paragraphs I try to use leading of around 1.5 times the height of the font. This property can also
be helpful when you need to add spacing around single lines of text.

 The max - width and min - width Properties
 The max - width and min - width properties allow you to specify a maximum and a minimum width for a
box. This should be particularly useful if you want to create parts of pages that stretch and shrink to fit
the size of users ’ screens. The max - width property will stop a box from being so wide that it is hard to
read (lines that are too long are harder to read on screens), and min - width will help prevent boxes from
being so narrow that they are unreadable. It is important to note, however, that IE7 and FF2 were the
first of the major browsers to support these properties.

 The value of these properties can be a number, a length, or a percentage, and negative values are not
allowed. For example, take a look at the following rule, which specifies that a < div > element may not be
less than 200 pixels wide and no wider than 500 pixels wide (ch07_eg27.css):

div {min-width:200px;
 max-width:500px;
 padding:5px;
 border:1px solid #000000;}

 You can see what this looks like in Figure 7 - 33, which shows two browser windows, and you can try it
for yourself using ch07_eg27.html in the code download. The first window is opened to over 500
pixels wide, and the box does not stretch wider than 500 pixels; the second window is closed to less than
200 pixels, at which point the browser starts to show a horizontal scrollbar because you cannot see the
full width of the box.

Figure 7-32

c07.indd 296c07.indd 296 11/20/09 4:49:45 PM11/20/09 4:49:45 PM

Chapter 7: Cascading Style Sheets

297

 The min - height and max - height Properties
 The min - height and max - height properties correspond with the min - width and max - width
properties, but specify a minimum height and maximum height for the box. Again, it is important to
note that IE7 and Firefox 2 were the first major browsers to support these properties.

 The value of these properties can be a number, a length, or a percentage, and negative values are not
allowed. Take a look at the following example (ch07_eg28.css):

div {min-height:50px;
 max-height:200px;
 padding:5px;
 border:1px solid #000000;}

 Again, these properties are very useful in creating layouts that can be resized depending upon the size of
the user’s browser window. However, you can see an interesting phenomenon in Figure 7 - 34: If the
content of the box takes up more space than the box is allowed because of these rules, the content can
overflow out of the box (you will learn how to deal with this in the next section).

Figure 7-33

Figure 7-34

c07.indd 297c07.indd 297 11/20/09 4:49:46 PM11/20/09 4:49:46 PM

Chapter 7: Cascading Style Sheets

298

 The overflow Property
 As you just saw in Figure 7 - 34, when you control the size of a box, the content you want to fit in the box
might require more space than you have allowed for it. This not only happens with the min - height and
 max - height or min - width and max - width properties, but also for a number of other reasons.

 The overflow property was designed to deal with these situations and can take one of the values shown
in the table that follows.

 Value Purpose

 hidden The overflowing content is hidden.

 scroll The box is given scrollbars to allow users to scroll to see the content.

 Take a look at the following example, where the width of two < div > elements has been controlled by the
 max - height and max - width properties so that the content of the < div > elements does not fit in the box.
For the first element, I have set the overflow property to have a value of hidden and the second to
have a value of scroll (ch07_eg29.css).

div {max-height:75px;
 max-width:250px;
 padding:5px;
 margin:10px;
 border:1px solid #000000;}
div.one {overflow:hidden;}
div.two {overflow:scroll;}

 Now take a look at Figure 7 - 35, which shows ch07_eg29.html . You can see the effect of these two
properties — in the first box the text is simply cut off when it runs out of space, and in the second box a
scrollbar is created allowing users to scroll to the appropriate content.

Figure 7-35

c07.indd 298c07.indd 298 11/20/09 4:49:46 PM11/20/09 4:49:46 PM

Chapter 7: Cascading Style Sheets

299

 Internet Explorer Box Model Bug
 When you come to build sites using CSS you will probably come across a well - documented bug in the
Internet Explorer Box Model that affects the width of boxes.

 IE treated the width of a box as though it included the width of any border it had been given and the
width of the padding in the size of the box. However, the CSS specification says that the width of a
box should only be the width of the content (not including the border or padding). You can see this in
Figure 7 - 36:

Figure 7-36

W3C Box Model

margin
border

padding
content

width

IE Box Model

margin
border

padding
content

width

 IE6 resolved this problem because it was able to run in two “ modes ” :

 Standards - compliant mode follows the CSS specification. You can make sure IE6 or above is
running in standards - compliant mode by including one of the !DOCTYPE declarations that you
met in Chapter 1.

 Quirks mode retains the bug, and IE6 or above will run in Quirks mode when there is no
 !DOCTYPE declaration.

❑

❑

c07.indd 299c07.indd 299 11/20/09 4:49:46 PM11/20/09 4:49:46 PM

Chapter 7: Cascading Style Sheets

300

 Try It Out A Style Sheet for Code

 I often find the need to display code online. So I wrote the following style sheet to enable me to define
styles very similar to those you see in this book, for showing code on the Web. As you will see in the
next chapter, this code can then be included in other style sheets when needed, which means it is a
reusable style sheet.

 The style sheet features several styles for block and inline elements. The table that follows shows the
styles you will be creating.

 Style Name Inline or Block Use

 codeInText Inline For a bit of code written in the middle of
a sentence, shown in a monospace font

 codeForeground Block Highlighted code in a monospace font for
showing examples

 codeBackground Block Like codeForeground , but not highlighted
because it has been seen before, or is not the
key point of the example

 keystroke Inline Keys a user should enter on the keyboard,
distinguishable because it is italic

 importantWords Inline The first use of a key term; helps users
scan the document because it appears in a
bold font

 boxText Block Creates a block of important or key notes
that is in a box and has background
shading

 background Block Creates a block of italic text that has an
aside or interesting note

 1. The first thing to do is create class selectors for each of these styles. Element names are not
used for several of the styles here because the styles could apply to different elements (for
example, box text could be in a < p > element or a < div > grouping other elements). The
selectors that do use elements are the ones representing code.

code.codeInText{}
code.codeForeground {}
code.codeBackground {}
.keystroke {}
.importantWords {}
.boxText {}
.background {}

c07.indd 300c07.indd 300 11/20/09 4:49:47 PM11/20/09 4:49:47 PM

Chapter 7: Cascading Style Sheets

301

 2. Now it ’ s time to start adding declarations to each selector inside the curly brackets. First is the
 codeInText style for words that appear in the middle of a sentence or paragraph that
represent code. In the same tradition as most written matter on programming, the code will be
displayed in a monospaced font. The first choice of typeface — specified using the font -
 family property — is Courier, failing which the browser should try to find Courier New, and
if it cannot find that typeface, it will use its default monospaced font (although most
computers do have Courier or Courier New installed).

 To make the code easier to read, this font will appear in bold text, as indicated using the
font - weight property.

.codeInText {font-family:courier, “courier new”, monospace;
 font-weight:bold;}

 3. The second style is the codeForeground style. This style uses the same type of font as the
 codeInText style.

 Here are a few things to take note of:

❑ The codeForeground style should always be displayed as a block - level element, but just
in case the class is incorrectly used with an inline element, the display property is used
with a value of block to ensure that it is displayed as a block (you will see more of this
property in Chapter 8).

❑ You will also see that the letter - spacing property has been used with a negative value
because monospace fonts tend to take up quite a bit of width on the page. So, to help get as
many characters as possible on the same line, it is given a value of – 0.1 of an em (or 10 per-
cent of a font ’ s height).

❑ All lengths in the style sheet are specified in ems so that they relate to the default size of
the text in the document. If some of these elements were given in absolute sizes, they
might have suddenly appeared a lot smaller or larger than the surrounding text.

❑ The background color of the codeForeground style is gray. This helps the code stand out
and makes it more readable. A one and a half em - sized padding has been added inside the
box so that the text does not go right to the edge of the background color — this also
makes the code easier to read.

❑ The margin ensures that the box does not touch any other boxes or paragraphs. It has a
smaller margin on the bottom than the top, as do all of the styles in this style sheet that use
the margin property.

.codeForeground {
 font-family:courier, “courier new”, monosapce; font-weight:bold;
 letter-spacing:-0.1em;
 display:block;
 background-color:#cccccc;
 padding:0.5em;
 margin-bottom:1em; margin-top:1.5em;}

c07.indd 301c07.indd 301 11/20/09 4:49:47 PM11/20/09 4:49:47 PM

Chapter 7: Cascading Style Sheets

302

 4. The codeBackground style is identical to the codeForeground style except that the
 background - color is white.

.codeBackground {
 font-family:courier, “courier new”, monosapce; font-weight:bold;
 letter-spacing:-0.1em;
 display:block;
 background-color:#ffffff;
 padding:0.5em;
 margin-bottom:1em; margin-top:1em;}

 5. The keystroke style is in a Times typeface, or Times New Roman if Times is not available;
otherwise, the default serif typeface for the browser is used. The keystroke style should also
be italicized as follows:

.keyStroke {
 font-family:times, “Times New Roman”, serif;
 font-style:italic;}

 6. The importantWords style is simply bold:

.importantWords {font-weight:bold; }

 7. The boxText style has a bold font with a very light gray background; what really
differentiates it is that it has a border. As with the codeForeground style, boxText has some
padding so that the text does not reach the border — making it easier to read — and it has a
margin to inset it from the left and right as well as vertically to separate it from other
elements. Note that the bottom margin is slightly smaller than the top margin.

.boxText {
 font-weight:bold;
 background-color:#efefef;
 width:90%;
 padding:1em;
 margin-left:3em; margin-right:3em; margin-bottom:1em; margin-top:1.5em;
 border-style:solid; border-width:1px; border-color:#000000;}

 8. The final style is the background style. This style is italic and has the same amount of
padding and margins as the boxText style.

.background {
 font-style:italic;
 width:90%;
 padding:1em;
 margin-left:3em; margin-right:3em; margin-bottom:1em; margin-top:1em;}

c07.indd 302c07.indd 302 11/20/09 4:49:48 PM11/20/09 4:49:48 PM

Chapter 7: Cascading Style Sheets

303

 9. For this example, I also included a rule for the < p > element and a rule for the < body > element
(although they are not part of the standard CSS I use for code styles):

body {
 color:#000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}
p {margin-bottom:1em; margin-top:1.5em;}

 10. Save this file as codeStyles.css . Then take a look at the following XHTML file, which
makes use of this style sheet. As you can see, the < link / > element indicates that this is the
style sheet to be used for this example. You can then see the elements with the class
attributes that relate to these styles:

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > CSS Example < /title >

 < link rel=”stylesheet” type=”text/css” href=”codeStyles.css” / >

 < /head >
 < body >

 < p > You are about to see some < code class=”codeInText” > codeInText < /code >
followed by some < span class=”importantWords” > importantWords < /span > , and the
font for a < span class=”keystroke” > keystroke < /span > . < /p >

 < p > Next you will see some foreground code: < /p >

 < code class=”codeForeground” > p {font-family:arial, sans-serif;
font-weight:bold;} < /code >

 < p > Next you will see some background code: < /p >

 < code class=”codeBackground” > p {font-family:arial, sans-serif;
font-weight:bold;} < /code >
 < p class=”boxText” > This is some boxed text for important statements. < /p >
 < p class=”background” > Here is a background comment or aside. < /p >

 < /body >
 < /html >

If you look at this example in the browser, it should look like the screenshot in Figure 7 - 37.

c07.indd 303c07.indd 303 11/20/09 4:49:48 PM11/20/09 4:49:48 PM

Chapter 7: Cascading Style Sheets

304

Figure 7-37

 Summary
 In this chapter, you learned how to write a CSS style sheet. You have seen that a CSS style sheet is made
up of rules that first select the element or elements to which the rules will apply and then contain
property - value pairs that specify how the element ’ s content should appear.

 You have learned how you can change the appearance of fonts and text.

 You now know that CSS manages to render a document by treating each element as if it were a separate
box and then using the properties to control how each box should appear, and you have learned how to
set the dimensions and borders, padding, and margins for each box.

 In the next chapter, you not only learn some more properties, you also see how you can use CSS to
position elements on a page, which will enable you to create attractive layouts for pages. You even
see how you can insert content from a style sheet into a document, deal with bulleted lists, create
counters, and more.

 Exercises
 1. In the exercises for this chapter, you are going to continue to work on the Example Caf é

web site:

 a. First, open the index.html page and add a < div > element just inside the opening < body >
tag and the closing < /body > tag, and give the element an id attribute whose value is
 page . Repeat this for each page of the site.

 b. Now, in the style sheet add a rule that gives this element a margin, border, and padding so
that it looks like the border in Figure 7 - 38.

c07.indd 304c07.indd 304 11/20/09 4:49:48 PM11/20/09 4:49:48 PM

Chapter 7: Cascading Style Sheets

305

 2. Create a CSS rule that will make the following changes to the navigation:

 a. Add a single pixel gray border on the top and bottom.

 b. Give it 20 pixels of margin above and below the gray lines.

 c. Give it 10 pixels of padding on the top and bottom in the box.

 d. Add a margin to the right of each link in the navigation.

 3. Give the main image on the homepage a class attribute whose value is main_image , then
 create a rule that gives the image a single - pixel black border, and also give the image a 10 - pixel
margin on the right and bottom sides of the image.

 4. Increase the gaps between each line of text to 1.3 em.

Figure 7-38

c07.indd 305c07.indd 305 11/20/09 4:49:48 PM11/20/09 4:49:48 PM

Chapter 7: Cascading Style Sheets

306

 5. Take a look at the following XHTML page:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > Font test < /title >

 < link rel=”stylesheet” type=”text/css” href=”tableStyles.css” / >
 < /head >
 < body >
 < table >
 < tr >
 < th > Quantity < /th >
 < th > Ingredient < /th >
 < /tr >
 < tr class=”odd” >
 < td > 3 < /td >
 < td > Eggs < /td >
 < /tr >
 < tr >
 < td > 100ml < /td >
 < td > Milk < /td >
 < /tr >
 < tr class=”odd” >
 < td > 200g < /td >
 < td > Spinach < /td >
 < /tr >
 < tr >
 < td > 1 pinch < /td >
 < td > Cinnamon < /td >
 < /tr >
 < /table >
 < /body >
 < /html >

 Now create the tableStyles.css style sheet, which makes this example look like it does in
Figure 7 - 39.

Figure 7-39

 Don ’ t worry about getting the sizes exactly the same as the screenshot, but do make sure you
have padding in the cells and a border around the outside. The white border is created by
default in IE; you will find out how to remove this in Chapter 8.

c07.indd 306c07.indd 306 11/20/09 4:49:49 PM11/20/09 4:49:49 PM

 8
More Cascading

Style Sheets

 In this chapter, you will continue to learn how to use CSS to control presentation of XHTML web
pages, starting with CSS properties that enable you to control presentation of links, backgrounds,
list styles, table styles, and outlines around boxes. You will then learn a technique to add content to
a page (even if it was not in the XHTML document) using the :before and :after pseudo -
 classes. Finally, you will see how CSS can be used to position boxes on the page, which will allow
you to create attractive layouts for your pages.

 By the end of the chapter, you will know how to use CSS to control the following:

 Presentation of links

 Backgrounds of document

 Styles of bullet points and numbered lists

 Appearance of tables

 Outlines around boxes

 Elements that can gain focus or are active

 Addition of content to the XHTML document before or after an element

 The three positioning schemes that allow you to determine where on a page a box will
appear — something that prepares you to use CSS to create layouts

 Occasionally in this chapter, you will come across a feature that is not yet implemented by the
main browsers, but it is worth learning these now as they are likely to be used as standard in
the near future.

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 307c08.indd 307 11/20/09 4:55:52 PM11/20/09 4:55:52 PM

Chapter 8: More Cascading Style Sheets

308

 Links
 Most browsers show links in blue with an underline and change the color of links you have already
visited, unless you tell them to do otherwise. The following are properties often used with links:

 color : Changes the colors of the links

 background - color : Highlights the link, as if it had been highlighted with a highlighter pen

 text - decoration : Commonly used to control whether the link is underlined or not, although
it can also specify that text should have a strikethrough, blink, or be overlined

 While you can just create rules that apply to the < a > element to set properties such as color and
text - decoration , there are also four pseudo - classes that can give greater control over presentation of links.

 Pseudo - class Purpose

 link Styles for links in general

 visited Styles for links that have already been visited

 hover Styles for when someone is hovering over a link

 active Styles for links that are currently active (being clicked)

 Using these pseudo - classes allows you to change properties of links when the user hovers over them
(making them a slightly different color, maybe adding a highlight and underlining them), and also the
properties of links that have been visited (for example, making them a slightly different color — which
helps users know where they have been).

 When used, these properties should be specified in the order listed in the table above. Here is an
example that will change the styles of links as users interact with them (ch08_eg01.css):

body {background-color:#ffffff;}
a {
 font-family: arial, verdana, sans-serif;
 font-size:12px;
 font-weight:bold;}
a:link {
 color:#0000ff;
 text-decoration:none;}
a:visited {
 color:#333399;
 text-decoration:none;}
a:link:hover {
 background-color:#e9e9e9;
 text-decoration:underline;}
a:active {
 color:#0033ff;
 text-decoration:underline;}

❑

❑

❑

c08.indd 308c08.indd 308 11/20/09 4:55:53 PM11/20/09 4:55:53 PM

Chapter 8: More Cascading Style Sheets

309

 Figure 8 - 1 gives you an idea of how links will look with this style sheet (ch08_eg01.html), although it
is rather hard to see the full effect of this in print, with the links changing as the user rolls the mouse
over links and visits the sites, so try the example out with the downloaded code for this chapter.

Figure 8-1

 Backgrounds
 As you saw in the last chapter, CSS treats each element as if it were its own box. You can control the
background of these boxes using the following properties (when used on the < body > element they affect
the entire browser window).

 Property Purpose

 background - color Specifies a background color

 background - image Specifies an image to use as the background

 background - repeat Indicates whether the background image should be repeated

 background - attachment Indicates a background image should be fixed in one position on
the page, and whether it should stay in that position when the
user scrolls down the page

 background - position Indicates where an image should be positioned

 background A shorthand form that allows you to specify all of these
properties

c08.indd 309c08.indd 309 11/20/09 4:55:53 PM11/20/09 4:55:53 PM

Chapter 8: More Cascading Style Sheets

310

 The background - color Property
 The background - color property allows you to specify a single solid color for the background of
any element.

 When the background - color property is set for the < body > element, it affects the whole document,
and when it is used on any other element it will use the specified color inside the border of the box
created for that element.

 The value of this property can be a color name, a hex code, or an RGB value (colors are covered in
greater depth in Appendix D). For example (ch08_eg02.css):

body {background-color:#cccccc; color:#000000;}
b {background-color:#FF0000; color:#FFFFFF;}
p {background-color: rgb(255,255,255);}

 Figure 8 - 2 ch08_eg02.html used with the styles above from ch08_eg02.css :

Figure 8-2

 I add a rule for the < body > element to set the background - color property for every style sheet I
write because some people set their computers to have a background other than plain white (often
because it causes less strain on their eyes). When the background color of an operating system is
changed, browsers usually use that color, too (along with applications such as word processors). If you
do not specify this property, you cannot guarantee that the visitors to the site have the same background
color as you want them to have.

 The background - image Property
 As its name suggests, the background - image property enables you to add an image to the background
of any box in CSS. This can be very useful in many situations, from adding a subtle texture or shading to
adding a distinctive design to the back of elements or entire pages.

 The value for this property should start with the letters url , followed by the URL for the image in
brackets and quotes like so:

body {background-image: url(“images/background.gif”);}

c08.indd 310c08.indd 310 11/20/09 4:55:54 PM11/20/09 4:55:54 PM

Chapter 8: More Cascading Style Sheets

311

 If both a background - image property and the background - color property are used, then the
 background - image property takes precedence. It is good practice to supply a background - color
property with a background image and give it a value similar to the main color in the background image
because the page will use this color while the background image is loading or if it cannot display the
image for any reason.

 Here is an example of using a single background image, which is 200 pixels wide and 150 pixels high. By
default, this image is repeated all across the page (ch08_eg03.css). The background - color property
is set to be the same color as the background of the image (just in case the image cannot be loaded):

body {
 background-image: url(“images/background.gif”);
 background-color: #cccccc;}

 Figure 8 - 3 shows what this looks like in a browser (ch08_eg03.html).

Figure 8-3

 This is not a great example of how to use a background image because there is not enough contrast
between the colors used in the background image and the text that appears on top of it, which makes the
text harder to read. But it does illustrate the point that you must make sure that there is sufficient
contrast between any background image and the writing that appears on top of it; otherwise, users will
have trouble reading the text.

 If you do use an image behind text, it is worth remembering that low - contrast images (images that are
made up of similar colors) often make better backgrounds because it is harder to find a color that will be
readable on top of a high - contrast image.

 Figure 8 - 4 shows an improved example of the background image, where the text is on a solid color,
which makes it easier to read. This time I have also used a larger image (ch08_eg04.html).

c08.indd 311c08.indd 311 11/20/09 4:55:54 PM11/20/09 4:55:54 PM

Chapter 8: More Cascading Style Sheets

312

 There are a few points to note about how background images work:

 There is no way to express the intended width and height of a background image, so you need
to save it at the size you want it to appear.

 There is no equivalent to the alt attribute (alternate text for those not able to see the image for
any reason); therefore, a background image should not be used to convey any important
information that is not described on the page in text as well.

 Background images are often shown on the page after other items have been rendered, so it can
look as if they take a long time to load.

 The background - image property works well with most block - level elements, although some
older browsers can have problems showing background images in tables.

 The background - repeat Property
 When you specify a background - image , and the box is bigger than the image, then the image is
repeated to fill up the whole box, creating what is affectionately known as wallpaper .

 If you do not want your image to repeat all over the background of the box, you should use the
 background - repeat property, which has four helpful values, as you can see in the table that follows:

❑

❑

❑

❑

Figure 8-4

c08.indd 312c08.indd 312 11/20/09 4:55:54 PM11/20/09 4:55:54 PM

Chapter 8: More Cascading Style Sheets

313

 Value Purpose

 repeat This causes the image to repeat to cover the whole page (it is the default
therefore rarely used).

 repeat - x The image will be repeated horizontally across the page (not down the whole
page vertically).

 repeat - y The image will be repeated vertically down the page (not across horizontally).

 no - repeat The image is displayed only once.

 These different properties can have interesting effects. It is worth looking at each in turn. You have
already seen the effect of the repeat value (as this is the default behavior when the property is not used.
The value repeat - x creates a horizontal bar following the browser ’ s x - axis (ch08_eg05.css):

body {
 background-image: url(“images/background_small.gif”);
 background-repeat: repeat-x; }

 You can see the result of using this property in Figure 8 - 5.

Figure 8-5

 The repeat - y value works just like repeat - x but in the other direction, vertically following the
browser ’ s y - axis (ch08_eg06.css):

body {
 background-image: url(“images/background_small.gif”);
 background-repeat: repeat-y; }

 In Figure 8 - 6, you can see the result with the sidebar coming down the left.

c08.indd 313c08.indd 313 11/20/09 4:55:55 PM11/20/09 4:55:55 PM

Chapter 8: More Cascading Style Sheets

314

 The final value was no - repeat , leaving one instance of the image that by default will be in the top - left
corner of the browser window (ch08_eg07.css):

body {
 background-image: url(“images/background_small.gif”);

 background-repeat: no-repeat;

 background-color: #eaeaea;}

 You can see the result in Figure 8 - 7; note how the background color of the page has been set to the same
color as the image we have been using — this makes the image blend in with the page better.

Figure 8-6

Figure 8-7

 The background - position Property
(for Fixing Position of Backgrounds)

 You may want to alter the position of this image, and you can do this using the background - position
property, which takes the values shown in the table that follows:

c08.indd 314c08.indd 314 11/20/09 4:55:55 PM11/20/09 4:55:55 PM

Chapter 8: More Cascading Style Sheets

315

 Value Meaning

 x% y% Percentages along the x (horizontal) and y (vertical) axis

 x y Absolute lengths along the x (horizontal) and y (vertical) axis in pixels

 left Shown to the left of the page or containing element

 center Shown to the center of the page or containing element

 right Shown to the right of the page or containing element

 top Shown at the top of the page or containing element

 center Shown at the center of the page or containing element

 bottom Shown at the bottom of the page or containing element

 Here is an example of fixing the position of the image as shown in Figure 8 - 8 (ch08_eg08.css):

body {
 background-image: url(“images/background_small.gif”);
 background-position: 50% 20%;
 background-repeat: no-repeat;
 background-color: #eaeaea; }

 This image will be horizontally centered (because it should be 50 percent of the screen ’ s width from the
left - hand side of the page) and a fifth of the way down from the top of the screen (because it is
positioned 20 percent of the window height from the top of the screen). It is worth trying this example in
the code download and changing the size of the browser window to see how the background image
will remain in the center of the browser window horizontally and a fifth of the way down the
window vertically when you change the size of the window.

Figure 8-8

c08.indd 315c08.indd 315 11/20/09 4:55:55 PM11/20/09 4:55:55 PM

Chapter 8: More Cascading Style Sheets

316

 The background - attachment Property (for Watermarks)
 When you specify a background image you can use the background - attachment property to specify
whether the image is fixed in its position, or whether it moves as the user scrolls up and down the page.

 Value Purpose

 fixed The image will not move if the user scrolls up and down the page.

 scroll The image stays in the same place on the background of the page. If the user
scrolls up or down the page, the image moves, too.

 Here is an example where the image will stay in the middle of the page even when the user scrolls
further down (ch08_eg09.css):

body {
 background-image: url(“images/background_small.gif”);
 background-attachment: fixed;
 background-position: center;
 background-repeat: no-repeat;
 background-color: #eaeaea; }

 Figure 8 - 9 shows that the user has scrolled halfway down the page and the image is in the center of the
browser window (the background looks exactly the same as it would have when the user was at the top
of the page).

Figure 8-9

 The background Property (the Shorthand)
 The background property allows you to specify several of the background properties at once. The
values can be given in any order, and if you do not supply one of the values, the default value will
be used.

 background - color

 background - image

❑

❑

c08.indd 316c08.indd 316 11/20/09 4:55:56 PM11/20/09 4:55:56 PM

Chapter 8: More Cascading Style Sheets

317

 background - repeat

 background - attachment

 background - position

 For example, you can just write:

body {background: #cc66ff; url(“images/background_small.gif”) fixed
no-repeat center;}

 This creates exactly the same effect as the example shown in Figure 8 - 9.

 Lists
 Back in Chapter 1, you learned how to use the < ul > and < li > elements to create lists with bullet points
(also known as unordered lists) and the < ol > and < li > elements to create numbered (or ordered) lists.
In this section you will learn about the CSS properties you can use to control lists.

 Property Purpose

 list - style - type Allows you to control the shape or appearance of the marker (the
marker is another name for the bullet point or number).

 list - style - position When a list item takes up more than one line, this property specifies
where the marker should appear in relation to the text.

 list - style - image Specifies an image for the marker rather than a bullet point or
number.

 list - style Serves as shorthand for the preceding properties.

 marker - offset Specifies the distance between a marker and the text in the list.

 The list - style - type Property
 The list - style - type property allows you to control the shape or style of bullet point (also known as a
 marker) in the case of unordered lists and the style of numbering characters in ordered lists.

 The table that follows shows the standard styles for an unordered list.

 Value Marker

 none None

 disc (default) A filled - in circle

 circle An empty circle

 square A filled - in square

❑

❑

❑

c08.indd 317c08.indd 317 11/20/09 4:55:56 PM11/20/09 4:55:56 PM

Chapter 8: More Cascading Style Sheets

318

 The table that follows shows values for ordered lists that are supported in most browsers.

 Value Meaning Example

 decimal Number 1, 2, 3, 4, 5

 decimal - leading - zero 0 before the number 01, 02, 03, 04, 05

 lower - alpha Lowercase alphanumeric characters a, b, c, d, e

 upper - alpha Uppercase alphanumeric characters A, B, C, D, E

 lower - roman Lowercase Roman numerals i, ii, iii, iv, v

 upper - roman Uppercase Roman numerals I, II, III, IV, V

 The list - style - type property can either be used on the < ul > and < ol > elements (in which case it
applies to the entire list) or on the individual < li > elements. The following example demonstrates all
these styles (ch08_eg10.html):

li.a {list-style-type:none;}
li.b {list-style-type:disc;}
li.c {list-style-type:circle;}
li.d {list-style-type:square;}
li.e {list-style-type:decimal;}
li.f {list-style-type:lower-alpha;}
li.g {list-style-type:upper-alpha;}
li.h {list-style-type:lower-roman;}
li.i {list-style-type:upper-roman;}

 You can see the result with examples of each kind of bullet in Figure 8 - 10.

Figure 8-10

 The list - style - position Property
 Lists are indented into the page, and the list - style - position property indicates whether the marker
should appear inside or outside of the box containing the main points. There are two values for this
property, as you can see in the table that follows:

c08.indd 318c08.indd 318 11/20/09 4:55:56 PM11/20/09 4:55:56 PM

Chapter 8: More Cascading Style Sheets

319

 Value Purpose

 inside The marker is inside the block of text (which is indented) .

 outside The marker sits to the left of the block of text (this is the default value if this
is not specified).

 Here you can see how this property is written; in this case it is given on the < ul > or < ol > elements
(ch08_eg11.css):

ul {list-style-position:outside;}
ol {list-style-position:inside;}

 Figure 8 - 11 shows you what this would look like in a browser.

Figure 8-11

 As you can see, the text is indented in both cases, and the value of this property indicates whether the
marker is inside this box or outside of the box.

 The list - style - image Property
 The list - style - image property allows you to specify an image so that you can use your own bullet
style. The syntax is similar to the background - image property; the value starts with the letters url and
is followed by the URL for the image in brackets and quotation marks (ch08_eg12.css):

li {list-style-image: url(“images/bulletpoint.gif”);}

 You can see an example of some triangular bullet points in Figure 8 - 12.

Figure 8-12

c08.indd 319c08.indd 319 11/20/09 4:55:57 PM11/20/09 4:55:57 PM

Chapter 8: More Cascading Style Sheets

320

 If the image cannot be displayed, the browser should just display a dot rather than a broken
image symbol.

 If you are using nested lists, this value will inherit from its parent element. To prevent this from
happening, you can use the list - style - image property on the nested list and give it a value of none .

 The list - style Property (the Shorthand)
 The list - style property is a way of expressing more than one of these properties at once. They can
appear in any order. For example:

ul {list-style: inside circle;}

 Remember that you can also set the border , padding , and margin properties for < ul > , < ol > , < li > ,
 < dl > , < dt > , and < dd > elements, as each element has its own box in CSS.

 Tables
 In the last chapter, you saw a couple of examples that use CSS with tables. Properties that are commonly
used with the < table > , < td > , and < th > elements include the following:

 border to set the properties of the border of a table.

 padding to set the amount of space between the border of a table cell and its content — this
property is very important to make tables easier to read.

 Properties to change text and fonts.

 text - align to align writing to the left, right, or center of a cell.

 vertical - align to align writing to the top, middle, or bottom of a cell.

 width to set the width of a table or cell.

 height to set the height of a cell (often used on a row as well).

 background - color to change the background color of a table or cell.

 background - image to add an image to the background of a table or cell.

 You should be aware that, apart from the background - color and height properties, it is best to avoid
using these properties with < tr > elements, as browser support for these properties on rows is not as
good as it is for individual cells.

 To demonstrate how some of these properties are used with a table, take a look at the one shown in
Figure 8 - 13; it might look familiar because you saw it at the beginning of the last chapter, but this time it
has an added < caption > element (ch08_13.html).

❑

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 320c08.indd 320 11/20/09 4:55:57 PM11/20/09 4:55:57 PM

Chapter 8: More Cascading Style Sheets

321

 Now take a look at the style sheet for this table (ch08_eg13.css):

body {color:#000000; background-color:#ffffff;}
h1 {font-size:18pt;}
p {font-size:12pt;}
table {
 background-color:#efefef;
 width:350px;
 border-style:solid;
 border-width:1px;
 border-color:#999999;
 font-family:arial, verdana, sans-serif;}
caption {
 font-weight:bold;
 text-align:left;
 border-style:solid; border-width:1px; border-color:#666666;
 color:#666666;}
th {
 height:50px;
 font-weight:bold;
 text-align:left;
 background-color:#cccccc;}
td, th {padding:5px;}
td.code {
 width:150px;
 font-family:courier, courier-new, serif;
 font-weight:bold;
 text-align:right;
 vertical-align:top;}

 Here are some key points to note about this example. You will be altering settings of some of these
properties using new properties that you will meet throughout this section.

Figure 8-13

c08.indd 321c08.indd 321 11/20/09 4:55:57 PM11/20/09 4:55:57 PM

Chapter 8: More Cascading Style Sheets

322

 The rule for the < table > element uses a width property to fix the width of the table to 350
pixels; otherwise, it would take up as much of the screen as needed to show as much text as
possible on one line.

 The rule for the < table > element also has a border property set, which creates a single-pixel
border all around the table. Note, however, that none of the other cells in the table inherits this
property.

 The rule that applies to the < caption > element has its font - weight , border , and text - align
properties set. By default the text is normal (not bold), aligned in the center, and without
a border.

 The rule that applies to the < th > element sets the height of the headings to 50 pixels, and the
text is aligned left (rather than centered, which is the default).

 There is a rule that applies to both the < th > and < td > elements, and this indicates that both
should have a padding property set to 5px so that the content of the cells does not touch the
border of those cells. Creating space around the cells is very important and makes the table
more readable.

 The final rule states that the < td > elements whose class attribute has a value of code are given
a width property whose value is 150px (150 pixels). This ensures that the content of this whole
column remains on one line. Unfortunately, there is no way to assign a style to a column, but in
the case of the width property, once it has been set on one element it does not need to be set on
all the others in the column.

 You may also have noticed in Figure 8 - 13 that there is a white line around the two columns (which is
particularly noticeable around table header cells). Browsers automatically add this to separate each cell
from its neighbor. You can, however, remove this gap using a property called border - spacing , which
you ’ ll learn about in the next section.

 Table - Specific Properties
 In the following section you will meet five properties that can only be used with tables, and also some
values for the border - style property that only apply to tables. Most of these properties were first
supported in IE7 and FF2.

 Property Purpose

 border - collapse Where the borders of two table cells touch, this property indicates
whether both borders should be visible, or whether the browser should
pick just one of the borders to show.

 border - spacing Specifies the width of the space that should appear between table cells.

 caption - side Specifies which side of a table the caption should appear on.

 empty - cells Specifies whether the border should be shown if a cell is empty.

 table - layout If the space you have allocated for a table is not enough to fit the contents,
browsers will often increase the size of the table to fit the content in — this
property can force a table to use the dimensions you specify.

❑

❑

❑

❑

❑

❑

c08.indd 322c08.indd 322 11/20/09 4:55:58 PM11/20/09 4:55:58 PM

Chapter 8: More Cascading Style Sheets

323

 The border - collapse Property
 Where two table cells meet, you can tell the browser to show just one of the borders (rather than both —
 which is the default behavior). You can do this using the border - collapse property, which can take
two values:

 Value Purpose

 collapse Horizontal borders will be collapsed and vertical borders will abut one another.

 separate Separate rules are observed. This value opens up additional properties to give
you further control.

 If two adjacent table cells have different border styles, and you have specified that borders should be
collapsed, there is a complex set of rules to specify which border should be shown — rather than try to
learn these rules it is quicker to simply try your table out in a browser.

 To illustrate how the border - collapse property works, the following style rules apply to two tables:
the first has a border - collapse property with a value of collapse , the second has a value of
 separate , and both tables contain adjacent cells with dotted and solid lines (ch08_eg14.css):

table.one {border-collapse:collapse;}
table.two {border-collapse:separate;}
td.a {border-style:dotted; border-width:3px; border-color:#000000;
 padding:10px;}
td.b {border-style:solid; border-width:3px; border-color:#333333;
 padding:10px;}

 Figure 8 - 14 shows you how, with a value of collapse , the browser collapses borders into each other so
that the solid border takes precedence over the dotted border. This wouldn ’ t look as odd if the borders
were both solid, but it does illustrate the point well.

Figure 8-14

c08.indd 323c08.indd 323 11/20/09 4:55:58 PM11/20/09 4:55:58 PM

Chapter 8: More Cascading Style Sheets

324

 If you do not specify that the borders should be collapsed, then two further properties control border
presentation:

 border - spacing

 empty - cells

 The following sections discuss these properties.

 The border - spacing Property
 The border - spacing property specifies the distance that separates adjacent cells ’ borders. If you
provide one value, it will apply to both vertical and horizontal borders:

table.one {border-spacing:15px;}

 Or you can specify two values, in which case the first refers to the horizontal spacing and the second to
the vertical spacing:

table.two {border-spacing:2px 4px;}

 You can see what this looks like in Figure 8 - 15 (ch08_eg15.html styled with ch08_eg15.css):

❑

❑

Figure 8-15

 The empty - cells Property
 The empty - cells property indicates whether a cell without any content should have a border
displayed. It can take one of three values, as you can see in the table that follows.

c08.indd 324c08.indd 324 11/20/09 4:55:58 PM11/20/09 4:55:58 PM

Chapter 8: More Cascading Style Sheets

325

 Value Purpose

 show Borders will be shown even if the cell is empty (this is the default value).

 hide Borders will be hidden if cell is empty.

 inherit Borders will obey the rules of the containing table (only of use in nested tables).

 If you want to explicitly hide or show borders of empty cells, you should use this property because some
versions of IE and Firefox treat empty cells differently.

 Here you can see a table with two empty cells: an empty < th > element and an empty < td > element
(ch08_eg16.html):

 < table >
 < tr >
 < th > < /th >
 < th > Title one < /th >
 < th > Title two < /th >
 < /tr >
 < tr >
 < th > Row Title < /th >
 < td > value < /td >
 < td > value < /td >
 < /tr >
 < tr >
 < th > Row Title < /th >
 < td > value < /td >
 < td > < /td >
 < /tr >
 < /table >

 The following code shows the empty - cells property used to hide borders of empty cells in the
 < table > element (ch08_eg16.css):

table {
 width:350px;
 border-collapse:separate;

 empty-cells:hide;}

td {padding:5px;
 border-style:solid;
 border-width:1px;
 border-color:#999999;}

 Figure 8 - 16 shows what the table looks like without borders for empty cells.

c08.indd 325c08.indd 325 11/20/09 4:55:59 PM11/20/09 4:55:59 PM

Chapter 8: More Cascading Style Sheets

326

 The caption - side Property
 The caption - side property is for use with the < caption > element to indicate on which side of the
table the caption should go. The following table lists the possible values.

 Value Purpose

 top The caption will appear above the table (the default).

 right The caption will appear to the right of the table.

 bottom The caption will appear below the table.

 left The caption will appear on the left side of the table.

 For example, here you can see the caption being set to the bottom of the table (ch08_eg17.css):

caption {caption-side:bottom}

 Figure 8 - 17 shows you the caption - side property at work; you can see that the caption for this table
has moved to the bottom of the table (rather than the top).

Figure 8-16

Figure 8-17

c08.indd 326c08.indd 326 11/20/09 4:55:59 PM11/20/09 4:55:59 PM

Chapter 8: More Cascading Style Sheets

327

 The table - layout Property
 When you specify a width for a table or table cell, but the content does not fit into the space you have
allowed, a browser can give the table more space to fit the content. The table - layout property allows
you to force the browser to stick to the widths you specify, even if this makes the content unreadable.

 See the table that follows for the three possible values this property can take.

 Value Purpose

 auto The browser looks through the entire table for the widest unbreakable content in the
cells. This is slower at rendering, but more useful if you do not know the exact size
of each column. This is the default value.

 fixed The width of a table cell only depends on the widths you specified for the table and
its cells. This speeds up rendering.

 inherit Will obey the rules of the containing table (only of use in nested tables).

 In the following example there are two tables, each with just one cell. The cells contain the letters of the
alphabet, and there is a space before the last three letters. Normally, each table cell will be as wide as the
longest unbroken set of characters in a cell — in this case, the letters A through W (ch08_eg18.html).

 < table class=”one” >
 < tr >
 < td > ABCDEFGHIJKLMNOPQRSTUVW XYZ < /td >
 < /tr >
 < /table >

 < table class=”two” >
 < tr >
 < td > ABCDEFGHIJKLMNOPQRSTUVW XYZ < /td >
 < /tr >
 < /table >

 Now, if you look at the CSS for this example, you can see that the width of the table is set to 75 pixels —
 not enough for the letters A through W. One table has the table - layout property set to auto , the other
to fixed (ch08_eg18.css).

table {width:75px;}
table.one {table-layout:auto;}
table.two {table-layout:fixed;}

td {
 padding:5px;
 border-style:solid;
 border-width:1px;
 border-color:#999999;}

c08.indd 327c08.indd 327 11/20/09 4:55:59 PM11/20/09 4:55:59 PM

Chapter 8: More Cascading Style Sheets

328

 You can see the results of this example in Figure 8 - 18; by default the table will make enough space for the
letters A through W. However, when the second table is forced to stick to the width specified in the CSS,
the letters spill out over the edge of the table.

Figure 8-18

 To prevent the letters spilling out over the edge you could use the overflow property, which you will
meet later in the chapter.

 There are several other CSS properties that allow you to control groups of cells in one rule. They are not
covered in this book because support for them is still patchy. Should you want to look them up on the
Web, they are as follows:

 IE 5 and later supports table - header - group and table - footer - group .

 Firefox supports inline - table , table - row , table - column - group , table - column ,
table - row , and table - cell .

 Outlines
 Outlines are similar to the borders that you met in the last chapter, but there are two crucial differences:

 An outline does not take up space.

 Outlines do not have to be rectangular.

 The idea behind the outline properties is that you might want to highlight some aspect of a page for the
user; this property will allow you to do that without affecting the flow of the page (where elements are
positioned) in the way that a physical border would take up space. It ’ s almost as if the outline style sits
on top of the page.

 Unfortunately, the outline properties are not supported by Internet Explorer 8 (or earlier versions).
They do work in other major browsers (although there can be some slight variations in appearance in
different browsers).

 The table that follows lists the four outline properties.

❑

❑

❑

❑

c08.indd 328c08.indd 328 11/20/09 4:56:00 PM11/20/09 4:56:00 PM

Chapter 8: More Cascading Style Sheets

329

 Property Purpose

 outline - width Specifies the width of the outline

 outline - style Specifies the line style for the outline

 outline - color Specifies the color of the outline

 outline Shorthand for above properties

 Note that the outline is always the same on all sides; you cannot specify different values for different
sides of the element.

 The outline - width Property
 The outline - width property specifies the width of the outline to be added to the box. Its value should
be a length or one of the values thin , medium , or thick — just like the border - width attribute.

input {border-width:2px;}

 The outline - style Property
 The outline - style property specifies the style for the line (solid , dotted , or dashed) that goes
around the box. Its value should be one of the values used with the border - style property you learned
about in Chapter 7. For example:

input {outline-style:solid;}

 The outline - color Property
 The outline - color property allows you to specify the color of the outline. Its value should either be a
color name, a hex color, or an RGB value, as with the color and border - color properties you learned
about in Chapter 7. For example:

input {outline-color:#ffoooo;}

 The outline Property (the Shorthand)
 The outline property is the shorthand that allows you to specify values for any of the three properties
discussed previously in any order you like. The following example features a paragraph of text:

<p>Inside this paragraph the word in bold is going to have an
outline.</p>

 There is a rule that says the contents of the < b > element should have an 8-pixel dashed red border
around the edge (ch08_eg19.css):

b {outline: #ff0000 8px dashed;}

c08.indd 329c08.indd 329 11/20/09 4:56:00 PM11/20/09 4:56:00 PM

Chapter 8: More Cascading Style Sheets

330

 Figure 8 - 19 shows you what this example looks like, although the border is in black here, not red. Note
how the outline does not affect the position of other items on the page (in the same way that the border
properties would); it just sits on top of the rest of the page.

Figure 8-19

 The :focus and :active Pseudo - Classes
 You may remember that in Chapter 5 the topic of focus came up. An element needs to be able to gain
focus if a user is going to interact with it; for example, focus can be given to links and form controls.

 When an element gains focus, browsers tend to give it a slightly different appearance. The :focus
pseudo - class allows you to associate extra rules with an element when it gains focus to make it more
pronounced. Meanwhile the :active pseudo - class allows you to associate further styles with elements
when they are activated — such as when a user clicks a link.

 Here is an example of a rule that will change the background - color property of an < input > element
when it gains focus (ch08_eg20.css):

input {
 border:none;
 background-color:#dddddd;}
input:focus {background-color:#c4c4c4;}

 As you can probably imagine, this could offer users help in knowing which item they should currently
be filling in as they work their way through a form; in Figure 8 - 20 you can see that the form input that
has focus has a darker background than other input elements.

 IE8 was the first version of IE to support the :focus pseudo - class.

Figure 8-20

c08.indd 330c08.indd 330 11/20/09 4:56:00 PM11/20/09 4:56:00 PM

Chapter 8: More Cascading Style Sheets

331

 Generated Content
 CSS2 introduced a powerful way to add content before or after a specified element, even if it was not in
the XHTML document. To do this, the :before and :after pseudo - elements are added to the selector
and then the content property is used to specify what should be inserted into the document.

 The :before and :after pseudo - elements work to a limited degree in IE7 or higher and have good
support in Firefox.

 The :before and :after Pseudo - Elements
 The :before and :after pseudo - elements enable you to add text before or after each instance of an
element defined in a selector. For example, the following CSS rule adds the words “ You need to register
to read the full article ” after each instance of a < p > element that carries the class attribute whose value
is abstract (ch08_eg21.css):

p.abstract:after {content: “You need to register to read the full
 article.”;
 color:#ff0000;}

 Here you can see that the pseudo - element :after is used at the end of the selector. Then, inside the
declaration, you can see the content property; the text in quotes will be added to the end of the element.
The content property can add a number of types of content to the document, not just text, and you will
see these in the next section.

 The default styles for the parent element will be adopted if no other declarations are added to the rule,
although in this example a property was added to indicate that the content should be written in red. You
can see this pseudo - element in use in Figure 8 - 21.

Figure 8-21

 By default, the element created using these pseudo - classes will be inline unless you use the display
property with a value of block . If the element identified in the selector is an inline element you should
not use the display property to turn it into a block - level element.

c08.indd 331c08.indd 331 11/20/09 4:56:01 PM11/20/09 4:56:01 PM

Chapter 8: More Cascading Style Sheets

332

 The content Property
 The content property is used with the :before and :after pseudo - elements to indicate what content
should be added to the document. The table that follows lists the values it can take; each value inserts
different types of content into the XHTML document it is supposed to be styling.

 Value Purpose

 A string Inserts plain text. (The term “ string ” is a programming term for a set of
alphanumeric characters, not a CSS property.) The text may not include
quotes (which in turn means that it cannot include XHTML markup that
carries attributes).

 A URL The URL can point to an image, text file, or HTML file to be included at
this point.

 A counter A counter for numbering elements on the page (discussed in the next
section).

 atrr(x) The value of an attribute named x that is carried on that element (this is of
more use to languages other than XHTML).

 open - quote Inserts the appropriate opening quote symbol (see the “ Quotation Marks ”
section later in this chapter).

 close - quote Inserts the appropriate closing quote symbol (see the “ Quotation Marks ”
section later in this chapter).

 no - open - quote Do not use any opening quotes.

 no - close - quote Do not use a closing quote (of particular use in prose where one person is
speaking for a long while and style dictates the quote is closed only on the
last paragraph).

 Counters
 You have already seen how you can create a number list using the < ol > element, so the concept of
automatic numbering is not new. The counter() function is different from numbered lists because you
can create a counter that increments each time a browser comes across any specified element — not just
an < li > element.

 The idea is particularly helpful if you want to automatically number sections of a document without
them being a list. It also means that items will automatically be renumbered if extra elements are added
or removed (without having to go into the document and manually renumber each item).

 In order to see how it works, we will create an example where the sections of a document are going to be
numbered using the counter() function. Here is the XHTML (ch08_eg22.html):

c08.indd 332c08.indd 332 11/20/09 4:56:01 PM11/20/09 4:56:01 PM

Chapter 8: More Cascading Style Sheets

333

 < body >
 < h1 > Introducing Web Technologies < /h1 >
 < h2 > Introducing HTML < /h2 >
 < h2 > Introducing CSS < /h2 >
 < h2 > Introducing XHTML < /h2 >
 < h1 > Structure of Documents < /h1 >
 < h2 > Text < /h2 >
 < h2 > Lists < /h2 >
 < h2 > Tables < /h2 >
 < h2 > Forms < /h2 >
 < /body >

 The example is going to contain two counters, one called chapter and the other called section . Each
time an < h1 > element comes up, the chapter counter will be incremented by 1, and each time the < h2 >
element comes up, the section counter will be incremented by 1.

 Furthermore, each time the browser comes across an < h1 > element, it will insert the word “ Chapter ” and
the number in the counter before the content of the < h1 > element. Meanwhile, each time the browser
comes across an < h2 > element, it will display the number of the chapter counter, then a period or full
stop, and then the value of the section counter.

 The result should look like Figure 8 - 22.

Figure 8-22

c08.indd 333c08.indd 333 11/20/09 4:56:01 PM11/20/09 4:56:01 PM

Chapter 8: More Cascading Style Sheets

334

 Let ’ s take a look at how this works. First, it is worth noting that you use the counter - reset property
on the < body > element to create the chapter and section counters and set them to zero.

body {counter-reset: chapter; counter-reset: section;}

 Then there are the CSS rules using the :before pseudo - class to insert the automatic numbering of
sections. First look at the rule that adds the word Chapter and the chapter number before every < h1 >
element; if you look at the content property, the value has a set of quotes containing the word Chapter ,
followed by the counter() function (inside the brackets you can see the name of the counter). After this,
you can see another set of quotes containing the colon symbol followed by a space:

h1:before {content: “Chapter “ counter(chapter) “: “;}

 The content property that adds the section numbering before the < h2 > elements starts with the
 counter() function calling the chapter counter and follows that with a period (or full stop) in quotes,
then calls the counter() function again, this time with the section number:

h2:before { content: counter(chapter) “.” counter
(section) “ “; }

 Each time the browser comes across an < h2 > element, it should increment the section counter using
the counter - increment property:

h2 {counter-increment: section; }

 Each time the browser comes across an < h1 > element, it should increment the chapter counter using
the counter - increment property and reset the section counter:

h1 {counter-increment: chapter; counter-reset: section;}

 When you put these rules together, they should look like this (ch08_eg22.css):

body {counter-reset: chapter; counter-reset: section;}
h1:before {content: “Chapter “ counter(chapter) “: “;}
h2:before { content: counter(chapter) “.” counter
(section) “ “; }
h1 {counter-increment: chapter; counter-reset: section;}
h2 {counter-increment: section; }

 The first version of IE to support the counter functions was IE8, although Firefox and Safari have
enjoyed support for this feature for longer.

 Quotation Marks
 The content property can use the values open - quote and close - quote to add quote marks before
and after occurrences of specified elements.

 IE8 was the first version of Internet Explorer to support these properties (and it only works if
the XHTML page contains a DOCTYPE declaration), although it has enjoyed support in Firefox for
longer. Here is the XHTML for this example: (ch08_eg23.html):

c08.indd 334c08.indd 334 11/20/09 4:56:02 PM11/20/09 4:56:02 PM

Chapter 8: More Cascading Style Sheets

335

 < h1 > Generated quotes < /h1 >
 < p > Here are some quotes from Oscar Wilde: < /p >
 < blockquote > Consistency is the last refuge of the unimaginative. < /blockquote >
 < blockquote > If you want to tell people the truth, make them laugh,
otherwise they’ll kill you. < /blockquote >
 < blockquote > It is a very sad thing that nowadays there is so little useless
information. < /blockquote >

 And now to add the quotes before and after the < blockquotes > element, use the following CSS
(ch08_eg23.css):

blockquote:before {content: open-quote;}
blockquote:after {content: close-quote;}

 You can see the result in Figure 8 - 23.

Figure 8-23

 Miscellaneous Properties
 There are a few very helpful properties that have not yet been covered, which you will look at next:

 The cursor property

 The display property

 The visibility property

 The cursor Property
 The cursor property allows you to specify the type of mouse cursor that should be displayed to the
user. For example, when an image is used for a submit button on a form, this property is often used to
change the cursor from an arrow to a hand, providing a visual clue to users that they can click on it.

❑

❑

❑

c08.indd 335c08.indd 335 11/20/09 4:56:02 PM11/20/09 4:56:02 PM

Chapter 8: More Cascading Style Sheets

336

 As a general rule, you should use these values only to add helpful information for users in places they
would expect to see that cursor — for example, using a crosshair on a link may confuse users.

 The table that follows shows possible values for the cursor property.

 Value Description

 auto Shape of the cursor depends on the context area it is over (a text cursor over
text, a hand over a link, and so on).

 crosshair A crosshair or plus sign.

 default Usually an arrow.

 pointer A pointing hand.

 move A grasping hand (ideal if you are doing drag - and - drop script).

 e - resize

 ne - resize

 nw - resize

 n - resize

 se - resize

 sw - resize

 s - resize

 w - resize

 Indicate that an edge can be moved. For example, if you were stretching a box
with the mouse, the se - resize cursor is used to indicate a movement starting
from the southeast corner of the box.

Figure 8-24

Figure 8 - 24 shows you some of the cursor types that are available for you to use (although you will only
see one at a time if you try the example out).

c08.indd 336c08.indd 336 11/20/09 4:56:02 PM11/20/09 4:56:02 PM

Chapter 8: More Cascading Style Sheets

337

 Value Description

 text Similar to the vertical bar I.

 wait An hourglass.

 help A question mark or balloon, ideal for use over help buttons.

 < url > The source of a cursor image file.

 The display Property
 The display property can be used to force an element to be either a block - level or inline box. For
example, to make an inline element such as a link into a block - level box you would use the following:

a {display:block;}

 Or you could make a block - level box such as a paragraph into an inline box like so:

p {display:inline;}

 You may also want to use the value none to indicate that the box should not be displayed. When
this value is used it does not take up any space on the page — it is treated as if it were not in the
markup at all.

p {display:none;}

 This property can take other values, but they are mainly for use with languages other than XHTML.

 The visibility Property
 The visibility property allows you to hide a box from view. When you give the visibility property
a value of hidden you do not see the content of the element, but it still affects the layout of the page (it
takes up the same amount of space that it would if you could see the element on the page — if you want
to make something disappear without taking up space you should use the display property that you
just met in the previous section). A common use of the visibility property would be to hide error
messages that are displayed only if the user needs to see them. The visibility property can also take a
value of visible to show the element (which is the default state for all elements).

 Value Purpose

 visible The box and its contents are shown to the user (the default state for all
elements).

 hidden The box and its contents are made invisible, although they still affect the layout
of the page.

c08.indd 337c08.indd 337 11/20/09 4:56:02 PM11/20/09 4:56:02 PM

Chapter 8: More Cascading Style Sheets

338

 For example, here are four paragraphs of text (ch08_eg25.html):

 < body >
 < p > Here is a paragraph of text. < /p >
 < p > Here is a paragraph of text. < /p >
 < p class=”invisible” > This paragraph of text should be invisible. < /p >
 < p > Here is a paragraph of text. < /p >
 < /body >

 Note that the third paragraph has a class attribute whose value indicates that it ’ s part of the invisible
class. Now look at the rule for this class (ch08_eg25.css):

p.invisible {visibility:hidden;}

 You can see from Figure 8 - 25 that the invisible paragraph still takes up space, but it is not visible to
the user.

Figure 8-25

 Remember that the source code will still contain whatever is in the invisible paragraph, so you should
not use this to hide sensitive information such as credit card details or passwords.

 Additional Rules
 Before you move on to look at how you can use CSS to position elements on a page, let ’ s take a look at
three rules:

 @import imports another style sheet into the current style sheet.

 !important indicates that some rules should take precedence over others.

 @charset indicates the character set the style sheet uses.

 The @import Rule: Modularized Style Sheets
 The @import rule allows you to import styles from another style sheet. It should appear right at the start
of the style sheet before any of the rules, and its value is a URL. It can be written in one of two ways:

❑

❑

❑

c08.indd 338c08.indd 338 11/20/09 4:56:03 PM11/20/09 4:56:03 PM

Chapter 8: More Cascading Style Sheets

339

@import “mystyle.css”;
@import url(“mystyle.css”);

 Either works fine. The significance of the @import rule is that it allows you to develop your style sheets
with a modular approach. You can create separate style sheets for different aspects of your site. This is
the concept I started to introduce in the last chapter when you created a style sheet for code styles. Now
if you want to include those styles in any other style sheet you write, rather than repeating them you just
use the @import rule to bring those rules into the style sheet you are writing.

 Here is an example of a style sheet that imports the codeStyles.css style sheet from the last chapter
(for convenience, this file has been copied into the folder for the code download for this chapter). This
example is ch08_eg26.css :

@import “codeStyles.css”
body {
 background-color:#ffffff;
 font-family:arial, verdana, helvetica, sans-serif;}
h1 {font-size:24pt;}

 As you can see, it does not contain many rules itself; the code styles have all been taken from the
imported style sheet. Figure 8 - 26 shows a page that uses this style sheet that has imported the styles
for the code (ch08_eg26.html).

Figure 8-26

 You might also consider developing modular style sheets that control appearance of forms, different
layouts, and so on. If a style sheet contains a rule for one element (say the < body > element was given a
black background color), this rule would take precedence over any conflicting rules that applied to
imported style sheets (for example, if there was a rule in the imported style sheet indicating that the
 < body > element should be given a red background color).

 The !important Rule
 When there is a chance that two style - sheet rules might conflict with each other, you can use
the !important rule to indicate that this particular rule should take precedence over others.

c08.indd 339c08.indd 339 11/20/09 4:56:03 PM11/20/09 4:56:03 PM

Chapter 8: More Cascading Style Sheets

340

 This can be helpful if you are developing modular style sheets and you want to ensure that a rule in the
included style sheets takes precedence over any conflicting rules in the style sheet containing the
@import rule (which would otherwise have taken precedence).

 It can also be helpful when users have set their own style sheets. Part of the aim of separating style from
content, using CSS to style web pages, was to make them more accessible to those with visual
impairments. So after you have spent your valuable time learning about CSS and how to write your style
sheets to make your sites attractive, I have to tell you that users can create their own style sheets, that can
override your settings!

 In reality, very few people do create their own CSS style sheets to view pages the way they want, but the
ability is there, and was designed for those with disabilities. By default, your style sheet rather than
theirs should be viewed; however, the user ’ s style sheet can contain the !important rule, which says
 “ override the site ’ s style sheet for this property. ” For example, a user might use the rule like so:

p {font-size:18pt !important;
 font-weight:bold !important;}

 There is nothing you can do to force the user to use your style sheet, but in practice, a very small
percentage (if any) of your visitors will create their own style sheets, so you should not worry about it —
 it ’ s covered here only so that you understand what the rule is and why you may come across it.

 Note that in CSS1, the !important rule allowed authors to overrule users ’ style sheets, but this was
switched over in the second version.

 The @charset Rule
 If you are writing your style sheet using a character set that features characters other than the basic Latin
characters (the ASCII or ISO - 8859 - 1 character sets), you might want to set the @charset rule at the top of
your style sheet to indicate what character set the style sheet is written in.

 The @charset rule must be written right at the beginning of the style sheet without even a space before
it. The value is held in quotes and should be one of the language codes specified in Appendix G.

@charset “iso-8859-1”

 Positioning and Layout with CSS
 Up to this point, you have learned how the content of each element is represented in CSS using a box,
and you ’ ve seen many of the properties you can use to affect the appearance of the box and its content.
Now it ’ s time to look at how to control where the boxes should be positioned within a page.

 In CSS, there are three positioning schemes that allow you to control layout of a page: normal , float , and
 absolute positioning. In the following sections, you ’ ll be seeing how you can use each of these to indicate
where the content of an element should appear on the page.

 While the CSS positioning schemes were not really intended to be a mechanism for controlling the layout
of pages, they have become the standard way to lay out pages on the Web. For the rest of the chapter, we

c08.indd 340c08.indd 340 11/20/09 4:56:03 PM11/20/09 4:56:03 PM

Chapter 8: More Cascading Style Sheets

341

will be looking at how you can control where boxes appear on the page using CSS; then in the next
chapter we will look at how to apply this knowledge to create attractive layouts.

 Before CSS, web designers commonly used tables to control the layout of web pages. While you will still
occasionally see tables used for this purpose, they were designed to contain tabular data, and you should
aim to control layout of new pages using CSS instead. If you use CSS to control layout rather than
tables your pages will be smaller (in terms of lines of code), easier to adapt to different devices, easier to
redesign, faster to load, and more visible to search engines.

 Normal Flow
 By default, elements are laid out on the page using what is known as normal flow . In normal flow, the
block - level elements within a page will flow from top to bottom (remember that each block - level element
will appear as if it is on a new line), and inline elements will flow from left to right (because they do not
start on a new line).

 For example, each heading and paragraph should appear on a different line, whereas the contents of
elements such as < b > , < em > , and < span > sit within a paragraph or other block - level element; they do not
start on new lines.

 Figure 8 - 27 illustrates this with three paragraphs, each of which is a block - level element sitting on top of
the other. Inside each paragraph is an example of an inline element, in this case the < b > element (ch08_
eg27.html).

Figure 8-27

 If you want the content of elements to appear in other places than where they would in normal flow, you
have two properties to help you: position and float .

c08.indd 341c08.indd 341 11/20/09 4:56:04 PM11/20/09 4:56:04 PM

Chapter 8: More Cascading Style Sheets

342

 The position Property
 The position property allows you to specify how you want to control the position for a box
(and is generally used to take items out of normal flow). It can take the four values listed in the table
that follows:

 Value Meaning

 static This is the same as normal flow, and is the default, so you will rarely (if ever)
see it specified.

 relative The position of the box can be offset from where it would be if it were left in
normal flow.

 absolute The box is positioned exactly using x and y coordinates from the top - left
corner of the containing element.

 fixed The position is calculated from the top - left corner of a browser window and
does not change position if the user scrolls the window.

 You will see how these are used in the coming sections.

 Box Offset Properties
 As you ’ ll see in the coming sections, when boxes have a position property whose value is relative ,
 absolute , or fixed , they will also use box offset properties to indicate where these boxes should be
positioned. The table that follows lists the box offset properties.

 Property Meaning

 top Offset position from the top of the containing element

 left Offset position from the left of the containing element

 bottom Offset position from the bottom of the containing element

 right Offset position from the right of the containing element

 Each can take a value of a length, a percentage, or auto . Relative units, including percentages, are
calculated with respect to the containing boxes ’ dimensions or properties.

c08.indd 342c08.indd 342 11/20/09 4:56:04 PM11/20/09 4:56:04 PM

Chapter 8: More Cascading Style Sheets

343

 Relative Positioning
 Relative positioning allows you to move a box in relation to where it would appear in normal flow. For
example, you might move a box 30 pixels down from where it would appear in normal flow, or 100
pixels to the right. It is displaced from where it would be in normal flow using the box offset properties.

 Let ’ s go back to the last example you met in the previous section when we were looking at normal flow
and move the second paragraph using relative positioning, as shown in Figure 8 - 28.

Figure 8-28

 The second paragraph in this example is offset from where it would be in normal flow (where it was in
the last example) by 40 pixels from the left and 40 pixels from the top — note the minus sign, which
raises it above its position in normal flow (ch08_eg28.css).

p {border-style:solid;
 border-color:#000000;
 border-width:2px;
 padding:5px;
 background-color:#FFFFFF;}
p.two {
 position:relative;
 left: 40px;
 top: -40px;}

 The value of the box offsets is most commonly given in pixels or a percentage.

 You should specify only a left or right offset and a top or bottom offset. If you specify both left and right
or both top and bottom, the right or bottom offset will be ignored.

 When you are using relative positioning, you can end up with some boxes overlapping others, as in the
previous example. Because you are offsetting a box relative to normal flow, if the offset is large enough,

c08.indd 343c08.indd 343 11/20/09 4:56:04 PM11/20/09 4:56:04 PM

Chapter 8: More Cascading Style Sheets

344

one box will end up on top of another. This may create an effect you are looking for; however, there are a
couple of pitfalls you should be aware of:

 Unless you set a background for a box (either a background color or image) the box will be
transparent by default, making any overlapping text an unreadable mess. In the preceding
example, I used the background - color property to make the background of the paragraphs
white and thereby prevent this from happening.

 The CSS specification does not say which element should appear on top when relatively
positioned elements overlap each other, so there can be differences between browsers (although
you can control this using the z - index property, which you will meet shortly).

 Absolute Positioning
 Absolute positioning takes an element out of normal flow, allowing you to fix its position. You can
specify that an element ’ s content should be absolutely positioned by giving it the position property
with a value of absolute ; then you use the box offset properties to position it where you want.

 The box offsets fix the position of a box relative to the containing block — which is slightly different
from a containing element because it is a containing element whose position property is set to
 relative or fixed .

 Take a look at the following style sheet. This style sheet is for use with three paragraphs again, but
this time the paragraphs are held within a < div > element that also uses absolute positioning (ch20_
eg29.css):

div.page {
 position:absolute;
 left:50px;
 top: 100px;
 border-style:solid; border-width:2px; border-color:#000000;}
p {
 background-color:#FFFFFF;
 width:200px;
 padding:5px;
 border-style:solid; border-color:#000000; border-width:2px;}
p.two {
 position:absolute;
 left:50px;
 top: -25px;}

 Figure 8 - 29 shows you what this would look like in a browser; as you can clearly see, the second
paragraph is no longer in the middle of the page. The second paragraph element has been taken out of
normal flow because the third paragraph is now in the place where the second paragraph would have
been if it participated in normal flow. Furthermore, it even appears before the first paragraph and
over to the right!

❑

❑

c08.indd 344c08.indd 344 11/20/09 4:56:04 PM11/20/09 4:56:04 PM

Chapter 8: More Cascading Style Sheets

345

 The presence of the < div class= ” page ” > element here is to show that the paragraph is being
positioned according to the containing block — the absolutely positioned < div > element.

 Absolutely positioned elements always come out above relatively positioned elements, as you see here,
unless you use the z - index property (which you ’ ll learn about later in this chapter).

 It is also worth noting that, because absolutely positioned boxes are taken out of normal flow, even if two
vertical margins meet, their margins do not collapse.

 Fixed Positioning
 The final value you need to be aware of for the position property is the value fixed . This value
specifies that the content of the element should not only be completely removed from normal flow, but
also that the box should not move when users scroll up or down a page.

 While Firefox and Safari have offered support for fixed positioning for a while, IE7 was the first version
of Internet Explorer to support it.

 We ’ ll use the following sample of XHTML from ch08_eg30.html to demonstrate fixed positioning. This
example continues with several more paragraphs so that you can see the page scrolling while the content
of the < div > element remains fixed at the top of the page:

 < div class=”header” > Beginning Web Development < /div >
 < p class=”one” > This page has to contain several paragraphs so you can see
the effect of fixed positioning. Fixed positioning has been used on the
header so it does not move even when the rest of the page scrolls. < /p >

Figure 8-29

c08.indd 345c08.indd 345 11/20/09 4:56:05 PM11/20/09 4:56:05 PM

Chapter 8: More Cascading Style Sheets

346

 Here you can see the style sheet for this example (ch08_eg30.css). The header has the position
property with the value fixed and is positioned to the top left of the browser window:

div.header {
 position:fixed;
 top: 0px;
 left:0px;
 width:100%;
 padding:20px;
 font-size:28px;
 color:#ffffff; background-color:#666666;
 border-style:solid; border-width:2px; border-color:#000000;}
p {
 width:300px;
 padding:5px;
 color:#000000; background-color:#FFFFFF;
 border-style:solid; border-color:#000000; border-width:2px;}
p.one {margin-top:100px; }

 Figure 8 - 30 shows you what this fixed header element looks like even though the user has scrolled
halfway down the page.

Figure 8-30

 The z - index Property
 Elements positioned using absolute and relative positioning often overlap other elements. When this
happens the default behavior is to have the first elements underneath later ones. This is known as
 stacking context . You can specify which of the boxes appears on top using the z - index property. If you
are familiar with graphic design packages, the stacking context is similar to using the “ bring to top ” and
 “ send to back ” features.

 The value of the z - index property is a number, and the higher the number the nearer the top that
element should be displayed (for example, an item with a z - index of 10 will appear on top of an item
with a z - index of 5).

c08.indd 346c08.indd 346 11/20/09 4:56:05 PM11/20/09 4:56:05 PM

Chapter 8: More Cascading Style Sheets

347

 To better understand z - index , take a look at another example of absolute positioning — this time there
are just three paragraphs (ch08_eg31.css):

<p class=”one”>Here is paragraph one. This will be at the top of the
page.</p>
<p class=”two”>Here is paragraph two. This will be underneath the
other elements.</p>
<p class=”three”>Here is paragraph three. This will be at the bottom
of the page.</p>

 Each of these paragraphs shares common width , background - color , padding , and border properties,
which are specified in the first rule (this saves us from having to repeat the same properties for each
individual <p> element). Then each paragraph is positioned separately using absolute positioning.
Because these paragraphs now all overlap, the z - index property is added to control which one appears
on top; the higher the value, the nearer the top it ends up (ch08_eg31.css):

p {
 width:200px;
 background-color:#ffffff;
 padding:5px; margin:10px;
 border-style:solid; border-color:#000000; border-width:2px;}
p.one {
 z-index:3;
 position:absolute;
 left:0px; top:0px;}
p.two {
 z-index:1;
 position:absolute;
 left:150px; top: 25px;}
p.three {
 z-index:2;
 position:absolute;
 left:40px; top:35px;}

 Figure 8 - 31 shows how the second paragraph now appears to be underneath the first and third
paragraphs, and the first one remains on top.

Figure 8-31

c08.indd 347c08.indd 347 11/20/09 4:56:05 PM11/20/09 4:56:05 PM

Chapter 8: More Cascading Style Sheets

348

 Floating Using the float Property
 The float property allows you to take an element out of normal flow and place it as far to the left or
right of a containing box as possible.

 Anything else that lives in the containing element will flow around the element that is associated with
the float property (just like text and other elements can flow around an image).

 Whenever you specify a float property on an element, you must also set a width property indicating
the width that the box should take up; otherwise, it will automatically take up 100 percent of the width
of the containing box, leaving no space for things to flow around it and therefore making it appear just
like a plain block - level element .

 To indicate that you want a box floated either to the left or the right of the containing box, you set the
 float property, which can take one of the values listed in the table that follows.

 Value Purpose

 left The box is floated to the left of the containing element and the content of the
containing element will flow to the right of it.

 right The box is floated to the right of the containing element and the content of the
containing element will flow to the left of it.

 none The box is not floated and remains where it would have been positioned in
normal flow.

 inherit The box takes the same property as its containing element.

 When a box uses the float property, vertical margins will not be collapsed above or below it like block
boxes in normal flow can be (because it has been taken out of normal flow). The floated box will be
aligned with the top of the containing box.

 Look at the following XHTML (ch08_eg32.html) and note how the first <p> element has a class
attribute whose value is pullQuote:

 < body >
 < h1 > Heading < /h1 >
 < p class=”pullQuote” > Here is the pullquote. It will be removed from
 normal flow and appear on the right of the page. < /p >
 < p > This is where the story starts and it will appear at the top of the
 page under the heading. You can think of it as the first paragraph of an
 article or story. In this example, the pull quote gets moved across to the
 right of the page. There will be another paragraph underneath. < /p >

 < p > Here is another paragraph. This one will be at the bottom of the page. < /p >

 < /body >

c08.indd 348c08.indd 348 11/20/09 4:56:06 PM11/20/09 4:56:06 PM

Chapter 8: More Cascading Style Sheets

349

 As this example shows, the first < p > element is taken out of the normal flow and placed to the right of
the containing < body > element using the float property with a value of right (ch08_eg32.css):

body {
 color:#000000;
 background-color:#ffffff;
 font-size:12px;
 margin:10px;
 width:514px;
 border: 1px solid #000000;}
p {
 background-color:#FFFFFF;
 border:2px solid #000000;
 padding:5px;
 margin:5px;
 width:500px;}
.pullQuote {
 float:right;
 width:150px;}

 You can see how the content of the first < p > element with the class attribute whose value is pullQuote
ends up to the right of the page, with the content of the second paragraph flowing to the left and then
underneath it, as shown in Figure 8 - 32.

Figure 8-32

 You will see lots more examples of how the float property works in the next chapter when you look at
page layout.

 The clear Property
 The clear property is especially helpful when working with boxes that are floated. As you just saw in
Figure 8 - 33, content can flow around a floated element; however, you might not want this to happen —
 you might prefer that nothing sit next to the floated element, and that surrounding content be pushed
underneath the floated element. This is what the clear property is for, and the following table shows
you the values that this property can take.

c08.indd 349c08.indd 349 11/20/09 4:56:06 PM11/20/09 4:56:06 PM

Chapter 8: More Cascading Style Sheets

350

 Value Purpose

 left The element with the clear property cannot have content on the left hand side of it.

 right The element with the clear property cannot have content on the right hand side of it.

 both The element with the clear property cannot have content to the left or right of it.

 none Allows floating on either side.

 Let ’ s have a look at an example. Our XHTML page will use exactly the same structure as the last
example, but this time the style sheet will ensure that nothing sits next to the pull quote.

 To ensure that the second paragraph does not wrap around the pull quote, we use the clear property on
the rule for the < p > elements indicating that nothing should appear to the left of it; you can see this new
property is highlighted in the following code (ch08_eg33.css):

p {
 background-color:#FFFFFF;
 border:2px solid #000000;
 padding:5px;
 margin:5px;
 width:500px;

 clear:right}

 Figure 8 - 33 shows you how the clear property works in this example, ensuring that the second and
third paragraphs sit below the pull quote.

Figure 8-33

c08.indd 350c08.indd 350 11/20/09 4:56:06 PM11/20/09 4:56:06 PM

Chapter 8: More Cascading Style Sheets

351

 Try It Out A Sample Layout

 In this Try It Out, you are going to create a sample page layout that uses a combination of the
techniques you learned in this chapter to control the layout of the page using CSS.

 The page you are going to work with is shown in Figure 8 - 34 without the style sheet attached.

Figure 8-34

 Here is the body of the XHTML code for this example (samplePage.html):

 < body >
 < h1 > Cascading Style Sheets < /h1 >
 < div class=”nav” > < a href=”../index.htm” > Examples index < /a >
 & nbsp; < a href=”download.html” > Chapter 8 Code < /a > < /div >
 < h2 > CSS Positioning < /h2 >
 < p class=”abstract” > < img class=”floatLeft” src=”images/background.gif”
 alt=”wrox logo” / > This article introduces the topic of laying out
 web pages in CSS using a combination of positioning schemes. < /p >
 < p > CSS allows you to use three different positioning schemes to create
 complex layouts: < /p >
 < ul >
 < li > Normal flow < /li >
 < li > Absolute positioning < /li >
 < li > Floating < /li >
 < /ul >
 < p > By using a combination of these schemes you do not need to resort to
 using tables to lay out your pages. < /p >
 < /body >

 This example illustrates some of the issues that you need to be aware of with CSS — in particular, it is
important to demonstrate that while you have seen some very helpful properties, some of them are

c08.indd 351c08.indd 351 11/20/09 4:56:07 PM11/20/09 4:56:07 PM

Chapter 8: More Cascading Style Sheets

352

only supported in the latest browsers. While you can design your site in such a way that it will work
with most browsers, you might not be able to get some techniques to work in all the browsers you
want it to — so you need to test your site thoroughly.

 In Firefox, this Try It Out example will look like Figure 8 - 35; and you would get a similar result in IE7+.

Figure 8-35

 However, Figure 8 - 36 shows you what this page would look like in IE6. In particular note how there is
no longer the word “ navigation ” before the links in the left, and how the heading “ CSS Positioning ”
sits further down the page — so if you still have visitors coming to your site who use IE6, you need to
consider which features will and won’t work and check your page in IE6 before publishing the site.

Figure 8-36

c08.indd 352c08.indd 352 11/20/09 4:56:07 PM11/20/09 4:56:07 PM

Chapter 8: More Cascading Style Sheets

353

 To start working on the CSS file for this page, start up your web - page editor and follow these steps:

 1. Create a file called samplePage.css , add the elements from the XHTML page, and use class
selectors where appropriate to identify each type of element. You should end up with a list
like the one that follows; then you will be able to look at the rule for each element in turn.

body {}
h1 {}
div.nav {}
h2 {}
p {}
p.abstract {}
img {}
ul {}

 2. First comes the rule for the < body > element, which just sets up some defaults for the page.

body {
 color:#000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

 3. Next is the header for the site, which uses fixed positioning to take it out of normal flow and
anchor it to the top of the page even if the user scrolls. It also has a z - index property to
ensure that this heading remains on top of the navigation.

h1 {
 position:fixed;
 top:0px; left:0px;
 width:100%;
 color:#ffffff; background-color:#666666;
 padding:10px;
 height:60px;
 z-index:2;}

 4. The navigation is also removed from normal flow because it is absolutely positioned. It is
positioned 80 pixels from the top so that the links will not disappear underneath the page ’ s
heading when the page first loads. The navigation is placed in a box that is 100 pixels wide
and 300 pixels high with a light gray background. As a visitor scrolls down the page, the
navigation will go underneath the heading for the page because we have not specified a
 z - index property, and the heading has a z - index property with a value of 2 .

div.nav {
 position:absolute;
 top:80px; left:0px;
 width:100px;
 height:300px;
 padding:10px;
 background-color:#efefef;}

c08.indd 353c08.indd 353 11/20/09 4:56:08 PM11/20/09 4:56:08 PM

Chapter 8: More Cascading Style Sheets

354

 5. You may have noticed that the navigation bar contains the word “ Navigation, ” which was not
in the original HTML file. This style sheet uses the CSS :before pseudo - class to add this
word in. You can see here that it also has other styles associated with it.

div.nav:before {
 content: “Navigation “;
 font-size:18px;
 font-weight:bold;}

 6. Next is the rule for the < h2 > element, which needs to be indented from the left because the
navigation takes up the first 120 pixels to the left of it. It also has padding at the top to bring
the text underneath the heading.

h2 {
 padding:80px 0px 0px 130px;}

 7. Next are the two rules for paragraphs. The first rule is for all paragraphs, and the second one
ensures that the abstract of the article is in bold. As with the < h2 > element, all paragraphs
need to be indented from the left.

p {padding-left:115px;}
p.abstract{font-weight:bold;}

 8. The image that sits in the first paragraph is floated to the left of the text. As you can see, the
text in the paragraph flows around the image. It also has a 5 - pixel margin to the right.

img {
 float:left;
 width:60px;
 margin-right:5px;}

 9. Finally, you have the rule for the unordered list element, which needs to be indented further
than the paragraphs or level 2 heading. It also specifies the style of bullet to be used with the
 list - style property.

ul {
 clear:left;
 list-style:circle;
 padding-left:145px;}

 10. Save your style sheet as samplePage.css and try loading the samplePage.html file that is
going to use it.

c08.indd 354c08.indd 354 11/20/09 4:56:08 PM11/20/09 4:56:08 PM

Chapter 8: More Cascading Style Sheets

355

 Summary
 In this chapter you learned the CSS properties that allow you to control lists, links, tables, outlines, and
backgrounds with CSS. You then saw how CSS allows you to add content from the style sheet into the
document. The :before and :after pseudo - classes allow you to add content before or after an element
specified in the selector. This includes text, an image, or content from a file. You can even add automatic
numbering or counting of any element using the counter() function and can manage complex sets of
quotation marks (although not all browsers support all these functions yet).

 You also learned how to use the @import rule to include rules from other style sheets into the current
one and create modularized style sheets that allow you to re-use the same rules on different sites, while
the @charset rule indicates which character set is being used in the style sheet.

 Finally, this chapter looked at the three main positioning schemes in CSS: normal flow (and its offshoot
relative positioning), absolute positioning (and its offshoot fixed positioning), and floating. These are
powerful tools for controlling where the content of a document should appear; they complete the picture
of separating style from content.

 Exercises
 The answers to all of the exercises are in Appendix A.

 1. In this exercise, you create a linked table of contents that will sit at the top of a long document in
an ordered list and link to the headings in the main part of the document.

 The XHTML file exercise1.html is provided with the download code for this book, ready for
you to create the style sheet. Your style sheet should do the following:

❑ Set the styles of all links including active and visited links

❑ Make the contents of the list bold

❑ Make the background of the list light gray and use padding to ensure the bullet
points show

❑ Make the width of the links box 250 pixels wide

❑ Change the styles of heading bullet points to empty circles

❑ Change the style of link bullet points to squares

 Your page should look something like Figure 8 - 37.

c08.indd 355c08.indd 355 11/20/09 4:56:09 PM11/20/09 4:56:09 PM

Chapter 8: More Cascading Style Sheets

356

 2. In this exercise, you test your CSS positioning skills. You should create a page that represents the
links to the different sections of the chapter in a very different way. Each of the sections will be
shown in a different block, and each block will be absolutely positioned in a diagonal top-left to
bottom-right direction. The middle box should appear on top, as shown in the Figure 8 - 38.

Figure 8-37

Figure 8-38

 You can find the source XHTML file (exercise2.html) with the download code for
 this chapter.

c08.indd 356c08.indd 356 11/20/09 4:56:09 PM11/20/09 4:56:09 PM

 9
Page Layout

 This chapter is the first of two chapters about guiding you through the entire process of designing
a site from start to finish.

 There are a lot of people who have a web site simply because they think they should have one —
 they don ’ t necessarily know what should be on it and for them the first reaction is often to copy
other sites. So, before sketching out your first ideas of how the site might look, I am going to guide
you through a process I use whenever I create a new web site. It helps the site owner understand
what information should be on the site.

 Having determined the content of your site, you can group the information into related chunks
and create a site map . That site map shows each of the pages of your site, how they relate to each
other, and what needs to appear on them.

 Once you know what needs to appear on each page, then you can start to look at page layout , which
involves the arrangement of the information on your pages.

 Having determined what your page will look like, you need to translate your designs into code.
This will involve learning how CSS can be used to control the position of content on your pages.

 To wrap up the chapter we will take a look at the issues regarding developing web sites for use on
mobile phones. Even if you do not think that you need to worry about users with mobile phones,
you might reconsider when you find out that in some countries a fifth of Internet users access the
Web via a mobile device.

 This chapter is broadly grouped into six sections to reflect these topics:

 Understanding the aims of the site correctly, and getting the information to fulfill
these aims

 Grouping the information into “ elements ” (such as logos, navigation, product
information, contact information, and so on)

 Creating a site map, which shows how many pages you need and how they relate

❑

❑

❑

c09.indd 357c09.indd 357 11/20/09 4:59:46 PM11/20/09 4:59:46 PM

Chapter 9: Page Layout

358

 Deciding how to positioning the various elements within the page

 How to use CSS to position the elements on the page

 Developing for mobile phones

 Once you have looked at the overall layout of the page in this chapter, Chapter 10 will go on to look at
some more specific issues of designing the sections of each page, such as typography, design of menus,
and creating usable forms.

 Understanding the Site ’ s Audience
 Whether you are going to create a web site for yourself or are hoping to create sites for clients, in order
for the design to be effective you need to be able to answer four questions about the audience for your
site: who, why, what, and how often?

 Who? Who will visit the site?

 Why? Why have they come to your site? They probably want to achieve something . . .

 What? What sort of information do you think they would expect to find in order to satisfy their
reason for coming to the site?

 How often? How often can you realistically expect them to visit?

 The following sections will help you find out how to answer these questions, but first it is worth noting
here that these questions are about your visitors and what they want from your site rather than what you
(or your client) want from visitors.

 Who Will Visit the Site?
 Throughout the design process, you must keep one thing in mind: You need to design the page for the
 target audience of the site — not just yourself or the site owner.

 If you ask a new client whom they are hoping to attract to their site, it is not uncommon for the answer
to be along the lines of “ the entire world. ” While it may be easier for people of all ages in all countries to
visit a web site than it is for individuals to pop into a store or visit an exhibition, there are very few sites
that will appeal to everyone.

 Some of the following questions will help you define your target audience (some may be more relevant
to your site than others):

 What is the age range of your target audience?

 Will your site appeal more to men or women?

 Which country do your visitors live in?

 Do they live in an urban area or rural area?

 What is the income level of the visitors?

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 358c09.indd 358 11/20/09 4:59:49 PM11/20/09 4:59:49 PM

Chapter 9: Page Layout

359

 What level of education do they have?

 What is their marital or family status?

 What is their occupation?

 How many hours do they work per week?

 How often do they use the Web?

 If your site is aimed at a business:

 What is the size of the company?

 What is the size of the department?

 What is the position on individuals in the company using the site?

 Will these individuals be using the item or information themselves?

 How large is the budget they control?

 Once you have a better idea of who is coming to your site, you can invent five fictional visitors,
sometimes referred to as actors or personae , representing the range of your target audience. For example,
if you think your audience is composed of well - educated men and women between the ages of 20 and
40, with high earning potential, who regularly use the Web, you might end up with a list like this:

 Katie, female, 32, from San Diego, accountant, salary > $150k, uses Web two to three
times a week.

 Ayo, male, 28, from Denver, attorney, salary > $100k, uses Web every day.

 Tim, male, 24, from New York, politics student, uses Web every day.

 Noriko, female, 38, from San Francisco, homemaker, trained accountant, household income
 > $150k, uses Web two to three times per week .

 Andrew, male, 35, from Chicago, attorney, salary > $120k, uses Web every day.

 These fictional people, actors or personae, should become your friends. They can influence design
decisions from simple things such as color palettes to more complicated issues such as the level of detail
you offer when describing how to use the site. If in doubt, you can always come back and think, “ What
would Katie or Ayo want in this situation? ”

 Why Have They Visited Your Site?
 While some people may happen across your site because they ’ re browsing and see a link that they think
is interesting, the majority of visitors arrive at your site for a reason. Your design should be influenced
by the goals of users, and therefore you should try and list all the goals that people might have in mind
when visiting the site.

 It isn ’ t possible to list every reason why people visit your site, but you are trying to get to the salient
points, such as the following:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 359c09.indd 359 11/20/09 4:59:49 PM11/20/09 4:59:49 PM

Chapter 9: Page Layout

360

 A traveler wants to look at a hotel web site because he is creating a shortlist of hotels he may
want to stay at in a city.

 A shopper wants to know the opening hours of her local store.

 A hobby - guitarist wants to look at a guitar web site to keep up to date with the latest guitars.

 An investor wants to see if a scientific research company has sold previous research, and
therefore shows promise as an investment.

 A picture editor wants to look at a photographer ’ s site to see work examples before deciding
whether or not to hire the photographer.

 To help determine why people are coming to your site, you should examine two basic categories of
questions. The first category attempts to discover the underlying motivations of why visitors visit your
site. The second category examines the specific goals of your visitors. In order to identify the underlying
motivation for a visitor to come to your site you can ask questions such as:

 Is it to be entertained or to achieve a specific goal?

 Is the goal for personal or professional reasons?

 Would they see this as being essential or a luxury?

 To find out the specific goals of visitors you can ask questions such as:

 Do they want general information/research (such as background on a topic/a company), or are
they after something specific (such as a particular fact or information on a product)?

 Are they looking looking for the latest news or updates on a particular topic?

 Do they want to discover information about a specific product/service to help them decide
whether to buy it?

 Do they want to buy a product or service they are already familiar with?

 Do they want information on ways to contact you? If so, can they visit you in person (which
might require you to publish opening hours and a map of locations).

 These questions will, of course, change from site to site, but whatever the question, it is also helpful to
consider the triggers for visitors ’ coming — what made them come now.

 Once you have a list of tasks that people might want to achieve when they visit your site, you need to
prioritize the most important tasks that this web site should deal with. Allocate the most popular tasks to
the fictional target audience members — for example:

 Katie bought a product Y several years ago; now she wants to purchase one from your site for a
friend ’ s birthday.

 Tim has read about your new product X in the press and wants to find out when it will be
released in Canada.

 Ayo bought product Z five years ago, but it stopped working last week. Because it is out of
warranty, he wants to get a phone number so that he can find out who might be able to repair it.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 360c09.indd 360 11/20/09 4:59:49 PM11/20/09 4:59:49 PM

Chapter 9: Page Layout

361

 The combination of the typical personae of your target audience and the task each wants to achieve are
sometimes referred to as use cases .

 What Does a Visitor Need to Achieve a Goal?
 Now that you have a list of reasons why people might be coming to your site, you need to work out
what you need to offer in order to help them achieve their goal quickly and effectively. You should then
prioritize the information from most important need - to - know through to things you would also like
them to know, even if these are not essential to their goals.

 The following questions may help you work out what information they need:

 Will they be familiar with your brand/subject area or do you need to introduce yourself?

 Will people be familiar with the product or service you are promoting, or do they need
background information on it?

 What are the most important features of what you are offering?

 What is special about your product or service that differentiates it from the rival?

 Consider for a moment when visitors are comparing your product or service with a rival; you will want
to give them the key facts that they will be comparing against quickly and easily (otherwise you may not
make the shortlist). Then you can highlight what distinguishes you from the competition, along with
other background facts.

 For example, if a traveler is considering whether to shortlist a hotel as a possible place to stay, this person
may want to know what the hotel looks like, price, location, availability for the dates sought, and a
phone number (since some people want to deal directly and not put a credit card number on the Web). If
all this information isn ’ t found, the prospective traveler is less likely to shortlist you. Once you have
provided this information, you might like to add things that distinguish you from others, such as
facilities at the hotel and what to do in the area.

 You should aim to drill down as far as possible with your answers; for example, what information
are you going to include about a product or service? A product will not only have a title, it could have a
photo (or multiple photographs), description, dimensions, information about how and where it is made,
typical uses for it, and so on. A service might require descriptions of the work involved, how long it
takes to complete, what is required so the service can be performed, who will be performing the
service, how they are qualified to perform the service, testimonials from people who have paid for
this service, pictures of work done.

 There are some kinds of goals that will require a lot less information. For example, someone who wants
to find out the opening hours of your store will just want to know what time you open and close each
day, and they do not want to search through products and offers to know if they can get there before
you close.

 The results of this task will vary hugely from site to site, but the process should always involve
brainstorming everything your visitors will need to know, followed by a rationalized ordering and
prioritization of this information.

❑

❑

❑

❑

c09.indd 361c09.indd 361 11/20/09 4:59:50 PM11/20/09 4:59:50 PM

Chapter 9: Page Layout

362

 How Often Will People Want to Visit?
 The last important question about your audience is how often they are likely to come back.

 There is a very simple reason for asking this: Some sites should change more often than others. If your
site is about something that people do not need to keep coming back for, why spend a lot of time and
money regularly adding new content to the site? For example, if you provide a service that people rarely
use (from wedding services to double glazing), I would hope that the same person would not need to
keep coming back to your site.

 Conversely, if visitors have the potential to regularly return to the site, you will need to consider
updating the content regularly so that they want to keep coming back.

 Things You Want the Site to Do
 By now you should have an idea of who is coming to your site, why they are coming, what they need in
order to satisfy their reason for visiting, and when they might come back. This will probably be quite a
long list already, but there is one more thing you need to add to it: information that the site owner wants
on the site, but which might not be part of the list already.

 This may include things that users could find useful when they arrive on the site (even though they may
not have come for this reason), such as the ability to sign up for e - mail updates, subscribe to an RSS feed,
search the site, enter a competition, or find out about your new upcoming product. It may also include
information that is not really for the user (such as advertising).

 Finally, if your list does not yet include such things, don ’ t forget that you will want to include your logo
or branding to most pages. You should also remember some boring yet necessary features such as a
copyright notice, terms and conditions, and a privacy policy (the latter is important if you collect
information about users or use a technology known as cookies for storing information on the user ’ s
computer).

 Prioritizing Information
 Now that you have a list of what your visitors want to achieve and what the site owner wants to achieve,
you should start to prioritize that information. You have your fictional friends to help you work out
which tasks are most important. If one of them has not already asked about a piece of information, or it
will not help this person achieve a goal, it may be lower priority.

 I have come across plenty of site owners who want to push messages that are not aligned with what the
majority of visitors want to find out. With so many sites on the Web, if your site does not fulfill your
visitor s’ requirements quickly and easily they will go elsewhere. I ’ m not saying you should ignore
messages that the site owner wants featured, just that the needs of the visitors should usually be
considered of paramount importance.

 At this point you might also look at other sites that address a similar topic — the competition — and
look at what they do and don ’ t do well and whether these sites meet the needs of the people you expect
to visit your site. One of the key points to think about here is what you can do differently or better —
 something that makes you look better than the competition (rather than just copying them).

c09.indd 362c09.indd 362 11/20/09 4:59:50 PM11/20/09 4:59:50 PM

Chapter 9: Page Layout

363

 Once you have every possible kind of information on your list, and you have prioritized it, you can trim
your ideas back to what you are actually going to use for this web site. Remember that unused ideas can
always be used in a future update of the site. (You do not need to use every idea when your site first
launches.)

 If you are working on a site for a client, it is good to get the client to agree to the
aims of the site when you have defined them. Many clients can decide they want
extra functionality added during the development of the site, so pinning down the
aims from the start is important. If the client wants to then expand on these aims you
can re - negotiate terms for these extra features (such as extra development time and
extra expenses).

 Grouping and Categorization
 Now that you know what is going to appear on your site and the priority of such information, you
should start to group together related information. If the site is advertising several products or services,
these may be placed together in related groups of products or services, which can be split into
subgroups. For example:

 You might group the information about how the company was formed and its history along
with information about the company today in a general “ about us ” section. In this section, you
might also include profiles of the people running the business.

 The different ways in which people can get in touch with you (phone, e - mail, fax, opening
hours, maybe a map, and so on) and ideally a contact form could all be put in one “ contact
us ” group.

 If a company has outside investors and is listed on the stock market, you might want to
create a section for the investors, with company reports, information on the board of directors,
and so on.

 For most sites, you should try to create no more than six or seven sections. These sections will form the
 primary or global navigation items of your site. In addition to these items you will have the homepage.
This method of grouping the site will make it much easier to navigate and understand.

 Some of the sections will likely contain subsections with several pages of their own, and there may be
more than seven subsections in each category. For example, a publisher might have more than seven
genres of books in a books section (such as fiction, biography, reference, travel, and so on), or a cookery
site may organize a recipes section by classes of ingredients or types of meals. These subsections form
 secondary or category navigation . In some cases, this can be split further into tertiary navigation.

 Remember that your grouping should reflect what you expect the visitors to your site will want to do
and the customers ’ understanding of your products, services, or subject. For example, if your customers
are looking for a type of product on your site, will they be looking within a list of manufacturers or in a
list of product types?

❑

❑

❑

c09.indd 363c09.indd 363 11/20/09 4:59:50 PM11/20/09 4:59:50 PM

Chapter 9: Page Layout

364

 These categories and subcategories are like a table of contents and will form the basis of the navigation
for your site — the sections will each need to take part in the main menu while the subsections will often
form their own submenus. This organization is very important on web sites because they do not have the
linear order a book does; users are far more likely to take different routes through a web site. The better
organized your site, the more chance users will find what they are looking for.

 Creating a Site Map
 By now you should be getting a good idea of the sections and pages that are going to make up your site,
so you should start drawing up a site map. You can do this with a pencil and paper, and it should end up
looking something like either a family tree or folder list in Windows Explorer. You should start with the
homepage for the site and all of the main categories at the top of the tree.

 If any of the categories contain subcategories or more than one page, these pages should appear as
children of the first page. For example, if one of your main categories is “ products, ” then you might have
this split into several subsections with a page about each item in those subsections.

 You can see an example of a site map in Figure 9 - 1; you could draw this either vertically, as was done
here, or horizontally (more like a family tree).

Figure 9-1

HOME

PRODUCTS

SEATING

SOFA

ARMCHAIR

DINING CHAIR

DINING TABLE

COFFEE TABLE

DESK

LAMPS

STANDARD LAMP

READING LAMP

UPLIGHTER

STORAGE

DRAWERS

CUPBOARDS

WHO STOCKS?

EUROPE

NORTH AMERICA

ASIA/PACIFIC

ABOUT US

CONTACT US

TABLES

c09.indd 364c09.indd 364 11/20/09 4:59:50 PM11/20/09 4:59:50 PM

Chapter 9: Page Layout

365

 Once you have created a site map, you will know the following:

 How many pages are on your site

 What information will appear on each of those pages

 What links will appear on each page (and where those links point to)

 Once you have created your site map, it is a good idea to try to look at the things that you initially
expected to draw users to the site. You will also want to look at how users would navigate through the
site map, step by step, to get to the information that you think they will need.

 Identifying Key Elements for Each Page
 Now that you know what pages will make up the site, go back to the groups of information and add
these onto the relevant pages.

 There will be some key items or elements that should appear on each page, such as a logo/branding,
primary navigation, page headings, and a search box. Other information is more likely to appear on only
one page, such as individual product details or terms and conditions.

 When you are identifying the key elements of each page, several pages, may contain similar types of
information. The structure of these pages should be very similar — for example, if you have lots of
products listed on your site, each product page should use the same template so that visitors become
aware of where to look for particular kinds of information.

 You should create the list of the key elements of each page before you even start
thinking about where to position them, although it is very helpful if you have an
idea of how much space each element will take.

 These elements will reflect the aims of the site. But be warned: many clients will want to put everything
on every page. You must show them how the organization and planning you have done will lead to a
good design and simple navigation that avoids the need to put everything on each page. (You learn more
about navigation in Chapter 10.) A site that is less cluttered yet easy to navigate is better than a site that
has everything on each page because it is harder to find what you want on a page where there is too
much information.

 Page Size (and Screen Resolution)
 Now that you have a site map to show the pages that make up the site, and a list of what should appear
on each page, you are ready to start thinking about designing the pages.

 When graphic designers create a page that is going to be printed they know the exact size of the paper
their design will be printed on. On the Web, however, different visitors to your site will have different-
sized monitors that work at different resolutions, which means that your web pages need to work on
different-sized screens.

❑

❑

❑

c09.indd 365c09.indd 365 11/20/09 4:59:51 PM11/20/09 4:59:51 PM

Chapter 9: Page Layout

366

 Understanding Screen Sizes
 When thinking about screen sizes, you need to look at the resolution of screens: how many pixels are
being displayed along the width and the height of the screen. For example, a screen running at a
resolution of 1024 � 768 is 1,024 pixels wide and 768 pixels tall.

 Most operating systems allow you to change the resolution that your screen is running at, and as
technology has improved over the last decade the number of pixels available on a display has increased.

 In January 2000, over 65 percent of web users had displays running at 800 � 600 pixels or less, and as a
result most sites were designed to work on screens that were no wider than 800 pixels. Almost a decade
later, around 95 percent of web users have a screen resolution of 1024 � 768 or higher and, as a result,
sites have been getting wider, and sites are commonly designed for screens that are 1024 pixels wide.

 Several sites provide statistics regarding screen resolution, such as www.thecounter.com/stats/ and
 www.w3schools.com/browsers/ . These sites also feature other helpful information such as the number
of people using different browsers or operating systems.

 (As you have probably guessed , mobile devices have much smaller screens, and we will deal with
mobile devices separately later in the chapter.)

 Deciding the Width of Your Page
 As a general rule you will not want users to scroll horizontally, from left to right to view information on a
web page, so you should probably make the width of your page fit within a screen that is 1024 pixels wide.

 Even when a screen is 1024 pixels wide, you should not assume that you have this much space available
for your designs because many browsers have a “ window ” which takes up space at the edges of the
page, and on a long page there will be scroll bars which take up even more of the page. On a long page
there will also be scrollbars that take extra pixels on the right-hand side of the window. Therefore, even if
the screen is 1024 pixels wide, your design should allow space for the window and scroll bars;
somewhere between 960 and 980 pixels is a more common width.

 Deciding the Height of Your Page
 While you should avoid expecting visitors to scroll horizontally, you can safely expect visitors to scroll
up and down the page vertically to find the information they are looking for. However, it is very
important that, when the page loads, the visitor has a good idea of what kind of information will be on
that page without having to scroll.

 The term above the fold is often used to refer to the part of the page that a visitor will see when the page loads
before scrolling down. The term originates from newspaper design — newspapers are often folded in half so
it ’ s considered important to put key news items or photographs on the upper half of the front page .

 Vertically, you need to account for the fact that a lot of users will have a menu or taskbar (such as the
taskbar on Windows or the dock on Mac OS X) that will take up part of the screen ’ s vertical height. You
also have to consider the various toolbars that can appear in a browser window. Therefore, you should
aim to ensure that the key points of a page appear in the top 570 – 600 pixels. Figure 9 - 2 shows you the
vertical space taken up in my installation of Firefox on a PC.

c09.indd 366c09.indd 366 11/20/09 4:59:51 PM11/20/09 4:59:51 PM

Chapter 9: Page Layout

367

Figure 9-2

Browser window
and toolbars

Task bar and status bar

 Fixed - Width vs. Liquid Designs
 You now know that you are looking to make your designs work within a page that is 960 – 980 pixels wide,
and that a visitor should be able to understand what a page is about from the top 570 – 600 pixels. But you
may have noticed that some designs stretch to fit the whole page as you increase the size of the browser
window, and then contract again when you make the browser window smaller. This is known as a liquid
design . By contrast, designs that force a page to a certain width or height are known as fixed - width designs .

Fixed-width designs like Figures 9-3 and 9-4 remain the same as you increase and shrink the size of the
browser window, whereas the liquid layouts like Figures 9-5 and 9-6 stretch to fill the entire width of
the browser window.

 Fixed-width designs are commonly used where the designers want to retain control over exactly how the
page looks. This is seen as particularly important when sites are heavily design - led (where the
presentation of information on the site is particularly important) or when they feature a lot of text
(because there is an optimal width for paragraphs of text). Good examples would be news sites such as
 http://news.bbc.co.uk shown in Figure 9 - 3 and www.nytimes.com shown in Figure 9 - 4.

c09.indd 367c09.indd 367 11/20/09 4:59:51 PM11/20/09 4:59:51 PM

Chapter 9: Page Layout

368

Figure 9-3

Figure 9-4

c09.indd 368c09.indd 368 11/20/09 4:59:56 PM11/20/09 4:59:56 PM

Chapter 9: Page Layout

369

 Liquid design is more likely to be featured on sites that are online tools or applications such as
maps.google.com shown in Figure 9 - 5, and sites that feature a lot of lists such as www.amazon.com
shown in Figure 9 - 6. With these pages, it is not as important for the designer to retain control over the
width of the page; rather the user can change the size of the page.

Figure 9-5

Figure 9-6

c09.indd 369c09.indd 369 11/20/09 4:59:57 PM11/20/09 4:59:57 PM

Chapter 9: Page Layout

370

 Let ’ s take a moment to look at how to control whether a page is a fixed-width or liquid layout.

 Liquid (Stretchy) Page
 In order to create a liquid layout that will stretch to fit the page, you specify proportions of a page using
percentage values. For example, you might decide your page takes up 80 percent of the width of the
browser, as in the example shown in Figure 9 - 7. If the user increases the size of the browser window, the
page increases in size but retains the border around the outside.

Figure 9-7

 Here (ch09_eg01.html) you can see how this effect can be created using a < div > element, which acts as
a container for the page:

 < body >
 < div id=”page” >
 < !-- CONTENT OF PAGE GOES HERE -- >
 < /div >
 < /body >

 The style sheet contains a rule for the < div > element, whose id attribute has a value of page , setting the
 width property to have a value of 80% of the screen. A border is drawn around the edge so that you can

c09.indd 370c09.indd 370 11/20/09 5:00:00 PM11/20/09 5:00:00 PM

Chapter 9: Page Layout

371

see the box created by the < div > element. To make it more attractive, padding of 5% has been added
inside the box to keep the content from the border (ch09_eg01.css):

div#page {
 width:80%;
 padding:5%;
 border:1px solid #666666;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

 There are advantages and disadvantages to the liquid layout approach. The advantages are as follows:

 The page expands to fill the browser window and therefore does not leave large spaces around
the page when there is a large window.

 If the user has a small window open in his or her browser, the page can contract to fit that
window without the user having to scroll from left to right to view the content of the page.

 The design is tolerant of users setting font sizes larger than the designer intended, as the page
layout can stretch.

 The disadvantages are:

 If you do not control the width of sections of your page, the page can look different than you
intended, and you can end up with unsightly gaps around certain elements or items that are
squashed together.

 If the user has a very wide window, lines of text can become very long, and these become hard
to read.

 If the user has a very narrow window, words may be squashed too small and you could end up
with just a word or two on each line.

 If a fixed-width item (such as an image) is in a box that is too small to hold it (maybe the user
has made the window small), it can overflow over the top of the text.

 Fixed - Width Page
 Fixed - width designs most commonly use pixels to indicate the width of the page. Fixed - width layouts
allow designers much greater control over how their pages appear because the designer knows the size
of the canvas; it cannot stretch and shrink as the users resize their windows. Even though a design might
look a slightly different size on different resolution monitors, the proportions of elements on the page
can remain the same. You can see an example of a fixed - width page in Figure 9 - 8. The code for this page
(ch09_eg02.html) follows shortly.

 While Figure 9 - 8 may look similar to Figure 9 - 7, if you try out the corresponding code, you will find that
this example does not stretch to take up more of the browser window, unlike the previous example of a
liquid layout.

 Here you can see that we are using a < div > element again to hold the page, which carries an id attribute
whose value is page (ch09_eg02.html); it is just the same as the XHTML in the last example:

❑

❑

❑

❑

❑

❑

❑

c09.indd 371c09.indd 371 11/20/09 5:00:00 PM11/20/09 5:00:00 PM

Chapter 9: Page Layout

372

 < body >
 < div id=”page” >
 < !-- CONTENT OF PAGE GOES HERE -- >
 < /div >
 < /body >

Figure 9-8

 Now take a look at the CSS rules that correspond with this element (ch09_eg02.css):

div#page{
 width:880px;
 padding:20px;
 margin-left:auto;
 margin-right:auto;
 background-color:#ffffff;
 border:1px solid #666666;
 font-size:12px;}
 text-align:left;}

 As you can see, the width property is used to fix the size of the page, and its value is specified in pixels.
No matter how big or small the visitor ’ s browser window is, this element remains the same size. If the
user ’ s browser is narrower than the layout specifies, horizontal scrollbars will appear, whereas if the
window is wider than the layout specifies, there will be space to the side of the page.

c09.indd 372c09.indd 372 11/20/09 5:00:00 PM11/20/09 5:00:00 PM

Chapter 9: Page Layout

373

 You might also have noticed that the margin - left and margin - right properties have a value of auto ,
which ensures that the page is centered in the browser window in most browsers. Unfortunately, this
does not work in Internet Explorer versions 5-7, therefore you also need to add a text-align property
in a rule that applies to the <body> element; this should have a value of center. This ensures that the
page sits in the middle of the window in IE. However, since the value of the text-align property is
inherited by the page, if we did not add the text-align property to the page again (see the last line of
this rule) the rest of the text in the page would be centered, so we align the text inside the page left.

 As with the liquid design, there are both advantages and disadvantages to the fixed - width page
approach.

 The advantages are:

 Pixel values are accurate at controlling width and positioning of elements.

 The designer has far greater control over the appearance and position of items on the page.

 The size of an image will always remain the same relative to the rest of the page.

 You can control the lengths of lines of text regardless of the size of the user ’ s window.

 The disadvantages are:

 You can have a page sitting in the middle of a window with big gaps around it.

 If users browse at higher resolution than the page was designed for, the page can look smaller
on their screens and can therefore be hard to read.

 If a user has font sizes set to a larger value, the text might not fit as intended in the allotted
space.

 The design works best on devices that have size and resolution of screens similar to desktop
computers.

 Now that you ’ ve seen how to control the size of a page, you should look at designing the content.

 Designing Pages
 By now, you should know how many pages you have and the main elements that you need to fit on each
page, and you might have decided whether you are going to use a fixed - width layout or a liquid layout.
Now it ’ s time to work out how the content is going to fit onto the page. All of this should happen before
you start building your page.

 It is important to distinguish between the use of the word elements in terms of designing pages (where it
means items on the page such as navigation, branding, articles/products, and so on) and the more tech-
nical use of the word (because an element can also mean a pair of tags and their content, such as a
 < b > bold < /b > element). Most of this section will refer to elements in terms of designing pages.

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 373c09.indd 373 11/20/09 5:00:01 PM11/20/09 5:00:01 PM

Chapter 9: Page Layout

374

Figure 9-9

 Composition and Grids
 Composition in any visual art (such as design, painting, or photography) is the placement or arrangement
of visual elements — it is how they are organized on a page. In order to arrange the various items that
need to appear on a web page, many designers use a grid (a set of lines, which are sometimes shaded in)
and arrange the items that need to appear on a page according to the grid.

 Figure 9 - 9 shows you the homepage of the web site for a leading UK newspaper.

 Figure 9 - 10 superimposes a set of vertical lines across the design to show you how this site was designed
according to a grid system (in this grid the columns have been shaded in).

c09.indd 374c09.indd 374 11/20/09 5:00:01 PM11/20/09 5:00:01 PM

Chapter 9: Page Layout

375

 While good design is always subjective, a link between art and mathematics has existed for many
centuries. For example, the Golden Ratio (also referred to as the Golden Section or Divine Section) has
been used by many artists since the Renaissance, as its proportions are believed to be aesthetically
pleasing. It is also widely found in nature and architecture, and has been studied by mathematicians as
far back as Pythagoras and Euclid. The Golden Ratio is approximately 1.618, and it states that the sum of
 a + b is to a as a is to b . For years, designers have created complex grids based upon this ratio (Figure 9 - 11).

Figure 9-10

Figure 9-11

100
a � b
——— ––�

a

a

b

161.8

c09.indd 375c09.indd 375 11/20/09 5:00:03 PM11/20/09 5:00:03 PM

Chapter 9: Page Layout

376

 It can become rather complicated to draw a grid based on the golden ratio, but a common alternative
whose results are very similar is the rule of thirds, which is much easier to use. According to this rule, you
should divide a workspace into thirds and align key points where the lines intersect (for example,
portrait photographers often position the subject ’ s eyes one third down on a portrait or the horizon on a
landscape a third of the way down the picture).

 If you apply this to a web page that is 960 pixels wide, you would have three columns of 320 pixels (or if
the design were a liquid layout, 33 percent for each column). Vertical lines would also be drawn every
320 pixels to create a grid of boxes. Each of these boxes would then be divided into thirds. Figure 9 - 12
shows a grid based upon thirds; this grid is just based upon lines (they are not shaded).

Figure 9-12

When you have columns in a design, you usually need a space between columns so that the text or
images in one column do not run into the adjacent column (making the contents unreadable). The gap
between columns is known as a gutter.

Personally, I prefer to design using grids that feature a gutter, like the one shown in Figure 9-13.

 It can also help to start a design just using vertical lines at the beginning (before worrying about
horizontal lines). Assuming we have decided to make our page 960 pixels wide, let ’ s look at a couple of
examples of vertical grids. Figure 9 - 13 shows a 12 - column grid, where each column is 80 pixels wide and
there is a 20-pixel gap between each column (plus 10 pixels to the left and right of the main page).

c09.indd 376c09.indd 376 11/20/09 5:00:05 PM11/20/09 5:00:05 PM

Chapter 9: Page Layout

377

 This grid can easily be used to create single column layouts or layouts with two equal-sized columns, as
shown in Figure 9 - 14.

Figure 9-13

Figure 9-14

940 px

460 px460 px

300 px 300 px 300 px

 It can also be used to map out various other permutations of column widths, as shown in Figure 9 - 15.

 You may decide to create a grid with more columns. The following grid shown in Figure 9 - 16 has 16
columns rather than 12. As with the previous grid the page is 960 pixels wide, but each column is only
40 pixels wide and the gap (or gutter) between each is 20 pixels.

Figure 9-16

940 px

460 px

280 px 640 px

220 px220 px220 px 220 px

460 px

300 px 620 px

460 px 220 px 220 px

140 px140 px140 px140 px300 px

Figure 9-15

c09.indd 377c09.indd 377 11/20/09 5:00:06 PM11/20/09 5:00:06 PM

Chapter 9: Page Layout

378

 With both the 12 - and 18 - column grids, the number of columns was chosen because these divide equally
into the width of the page, and because that number of columns offers flexible layouts. (The 12 - column
grid can be divided by 2, 3, 4, and 6, while the 18 - column grid can be divided by 2, 3, 4, 6, and 9.)

 If you can ensure that all of the boxes on your site align to a grid like this, your design will naturally look
a lot better than a design that has blocks of different sizes that bear no direct relation to each other and
where gaps between elements are of different sizes.

 Let ’ s turn our attention to the vertical lines — many designers will try to use the same units of
measurement for vertical spaces. While this is not always possible (particularly further down the page),
using vertical measurements that divide by the width of a single column will help make your designs
more attractive. Figure 9 - 17 shows what the 12 - column grid looks like with vertical lines set using the
same distances.

Figure 9-17

c09.indd 378c09.indd 378 11/20/09 5:00:08 PM11/20/09 5:00:08 PM

Chapter 9: Page Layout

379

 You may also choose the height of a box on the page by dividing the width by 1.618 (the golden ratio),
because we already know that this is supposed to be an aesthetically pleasing size.

 When setting up your grid, you should ensure that the grid can be applied to the entire site: the
homepage, section pages, and individual item/article pages. Let ’ s take a look at another couple of pages
from the web site for the Guardian newspaper — Figure 9 - 18 shows you the homepage from the culture
section, which is again based around three columns. Lower down the page, you can see that the columns
are then divided in two to provide six columns:

Figure 9-18

 Figure 9 - 19 shows an individual article page; this time the main column of text is given more space (the
main column is the one with the headline and the portrait photograph).

c09.indd 379c09.indd 379 11/20/09 5:00:09 PM11/20/09 5:00:09 PM

Chapter 9: Page Layout

380

 Sketching the Placement of Elements
 You have looked at the grids designers use when creating layouts, so now it is time to start getting a feel
for how the elements will be arranged on the grids.

 At this point, you should just be using text, lines, and shading to sketch out where each element (such as
the logo, primary navigation, headings and main bodies of text) sits on the page and how much space it
gets. You should not be thinking yet about colors, fonts, backgrounds, images, or other design issues;
rather, you should be focusing on the placement of information and creating a visual hierarchy to indicate
the most important parts on each page.

 While it may seem strange (and difficult at first) not to add visual presentation at this stage, it is
important that you focus just on making sure you include all of the information a visitor needs and

Figure 9-19

c09.indd 380c09.indd 380 11/20/09 5:00:10 PM11/20/09 5:00:10 PM

Chapter 9: Page Layout

381

every item the user can interact with in order to give it the necessary space. This process is referred to as
creating a wire frame . Figure 9 - 20 shows you an example of a basic wire frame for a web site (this figure is
again based on the Guardian newspaper ’ s site):

Figure 9-20

Tools Jump navigation

Inside
Section 1

Secondary
stories

Feature 1

Feature 2

Feature 3

Inside
Section 2

Inside
Section 3

Inside
Section 4

Search
Weather

Date / RSS

LOGO
Primary navigation
Secondary navigation

News ticker

Lead image

Lead stories

 The wire frame of Figure 9 - 20 is very high - level; it does not yet show the parts of the page the user can
interact with (such as navigation, buttons, and form controls). Nor does it give a guide of how much text
might be shown for each item or the size of images.

 Once you are happy with the general layout of information you should start to add some of this detail
into the wire frame, as shown in Figure 9 - 21.

c09.indd 381c09.indd 381 11/20/09 5:00:11 PM11/20/09 5:00:11 PM

Chapter 9: Page Layout

382

 When you have the second version of the wire frame with extra detail, you should perform two very
important checks:

 Go back to the target audience you identified earlier and ensure that they can achieve the tasks
you allocated to each character you identified. Don ’ t be surprised if you have to move some
elements around on the page or if you have to add in an element or two that you missed from
the initial list.

 Look at each page and decide whether a user coming to this page for the first time would be
able to tell the purpose of this page from the part of the page that will appear above the fold . If
not, you should arrange the items on the page so that a user would be able to determine what
the page is about without scrolling.

 You can see from the simple model in Figure 9 - 21 where the links go and how you can move about the
site; however, you are not distracted by the design or look of the page. This is particularly important for
two reasons:

 When you show users and clients a full design of the site, they tend to focus on the visual
elements (such as fonts, choice of images, and colors) rather than the proposed function. A
skeletal model ensures that the client focuses on the function and structure of the content and
not how it is presented.

 If you do need to make changes, you can do so before the design or programming starts, which
can save you from rewriting and/or redesigning much of the site later on.

❑

❑

❑

❑

Figure 9-21

Jump navigation

Inside Section 1

Secondary headlines

Secondary headlines

Secondary headlines

Secondary headlines

Feature Headline 1

search box this site/web search

Weather
Date / RSS

LOGO

News ticker

Lead image

Lead stories

Second headline

Lorem ipsum dolor sit amet, consecteur
adipiscing elit. Etiam nec dictum leo. Vestibulum
eu libero vitae quam varius faucibus ac non nisl.

Lorem ipsum dolor sit amet, consecteur
adipiscing elit.

Lorem ipsum dolor sit amet, consecteur
adipiscing elit. Etiam nec dictum leo.

Lorem ipsum dolor sit amet, consecteur
adipiscing elit. Etiam nec dictum leo. Vestibulum
eu libero vitae quam varius faucibus ac non nisl.

Lorem ipsum dolor sit amet, consecteur
adipiscing elit. Etiam nec dictum leo.

Sign in Register

News

NEWS UK World United States Politics Media Education Society Science Technology Football Guardian Observer

Sport Comment Travel Environment Blogs Video Community JobsLife & StyleMoneyBusinessCulture

Mobile version text smaller larger

Related feature one
Related feature two

Related feature one
Related feature two

Related feature one
Related feature two

Related feature one
Related feature two
Related feature three

Lorem ipsum dolor sit amet, consecteur
adipiscing elit. Etiam nec dictum leo. Vestibulum
eu libero vitae quam varius faucibus ac non nisl.

Related feature one
Related feature two

Feature Headline 2

Feature Headline 3

Inside Section 2

Inside Section 3

Inside Section 4

�

c09.indd 382c09.indd 382 11/20/09 5:00:13 PM11/20/09 5:00:13 PM

Chapter 9: Page Layout

383

 The size and positioning of elements on a page is a valid part of the design process (not only the visual
appearance but also the interface or interaction design — how the site handles). However, the process of
wire - framing a design will help the user or client focus on what the site actually does and will help you
finalize the functionality before starting to design the page. You may choose to tell the client that the
exact positions of the elements in the wire frame may change, but that it is an indication of the content
that will appear on those pages.

 Common Page Elements and Templates
 Branding theory states that consistency in how the brand is represented helps reinforce the brand. When
it comes to web sites, any information that appears on more than one page should be presented in a
consistent manner because it helps visitors:

 Identify the site from its appearance

 Learn how to use the site and find what they are looking for more quickly

 You should formulate the consistent parts of the site early on in a design (because they are used on
multiple pages). For example, the logo and primary navigation should be in the same place on every
page. If you decide to put your primary navigation under the logo stretching from left to right, it should
be under the logo stretching from left to right on every page. Likewise, if the sections of your site require
subnavigation, this should be in the same place for each section of the site (even though the items in the
subnavigation will change from section to section).

 Here are some terms often used to describe parts of pages:

 Headers: The top part of the page on any site. In many cases the header will feature the logo and
the primary navigation, which should be consistent across the entire site.

 Footers: Appear on the bottom of every page. They often contain things like copyright notices,
privacy policy, and terms and conditions. Again, they should usually be consistent across the
entire site.

 Body and content: Describe the main part of the page between the header and footer where the
content sits.

 Templates: Describe a layout for several pages that look the same but contain different
information. For example, an e - commerce site tends to use the same template to display each of
its products, which helps the user know where to find things like the price, dimensions, and
description of each product.

 Grouping Elements
 For most people, the more disconnected bits of information that are visible on a page at the same time,
the harder the page is to understand. There are, however, several techniques you can use to group
elements together and make it easier for people to understand pages. Grouping or chunking items
together helps reduce the number of elements that the user sees on the page.

 For example, look at Figure 9 - 22, which shows the BBC homepage (which I have personalized). There
are over 65 links on this page, yet by grouping the items into related content areas (such as news,
entertainment, and weather), it becomes much easier to digest the information on the page.

❑

❑

❑

❑

❑

❑

c09.indd 383c09.indd 383 11/20/09 5:00:14 PM11/20/09 5:00:14 PM

Chapter 9: Page Layout

384

Figure 9-22

 The following methods help make it clear to a user that several elements of a page are related:

 Location: Making sure that similar elements of the design are near to each other

 Color: Using blocks of background color to make it clear which items relate to each other

 Borders and padding: Creating a gap between one group of elements and other items on the
page to indicate which are grouped together

 Headings: Giving related items a header, so that people know what will be in the block of
information without necessarily reading each item in the block

 Styles: Using similar buttons for navigation items

❑

❑

❑

❑

❑

c09.indd 384c09.indd 384 11/20/09 5:00:14 PM11/20/09 5:00:14 PM

Chapter 9: Page Layout

385

 Creating a Visual Hierarchy and Prioritizing Information on a Page
 It is important to create a visual hierarchy in any design so that the most important item on the page
is most prominent. There are several ways to do this; for example, you may allow the more
important items:

 To take up more space

 Have more space between them and other items

 Use larger headings

 The most important item on the page should be made immediately clear to the user. Looking again at the
 Guardian news homepage, you can see here that the main story is given more space than the secondary
stories, which in turn are given more prominence than the features and inside sections on the right
(Figure 9 - 23).

❑

❑

❑

Figure 9-23

c09.indd 385c09.indd 385 11/20/09 5:00:16 PM11/20/09 5:00:16 PM

Chapter 9: Page Layout

386

 While it is tempting to put a lot of information on each page, if the screen is too cluttered it will be
harder for the user to achieve the goal he or she had in mind when coming to your site. Therefore it is
important to prioritize the information that appears on each page.

 Generally speaking, the following items should be visible on every page, and they should be above
the fold:

 Branding/logo: The company name or logo should appear on the same place in each page; it is
commonly placed in the top left or top centered.

 Primary navigation: A link to the homepage and the main sections of the site — note that the
homepage should almost always be the first item of navigation.

 Any secondary navigation: If the sections of the site are further divided into subsections, when
you are in those sections you should be able to see enough of the navigation to tell that the
subsections exist (although you do not need to be able to see all options).

 Page headings: With the exception of the homepage, every page should have a title or heading
that quickly lets the user know what that page is about.

 Content: Ideally you want enough of the content of the page to be above the fold so that the
users know whether this page is going to be relevant to them and, you hope, gets them
involved with the content of the page before they have to start scrolling.

 Search: A way for users to search for the information they want if they do not see it
immediately.

 The items that should not need to appear on the portion of the page that ’ s visible when the page loads are
as follows:

 The detail of the rest of the page (for example, if you have a news article, it is only necessary to
be able to view the headline and ideally a summary; the entire article does not need to fit in the
top part of the page)

 Links to related information or other sites (things that are not essential to the point being
discussed on this page)

 Items that are often required but rarely used, such as Copyright, Terms and Conditions, or
Privacy Policy (these can generally go right at the bottom of the page)

 The primary factor in prioritizing the items on the page should be letting visitors achieve what they
came to do. Back in the early part of the chapter we talked about identifying the target audience of the
site and generating some characters that represented typical visitors. We then went on to look at the
tasks that these people would like to achieve. You should use this work to help prioritize the content on
the site because the tasks people want to do most often should generally be prioritized above the less
common ones. This is important because a lot of visitors will not scan the entire page and then choose
the part that is most relevant to them; rather, they will select the first option that looks relevant to them
and go with that before looking at the rest of the page — something known as satisficing (a mix of
satisfying and sufficing). Remember that you can use a visual hierarchy (making some items more
prominent than others) in order to help people notice the items you think they want to achieve first.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 386c09.indd 386 11/20/09 5:00:17 PM11/20/09 5:00:17 PM

Chapter 9: Page Layout

387

 How Visitors Look at a Page
 It is important to acknowledge that, no matter how much you would like your visitors to read every
page on your site, and no matter how well written it is, they will not. Visitors scan web pages to find out
whether that page is relevant to them.

 During the initial scan of the page, when users determine if it is relevant to them, they will also select
parts of the page that they will focus on. They are likely to give most attention to these areas rather than
looking around for other information that might be relevant to them.

 Research by a renowned web usability researcher and author, Jacob Nielsen, has indicated that people
commonly scan a page using an “ F ” shape — starting with two horizontal stripes and then a vertical
stripe (the shape and size of the F depend on your design, the type of page, and the amount of
information on the page). Therefore, putting your primary navigation down the right - hand side of a
page might not be a good idea; under the logo, left to right, might be better.

 Now that you know people will scan the page, there are a few tactics you can use to make your site
easier to scan:

 Text should be concise in particular headings. Where possible, the first couple of words in a
heading or paragraph should describe the content the user would discover if he or she read on.
Another renowned usability expert, Steve Krug, recommends that, when devising a web page,
users look at the copy they started with and divide it in half. Then they should halve it again
because most sites are far too wordy. By his own admission, the second one is an exaggeration,
but his point is that most sites can get their message across in far fewer words if they really try.

 Use subheadings to split up text. If you have a lot of text, you should split it up with
descriptive subheadings. Again make sure the first couple of words of the heading give the
reader information about the content of the following text.

 Use bolding and other styles. Highlight keywords to help users scan pages for key terms,
indicating whether the page is relevant to them.

 Make links descriptive. Where you have text links, ensure that the text describes what people
will see if they click on the link. Links should also stand out from surrounding text (because
many people will scan for links).

 Stimulate users with visuals. A lot of web users are attracted to (and navigate by) images. So if
you have a list of articles or products on your site, thumbnails will help turn lists into something
more visual and stimulating, in turn encouraging users to follow those links.

 If you are designing a site for a company that ’ s likely to want to change the main feature on a site
regularly, you should consider allocating a part of the page for the company to control. You may give a
proportion of the homepage (or homepages of the subcategories) to them for regularly changing
features. For example, a shop might change the main section of a page every time there is an upcoming
occasion it wants to market, such as religious holidays, New Year ’ s, Valentine ’ s Day, Mother ’ s Day,
Father ’ s Day, start of school terms, and so on. It is usually better to give the company a section

❑

❑

❑

❑

❑

c09.indd 387c09.indd 387 11/20/09 5:00:17 PM11/20/09 5:00:17 PM

Chapter 9: Page Layout

388

(or sections) of the page that it can edit rather than giving it free rein over the entire page (otherwise
it may well be tempted to change the entire structure of the page even though visitors are used to it, and
in doing so may break your grid). It is not uncommon for the person responsible for a company ’ s web
site to want to change the site more frequently than is necessary — this is often because this person
spends more time looking at it than other visitors (and changing a site too often can frustrate visitors
who get used to navigating a site in a particular way).

 Homepages
 First impressions do count, so your front page is very important. Unless you are working on a site for a
company or subject that is a household name, it ’ s important that a visitor be able to ascertain the main
purpose of your site easily from the front page. Therefore, it is a good idea to feature a one - line
description of the site prominently on the homepage (using no more than ten words — three to five is
even better).

 You then need to emphasize the tasks that users are most likely to want to come to the site to do — in
order to help the most people find the information they came to see as quickly as possible.

 You’ll remember back to the beginning of the chapter where we talked about identifying personas for the
target audience — specifying goals that each of these people would want to achieve, and prioritizing the
importance of each of these goals — helping the personas achieve their goals should be the main focus of
the homepage. You can also consider other things that might drive these personas into the site.

 Because visitors tend to scan pages rather than reading all of their content, all headings and link names
should begin with important keywords that help users understand what is in that section or link.

 Also, because some people are very visual browsers and respond more to pictures than to text, you
should consider the use of relevant photographs to help describe content in parts of a site and to
encourage visitors to click on the links (you should also use descriptive text in the alt attribute on any
 < img > tags for those who cannot see the pictures).

It is crucial to remember that your front page should not solely cover what a compa-
ny ’ s marketing department wants it to cover that week or month. It ’ s not just some
advertising billboard they can use as they fancy — it must address the needs of the
majority of visitors to the site. For example, the marketing department may want to
push a new product, whereas most customers visiting the site want to find out about
an older, more established one. If those users cannot find the information they came
to the site looking for, the marketing department will not have as large an audience
for the things they want to push. Balancing what the users want with what the com-
pany wants is extremely important — and users should not suffer.

c09.indd 388c09.indd 388 11/20/09 5:00:17 PM11/20/09 5:00:17 PM

Chapter 9: Page Layout

389

 Content Pages
 Content pages are the meat of most sites; for example, on news sites they can contain articles, and on
e - commerce sites they can contain details of each product. A content page should display the content in a
way that makes it easy for the user to read the information.

 As mentioned earlier, if you have several products or services, the information that you offer should fit
in a template that is used for each content page and the presentation of information on these pages
should be consistent for each item. For example, if you are dealing with clothes, a visitor should quickly
and easily be able to look in the same place on each page in order to tell the colors and sizes in which a
garment is available.

 You should not make a page too busy because a clean presentation allows users to focus on the content.
Even if you have a lot of information to fit on a page, group or chunk related information and make sure
there is plenty of space between different elements.

 Images should be relevant to the product, service, or topic in question and will usually look better if they
are left - or right - aligned, with the text flowing around them. There should also be a gap between any
images and the text that flows around them (set using margin properties in CSS).

 If your site promotes products or services, these pages need to be action - oriented featuring a prominent
 “ call to action. ” For example, if customers can buy the item they should be encouraged to do so with
buttons that they can clearly click on with obvious titles such as “ add to basket. ” If they have to inquire
about a product or service before they can purchase it, then there should be a clear call to action for them
to “ inquire about this item. ” The inquiry could be a button or could feature a form for the visitor to fill
in on the page.

 Section Homepages
 Between the homepage and the content pages there are often section homepages, particularly on larger
sites. These are often necessary because:

 The section features too much information to fit on one page.

 There is not enough space on the homepage of that section to explain all the content that the
user will find in this section.

 There are usually two primary tasks that a section homepage needs to achieve:

 Let people know what content is in this section of the site. As with the homepage, a one - line
description will often help users understand the section.

 Offer links to view the individual pages that they will find in this section of the site.

 There is a rule that you may hear mentioned called the three - click rule , which states that people should be
able to find the information they came to your site for in no more than three clicks (and that if users
cannot find what they want within three clicks they will leave your site). As a result of this rule some
larger sites have section homepages with a huge number of options for the user to pick from (otherwise
they will not adhere to the three - click rule). More recent research has shown that users become frustrated
if they have difficulty picking which link they need to follow, and that rather than setting an arbitrary
limit of three clicks it is better to make their journey (and choice of what to click on) easy. If they have to

❑

❑

❑

❑

c09.indd 389c09.indd 389 11/20/09 5:00:17 PM11/20/09 5:00:17 PM

Chapter 9: Page Layout

390

click on five links to find what they want, it may well be less frustrating than getting there in three clicks
if getting there in three clicks involved tougher decision making.

 Selecting Images
 The use of images has a huge impact on visitors ’ perceptions of a site. Attractive photographs and
illustrations can make the difference between a below - average site and an attractive site (and a bad
image on the homepage can create a poor impression which may discourage a user from delving deeper
into the site).

 It is not uncommon for those creating web sites to commission high-quality photographs and videos just
for the sites (just as they might for adverts and brochures). Often these are not just photos of products;
they are images that represent a lifestyle or portray an image the company is trying to associate with
the brand. But shooting especially for the Web is not always necessary — sometimes a company will
have photography it has already had taken for other marketing materials and you should consider
using this.

 You should also familiarize yourself with stock photography web sites (sites that sell images for use in
marketing and PR). At the cheaper end of the market are sites such as www.istockphoto.com and
www.sxc.hu , and at the more expensive end of the spectrum are sites such as www.gettyimages.com
and www.corbis.com .

 I would strongly advise against using clip art on your site as it generally looks quite amateurish. It ’ s fine
for a hobby site, but not ideal for a company web site.

 Whatever image you use, you should ensure that you have the necessary copyright permission. If you
do not, you could end up with either a court case, a heavy fine, or at the very least a letter telling you to
remove the image (which would mean that you would have to redesign the site and explain your
mistake to the client).

 I have worked in the past with clients who have terrible logos that really bring down the look of the site,
yet they are not interested in changing them. If you are unfortunate enough to come across such a logo,
you are best off keeping the actual size of the logo relatively small; then you can rely on the company ’ s
colors to maintain the identity, and if the logo is graphical you can sometimes even add the company
name in a larger plain font near the logo.

 Things You May Need from a Client
 When working on a site for a client, you should ask for the following before starting to design the site:

 An electronic copy of the company logo

 Branding guidelines (if the client has them), which will include things such as the company ’ s
color scheme, choice of typefaces, and other rules to help ensure that information representing
the brand has a cohesive appearance

 Copies of brochures or leaflets that they have done (particularly if they do not have branding
guidelines)

❑

❑

❑

c09.indd 390c09.indd 390 11/20/09 5:00:18 PM11/20/09 5:00:18 PM

Chapter 9: Page Layout

391

 Materials the client supposed to provide such as photographs

 Any text the client wants to write (preferably in electronic format which will allow you to copy
and paste it rather than re - type it)

 I generally avoid starting work on a site until the client has provided most of these things (otherwise you
can spend lots of time on a project only to end up waiting a long time for the client to finish the copy or
get some photographs taken).

 Coding Your Design
 Now that you have a good idea of how your page will be structured, it is time to start translating it
into code.

 In Chapter 8, you saw how the contents of an XHTML page appears in the order that you wrote it in the
XHTML file; block-level elements such as headings and paragraphs would sit on top of each other, while
inline elements such as images and emphasized text would sit alongside text and other inline elements.
This is called normal flow.

 In order to position elements on the page, we will be taking them out of normal flow. In particular, we
will be using:

 The XHTML < div > element to group elements of our XHTML page into blocks or chunks

 The CSS float property to position these < div > elements to the left or the right of the page

 The CSS width property to set how wide the boxes should be (if you do not set a width
property on a floated element, it takes up the full width of the page — just as it would
in normal flow)

 The CSS margin property to separate blocks from each other

 In this section, we are going to expand on that and learn how to create far more complex layouts. Before
we delve into some sample layouts, there are a couple of points to note.

 The IE Box Model Bug
 You should always include a DOCTYPE declaration in your XHTML pages. If you do not, Internet
Explorer will use a different version of the box model to all other browsers, and your pages will break or
look bigger in Internet Explorer than they would in other browsers (Figure 9 - 24).

❑

❑

❑

❑

❑

❑

c09.indd 391c09.indd 391 11/20/09 5:00:18 PM11/20/09 5:00:18 PM

Chapter 9: Page Layout

392

 Including one of the following DOCTYPE declarations ensures that Internet Explorer version 6 and later
will render the page correctly.

 Here is the transitional XHTML DOCTYPE:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitionalt//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 And here is the strict XHTML DOCTYPE:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitionalt//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 Working with a Grid
 If you have designed a page using a fixed-width grid, you can add the grid to the background of your
pages while building them using the CSS background - image property. This will help you ensure that
you align elements to the grid. To do this you will need a 1-pixel-tall version image of the grid which can
then be repeated vertically.

Figure 9-24

W3C Box Model

IE Box Model

margin
border

padding
content

width

margin
border

padding
content

width

c09.indd 392c09.indd 392 11/20/09 5:00:18 PM11/20/09 5:00:18 PM

Chapter 9: Page Layout

393

 Unfortunately, you cannot do this for liquid designs because you cannot vary the size and background
image as the layout expands and contracts.

 As an example, we will add the 12 - column grid we were looking at earlier in the chapter to the
background of the page, as shown in Figure 9 - 25.

Figure 9-25

 This example uses two < div > elements:

 The first has an id attribute whose value is frame ; it will be the width of the grid.

 The second has an id attribute with a value of page ; it is the width of the page less the gutter to
the left and right.

 Here is the code for ch09_eg03.html :

 < body >
 < div id=”frame” >
 < div id=”page” >
 < h1 > Testing the background grid < /h1 >
 < p > Lorem ipsum dolor sit amet... < /p >
 < /div >
 < /div >
 < /body >

 Now here is the CSS for this page (ch09_eg03.css). The first thing to note is that we set the margin pro-
perty on the < body > element to 0px . Otherwise, some browsers will add space inside the browser window
and our site will not reach the top of the page. We also need to set the text-align property to have a
value of center, so that the page frame will be centered in the middle of the page in IE versions 5 and 6.

body {
 background-color:#000000;
 margin:0px;}
 text-align:center;}

❑

❑

c09.indd 393c09.indd 393 11/20/09 5:00:19 PM11/20/09 5:00:19 PM

Chapter 9: Page Layout

394

 For the first of the < div > elements, we want to:

 Make it the width of the grid using the width property

 Add the grid to the back of the element using the background - image property, then use the
 background - repeat property to ensure that the grid repeats down the page

 Center the element using the margin - left and margin - right properties with a value of auto;
and set text-align back to left (since we had set it to center on the <body> element).

#frame {
 width:960px;
 background-image:url(“images/960px_12_col_grid.gif”);
 background-repeat:repeat:y;
 margin-left:auto;
 margin-right:auto;}
 text-align:left;}

 The second < div > element is not quite as wide as the frame because there is a 10 - pixel gutter to the left
and right on the grid. We will add 10 pixels to the bottom, too, using the CSS margin property.

#page {
 margin:0px 10px 10px 10px;
 background-color:#ffffff; }

 In order to make the page look like the screenshot, you will need to set the margin of the < h1 > element
to 0px too — otherwise the browser will set space above the element and push the grid down the page.

 Sometimes you may prefer to save an image of the entire page design and use this as a background
image (effectively it would be like using code to trace over the boxes in your design).

 Multi - Column Layouts
 Now let ’ s take a look at how to code some more complex layouts. We are going to start with a three -
 column layout, then look at a two - column layout, and finally add combinations of four and six columns
as well.

 Three - Column Layout
 The first example we will look at features three columns, as well as a header, a navigation bar under the
header, and a footer at the bottom of the page.

 If you look at Figure 9 - 26 you can see the general layout of the page that we will be creating; there will
be a header that takes up the full width of the page, followed by a navigation bar that will take up the
full width of the page; under this will be three columns sitting next to each other, and finally a footer
taking up the width of the page at the bottom.

 Figure 9 - 26 is just intended to show you the structure of the page and how the XHTML elements you are
about to meet map onto the layout (for example you can compare the code < div id= ” header ” >
 header < /div > in this figure to the code used to create that block. To see a screenshot of the finished
example we are building, flick forward a couple of pages to see Figure 9 - 27.

❑

❑

❑

c09.indd 394c09.indd 394 11/20/09 5:00:19 PM11/20/09 5:00:19 PM

Chapter 9: Page Layout

395

 Here you can see the code that generates a page with three columns that is similar to this structure
(ch09_eg04.html). Note how the values for the class attributes on the columns indicate how many
columns the page is divided into and which column is which. For example, the first column has a value
of column1of3 :

 < body >
 < div id=”frame” >
 < div id=”page” >
 < div id=”header” > header < /div >
 < div id=”navigation” > navigation < /div >
 < div class=”column1of3” > column 1 of 3 < /div >
 < div class=”column2of3” > column 2 of 3 < /div >
 < div class=”column3of3” > column 3 of 3 < /div >
 < div id=”footer” > footer < /div >
 < /div >
 < /div >
 < /body >

 You could add other elements inside any of these < div > elements — for example, your header would
likely contain an < h1 > element with the name of the site, or an image containing the logo for the site. The
navigation would contain < a > elements that would link to the pages of the site, and so on.

 Now let ’ s take a look at the CSS for this page (ch09_eg04.css). We can start with the rules for the
 < body > element and two < div > elements. These rules are virtually identical to the rules that contained
the grid in the last example.

body {
 margin:0px;
 background-color:#000000;
 font-family:arial, verdana, sans-serif;}
 text-align:center;}

Figure 9-26

<div id=”header”>header</div>

<div id=”navigation”>navigation</div>

<div class=”column1of3”>
 one
</div>

<div id=”footer”>navigation</div>

<div class=”column2of3”>
 two
</div>

<div class=”column3of3”>
 two
</div>

c09.indd 395c09.indd 395 11/20/09 5:00:20 PM11/20/09 5:00:20 PM

Chapter 9: Page Layout

396

#frame {
 margin-left:auto;
 margin-right:auto;
 text-align:left;
 width:960px;
 background-image:url(“images/960px_12_col_grid.gif”);
 background-repeat:repeat-y;}
#page {
 padding:0px 10px 10px 10px;
 background-color:#ffffff;}

 The header, navigation, and footer all take up the full width of the page, so we do not need to specify a
width for them. I have provided the same properties for each:

 background - color property so you can see the space the box takes up; this also acts as a
grouping or chunking mechanism for anything that appears in the header.

 padding property to keep the contents of these elements away from the edge of the box, which
makes them more readable.

 height property to help the boxes sit nicely in the grid.

 The footer also features a clear property, to ensure that it sits beneath the columns, and a border
property on the top of the element to create a gap between the columns and the footer (you should not
use the margin property and clear property on the same element because different browsers treat them
in different ways).

#header {
 background-color:#cccccc;
 height:120px;
 padding:10px;}
#navigation {
 background-color:#efefef;
 height:40px;
 padding:10px;}
#footer {
 background-color:#cccccc;
 height:40px;
 padding:10px;
 clear:both;
 border-top:20px solid #ffffff;}

 Finally, we come to the three columns. To make them sit nicely next to each other, use the following
two properties:

 float to take the items out of normal flow.

 width to specify the width of the element that is being floated (if you do not specify a width
the element will take up the full width of the container — just like the header, navigation, and
footer do).

 As with the header, navigation, and footer, the background - color property creates a chunk or group,
the padding separates the content from the edge of the box making it more readable, and the margin on

❑

❑

❑

❑

❑

c09.indd 396c09.indd 396 11/20/09 5:00:20 PM11/20/09 5:00:20 PM

Chapter 9: Page Layout

397

top of the boxes ensures that the boxes do not touch the navigation or other columns above them. The
 height property is only there for visual effect.

.column1of3, .column2of3, .column3of3 {
 float:left;
 width:280px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;
 height:173px;}

 Remember that the padding is added to the width of the box. Because we want the columns to be 300
pixels wide and to have 10 pixels of padding, the width property of the box should be set to 280px .

 There is one last property we need to set — the margin property — which adds the gutter that separates
the boxes from each other. We only want to apply a gutter between the first and second columns, and
between the second and third columns (because there is already a gutter to the left and right of the page).
To achieve this, we will just set the margin - right property of the first and second columns.

.column1of3, .column2of3 {margin-right:20px;}

 You can see the result in Figure 9 - 27, and you can try it out for yourself using the download code for the
book. Note how you can still just about see the grid poking through the design between the navigation
and the columns.

Figure 9-27

c09.indd 397c09.indd 397 11/20/09 5:00:20 PM11/20/09 5:00:20 PM

Chapter 9: Page Layout

398

 Two - Column Layouts
 You ’ ve now seen a three - column layout, so let ’ s look at how we could merge two columns and create a
two - column grid. As Figure 9 - 28 shows, you could merge either columns 1 and 2 or columns 2 and 3.

Figure 9-28

Header

Navigation

Column 1 of 3 Column 2 and 3 of 3

Column 3 of 3Columns 1 and 2 of 3

Footer

 This example is very similar to the last one. We do not have to change much in the code to create these
additions. Looking at the XHTML, when we only want two columns, we only have two < div > elements
to represent the two columns. Where these < div > elements take up twice the width, we have two new
values for the class attributes: columns1and2of3 and columns2and3of3 (ch09_eg05.html).

 < body >
 < div id=”frame” >
 < div id=”page” >
 < div id=”header” > header < /div >
 < div id=”navigation” > navigation < /div >

 < div class=”columns1and2of3” > column 1 and 2 of 3 < /div >
 < div class=”column3of3” > column 3 of 3 < /div >

 < div class=”column1of3” > column 1 of 3 < /div >
 < div class=”columns2and3of3” > columns 2 and 3 of 3 < /div >

 < div id=”footer” > footer < /div >
 < /div >
 < /div >
 < /body >

c09.indd 398c09.indd 398 11/20/09 5:00:21 PM11/20/09 5:00:21 PM

Chapter 9: Page Layout

399

 Now let ’ s turn to the CSS. First we have to add a rule for these wider boxes; the only difference between
this and the one for single columns is that the width property has a value of 600px (ch09_eg05.css):

.columns1and2of3, .columns2and3of3 {
 float:left;
 width:600px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;}

 We also need to make sure that the new class representing the block that goes across columns 1 and 2 has
a margin to the right, so we add the class selector to this line:

.column1of3, .column2of3, .columns1and2of3 {margin-right:20px;}

 The result is shown in Figure 9 - 29.

Figure 9-29

c09.indd 399c09.indd 399 11/20/09 5:00:22 PM11/20/09 5:00:22 PM

Chapter 9: Page Layout

400

 Four - Column Layouts
 When I introduced the 960-pixel, 12-column grid, I pointed out that 12 could be divided by 2, 3, 4, and 6.
Therefore, we can easily take this model and adapt it for four - column layouts. In this case the XHTML to
create four columns might look like this (ch09_eg06.html):

 < div class=”column1of4” > column 1 of 4 < /div >
 < div class=”column2of4” > column 2 of 4 < /div >
 < div class=”column3of4” > column 3 of 4 < /div >
 < div class=”column4of4” > column 4 of 4 < /div >

 You could have a class that represented the first two columns, and separate boxes for columns
3 and 4, like so:

 < div class=”columns1and2of4” > columns 1 and 2 of 4 < /div >
 < div class=”column3of4” > column 3 of 4 < /div >
 < div class=”column4of4” > column 4 of 4 < /div >

 Or you could have a class that created one box that spans columns 2, 3, and 4, like so:

 < div class=”column1of4” > column 1 of 4 < /div >
 < div class=”columns2and3and4of4” > columns 2 and 3 and 4 of 4 < /div >

 Here is the CSS for the individual columns — we just need to make them narrower than the
three-column layout (ch09_eg06.css):

.column1of4, .column2of4, .column3of4, .column4of4 {
 float:left;
 width:200px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;}

 The principle for boxes that spread over multiple columns is the same:

.columns1and2of4 {
 float:left;
 width:440px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;}

.columns2and3and4of4 {
 float:left;
 width:680px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;}

 Again, we add a margin to the right of all elements except for those that fill up the right - most column:

.column1of4, .column2of4, .column3of4, .columns1and2of4 {margin-right:20px;}

c09.indd 400c09.indd 400 11/20/09 5:00:23 PM11/20/09 5:00:23 PM

Chapter 9: Page Layout

401

 You can see the result in Figure 9 - 30.

Figure 9-30

 Six - Column Layouts
 You can use the same principle yet again to create six - column layouts. Figure 9 - 31 shows you how
two - , three - , and six - column layouts can all be made to work with this one grid. If you would like to
look at the code for this example, it is provided with the rest of the code for this chapter; the files are
ch09_eg07.html and ch09_eg07.css .

c09.indd 401c09.indd 401 11/20/09 5:00:23 PM11/20/09 5:00:23 PM

Chapter 9: Page Layout

402

 Liquid Layouts
 So far we have looked at multiple - column fixed - width layouts. It is possible to follow the same
principles with liquid layouts. In such cases, you simply have to make sure that the widths are specified
using percentages rather than pixels.

 Start with your layout grid and work out the percentage of each column. In the following table you can
see the width of each column in pixels from the fixed-width design, and the percentage width we are
using in the liquid design. Because the gutters on this page stretch to the edge of the browser window,
we will make them the same size as the ones between columns.

Figure 9-31

c09.indd 402c09.indd 402 11/20/09 5:00:24 PM11/20/09 5:00:24 PM

Chapter 9: Page Layout

403

 Column Pixel size in fixed-width design Percentage size in liquid layout

 Gutter 1 10px 2%

 Column 1 300px 30%

 Gutter 2 20px 2%

 Column 2 300px 30%

 Gutter 3 20px 2%

 Column 3 300px 30%

 Gutter 4 10px 2%

 Total 960px 98%

 If you have not already seen it, check the final row showing the totals at the bottom of this table. It shows
that the entire width of the design is only going to take up 98 percent of the screen. You must leave
2 percent extra space to the right of the page because when browsers calculate percentages they round
the size to the nearest pixel, and therefore if the design tried to take up 100 percent of the browser
window, the total width might be more than is available (which could throw out the entire layout).

 So, let ’ s look at an example; this time the code does not need the two containing < div > elements, so it
will just look like this (ch09_eg08.html):

 < body >
 < div id=”header” > header < /div >
 < div id=”navigation” > navigation < /div >
 < div class=”column1of3” > column 1 of 3 < /div >
 < div class=”column2of3” > column 2 of 3 < /div >
 < div class=”column3of3” > column 3 of 3 < /div >
 < div id=”footer” > footer < /div >
 < /div >
 < /div >
 < /body >

 Now let ’ s look at the CSS to go with this example. If you do not specify a width for a block - level element,
it will take up the full width of the page. Therefore we do not need to set the width of the header,
navigation, or footer (ch09_eg08.css).

#header {
 background-color:#cccccc;
 padding:10px;
 height:120px;}

#navigation {
 background-color:#efefef;
 padding:10px;
 height:40px;}

c09.indd 403c09.indd 403 11/20/09 5:00:25 PM11/20/09 5:00:25 PM

Chapter 9: Page Layout

404

#footer {
 background-color:#cccccc;
 padding:10px;
 height:40px;
 clear:both;
 border-top:20px solid #ffffff;}

 Looking back at the table, we still need to add Gutters 1, 2, and 3 to columns 1, 2, and 3 using the
 margin - left property with a value that is 2% . We do not actually need to add Gutter 4 into the design
because we have already allowed a little extra space to the right of the design.

 We will also create padding in the boxes by giving the padding property a value of 1% . Because the
padding is added onto the width of the box, to create a box that takes up 30 percent of the screen, the
 width property for each column should have a value of 28% .

/* 3 columns */
.column1of3, .column2of3, .column3of3 {
 float:left;
 width:28%;
 margin-left:2%;
 background-color:#cccccc;
 padding:1%;
 margin-top:20px;
 height:175px;}

 You can see the result in Figure 9 - 32.

Figure 9-32

c09.indd 404c09.indd 404 11/20/09 5:00:25 PM11/20/09 5:00:25 PM

Chapter 9: Page Layout

405

 One of the issues with liquid layouts is that, because the user can shrink and increase the width of the
boxes in the layout, the text may become too short or too long to read, and any fixed - width items (such
as images) may end up poking out of boxes if they are too small.

 In such cases, you can make use of the min - width and max - width attributes, which you read about in
Chapter 7. Unfortunately, IE7 was the first version of Internet Explorer to support these properties.
Luckily, the number of IE6 users is constantly shrinking, and since other browsers have supported
these properties for longer, you should use them to help users whose browsers understand them
(ch09_eg09.css).

.column1of3, .column2of3, .column3of3 {
 float:left;
 width:28%;
 margin-left:2%;
 background-color:#cccccc;
 padding:1%;
 margin-top:20px;
 height:175px;
 min-width:210px;
 max-width:400px;}

 Once you specify a min - width property, if a user shrinks the window down quite small, you may find
that content flows out of the boxes. You can use the overflow property to control what happens to
content in such circumstances. Alternatively, you could put the three columns in a containing element
and set a minimum width for that container element — wide enough to hold the minimum width of all
three columns (ch09_eg09.html).

 < div class=”columns123” >
 < div class=”column1of3” >
 < img src=”images/golden_section.gif” width=”200” height=”75”
 alt=”Golden Section” / > column 1 of 3
 < /div >
 < div class=”column2of3” > column 2 of 3 < /div >
 < div class=”column3of3” > column 3 of 3 < /div >
 < /div >

 Here is the rule that attaches the style to the new container element:

.columns123 {min-width:750px;}

 You should also add the same minimum width to the other elements that take up the full width of the
page since their width is calculated as the width of the browser window when the page loads, which
means that these elements might not otherwise be as wide as the new container element.

 Backgrounds That Reach the Bottom of the Page
 One of the issues when you use the CSS float property to create columns is that when you specify a
visible background color or border for the columns, each can look a different height. Let ’ s add some
content into the three - column layout you met earlier so you can see what happens:

 < div class=”column1of3” >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

c09.indd 405c09.indd 405 11/20/09 5:00:26 PM11/20/09 5:00:26 PM

Chapter 9: Page Layout

406

 < /div >
 < div class=”column2of3” >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Quisque vel sem odio, et tincidunt magna. Nam malesuada justo non risus
 ullamcorper eget dignissim erat viverra.
 < /div >
 < div class=”column3of3” >
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Quisque vel sem odio, et tincidunt magna. Nam malesuada justo non risus
 ullamcorper eget dignissim erat viverra. Mauris viverra massa ac libero
 feugiat tempor. Cras scelerisque fermentum dui et feugiat. Class aptent taciti
sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos.

 < /div >

 Figure 9 - 33 shows how the background for the box comes down only as far as the text (plus padding),
which would not make for a very attractive design.

Figure 9-33

 You have actually already seen a way around this problem, when we used the grid as a background
image on the < div > element that had a class attribute whose value is page . By using a background
image on the containing element, you can ensure that it applies to all columns, no matter how tall they
are (ch09_eg10.css).

c09.indd 406c09.indd 406 11/20/09 5:00:26 PM11/20/09 5:00:26 PM

Chapter 9: Page Layout

407

#frame {
 margin-left:auto;
 margin-right:auto;
 width:960px;
 background-color:#ffffff;
 background-image:url(“images/960px_3column_background.gif”);
 background-repeat:repeat-y;}

 You can see the result in Figure 9 - 34.

Figure 9-34

 You are now well equipped to be creating well-thought-out sites and page layouts. If you are interested
in finding out more about page layout, here are some good resources:

 960.gs: http://960.gs/

 Blueprint: www.blueprintcss.org/

 YUI Grids: http://developer.yahoo.com/yui/grids/

 Before we finish looking at page layouts, we need to consider mobile phones that are used to access
web pages.

❑

❑

❑

c09.indd 407c09.indd 407 11/20/09 5:00:26 PM11/20/09 5:00:26 PM

Chapter 9: Page Layout

408

 Developing for Mobile Devices
 Many people think that the use of the Web on mobile phones is not really relevant to them or their
company, especially if they (or those in their peer group) do not use web services on their mobile phones.
But two things are changing minds:

 The success of high - profile devices such as the Blackberry and iPhone

 Statistics that show how many people access web - based services on mobile phones

 In 2009, the British government released statistics showing that 11 percent of UK mobile phone users
were using their mobile to browse the Internet, which (bearing in mind that more people have mobile
phones than web access) equates to over a fifth of web users accessing the Web via mobile devices.
Considering that the number of mobile phones sold in 2008 outstripped the entire user base of PCs, this
is a trend that is only likely to increase.

 Despite the growing interest in the mobile Web, it is not uncommon for people to view the Web on
mobile devices as being inferior or “ behind ” the experience they have on a desktop computer. Yet the
comparison between the experience of the Web on mobile devices and desktop computers is not quite as
straightforward as it might first seem.

 Understanding the Medium and How It Is Used
 When it comes to thinking about how people access the Web on mobile phones, there are some very
important aspects to consider:

 Context: What the user is doing when using a mobile phone

 Relationship: How people treat their mobile phone

 Capabilities: The features and capabilities of mobile phones compared with desktop computers

 Context: What Is the Mobile User Doing?
 Mobile devices are being used on the move, often in a hurry, and sometimes one - handed. The result is
that when mobile phones are used to access the Web, they are often used to achieve very different things
than the same user might want to achieve in front of a desktop computer.

 While people sit for hours in front of a desktop computer surfing the Web, when users are out and about,
they are far less likely to be just surfing — rather they are more likely to want to do something specific
(whether this is checking the local weather forecast, latest news headlines and sports results, or finding
out the opening hours of a nearby shop).

 It is important here to note that a laptop, even though it is portable, is often used in the same manner as
a desktop, even if the user is in a coffee shop, a car park, or at an airport.

❑

❑

❑

❑

❑

c09.indd 408c09.indd 408 11/20/09 5:00:27 PM11/20/09 5:00:27 PM

Chapter 9: Page Layout

409

 When you start to think about your site appearing on a mobile device, it is wise to go back to the
beginning of this chapter and create a new set of actors or personae that reflects the typical visitors to
your site via a mobile phone.

 At the same time, you should be creating a new set of tasks that they might want to achieve, because the
mobile user will often want to achieve different things than the desktop user would. For example, mobile
users accessing a supermarket web site are more likely to look for the nearest store and its hours than
they are to do their weekly grocery shopping on their phones.

 Even if users want the same information that they might request when at a desktop computer (for
example to check the latest sports results or weather forecast in their area), you should always consider
whether they may benefit from the information being displayed in a very different way.

 Relationship: How Do Users Treat Their Mobile Phones?
 It is also worth comparing the relationship that people have with their mobile phones compared with
desktop computers. It is far more common for people to have their own mobile phones whereas desktop
computers are often shared between members of a family, or used at work and schools. This means that
people have a more personal relationship with their mobile phones. It also means that it is possible to
more accurately uniquely identify users and personalize services to them.

 These devices are also usually carried around 24 hours a day, no matter where the owner is (they may be
turned on silent, but rarely turned off).

 Capabilities: How Do Features of Mobiles Compare with Desktop PCs?
 Finally, we should compare capabilities of mobile phones and desktop computers. Here are some of the
positive aspects of mobile phones that are not as apparent on desktop devices:

 Allow for location specific services: Because they can use triangulation or (where installed)
GPS to identify location of users.

 Have a built - in payment system: Whether on contract or a pay - as - you - go scheme, the payment
is integrated more than a desktop computer where a user must enter credit card information or
set up an account with a service such as PayPal. The payment system is also available to those
who are not old enough to have debit and credit cards. It has also been suggested that mobile
phone owners are more used to (and willing to) pay for services accessed via their mobile than
they are to pay for services accessed via a desktop computer.

 Have a built - in camera: Only a handful of desktop machines will have a camera built in,
and those that do are still used in a desk - based setting (rather than being carried around all
the time).

 Are integrated with voice data: Because they are phones as well, and although services such as
Skype allow phone calls to be made through a computer, it is not inherent in the platform.

 Have other features: Such as SMS and MMS, which some users (particularly in Europe)
use often.

❑

❑

❑

❑

❑

c09.indd 409c09.indd 409 11/20/09 5:00:27 PM11/20/09 5:00:27 PM

Chapter 9: Page Layout

410

 Having said that, there are some inherent limitations with mobile devices:

 Slower connection speeds: The connection speeds of mobile phones consistently trail behind
those offered by broadband connections.

 Connection can be intermittent: As users move about, for example when traveling in more
isolated rural areas, or when going through tunnels in cities, their connection can be cut.

 Screen are usually smaller: Because screens are small, it is not possible for users to scan as
much information to find out what they are looking for.

 Input devices are harder to use: Although many mobile users are adept at using their mobile
phones, they are unlikely to achieve the same speed and accuracy of data input that they would
achieve with a keyboard and mouse.

 Less control over appearance: Several phones will remove your choice of font, size of text, and
background images to show them in a manner they see fit for the device.

 Armed with this information, you can start to think about mobile development.

 How to Approach Mobile Development
 Often the key factors in deciding a mobile strategy will depend upon the resources a company has
available for its web users and whether it has enough users to justify the expense of development.
Broadly speaking, you can categorize the approaches in mobile development into one of three categories:

 Just have one main web site (no separate mobile site)

 Provide a different view of the content on your site to those with mobile phones

 Create an entirely new site for mobile users

 Let ’ s take a look at each of these options in turn.

 Do Not Develop a Mobile Site
 The cheapest and least time-intensive strategy for mobile development is simply to do nothing. Many
mobile phones are adept at giving users access to the content on the site. Some larger touch-screen
phones (such as the iPhone) are capable of cleverly resizing a web page to fit on the screen, then allow
users to zoom into parts of the page. Other phones may change the way in which the page is presented
in order to make it available on the size of screen they have (often overriding font sizes and image sizes).

 The obvious drawback with this approach is that your content is not addressing the aims that visitors to
a mobile site might have.

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 410c09.indd 410 11/20/09 5:00:27 PM11/20/09 5:00:27 PM

Chapter 9: Page Layout

411

 Provide an Alternative View of Your Site
 A middle ground is to re - use the content that you have, but to present it in a manner that is easier for
mobile users. In this middle ground there are two common options.

 The first approach is to add a second style sheet to the same pages, so that mobile devices can use a
separate set of CSS rules to control how the pages appear to them:

 < link href=”mobile.css” rel=”stylesheet” type=”text/css” media=”handheld” / >

 This can help you use a different layout, change the dimensions of the page, and attempt to control
colors and sizes of fonts.

 Unfortunately, not all phones know to take this version of the style sheet, and those that do still have to
download a page that is the same file size as the pages created for desktop computers (which means that
they may take a long time to download).

 I have seen style sheets for handheld devices that try to hide parts of the page (setting the CSS display
property on those elements to none), which has the advantage that it makes the interface simpler,
although it does not make the file size smaller.

 The second approach is to use a different set of templates when someone arrives at your site via a mobile
device. Rather than just using a new style sheet, some companies will use the same content, but design
new pages to hold the information.

 This approach allows a lot more flexibility because you can change the order in which items appear. You
can also entirely remove some parts of the page (such as advertisements and secondary navigation), and
therefore reduce bandwidth needed to load the pages.

 Still, both of these methods still fail to address the context in which the phone is being used.

 Create a Separate Mobile - Optimized with Its Own Content
 If you have the resources available, users will often benefit from a site being specifically designed for use
on a mobile phone. It allows you to address the requirements of users who are on the go (which are often
different from those of a desktop PC user) and to understand the context in which visitors to your site
use these devices.

 A couple of good examples are http://m.flickr.com/ (shown below in Figure 9 - 35) and
http://m.ebay.com/ (shown below in Figure 9 - 36). Both of these sites have been developed especially
for mobile users (you should be able to access them from a desktop browser as well to get an idea of how
they work). You may also note how the mobile version of Flickr also has a location - based option in the
main navigation.

c09.indd 411c09.indd 411 11/20/09 5:00:28 PM11/20/09 5:00:28 PM

Chapter 9: Page Layout

412

Figure 9-35 Figure 9-36

 Should you have the opportunity to develop a site specifically for mobile users, it is very important to
consider the function of these sites before addressing how they look. (Realistically the mobile offering is
likely to look a lot more basic than the desktop site.) Also consider whether your users would benefit
from features that are specific to mobile devices, such as location awareness (for example, a store might
automatically show the closest locations), or the ability to send in pictures.

 The first step is to look at the tasks you have identified as the most common ones that users will want to
achieve on a mobile device and make them the first and most prominent offerings. In doing this, it is
very important to retain focus on the main tasks and not try to give the mobile user every feature that is
available on sites accessed by desktop computers. Content or features that are unlikely to be used on the
go should be removed (or adapted into a form that will help mobile users).

 Once you have worked out what it is that people want to achieve, and how you can meet their
requirements, you can start to consider the practical aspects of your mobile site.

c09.indd 412c09.indd 412 11/20/09 5:00:28 PM11/20/09 5:00:28 PM

Chapter 9: Page Layout

413

 Building a Mobile Site
 While there is not enough space in this book to go into this topic in great detail, and entire books have
been written about building mobile web sites, I can give you some pointers regarding the key issues
should you decide to create a site especially for mobile phones.

 Domain Name
 One of the most common questions regarding mobile development is whether to have a separate
top - level domain name for the site because the .mobi top - level domain was created specifically for
mobile devices.

 In practice, a lot of companies have opted for a variation on their current address instead — for example,
 m.domainname.com , mobile.domainname.com , and domainname.com/mobile . In my opinion, the
fewer taps a user has to make in order to reach a domain name on a mobile device, the better, which is
why I tend to opt for the first of these options.

 Device Detection
 Device detection is a means by which the site attempts to tell whether a user is on a desktop computer or
mobile phone, and then guide this user to the appropriate site.

 Telling you how to do this is beyond the scope of this book, but the following two URLs should help you
make a good start: http://wurfl.sourceforge.net or www.andymoore.info .

If you are able to offer device protection and send visitors to the mobile version of your site, it is a good
idea to offer them a link to your full web site on the homepage. If they opt to use the full web site, you
should aim to direct them to the same site in the future (when accessed from that phone).

Likewise, on your main web site, it is helpful to tell people that you have a mobile site, to make them
more aware of its existence. You can also offer a link to the mobile version of the site.

 Languages for Creating Mobile Web Sites
 Most fairly recent phones that feature a web browser are capable of displaying XHTML and basic CSS.
That doesn ’ t mean that they will display them as you would expect. Some phones will show all text at
the same size, and some will strip out styles that are not necessary (such as background images or
colors). Others will show the more complex design.

c09.indd 413c09.indd 413 11/20/09 5:00:29 PM11/20/09 5:00:29 PM

Chapter 9: Page Layout

414

 Technically speaking, they tend to support one of two subsets of XHTML known as XHTML - Mobile
Profile and XHTML Basic. A good rule of thumb, however, is just to stick to the most common XHTML
features and then most phones will be able to handle it. Here is the DOCTYPE declaration for XHTML -
 Mobile Profile:

 < !DOCTYPE html PUBLIC “-//WAPFORUM//DTD XHTML Mobile 1.0//EN”
 “http://www.wapforum.org/DTD/xhtml-mobile10.dtd” >

 While there is not enough space in this book to cover all the differences between XHTML - MP and
XHTML, there are several resources on the Web that can help you with this, such as the Openwave
developer ’ s reference:

http://developer.openwave.com/documentation/xhtml_mp_css_reference/

 Design Tips
 Most new sites being created for mobile devices are targeting browsers that are between 240 and 320
pixels wide. The layout of these pages should generally be vertical pages that scroll down.

 You still need white space in your designs so that they are easy to read. However, if you have too much
white space, users will have to scroll more than necessary.

 With the exception of touch phones such as the iPhone (and other larger screened phones), many of the
browsers on mobile phones do not support the CSS float property, so your boxes are likely to be
positioned one above the other, even if you tried to position them to the sides. Because block - level
elements (by default) take up the full width of the page, they act like a liquid layout.

 So, let ’ s look at some specific issues regarding design for mobile devices.

 Content
 As we have already discussed, users are less likely to be just surfing the Web on a mobile phone; it is
more likely that they are going to want to achieve tasks, and to do that quickly. Therefore:

 Use clear concise language. Content should be available in small bite - size chunks that are easy
to digest.

 Use semantic markup, such as headings in < hn > elements, paragraphs in < p > elements,
and so on.

 User fewer images and graphics to save on download speeds.

 Consider using the title of pages to indicate the action that a user should take.

 Figure 9 - 37 shows the BBC news site on an iPhone; it uses less text and fewer images than the site for
desktop computer users. The headlines are short and descriptive, while the page is designed to be long
and thin (so users can scroll down to see more stories).

❑

❑

❑

❑

c09.indd 414c09.indd 414 11/20/09 5:00:29 PM11/20/09 5:00:29 PM

Chapter 9: Page Layout

415

 Color
 Remember that many mobile phones are used outside where screens can be harder to read, and there is
not often an easy way to adjust contrast. Therefore:

 Ensure that there is sufficient contrast in your designs.

 Avoid using backgrounds.

 Figure 9 - 38 shows the simplified Amazon mobile homepage, which mainly features a search box for
users to find the book or other product they are looking for. It is also worth noting on this example the
link in the top left - hand corner to the “ PC Site. ”

❑

❑

Figure 9-37 Figure 9-38

c09.indd 415c09.indd 415 11/20/09 5:00:29 PM11/20/09 5:00:29 PM

Chapter 9: Page Layout

416

 Navigation
 Because those accessing the Web on a mobile device often want to achieve a task quickly, navigation is of
primary importance — not only in helping them achieve their task as quickly as possible, but also
because there is less space on the screen to show navigation options.

 Consider having the main navigation on the homepage only (with a link back to the homepage
on every other page), or if you do have a navigation bar at the top of every page, have the
minimum number of options you can.

 At the end of each page have home and back links, but don ’ t repeat the links that appear on the
bottom of the site used by desktop visitors (such as about, help , and faq).

 Consider using access keys for links (we discussed access keys in Chapter 5 when we were
looking at Forms).

 Figure 9 - 39 shows the result of a search on the Amazon mobile site. As you can see , there is a link back
to the homepage at the top of the page (rather than a navigation bar), and this is followed by another
small search box before showing the results.

❑

❑

❑

Figure 9-39

c09.indd 416c09.indd 416 11/20/09 5:00:31 PM11/20/09 5:00:31 PM

Chapter 9: Page Layout

417

 Links
 Although CSS allows you a lot of control over how links are presented, it is considered good practice on
mobiles to keep links simple and obvious:

 Stick to black text and blue links, and avoid using other colors for links. Remember that many
mobile phones are used outside where screens can be harder to read.

 Make it clear which link is active because it is harder to get the right link.

 For phones, while iPhone and the Mobile Opera browser automatically determine phone
numbers, you can put phone numbers in < a > tags, with the href attribute starting with tel :

 < a href=”tel:+44 (0) 208 208 2080” > +44 (0) 208 208 2080 < /a >

 Forms
 Filling in a form on a mobile phone is harder for most people than it would be on a desktop computer;
not only might people be on the move, using one hand; they also have to contend with smaller buttons
or input devices. Therefore you should avoid using form controls as much as possible:

 Consider using links instead of form controls.

 Do not mask passwords. The use of dots or asterisks on password inputs was to prevent people
looking over the shoulder of the user from seeing the password entered; this is not so much of
an issue on mobile devices (and it is easier to make mistakes when typing on a mobile device).

 If you have fields that only allow numbers (such as quantity fields), only allow people to enter
numbers into these form fields (this technique is sometimes known as an input mask).

 Avoid logins unless absolutely necessary.

 Testing
 With the number of mobile devices available today, no one would expect you to test a mobile site on
every available phone. Some developers choose to run a few phones with varying capabilities (switching
one SIM card between them), but you can always ask friends to see if they can access a site for you and
show you what it looks like on their phones.

 You can also use the following emulators, which mimic the abilities of phones:

 dotMobi emulator — simulates Sony Ericsson K750 and Nokia N70 (http://mtld.mobi/
emulator.php)

 Opera Mini Simulator (www.operamini.com/)

 Nokia Mobile Browser Simulator (www.forum.nokia.com/)

 Openwave phone simulator (http://developer.openwave.com/dvl/tools_and
_sdk/phone_simulator/)

 iPhoney (www.marketcircle.com/iphoney/)

 Blackberry (http://na.blackberry.com/eng/developers/resources/simulators.jsp)

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c09.indd 417c09.indd 417 11/20/09 5:00:31 PM11/20/09 5:00:31 PM

Chapter 9: Page Layout

418

 Another handy tool is the Firefox Web Developer Toolbar, which allows you to test pages on small
screens (https://addons.mozilla.org/en-US/firefox/addon/60). This feature is available from
the Miscellaneous menu, under the option Small Screen Rendering, as shown in Figure 9 - 40.

Figure 9-40

 Once you know that your site is working, don ’ t forget to test with real users (which is something we
discuss in Chapter 13). It is also a good idea to validate your markup (also discussed in Chapter 13)
because mobile phones are less forgiving of markup with errors than browsers such as IE, Firefox, and
Safari on desktop computers. The W3C provides a tool for validating markup for mobiles here:
 http://validator.w3.org/mobile/.

c09.indd 418c09.indd 418 11/20/09 5:00:31 PM11/20/09 5:00:31 PM

Chapter 9: Page Layout

419

 Summary
 This chapter introduced you to techniques for designing pages that are attractive and that meet the
needs of those who visit them. You learned a process that helps you determine the information a visitor
might expect to find on the site. You saw that this process involved creating fictional actors or personae
who represented the typical audience, working out the tasks that these people would want to achieve,
and determining the information needed to achieve those goals.

 The information that visitors might expect to find was then added to the information that the site owners
might want to convey (bearing in mind that the two may be different). The resulting list was then
prioritized to determine the most important information on the site. From this, a site map is developed
and the information is apportioned to the relevant pages.

 The next step was to understand the issues regarding designing for screens — in particular, the
difference between fixed - width and liquid layouts, whether your page should always stay the same size
or expand and contract to fit the browser window.

 Eventually the design or layout begins, and you saw how the use of a layout grid helps create a far more
professional-looking layout compared with randomly selecting the size of parts of pages.

 Some popular layout grids were then transformed into XHTML and CSS code, using floats to position
the content on the page. This chapter demonstrated two - , three - , four - , and six - column layouts.

 I hope the practical advice in this chapter makes it easier for you to design your web sites, and also helps
you deal with those people or organizations you might be creating sites for. In the next chapter, we look
at some more specific aspects within each page, such as typography, navigation, links, and forms.

 Exercises
 The answers to all the exercises are in Appendix A.

 1. Take another look at the article page from the Guardian newspaper ’ s web site; it is shown again
in Figure 9 - 41. List all the different elements on the page that would have been listed in the de-
sign stage, and put them together in their relevant grouping or categories. For example, the
main article section of the page might need a list like this:

Title
Summary
Author
Date

c09.indd 419c09.indd 419 11/20/09 5:00:32 PM11/20/09 5:00:32 PM

Chapter 9: Page Layout

420

 2. Try to recreate the structure of the page you can see in Figure 9 - 41. It sits in the 12 - column
960 - pixel grid we were using in this chapter, so you have seen much of the code you
need already — you just need to assemble it correctly.

Figure 9-41

c09.indd 420c09.indd 420 11/20/09 5:00:33 PM11/20/09 5:00:33 PM

 10
Design Issues

 This chapter looks at design issues that affect specific aspects of your pages — typography,
navigation, tables, and forms. Each is addressed in its own section, and each section contains
helpful tips that will make your pages more attractive and easier to use.

 First up is typography; you will see how carefully composing your text on the page makes it easier
for people to read the words you have written and improves the clarity of your message.

 Next, you look at the three main forms of navigation: menus, search, and links within pages.
As you will see, a menu does not just offer a means for users to navigate your site; it also
plays an important role in helping visitors understand what a site is about and how the
information is organized.

 If you have to add tabular data to your site, this section contains helpful guidelines to make your
tables easier to read.

 Finally, you will look at forms. I have yet to meet someone who enjoys filling out forms
(particularly on the Web), so these techniques will increase the chances of your forms being
completed (and completed with the right information).

 While this chapter can ’ t teach you how to be a great web page designer — that requires
creativity, a good eye, and flair — it will show you some concepts that help create good designs
and introduce you to some guidelines that will help you improve both the look and usability
of your site.

 Throughout this chapter I mention programs called screen readers. Screen readers are programs
that read a page to a user. While screen readers are commonly used by those with visual impair-
ments, they are likely to become more popular in other web - based scenarios, such as for those
who want to access information while they are driving or doing something else that prevents
them from actually reading a screen.

c10.indd 421c10.indd 421 11/21/09 12:14:40 AM11/21/09 12:14:40 AM

Chapter 10: Design Issues

422

 Typography
 While typesetting used to be the domain of skilled craftsmen, the desktop publishing revolution, which
started 25 years ago, has led us to the point where anyone can create a document on a standard PC in the
home. This was followed by the Internet revolution, which has removed the need to print many
messages because they can be seen on a screen.

 While technology has allowed anyone to create documents on a home PC, the skills and experience
of the typesetters who knew how to make type attractive and easy to read were not built into the new
technology. But we can learn a lot from the experience of these craftsmen. Studying even the basics of
typography can have a big impact on the design of your pages, and also on how many (and which)
of your precious words are read.

 Typography can be defined as the art of arranging text so that it is carefully composed on the page to
create a readable, coherent, and visually satisfying whole that works invisibly. This means putting a lot
of care and attention into typesetting in order to make your message clearer and help the reader navigate
around the page with ease, but doing so in a manner that does not call readers’ attention to what you are
trying to do.

 When you consider that web users commonly scan pages to find the information that they want, the
value of good typography becomes even more apparent.

 In this section, we will be looking at issues such as:

 Line length

 Relationship between sizes of letters

 Gaps between lines

 Spaces between letters and words

 Careful chunking

 Contrast

 Choice of fonts

 Before you look at these issues in detail, it is worth clarifying a couple of terms typographers use:

 Legible: Text is legible if it is recognizable; for example, when a font gets too small it may no
longer be legible.

 Readable: Text is readable if it is comfortable to read it for many minutes (without strain
or difficulty).

 A legible typeface can become unreadable through poor setting and placement, and a less legible
typeface can be made more readable through good design.

 Line Length — A Measure
 A measure is the name typographers give to the number of characters in a single line of text.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 422c10.indd 422 11/21/09 12:14:41 AM11/21/09 12:14:41 AM

Chapter 10: Design Issues

423

 It is generally considered that for a body of text (such as a news article), the line length should be
between 45 and 75 characters including letters, spacing, and punctuation. If you have a narrow column,
your measure should be less — around 30 to 50 characters.

 At the end of each line of text, readers have to make an effort to accurately find the beginning of the next
line, and they have to do this before the flow of the reading is lost. If a line is too long, it can be harder
for the reader to scan back to the left - hand side of the page. If there are two few characters, the reader
has to move onto the next line more often, causing too many breaks in the reading.

 In a liquid layout you do not have control over the measure because users can increase and decrease the
width of the writing as they change the size of the browser window. This is a key reason why text - heavy
sites, such as news sites, often like to use fixed - width layouts.

 With a fixed layout, you have greater ability to control the measure (although if the user changes the size
of the font, it will affect the number of characters on each line). Figure 10 - 1 shows the BBC news site; as
you can see, the main column (below the picture) has a measure of 45 – 75 words, and next to the picture
and in the right - hand column the measure is less (30 – 50 characters).

Figure 10-1

c10.indd 423c10.indd 423 11/21/09 12:14:41 AM11/21/09 12:14:41 AM

Chapter 10: Design Issues

424

 Font Sizes
 You have probably come across the following series of typeface sizes in all kinds of programs, such as
Word, Photoshop, or InDesign:

 8pt 9pt 10pt 11pt 12pt 14pt 18pt 24pt 36pt 48pt 60pt 72pt

 Such programs use the same sizes because they are set according to a scale or ratio, which was
developed by European typographers in the sixteenth century.

 Just as the shape of a rectangle based upon the golden ratio (with the square of its hypotenuse equal to
the sum of its sides) looks pleasing to the eye, this scale of fonts works well and has changed little in the
last 400 years.

 Therefore, when you start designing pages, using these font sizes will help your pages look a lot
more balanced.

 You could choose settings in pixels that follow this scale of size, like so:

body {font-size: 12px;}
h1 {font-size: 24px;}
h2 {font-size: 18px;}
h3 {font-size: 16px;}
h4 {font-size: 14px;}

 Unfortunately, specifying font sizes in pixels is not very good for accessibility because Internet Explorer
does not allow users to resize text when its size is specified in pixels. Therefore, you should aim to create
a similar effect using percentages or ems as a unit of measurement because they will allow all users to
change the size of the text.

 Fortunately, the default size of text in all browsers is 16 pixels, so we can work from this point to create
the correct size using percentages like so:

body {font-size: 75%;} /* 16 x .075 = 12 */
h1 {font-size: 200%;} /* 12 x 2 = 24 */
h2 {font-size: 150%;} /* 12 x 1.5 = 18 */
h3 {font-size: 133%;} /* 12 x 1.333 = 16 */
h4 {font-size: 116%;} /* 12 x 1.16 = 14 */

 You could also use ems. Ems allow you to change the size of text relative to the size of the text element ’ s
parent element, so if the body of a web page is 16 pixels, to get a paragraph to render at 12px you use
0.75em:

body {font-size: 100%;} /* ensure IE scales correctly */
p {font-size: 0.75em;} /* 16 x 0.75 = 12 */
h1 {font-size: 1.5em;} /* 16 x 1.5 = 24 */
h2 {font-size: 1.3em;} /* 16 x 1.125 = 18 */
h3 {font-size: 0.875em;} /* 16 x 0.875 = 14 */

 You may have noticed in this example that there is a rule for the < body > element and the < p > element.
The rule that applies to the < body > element is required because IE6 and IE7 exaggerate the smallness

c10.indd 424c10.indd 424 11/21/09 12:14:42 AM11/21/09 12:14:42 AM

Chapter 10: Design Issues

425

and largeness of the resized text without it, whereas the rule for the < p > element sets the size of the text
in paragraphs to 12 pixels:

 This may seem like a complicated way to calculate text sizes, but when you remember the importance
of working to scale, and that this scale of sizes has been used for over 400 years, you should not need
to work out too many of your own font scales for the moment.

 As mentioned, the default size of text in a browser is 16 pixels, and traditionally the majority of sites
have made the main body text smaller. Recently, however, a number of sites have started to leave the
body text at the default size, suggesting that it increases readability (and that 11 or 12 pixel fonts are
slightly too small).

body {font-size: 100%;}
h1 {font-size: 2em;} /* 16 x 2 = 32 */
h2 {font-size: 1.5em;} /* 16 x 1.5 = 24 */
h3 {font-size: 1.125em;} /* 16 x 1.125 = 18 */

 This can seem a little large at first, but it can certainly help readability. Figure 10 - 2 shows an example
of a screenshot of ch10_eg01.html , which contains fonts sized using ems, with the scale starting at
12 pixels, whereas Figure 10 - 3 shows an example of a screenshot of ch10_eg02.html , which has a
scale starting at 16 pixels. You can try these in your own browser to get a feel for the difference in
text sizes.

Figure 10-2

c10.indd 425c10.indd 425 11/21/09 12:14:42 AM11/21/09 12:14:42 AM

Chapter 10: Design Issues

426

 Choosing Fonts
 In print, serif fonts tend to be easier to read for extended periods of time compared with sans - serif fonts.
When reading books and long articles in a language with which we are familiar, good readers don ’ t need
to carefully look at the whole of each character, either focusing on the top half of characters or sometimes
just on the general shape of familiar words.

 On the Web, however, text is not as sharp as it is in print and the serifs on the font can make the
characters less clear (because the screen has fewer dots per inch than print). As a result, most people find
it easier to read longer passages of text in sans - serif fonts.

 In practice, you are safe using either serif or sans - serif fonts as long as they are large enough to read.

 When choosing which fonts (or typefaces) to use on a page, you should ensure that you consider which
fonts users are likely to have installed on their computers; if users don ’ t have your desired font installed
on their computers your design will not show up in that font.

Figure 10-3

c10.indd 426c10.indd 426 11/21/09 12:14:43 AM11/21/09 12:14:43 AM

Chapter 10: Design Issues

427

 You can safely assume that the majority of users will have the following fonts installed:

 Sans - serif: Arial, Helvetica, Verdana

 Serif: Times, Times New Roman, Georgia

 Monospace: Courier, Courier New

 You can suggest other fonts, in the hope that users have them installed, and at the end of the list you can
put a generic font family, but remember that fonts can take up different amounts of space on the screen.
So do check that your layout works in all choices of font.

 Here you can see the font list from ch10_eg03.html :

h1, h2, h3, h4 {font-family: “gill sans”, arial, sans-serif;font-weight:
normal;}

 Figure 10 - 4 shows you what this looks like in Safari on a Mac with Gill Sans installed, and Figure 10 - 5
shows you the same page in Firefox on a PC that does not have Gill Sans installed.

❑

❑

❑

Figure 10-4

 If you want to use a specific font for a logo, you should use an image instead. You can also look at sIFR
(a technology that uses Flash) and Typekit as ways to include fonts that might not be installed on
visitors’ machines.

 Line Height — Leading
 Leading (pronounced ledding) is the vertical space between lines of text. Text sits on a baseline, and the
height of letters such as a, e, and x are collectively known as the x height. The parts of letters that drop

c10.indd 427c10.indd 427 11/21/09 12:14:44 AM11/21/09 12:14:44 AM

Chapter 10: Design Issues

428

below the baseline are called descenders, while the bits that rise above the x height are known as
ascenders. Leading is measured from the bottom of the descender on one line, to the top of the ascender
on the next (Figure 10 - 6).

Figure 10-5

Figure 10-6

Baseline
Leading

Descender

Ascender

King and queen
Apple and pear

 You can set the amount of leading in a document using the line - height property in CSS (when the line
height is larger than the font size the gap created between each line of text acts as the leading, and the
taller the line height the bigger the gap). Increasing the default amount of leading can make a block of
text easier to read; if you look in Figure 10 - 7, the first paragraph is default size and the second paragraph
has increased leading (ch10_eg04.html).

 A good general guide for leading is that the vertical space between lines of text should be larger than
the space between each word as this helps the eye move along the line instead of down the lines. Around
1.5 em is a good starting point.

 When you use the line - height property in CSS, you should avoid specifying a value in pixels, because
visitors can tell their browsers to increase the size of text on the page and doing so does not necessarily
increase the line height as well (which means text can overlap). It is better to specify the line height using

c10.indd 428c10.indd 428 11/21/09 12:14:44 AM11/21/09 12:14:44 AM

Chapter 10: Design Issues

429

ems because they are relative to the size of font that the user has chosen. Here you can see the example of
increased leading from example ch10_eg04.html :

p.adjusted {
 font-size: 12pt;
 line-height: 1.5em;}

 If your measure is wider than suggested in the section on “ Measure ” (which recommended an upper
limit of 75 characters), you can increase the leading to make it more readable.

 CSS Resets
 When you try to control designs to the pixel, as we do in this chapter, you could easily run into a
complication because different browsers add different margins and padding to different elements. For
example, the amount of padding inside the < body > element, the margins around < h n > elements, and so
on, can be different from browser to browser.

 The solution to this is adding rules to the beginning of your style sheet that set padding and margins of
key elements to zero so that you are in complete control of them.

 A popular set of rules for this is Eric Meyer ’ s CSS Reset. The full version is available on his site at
 http://meyerweb.com/eric/tools/css/reset/ . For the purposes of the examples in this chapter,
you can make do with the following few lines which specify a long list of elements and set a handful of
their properties:

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, font, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,

Figure 10-7

c10.indd 429c10.indd 429 11/21/09 12:14:45 AM11/21/09 12:14:45 AM

Chapter 10: Design Issues

430

b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 outline: 0;
 font-size: 100%;
 vertical-align: baseline;
 background: transparent;}
body {line-height: 1;}

 You can either include these lines of code in the top of your style sheet or you could use the @import
or @include command. In the next section, you see why this is so important.

 Line Height — Baseline Grids
 You have already seen vertical grids in the last chapter. Many typographers also use horizontal grids,
known as baseline grids , and align the bottom of the main text to the grid. Figure 10 - 8 shows an example
of a page where the text sits on a baseline grid (ch10_eg05.html).

Figure 10-8

 Getting to this point involves a few steps. First, you need to use some CSS reset rules to reset the size of
margins and padding that a browser may add to certain elements by default (as we saw in the last
section). Next you need to decide on the distance between the lines in the grid; this usually corresponds
to the line height of the body text. The distance between the lines here is 18 pixels (and the text is

c10.indd 430c10.indd 430 11/21/09 12:14:45 AM11/21/09 12:14:45 AM

Chapter 10: Design Issues

431

12 pixels), and to ensure the text lines up I created a GIF that is 1 pixel wide by 18 pixels tall, with a gray
line on the bottom pixel, as shown in Figure 10 - 9.

Figure 10-9

8 pixels tall

 You can then make this image tile across the background of the browser to act as a guide while building
the page. To do this you create a rule that applies to the < body > element using the background - image
property. You may also have to add a little padding to the top of the document to start the first line on
the grid.

body {font-size:100%; /* ensure IE scales correctly */
 background-image: url(images/baseline_grid.gif);
 padding-top:0.25em;}

 Setting Headings on the Grid
 When it comes to setting the headings on the grid, the easiest way is to just set the line - height
property in CSS to a number that divides evenly into the grid height (this was shown in Figure 10 - 8).

p {font-size:0.75em; /* 16 x 0.75 = 12 */
 line-height:1.5em;} /* 12 * 1.5 = 18 */
h1 {font-size:1.5em; /* 16 x 1.5 = 24 */
 line-height:1.5em;} /* 24 x 1.5 = 36 */
h2 {font-size:1.125em; /* 16 x 1.125 = 18 */
 line-height:2em;} /* 18 x 2 = 36 */
h3 {font-size:0.875em; /* 16 x 0.875 = 14 */
 line-height:2.6em;} /* 14 * 2.6 = 36 */

 In practice, it is common to have a little more height above the headings than below; this can be achieved
using the following calculation.

 First, divide the baseline grid size by the font size:

 For < h1 > 18 ÷ 24 = 0.75

 For < h2 > 18 ÷ 18 = 1

 For < h3 > 18 ÷ 14 = 1.286

c10.indd 431c10.indd 431 11/21/09 12:14:45 AM11/21/09 12:14:45 AM

Chapter 10: Design Issues

432

 Then set the line - height , margin - top , and margin - bottom properties to the resulting value.

 To create more margin above than below, adjust the values of the margin - top and margin - bottom
properties, but make sure that they add up to the same amount. For example (ch10_eg06.css):

 p {font-size:0.75em; /* 16 x 0.75 = 12 */
 line-height:1.5em;} /* 12 x 1.5 = 18 */
 h1 {font-size:1.5em; /* 16 x 1.5 = 24 */
 line-height:0.75em; /* 24 x 0.75 = 18 */
 margin-top:1.2em;
 margin-bottom:0.3em;}
 h2 {font-size:1.125em; /* 16 x 1.125 = 18 */
 line-height:1em; /* 18 x 1 = 18 */
 margin-top:1.7em;
 margin-bottom:0.3em;}
 h3 {font-size:0.875em; /* 16 x 0.875 = 14 */
 line-height:1.286em; /* 14 x 1.286 = 18 */
 margin-top:2.172em;
 margin-bottom:0.4em;}

 When doing this, you need to be aware that browsers will round to the nearest pixel, so you will need to
check the measurements against your background grid and adjust as necessary.

 Aligning Other Items to the Grid
 There are many reasons why you might like to have smaller text on the grid — a side column or captions
under an image. There are two ways to keep this text on the grid:

 Have the same line height as your main body of text.

 Set the leading to be a fraction (such as two - thirds) of the grid height so it meets up again (every
fourth line, in this case); this is known as incremental leading .

 Here you can see the two techniques; the first sets the line height to the same as surrounding text, the
second sets the line height to three - quarters of the height of the baseline grid, so that it will catch up
every five lines. Using the second technique, you also need to add a margin to the top of the element to
ensure that the first line sits on the grid (ch10_eg07.html).

.pull_quote {
 font-size: 0.92em; /* 12 x 0.92 = 11 */
 line-height:1.64em; /* 11 x 1.64 = 18 */
 float:right;
 width:100px;}
.pull_quote2 {
 font-size: 0.92em; /* 12 x 0.92 = 11 */
 line-height: 1.2em; /* 13 x 1.2 = 13.5 */
 margin-top: 0.2em;
 float:right;
 width:100px;}

 You can see the result in Figure 10 - 10.

❑

❑

c10.indd 432c10.indd 432 11/21/09 12:14:46 AM11/21/09 12:14:46 AM

Chapter 10: Design Issues

433

 Just before we started to look at the grid, we reset the default padding and margins in CSS; this meant
that two paragraphs would butt up next to each other. In Figure 10 - 10, margins have been added to the
bottom of each paragraph to separate them when they sit next to each other.

 The margin has only been added to the bottom of the paragraphs because the margin on the
bottom of the headings is quite small and if there were a larger margin at the top of the paragraphs
this would have taken precedence over the gap at the bottom of the heading and everything
would have been thrown off - grid (because vertical margins collapse and only display the larger
of the two).

 To help keep items on the grid, it is also important to remember the following:

 Borders and padding on boxes can throw items off - grid; if you need to use these, adjust the
margin around the element within the box to ensure the text sits on the grid.

 Borders and padding should be measured in the same unit as text so that, if a user resizes text,
it sits on the grid.

❑

❑

Figure 10-10

c10.indd 433c10.indd 433 11/21/09 12:14:46 AM11/21/09 12:14:46 AM

Chapter 10: Design Issues

434

 Space Between Letters — Tracking
 Tracking is the term typographers use to describe the space between letters. You can control the space
between letters using the letter - spacing property in CSS.

 For paragraphs of text in sentence case (where capitalization is the same as a normal sentence), you
should not need to change the spacing between letters. (In fact, doing so may harm legibility.)

 This feature can, however, be particularly helpful when dealing with headings or text that is
all uppercase. This is because text in capital letters is harder to read than text in sentence case;
in such cases giving the letter - spacing property a value of 0.1em can help improve legibility
(ch10_eg08.html).

h1.header_spacing {letter-spacing:0.1em;}

 You can see the difference in Figure 10 - 11.

Figure 10-11

 White Space
 Because the amount of space you have on a screen is limited, it is tempting to put as much information
on each page as possible. However, the space between items on a page can be just as important as the
information itself; it will change the look of the page, its characteristics, its legibility, and how it is
interpreted.

 White space, or negative space , is the name given to the space between elements on a page, but it does not
have to be white; it just signifies the gaps between items on the page. There are two types of white space,
and it is important to pay attention to both:

 Macro white space is the space between the large elements on the page.

 Micro white space is the amount of space between things such as text, headings, and list items.

 Figure 10 - 12 demonstrates macro white space, and how the use of white space between the big elements
on a page lightens up the page, and gives it more space to breathe. Both of these examples are included
in the download code in ch10_eg09.html).

❑

❑

c10.indd 434c10.indd 434 11/21/09 12:14:46 AM11/21/09 12:14:46 AM

Chapter 10: Design Issues

435

Figure 10-12

 Meanwhile, Figure 10 - 13 (showing ch10_eg10.html) demonstrates the importance of setting the correct
space between text; this is a good example of micro white space:

 On the left, there is no margin or padding on any element.

 In the middle, there are normal default margins, but this is all too evenly spaced.

 On the right, the headings have been bought closer to the text that relates to that heading.

❑

❑

❑

Figure 10-13

c10.indd 435c10.indd 435 11/21/09 12:14:47 AM11/21/09 12:14:47 AM

Chapter 10: Design Issues

436

 It is important to remember that if a page is too cluttered, it is harder to find what you are looking for, so
do not be afraid to leave space in your designs, and if you are asked to move everything together (so that
something else can be squeezed in) it is important to evaluate whether it affects the ability of visitors to
scan the design for the information they need.

 Chunking
 Chunking, or grouping items together, is a very helpful tool in design. This was demonstrated well in
Figure 10 - 12, where the use of white space puts related items together (headings with their
corresponding text). Other common ways of chunking information include using a border on a box, or
giving a box a background color. Figure 10 - 14 of the BBC homepage shows some good examples of
chunking — putting related information in boxes.

Figure 10-14

c10.indd 436c10.indd 436 11/21/09 12:14:47 AM11/21/09 12:14:47 AM

Chapter 10: Design Issues

437

 The RadioTimes web site (see Figure 10 - 15) offers a good example of using background colors to group
programs. The Architecture Association (see Figure 10 - 16) uses lines to indicate where groups of
information sit together.

Figure 10-15

 Contrast
 It is very important to have enough contrast between any type and the background it is sitting on. It is not
only people with color blindness and other visual impairments who suffer when there ’ s a lack of contrast.
Those with a bad monitor, or sunlight on their screens, may have more difficulty reading the content.

c10.indd 437c10.indd 437 11/21/09 12:14:48 AM11/21/09 12:14:48 AM

Chapter 10: Design Issues

438

 There is a very good tool for checking contrast at www.snook.ca/technical/colour_contrast/
colour.html . You can see the foreground (or text) color on the left, the background color in the middle,
and whether there is sufficient contrast on the right (Figure 10 - 17).

 While it is important to have enough contrast in your designs, it is worth noting that if there is
too much contrast, readability can suffer. For example, white text on a black background is hard
to read for long periods of time because the contrast is higher than black text on a white background.
If you do reverse out text, you can increase the leading and tracking, and decrease your font
weight to make it easier to read. Figure 10 - 18 shows the difference between black text on white and
reversing it out.

Figure 10-16

c10.indd 438c10.indd 438 11/21/09 12:14:48 AM11/21/09 12:14:48 AM

Chapter 10: Design Issues

439

Figure 10-17

Figure 10-18

This example allows you to see how readable
text is on different color backgrounds. The
black text on white background should be
more readable than text that is reversed out.
A small amount of white text on a black
background is not too difficult to read, but as
the text gets long the readers eyes will find
it harder.

This example allows you to see how readable
text is on different color backgrounds. The
black text on white background should be
more readable than text that is reversed out.
A small amount of white text on a black
background is not too difficult to read, but as
the text gets long the readers eyes will find
it harder.

 You can reduce the contrast in both of these examples to help make the text more readable. Rather than
black on a white background, dark gray on a white background is easier to read, or even better, dark
gray on an off - white (cream) background. Likewise, a light gray on a black background is easier to read
than white on a black background.

c10.indd 439c10.indd 439 11/21/09 12:14:49 AM11/21/09 12:14:49 AM

Chapter 10: Design Issues

440

 If you use a background image, you need to ensure that the image has low contrast; otherwise, you will
find it hard to find a color that will be readable on top of it.

 Navigation
 A user will usually navigate your site in one of three ways:

 Using a menu that you provide

 Browsing through links provided in the middle of text and other parts of the page than
the menu

 Searching for relevant items of information

 In this section, you learn how to make it easier for users to get around your site using these three
methods.

 Menus
 A menu is a key part of any web site that features more than one page. It doesn ’ t just allow visitors to get
where they want to go; a good menu also helps them to understand what your site is about and how it is
organized.

 As you saw in Chapter 9, a site may have more than one menu; it may have primary navigation,
secondary navigation, and even tertiary navigation.

 Usually, the primary menu appears either across the top of a site from left to right, or down the left side
of the page.

 Where you have primary and secondary navigation, sometimes both will be across the top of the site, or
both down the left-hand side. Other times you might find primary navigation across the top and
secondary navigation down the left-hand side.

 The menu tends to be the main way in which users will navigate between sections of a site, and good
menu design makes a big difference in how long they will spend on your site and whether or not they
achieve what they came to achieve.

 In this section, I introduce eight guiding rules:

 Menus should be concise.

 Menus should have clear labels.

 Menus should focus on what visitors want to achieve.

❑

❑

❑

❑

❑

❑

c10.indd 440c10.indd 440 11/21/09 12:14:49 AM11/21/09 12:14:49 AM

Chapter 10: Design Issues

441

 Menus do not need to contain every link.

 Menus should provide context.

 Menus should be interactive.

 Menus should be consistent.

 If you use icons, add the text, too.

 Menus Should Be Concise
 Menus should be quick and easy to read, so you need to:

 Limit the number of options you have on the menu to no more than eight items .

 Choose single, descriptive words for each link.

 Take a look at the three menus in Figure 10 - 19; none has more than eight options. Even Google, which
has many more services than are shown here, has a “ more ” link for the options that are used less often
(prioritizing what most users will want to do from this page).

❑

❑

❑

❑

❑

❑

❑

Figure 10-19

 For a long time, many web designers thought you should be able to get to any page within three clicks.
More recent research suggests that this is not necessarily the case; it is more important for each click
to be easy — so that users do not have to think too much about what they want to do.

c10.indd 441c10.indd 441 11/21/09 12:14:50 AM11/21/09 12:14:50 AM

Chapter 10: Design Issues

442

 If you need lots of options, group some together and use secondary or tertiary navigation to split out
options once the user has picked that first option.

 Menus Should Have Clear Labels
 The main navigation should allow the visitor to predict the kind of information that will be on the page.
Therefore, the labels on any navigation should use language that the visitor will understand (not jargon).

 If people might not know what is in a section, you can provide some extra description, as in the Stop
Design site in Figure 10 - 20, or examples of what people might find in those sections, as in the
Architectural Association site, also shown in Figure 10 - 20.

 It is worth noting that in both of these examples, the main navigation still sticks out clearly, and the extra
information is displayed in a more subtle way.

 Once you have clicked on a navigation item, you should try to use the same word prominently in the
heading for the following page; this reinforces to the users that they have arrived in the right place.

 Menus Should Focus on What Visitors Want to Achieve
 As we discussed in the last chapter, it is very important for any site to focus on what the visitor wants
to achieve.

 You can see in Figure 10 - 21 how the Red Cross has clear options to allow the user to join, give blood,
donate, or volunteer, and the National Trust (a charity to protect and open historical houses and gardens)
focuses on places to visit and events before fundraising.

 To help focus on what visitors are likely to want to do, you can call upon the personae or actors that you
defined in the last chapter to represent your target audience. By looking at the goals you decided that
these people would want to achieve, you can test whether your navigation is going to allow users to
achieve those goals.

Figure 10-20

c10.indd 442c10.indd 442 11/21/09 12:14:50 AM11/21/09 12:14:50 AM

Chapter 10: Design Issues

443

 Sometimes you may find it helpful to offer different options for different kinds of users. In Figure 10 - 22,
you can see that Dell and AT & T both create options for different types of customers (home, small
business, and enterprise) so that they can offer products and services suited to them. You can also see a
similar idea on the NASA web site, which has options for public, educators, students, and more.

Figure 10-21

Figure 10-22

 Menus Do Not Need to Contain Every Link
 The main menu of your site should only reflect the sections or content of the site. Links to functions like
those that follow can be kept separate:

 Login and register

 Shopping baskets and checkouts

❑

❑

c10.indd 443c10.indd 443 11/21/09 12:14:50 AM11/21/09 12:14:50 AM

Chapter 10: Design Issues

444

 Search options

 Privacy policy, terms and conditions, press information, corporate information

 Tools such as bookmarking or printing a page

 If you look at the British Gas menu in Figure 10 - 23, items that are not sections of the site are not in
the main navigation (such as login, search, and contact). The Magento site does something similar,
and although it breaks the rule about how many options should appear in the navigation, the
main navigation nicely separates community areas of the site by putting them on a different
background color.

❑

❑

❑

Figure 10-23

 As already suggested, you might need to use secondary and tertiary navigation if you cannot fit
everything in on your main navigation. Figure 10 - 24 shows a couple of examples from the Telegraph,
whose secondary navigation sits under the main navigation running across the top of the page, and from
Martha Stewart, where the primary navigation runs across the top of the page and the secondary
navigation comes down the left-hand side of the page.

 Menus Should Provide Context
 It is important that a menu lets users know where they are at the moment. Popular tools for this include
highlighting the current page using the following:

 Color: To show the current page, either changing the text or background as illustrated on the
 Times web site in Figure 10 - 25

 Tabs: As in the FedEx site in Figure 10 - 25 (this is a technique that Amazon made hugely popular,
but no longer uses)

 Underlining: For the current option as shown in the Adaptive Path web site in Figure 10 - 25

 It is worth noting that you should not rely solely on color because people who are color - blind would not
necessarily be able to benefit.

❑

❑

❑

c10.indd 444c10.indd 444 11/21/09 12:14:51 AM11/21/09 12:14:51 AM

Chapter 10: Design Issues

445

 You might also have noticed that the Times site adds a “ breadcrumb ” trail under the navigation to tell
users where they are. This is a popular tool used on a lot of larger sites.

Figure 10-24

Figure 10-25

c10.indd 445c10.indd 445 11/21/09 12:14:51 AM11/21/09 12:14:51 AM

Chapter 10: Design Issues

446

 Menu Items Should Be Interactive
 It is important that menu items are clearly separate from other content and that visitors know they can
be clicked on.

 It is also important to ensure that the links are big enough to click on, and that the link ’ s appearance
changes slightly when the mouse rolls over the it.

 You can see three examples in Figure 10 - 26 — the Dyson site changes the color of text when you hover
over it, the Apple site changes the background, and the B & Q site changes the background and also
shows a range of options in that section.

Figure 10-26

 Menus Should Be Consistent Across All Pages
 The more pages a site contains, the more navigation items you are going to require. As soon as you have
to introduce submenus, the navigation becomes more complicated and will vary from page to page. It is
very important that the primary navigation remains consistent across all pages.

c10.indd 446c10.indd 446 11/21/09 12:14:52 AM11/21/09 12:14:52 AM

Chapter 10: Design Issues

447

 The submenus in each section of your site should be in the same position on each page and have a
similar look and feel, so that users know exactly where to go to navigate the site.

 If You Use Icons, Provide a Text Equivalent, Too
 It can be tempting to use icons in your navigation, but it is worth remembering that an icon that might
seem obvious to you would not be so obvious to someone else. An icon of a house for Home, a
magnifying glass for Search, a downward arrow for Download, or an envelope for Contact might all be
commonly used, but it is always wise to offer a description in text, too.

 Figure 10 - 27 shows a menu for the software called Coda from a company called Panic; its use of icons is
accompanied by clear text. Below that, you can see the Apple menu — even for its search feature, Apple
still adds the word “ search ” along with the magnifying glass icon.

Figure 10-27

 Coding for Menus
 You will often see menus coded as unordered lists because, semantically speaking, they are a list of links
(ch10_eg11.html).

 < ul id=”navigation” >
 < li > < a href=”/” > Home < /a > < /li >
 < li > < a href=”/products/” > Products < /a > < /li >
 < li > < a href=”/services/” > Services < /a > < /li >
 < li > < a href=”/about/” > About < /a > < /li >
 < li > < a href=”/contact/” > Contact < /a > < /li >
 < /ul >

 In a moment we are going to turn this into a navigation menu like some of those we have seen in the
examples. But first have a look at Figure 10 - 28 to see how it looks before you start to style it.

Figure 10-28

c10.indd 447c10.indd 447 11/21/09 12:14:52 AM11/21/09 12:14:52 AM

Chapter 10: Design Issues

448

 The first step is to remove the bullet - style marker and padding from the list, and set all the list items to
be inline items so that they sit next to each other rather than on top of each other (ch10_eg11.html):

ul#navigation {
 list-style: none;
 margin: 0;}

ul#navigation li {
 display:inline;}

 Figure 10 - 29 shows you that the links now sit next to each other.

 We can make this easier to use and more attractive by adding padding to the < a > elements — this will
increase the clickable area. You could also add a border to the bottom of the boxes:

ul#navigation a {
 color:#ffffff;
 background-color:#000000;

Figure 10-29

 Next, let ’ s change the default link styles to a new color text on a different background color, remove the
underline, and make the text a larger font in a different typeface:

ul#navigation a {
 color:#ffffff;
 background-color:#000000;
 text-decoration:none;
 font-family:georgia, times, serif;
 font-size:1.126em;}

 You can see the result in Figure 10 - 30.

Figure 10-30

c10.indd 448c10.indd 448 11/21/09 12:14:53 AM11/21/09 12:14:53 AM

Chapter 10: Design Issues

449

 text-decoration:none;
 font-family:georgia, times, serif;
 font-size:1.126em;
 padding:10px;
 border-bottom:3px solid #ff6600;}

 The last step in transforming the list is to create different hover states for the links:

ul#navigation a:hover {
 color:#000000;
 background-color:#ff6600;
 padding:10px;
 border-bottom:3px solid #000000;}

 You can see the result in Figure 10 - 31.

Figure 10-31

 Links
 In addition to the menus your visitors will be using to navigate the site, many web pages contain other
hyperlinks in the text that makes up the body of the document. This short section addresses two topics
regarding links that are not part of the main menu:

 Text links

 Images as links

 Text Links
 By default, text links tend to be blue and underlined. Some experts on usability suggest that all links
should be left to their default appearance. However, from your experience of the Web, you probably
know that using a color that ’ s clearly different from the main text makes it easy enough for users to tell
what text makes up a link.

 You have just seen an example of how to change the color and appearance of links, and also how to
change their state when someone hovers a mouse over the link.

 When you use CSS to specify the color of links, the browser will not change the color of visited links
anymore. To do this, you need to use the :visited pseudo class (ch10_eg12.html):

a {font-weight:bold; color:#ff0000; text-decoration:none;}
a:hover {color:#FF9900; text-decoration:underline; background-color:#f9f0f0;}
a:visited {color:#990000;}

❑

❑

c10.indd 449c10.indd 449 11/21/09 12:14:53 AM11/21/09 12:14:53 AM

Chapter 10: Design Issues

450

 As users hover over links, these links will be underlined, change color, and gain a background color. The
visited links will be in a different shade, reminding users where they have been. You can see this best if
you run the example available with the download code for the chapter (Figure10 - 32).

Figure 10-33

 It is generally a bad idea to use a different weight of text when a user hovers over a link because this
changes the width of the font, which in turn changes the position of words around it and makes it harder
to read.

 Images as Links
 Images are often used as links in menus, advertisements, photos to click on, graphical icons, and so on.
Whenever you use an image as a link you should use two attributes on the image:

 alt = ” description of image or text on image ” : Use this to tell users who cannot see
the image what the image is or what it says.

 title= ” where the link will take the user ” : Use this to show users a tooltip that says
where the link will take them; this is also used by screen readers.

 If you do not use CSS to control the border of images that are links (and set them to “ no
border ”), you should also add the border attribute : border= ” 0 ” . If you don ’ t use CSS to
control borders or this attribute, you will get a border around the image in many browsers,
which can look unsightly.

 If you are using images as links, it is very helpful to design them in such a way that it is obvious to
users where they can click. Figure 10 - 33 shows some image links from popular sites that have
good button styles.

❑

❑

❑

Figure 10-32

c10.indd 450c10.indd 450 11/21/09 12:14:54 AM11/21/09 12:14:54 AM

Chapter 10: Design Issues

451

 CSS Sprites
 When creating graphical buttons, you will often want to use a second version of the image when a user
hovers over it (known as a rollover state), to make it clear when someone is hovering over an image that
can be clicked on.

 Image rollovers were initially created using JavaScript to swap one image for another when the user
hovers over it. Now, a much better technique is the use of CSS sprites . CSS sprites use one image to
represent the different states of a button. When the page loads, one part of the image is shown to the user
(the normal button style), then when the user hovers over the image, a different section of the image is
shown (the rollover style).

 Some CSS sprites take this even further and have one image that represents the different possible states
that all the buttons on your site may have. We will take a look at our own example in a moment, but first,
Figure 10 - 34 shows you examples of Google and Amazon ’ s sprites: single images that represent several
parts of their interface.

 Another advantage of using sprites is that the browser is requesting only one image from the server,
rather than many, which reduces the overhead on the web server.

 To see how this works, take a look at Figure 10 - 35. We will be using this image to create three separate
buttons with different states when the user hovers over them.

Figure 10-34 Figure 10-35

c10.indd 451c10.indd 451 11/21/09 12:14:54 AM11/21/09 12:14:54 AM

Chapter 10: Design Issues

452

 Here is the HTML for this example (ch10_eg13.html):

 < ul id=”navigation” >
 < li > < a class=”buy” href=”/buy/” title=”Buy now” > Buy now < /a > < /li >
 < li > < a class=”more” href=”/more/” title=”View more” > View more < /a >
 < /li >
 < li > < a class=”login” href=”/login/” title=”Login” > Login < /a > < /li >
 < /ul >

 This does not need to be an unordered list; it could be any kind of element. The key point is that we will
be setting each element to be as big as the button we want to appear. We will then use the CSS sprite as a
background image for these elements.

 By positioning the background image accurately, we can ensure that it shows the right image. And when
the user hovers over a link, we change the position of the background image so that it shows the same
button ’ s rollover state.

#navigation li {
 list-style-type:none;
 font-size:2em;}

#navigation li a {
 background-image: url(“images/buttons.jpg”);
 background-repeat:no-repeat;
 display:block;
 width:200px;
 height:70px;
 text-indent: -900%;}

#navigation li a.buy {background-position:0px 0px;}
#navigation li a:hover.buy {background-position:0px -70px;}

#navigation li a.more {background-position:0px -140px;}
#navigation li a:hover.more {background-position:0px -210px;}

#navigation li a.login {background-position:0px -280px;}
#navigation li a:hover.login {background-position:0px -350px;}

 Note how the same image is set as a background for all of these buttons. But the rules for each individual
link use different background - position coordinates to show the part of the image that contains the
relevant button. The hover state for these images then moves the background position to show the part of
the image that has the hover state for that button. You can see the result in Figure 10 - 36.

 Site Search Features
 The third way a user can navigate your site is by using a search feature. A search feature allows
users to immediately look for a keyword (or words) that relate to the information they are trying
to find from your site. Searching can save users from having to learn your scheme for navigating the
site and offers another way to find the information if they are having difficulty finding what they
came for.

c10.indd 452c10.indd 452 11/21/09 12:14:55 AM11/21/09 12:14:55 AM

Chapter 10: Design Issues

453

 Search Features Make Sites More Usable
 If you have only a few pages then your menu should be easy to understand, but as your site grows,
search features become increasingly important.

 Large commercial sites commonly store web pages in a database and can therefore use programming
commands called queries to ask the database which pages contain the terms a user searched for.

 For sites that do not use databases, the easiest way to add a search feature to your site is to use a third -
 party search utility to index your site for you.

 Adding a Google Search to Your Site
 When you search on Google, you can request results from just one domain by adding site: sitename
.com to the search box. Using this functionality, you can create a form that will ask Google to search your
site for whatever the visitor wants to find.

 Here you can see an example of a form that searches the Wrox.com web site (ch10_eg14.html):

 < form method=”get” action=”http://www.google.com/search” >
 < input type=”text” name=”q” size=”31” maxlength=”255” value=”” / >
 < input type=”submit” value=”Search” / >
 < input type=”radio” name=”sitesearch” value=”wrox.com” / >
 < /form >

 Figure 10 - 37 shows you what happens if someone enters asp.net into the search box on this simple form.

 Google also provides two services that allow you to format the results:

 A free service called Google Custom Search (www.google.com/coop/cse/)

 A fee - based service called Google Site Search (www.google.com/sitesearch/), which does
not show ads

 Another site that offers a search service is www.atomz.com .

❑

❑

Figure 10-36

c10.indd 453c10.indd 453 11/21/09 12:14:55 AM11/21/09 12:14:55 AM

Chapter 10: Design Issues

454

 Tables
 By their nature, tables often show a lot more information than one user will be interested in. A single
visitor is likely to want to filter out a percentage of the information available. For example, if you are
looking for train times, you want to know the times from your local station (not each station between
you and the destination). By carefully designing your table, you can make it easier for people to find that
information quickly.

 There are some techniques that can make your tables a lot easier for users to read:

 Padding

 Headings

 Shading columns

 In order to look at tables, we will be working with the example shown in Figure 10 - 38 (we are working
toward creating a version of the table that you can see in ch10_eg15.html).

 Padding
 It is important to allow padding around each item so that there is space between each cell in the
table (and between the content of the cell and any borders if they are used). When the content of table
cells is allowed to touch either the edges of any cells or the neighboring cells, it becomes much harder

❑

❑

❑

Figure 10-37

c10.indd 454c10.indd 454 11/21/09 12:14:56 AM11/21/09 12:14:56 AM

Chapter 10: Design Issues

455

Figure 10-38

to read. I tend to leave a little bit more space to the left and right of a column rather than above or
beneath it. Here you can see a rule that adds padding to each < td > and < th > element:

th, td {padding:10px 20px 8px 10px;}

 Headings
 All table headings should be in bold, which is the default style for the < th > element. I also tend to make
headers uppercase and underline the headings with a dark line to separate the headings from the
content:

th {
 border-bottom:2px solid #000000;
 text-transform:uppercase;
 background-color:#d6d6d6;
 text-align:left;}

 You can see the difference in the table shown in Figure 10 - 39.

Figure 10-39

c10.indd 455c10.indd 455 11/21/09 12:14:56 AM11/21/09 12:14:56 AM

Chapter 10: Design Issues

456

 Shading Alternate Rows
 Shading alternate rows will help users follow along the lines. You should only shade every other line,
preferably using a slightly lighter shade than the heading, as shown in Figure 10 - 40.

 You might also find it helpful to align numerical data to the right of the column and leave words aligned
to the left.

Figure 10-40

 Remember that whatever background colors you use, there must be a good contrast between the
background and the text in order for the user to be able to read it easily. The very light gray in this
example is a good example of a color that does not dramatically affect the readability of the table itself.

 If we put all of that together, the following is the CSS for the table you have been looking at:

th, td {
 padding:8px 20px 8px 10px;
 margin:0px;}
th {
 border-bottom:2px solid #000000;
 text-transform:uppercase;background-color:#d6d6d6;
 text-align:left;}
.even{background-color:#efefef;}
.number {text-align:right;}

 Forms
 I have yet to meet anyone who enjoys filling in forms — especially on the Web. Therefore, if your site
must include a form, good design is essential or people will not fill it in.

c10.indd 456c10.indd 456 11/21/09 12:14:56 AM11/21/09 12:14:56 AM

Chapter 10: Design Issues

457

 In this section, you learn about the following:

 What to do before designing the form

 How to design a form, select the right form controls, group them correctly, and label them

 How best to lay out a form

 To illustrate the points in this section, you will see an example of a basic form that users have to fill in
before they can register for an online service.

 Before Designing the Form
 Before you address how a form should really look, you need to do some preparation — this is just like
the preparation you need to do before you start designing a site, although it should take less time.

 Listing Required Information First
 When designing a form, you should start out by creating a complete list of the information you require
from a user. You might start with a general list with items such as login details, name, mailing address,
and e - mail address, but you then need to make sure that you know what makes up each item. For
example, do you need to get a user ’ s first name and last name separately? If so these will have to be
separate items on the form. What makes up the address: house number/name, street name, suburb, zip
code, and so on? Which ones need to be separated from the others?

 The following is a list of the information that is needed for our registration form:

 Login information

 User ’ s name

 User ’ s address

 User ’ s contact details

 When this is broken down, the exact information that ’ s needed is as follows:

 Login information: Username and password

 Name: First name, last name

 Land address: Street address, city, zip code

 Contact information: E - mail address, area code, phone number

 When you are creating forms, you should ask only for the information you really need to get a job
done. When gathering information from visitors, it ’ s very tempting to ask as many questions as you can;
but the longer a form is, the less likely it is that users will complete it.

 If you want to collect lots of nonessential information (for example, if you want to get a better idea of the
demographic of visitors to your site), consider offering users an incentive to participate and answer the
questions after they have registered/purchased an item. For example, if you want to know about their
hobbies and interests, you might offer them an entry into a prize draw in return for answering a short

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 457c10.indd 457 11/21/09 12:14:57 AM11/21/09 12:14:57 AM

Chapter 10: Design Issues

458

survey, rather than forcing them to provide this information when first registering to use the site. Take a
look at Figure 10 - 41, which shows the homepage for a blogging service called Tumblr; this is all you
need to enter in order to start blogging on its platform.

Figure 10-41

Note that when collecting and storing information about customers, you must also
ensure that you meet the data protection laws of your country.

 Group Related Information
 Once you know what information you want to collect from a visitor to your site, you need to look
to see if there is a logical grouping to the information you require from visitors to help them understand
the form.

c10.indd 458c10.indd 458 11/21/09 12:14:57 AM11/21/09 12:14:57 AM

Chapter 10: Design Issues

459

 If you find such a grouping in related information, you should make sure that these items go together in
the form. In the example for this section, you could group the information like this:

 Name and e - mail address

 Login details

 Other contact details

 In this example, the grouping is the same as the initial list of required information before it was broken
down, but sometimes the grouping can be quite different.

 Model Forms Users Are Familiar With
 If you are creating an online application that represents a form that would previously have been filled in
on paper and that your users would be familiar with, then you should make sure that your online form
reflects that paper form. (If the form would not have been familiar to users this is not necessary.) If the
goal of your application is to put existing software online, then it could also be modeled on the software
interface.

 The reason for modeling your form on something the user is familiar with is quite obvious: it makes it
easier for the user to fill in. That is not to say that the layout of the form should be exactly the same
(often paper forms cram too many questions into a small space). Rather, you should be asking similar
questions in a similar order and grouping.

 Are Users Going to Provide the Same Information Each Time?
 Will users have to provide the same information each time they visit the site? Or will some data be
stored in a database (or other application) and retrieved when they log in again? For example, if you are
working on an online store, once the user has logged in, will the application remember the user ’ s name,
address, and contact details?

 You should also consider how your form is going to be processed. If it ’ s going to be processed by a
human, the human can interpret the data the user enters, whereas if it goes straight into a database, users
must be a lot more precise about the information they enter. This may affect your choice of form control
required to collect the information.

 What Else Needs to Appear on the Form?
 Several forms contain extra information, such as shipping information, price lists, legal notices, and so
on. Before you start designing the form, you should be aware of all the information that might be put on
it, not just the form controls themselves.

 Designing the Form
 Now that you know what information must be captured by the form, you can design it. You can start by
selecting the appropriate type of control and then grouping the controls together and labeling them. You
can then add final touches to the layout of the form to control its presentation.

❑

❑

❑

c10.indd 459c10.indd 459 11/21/09 12:14:58 AM11/21/09 12:14:58 AM

Chapter 10: Design Issues

460

 Selecting the Right Type of Form Control
 You learned in Chapter 5 about the different types of form controls that you can use. It ’ s important that
you choose the correct type of form control for the information that you are trying to collect. Once you
have decided which form control to use for each piece of information, you ’ ll have an idea of the possible
length and layout of the form.

 Here are the types of form control you can choose from when you want a user to enter some text:

 If there is just one line of text, you use an < input > element whose type attribute has the value
of text .

 If you want the user to enter more than one line of text you use the < textarea > element.

 If the information is sensitive (such as a credit card or password), use an < input > element
whose type attribute has a value of password .

 If you want the user to specify his or her choice from a limited number of options, you can use one of the
following form controls:

 If the user can select only one option (from several), use a group of radio buttons (with the same
name) or a drop - down select box.

 If the user can select multiple items, use checkboxes or a multiple select box.

 Also consider how visitors would be used to giving this kind of information. For example, use a set of
text inputs for each line of an address rather than, say, using a combination of a text input for the street
name and a select box to indicate whether the street is a street, road, or avenue for the first line of the
address.

 Remember that each form control should use a name that describes its content. Rather than just arbitrary
names such as input1 and input2 , you will also often see form control names that are given a prefix to
describe what kind of form control they relate to:

 txt Name for text boxes and text areas

 rad Name for radio buttons

 chk Name for checkboxes

 sel Name for select boxes

 Text Boxes
 If you do not have a preset list of options for a visitor to pick from, textboxes tend to be the most natural
way for users to offer information.

 Where possible, you should allow users to enter text without having to scroll to see what they have
typed. When you only want a short answer from a user, you can use a single - line text input, but when
you want more information you should use a multi - line text area.

 Users often take the size of the textbox to be an indication of the length of text that they should provide.
In Figure 10 - 42 you can see an example where users are asked their favorite color and why they like this
color. When you want users to provide more information, give them a larger area.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd 460c10.indd 460 11/21/09 12:14:58 AM11/21/09 12:14:58 AM

Chapter 10: Design Issues

461

Figure 10-42

 Radio Buttons and Checkboxes or Select Boxes
 If you want a user to select one item from a fairly short list, you should consider using radio buttons
rather than a drop - down list, because it allows the user to easily see all options at once.

 Whenever you want a user to select multiple options from a list of options, checkboxes are usually a
better approach.

 If you are asking a user to agree to something (such as terms and conditions) you should always use a
checkbox rather than a radio button because, once you have clicked on a radio button, you cannot click it
again to deselect it if you want to change your mind (whereas you can click on a checkbox a second time
to deselect it).

 Both radio buttons and checkboxes also allow you to provide more information to the user than a drop -
 down list box or select box. A radio button or checkbox can have a long description next to it, whereas if
you use a long description in a drop - down list or select box, the whole box grows wider. You can see an
example of a long drop - down (which takes up the full width of the screen) and a set of radio buttons in
Figure 10 - 43 (ch10_eg16.html).

Figure 10-43

 Select Boxes
 Select boxes, also known as drop - down list boxes, save space on the screen, especially when there are
lots of options. However, as Figure 10 - 43 shows, they do not look very good with long descriptions for
each option because the width of a select box is the width of the widest option in it.

 You should remember when providing a select box to include options for all users. For example, if you
use a drop - down for U.S. states and you have visitors from outside the U.S., you should have at least one
option for those who do not live in a U.S. state, even if the option is just “ Outside U.S. ”

c10.indd 461c10.indd 461 11/21/09 12:14:59 AM11/21/09 12:14:59 AM

Chapter 10: Design Issues

462

 The order of items in a select box should reflect users ’ experience; for example, if you use month
names, put them in chronological order, whereas if you use states or countries, alphabetical lists are
easier to use.

 If one (or a few options) within a long list are more popular or more likely to be chosen than other
options, then you should put these at the top of the select box so that the user comes to them first.

 Grouping Controls
 Once you ’ ve decided what form controls you ’ re going to use, you can start to put them on the page. As I
already mentioned, the controls should be grouped together into related items of information — and the
groups should reflect the users ’ understanding of the topic.

 You can group form elements using white space (as discussed earlier in the chapter) by using the
 < fieldset > element or by splitting the form into several pages.

 Using < fieldset > Elements
 You already learned about the < fieldset > element in Chapter 5. It allows you to group sections of
a form between the opening < fieldset > and closing < /fieldset > tags. The fieldset can also carry a
 < legend > element directly after the opening < fieldset > tag to indicate a caption for the box.

 For example, here is a form for a user to enter login details (ch10_eg17.html):

 < form name=”frmLogin” action=”login.aspx” method=”post” >
 < fieldset >
 < legend > Login < /legend >
 User name: < input type=”text” size=”12” name=”txtUserName” / > < br / >
 Password: < input type=”password” size=”12” name=”txtPassword” / > < br / >
 Confirm password: < input type=”password” size=”12”
 name=”txtPasswordConfirmed” / > < br / >
 < input type=”submit” value=”Log in” / >
 < /fieldset >
 < /form >

 Fieldsets were introduced in IE4, Netscape 6, and Firefox 1. Older browsers just ignore the < fieldset >
and < legend > buttons if they do not understand them, so you can safely add these elements to all
forms. You can see what this example looks like in Figure 10 - 44.

Figure 10-44

c10.indd 462c10.indd 462 11/21/09 12:14:59 AM11/21/09 12:14:59 AM

Chapter 10: Design Issues

463

 You can associate styles with the < fieldset > element, as in the following example
(ch10_eg17.css):

fieldset {
 width:250px;
 padding:10px;
 font-size:12px;
 text-align:right;}

 Note here how the width property has been set in the style sheet. This is particularly helpful to add to
 < fieldset > elements because they will otherwise stretch to the width of the browser window (or
containing element).

 Splitting a Form into Separate Pages
 In some cases, long forms not only put off users but also make the form harder for the user to fill in.
Therefore, if you have a long form, you can split it up into several pages to make it less intimidating and
to group related information on a single page.

 As a general guide, your form should be not much more than a “ screenful ” (at 1024 � 768 resolution) so
the user does not have to scroll much.

 If you split a form into separate pages, you should clearly indicate to the users how far they are
through the form. In Figure 10 - 45, you can see a form that has been split up into four pages and a
confirmation page.

Figure 10-45

c10.indd 463c10.indd 463 11/21/09 12:15:00 AM11/21/09 12:15:00 AM

Chapter 10: Design Issues

464

 Splitting a form into several pages can introduce new complexities into the programming because
the program has to remember what a user has entered between each form; however, there are several
ways of doing this with a little extra effort. You will generally want users to go through these steps
in order rather than allowing them to go between pages at random, so avoid links that allow them
to jump to any page. When you split a form into separate pages, you should offer links for users to
go back as well as forward. Figure 10 - 45 shows an example of a form that is split up across
several pages; it clearly indicates which step you are currently on, and how many steps there
are in the process.

 Number Questions
 If you have a lot of questions, as in an application form or an online test, you should number questions
so that the users know where questions start and end. This can also be a help if you want to indicate to
users that they should jump to another section of the form, because you can explicitly indicate which
number question they should go to.

 Layout of Forms
 Ideally, a layout of a form should reflect what users would expect to see when dealing with such data.
Their experience may have come from real - life experience (such as how they would write their address)
or from common practice on other web sites.

 Labeling Controls
 The first issue concerned with layout of forms is the labeling of controls. It ’ s very important that each
control be clearly labeled so that users know what information they should be adding and where. There
are two types of labels:

 Implicit labels that are normal text and markup next to the control

 Explicit labels that use the < label > element

 You should consider the following as guidelines for where the label for an element should generally appear:

 Text entry fields: To the left of the input or directly above

 Checkboxes and radio buttons: To the right of the checkbox or radio button

 Buttons: On the button itself — its value

 Implicit controls are the simplest way to label a control. To add an implicit label, you simply add text
directly next to the label in question. For example (ch10_eg18.html):

First name: < input type=”text” name=”txtFirstName” size=”12” / > < br / >
Last name: < input type=”text” name=”txtLastName” size=”12” / > < br / >
E-mail address: < input type=”text” name=”txtEmail” size=”12” / > < br / >
 < input type=”submit” value=”subscribe” / >

❑

❑

❑

❑

❑

c10.indd 464c10.indd 464 11/21/09 12:15:00 AM11/21/09 12:15:00 AM

Chapter 10: Design Issues

465

 You can see the result in Figure 10 - 46. The disadvantages with this approach are that:

 The form controls do not align with each other.

 You are not using the < label > element, which helps improve accessibility by allowing screen
readers to associate a control with its label.

❑

❑

Figure 10-46

 While < label > elements do require a little extra programming effort, it is generally a good idea to get
into the habit of using them. You may remember from Chapter 5 that the < label > element must either
contain the form control or use the for attribute whose value is the value of the id attribute on the
form control.

 Take a look at how we can improve this form by adding the < label > elements and adding a containing
 < div > for the corresponding form controls (ch10_eg19.html):

 < label for=”firstName” > First name: < /label >
 < div class=”control” >
 < input type=”text” name=”txtFirstName” size=”12” id=”firstName” / >
 < /div >
 < label for=”lastName” > Last name: < /label >
 < div class=”control” >
 < input type=”text” name=”txtLastName” size=”12” id=”lastName” / >
 < /div >
 < label for=”email” > E-mail address: < /label >
 < div class=”control” >
 < input type=”text” name=”txtEmail” size=”12” id=”email” / >
 < /div >

 Now, using CSS we can set a width property and a float for both the < label > element and the < div >
element so that each sits next to the other.

fieldset {
 font-size:12px;
 padding:10px;
 width:280px;
 line-height:2.4;}

c10.indd 465c10.indd 465 11/21/09 12:15:00 AM11/21/09 12:15:00 AM

Chapter 10: Design Issues

466

label {
 float:left;
 width:100px;}

.control {
 float:left;
 width:150px;}

 You can see the result in Figure 10 - 47.

Figure 10-47

 Now let ’ s have a look at an example of a form that allows users to indicate how they heard about a
company. You should always use the < label > element on radio buttons and checkboxes because,
when you do, the user can click on the label (as well as the radio button or checkbox) to select that
item, and by increasing the clickable area you are making it easier for people to use the form
(ch10_eg20.html):

 < form name=”frmExample” action=”” method=”post” >
 < fieldset >
 < legend > How did you hear about us? < /legend >
 < input type=”radio” id=”referrer1” name=”radReferrer” value=”Mouth” / >
 < label for=”referrer1” > Word of Mouth < /label > < br / >
 < input type=”radio” id=”referrer2” name=”radReferrer” value=”Google” / >
 < label for=”referrer2” > Google Search < /label > < br / >
 < input type=”radio” id=”referrer3” name=”radReferrer”
 value=”Magazine Ad” / >
 < label for=”referrer3” > Magazine Ad < /label > < br / >
 < input type=”radio” id=”referrer4” name=”radReferrer” value=”Other” / >
 < label for=”referrer4” > Other < /label > & nbsp; & nbsp;
 < input type=”text” value=”txtOther” size=”12” / > < br / >
 < input type=”submit” value=”Submit” / >
 < /fieldset >
 < /form >

 You can see this form in Figure 10 - 48.

c10.indd 466c10.indd 466 11/21/09 12:15:01 AM11/21/09 12:15:01 AM

Chapter 10: Design Issues

467

Figure 10-48

 Remember that when choosing the prompt or the label for a form, you must choose words that will really
mean something to users. What might be obvious to you might not be so clear to a visitor who is not as
familiar with the topic as you — for example, a productId number might be a unique identifying
number for a product, but a customer can ’ t be expected to know this or where to find it.

 Keeping Relevant Information Next to or Above Form Controls
 By now you are getting the idea of how vital good labeling is to a user ’ s understanding, so here are
a couple of examples where the position of a label requires extra care. Take a look at the example in
Figure 10 - 49, which is for a telephone number.

Figure 10-49

 As you can see here, there is no indication what the separate boxes are for. While you or I might guess
that one box is for the area code and the other for the main part of the number, users with screen readers
are likely to be more confused by the presence of a second box because they can only listen to the form,
not see it. Some users, especially those in a hurry, might try to put the whole number in just one textbox.

 A far better approach to this example would be to indicate labels for the area code and the number, as
shown in Figure 10 - 50.

Figure 10-50

c10.indd 467c10.indd 467 11/21/09 12:15:01 AM11/21/09 12:15:01 AM

Chapter 10: Design Issues

468

 This is much clearer for all, and you can see the code here (ch10_eg21.html):

 < table >
 < tr >
 < td class=”label” > Phone number < span class=”important” > * < /span > < /td >
 < td > Area code < input type=”text” name=”txtTelAreaCode” size=”5” / >
 Number < input type=”text” name=”txtTelNo” size=”10” / > < /td >
 < /tr >
 < /table >

 Proper labeling is also very important when you have radio buttons or multiple choice buttons that
express an option or rating. You can see a problematic example in Figure 10 - 51.

 The code for this example puts the radio buttons and labels in a table. The problem with this example is
not that the labels are not related to the correct radio buttons — as you can see in the following code, the
 < label > elements are used and associated with the correct table cells. The problem is that users with
screen readers will hear labels for only three options, whereas there are really five options to choose
from; you should be offering labels for each.

 < table >
 < tr >
 < td > < label for=”VeryGood” > Very good < /label > < /td >
 < td > < /td >
 < td > < label for=”Average” > Average < /label > < /td >
 < td > < /td >
 < td > < label for=”VeryPoor” > Very poor < /label > < /td >
 < /tr >
 < tr >
 < td > < input type=”radio” name=”radRating” value=”5” id=”VeryGood” > < /td >
 < td > < input type=”radio” name=”radRating” value=”4” id=”Good” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”3” id=”Average” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”2” id=”Poor” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”1” id=”VeryPoor” / > < /td >
 < /tr >
 < /table >

Figure 10-51

c10.indd 468c10.indd 468 11/21/09 12:15:02 AM11/21/09 12:15:02 AM

Chapter 10: Design Issues

469

 If you really do not want to offer a text alternative for each of these items, a rather drastic alternative is to
add labels for the items that have not yet been labeled and place a single - pixel transparent GIF with alt
text inside the < label > element. The single-pixel image will not show up in a browser, but the alt text
can be used to describe the purpose of the corresponding form control to visitors who reply upon screen
readers, as shown here (ch10_eg22.html)

 < table >
 < tr >
 < td > < label for=”VeryGood” > Very good < /label > < /td >
 < td > < label for=”Good” > < img src=”images/1px.gif” alt=”This option
 has no label; its value is good” / > < /td >
 < td > < label for=”Average” > Average < /label > < /td >
 < td > < label for=”Poor” > < img src=”images/1px.gif” alt= “This option
 has no label; its value is poor” / > < /td >
 < td > < label for=”VeryPoor” > Very poor < /label > < /td >
 < /tr >
 < tr >
 < td > < input type=”radio” name=”radRating” value=”5” id=”VeryGood” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”4” id=”Good” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”3” id=”Average” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”2” id=”Poor” / > < /td >
 < td > < input type=”radio” name=”radRating” value=”1” id=”VeryPoor” / > < /td >
 < /tr >
 < /table >

 You cannot actually see the difference between this example and the previous one, but you would be
able to hear a difference if you were relying on a screen reader.

 Required Information
 A form will often include questions that a user must answer in order for it to be processed correctly. If a
form control must be filled in, you should tell a user this. It is common practice to use one of the
following techniques:

 Use an asterisk (*) to indicate required fields (usually in a different color) and, of course, include
a note on the page that acts as a key indicating what the asterisk means.

 Write “required” next to the field (either in text or using an image).

 You can see some examples in Figure 10 - 52.

 Careful Placement of Buttons
 You should be very careful about where you place buttons on a page. They should be close to the
relevant part of the form; for example, in an online store the button to buy should be very clear and
should be close to the product, as shown in Figure 10 - 53 on Etsy.

 If you give the user more than one option, then the action that you think the user will want to take
should always stand out more than other possible actions. For example if you have a Back or Previous
button on a form, this should be less intrusive than the next button.

 On a multi - page form, I would tend to put the previous button to the left, and the next button to the
right (this mirrors the user ’ s experience with the Back and Forward buttons on a browser window).

❑

❑

c10.indd 469c10.indd 469 11/21/09 12:15:02 AM11/21/09 12:15:02 AM

Chapter 10: Design Issues

470

Figure 10-52

Figure 10-53

c10.indd 470c10.indd 470 11/21/09 12:15:02 AM11/21/09 12:15:02 AM

Chapter 10: Design Issues

471

 Using the title Attribute on Form Controls
 One way to add extra information for users is to add a title attribute to the form control. When users
put their cursors over the form control, the value of the title attribute appears as a tooltip. This is
particularly helpful for clarifying the type of information that a user has to enter.

 For example, here is a text input that requires a user to enter an authorization code. The title attribute
clarifies where the authorization code comes from (ch10_eg23.html):

 < form name=”frmExample” action=”” method=”post” >
 < fieldset >
 < legend > Enter your authorization code < /legend >
 Code: & nbsp;
 < input type=”text” name=”txtAuthCode” title=”Enter the authorization
 code that was e-mailed when you registered.” / > < /td >
 < /fieldset >
 < /form >

 You can see the result in Figure 10 - 55, with the tooltip showing as the user hovers over the text input.

 Tab Index
 Once you have created your form, you should check the tabbing order of form elements. Users should be
able to use the Tab key on their keyboards to move between the form controls. If the order in which the

Figure 10-54

 You can see an example of this in Figure 10 - 54.

c10.indd 471c10.indd 471 11/21/09 12:15:03 AM11/21/09 12:15:03 AM

Chapter 10: Design Issues

472

form controls gain focus is not the order in which you would expect to fill out the form, you should
use the tabindex attribute, which can take a value of 0 to 32,767. (Chapter 5 covered this attribute in
more detail.)

 The tabindex attribute can be used on the following elements:

 < a > < area > < button > < input > < object > < select > < textarea >

 In Chapter 12, you will see an example of how you can automatically give focus to a form element
when the page loads. You will also see how to affect the appearance of the form controls that currently
have focus.

 Don ’ t Rely on Color to Convey Information
 While color can be a very powerful tool in aiding the understanding of forms, you should never rely on
a color alone to convey information, and you must ensure that there is enough contrast between colors to
make the distinction clear.

 Figure 10 - 56 shows an example of a form that uses color to indicate which items are required, but
because this book is printed in black and white, you cannot tell which items have to be filled in.

Figure 10-55

Figure 10-56

 This is easily solved, as shown in Figure 10 - 57, by adding the words required or an asterisk symbol with
a key to indicate which items are mandatory (in addition to the use of color).

c10.indd 472c10.indd 472 11/21/09 12:15:03 AM11/21/09 12:15:03 AM

Chapter 10: Design Issues

473

 Using CSS with Form Elements
 The use of CSS to control form elements has been increasingly popular, in particular to control borders
and background colors of text inputs, text areas, and submit buttons, in order to create a more stylized
form. Figure 10 - 58 shows a search form where the text input has been hugely transformed from the
default text input.

Figure 10-57

Figure 10-58

 The following is the CSS style that is associated with the < input > elements (ch10_eg24.html):

input.search {
 width:335px;
 height:37px;
 padding:10px 10px 10px 55px;
 font-size:30px;
 background-image:url(images/background_search.gif);
 border:none;
 background-color:#cccccc;}

input:focus {
 outline: 0;}

 If you use styles with form elements, you just have to make sure that you do not make the form harder
to fill in by adding unnecessary style. As with any kind of text, if you do not have good contrast for text
controls, they will be hard to read and users might enter the incorrect information.

c10.indd 473c10.indd 473 11/21/09 12:15:04 AM11/21/09 12:15:04 AM

Chapter 10: Design Issues

474

 Large Form Inputs
 When a basic form is the main part of a page, there is a growing trend to increase the size of the form
controls. Login screens and search boxes are good examples of where larger inputs are being used.
Figure 10 - 59 shows you examples from WordPress and Dictionary.com.

Figure 10-59

 Testing the Form
 Once you have laid out your form, you then need to test the form. You will read more about testing a site
in Chapter 13. Briefly, however, it is very helpful to watch people using your form once you have
designed it to see how they interact with it.

 The most important thing while doing this, and which you must remember, is that if you can see that a
user is going to make a mistake, don ’ t interrupt; watch what this person does, because it will teach you
more about how the user expected the form to work.

 Lazy Registration
 One of the best ways to ensure that visitors engage with your site is to allow them to do what they came
for. A growing trend in web design is that of lazy registration, where you allow people to get involved
with your site with the fewest barriers possible. While you might not yet be ready to implement sites like
these, it is interesting to be aware of the trend. For example, Doodle (www.doodle.com) allows you to
start to schedule an event before signing up, and Posterous (www.posterous.com) allows you to start
blogging by just sending an e - mail (Figure 10 - 60).

c10.indd 474c10.indd 474 11/21/09 12:15:04 AM11/21/09 12:15:04 AM

Chapter 10: Design Issues

475

Try It Out A Site Registration Form

 In this example, you are going to create a simple registration form for a web site. You will have to
collect the information provided in the table that follows, using the form controls listed.

 Information Form control Required

 First name Text input Yes

 Last name Text input Yes

 E - mail address Text input Yes

 Password for accessing the site Password text input Yes

 Confirmation of password Password text input Yes

 Register Submit button N/A

Figure 10-60

c10.indd 475c10.indd 475 11/21/09 12:15:05 AM11/21/09 12:15:05 AM

Chapter 10: Design Issues

476

 Figure 10 - 61 shows you what the form will look like when you are finished.

Figure 10-61

 1. First set up the skeleton of the document, as you are probably used to doing by now. Don ’ t
forget the link to the CSS style sheet called registration.css . You can also add a
 < form > element:

 < html >
 < head >
 < title > Try it out < /title >
 < link rel=”stylesheet” type=”text/css” href=”registration.css” / >
 < /head >
 < body >
 < form name=”frmExample” action=”register.aspx” method=”post” >
 < /form >
 < /body >
 < /html >

 2. The form contains only five text inputs so it does not need splitting into separate groups, but
it would be a good idea to put the whole thing in a < fieldset > element with a < legend > :

 < form name=”frmExample” action=”” method=”post” >
 < fieldset >
 < legend > Register with us: < /legend >
 < /fieldset >
 < /form >

 3. To control the presentation of the form, the inputs will be made to sit next to the labels by
placing the form controls inside a < div > element, which has a class attribute whose value
is input .

 The first row will contain a text input for the user ’ s first name. You can add it like this just
after the < legend > element:

c10.indd 476c10.indd 476 11/21/09 12:15:05 AM11/21/09 12:15:05 AM

Chapter 10: Design Issues

477

 < label for=”fname” > First name: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”text” name=”txtFirstName” id=”fname” size=”12” / >
 < /div >

 4. After the form control for the first name, add the text input for the last name and the e - mail
address. You can make the size of the e - mail address text input a little larger than the other
text inputs because this is likely to be longer (you do this by giving the size attribute a higher
value than the other examples):

 < label for=”lname” > Last name: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”text” name=”txtLastName” id=”lname” size=”12” / >
 < /div >

 < label for=”email” > E-mail address: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”password” name=”txtEmail” id=”email” size=”20” / >
 < /div >

 5. After these form controls, the final two controls users will have to fill in allow them to provide
a password for the site and to confirm it. Both < input > elements have a type attribute whose
value is password . In order to explain that the password should be between 6 and 12
characters long, a message has been added after the first password box in the right column.
The reason for adding the note to the right of the password input is that it would throw out
alignment of labels on the left if it were placed on the same side.

 < label for=”pwd” > Password: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”password” name=”txtPassword” id=”pwd” size=”12” / >
 < span class=”small” > must be between 6 and 12 characters long < /span >
 < /div >
 < label for=”pwdConf” > Confirm password: < span class=”required” > * < /span >
< /label >
 < div class=”input” >
 < input type=”password” name=”txtPasswordConf” id=”pwdConf” size=”12” / >
 < /div >

 6. A submit button has to be added to the end of the form. You put this in a < div > so that it can
be positioned to the right side of the form. This is followed by the key to explain the purpose
of the asterisk.

 < div class=”submit” > < input type=”submit” value=”Register” / > < /div >
 < span class=”required” > * < /span > = required

 7. Save this form as registration.html. Now let ’ s have a look at the accompanying CSS file,
 registration.css . Here is the start:

body{
 color:#000000;
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-weight:bold;
 font-size:100%;}

c10.indd 477c10.indd 477 11/21/09 12:15:06 AM11/21/09 12:15:06 AM

Chapter 10: Design Issues

478

 8. Add some whitespace to the fieldset using the padding property and set its width to 550px .

fieldset {
 padding:10px;
 width:550px;}

 9. You want to ensure that each < label > element sits to the left of its corresponding form
control, so add a width and float property, then align the text to the right. The clear
property can be used to ensure that each item starts on a new line, and the margin - bottom
property will give some extra white space between the elements.

label {
 width:170px;
 float:left;
 text-align:right;
 clear:both;
 margin-bottom:10px;}

 10. The < div > elements that hold the form controls have a class attribute whose value is input .
Let ’ s add a width and a float property to ensure they sit next to their labels.

.input {
 width:350px;
 float:left;}

 11. To style the inputs themselves, you can add border and background styles. Because form
controls do not inherit their size from the < body > element, you need to specify that again here
to ensure that you have slightly larger than normal form controls.

input {
 border-style:solid;
 border-color:#666666;
 border-width:1px;
 background-color:#f2f2f2;
 font-size:100%;}

 12. To make the form a little more interactive, when a form control has received focus, you can
change the color of the border and background using the border and background properties.

input:focus {
 border-style:solid;
 border-color:#333333;
 border-width:1px;
 background-color:#ffffcc;}

 13. To push the submit button onto a new line, you will use the clear property, and then to
ensure it aligns with the other form controls, you can use the margin - left property.

.submit {
 clear:both;
 margin-left:170px;}

c10.indd 478c10.indd 478 11/21/09 12:15:06 AM11/21/09 12:15:06 AM

Chapter 10: Design Issues

479

 14. When the user hovers over the submit button, you can change the cursor style using the
 cursor property; this makes it even more clear that the user can click on the button.

.submit input{
 cursor:pointer;}

 15. The final step is to set the styles for the required asterisks.

.small {font-size:10px;}

.required {
 font-weight:bold;
 font-size:20px;
 color:#ff0000;}

If you open the example in a browser, it should look like the screenshot shown in Figure 10 - 61 (at the
start of this section).

 Summary
 In this chapter, you learned a lot more about web page layout. In Chapter 9, you looked at the general
layout or structure of a page. In this chapter, you learned about issues regarding particular parts of
pages: typography, navigation, tables, and forms — the bits that fill in that structure. From adding white
space between elements on a page, such as text and images, to aligning parts of a form inside a table,
you ’ ve seen lots of handy hints that will help you design better pages.

 You have to remember, however, that there are no set rules that will make you a good designer — that
will require practice. While you are practicing, it is a good idea to have a look at some of your favorite
web sites and try to decide what about them you think works particularly well.

 The only real restrictions you should impose upon yourself when designing a web page are what your
audience would find attractive and easy to use. Remember that if you want your site to attract a lot of
visitors, don ’ t design the site just for yourself, and don ’ t just design it for your clients; design it for
expected visitors to the site.

 Exercises
 The answers to all of the exercises are in Appendix A.

 1. In this exercise, you should add a second page to the Try It Out form at the end of the
chapter (registration.html). The table that follows shows the new items you must add to
the form.

c10.indd 479c10.indd 479 11/21/09 12:15:06 AM11/21/09 12:15:06 AM

Chapter 10: Design Issues

480

 You should also add the following:

❑ An indication at the top of the page as to how much of the form the user has completed

❑ A Back button and a Proceed button at the bottom (instead of the Submit button)

 Information Form control Required

 Address 1 Text input Yes

 Address 2 Text input No

 Town/Suburb Text input No

 City/State Text input Yes

 Zip code Text input Yes

 When you have finished, the page should look something like Figure 10 - 62
(registration2.html).

Figure 10-62

c10.indd 480c10.indd 480 11/21/09 12:15:07 AM11/21/09 12:15:07 AM

 11
Learning JavaScript

 There are many programming languages in existence today, and in this chapter, you will begin
learning the basics of a programming language called JavaScript, which is by far the most common
programming language used in web pages.

 Although it is not possible to teach you everything there is to learn about JavaScript in one or two
chapters, there are thousands of free scripts available on the Web that you can use. Therefore, the
aim of this chapter is to teach you enough to start using these scripts in your web pages and to
understand how they work. You should even be able to customize these scripts and write some
basic scripts of your own based upon what you will learn in this and the following chapter. In
addition, it will serve as a good introduction to general programming concepts.

 Once you have covered the basics of JavaScript in this chapter, Chapter 12 will show you lots of
examples that should both act as a library of helpful scripts you can use in your own pages and
also clarify how the basic concepts you learned in this chapter work in practice.

 As you will see, JavaScript gives web developers a programming language to use in web pages
that allows them to perform tasks such as the following:

 Read elements from documents and write new elements and text into documents

 Manipulate or move text

 Perform mathematical calculations on data

 React to events, such as a user clicking a button

 Retrieve the current date and time from a user ’ s computer or the last time a document
was modified

 Determine the user ’ s screen size, browser version, or screen resolution

 Perform actions based on conditions such as alerting users if they enter the wrong
information into a form

❑

❑

❑

❑

❑

❑

❑

c11.indd 481c11.indd 481 11/20/09 5:09:42 PM11/20/09 5:09:42 PM

Chapter 11: Learning JavaScript

482

 You might need to read through this chapter more than once to get a good grasp of what you can do
with JavaScript. Then, once you have seen the examples in the next chapter, you should have a better
idea of its power. There is a lot to learn, but these two chapters should get you well on your way.

JavaScript is not the same as Java, which is a different programming language
(although there are some similarities).

 What Is Programming About?
 As you will see in this chapter, programming is largely about performing different types of calculations
upon various types of data (including numbers, text and graphics). In all programming languages. you
can perform tasks such as:

 Performing mathematical calculations on numbers such as addition, subtraction, multiplication,
and division.

 Working with text to find out how long a sentence is, or where the first occurrence of a specified
letter is within a section of text.

 Checking if one value (numbers or letters) matches another.

 Checking if one value is shorter or longer, lower or higher than another.

 Performing different actions based on whether a condition (or one of several conditions) is met.
For example, if a user enters a number less than 10, a script or program can perform one action;
otherwise it will perform a different action.

 Repeating an action a certain number of times or until a condition is met (such as a user pressing
a button).

 These actions might sound rather simple, but they can be combined so that they become complicated
and powerful. As you will see, different sets of actions can be performed in different situations different
numbers of times, to create a huge variety of results.

 But before you can learn how to perform these kinds of calculations, first you need some data for the
programming language to work with, and to know how the language can work with this data. For our
purposes, the data we will be working will be the web page loaded in the browser at the time. When the
browser loads a page, it stores it in an electronic form that programmers can then access through
something known as an interface . The interface is a little like a predefined set of questions and
commands. For example, you can ask questions like:

 What is the title of the page?

 What is the third item in the bulleted list whose id attribute has a value of ToDoList ?

 What is the URL of the page in the first link on the page?

 You can also use commands to tell the browser to change some of these values, or even add new
elements into the page. The interface that works with web pages is called the Document Object Model .
So, let ’ s have a closer look at what an interface is and what an object model is?

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 482c11.indd 482 11/20/09 5:09:44 PM11/20/09 5:09:44 PM

Chapter 11: Learning JavaScript

483

 In so - called object - oriented programming languages, real - life objects are represented (or modeled) using
a set of objects , which form an object model . For example, a car object might represent a car, a basket
object might represent a shopping basket, and a document object could represent a document such as
a web page.

 Each object can have a set of properties that describes aspects of the object. A car object might have
properties that describe its color or engine size. A basket object might have properties that describe the
number of items it contains or the value of those items. A document object has properties that describe
the background color of the web page or the title of the page.

 Then there are methods ; each method describes an action that can be done to (or with) the object. For
example, a method of an object representing a car might be to accelerate, or to change gear. A method of
a shopping basket might be to add an item, or to recalculate the value of items in the basket. A method
on a document could be to write a new line of text into the web page.

 Finally, there are events ; in a programming language, an event is the object putting up its hand and
saying “ x just happened, ” usually because a program might want to do something as a result of the
event. For example, a car object might raise an event to say the ignition started, or that it is out of fuel. A
 basket might raise an event when an item is added to it, or when it is full. A document might raise an
event when the user presses Submit on a form, or clicks a link. Furthermore, an event can also trigger
actions; for example, if a car is out of fuel then the car will stop.

 An object model is therefore a description of how a program can represent real-life entities using a set of
objects, and it also specifies a set of methods, properties, and events an object may have.

 All of the main browsers implement an object model called the Document Object Model that was devised
to represent web pages. In this Document Object Model, the page as a whole is represented using a
 document object; then the links in that page are represented using a links object, the forms are
represented in a forms object, images are represented using an image object, and so on.

 So, the Document Object Model describes how you can:

 Get and set properties of a web page such as the background color.

 Call methods that perform actions such as writing a new line into a page.

 React to events such as a user pressing a Submit button on a form.

 Web browsers implement the Document Object Model as a way for programming languages to access
(and work with) the content of web pages. Once you have learned how the Document Object Model
allows you to access and change web pages, you can then see how the programming language can ask
the Document Object Model about the web page, perform calculations with the data it receives back, and
then tell the browser to change something based upon these calculations.

 If you think of the Document Object Model as an interface between the browser and the programming
language, you can compare it to a remote control that acts as the interface between your TV and you.
You know that pressing 1 on your remote control will turn your TV to channel 1, or that the volume - up
button will increase the volume. If you call up the TV schedule, you can see what is on next, and you
might choose to change the channel (or turn the TV off) as a result. Similarly, the Document Object Model

❑

❑

❑

c11.indd 483c11.indd 483 11/20/09 5:09:45 PM11/20/09 5:09:45 PM

Chapter 11: Learning JavaScript

484

is like the remote control that allows a programming language (such as JavaScript) to work with the browser
(and the web page in that browser).

 To take the remote control analogy a little further, it doesn ’ t matter what language you speak; as long as
someone presses the right button on the remote, the TV behaves in the same way. If you get a new TV,
the core functions of the remote will be very similar. When working with the Document Object Model, it
does not matter what language you program with. As long as you use the right properties and methods,
the effect will be the same.

 Also, under the covers, it does not matter how your remote tells the TV to turn up the volume, as long as
the effect is the same (the volume goes up). Likewise, it doesn ’ t matter how the browser retrieves the title
of the page when you ask for it, or the background color of the page when you ask for that, as long as it
returns it to you in the way you expect (which is specified in the Document Object Model).

 The point of this analogy is that your script will achieve the same goal in any browser that implements the
Document Object Model. It does not matter how a browser implements the Document Object Model, as long
as you can ask it for properties, or to perform methods in the standard way set out in the Document Object
Model, and you then get the results in an expected format. How the browser actually does the work under
the hood does not matter.

 In this chapter, you start by looking at how the Document Object Model allows you to work with a web
page; then you look at JavaScript to see what you can do with this data and how you can use it to get
and set values of the document, call methods, and respond to events.

 How to Add a Script to Your Pages
 JavaScript can either be embedded in a page or placed in an external script file (rather like CSS). But in
order to work in the browser, the browser must have JavaScript enabled. (The major browsers allow
users to disable JavaScript, although very few people do.)

 You add scripts to your page inside the < script > element. The type attribute on the opening < script >
tag indicates what scripting language will be found inside the element, so for JavaScript you use the
value text/JavaScript .

 There are several other scripting languages that do a very similar job to JavaScript (such as VBScript or
Perl), but JavaScript is the main programming language used in web browsers.

 Here you can see a very simple script that will write the words “ My first JavaScript ” into the page
(ch11_eg01.html):

 < html >
 < body >
 < p >
 < script type=”text/javascript” >
 document.write(“My first JavaScript”)
 < /script >
 < /p >
 < /body >
 < /html >

c11.indd 484c11.indd 484 11/20/09 5:09:45 PM11/20/09 5:09:45 PM

Chapter 11: Learning JavaScript

485

 In this case, we are using the write() method to add a new line of text into the web page (and the web
page is represented using the document object). The text is added into the page where the script is
written in the page. Figure 11 - 1 shows what this simple page would look like.

Figure 11-1

 Where you put your JavaScript within a page is very important. If you put it in the body of a page — as
in this example — then it will run (or execute) as the page loads. Sometimes, however, you will want a
script ready to use as soon as the page has loaded, or you might want to use the same script in several
parts of the page, in which case it tends to live inside the < head > element on the page (because scripts
in the head of the page load before the page is displayed). Scripts that live in the head of a page are
triggered (or called) by an event such as when the page finishes loading or when a visitor presses the
submit button on a form.

 You can also write JavaScript in external documents that have the file extension .js (just in the same
way that you can write external style sheets). This is a particularly good option because:

 If your script is used by more than one page you do not need to repeat the script in each page
that uses it.

 If you want to update your script you need only change it in one place.

 It makes the XHTML page cleaner and easier to read.

 When you place your JavaScript in an external file, you need to use the src attribute on the < script >
element; the value of the src attribute should be an absolute or relative URL pointing to the file
containing the JavaScript. For example:

 < script type=”JavaScript” src=”scripts/validation.js” > < /script >

 So there are three places where you can put your JavaScripts , and a single XHTML document can use all
three because there is no limit on the number of scripts one document can contain:

 In the < head > of a page: These scripts will be called when an event triggers them.

 In the < body > of a page: These scripts will run as the page loads.

 In an external file: If the link is placed inside the < head > element, the script is treated the same
as when the script lives inside the head of the document waiting for an event to trigger it,
whereas if it is placed in the < body > element it will act like a script in the body section and
execute as the page loads.

❑

❑

❑

❑

❑

❑

c11.indd 485c11.indd 485 11/20/09 5:09:45 PM11/20/09 5:09:45 PM

Chapter 11: Learning JavaScript

486

 Sometimes you will see examples of JavaScript written inside an XHTML comment .

 < script type=”text/javascript” >
 < !--
 document.write(“My first JavaScript”)
 //-- >
 < /script >

 This was done because some old browsers do not support JavaScript, and therefore the comment hides
the script from them. All browsers that support JavaScript just ignore these comments in the < script >
element. Note how two forward slash characters (//) precede the closing characters of the XHTML
comment. This is actually a JavaScript comment that prevents the JavaScript from trying to process the
 - - > characters.

 In XHTML, you should not use characters such as the angle brackets for anything other than tags. If you
do, they are supposed to go in something known as a CDATA section (which tells the browser that the
contents are not markup, and should not be processed as markup). Because JavaScript uses the angle
brackets, even though it will not cause a problem in major browsers, you could put your scripts inside a
CDATA section like this for technical accuracy (and to ensure that your page validates):

 < script type=”text/javascript” >
// < ![CDATA[
...
]] >
 < /script >

 If you were to write a site that had to work on very old browsers, a good alternative to worrying about
browsers that cannot support scripts is to use external scripts because if the browser cannot process the
 < script > element, it will not even try to load the document containing the script.

 Comments in JavaScript
 You can add comments to your JavaScript code in two ways. The first way, which you have already seen,
allows you to comment out anything on that line after the comment marks. Here, anything on the same
line after the two forward slash characters is treated as a comment:

 < script type=”text/javascript” >
 document.write(“My first JavaScript”) // comment goes here
 < /script >

 You can also comment out multiple lines using the following syntax, holding the comment between the
opening characters /* and closing characters */ like so:

/* This whole section is commented
out so it is not treated as a part of
the script. */

 This is similar to comments in CSS.

c11.indd 486c11.indd 486 11/20/09 5:09:46 PM11/20/09 5:09:46 PM

Chapter 11: Learning JavaScript

487

 As with all code, it ’ s good practice to comment your code clearly, even if you are the only person likely to
be using it, because what may have seemed clear when you wrote a script may not be so obvious when
you come back to it later.

 The < noscript > Element
 The < noscript > element offers alternative content for users who have disabled JavaScript. It can
contain any XHTML content that the author wants to be seen in the browser if the user does not have
JavaScript enabled.

 Strictly speaking, the W3C ’ s recommendations say that the content of this element should be displayed
only when the browser does not support the scripting language required; however, the browser
manufacturers have decided that it should also work when scripting is disabled.

Try It Out Creating an External JavaScript

 You have already seen a basic example of a JavaScript that writes to a page. In this example, you will
move that code to an external file. The external file is going to be used to write some text to the page.

 1. Open your editor and type the following code:

document.write(“Here is some text from an external file.”);

 2. Save this file as external.js .

 3. Open a new page in your editor and add the following. Note that the < script > element is
empty this time, but carries the src attribute whose value is the JavaScript file (just as it does
on the < img > element). This may be a relative or full URL.

 < html >
 < body >
 < script src=”external.js” type=”text/JavaScript” >
 < /script >
 < noscript > This only shows if the browser has JavaScript turned off.
 < /noscript >
 < /body >
 < /html >

 4. Save this example as ch11_eg02.html and open it in your browser. You should see
something like Figure 11 - 2.

c11.indd 487c11.indd 487 11/20/09 5:09:46 PM11/20/09 5:09:46 PM

Chapter 11: Learning JavaScript

488

 You can use this approach to include external JavaScripts in either the < head > or the < body > of a
document. If you place them in the body of the document, as in this example, they are executed as the
page loads — just as if the script were actually in the page there. If you place them in the head, then
they will load when the page loads, and be triggered by an event.

 I often use external JavaScript files for functions and place the < script > element in the head of
the document because it allows me to re - use scripts on different sites I develop and ensures that the
XHTML documents focus on content rather than being littered with scripts. You will see more of this
approach later in the chapter.

 The Document Object Model
 As I mentioned at the start of the chapter, JavaScript by itself doesn ’ t do much more than allow you to
perform calculations or work with basic strings. In order to make a document more interactive, the script
needs to be able to access the contents of the document and know when the user is interacting with it.
The script does this by interacting with the browser by using the properties, methods and events set out
in the interface called the Document Object Model.

 The Document Object Model, or DOM, represents the web page that is loaded into the browser using a
series of objects. The main object is the document object, which in turn contains several other child
objects.

 The DOM explains what properties of a document a script can retrieve and which ones it can alter; it also
defines some methods that can be called to perform an action on the document.

 Figure 11 - 3 shows you an illustration of the Level 0 HTML Document Object Model (as you will see
shortly, there are different levels of the DOM).

Figure 11-2

c11.indd 488c11.indd 488 11/20/09 5:09:46 PM11/20/09 5:09:46 PM

Chapter 11: Learning JavaScript

489

 As you can see from Figure 11 - 3 the document object represents the whole document, and then each of
the child objects represents a collection of similar tags within that document:

 The anchor collection represents all the anchors in a document that you can link to (< a > elements
with a name attribute).

 The applet collection represents all the applets within a document.

 The area collection represents all the image maps that use an < area > element in the document.

 The forms collection contains all the < form > tags in the document.

 The image collection represents all the images in a document.

 The link collection represents all the hyperlinks within a page.

 The forms collection also has child objects to represent each of the different types of form controls that
can appear on a form: Button , CheckBox , FileUpload , Hidden , Option , Password , Radio , Reset ,
 Select , Submit , Text , and TextArea .

 To better understand how to access the document using the DOM, take a look at the following simple
document, which contains one form and two links:

 < h1 > User Registration < /h1 >
 < form name=”frmLogin” action=”login.aspx” method=”post” >
 Username < input type=”text” name=”txtUsername” size=”12” / > < br / >
 Password < input type=”password” name=”pwdPassword” size=”12” / > < br / >
 < input type=”submit” value=”Log In” / >
 < /form >
 < p > New user? < a href=”register.aspx” > Register here < /a > |
 < a href=”lostPassword.aspx” > Retrieve password < /a > . < /p >

❑

❑

❑

❑

❑

❑

Figure 11-3

Anchor
Represents

all anchors in
the document

Applet
Represents
all applets
within a

document

Image
Represents

all the images
in a document

DOCUMENT
Represents the
document as a

whole

Link
Represents

all the links in
a document

Area
Represents
all image

maps that use
an �area�

element

Form
Represents
all �form�

elements in a
document

Button Checkbox FileUpload Hidden Option Password Radio Reset Select Sumit Text TextArea

c11.indd 489c11.indd 489 11/20/09 5:09:47 PM11/20/09 5:09:47 PM

Chapter 11: Learning JavaScript

490

 You can see this page in Figure 11 - 4.

Figure 11-4

 The DOM would allow a script to access:

 The content of the form as part of the forms collection

 The two links as part of the links collection

 Accessing Values Using Dot Notation
 In order to access the different objects in the DOM, you list the objects in the tree shown in Figure 11 - 3,
starting with the document object, working down to the object that holds the data you are after. Each
object is separated by a period or full - stop character; hence, this is known as a dot notation .

 For example, in order to access the first link in the document, you would want the links object, which is
a child of the document object, so you could use something like this:

document.links[0].href

 There are four parts of this statement, three of which are separated by periods, to get to the first link:

 The word document indicates I am accessing the document object.

 The word links corresponds to the links collection (after all, this example is to retrieve the
value of the first link in the document).

 The [0] indicates that I want the first link in the document. Rather confusingly, the items of a
collection are numbered from 0 rather than 1, which means the second link in the links collection
is represented using [1] , the third using [2] , and so on.

 I have indicated that I want to retrieve the href property for this link.

 Each object has different properties that correspond to that type of element; for example, links have
properties such as the href property that accesses the value of the href attribute on this < a > element.
Similarly, a < textarea > object has properties such as cols , disabled , readOnly , and rows , which
correspond to the attributes on that element.

❑

❑

❑

❑

❑

❑

c11.indd 490c11.indd 490 11/20/09 5:09:47 PM11/20/09 5:09:47 PM

Chapter 11: Learning JavaScript

491

 Rather than using the names of the type of object (such as forms and links), you can use the value of
 name attributes on the elements to navigate through the document. For example, the following line
requests the value of the password box:

document.frmLogin.pwdPassword.value

 Again, there are four parts to this statement:

 The document object comes first again as it represents the whole page (it is the top - level object).

 The name of the form, frmLogin .

 This is followed by the name of the form control, pwdPassword .

 Finally, the property I am interested in is the value of the password box, and this property is
called value .

 Both of these approaches enable you to navigate through a document, choosing the elements and
properties of those elements you are interested in. Then you can retrieve those values, perform
calculations upon them, and provide alternative values.

 For the purpose of learning JavaScript, we are dealing with what is often called DOM Level 0 in this chapter
because it works in most browsers. Its syntax was created before the W3C created its DOM Level 1, 2, and 3
recommendations (which get more complicated and have varying levels of support in different browsers).
Once you are familiar with the basics, you can move on to look at these in more detail if you wish.

 There is also a second type of object model, the Browser Object Model, which makes features of the
browser available to the programmer, such as the window object, which can be used to create new pop -
 up windows. The Browser Object Model can vary from browser to browser, although most browsers
have common support for core functionality. You learn about the window object later in the chapter.

 The Document Object
 In this section, we are going to take a closer look at the document object — this is the main object in the
DOM and represents the document as a whole (and therefore allows you to access other child elements).

 As you already know, an object can have properties that can tell you about the object, and methods to
perform an action upon that object.

 Once you understand how to work with one object, it ’ s much easier to work with all kinds of objects —
 and you will come across many different types of objects when you start programming.

 Properties of the Document Object
 In the following table, you can see the properties of the document object. Several of these properties
correspond to attributes that would be carried by the < body > element, which contains the document.

 Many properties can be set as well as read. If you can set a property, it is known as a read/write property
(because you can read it or write to it), whereas the ones you can only read are known as read - only.
You can see which properties can be read and which can be written to in the last column of the table
that follows.

❑

❑

❑

❑

c11.indd 491c11.indd 491 11/20/09 5:09:48 PM11/20/09 5:09:48 PM

Chapter 11: Learning JavaScript

492

 Property Name Purpose Read/Write

 alinkColor Specifies link colors (like the
deprecated alink attribute on the
 < body > element).

 Read/write

 bgcolor Specifies background color (like the
deprecated bgcolor attribute on the
 < body > element).

 Read/write

 fgcolor Foreground/text color (like the
deprecated text attribute of the
 < body > element).

 Read/write

 lastModified The date the document was last
modified. (This is usually sent by the
web server in things known as HTTP
headers that you do not see).

 Read only

 linkColor Specifies link colors (like the
deprecated link attribute of the
 < body > element).

 Read/write

 referrer The URL of the page that users came
from if they clicked a link. It is empty
if there is no referrer.

 Read only

 title The title of the page in the < title >
element.

 Read only (until IE 5 and
Netscape 6 and later versions)

 vlinkColor The color of links that have been
clicked on (like the deprecated vlink
attribute of the < body > element).

 Read/write

 The properties that correspond to deprecated attributes of the < body > element should generally be
avoided because CSS should be used to style text, links, and backgrounds.

 To access any of the properties, again you use dot notation, so you can access the title of a document
like so:

document.title

 Or you could find out the date a document was last modified like so:

document.lastModified

 Note that if the server does not support the lastModified property, IE will display the current date,
while other browsers will often display 1 January 1970 (which is the date from which most computers
calculate all dates).

c11.indd 492c11.indd 492 11/20/09 5:09:48 PM11/20/09 5:09:48 PM

Chapter 11: Learning JavaScript

493

 Methods of the Document Object
 Methods perform actions and are always written followed by a pair of brackets. Inside the brackets of
some methods, you can see things known as parameters or arguments , which can affect what action the
method takes.

 For example, in the table that follows, you can see two methods that write new content into the web
page. Both of these methods need to know what should be written into the page, so they take a string
as an argument (a string is a sequence of characters that may include letters, numbers, spaces, and
punctuation), and the string is what gets written into the page.

 Method Name Purpose

 write(string) Allows you to add text or elements into a document

 writeln(string) The same as write(), but adds a new line at the end of the output (as if
you had pressed the Enter key after you had finished what you were
writing)

 You have already seen the write() method of the document object in ch11_eg01.html , which showed
how it can be used to write content into a document:

document.write(‘This is a document’);

 You can also put something called an expression as a parameter of the write() method. For example,
the following will write the text string Page last modified on followed by the last modified
date of the document.

document.write(‘Page last modified on ‘ + document.lastModified);

 You will see more about expressions later in the chapter, but in this case, the expression evaluates into
(or results in) a string. For example, you might see something like Page last modified on 12th
December 2009 .

 Now that you ’ ve seen the properties and methods of the document object, let ’ s look at the properties
and methods of some of the other objects, too.

 The Forms Collection
 The forms collection holds references corresponding to each of the < form > elements in the page. This
might sound a little complicated, but you can probably imagine a web page that has more than one
form — a login form, a registration form for new users, and a search box on the same page — the DOM
deals with this by having a separate form object to represent each of the individual forms.

 Imagine you want to use a script that can access the address of the page that the login form sends its
data to. In the XHTML document you would be looking at the action attribute on the opening < form >
tag. There is a corresponding action property on the form object, which holds the value of this
attribute. So, you would need to access the form object that represented the login form, then retrieve the
value of the property called action .

c11.indd 493c11.indd 493 11/20/09 5:09:48 PM11/20/09 5:09:48 PM

Chapter 11: Learning JavaScript

494

 If the login form is the first form in the document, you might use the following index number to select
the appropriate form and access the value of its action attribute (remember that index numbers start
at 0 for the first form, 1 for the second form, 2 for the third, and so on):

document.forms[0].action

 Alternatively, you can directly access that form object using its name (this is generally considered the
preferred option because if another form were added to the page it could break the script):

document.frmLogin.action

 The form that you select has its own object with properties and methods (each property generally
corresponds to the attributes of the < form > element). Once you have seen the properties and methods
of the forms, you will then see the objects, properties, and methods that correspond to the different
types of form control.

 Properties of the Form Objects
 The following table lists the properties of the form objects; as you will see, most of them correspond to
the attributes of the < form > element.

 Property Name Purpose Read/Write

 action Specifies the value of the action attribute on the
 < form > element

 Read/write

 length Gives the total number of form controls that are in this
form

 Read only

 method The value of the method attribute of the < form > element
(either get or post)

 Read/write

 name The value of the name attribute of the < form > element Read only

 target The value of the target attribute of the < form > element Read/write

 Methods of the Form Objects
 The following table lists the methods of the form objects.

 Method Name Purpose

 reset() Resets all form elements to their default values

 submit() Submits the form

c11.indd 494c11.indd 494 11/20/09 5:09:49 PM11/20/09 5:09:49 PM

Chapter 11: Learning JavaScript

495

 A < form > element can have an attribute called onsubmit whose value is a script that should run when the
user manually presses the Submit button. If JavaScript is used to submit a form, this attribute is ignored.

 Form Elements
 When you access a form, you usually want to access one or more of its elements. Each < form > element
has an elements collection object as a property, which represents all of the elements in that form. This
works in a similar way to the forms collection; it allows you to access the elements you want by index
(an index being a number corresponding to their order in the document that starts with 0). Alternatively,
you can use their names.

 Here are some of the things you might want to do with the elements in a form:

 Text fields: Read data a user has entered or write new text to these elements.

 Checkboxes and radio buttons: Test if they are checked and check or uncheck them.

 Buttons: Disable them until a user has selected an option.

 Select boxes: Select an option or see which option the user has selected.

 Properties of Form Elements
 The following table lists the properties that correspond to the elements that may appear on a form.

 Property Applies to Purpose Read/Write

 checked Checkboxes and
radio buttons

 Returns true when checked or
 false when not

 Read/write

 disabled All except
hidden elements

 Returns true when disabled and
user cannot interact with it

 Read/write

 form All elements Returns a reference to the form it is
part of

 Read only

 length Select boxes Number of options in the < select >
element

 Read only

 name All elements Accesses the value of the name
attribute of the element

 Read only

 selectedIndex Select boxes Returns the index number of the
currently selected item

 Read/write

 type All Returns type of form control Read only

 value All Accesses the value attribute of the
element or content of a text input

 Read/write

❑

❑

❑

❑

c11.indd 495c11.indd 495 11/20/09 5:09:49 PM11/20/09 5:09:49 PM

Chapter 11: Learning JavaScript

496

 If you want one of the form controls to be disabled until someone has performed an action — for
example, if you want to disable the Submit button until the user has agreed to the terms and
conditions — you should disable the form control in the script as the page loads, rather than disabling it
in the form control itself using XHTML in case the user has turned off JavaScript (if this were the case,
they would not be able to enable the Submit button). You will see more about this topic in Chapter 12.

 Methods of Form Elements
 The following table lists the methods of form elements.

 Property Name Applies to Read/Write

 blur() All except hidden Takes focus away from currently active
element to next in tabbing order

 click() All except text Simulates clicking the mouse over the
element

 focus() All except hidden Gives focus to the element

 select() Text elements except hidden Selects the text in the element

 Try It Out Collecting Form Data

 In this example, you are going to retrieve the value of a textbox and write it into something known as
a JavaScript alert box. The main purpose of the example is to show you how the value of the form can
be retrieved, although it will also introduce you to an event and the JavaScript alert box.

 The alert box is created using a method called alert() that is part of the JavaScript language (not the
DOM). Alert boxes used to be very common on web sites, but you do not see them as much any more.
However, in examples like this they are helpful to demonstrate how JavaScript can access documents.

 The simple form will contain just one text input and a submit button. When you enter something into
the textbox and click the submit button, the value you have entered in the textbox will appear in the
alert box. You can see the page once the user has clicked the submit button in Figure 11 - 5.

Figure 11-5

c11.indd 496c11.indd 496 11/20/09 5:09:49 PM11/20/09 5:09:49 PM

Chapter 11: Learning JavaScript

497

 When you click OK, the alert box disappears.

 1. Create a skeleton document for a Transitional XHTML page, and add a heading that explains
what the example demonstrates:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > Accessing form data < /title >
 < /head >
 < body >
 < h1 > Accessing Form Data < /h1 >
 < /body >
 < /html >

 2. Add a < form > element to the body of the document. The form should contain a text input for
a username and a submit button, like so:

 < body >
 < h1 > Accessing Form Data < /h1 >
 < form name=”frmLogin” >
 Username < input type=”text” name=”txtUsername” size=”12” / > < br / > < br / >
 < input type=”submit” value=”Click here” / >
 < /form >
 < /body >

 3. Add the onsubmit attribute to the < form > element, and give it the following value:

 < form name=”frmLogin” onsubmit=”alert(document.frmLogin.txtUsername.value)” >

 Username < input type=”text” name=”txtUsername” size=”12” / > < br / >
 < input type=”submit” value=”Click here” / >
 < /form >

 Save the file as ch11_eg03.html , and open it in your browser. When you enter something into
the text input and click Submit, you should see an alert box like that in Figure 11 - 5, which
displays the value you entered into the textbox.

 When the onsubmit event fires (which happens when the user clicks the Submit button), this simple
line of script is run. In this case, the alert() method is called:

alert(document.frmLogin.txtUsername.value)

 The alert(string) method allows you to write a string into the pop - up alert box. Like the write()
method of the document object, which you saw earlier, the string does not need to be the actual text
you want to display. In this example, rather than writing the same string to the alert box every time
the script is run, whatever the user has entered into the text box will be written to the alert box.

 You can see that inside the alert() , the text input has been selected using document.frmLogin
.txtUsername along with the value property of this form control. So the value of the text input is
written to the alert box.

c11.indd 497c11.indd 497 11/20/09 5:09:50 PM11/20/09 5:09:50 PM

Chapter 11: Learning JavaScript

498

 As you have seen the alert() box takes a string as a parameter (just like the write() method you
saw earlier), but we are not specifying the exact words to write out (rather we are telling the method
to find out what the user entered). When you tell a method (such as the alert() method or the
 write() method) exactly what to write you put the value in double quote marks, but when you want
the script to collect the information it is to display, you do not use the double quotes.

 When the user clicks the Submit button, the onsubmit event fires, which creates the alert box that
contains the value of the text input.

 Images Collection
 The images collection provides references to image objects, one representing each image in a document.
These can again be referenced by name or by their index number in the collection. So the src attribute of
the first image can be found using the index number like so:

document.images[0].src

or using its name; for example, if the image had a name attribute whose value was imgHome , you could
access it using the following:

document.imgHome.src

 There are no methods for the image objects in the Level 0 DOM, although there are several properties.

 Properties of the Image Object
 The following table lists the properties of the image object.

 Property Purpose Read/Write

 border The border attribute of the < img > element, specifying the
width of the border in pixels

 Read/write

 complete Indicates whether an image has loaded successfully Read only

 height The height attribute of the < img > element, specifying the
height of the image in pixels

 Read/write

 hspace The hspace attribute of the < img > element, specifying the
gap above and below an image to separate it from its
surrounding elements

 Read/write

 lowsrc The lowsrc attribute of the < img > element (indicating a
lower resolution version of the image)

 Read/write

 name The name attribute of the < img > element Read/write

 src The src attribute of the < img > element, indicating where the
file is located

 Read/write

c11.indd 498c11.indd 498 11/20/09 5:09:50 PM11/20/09 5:09:50 PM

Chapter 11: Learning JavaScript

499

 Property Purpose Read/Write

 vspace The vspace attribute of the < img > element, specifying the
gap to the left and right of an image to separate it from its
surrounding elements

 Read/write

 width The width attribute of the < img > element, specifying the
width of the image in pixels

 Read/write

Try It Out A Simple Image Rollover

 In this example, you are going to see how to replace one image with another one when the user rolls
over the image with the mouse. Most developers now use CSS to create image rollovers in their code,
but this is a good way to demonstrate how to access image properties.

 In this example, you are going to see two simple images, both saying “ click here. ” When the page
loads, the image will be in green with white writing, but as soon as the user hovers over the image, the
script will access and change the src property of the image and change it to the image that is red with
white writing.

 1. Create the skeleton of a Transitional XHTML document:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > Image Rollover < /title >
 < /head >
 < body >
 < /body >
 < /html >

 2. Add the following link and image to the body of your document:

 < p > Hover over the image with your mouse to see the simple rollover effect.
 < br/ >
 < a href=””
 < img src=”images/click_green.gif” width=”100” height=”50” border=”0”
 alt=”Example button” name=”button” / >
 < /a >
 < /p >

 3. Now add the following onmouseover and onmouseout event handler attributes to the < a >
element with the specified values:

 < a href=””
 onmouseover=”document.images.button.src=’images/click_red.gif’;”
 onmouseout=”document.images.button.src=’images/click_green.gif’” >

c11.indd 499c11.indd 499 11/20/09 5:09:51 PM11/20/09 5:09:51 PM

Chapter 11: Learning JavaScript

500

 When the user rolls over the image, the onmouseover event fires, and when the user moves
off it again, the onmouseout event fires. This is why there are separate attributes that
correspond to each of these events, and when one of these two events fires, the script held as a
value for the corresponding attribute is executed.

 The script in the onmouseover and onmouseout event handler attributes tells the browser to
change the src attribute of the image, and therefore a different image is displayed to the user.

 The first (onmouseover) indicates what should happen when the mouse is placed over the
image; the second (onmouseout) indicates what should be done when the mouse is moved off
the image.

 When the user puts the mouse over an image, the src property of the image inside the
link — named using the notation document.images.button — is changed.

 4. Save this example as ch11_eg4.html and open it in your browser. Then roll your mouse over
the image (without clicking it). You should see something like Figure 11 - 6 with the mouse
over the image.

Figure 11-6

 The element must have a name attribute so that the image can be referenced in this way in the
link (otherwise you would have to use its index in the images collection). It is generally best to
use the name in situations like this, rather than the index of that image in the images collection,
because if you were to add another image into the document before this one the whole script would
need changing.

 Note that if no event indicated what should happen when the user takes the mouse off the image, it
would remain red rather than turning back to green. An image rollover script is a good example of
changing or setting that property rather than just reading it.

 Different Types of Objects
 You will come across several types of objects in JavaScript, each of which is responsible for a related set
of functionalities. For example, the document object has methods and properties that relate to the
document; the forms collection, which is part of the document object, deals with information regarding
forms; and so on. As you are about to see, there can be lots of different objects, each of which deals with
a different set of functionalities and properties.

c11.indd 500c11.indd 500 11/20/09 5:09:51 PM11/20/09 5:09:51 PM

Chapter 11: Learning JavaScript

501

 So, here are some of the types of objects you are likely to come across:

 W3C DOM objects: These are like those already covered in this chapter, although in more recent
browsers several more objects are made available to allow you more control over a document.

 Built - in objects: Several objects are part of the JavaScript language itself. These include the date
object, which deals with dates and times, and the math object, which provides mathematical
functions. You will be learning more about these built - in objects later in the chapter.

 Custom objects: If you start to write advanced JavaScript, you might even start creating your
own JavaScript objects that contain related functionality; for example, you might have a
 validation object that you have written just to use to validate your forms.

 While it is not possible to cover the creation of custom objects in this chapter, you learn about the built - in
objects later in this chapter.

 Star ting to Program with JavaScript
 Now that you have seen how JavaScript is able to access a document in the web browser using the DOM,
it is time to look at how you use these properties and methods in scripts.

 As I mentioned earlier, a programming language mainly performs calculations. So here are the key
concepts you need to learn in order to perform different types of calculations:

 A variable is used to store some information; it ’ s like a little bit of the computer ’ s memory where
you can store numbers, strings (which are a series of characters), or references to objects. You can
then perform calculations to alter the data held in variables within your code.

 Operators perform functions on variables. There are different types of operators — for example:

❑ Arithmetic operators enable you to do things such as add (+) numbers together, or subtract
(-) one from another (providing they are numbers).

❑ Comparison operators enable you to compare two strings and see if one is the same as the
other, or different (for example, whether x is equal to y or whether a is greater than b).

 Functions are parts of a script that are grouped together to perform a specific task. For example,
you could have a function that calculates loan repayments, and when you tell the loan calculator
function the information it needs (the amount of money to be borrowed, the number of years the
loan will last, and the interest rate) the function will be able to return the monthly payment.
Functions are objects in their own right and are very similar to things called methods; one of the
key differences is that methods often belong to an object already, whereas functions are
customized.

 Conditional statements allow you to perform different actions based upon a condition. For
example, a condition might be whether a variable holding the current time is greater than 12. If
the condition is true, code to write “ Good Afternoon ” might be run. Whereas, if it is less than 12,
a different block of code saying “ Good Morning ” could be shown.

❑

❑

❑

❑

❑

❑

❑

c11.indd 501c11.indd 501 11/20/09 5:09:51 PM11/20/09 5:09:51 PM

Chapter 11: Learning JavaScript

502

 Loops can be set up so that a block of code runs a specified number of times or until a condition
is met. For example, you can use a loop to get a document to write your name 100 times.

 There are also several built - in JavaScript objects that have methods that are of practical use. For
example, in the same way that the document object of the DOM has methods that allowed you
to write to the document, the built - in JavaScript date object can tell you the date, time, or day of
the week.

 The following section looks at these key concepts in more detail.

 Variables
 Variables are used to store data. To store information in a variable, you can give the variable a name and
put an equal sign between it and the value you want it to have. Here is an example:

userName = “Bob Stewart”

 The variable is called userName and the value is Bob Stewart . If no value is given, then its value is
 undefined .

 The script can access the value of the variable using its name (in this case userName). It can also change
the value.

 You can create a variable, but not store anything with it by using the var keyword; this is known as
 declaring a variable (unlike some other languages, you do not have to declare a variable before you can
use it, although it is commonly considered good practice to do so).

var userName

 There are a few rules you must remember about variables in JavaScript:

 They must begin with a letter or the underscore character.

 Variable names are case - sensitive.

 Avoid giving two variables the same name within the same document as one might override the
value of the other, creating an error.

 Do not call two variables the same name, but use different cases to distinguish them (e.g.,
 username and UserName) as this is a common source of confusion later.

 Try to use descriptive names for your variables. This makes your code easier to understand (and
will help you debug your code if there is a problem with it).

 Assigning a Value to a Variable
 When you want to give a value to a variable, you put the variable name first, then an equal sign, and
then on the right the value you want to assign to the variable. You have already seen values being
assigned to these variables when they were declared a moment ago. So, here is an example of a variable
being assigned a value and then the value being changed:

❑

❑

❑

❑

❑

❑

❑

c11.indd 502c11.indd 502 11/20/09 5:09:52 PM11/20/09 5:09:52 PM

Chapter 11: Learning JavaScript

503

userName = “Bob Stewart”
userName = “Robert Stewart”

 userName is now the equivalent of Robert Stewart .

 Lifetime of a Variable
 When you declare a variable in a function, it can be accessed only in that function. (You will learn about
functions shortly.) After the function has run, you cannot call the variable again. Variables in functions
are called local variables .

 Because a local variable works only within a function, you can have different functions that contain
variables of the same name (because each is recognized by that function only).

 If you declare a variable using the var keyword inside a function, it will use memory up only when the
function is run, and once the function has finished it will not take up any memory.

 If you declare a variable outside a function, all the functions on your page can access it. The lifetime of
these variables starts when they are declared and ends when the page is closed.

 Local variables take up less memory and resources than page - level variables because they require only
the memory during the time that the function runs, rather than having to be created and remembered
for the life of the whole page.

 Operators
 The operator itself is a keyword or symbol that does something to a value when used in an expression .
For example, the arithmetic operator + adds two values together.

 The symbol is used in an expression with either one or two values and performs a calculation on the
values to generate a result. For example, here is an expression that uses the multiplication operator:

area = (width * height)

 An expression is just like a mathematical expression. The values are known as operands . Operators that
require only one operand (or value) are sometimes referred to as unary operators , while those that require
two values are sometimes called binary operators .

 The different types of operators you will see in this section are:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 String operators

❑

❑

❑

❑

❑

c11.indd 503c11.indd 503 11/20/09 5:09:52 PM11/20/09 5:09:52 PM

Chapter 11: Learning JavaScript

504

 You will see lots of examples of the operators in action both later in this chapter and in the next chapter.
First, however, it ’ s time to learn about each type of operator.

 Arithmetic Operators
 Arithmetic operators perform arithmetic operations upon operands. (Note that in the examples in the
following table, x = 10.)

 Symbol Description Example (x = 10) Result

 + Addition x+5 15

 - Subtraction x - 2 8

 * Multiplication x*3 30

 / Division x/2 5

 % Modulus (division remainder) x%3 1

 ++ Increment (increments the variable by 1 — this
technique is often used in counters)

 x++ 11

 - - Decrement (decreases the variable by 1) x - - 9

 Assignment Operators
 The basic assignment operator is the equal sign, but do not take this to mean that it checks whether two
values are equal. Rather, it ’ s used to assign a value to the variable on the left of the equal sign, as you
have seen in the previous section, which introduced variables.

 The basic assignment operator can be combined with several other operators to allow you to assign a
value to a variable and perform an operation in one step. For example, take a look at the following
statement where there is an assignment operator and an arithmetic operator:

total = total - profit

 This can be reduced to the following statement:

total -= profit

 While it might not look like much, this kind of shorthand can save a lot of code if you have a lot of
calculations like this (see table that follows) to perform.

c11.indd 504c11.indd 504 11/20/09 5:09:52 PM11/20/09 5:09:52 PM

Chapter 11: Learning JavaScript

505

 Symbol Example Using Shorthand Equivalent Without Shorthand

 += x+=y x=x+y

 - = x - =y x=x - y

 = x=y x=x*y

 /= x/=y x=x/y

 %= x%=y x=x%y

 Comparison Operators
 As you can see in the table that follows, comparison operators compare two operands and then return
either true or false based on whether the comparison is true or not.

 Note that the comparison for checking whether two operands are equal is two equal signs (a single equal
sign would be an assignment operator).

 Operator Description Example

 == Equal to 1==2 returns false

 3==3 returns true

 != Not equal to 1!=2 returns true

 3!=3 returns false

 > Greater than 1 > 2 returns false

 3 > 3 returns false

 3 > 2 returns true

 < Less than 1 < 2 returns true

 3 < 3 returns false

 3 < 1 returns false

 > = Greater than or equal to 1 > =2 returns false

 3 > =2 returns true

 3 > =3 returns true

 < = Less than or equal to 1 < =2 returns true

 3 < =3 returns true

3<=2 returns false

c11.indd 505c11.indd 505 11/20/09 5:09:53 PM11/20/09 5:09:53 PM

Chapter 11: Learning JavaScript

506

 Logical or Boolean Operators
 Logical or Boolean operators return one of two values: true or false . They are particularly helpful
when you want to evaluate more than one expression at a time.

 Operator Name Description Example (where x =1 and y =2)

 & & And Allows you to check if both of
two conditions are met

 (x < 2 & & y > 1) Returns true
(because both conditions are met)

 ?? Or Allows you to check if one of
two conditions are met

 (x < 2 ?? y < 2) Returns true
(because the first condition is met)

 ! Not Allows you to check if
something is not the case

 ! (x > y) Returns true
(because x is not more than y)

 The two operands in a logical or Boolean operator evaluate to either true or false . For example, if x=1
and y=2 , then x < 2 is true and y > 1 is true . So the following expression:

(x < 2 & & y > 1)

 returns true because both of the operands evaluate to true (you can see more examples in the
right-hand column of this table).

 String Operator (Using + with Strings)
 You can also add text to strings using the + operator. For example, here the + operator is being used to
add two variables that are strings together:

firstName = “Bob”
lastName = “Stewart”
name = firstName + lastName

 The value of the name variable would now be Bob Stewart . The process of adding two strings together
is known as concatenation .

 You can also compare strings using the comparison operators you just met. For example, you could
check whether a user has entered a specific value into a text box. (You will see more about this topic
when you look at the “Conditional Statements” section shortly.)

 Functions
 A function is made up of related code that performs a particular task. For example, a function could be
written to calculate area given width and height. The function can then be called elsewhere in the script,
or when an event fires.

c11.indd 506c11.indd 506 11/20/09 5:09:53 PM11/20/09 5:09:53 PM

Chapter 11: Learning JavaScript

507

 Functions are either written in the < head > element or in an external file that is linked from inside the
 < head > element, which means that they can be reused in several places within the page.

 How to Define a Function
 There are three parts to creating or defining a function:

 Define a name for it.

 Indicate any values that might be required; these are known as arguments.

 Add statements to the body of the function.

 For example, if you want to create a function to calculate the area of a rectangle, you might name the
function calculateArea() (note that a function name should be followed by parentheses). In order to
calculate the area, you need to know the rectangle ’ s width and height, so these would be passed in as
 arguments (arguments are the information the function needs to do its job). Inside the body of the
function (the part between the curly braces) are the statements , which indicate that area is equal to the
width multiplied by the height (both of which have been passed into the function). The area is then
returned.

function calculateArea(width, height) {
 area = width * height
 return area
}

 If a function has no arguments it should still have parentheses after its name — for example, you might
have a function that will run without any extra information passed as an argument such as, logOut() .

 How To Call a Function
 The calculateArea() function does nothing sitting on its own in the head of a document; it has to be
 called . In this example, you can call the function from a simple form using the onclick event, so that
when the user clicks the Submit button the area will be calculated and shown in an alert box.

 Here you can see that the form contains two text inputs for the width and height, and these are passed as
arguments to the function like so (ch11_eg05.html):

 < form name=”frmArea” action=”” >
Enter the width and height of your rectangle to calculate the size: < br / >
Width: < input type=”text” name=”txtWidth” size=”5” / > < br / >
Height: < input type=”text” name=”txtHeight” size=”5” / > < br / >

 < input type=”button” value=”Calculate area”
 onclick=”alert(calculateArea(document.frmArea.txtWidth.value,
 document.frmArea.txtHeight.value))” / >

 < /form >

❑

❑

❑

c11.indd 507c11.indd 507 11/20/09 5:09:54 PM11/20/09 5:09:54 PM

Chapter 11: Learning JavaScript

508

 Take a closer look at what is happening when the onclick event fires. First, a JavaScript alert is being
called, and then the calculateArea() function is being called inside the alert, so that the area is the
value that is written to the alert box. Inside the parentheses where the calculateArea() function is
being called, the two parameters being passed are the values of the width text box (document.frmArea
.txtWidth.value) and the height text box (document.frmArea.txtWidth.value) using the dot
notation you learned earlier in the section on the DOM.

 The Return Statement
 Functions that return a result must use the return statement. This statement specifies the value that will
be returned to where the function was called. The calculateArea() function, for example, returned the
area of the rectangle:

function calculateArea(width, height) {
 area = width * height

 return area

}

 What is returned depends on the code inside the function; for example, our area function will return the
area of the rectangle. By contrast, if you had a form where people could enter an e - mail address to sign
up for a newsletter, you might use a function to check whether that person had entered a valid e - mail
address before submitting the form. In that case, the function might just return true or false values.

 What happens when the value is returned depends on how the function was called. With our function to
calculate area, we could display the area to the user with some more JavaScript code. If we were
checking whether an e - mail address was in a valid format before subscribing that e - mail address to a
newsletter, the return value would determine whether the form was submitted or not.

 Conditional Statements
 Conditional statements allow you to take different actions depending upon different statements. There
are three types of conditional statements you will learn about here:

 if statements, which are used when you want the script to execute if a condition is true

 if...else statements, which are used when you want to execute one set of code if a condition
is true and another if it is false

 switch statements, which are used when you want to select one block of code from many
depending on a situation

 if Statements
 if statements allow code to be executed when the condition specified is met; if the condition is true then
the code in the curly braces is executed. Here is the syntax for an if statement:

❑

❑

❑

c11.indd 508c11.indd 508 11/20/09 5:09:54 PM11/20/09 5:09:54 PM

Chapter 11: Learning JavaScript

509

if (condition)
{
 code to be executed if condition is true
}

 For example, you might want to start your homepage with the text “ Good Morning ” if the time is in the
morning. You could achieve this using the following script (ch11_eg06.html):

 < script type=”text/JavaScript” >
 date = new Date();
 time = date.getHours();

 if (time < 12) {
 document.write(‘Good Morning’);
 }

 < /script >

 If you are executing only one statement (as we are here), the curly braces are not strictly required, so the
following would do exactly the same job (although it is good practice to include them anyway as we did
previously).

 < script type=”text/JavaScript” >
 date = new Date();
 time = date.getHours();
 if (time < 12)
 document.write(‘Good Morning’);
 < /script >

 This example first creates a date object (which you learn about later in the chapter) and then calls the
 getHours() method of the date object to find the time in hours (using the 24 - hour clock). If the time in
hours is less than 12, then the script writes Good Morning to the page (if it is after 12, you will see a
blank page because nothing is written to it).

 if . . . else Statements
 When you have two possible situations and you want to react differently for each, you can use an if...
else statement. This means: “ If the conditions specified are met, run the first block of code; otherwise
run the second block. ” The syntax is as follows:

if (condition)
{
 code to be executed if condition is true
}
else
{
 code to be executed if condition is false
}

 Returning to the previous example, you can write Good Morning if the time is before noon, and Good
Afternoon if it is after noon (ch11_eg07.html).

c11.indd 509c11.indd 509 11/20/09 5:09:54 PM11/20/09 5:09:54 PM

Chapter 11: Learning JavaScript

510

 < script type=”text/JavaScript” >
 date = new Date();
 time = date.getHours();
 if (time < 12) {
 document.write(‘Good Morning’);
 }

 else {
 document.write(‘Good Afternoon’);
 }

 < /script >

 As you can imagine there are a lot of possibilities for using conditional statements.

switch Statements
 A switch statement allows you to deal with several possible results of a condition. You have a single
expression, which is usually a variable. This is evaluated immediately. The value of the expression is
then compared with the values for each case in the structure. If there is a match, the block of code will
execute.

 Here is the syntax for a switch statement:

switch (expression)
{
case option1:
 code to be executed if expression is what is written in option1
 break;
case option2:
 code to be executed if expression is what is written in option2
 break;
case option3:
 code to be executed if expression is what is written in option3
 break;
default:
 code to be executed if expression is different from option1, option2,
 and option3
}

 You use the break to prevent code from running into the next case automatically. For example, you
might be checking what type of animal a user has entered into a textbox, and you want to write out
different things to the screen depending upon what kind of animal is in the text input. Here is a form
that appears on the page. When the user has entered an animal and clicks the button, the
 checkAnimal() function contained in the head of the document is called (ch11_eg08.html):

 < p > Enter the name of your favorite type of animal that stars in a
cartoon: < /p >
 < form name=”frmAnimal” >
 < input type=”text” name=”txtAnimal” / > < br / >
 < input type=”button” value=”Check animal” onclick=”checkAnimal()” / >
 < /form >

c11.indd 510c11.indd 510 11/20/09 5:09:55 PM11/20/09 5:09:55 PM

Chapter 11: Learning JavaScript

511

 Here is the function that contains the switch statement:

function checkAnimal() {
 switch (document.frmAnimal.txtAnimal.value){
 case “rabbit”:
 alert(“Watch out, it’s Elmer Fudd!”)
 break;
 case “coyote”:
 alert(“No match for the road runner - meep meep!”)
 break;
 case “mouse”:
 alert(“Watch out Jerry, here comes Tom!”)
 break;
 default : alert(“Are you sure you picked an animal from a cartoon?”);
 }
}

 The final option — the default — is shown if none of the cases are met. You can see what this would look
like when the user has entered rabbit into the textbox in Figure 11 - 7.

 Note that, should the user enter text in a different case, it will not match the options in the switch
statement. Because JavaScript is case - sensitive, if the letter ’ s case does not match the value of the case in
the switch statement, it will not be a match. You can solve this by making the text all lowercase in the
first place before checking it using the toLowerCase() method of the built - in JavaScript string object,
which you meet later in the chapter.

Figure 11-7

 Looping
 Looping statements are used to execute the same block of code a specified number of times (which is
very handy because repetitive tasks are something that computers are particularly well suited to):

 A while loop runs the same block of code while or until a condition is true.

 A do while loop runs once before the condition is checked. If the condition is true, it will
continue to run until the condition is false. (The difference between a do and a do while loop is
that do while runs once whether or not the condition is met.)

 A for loop runs the same block of code a specified number of times (for example, five times).

❑

❑

❑

c11.indd 511c11.indd 511 11/20/09 5:09:55 PM11/20/09 5:09:55 PM

Chapter 11: Learning JavaScript

512

 while
 In a while loop, a code block is executed if a condition is true and for as long as that condition remains
true. The syntax is as follows:

while (condition)
{
 code to be executed
}

 In the following example, you can see a while loop that shows the multiplication table for the number 3.
This works based on a counter called i ; every time the while script loops, the counter increments by one
(this uses the ++ arithmetic operator, as you can see from the line that says i++). So, the first time the
script runs the counter is 1, and the loop writes out the line 1 � 3 = 3; the next time it loops around the
counter is 2, so the loop writes out 2 � 3 = 6. This continues until the condition — that i is no longer less
than 11 — is true (ch11_eg09.html):

 < script type=”text/JavaScript” >
i = 1
while (i < 11) {
 document.write(i + “ x 3 = “ + (i * 3) + “ < br / > ”);
 i ++
}
 < /script >

 You can see the result of this example in Figure 11 - 8.

Figure 11-8

 Before we go on to look at the next type of loop (a do ... while loop), it is worth noting that a while
loop may never run at all (because the condition may not be true when it is called).

 do . . . while
 A do ... while loop executes a block of code once and then checks a condition. For as long as the
condition is true, it continues to loop. So, whatever the condition, the loop runs at least once (as you can
see the condition is after the instructions). Here is the syntax:

c11.indd 512c11.indd 512 11/20/09 5:09:55 PM11/20/09 5:09:55 PM

Chapter 11: Learning JavaScript

513

do
{
 code to be executed
}
while (condition)

 For example, here is the example with the 3 times table again. The counter is set with an initial value of
12, which is higher than required in the condition, so you will see the sum 12 � 3 = 36 once, but nothing
after that because when it comes to the condition, it has been met (ch11_eg10.html):

 < script type=”text/JavaScript” >
i = 12
do {
 document.write(i + “ x 3 = “ + (i * 3) + “ < br / > ”);
 i ++
}
while (i < 11)
 < /script >

 Now, if you changed the value of the initial counter to 1, you would see that the script loops through the
multiplication table as it did in the last example until it gets to 11.

 for
 The for statement executes a block of code a specified number of times. You use it when you want to
specify how many times you want the code to be executed (rather than running while a particular
condition is true/false). It is worth noting here that the number of times that the for loop runs could be
specified by some other part of the code. First, here is the syntax (which always takes three arguments):

for (a; b; c)
{
 code to be executed
}

 Now you need to look at what a , b , and c represent:

 a is evaluated before the loop is run, and is only evaluated once. It is ideal for assigning a value
to a variable; for example, you might use it to set a counter to 0 using i=0 .

 b should be a condition that indicates whether the loop should be run again; if it returns true
the loop runs again. For example, you might use this to check whether the counter is less
than 11.

 c is evaluated after the loop has run and can contain multiple expressions separated by a comma
(for example, i++, j++;). For example, you might use it to increment the counter.

 So if you come back to the 3 times table example again, it would be written something like this
(ch11_eg11.html):

for (i=0; i < 11; i++) {
 document.write(i + “ x 3 = “ + (i * 3) + “ < br / > ”);
}

❑

❑

❑

c11.indd 513c11.indd 513 11/20/09 5:09:56 PM11/20/09 5:09:56 PM

Chapter 11: Learning JavaScript

514

 Let ’ s look at the for statement in small chunks:

 i=0 The counter is assigned to have a value of 0.

 i < 11 The loop should run if the value of the counter is less than 11.

 i++ The counter is incremented by 1 every time the loop runs.

 The assignment of the counter variable, the condition, and the incrementing of the counter all appear in
the parentheses after the keyword for .

 You can also assign several variables at once in the part corresponding to the letter a if you separate
them with a comma, for example, i = 0, j = 5; . It is also worth noting that you can count downward
with loops as well as up.

 Infinite Loops and the break Statement
 Note that, if you have an expression that always evaluates to true in any loop, you end up with
something known as an infinite loop . These can tie up system resources and can even crash the computer,
although some browsers try to detect infinite loops and then stop the loop.

 You can, however, add a break statement to stop an infinite loop; here it is set to 100 (ch11_eg12.html):

for (i=0; /* no condition here */ ; i++) {
 document.write(i + “ x 3 = “ + (i * 3) + “ < br / > ”);
 if (i == 100) {
 break;
 }
}

 When the script gets to a break statement it simply stops running. This effectively prevents a loop from
running too many times.

 Events
 All browsers are expected to support a set of events known as intrinsic events such as the onload event,
which happens when a page has finished loading, onclick for when a user clicks on an element, and
 onsubmit for when a form is submitted. These events can be used to trigger a script.

 You have already seen event handlers used as attributes on XHTML elements — such as the onclick
attribute on an < a > element and the onsubmit attribute on the < form > element. The value of the
attribute is the script that should be executed when the event occurs on that element (sometimes this will
be a function in the < head > of the document).

❑

❑

❑

c11.indd 514c11.indd 514 11/20/09 5:09:56 PM11/20/09 5:09:56 PM

Chapter 11: Learning JavaScript

515

 There are two types of events that can be used to trigger scripts:

 Window events, which occur when something happens to a window. For example, a page loads
or unloads (is replaced by another page or closed) or focus is being moved to or away from a
window or frame .

 User events, which occur when the user interacts with elements in the page using a mouse (or
other pointing device) or a keyboard, such as placing the mouse over an element, clicking on an
element, or moving the mouse off an element.

 For example, the onmouseover and onmouseout events can be used to change an image ’ s src attribute
and create a simple image rollover, as you saw earlier in the chapter:

 < a href=””
 onmouseover=”document.images.link.src=’images/click_red.gif’;”
 onmouseout=”document.images.link.src=’images/click_green.gif’” >
 < img src=”images/click_green.gif” width=”100” height=”50” border=”0”
 name=”link” >
 < /a >

 The table that follows provides a recap of the most common events you are likely to come across.

 Event Purpose Applies To

 onload Document has finished loading (if used in a
frameset, all frames have finished loading).

 < body >
 < frameset >

 onunload Document is unloaded, or removed, from a
window or frameset.

 < body >
 < frameset >

 onclick Button on mouse (or other pointing device) has
been clicked over the element.

 Most elements

 ondblclick Button on mouse (or other pointing device) has
been double - clicked over the element.

 Most elements

 onmousedown Button on mouse (or other pointing device) has
been depressed (but not released) over the element.

 Most elements

 onmouseup Button on mouse (or other pointing device) has
been released over the element.

 Most elements

 onmouseover Cursor on mouse (or other pointing device) has
been moved onto the element.

 Most elements

 onmousemove Cursor on mouse (or other pointing device) has
been moved while over the element.

 Most elements

 onmouseout Cursor on mouse (or other pointing device) has
been moved off the element.

 Most elements

❑

❑

Continued

c11.indd 515c11.indd 515 11/20/09 5:09:56 PM11/20/09 5:09:56 PM

Chapter 11: Learning JavaScript

516

 Event Purpose Applies To

 onkeypress A key is pressed and released. Most elements

 onkeydown A key is held down. Most elements

 onkeyup A key is released. Most elements

 onfocus Element receives focus either by mouse (or other
pointing device) clicking it, tabbing order giving
focus to that element, or code giving focus to the
element.

 < a > < area >
 < button > < input >
 < label > < select >
 < textarea >

 onblur Element loses focus. < a > < area >
 < button > < input >
 < label > < select >
 < textarea >

 onsubmit A form is submitted. < form >

 onreset A form is reset. < form >

 onselect User selects some text in a text field. < input >
 < textarea >

 onchange A control loses input focus and its value has been
changed since gaining focus.

 < input > < select >
 < textarea >

 You will see examples of these events used throughout this and the next chapter. You can also check
which elements support which methods in Chapters 1 through 6 as those elements are discussed; almost
every element can be associated with at least one event.

 Built - in Objects
 You learned about the document object at the beginning of the chapter and now it is time to see some of
the objects that are built into the JavaScript language. You will see the methods that allow you to perform
actions upon data, and properties that tell you something about the data.

 String
 The string object allows you to deal with strings of text. Before you can use a built - in object, you need
to create an instance of that object. You create an instance of the string object by assigning it to a
variable like so:

myString = new String(‘Here is some bold text’)

c11.indd 516c11.indd 516 11/20/09 5:09:57 PM11/20/09 5:09:57 PM

Chapter 11: Learning JavaScript

517

 The string object now contains the words “ Here is some bold text ” and this is stored in a variable called
 myString . Once you have this object in a variable, you can write the string to the document or perform
actions upon it. For example, the following method writes the string as if it were in a < b > element:

document.write(myString.bold())

 Note that if you viewed the source of this element, it would not actually have the < b > element in it;
rather, you would see the JavaScript, so that a user who did not have JavaScript enabled would not see
these words at all.

 You can check the length of this string like so; the result will be the number of characters including
spaces and punctuation (in this case 41):

MyString = new String(“How many characters are in this sentence?”)
alert(myString.length)

 Before you can use the string object, remember you first have to create it and then give it a value.

 Properties
 The following table shows the main property for the string object and its purpose.

 Property Purpose

 length Returns the number of characters in a string .

 Methods
 The following table lists the methods for the string object and their purposes.

 Method Purpose

 anchor(name) Creates an anchor element (an < a > element with a name or id
attribute rather than an href attribute).

 big() Displays text as if in a < big > element.

 bold() Displays text as if in a < bold > element.

 charAt(index) Returns the character at a specified position (for example, if
you have a string that says “ banana ” and your method reads
 charAt(2) , then you will end up with the letter n —
 remember that indexes start at 0).

 fixed() Displays text as if in a < tt > element.

 fontcolor(color) Displays text as if in a < font > element with a color attribute.

 fontsize(fontsize) Displays text as if in a < font > element with a size attribute.

Continued

c11.indd 517c11.indd 517 11/20/09 5:09:57 PM11/20/09 5:09:57 PM

Chapter 11: Learning JavaScript

518

 Method Purpose

 indexOf(searchValue,
[fromindex])

 Returns the position of the first occurrence of a specified
character (or set of characters) inside another string.

 For example, if you have the word “ banana ” as your string,
and you want to find the first occurrence of the letter n within
 “ banana ” you use indexOf(n) .

 If you supply a value for the fromIndex argument, the search
will begin at that position. For example, you might want to
start after the fourth character, in which case you could use
 indexOf(n,3) .

 The method returns - 1 if the string being searched for never
occurs.

 italics() Displays text as if in an < i > element.

 lastIndexOf(searchValue,
[fromIndex])

 Same as indexOf() method, but runs from right to left.

 link(targetURL) Creates a link in the document.

 small() Displays text as if in a < small > element.

 strike() Displays text as if in a < strike > element.

 sub() Displays text as if in a < sub > element.

 substr(start, [length]) Returns the specified characters. 14,7 returns 7 characters, from
the 14

th character (starts at 0).

 substring(startPosition,
endPosition)

 Returns the specified characters between the start and end
index points. 7,14 returns all characters from the 7th up to but
not including the 14th (starts at 0).

 sup() Displays text as if in a < sup > element.

 toLowerCase() Converts a string to lowercase.

 toUpperCase() Converts a string to uppercase.

 Try It Out Using the String Object

 In this example, you see a subsection of a string collected and turned into all uppercase letters. The full
string (at the beginning of the example) will hold the words “ Learning about Built - in Objects is easy ” ;
then the code just extracts the words “ Built - in Objects ” from the string, and finally it turns the selected
part of the string into uppercase characters.

c11.indd 518c11.indd 518 11/20/09 5:09:57 PM11/20/09 5:09:57 PM

Chapter 11: Learning JavaScript

519

 1. Create a skeleton XHTML document, like so:

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:land=”en” >
 < head >
 < title > String Object < /title >
 < /head >
 < body >
 < /body >
 < /html >

 2. Because the code in this example is going to be run in only one place, the script can be added
inside the body of the document, so add the < script > element and inside it write the
following code:

 < script type=”text/JavaScript” >
 myString = new String(‘Learning about Built-in Objects is easy’)
 myString = myString.substring(15, 31)
 myString = myString.toUpperCase()
 document.write(myString)
 < /script >

 Let ’ s look at this a little closer. First you have to create an instance of the string object, which
is assigned to the variable myString :

myString = new String(‘Learning about Built-in Objects is easy’)

 As it has been created, the string object has been made to hold the words Learning about
Built - in Objects is easy . But, the idea of this exercise is just to select the words “ Built - in
Objects ” so you use the substring() method to extract those words. The syntax is as follows:

substring(startPosition, endPosition)

 So you select the string object (which is in the variable myString) and make its value the new
substring you want (this is reassigning the value of the variable with the substring you want):

myString = myString.substring(15, 32)

 This selects the string from the 16 th character to the 33 rd character — because it starts at
position 0.

 Next, you must convert the string to uppercase using the toUpperCase() method:

myString = myString.toUpperCase()

 And finally you can write it to the document like so:

document.write(myString)

 3. Save this file as ch11_eg14.html and when you open it in the browser, you should see the
text shown in Figure 11 - 9.

c11.indd 519c11.indd 519 11/20/09 5:09:58 PM11/20/09 5:09:58 PM

Chapter 11: Learning JavaScript

520

 The result looks quite simple, but when you consider that the original string was Learning about
Built - in Objects is easy , it now looks substantially different.

 Date
 The date object helps you work with dates and times. You create a new date object using the date
constructor like so:

new Date()

 You can create a date object set to a specific date or time, in which case you need to pass it one of four
parameters:

 milliseconds : This value should be the number of milliseconds since 01/01/1970.

 dateString : Can be any date in a format recognized by the parse() method.

 yr_num , mo_num , day_num : Represents year, month, and day.

 yr_num , mo_num , day_num , hr_num , min_num , seconds_num , ms_num : Represents the years,
days, hours, minutes, seconds, and milliseconds.

 Here are some examples; the first uses milliseconds and will read Thu Nov 27 05:33:20 UTC 1975 :

var birthDate = new Date(8298400000)
document.write(birthDate)

 The second uses a dateString , and will read Wed Apr 16 00:00:00 UTC+0100 1975 :

var birthDate = new Date(“April 16, 1975”)
document.write(birthDate)

 The third uses yr_num , mo_num , and day_num , and will read Mon May 12 00:00:00 UTC+0100 1975 :

var birthDate = new Date(1975, 4, 28)
document.write(birthDate)

❑

❑

❑

❑

Figure 11-9

c11.indd 520c11.indd 520 11/20/09 5:09:58 PM11/20/09 5:09:58 PM

Chapter 11: Learning JavaScript

521

 There are a few things to watch out for:

 The first confusing thing you might notice here is that the number 4 corresponds to the month of
May! That makes January 0. Similarly, when working with days, Sunday is treated as 0.

 You might find that you get different time zones than I do. I am based in London, so I run on
Greenwich Mean Time (GMT) or Coordinated Universal Time (UTC). All the date object ’ s
workings are performed using UTC, even though your computer may display a time that is
consistent with your time zone.

 While you can add or subtract dates, your result will end up in milliseconds. For example, if I
wanted to find out the number of days until the end of the year, I might use something like this:

var today = new Date()
var newYear = new Date(2010,11,31)
var daysRemaining = (newYear - today)
document.write(daysRemaining)

 The problem with this is that you end up with a result that is very long (plus if you read this during 2010
or minus if you read it after 2010). With 86,400,000 milliseconds in each day, you are likely to see a very
large figure.

 So, you need to divide the daysRemaining by the number of milliseconds in the day (86400000) to find
the number of days (ch11_eg15.html):

var today = new Date()
var newYear = new Date(2010,11,31)
var daysRemaining = (newYear - today)
daysRemaining = daysRemaining/86400000
document.write(daysRemaining)

 When you use the date object, you need to bear in mind that a user ’ s computer click may well be
inaccurate and the fact that different users could be in various time zones.

 The following table shows some commonly used methods of the date object.

 Method Purpose

 date() Returns a Date object

 getDate() Returns the date of a Date object (from 1 to 31)

 getDay() Returns the day of a Date object (from 0 to 6; 0=Sunday, 1=Monday,
and so on)

 getMonth() Returns the month of a Date object (from 0 to 11; 0=January,
1=February, and so on)

 getFullYear() Returns the year of a Date object (four digits)

 getYear() Returns the year of a Date object using only two digits (from 0 to 99)

❑

❑

❑

Continued

c11.indd 521c11.indd 521 11/20/09 5:09:59 PM11/20/09 5:09:59 PM

Chapter 11: Learning JavaScript

522

 Method Purpose

 getHours() Returns the hours of a Date object (from 0 to 23)

 getMinutes() Returns the minutes of a Date object (from 0 to 59)

 getSeconds() Returns the seconds of a Date object (from 0 to 59)

 getTime() Returns the number of milliseconds since midnight 1/1/1970

 getTimezoneOffset() Returns the time difference between the user ’ s computer and GMT

 parse() Returns a string date value that holds the number of milliseconds
since January 01 1970 00:00:00

 setDate() Sets the date of the month in the Date object (from 1 to 31)

 setFullYear() Sets the year in the Date object (four digits)

 setHours() Sets the hours in the Date object (from 0 to 23)

 setMinutes() Sets the minutes in the Date object (from 0 to 59)

 setMonth() Sets the months in the Date object (from 0 to 11; 0=January,
1=February)

 setSeconds() Sets the seconds in the Date object (from 0 to 59)

 setTime() Sets the milliseconds after 1/1/1970

 setYear() Sets the year in the Date object (00 to 99)

 toGMTString() Converts the Date object to a string, set to GMT time zone

 toLocaleString() Converts the Date object to a string, set to the current time zone of
the user

 toString() Converts the Date object to a string

 Many of the methods in the table that follows were then added offering support for the universal (UTC)
time, which takes the format Day Month Date, hh,mm,ss UTC Year .

 Method Purpose

 getUTCDate() Returns the date of a Date object in universal (UTC) time

 getUTCDay() Returns the day of a Date object in universal time

 getUTCMonth() Returns the month of a Date object in universal time

 getUTCFullYear() Returns the four - digit year of a Date object in universal time

 getUTCHours() Returns the hour of a Date object in universal time

c11.indd 522c11.indd 522 11/20/09 5:09:59 PM11/20/09 5:09:59 PM

Chapter 11: Learning JavaScript

523

 Method Purpose

 getUTCMinutes() Returns the minutes of a Date object in universal time

 getUTCSeconds() Returns the seconds of a Date object in universal time

 getUTCMilliseconds() Returns the milliseconds of a Date object in universal time

 setUTCDate() Sets the date in the Date object in universal time (from 1 to 31)

 setUTCDay() Sets the day in the Date object in universal time (from 0 to 6;
Sunday=0, Monday=1, and so on)

 setUTCMonth() Sets the month in the Date object in universal time (from 0 to 11;
0=January, 1=February)

 setUTCFullYear() Sets the year in the Date object in universal time (four digits)

 setUTCHour() Sets the hour in the Date object in universal time (from 0 to 23)

 setUTCMinutes() Sets the minutes in the Date object in universal time (from 0 to 59)

 setUTCSeconds() Sets the seconds in the Date object in universal time (from 0 to 59)

 setUTCMilliseconds() Sets the milliseconds in the Date object in universal time (from 0
to 999)

 Math
 The math object helps in working with numbers. It has properties for mathematical constants and
methods representing mathematical functions such as the Tangent and Sine functions.

 For example, the following sets a variable called numberPI to hold the constant of pi and then write it to
the screen (ch11_eg16.html):

numberPI = Math.PI
document.write (numberPI)

 The following example rounds pi to the nearest whole number (integer) and writes it to the screen (also
shown in ch11_eg16.html):

numberPI = Math.PI
numberPI = Math.round(numberPI)
document.write (numberPI)

 Properties
 The following table lists the properties of the math object.

c11.indd 523c11.indd 523 11/20/09 5:09:59 PM11/20/09 5:09:59 PM

Chapter 11: Learning JavaScript

524

 Property Purpose

 E Returns the base of a natural logarithm

 LN2 Returns the natural logarithm of 2

 LN10 Returns the natural logarithm of 10

 LOG2E Returns the base - 2 logarithm of E

 LOG10E Returns the base - 10 logarithm of E

 PI Returns pi

 SQRT1_2 Returns 1 divided by the square root of 2

 SQRT2 Returns the square root of 2

 Methods
 The following table lists the methods for the math object.

 Method Purpose

 abs(x) Returns the absolute value of x

 acos(x) Returns the arccosine of x

 asin(x) Returns the arcsine of x

 atan(x) Returns the arctangent of x

 atan2(y,x) Returns the angle from the x - axis to a point

 ceil(x) Returns the nearest integer greater than or equal to x

 cos(x) Returns the cosine of x

 exp(x) Returns the value of E raised to the power of x

 floor(x) Returns the nearest integer less than or equal to x

 log(x) Returns the natural log of x

 max(x,y) Returns the number with the highest value of x and y

 min(x,y) Returns the number with the lowest value of x and y

 pow(x,y) Returns the value of the number x raised to the power of y

 random() Returns a random number between 0 and 1

c11.indd 524c11.indd 524 11/20/09 5:10:00 PM11/20/09 5:10:00 PM

Chapter 11: Learning JavaScript

525

 Method Purpose

 round(x) Rounds x to the nearest integer

 sin(x) Returns the sine of x

 sqrt(x) Returns the square root of x

 tan(x) Returns the tangent of x

 Array
 An array is like a special variable. It ’ s special because it can hold more than one value, and these values
can be accessed individually. Arrays are particularly helpful when you want to store a group of values in
the same variable rather than having separate variables for each value. You may want to do this because
all the values correspond to one particular item, or just for the convenience of having several values in
the same variable rather than in differently named variables; or it might be because you do not know
how many items of information are going to be stored (for example, you might store the items that
would appear in a shopping basket in an array). You often see arrays used in conjunction with loops,
where the loop is used to add information into an array or read it from the array.

 You need to use a constructor with an array object, so you can create an array by specifying either the
name of the array and how many values it will hold or by adding all the data straight into the array. For
example, here is an array that is created with three items; it holds the names of musical instruments:

instruments = new Array(“guitar”, “drums”, “piano”)

 The items in the array can be referred to by a number that reflects the order in which they are stored in
the array. The number is an index, so it begins at 0. For example, you can refer to the guitar as
 instruments[0] , the drums as instruments[1] , and so on.

 An array does need to know how many items you want to store in it, but you do not need to provide
values for each item in the array when it is created; you can just indicate how many items you want to be
able to store (to confuse matters, this value does not start at 0 so it will create three elements not four):

instruments = new Array(3)

 This number is stored in the length property of the array object and the contents are not actually
assigned yet. If you want to increase the size of an array, you can just assign a new value to the length
property that is higher than the current length.

 Here is an example that creates an array with five items and then checks how many items are in the
array using the length property:

fruit = new Array(“apple”, “banana”, “orange”, “mango”, “lemon”)
document.write(fruit.length)

 Here is an example of the toString() method, which converts the array to a string.

document.write(‘These are ‘ + fruit.toString())

c11.indd 525c11.indd 525 11/20/09 5:10:00 PM11/20/09 5:10:00 PM

Chapter 11: Learning JavaScript

526

 Keeping the related information in the one variable tends to be easier than having five variables, such as
 fruit1 , fruit2 , fruit3 , fruit4 , and fruit5 . Using one array like this also takes up less memory than
storing five separate variables, and in situations when you might have varying numbers of fruit it allows
the variable to grow and shrink in accordance with your requirements (rather than creating ten variables,
half of which might be empty).

 Methods
 The table that follows lists the methods of an array:

 Method Purpose

 concat() Joins (or concatenates) two or more arrays to create one new one

 join(separator) Joins all of the elements of an array together separated by the character
specified as a separator (the default is a comma)

 reverse() Returns the array with items in reverse order

 slice() Returns a selected part of the array (if you do not need it all)

 sort() Returns a sorted array, sorted by alphabetical or numerical order

 Window
 Every browser window and frame has a corresponding window object that is created with every instance
of a < body > or < frameset > element.

 For example, you can change the text that appears in the browser ’ s status bar using the status property
of the window object. To do this, first you need to add a function in the head that is going to be triggered
when the page loads, and then you use this function to indicate what should appear in the status bar:

 < script type=”text/javascript” >
 function statusBarText()
 {
 window.status = “Did you see me down here?”
 }
 < /script >

 You then call this function from the < body > element ’ s onload event, like so:

 < body onload=”statusBarText()” >

 Properties
 The table that follows lists the properties of the window object.

c11.indd 526c11.indd 526 11/20/09 5:10:01 PM11/20/09 5:10:01 PM

Chapter 11: Learning JavaScript

527

 Property Purpose

 closed A Boolean determining if a window has been closed. If it has, the value
returned is true .

 defaultStatus Defines the default message displayed in a browser window ’ s status bar
(usually at the bottom of the page on the left).

 document The document object contained in that window.

 frames An array containing references to all named child frames in the current
window.

 history A history object that contains details and URLs visited from that window
(mainly for use in creating back and forward buttons like those in the
browser).

 location The location object; the URL of the current window.

 name The window ’ s name.

 status Can be set at any time to define a temporary message displayed in the status
bar; for example, you could change the message in the status bar when a
user hovers over a link by using it with an onmouseover event on that link.

 statusbar The status bar has a property that indicates whether the status bar
is visible. The value is a Boolean true or false — for example,
window.statusbar[.visible=false] .

 toolbar The toolbar has a property that indicates whether the scrollbar is visible
or not. Its value is a Boolean true or false — for example,
window.toolbar[.visible=false] . This can be set only when you create
the new window.

 top A reference for the topmost browser window if several windows are open on
the desktop.

 window The current window or frame.

 Methods
 The table that follows lists the methods of the window object.

 Method Purpose

 alert() Displays an alert box containing a message and an OK button.

 back() Same effect as the browser ’ s Back button.

 blur() Removes focus from the current window.

Continued

c11.indd 527c11.indd 527 11/20/09 5:10:01 PM11/20/09 5:10:01 PM

Chapter 11: Learning JavaScript

528

 Method Purpose

 close() Closes the current window or another window if a reference to
another window is supplied.

 confirm() Brings up a dialog box asking users to confirm that they want
to perform an action with either OK or Cancel as the options.
They return true and false, respectively.

 focus() Gives focus to the specified window and brings it to the top of
others.

 forward() Equivalent to clicking the browser ’ s Forward button.

 home() Takes users to their browser ’ s designated homepage.

 moveBy(horizontalPixels,
verticalPixels)

 Moves the window by the specified number of pixels in
relation to current coordinates.

 moveTo(Xpostion,
Yposition)

 Moves the top left of the window to the specified x - y
coordinates.

 open(URL, name
[,features])

 Opens a new browser window (this method is covered in more
detail in the next chapter).

 print() Prints the content of the current window (or brings up the
browser’s print dialog).

 prompt() Creates a dialog box for the user to enter an input.

 stop() Same effect as clicking the Stop button in the browser.

 Writing JavaScript
 You need to be aware of a few points when you start writing JavaScript:

 JavaScript is case - sensitive, so a variable called myVariable is different than a variable called
 MYVARIABLE, and both are different than a variable called myvariable .

 When you come across symbols such as (, { , [, ̀̀ , and ̀ they must have a closing symbol to
match: ́ , ̋ ,] , } , and) . (Note how the first bracket opened is the last one to be closed, which is
why the closing symbols are in reverse order here.)

 Like XHTML, JavaScript ignores extra spaces, so you can add white space to your script to make
it more readable. The following two lines are equivalent, even though there are more spaces in
the second line:

myVariable=”some value”
myVariable = “some value”

❑

❑

❑

c11.indd 528c11.indd 528 11/20/09 5:10:01 PM11/20/09 5:10:01 PM

Chapter 11: Learning JavaScript

529

 If you have a large string, you can break it up with a backslash, as you can see here:

document.write(“My first \
 JavaScript example”)

 But you must not break anything other than strings, so this would be wrong:

document.write \
 (“My first JavaScript example”)

 You can insert special characters such as ̋ , ́ , ; , and & , which are otherwise reserved (because
they have a special meaning in JavaScript), by using a backslash before them like so:

document.write(“I want to use a \”quote\” mark \ & an ampersand.”)

 This writes out the following line to the browser:

I want to use a “quote” mark & an ampersand.

 If you have ever used a full programming language such as C++ or Java, you know they require
a semicolon at the end of each line. This is optional in JavaScript unless you want to put more
than one statement on a line.

 A Word About Data Types
 By now you should be getting the idea that you can do different things with different types of data. For
example, you can add numbers together but you cannot mathematically add the letter A to the letter B .
Some forms of data require that you are able to deal with numbers that have decimal places (floating
point numbers); currency is a common example. Other types of data have inherent limitations; for
example, if I am dealing with dates and time, I want to be able to add hours to certain types of data
without getting 25:30 as a time (even though I often wish I could add more hours to a day).

 Different types of data (letters, whole numbers, decimal numbers, dates) are known to have different
 data types ; these allow programs to manage the different types of data in different ways. For example, if
you use the + operator with a string, it concatenates two strings, whereas if it is used with numbers, it
adds the two numbers together. Some programming languages require that you specifically indicate
what type of data a variable is going to hold and require you to be able to convert between types. While
JavaScript supports different data types, as you are about to see, it handles conversion between types
itself, so you never need to worry about telling JavaScript that a certain type of data is a date or a string
(a string being a set of characters that may include letters and numbers).

 There are three simple data types in JavaScript:

 Number: Used to perform arithmetic operations (addition, subtraction, multiplication, and
division). Any whole number or decimal number that does not appear between quotation marks
is considered a number.

 String: Used to handle text. It is a set of characters (including numbers, spaces, and punctuation)
enclosed by quotation marks.

 Boolean: A Boolean value has only two possible values: true and false . This data allows you
to perform logical operations and check whether something is true or false.

❑

❑

❑

❑

❑

❑

❑

c11.indd 529c11.indd 529 11/20/09 5:10:02 PM11/20/09 5:10:02 PM

Chapter 11: Learning JavaScript

530

 You may also come across two other data types:

 Null: Indicates that a value does not exist. This is written using the keyword null . This is an
important value because it explicitly states that no value has been given. This can mean a very
different thing from a string that just contains a space or a zero.

 Undefined: Indicates a situation where the value has not been defined previously in code and
uses the JavaScript keyword undefined . You might remember that if you declare a variable but
do not give it a value, the variable is said to be undefined (you are particularly likely to see this
when something is not right in your code).

 Keywords
 You may have noticed that there are several keywords in JavaScript that perform functions, such as
 break , for , if , and while , all of which have special meaning; therefore, these words should not be used
in variable, function, method, or object names. The following is a list of the keywords that you should
avoid using (some of these are not actually used yet, but are reserved for future use):

abstract boolean break byte case catch char class const
continue default do double else extends false final
finally float for function goto if implements import
in instanceof int interface long native new null
package private protected public return short static
super switch synchronized this throw throws transient
true try var void while with

 Summary
 This chapter has introduced you to a lot of new concepts: objects, methods, properties, events, arrays,
functions, interfaces, object models, data types, and keywords. While it ’ s a lot to take in all at once, by
the time you have looked at some of the examples in the next chapter it should be a lot clearer. After
reading that chapter, you can read through this chapter again and you should be able to understand
more examples of what can be achieved with JavaScript.

 You started off by looking at how you can access information from a document using the Document
Object Model (this chapter focused on the Level 0 DOM).

 Once you have figured out how to get information from a document, you can use JavaScript to perform
calculations upon the data in the document. JavaScript mainly performs calculations using features such
as the following:

 Variables (which store information in memory)

 Operators (such as arithmetic and comparison operators)

 Functions (which live in the < head > of a document and contain code that is called by an event)

 Conditional statements (to handle choices of actions based on different circumstances)

 Loops (to repeat statements until a condition has been met)

❑

❑

❑

❑

❑

❑

❑

c11.indd 530c11.indd 530 11/20/09 5:10:02 PM11/20/09 5:10:02 PM

Chapter 11: Learning JavaScript

531

 As you will see in Chapter 12, these simple concepts can be brought together to create quite powerful
results. In particular, when you see some of the validation scripts that will check the form data users
enter, you will see some quite advanced JavaScript, and you will have a good idea of how basic building
blocks can create complex structures.

 Finally, you looked at a number of other objects made available through JavaScript; you met the string ,
 date , math , array , and window objects. Each object contains related functionality; each has properties
that tell you about the object (such as the date, the time, the size of window, or length of string), and
methods that allow you to do things with this data stored in the object.

 I hope you are starting to get a grasp of how JavaScript can help you add interactivity to your pages, but
you will really get to see how it does this in the next chapter when you delve into examples of JavaScript
libraries and look at examples that will really help you make use of JavaScript.

 Exercises
 1. Create a script to write out the multiplication table for the number 5 from 1 to 20 using a

while loop.

 2. Modify ch11_eg06.html so that it can say one of three things:

❑ “ Good Morning ” to visitors coming to the page before 12 P.M. (using an if statement).

❑ “ Good Afternoon ” to visitors coming to the page between 12 and 6 P.M. — again using an
 if statement. (Hint: You might need to use a logical operator.)

❑ “ Good Evening ” to visitors coming to the page after 6 P.M. up until midnight (again using
an if statement).

c11.indd 531c11.indd 531 11/20/09 5:10:02 PM11/20/09 5:10:02 PM

c11.indd 532c11.indd 532 11/20/09 5:10:03 PM11/20/09 5:10:03 PM

 12
Working with JavaScript

 You learned the key concepts behind the JavaScript language in Chapter 11; in this chapter, you see
how these concepts come together in working scripts. By looking at several examples, you learn
different ways in which JavaScript can interact with your web pages, some helpful coding
practices for writing your own JavaScripts, and some shortcuts to creating interactive pages. The
chapter is roughly split into two sections:

 Creating your own basic scripts: The first section focuses on how to write your own basic
scripts. Most of these examples work with form elements.

 Using pre - written JavaScript libraries: The second section focuses on a number of scripts
that have already been written and shows you how you can add powerful and complex
features to your site with just a few lines of code.

 By the end of the chapter, not only will you have learned a lot about using JavaScript in your pages, but
you will also have seen many helpful tools and techniques you can use in your own pages.

 Practical Tips for Writing Scripts
 Before you start looking at the examples, I ’ d like to share a few practical hints on developing
JavaScripts that should save you time.

 Has Someone Already Written This Script?
 There are thousands of free JavaScripts already on the Web, so before you start writing a script
from scratch, it is worth searching to see if someone has already done all the hard work for you.
Here are a couple of sites that will help you get going (and don ’ t forget you can search using a
search engine such as Google, too):

 www.HotScripts.com

 www.JavaScriptKit.com

❑

❑

❑

❑

c12.indd 533c12.indd 533 11/20/09 11:32:10 PM11/20/09 11:32:10 PM

Chapter 12: Working with JavaScript

534

 www.webreference.com/programming/javascript/

 http://JavaScript.Internet.com

 Of course, for some tasks you will have to write your own script, but you may still find that someone has
written a script that does something similar (and could learn something just by looking at how they
approached the problem).

 You will see more about this topic near the end of the chapter when you look at using existing
JavaScript libraries.

 Reusable Functions
 Along with reusing other people ’ s scripts and folders, you can also write code that you can reuse
yourself. For example, you might build several sites that use a similar form that allows people to contact
the site owners. On each contact form there might be several fields that are required, and you might
decide to write a script to ensure that people fill in the required fields. Rather than writing a new script
for each site, you can create a script that you can use on any contact form you write.

 So, you should aim to make your code as reusable as possible, rather than writing a script that will only
work with one page. You will see examples of this shortly.

 Using External JavaScript Files
 Whenever you are going to use a script in more than one page it ’ s a good idea to place it in an external
JavaScript file (a technique you learned about at the beginning of Chapter 11). For example, if you
wanted to create a newsletter signup form on each page of your site, then you might use a script to check
that the text entered into the e - mail address box is in a valid e - mail format. Rather than including this
script on every page, if the script lives in an external JavaScript file:

 You do not have to copy and paste the same code into several files.

 The file size of the pages is smaller because the JavaScript is in one file that is included on each
page rather than repeated in multiple pages.

 If you need to change something about the script, you need to change only the one script, not
every page that uses it.

 Place Scripts in a Scripts Folder
 When you use external scripts you should create a special scripts folder — just as you would an
 images folder. This helps improve the organization of your site and your directory structure. Whenever
you need to look at or change a script, you know exactly where it will be.

 You should also use intuitive names for your script files so that you can find them quickly and easily.

❑

❑

❑

❑

❑

c12.indd 534c12.indd 534 11/20/09 11:32:11 PM11/20/09 11:32:11 PM

Chapter 12: Working with JavaScript

535

 Form Validation
 Form validation is one of the most common tasks performed using JavaScript. You have likely come
across forms on the Web that have shown you a prompt when you have not entered a value into a field
that requires one, or when you have entered the wrong kind of value; this is because the form has been
 validated . That is, a script has checked to see whether the text you have entered or choices you have made
match some rules that the programmer has written into the page. For example, if you are expected to
enter an e - mail address, these validation rules may check what you entered to ensure that it contains an
 @ symbol and at least one period or full stop. These kinds of rules help ensure that the data provided by
users meets the requirements of the application before being submitted.

 When to Validate
 Validation can happen in two places: in the browser using JavaScript, and on the server using one of
several languages such as ASP.NET or PHP. In fact, applications that collect important information using
a form (such as e - commerce orders) are usually validated both in the browser and on the server. You may
wonder why forms are validated in the browser if they will only get checked again when they reach the
server; the reason is that it helps the user enter the correct data required for the job without the form
being sent to the server, being processed, and then being sent back again if there are any errors. This has
two key advantages:

 It ’ s quicker for the user because the form does not need to be sent to the server, processed, and
returned to the user with any relevant error messages.

 It saves the load on the server because some errors will get caught before the form is submitted.

 It is very important to validate on the server because you cannot guarantee that the user has JavaScript
enabled in his or her browser, and if a user entered a wrong value into a database or other program it
could prevent the entire application from running properly. (It is also possible for hackers to bypass
JavaScript if they are intending to send some incorrect information.)

 What You Can Check For
 When it comes to validating a form you cannot always check whether users have given you the correct
information, but you can check whether they have given you some information in the correct format. For
example, you cannot ensure that the user has entered his or her correct phone number; the user could be
entering anyone ’ s phone number, but you can check that it ’ s a number rather than letters or other
characters, and you can check that the number contains a minimum number of digits. As another
example, you can ’ t ensure someone has entered a real e - mail address rather than a false address, but you
can check that whatever was entered followed the general structure of an e - mail address (including an @
sign and a period, and that it is at least seven characters long). So JavaScript form validation is a case of
minimizing the possibility of user errors by validating form controls.

 When it comes to form controls that allow users to indicate their choice from a selection of options (such
as checkboxes, drop - down select boxes, and radio buttons), you can use JavaScript to check that a user
has selected one of the options (for example, to check that a user has checked the terms and conditions).

❑

❑

c12.indd 535c12.indd 535 11/20/09 11:32:11 PM11/20/09 11:32:11 PM

Chapter 12: Working with JavaScript

536

 How to Check a Form
 There are several ways in which you can check a form. Usually when the user presses the submit button
on a form, it triggers the onsubmit event handler on the < form > element, which in turn calls a
validation function stored either in a separate script or in the head of the document. The function must
then return true in order for the form to be sent, or, if an error is encountered, the function returns
 false and the user ’ s form will not be sent — at which point the form should indicate to the user where
there is a problem with the information the user entered.

 If you use a validation function that is called by the onsubmit event handler, but the user ’ s browser
does not support JavaScript, then the form will still be submitted without the validation checks
taking place.

 In the validation functions you meet in this chapter, the first task will be to set a variable that can be
returned to say whether the script found errors or not. At first, this is set to true (indicating that the
form can be sent because problems were found); then as the script checks the values the user has
entered, if the function finds an error this value can be turned to false to prevent the form
from being submitted.

 Some forms also check values as the user moves between form fields — in which case the values the user
entered are passed to a function that checks that specific form control using the onblur event (which
fires when that form control loses focus).

 Checking Text Fields
 You have probably seen forms on web sites that ask you to provide a username and password, and then
to re - enter the password to make sure you did not mistype something. It might resemble Figure 12 - 1.

Figure 12-1

 Let ’ s take a look at the code for this form, and how it calls the JavaScript that will validate what the user
has entered (ch12_eg01.html).

 < form name=”frmRegister” method=”post” action=”register.aspx”
 onsubmit=”return validate(this);” >
 < div >
 < label for=”txtUserName” > Username: < /label >

c12.indd 536c12.indd 536 11/20/09 11:32:12 PM11/20/09 11:32:12 PM

Chapter 12: Working with JavaScript

537

 < input type=”text” name=”txtUserName” id=”txtUserName” size=”12” / >
 < /div >
 < div >
 < label for=”txtPassword” > Password: < /label >
 < input type=”password” name=”txtPassword” id=”txtPassword” size=”12” / >
 < /div >
 < div >
 < label for=”txtPassword2” > Confirm your password: < /label >
 < input type=”password” name=”txtPassword2” id=”txtPassword2” size=”12”/ >
 < /div >
 < div >
 < input type=”submit” value=”Log in” / >
 < /div >
 < /form >

 The opening < form > tag has an onsubmit attribute; when the user presses the submit button on the
form, the script specified in this attribute will be run.

 < form name=”frmRegister” method=”post” action=”register.aspx”
 onsubmit=”return validate(this);” >

 In this case, when the user presses the submit button, a function called validate() will run. Before the
name of the function is the keyword return ; this indicates that the validate() function will return a
value of true or false (in order for the form to be submitted, the function must return true ; if it
returns false the form is not submitted).

 The validate() function we are writing will take one parameter; it tells the function the form that you
want to process. So, inside the parentheses of the validate() function, you can see the word this ,
which indicates that this is the form you wish to validate (as opposed to any other form that might
appear on the page).

 With a login form like this one, you might want to check a few things:

 That the username is of a minimum length

 That the password is of a minimum length

 That the two passwords match

 In this section, you are going to look at two different ways to approach the validate() function:

 Creating a single function to check the form

 Creating re - usable functions that are called by this function

❑

❑

❑

❑

❑

c12.indd 537c12.indd 537 11/20/09 11:32:12 PM11/20/09 11:32:12 PM

Chapter 12: Working with JavaScript

538

 In both cases, the validate() function will live in the < head > element, and will start by setting a
variable called returnValue to true ; if no errors are found this will be the value that the function
returns, which will in turn allow the form to be sent. If an error is met, the variable will be set to false ,
and the form will not send.

 Single Function Approach
 The first approach we will look at to validate this form is to write a validation script especially for this
one form, where all of the rules live inside the one function (ch12_eg01.html).

 The function will be called validate() and it will expect to be told which form it is working with as a
parameter of the function:

function validate(form) {

 This is why the onsubmit attribute of the < form > element used the keyword this when calling the
function, indicating that this is the form it wanted to process.

 In the script, you want to collect the values that the user entered into the text controls and store these in
variables. You identify the form controls within the page one by one, using the dot notation you met
in the last chapter. You then collect the value the user typed into that control using the value property:

function validate(form) {
 var returnValue = true;
 var username = form.txtUserName.value;
 var password1 = form.txtPassword.value;
 var password2 = form.txtPassword2.value;

 Because we have told the function which form we are working with, the dot notation can start with form
rather than document.frmRegister ; the following two lines would do exactly the same thing:

var username = document.frmRegister.txtUserName.value;
var username = form.txtUserName.value;

 Now you can start to check whether the data that was entered by the user meets the criteria you require
for the form to be submitted. First you can check whether the username is at least six characters long.
The value the user entered into the username form control is already stored in a variable called
 username , and because it is a string (a set of letters or numbers), you can use the length property to tell
how long it is.

 If the username is not long enough, you will need to take action, so you place your validation test in an
 if statement. The following states that if the length of the variable is less than six characters long, the
code in curly braces will be run:

if (username.length < 6) {
 username is less than 6 characters so do something
}

c12.indd 538c12.indd 538 11/20/09 11:32:13 PM11/20/09 11:32:13 PM

Chapter 12: Working with JavaScript

539

 In this case, if it is less than six characters long, you will do three things:

 Set the variable returnValue to false , so that the form will not be submitted.

 Tell the user what has happened so that he or she can correct the error. For this example, we will
use the JavaScript alert() function to create an alert box (like the ones you met in the last
chapter) containing a message for the user.

 Pass focus back to this item (using the JavaScript focus() method) on the form so that the user
can change what he or she had put in this form.

 Here you can see the if statement with all of these actions:

if(username.length < 6) {
 returnValue = false;
 alert(“Your username must be at least\n6 characters long.\n
 Please try again.”);
 frmRegister.txtUserName.focus();
}

 The alert box used to be a very popular way to show users errors on their forms (as it is a very simple
technique of providing feedback). These days, it is more popular to write an error message into the page
itself; however, this is more complicated, so you will see how to do that later in the chapter.

 You may have noticed \n in the middle of the error message; this creates a line break in JavaScript.

 Next you want to check the length of the first password. To do this, you can use the same approach. But
if the password is not long enough you will empty both password controls, and give focus to the first
password box:

if (password1.length < 6) {
 returnValue = false;
 alert(“Your password must be at least\n6 characters long.\n
 Please try again.”);
 frmRegister.txtPassword.value = “”;
 frmRegister.txtPassword2.value = “”;
 frmRegister.txtPassword.focus();
}

 If the code has gotten this far, the username and first password are both long enough. Now, you just
have to check whether the value of the first password box is the same as the second one, as shown here.
Remember that the != operator used in this condition means “ not equal, ” so the if statement will take
action if the value of password1 does not equal that of password2 .

if (password1.value != password2.value) {
 returnValue = false;
 alter(“Your password entries did not match.\nPlease try again.”);
 frmRegister.txtPassword.value = “”;
 frmRegister.txtPassword2.value = “”;
 frmRegister.txtPassword.focus();
}

❑

❑

❑

c12.indd 539c12.indd 539 11/20/09 11:32:13 PM11/20/09 11:32:13 PM

Chapter 12: Working with JavaScript

540

 You can see here that when the user has entered passwords that do not match, the user is shown an alert
box with an error message reporting that the password entries did not match. Also, the contents of both
password inputs are cleared and the focus is passed back to the first password box.

 Because a password input will show dots or asterisks rather than the characters, when a user makes a
mistake with a password input, he or she will not be able to see where the mistake is. This is why I clear
password boxes when a user has made a mistake in them.

 The only thing left to do in this function is return the value of the returnValue variable — which will
be true if all the conditions are met or false if not.

return returnValue;
}

 Here is the function in its entirety (ch12_eg01.html):

function validate(form) {

 var returnValue = true;

 var username = form.txtUserName.value;
 var password1 = form.txtPassword.value;
 var password2 = form.txtPassword2.value;

if(username.length < 6) {
 returnValue = false;
 alert(“Your username must be at least\n6 characters long.\n
 Please try again.”);
 document.frmRegister.txtUserName.focus();
}

if (password1.length < 6) {
 returnValue = false;
 alert(“Your password must be at least\n6 characters long.\n
 Please try again.”);
 document.frmRegister.txtPassword.value = “”;
 document.frmRegister.txtPassword2.value = “”;
 document.frmRegister.txtPassword.focus();
}

if (password1 != password2) {
 returnValue = false;
 alert(“Your password entries did not match.\nPlease try again.”);
 document.frmRegister.txtPassword.value = “”;
 document.frmRegister.txtPassword2.value = “”;
 document.frmRegister.txtPassword.focus();
}
 return returnValue;
}

c12.indd 540c12.indd 540 11/20/09 11:32:13 PM11/20/09 11:32:13 PM

Chapter 12: Working with JavaScript

541

 In Figure 12 - 2 you can see the result if the user ’ s password is not long enough.

Figure 12-2

 This example should have given you a good idea of how to check what a user has entered into a form
against a set of rules.

 Re - Usable Functions Approach
 While the example you just saw works fine, you can save time and effort by writing code that you can
re - use. For example, many programmers have a single JavaScript file that will contain a set of form
validation functions they can use in any form that they write. These functions can check for things like
the following:

 Whether the user has entered text that is longer than the minimum required length as
demonstrated with the username and password in the last example

 Whether the text entered by the user consists only of numbers (no other characters) — which
could be handy for telephone numbers or for asking customers the quantity of goods they want
in an e - commerce store

 Whether, when you are requesting an e - mail address, the user has entered that address in the
correct form

 JavaScript files that contain functions that can be re - used are often known as JavaScript libraries. Let ’ s
look at the same form again, but develop a validation approach that utilizes this approach.

 Using the second approach, we still have to write a validate() function for each form, but the function
is much shorter than the last one you saw. Its job is to pass values from the form to functions in the

❑

❑

❑

c12.indd 541c12.indd 541 11/20/09 11:32:14 PM11/20/09 11:32:14 PM

Chapter 12: Working with JavaScript

542

JavaScript validation library that does the real validation work. So, this time our validate() function
will call two other functions in the JavaScript library:

 validateConfirmPassword() will check that the two password fields match.

 validateMinimumLength() will ensure that the user has entered a minimum number of
characters for the form field.

 You will look at these functions in a moment, but first let ’ s look at the validate() function that calls
them (which lives in the same page as the form); it s job is to pass values from the form to the library
functions. If there is an error, it will then prevent the submission of the form, and will tell the user the
error message. Before you look at each line of the function individually, here is the entire function:

function validate(form) {
 var returnValue = “”;
 returnValue += validateConfirmPassword(form.txtPassword,
 form.txtPassword2,
 ‘Your passwords did not match’);
 returnValue += validateMinimumLength(form.txtPassword, 6,
 ‘Your password must be at least 6 characters long’);
 returnValue += validateMinimumLength(form.txtUserName, 6,
 ‘Your username must be at least 6 characters long’);
 if (returnValue != “”) {
 return false;
 }
 return true;
}

 Let ’ s take a closer look at this; it starts with the function name. The function takes one parameter, the
form it has to validate, which is given in parentheses.

function validate(form) {

 Then a variable called returnValue is declared; this time, rather than being set to true , it is set to an
empty string using empty quotes.

var returnValue = “”;

 You then make three calls to functions, each of which checks a different aspect of the form. We ’ ll look at
each of these in turn in a moment. If these functions find a problem (because the user has not entered
what you wanted), the functions will return an error. You may remember from the last chapter that +=
adds a value onto an existing variable, so if the function returns an error the error message is appended
to the variable returnValue ; if there is not an error, nothing will be added to the variable.

 First you can see we ’ re calling the validateConfirmPassword() function. We tell it the two password
controls that we want it to check using the dot notation, along with the error message we want to display
if the fields do not match.

❑

❑

c12.indd 542c12.indd 542 11/20/09 11:32:14 PM11/20/09 11:32:14 PM

Chapter 12: Working with JavaScript

543

returnValue += validateConfirmPassword(form.txtPassword, form.txtPassword2,
 ‘Your passwords did not match’);

 Because the validateConfirmPassword() function will return the error message if the passwords do
not match, we will know if there is a problem because the returnValue attribute will contain this error
message; it will no longer be empty.

 We then call the validateMinimumLength() function to check the length of the first password control.
Here we are passing in the form control to check, the minimum number of characters the user can enter
for that form control, and the error message to show if the form control is not that length.

 returnValue += validateMinimumLength(form.txtPassword, 6,
 ‘Your password must be at least 6 characters long’);

 We then check that the username entered is more than six characters. To do this we call the
 validateMinimumLength() function a second time. Here you can already start to see the benefits of
code re - use; rather than repeating the entire function again we are using the same function we just used
a second time, but this time we are telling it to check a different form control and display a different error
message if there is a problem.

 returnValue += validateMinimumLength(form.txtUserName, 6,
 ‘Your username must be at least 6 characters long’);

 Having checked these three aspects of the form, if there is a problem returnValue will no longer be
empty. The following if statement says if returnValue is not empty, the validate() function should
return false to say that the form should not be submitted. Otherwise, if it is blank, we can return true ,
which will allow the form to be submitted.

 if (returnValue != “”) {
 return false;
 }
 return true;

 You might notice that we start with the rules that apply to the last items in the form, and work
backwards to the rules that apply to the first form controls. We do this because, when there is an error,
we want to return focus to the form field with the error (just as we did in the first example). If there is
more than one error, we want the user to start at the top of the form, and work through it correcting all
errors, so we want the last error that the script processes to be the first one that the user will see.

 As you will see in a moment, when these functions find an error, not only do they give focus to that form
element, they also write the error message into the page, which means we need to change the form in the
XHTML page slightly. Let ’ s look at the form again; this time there are empty < span > elements after
the form controls. These will hold any error messages that are returned. When designing your form, it is
important to leave enough space in the page for these error messages. It is also very important that there
be no spaces between the closing of the < input / > tag and the start of the < span > tag; otherwise, the
form will not work.

c12.indd 543c12.indd 543 11/20/09 11:32:14 PM11/20/09 11:32:14 PM

Chapter 12: Working with JavaScript

544

 < form name=”frmRegister” method=”post” action=”register.aspx”
 onsubmit=”return validate(this);” >
 < div >
 < label for=”txtUserName” > Username: < /label >
 < input type=”text” id=”txtUserName” size=”12” / > < span
 class=”message” > < /span >
 < /div >
 < div >
 < label for=”txtPassword” > Password: < /label >
 < input type=”password” id=”txtPassword” size=”12” / > < span
 class=”message” > < /span >
 < /div >
 < div >
 < label for=”txtPassword2” > Confirm your password: < /label >
 < input type=”password” id=”txtPassword2” size=”12” / > < span
 class=”message” > < /span >
 < /div >
 < div >
 < input type=”submit” value=”Log in” / >
 < /div >
 < /form >

 So, now let ’ s take a look at the function that will check that a user has entered a minimum number of
characters into a specified form field.

function validateMinimumLength (control, length, errormessage) {
 var error=””;
 document.getElementById(control.id).nextSibling.innerHTML=””;
 if (control.value.length < length) {
 error = errormessage;
 document.getElementById(control.id).nextSibling.innerHTML=errormessage;
 document.getElementById(control.id).focus();
 }
 return error;
}

 We are passing three things into the function so that it can perform its calculation:

 The form control we want to check

 The length of the text we expect the user to have entered

 An error message we will show to the user if the control is not long enough

function validateMinimumLength (control, length, errormessage) {

 You can see in the brackets the words control , length , and errormessage . Inside the function, we
can use these words to refer to the values passed into the function when it was called. For example, look
at this line:

if (control.value.length < length) {

❑

❑

❑

c12.indd 544c12.indd 544 11/20/09 11:32:15 PM11/20/09 11:32:15 PM

Chapter 12: Working with JavaScript

545

 We have an if statement checking whether the length of the control passed in (control) is less than the
minimum number of characters we will allow (length).

 If the user has not entered enough characters, we set the value of a variable called error (which was
declared in the second line of the function) to contain the error message.

error = errormessage;

 We then write the error message into the extra < span > element we added after each form control to
display the problem.

document.getElementById(control.id).nextSibling.innerHTML=errormessage;

 There is a lot going on in this one line, so let ’ s break it down:

 control.id gives you the value of the id attribute of the form control that you are
working with.

 document.getElementById(control.id) gives you the form control you are working with
(the getElementById() method returns an element given an id attribute, and you have just
seen how to get the value of the id attribute for the form control you are working with using
 control.id).

 nextSibling returns the next element after this form control, which is the < span > element
following it that will hold the error message.

 innerHTML=errormessage adds the error message inside that < span > element.

 If there is a problem, we also give the form control with the problem focus:

document.getElementById(control.id).focus();

 We then return the error back to the validate() function in the page with the form (so that it can
prevent the form from being submitted). Before looking at how we pass the error back, you may have
noticed this line of code, which appears before the if statement that checks the length of the value
entered into the form control:

document.getElementById(control.id).nextSibling.innerHTML=””;

 Its purpose is to ensure the < span > element next to the form control is blank. We need to do this because,
once a form has been submitted and errors have been spotted, the user may resubmit the form again —
 in which case we need to clear any error messages, and then check the form control again, and only if
there is still a problem display the error message again.

 As you might imagine, if you are creating a lot of sites, with many forms, the ability to re - use validation
functions saves you from having to code each form again and again.

 Figure 12 - 3 shows the error message generated when the user has not entered a value for the username.

❑

❑

❑

❑

c12.indd 545c12.indd 545 11/20/09 11:32:15 PM11/20/09 11:32:15 PM

Chapter 12: Working with JavaScript

546

 The replace() Method
 Now that you have seen examples of how to validate text fields using a single function and using
re - usable functions, it ’ s time to look at some other ways that you can work with text inputs.

 The JavaScript replace() method often comes in handy with text inputs because it allows you to
replace certain characters with other characters. The simplest way to use the replace() method is to
use the following syntax:

 string .replace(oldSubString , newSubString);

 For example, imagine you had a variable called message . The following line would look at this variable
and replace instances of the letters “ bad ” with the letters “ good ” :

message.replace(‘bad’, ‘good’);

 Let ’ s add this into a form so you can see it working; we have a < textarea > that contains the sentence
“ I think it would be a bad idea to make a badge. ” When the user clicks on the button, we will replace the
letters bad with the word good . Rather than creating a function to demonstrate this, we can simply put
the script we want to run in the onclick event of the button (ch12_eg03.html).

 < form name=”myForm” >
 Message: < textarea name=”myTextArea” id=”myTextArea” cols=”40” rows=”10” >
 I think it would be a bad idea to make a badge. < /textarea >
 < input type=”button” value=”Replace characters bad”
 onclick=”document.myForm.myTextArea.value =
 document.myForm.myTextArea.value.replace(‘bad’, ‘good’);” / >
 < /form >

 If you look at the value of the onclick attribute, it takes whatever was in the text area and replaces any
occurrence of the letters bad with the letters good . Figure 12 - 4 shows you what this might look like after
the user has pressed the button once.

Figure 12-3

c12.indd 546c12.indd 546 11/20/09 11:32:15 PM11/20/09 11:32:15 PM

Chapter 12: Working with JavaScript

547

 There is something interesting to note here. The replace() function replaces the first instance of the
string bad . If the button were pressed again, you would see another issue: the word “ badge ” would turn
into “ goodge ” . We can address both of these issues using something known as a Regular Expression
inside the replace() function.

 Regular Expressions
 Regular Expressions provide a very powerful way to find a particular string, although the downside of
this power is that they can become quite complicated. For example, look at this modified example of the
 replace() method we were just looking at (ch12_eg04.html):

replace(/\bbad\b/gi, ‘good’);

 There are four things going on in this Regular Expression; let ’ s build up to this expression, starting with
the letters bad that we want to replace:

 /bad/ The forward slashes around the string bad indicate that it is looking for a match for
that string.

 /bad/g The g after the second slash (known as a flag) indicates that the document is looking
for a global match across the whole of the string (without the g flag, only the first match in the
string is replaced).

 /bad/gi The i flag indicates that it should be a case - insensitive match (so the string bad
should be replaced in any mix of characters in upper - and lowercase).

 /\bbad\b/gi The \b on either side of the string bad indicates a word boundary — each
specifies that you just want to look for whole words — so the string will be replaced only if the
string bad is a word on its own. The letters bad in the word badge would not be replaced
because the regular expression says there should be a word boundary on both sides of the letters
 bad . (You cannot just check for the presence of a space on either side of the letters bad , because
there might be punctuation next to one of the letters.)

❑

❑

❑

❑

Figure 12-4

c12.indd 547c12.indd 547 11/20/09 11:32:16 PM11/20/09 11:32:16 PM

Chapter 12: Working with JavaScript

548

 Using Regular Expressions, you could also match more than one string using the pipestem character; the
following example looks for a match with bad , terrible , or awful :

/bad|terrible|awful/

 Note that if you want to search for any of the following characters, they must be escaped because they
have special meanings in Regular Expressions:

\ | () [{ ^ $ * + ? .

 If you want to escape these characters, they must be preceded by a backslash (for example /\ \ /
matches a backslash and /\$/ matches a dollar sign).

 The table that follows lists some other interesting characters used in regular expressions.

 Expression Meaning

 \n Linefeed

 \r Carriage return

 \t Tab

 \v Vertical tab

 \f Form - feed

 \d A digit (same as [0 - 9] , which means any digit 0 through 9)

 \D A non - digit (same as [^0 - 9] where ^ means not)

 \w A word (alphanumeric) character (same as [a - zA - Z_0 - 9])

 \W A non - word character (same as [^a - zA - Z_0 - 9])

 \s A white - space character (same as [\t\v\n\r\f])

 \S A non – white - space character (same as [^\t\v\n\r\f])

 For a slightly more complex example, if you wanted to replace all carriage returns or linefeeds with the
 < br / > tag, you could use the following (ch12_eg05.html):

replace(/\r|\n|\r\n|\n\r|/g),’ < br / > ’);”

 In this case, the replace() method is looking for either linefeeds using \n or carriage returns using \r .
Then these are being replaced with < br / > . Figure 12 - 5 shows you what this example could look like
with the carriage returns and line feeds replaced with < br / > tags. If you needed to replace carriage
returns or line feeds with the < br / > element, it is more likely that task would be done behind the
scenes when the form is submitted, rather that giving the user a button to replace these characters. But it
does illustrate how to use the replace() function with a Regular Expression.

c12.indd 548c12.indd 548 11/20/09 11:32:16 PM11/20/09 11:32:16 PM

Chapter 12: Working with JavaScript

549

 Testing Characters Using test() and Regular Expressions
 Regular Expressions really come into their own when you need to test whether strings entered by users
conform to a pattern. For example, Regular Expressions can be used to test whether the string follows a
pattern for e - mail addresses, for an amount of currency, or for a phone number.

 To check whether a value a user has entered matches a regular expression, you can use the test()
method, which takes two parameters: the Regular Expression and the value the user entered. The
 test() method returns true if the value entered by the user matches the regular expression, and false
if it does not.

 Here is an example of a function that checks whether a user entered a currency (ch12_eg06.html). We
will look at it line by line in a moment:

function validate(form) {
 var returnValue = true;
 var amountEntered = form.txtAmount.value;

 if (!/^\d+(\.\d{1,2})?$/.test(amountEntered))
 {
 alert(“You did not enter an amount of money”);
 document.frmCurrency.txtAmount.focus();
 returnValue = false;
 }

return returnValue;
}

 To start, a variable called returnValue is set to true ; this is what will be returned from the function
unless we find an error. Then a variable is set to hold the value the user entered into the form:

 var returnValue = true;
 var amountEntered = form.txtAmount.value;

Figure 12-5

c12.indd 549c12.indd 549 11/20/09 11:32:17 PM11/20/09 11:32:17 PM

Chapter 12: Working with JavaScript

550

 Next, we have to test whether the value the user entered is a currency. We will use the test() method
with the following regular expression:

 /^\d+(\.\d{1,2})?$/

 The test() method is used inside an if statement; note that the first exclamation mark is there to say
 “ If the test fails, perform an action ” :

if (!/^\d+(\.\d{1,2})?$/.test(amountEntered)){

 If the test fails, we have to tell the user, give the focus back to that form control, and set the variable
 returnValue to have a value of false .

 alert(“You did not enter an amount of money”);
 document.frmCurrency.txtAmount.focus();
 returnValue = false;

 Here is the simple form to test this example:

 < form name=”myForm” onsubmit=”return validate(this);”
 action=”money.aspx” method=”get” >
 Enter an amount of money here $
 < input type=”text” name=”txtAmount” id=”txtAmount” size=”7” / >
 < input type=”submit” value=”Check format” / >
 < /form >

 Figure 12 - 6 shows this form in action.

Figure 12-6

 Regular Expressions are not the easiest thing to learn to write, and there are entire books devoted
to writing complex expressions. However, the table that follows lists some helpful ones that you can
use to get you started.

c12.indd 550c12.indd 550 11/20/09 11:32:17 PM11/20/09 11:32:17 PM

Chapter 12: Working with JavaScript

551

 Test for Description Regular Expression

 White space No white - space characters. \S/;

 Alphabetic characters No characters of the alphabet
or the hyphen, period, or
comma may appear in the
string.

 /[^a - z \ - \. ’]/gi;

 Alphanumeric characters No letters or number may
appear in the string.

 /[^a - z0 - 9]/gi;

 Credit card details A 16 - digit credit card number
following the pattern XXXX
XXXX XXXX XXXX.

 /^\d{4}([-]?\d{4}){3}$/;

 Decimal number A number with a decimal
place.

 /^\d+(\.\d+)?$/;

 Currency A group of one or more digits
followed by an optional group
consisting of a decimal point
plus one or two digits.

 /^\d+(\.\d\{1,2})?$/;

 E - mail address An e - mail address. /^\w(\.?[\w -])*@\w(\.?
[\w -])*\.[a - z]{2,6}(\.
[a - z]{2})?$/i;

 Select Box Options
 When you want to work with a drop - down select box, the select object (which represents the
select box) has a very helpful property called selectedIndex , which tells you which option the user
has selected.

 Because this is an index, it will start at 0, so if the user has selected the first option, the selectedIndex
property will have a value of 0 . If the user selects the second option, the selectedIndex property will
be given a value of 1 , the third will be given a value of 2 , and so on.

 By default, if the user does not change the value that the control has when the page loads, the value will
be 0 for a standard select box (because the first option is automatically selected when the form loads). In
a multiple select box (which allows users to select more than one option from the list), the default value
will be 1 if none of the options are selected (which indicates that the user has not selected any option).

c12.indd 551c12.indd 551 11/20/09 11:32:18 PM11/20/09 11:32:18 PM

Chapter 12: Working with JavaScript

552

 Look at the following simple select box; the first option in this select box asks the user to select a suit of
cards (ch12_eg07.html):

 < form name=”frmCards” action=”cards.aspx” method=”get”
 onsubmit=”return validate(this)” >
 < select name=”selCards” id=”selCards” >
 < option > Select a suit of cards < /option >
 < option value=”hearts” > Hearts < /option >
 < option value=”diamonds” > Diamonds < /option >
 < option value=”spades” > Spades < /option >
 < option value=”clubs” > Clubs < /option >
 < /select >
 < input type=”submit” value=”Send selection” / >
 < /form >

 Now, to check that one of the suits of cards has been selected, you have the validate() function, which
will have been passed the form object as a parameter. In the case of this example, if the selectedIndex
property of the object representing the select box has a value of 0 , then you have to alert the users that an
option has not been selected and ask them to do so.

function validate(form) {
 var returnValue = true;
 var selectedOption = form.selCards.selectedIndex;
 if (selectedOption==0)
 {
 returnValue = false
 alert(“Please select a suit of cards.”);
 }
 return returnValue;
}

 In Figure 12 - 7, you can see the warning if the user has not selected a suit of cards.

Figure 12-7

 If you wanted to access the value attribute on the selected option (rather than its index number) you
would use the following syntax:

form.selCards.options[selected].value

c12.indd 552c12.indd 552 11/20/09 11:32:18 PM11/20/09 11:32:18 PM

Chapter 12: Working with JavaScript

553

 This is because you need to look at which of the [option] elements was selected to get its value rather
than just the index number of the selected element.

 Radio Buttons
 A group of radio buttons is different from other form controls in that only one option from a group can
be selected at a time, and all members of the group share a value for the name attribute. Scripts that
interact with radio buttons usually want to either check that one of the options has been selected, or find
out which of the options has been selected.

 A set of radio buttons is represented as an array in JavaScript, and in order to find out which one was
selected, you need to loop through the array, looking at the checked property of each radio button. If it
is selected, the value will be true and false if not. For example, the following is a form with four radio
buttons (ch12_eg08.html):

 < form name=”frmCards” action=”cards.aspx” method=”post”
 onsubmit=”return validateForm(this)” >
 < p > Please select a suit of cards. < /p >
 < p > < input type=”radio” name=”radSuit” value=”hearts” / > Hearts < /p >
 < p > < input type=”radio” name=”radSuit” value=”diamonds” / > Diamonds < /p >
 < p > < input type=”radio” name=”radSuit” value=”spades” / > Spades < /p >
 < p > < input type=”radio” name=”radSuit” value=”clubs” / > Clubs < /p >
 < p > < input type=”submit” value=”Submit choice” / > < /p >
 < /form >

 In order to loop through each of the radio buttons in the collection and see which one has a checked
property, you will use a for loop.

 The following function uses a variable I will call radioChosen to indicate whether one of the radio
buttons has been chosen. Its value starts off as false , and if a button has been chosen the value is set to
 true . Once the loop has gone through each of the radio buttons, an if statement tests whether one of
the options has been selected by looking at the value of this variable:

function validate(form) {
 var radioButtons = form.radSuit;
 var radioChosen = false;
 for (var i=0; i < radioButtons.length; i++) {
 if (radioButtons[i].checked)
 {
 radioChosen=true;
 returnValue=true;
 }
 }
 if (radioChosen == false) {
 returnValue = false;
 alert(“You did not select a suit of cards”);
 }
return returnValue;
}

c12.indd 553c12.indd 553 11/20/09 11:32:19 PM11/20/09 11:32:19 PM

Chapter 12: Working with JavaScript

554

 While the order of attributes on an element should not matter in XHTML, there was a bug in Netscape 6
and some versions of Mozilla, which means it will show a checked property of the radio button only if
the type attribute is the first attribute given on the < input / > element.

 You can see the result in Figure 12 - 8.

Figure 12-8

 Another way to ensure that one of the options is selected is to preselect an option when the page loads.

 Checkboxes
 Checkboxes allow a user to select zero, one, or more items from a set of choices (they are not mutually
exclusive as radio buttons are). As with radio buttons, when a group of checkboxes share the same name
they are made available in JavaScript as an array.

 The following is a slight change to the last example using checkboxes instead of radio buttons, and the
user can select more than one suit of cards (ch12_eg09.html):

 < form name=”frmCards” action=”cards.aspx” method=”post” >
 < p > Please select one or more suits of cards. < /p >
 < p > < input type=”checkbox” name=”chkSuit” value=”hearts” / > Hearts < /p >
 < p > < input type=”checkbox” name=”chkSuit” value=”diamonds” / > Diamonds < /p >
 < p > < input type=”checkbox” name=”chkSuit” value=”spades” / > Spades < /p >
 < p > < input type=”checkbox” name=”chkSuit” value=”clubs” / > Clubs < /p >
 < p > < input type=”button” value=”Count checkboxes”
 onclick=”countCheckboxes(frmCards.chkSuit)” / > < /p >
 < /form >

 The following is the function that counts how many checkboxes have been selected and displays that
number to the user. As with the last example, if no checkboxes have been selected, you can alert the user
that she must select an option value.

c12.indd 554c12.indd 554 11/20/09 11:32:19 PM11/20/09 11:32:19 PM

Chapter 12: Working with JavaScript

555

function countCheckboxes(field) {
 var intCount = 0
 for (var i = 0; i < field.length; i++) {
 if (field[i].checked)
 intCount++; }
 alert(“You selected “ + intCount + “ checkbox(es)”);
}

 You can see the form in Figure 12 - 9 where the user has selected two checkboxes.

Figure 12-9

 Preventing a Form Submission Until a Checkbox Has Been Selected
 If you want to ensure that a single checkbox has been selected — for example, if you want a user to agree
to certain terms and conditions — you can do so by adding a function to the onsubmit event handler
similar to those you have seen already. The function checks whether the checkbox has been checked, and
if the function returns true the form will be submitted. If the function returns false , the user would be
prompted to check the box. The function might look like this (ch12_eg10.html):

function checkCheckBox(myForm){
 if (myForm.agree.checked == false)
 {
 alert(‘You must agree to terms and conditions to continue’);
 return false;
 } else
 return true;
}

 Another technique you may sometimes see is to use script to simply disable the Submit button until
users have clicked the box to say that they agree with the terms and conditions.

 If you use a script to disable a form control until a user has clicked on an option, you should disable the
control in the script when the page loads rather than using the disabled attribute on the element
itself. This is important for those who do not have JavaScript enabled in their browsers. If you use the
 disabled attribute on a < form > element and users do not have JavaScript enabled, they will never be
able to use that form control. However, if you have used a script to disable it when the page loads, then

c12.indd 555c12.indd 555 11/20/09 11:32:19 PM11/20/09 11:32:19 PM

Chapter 12: Working with JavaScript

556

you know that the script will be able to re - enable the form control when the user clicks the appropriate
box. This is a great reminder that JavaScript should be used to enhance usability of pages and should not
be required in order to use a page.

 The following is a very simple page with a form. When the page loads, the Submit button is disabled in
the onload event. If the user clicks the chkAgree checkbox, then the Submit button will be re - enabled
(ch12_eg10.html):

 < body onload=”document.frmAgree.btnSubmit.disabled=true” >
 < form name=”frmAgree” action=”test.aspx” method=”post” >
I understand that this software has no liability:
 < input type=”checkbox” value=”0” name=”chkAgree” id=”chkAgree”
 onclick=”document.frmAgree.btnSubmit.disabled=false” / >
 < input type=”submit” name=”btnSubmit” value=”Go to download” / > < br / >
 < p > You will not be able to submit this form unless you agree to the
 < a href=”terms.html” > terms and conditions < /a > and check the terms and
 conditions box. < /p >
 < /form >
 < /body >

 You can see this example in Figure 12 - 10. Note how there is an explanation of why the Submit button might
be disabled. This helps users understand why they might not be able to click the Submit button.

 This technique can also be used with other form controls — you will see an example that enables a text
input later in the chapter.

Figure 12-10

 Form Enhancements
 The examples you are going to meet in this section do not actually help you validate a form; rather, they
simply enhance the usability of a form.

 Focus on First Form Item
 If a lot of users are likely to interact with your page using a form, you can give focus to that text box
when the page loads so that users do not have to move their mouse, click the text input, and then move
their hands back to the keyboard before they enter any text. You might choose to do this on a page where
there is a prominent login box or an option to search your site.

c12.indd 556c12.indd 556 11/20/09 11:32:20 PM11/20/09 11:32:20 PM

Chapter 12: Working with JavaScript

557

 To give focus to the first text input on a form, simply add an onload event handler to the < body >
element of the document. This handler selects the form control that you want to highlight and uses the
 focus() method of that control to give it focus, as follows (ch12_eg11.html):

 < body onload=”document.myForm.myTextBox.focus();” >

 When the page loads, the cursor should be flashing in the form control that you have selected, ready for
the user to enter some text as shown in Figure 12 - 11 (some browsers may also have other ways of
indicating an active text box, such as a highlighted border or shaded background).

 Note that the onload event fires when the complete page has loaded (not as soon as the browser loads
that individual element). This is worth bearing in mind because, if you have a very complicated page
that takes a long time to load, this might not be a great option for the user; the focus might not be passed
to the form until after the user has already had a chance to start typing in that field.

Figure 12-11

 Auto - Tabbing Between Fields
 The focus() method can also be used to pass the focus of one control to another control. For example, if
one of the controls on a form is to provide a date of birth in MM/DD/YYYY format, then you can move
focus between the three boxes as soon as the user enters a month, and then again once the user has
entered a day (ch12_eg12.html):

 < form name=”frmDOB” >
 Enter your date of birth: < br / >
 < input name=”txtMonth” id=”txtMonth” size=”3” maxlength=”2”
 onkeyup=”if(this.value.length > =2)
 this.form.txtDay.focus();”/ >
 < input name=”txtDay” id=”txtDay” size=”3” maxlength=”2”
 onkeyup=”if(this.value.length > =2)
 this.form.txtYear.focus();” / >
 < input name=”txtYear” id=”txtYear” size=”5” maxlength=”4”
 onkeyup=”if(this.value.length > =4)
 this.form.submit.focus();” / >
 < input type=”submit” name=”submit” value=”Send” / >
 < /form >

 This example uses the onkeyup event handler to check that the length of the text the user has entered is
equal to or greater than the required number of characters for that field. If the user has entered the
required number of characters, the focus is moved to the next box.

c12.indd 557c12.indd 557 11/20/09 11:32:20 PM11/20/09 11:32:20 PM

Chapter 12: Working with JavaScript

558

 Note how the length of the text input is discovered using this.value.length . The this keyword
indicates the current form control, whereas the value property indicates the value entered for the
control. Then the length property returns the length of the value entered for the control. This is a
quicker way of determining the length of the value in the current form control than the full path, which
would be as follows:

document.fromDOB.txtMonth.value.length

 The other advantage of using the this keyword rather than the full path is that the code would work
if you copied and pasted these controls into a different form, as you have not hard - coded the name
of the form.

 You can see this example in Figure 12 - 12; the user has entered an appropriate number of digits in one
field so the focus is moved on to the next.

Figure 12-12

 You might have noticed that the value of the size attribute is also one digit larger than the maximum
length of the field to ensure that there is enough space for all of the characters (otherwise the width of
the control can sometimes be slightly too small to see all of the characters at once).

 If you use this technique, it is always worth testing the form on a few users to check if it is acting as an
enhancement. This is important because some web users have become used to pressing the tab key very
quickly after entering short numbers (such as individual components of dates of birth) to take them to
the next form control.

 I have also seen this technique used to allow users to enter their credit card details using four blocks of
four codes. While 16 digits is the most common length for a credit card number, and they are often
printed in blocks of 4 digits, some Visa cards, for example, contain 13 digits and some American Express
cards use 15 digits. So this is not a good idea.

 Disabling a Text Input
 Sometimes you will want to disable a text input until a certain condition has been met — just as the
Submit button was disabled until the user clicked the checkbox to agree to terms and conditions in
Figure 12 - 10.

 This example features a form that asks users how they heard about the site; radio buttons are used for
several options such as Friend, TV ad, magazine ad, and Other. If the user selects the Other option, the
text input next to that option allows the user to indicate how they heard about the site. You can see the
form in Figure 12 - 13.

c12.indd 558c12.indd 558 11/20/09 11:32:21 PM11/20/09 11:32:21 PM

Chapter 12: Working with JavaScript

559

 In this example, it ’ s not just a case of enabling the text box when the user selects the other radio button;
you really need to check the value of each radio button as it is selected — after all, if the user selects
Other as his or her first choice, but then changes her mind and selects TV or one of the other options, you
will want to disable the text input and change its value again. Therefore, each time the user selects a
radio button, a function in the head of the document is called that is responsible for enabling and
disabling the control and setting values.

Figure 12-13

 First, here is the form that gives users the options (ch12_eg13.html). Note how the text input is
disabled using the onload event handler of the < body > element and that the text input does not use the
 disabled attribute (this is the same as the earlier example with the Submit button).

 < body onload=”document.frmReferrer.txtOther.disabled=true;
 document.frmReferrer.txtOther.value=’not applicable’ “ >
 < h2 > How did you hear about us? < /h2 >
 < form name=”frmReferrer” >
 < input type=”radio” name=”radHear” value=”1”
 onclick=”handleOther(this.value);” / > From a friend < br / >
 < input type=”radio” name=”radHear” value=”2”
 onclick=”handleOther(this.value);” / > TV Ad < br / >
 < input type=”radio” name=”radHear” value=”3”
 onclick=”handleOther(this.value);” / > Magazine Ad < br / >
 < input type=”radio” name=”radHear” value=”4”
 onclick=”handleOther(this.value);” / > Newspaper Ad < br / >
 < input type=”radio” name=”radHear” value=”5”
 onclick=”handleOther(this.value);” / > Internet < br / >
 < input type=”radio” name=”radHear” value=”other”
 onclick=”handleOther(this.value);” / > Other... Please specify:
 < input type=”text” name=”txtOther” / >
 < /form >

 As you can see from this form, every time the user selects one of the options on this form, the onclick
event calls a function called handleOther() . This function is passed the value of the form control as
a parameter.

 Looking at the function, you can see a simple if...else statement that checks whether the value of the
selected form control is equal to the text other (remember that checking whether one value is equal to
another value uses two equal signs because the single equal sign is used to set a variable). If the value of

c12.indd 559c12.indd 559 11/20/09 11:32:21 PM11/20/09 11:32:21 PM

Chapter 12: Working with JavaScript

560

the selected radio button is “ other, ” the textbox ’ s disabled property is set to false , and the value
cleared. For all other options the textbox is disabled and its value set to not applicable .

function handleOther(strRadio) {
 if (strRadio == “other”) {
 document.frmReferrer.txtOther.disabled = false;
 document.frmReferrer.txtOther.value = ‘’;
 }
 else {
 document.frmReferrer.txtOther.disabled = true;
 document.frmReferrer.txtOther.value = ‘not applicable’;
 }
}

 Case Conversion
 There are times when it is helpful to change the case of text a user has entered to make it all uppercase or
all lowercase — in particular because JavaScript is case - sensitive. To change the case of text, there are
two built - in methods of JavaScript ’ s string object:

 toLowerCase()

 toUpperCase()

 To demonstrate, here is an example of a text input that changes case as focus moves away from the text
input (ch12_eg14.html):

 < form >
 < input type=”text” name=”case” size=”20”
 onblur=”this.value=this.value.toLowerCase();” / >
 < /form >

 If your form data is being sent to a server, it is generally considered better practice to make these changes
on the server because they are less distracting for users — a form that changes letter case as you use it
can appear a little odd to users.

 Trimming Spaces from Beginning and End of Fields
 You might want to remove spaces (white space) from the beginning or end of a form field for many
reasons, even simply because the user did not intend to enter it there. The technique I will demonstrate
here uses the substring() method of the String object, whose syntax is:

substring(startPosition, endPosition)

 This method returns the part of the string specified by the start and end points — if no end position is
given, then the default is the end of the string. The start and end positions are zero - based, so the first
character is 0. For example, if you have a string that says Welcome , then the method substring(0, 1)
returns the letter W .

❑

❑

c12.indd 560c12.indd 560 11/20/09 11:32:22 PM11/20/09 11:32:22 PM

Chapter 12: Working with JavaScript

561

 First we will look at removing white space from the start of a string. To do this the substring() method
will be called upon twice. First you use the substring() method to retrieve the first letter that the user
has entered into a text control. If this character is a space, you can then call the substring() method a
second time to remove the space.

 So the first call to the substring() goes in a while loop like so:

while (this.value.substring(0,1) == ‘ ‘)

 The second time the substring() method is called, it selects the value of the control from the second
character to the end of the string (ignoring the first character). This is set to be the new value for the form
control; so you have removed the first character, which was a space:

this.value = this.value.substring(1, this.value.length);

 This whole process of checking whether the first character is a blank, and then removing it if it is, will be
called using the onblur event handler; so when focus moves away from the form control, the process
starts. Here you can see the entire process using the while loop to indicate that, for as long as the first
character is a blank, it should be removed using the second call to the substring() method
(ch12_eg15.html).

 < form >
 < input type=”text” name=”txtName” size=”100”
 value=” Enter text leaving whitespace at start. Then change focus.”
 onblur=”while (this.value.substring(0,1) == ‘ ‘)
 this.value = this.value.substring(1, this.value.length);” / > < br / >
 < /form >

 To trim any trailing spaces, the process is similar but reversed. The first substring() method collects
the last character of the string, and if it is blank removes it, as follows:

 < form >
 < input type=”text” name=”txtName” size=”100”
 value=”Enter text leaving whitespace at end. Then change focus. “
 onblur=”while (this.value.substring
 (this.value.length-1,this.value.length) == ‘ ‘)
 this.value = this.value.substring(0, this.value.length-1);” / > < br/ >
 < /form >

 As long as you are not targeting browsers as old as Netscape 4 and IE4, you can alternatively use a
Regular Expression to trim the spaces, as follows:

 < form >
 < input type=”text” name=”removeLeadingAndTrailingSpace” size=”100”
 value=” Enter text with white space, then change focus. “
 onblur=“this.value=this.value.replace(/^\ \s+/, “).replace(/\s+$/,“);”
 / > < br / >
 < /form >

 This removes both trailing and leading spaces.

c12.indd 561c12.indd 561 11/20/09 11:32:22 PM11/20/09 11:32:22 PM

Chapter 12: Working with JavaScript

562

 Regular Expressions are quite a large topic in themselves and were introduced earlier in this chapter.
 If you want to learn more about them, refer to Beginning JavaScript, 2nd Edition by Paul Wilton
(Wrox, 2000).

 Selecting All the Content of a Text Area
 If you want to allow users to select the entire contents of a text area (so they don ’ t have to manually
select all the text with the mouse), you can use the focus() and select() methods.

 In this example, the selectAll() function takes one parameter — the form control that you want to
select the content of (ch12_eg16.html):

 < html >
 < head > < title > Select whole text area < /title >
 < script language=”JavaScript” >
 function selectAll(strControl) {
 strControl.focus();
 strControl.select();
 }
 < /script >
 < /head >
 < body >
 < form name=”myForm” >
 < textarea name=”myTextArea” rows=”5” cols=”20” > This is some
text < /textarea >
 < input type=”button” name=”btnSelectAll” value=”Select all”
 onclick=”selectAll(document.myForm.myTextArea);” / >
 < /form >
 < /body >
 < /head >
 < /html >

 The button that allows the user to select all has an onclick event handler to call the selectAll()
function and tell it which control it is whose contents should be selected.

 The selectAll() function first gives that form control focus using the focus() method and then selects
its content using the select() method, because the form control must gain focus before it can have its
content selected. The same method would also work on a single - line text input and a password field.

 Check and Uncheck All Checkboxes
 If there are several checkboxes in a group of checkboxes, it can be helpful to allow users to select or clear
a whole group of checkboxes at once. The following are two functions that allow precisely this:

function check(field) {
 for (var i = 0; i < field.length; i++) {
 field[i].checked = true;}
}
function uncheck(field) {
 for (var i = 0; i < field.length; i++) {
 field[i].checked = false; }
}

c12.indd 562c12.indd 562 11/20/09 11:32:22 PM11/20/09 11:32:22 PM

Chapter 12: Working with JavaScript

563

 In order for these functions to work, more than one checkbox must be in the group. You then add two
buttons that call the check or uncheck functions, passing in the array of checkbox elements that share the
same, name such as the following (ch12_eg17.html):

 < form name=”frmSnacks” action=”” >
 Your basket order < br / >
 < input type=”checkbox” name=”basketItem” value=”1” / > Chocolate
 cookies < br / >
 < input type=”checkbox” name=”basketItem” value=”2” / > Potato chips < br / >
 < input type=”checkbox” name=”basketItem” value=”3” / > Cola < br / >
 < input type=”checkbox” name=”basketItem” value=”4” / > Cheese < br / >
 < input type=”checkbox” name=”basketItem” value=”5” / > Candy bar < br / > < br
/ >
 < input type=”button” value=”Select All”
 onclick=”check(document.frmSnacks.basketItem);” / >

 < input type=”button” value=”Deselect All”
 onclick=”uncheck(document.frmSnacks.basketItem);” / >
 < /form >

 You can see how this form appears in Figure 12 - 14.

Figure 12-14

 This could also be combined into a single function, which could be called from the same button, such as
the following:

function checkUncheckAll(field) {
 var theForm = field.form, i = 0;
 for(i=0; i < theForm.length;i++){
 if(theForm[i].type == ‘checkbox’ & & theForm[i].name != ‘checkall’){
 theForm[i].checked = field.checked;
 }
 }
}

c12.indd 563c12.indd 563 11/20/09 11:32:23 PM11/20/09 11:32:23 PM

Chapter 12: Working with JavaScript

564

Try It Out An E - mail Form

 Having seen lots of examples of how to work with forms, it is time to try to put some of these
techniques together. In this exercise you are going to create an e - mail form that has a few interesting
features. It checks that all fields have an entry of some kind, and uses a Regular Expression to check
the structure of an e - mail address. The form also includes a quick address book that contains
addresses of potential recipients of the e - mail. Figure 12 - 15 shows you what the form is going to
look like.

 Figure 12 - 15

 1. Create a skeleton XHTML document with < head > , < title > , and < body > elements.

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > E-mail form < /title >
 < /head >
 < body >
 < /body >
 < /html >

 2. In the body of the document, add the < form > element and two < div > elements. The first
 < div > holds the To, CC, and Subject fields, while the second holds the quick address. Note

c12.indd 564c12.indd 564 11/20/09 11:32:23 PM11/20/09 11:32:23 PM

Chapter 12: Working with JavaScript

565

how there is an empty < span > element next to the form controls; this will hold any error
messages.

 < form name=”frmEmail” onsubmit=”return validate(this)” action=”success.html”
 method =”post” >
 < div id=”toCCsubject” >

 < label > Send to: < /label >
 < input type=”text” size=”50” name=”txtTo” id=”txtTo” / > < span
 class=”error” > < /span >

 < label > CC: < /label >
 < input type=”text” size=”50” name=”txtCC” id=”txtCC” / > < span
 class=”error” > < /span >

 < label > Subject: < /label >
 < input type=”text” size=”50” name=”txtSubject” id=”txtSubject” / > < span
 class=”error” > < /span >

 < /div >
 < div id=”addressBook” >
 < ! — quick address book will go here — > < /td >
 < /div >

 3. Next you need to add the quick address book into the second < div > element. The address
book uses a multiple-line select box. Underneath it are two buttons: one to add addresses to
the txtTo field and one to add addresses to the txtCC field. Both of these buttons call the
 add() function when clicked:

Quick address book: < br / >
 < select size=”4” name=”selectList1” style=”width:150px” >
 < option value=”sales@example.org” > Sales < /option >
 < option value=”marketing@example.org” > Marketing < /option >
 < option value=”research@example.org” > Research < /option >
 < option value=”support@example.org” > Customer Support < /option >
 < option value=”it@example.org” > IT < /option >
 < /select > < br / >
 < input type=”button” onclick=”add(txtTo, document.frmEmail.selectList1);”
 value=”Send to” / >
 < input type=”button” onclick=”add(txtCC, document.frmEmail.selectList1);”
 value=”CC” / >

 4. Add the message < textarea > element and a Send E - mail button (and close the
 < /form > element):

 < div class=”message” >
 Message: < br / >
 < textarea name=”txtMessage” rows=”20” cols=”115” > < /textarea > < br / >
 < input type=”submit” value=”Send E-mail” / >
 < /div >
 < /form >

c12.indd 565c12.indd 565 11/20/09 11:32:23 PM11/20/09 11:32:23 PM

Chapter 12: Working with JavaScript

566

 5. Now that the form itself is complete, we can start to look at the script. The add() function
adds e - mail addresses from the address book into the To or CC fields (if there is already an
address in there, the semicolon is added to separate out multiple addresses).

 The add() function takes two parameters:

❑ objInput : The field that the selected address is being sent to

❑ objList : The select box list that contains the e - mail addresses

 This function starts by collecting the value of the selected item, using the selectedIndex
property of the select box, and placing it in a variable called strGroup . Next it checks
whether the form field the address is being added to is empty; if it is, the e - mail address
stored in the strGroup attribute is added to the field. If the To or CC field is not empty, a
semicolon and a space will be added before the e - mail address because this is the usual
delimiter for multiple e - mail addresses:

function add(objInput, objList){
var strGroup = objList.options[objList.selectedIndex].value;
 if (objInput.value == “”)
 {
 objInput.value = strGroup
 }
 else
 {
 objInput.value += (‘; ‘ + strGroup)
 }
}

 6. Now, let ’ s add the second function — the validate() function, which you can see is
quite long:

function validate(form) {

 var returnValue = true;
 var sendTo = form.txtTo.value;
 var cc = form.txtCC.value;
 var subject = form.txtSubject.value;
 var message = form.txtMessage.value;
 var rxEmail=/^\w(\.?[\w-])*@\w(\.?[\w-])*\.[a-z]{2,6}(\.[a-z]{2})?$/i;

 document.getElementById(“txtTo”).nextSibling.innerHTML=””;

 if (sendTo == “”) {
 returnValue = false;
 document.getElementById(“txtTo”).nextSibling.innerHTML=
 “There are no email addresses in the To field”;
 document.getElementById(“txtTo”).focus();
 }
 else {
 var arrTo = sendTo.split(“; “);

c12.indd 566c12.indd 566 11/20/09 11:32:24 PM11/20/09 11:32:24 PM

Chapter 12: Working with JavaScript

567

 for (var i=0; i < (arrTo.length); i++) {
 if (!rxEmail.test(arrTo[i]))
 {
 returnValue = false;
 document.getElementById(“txtTo”).nextSibling.innerHTML=
 “The e-mail address(es) provided does not appear to be valid”;
 document.getElementById(“txtTo”).focus();
 }
 }
 }

 document.getElementById(“txtCC”).nextSibling.innerHTML=””;
 if (sendTo != “”)
 {
 var arrCC = cc.split(“; “);
 document.getElementById(“txtCC”).nextSibling.innerHTML=””;

 for (var i=0; i < (arrCC.length); i++) {
 if (!rxEmail.test(arrCC[i]))
 {
 returnValue = false;
 document.getElementById(“txtCC”).nextSibling.innerHTML=
 “The e-mail address(es) provided does not appear to be valid”;
 document.getElementById(“txtCC”).focus();
 }
 }
 }

 document.getElementById(“txtSubject”).nextSibling.innerHTML=””;
 if (subject == “”)
 {
 returnValue = false;
 document.getElementById(“txtSubject”).nextSibling.innerHTML=
 “There is no subject line for this e-mail”;
 document.getElementById(“txtSubject”).focus();
 }

 document.getElementById(“txtMessage”).nextSibling.innerHTML=””;
 if (message==””)
 {
 returnValue = false;
 document.getElementById(“txtMessage”).nextSibling.innerHTML=
 “There is no message for this e-mail”;
 document.getElementById(“txtMessage”).focus();
 }

return returnValue;
}

c12.indd 567c12.indd 567 11/20/09 11:32:24 PM11/20/09 11:32:24 PM

Chapter 12: Working with JavaScript

568

 The validate() function is quite a bit more complex, so let ’ s break it down and look at it step by
step. It starts off by setting a returnValue variable to true and collecting the form ’ s values into
variables:

function validate(form) {
 var returnValue = true;
 var sendTo = form.txtTo.value;
 var cc = form.txtCC.value;
 var subject = form.txtSubject.value;
 var message = form.txtMessage.value;
 var rxEmail=/^\w(\.?[\w-])*@\w(\.?[\w-])*\.[a-z]{2,6}(\.[a-z]{2})?$/i;

 The first task for the validate form is to check whether the user has entered an e - mail into the To field,
and if so check that the e - mail address is valid. Since we will be writing any errors into the < span >
elements that follow the form fields, we need to empty any content from the < span > element that
follows the To field (because we are about to recheck the values the user has entered, and if the user
has corrected an earlier mistake we do not want to leave an error message there).

 The real checks appear in an if ... else statement; it then checks whether the user has entered a
value into the To field. If there is no value, it sets the returnValue attribute to false , adds an error
into the < span > element following the field, and passes focus to the To field.

if (sendTo == “”) {
 returnValue = false;
 document.getElementById(“txtTo”).nextSibling.innerHTML=”There are no email
 addresses in the To field”;
 document.getElementById(“txtTo”).focus();
 }

 The validate function gets more interesting when it comes to checking that valid e - mail addresses
have been entered into the form. The Regular Expression that ’ s used to check the
e - mail addresses was stored in a variable at the top of the page — this time called rxEmail :

var rxEmail=/^\w(\.?[\w-])*@\w(\.?[\w-])*\.[a-z]{2,6}(\.[a-z]{2})?$/i;

 In order to check that the e - mail addresses entered are valid, the To field gets split into an array using
the split() method of the String object. This function will take a string and split it into separate
values whenever it comes across a specified character or set of characters. In this case, the method
looks for any instances of a semicolon followed by a space, and wherever it finds these it creates a new
item in the array.

 var arrTo = sendTo.split(“; “);

 Imagine having the following e - mail addresses (note that this is just to illustrate the split() method;
it is not part of the code):

sales@example.com; accounts@example.com; marketing@example.com

c12.indd 568c12.indd 568 11/20/09 11:32:24 PM11/20/09 11:32:24 PM

Chapter 12: Working with JavaScript

569

 These would be split into the following array (again, this is not part of the code from the example):

arrTo[0] = “sales@example.com”
arrTo[1] = “accounts@example.com”
arrTo[2] = “marketing@example.com”

 So now there has to be a for loop in the code that will go through each e - mail address in the array and
check that it follows the pattern described in the Regular Expression. The for loop has three
parameters; the first sets a counter called i to be 0 , checks that the counter is less than the number of
items in the array, and finally increments the counter. Inside the loop is an if statement that checks
whether the e - mail address matches the Regular Expression using the test() method; if it does not, it
will set the returnValue to false and add a message to the page to indicate that the value does not
seem to be a valid e - mail address:

for (var i=0; i < (arrTo.length); i++) {
 if (!rxEmail.test(arrTo[i]))
 {
 returnValue = false;
 document.getElementById(“txtTo”).nextSibling.innerHTML=”The e-mail
 address(es) provided does not appear to be valid”;
 document.getElementById(“txtTo”).focus();
 }
 }

 After this, you can see a similar setup for the CC field:

 document.getElementById(“txtCC”).nextSibling.innerHTML=””;
 if (sendTo != “”)
 {
 var arrCC = cc.split(“; “);
 document.getElementById(“txtCC”).nextSibling.innerHTML=””;

 for (var i=0; i < (arrCC.length); i++) {
 if (!rxEmail.test(arrCC[i]))
 {
 returnValue = false;
 document.getElementById(“txtCC”).nextSibling.innerHTML=
 “The e-mail address(es) provided does not appear to be valid”;
 document.getElementById(“txtCC”).focus();
 }
 }
 }

The last checks ensure that something was entered into the subject and message inputs:

document.getElementById(“txtSubject”).nextSibling.innerHTML=””;
 if (subject == “”)
 {
 returnValue = false;
 document.getElementById(“txtSubject”).nextSibling.innerHTML=
 “There is no subject line for this e-mail”;
 document.getElementById(“txtSubject”).focus();

c12.indd 569c12.indd 569 11/20/09 11:32:25 PM11/20/09 11:32:25 PM

Chapter 12: Working with JavaScript

570

 }

 document.getElementById(“txtMessage”).nextSibling.innerHTML=””;
 if (message==””)
 {
 returnValue = false;
 document.getElementById(“txtMessage”).nextSibling.innerHTML=
 “There is no message for this e-mail”;
 document.getElementById(“txtMessage”).focus();
 }

 Finally we return the returnValue attribute to indicate whether the form can be submitted.

return returnValue;
}

 7. Save the file as emailform.html , and when you open it in the browser window it should
resemble the example you saw in Figure 12 - 15.

 Now you have an example of a form that has more than one function. It uses JavaScript to create a
quick address book and validates the entries to stop the user from trying to send an e - mail address
that is not valid.

 JavaScript Libraries
 The examples you have seen so far in this chapter have been designed to give you a better
understanding of how JavaScript can be integrated into your XHTML documents — how events (such as
a user hovering over, or clicking on, an element) can be used to trigger JavaScript functions.

 In the case of the form validation script, you have seen an example of how to include an external
JavaScript into a page with one line of code, and how the functionality of that script can be used in
multiple web pages. This demonstrated that if you write a script carefully, once the work has been done,
you can use it again and again in other pages with minimum effort.

 JavaScript files that contain functions that you want to use in several pages are often referred to as
 JavaScript libraries (because, once you have included the file in your page, you can borrow its
functionality).

 In this section, you are going to meet several scripts that offer functionality you might want to use in
several of your web pages. For example, you will see how to create:

 Animated effects and drag - and - drop lists

 Lightboxes and modal windows

 Sortable tables

 Calendar controls

 Auto - completing text inputs

❑

❑

❑

❑

❑

c12.indd 570c12.indd 570 11/20/09 11:32:25 PM11/20/09 11:32:25 PM

Chapter 12: Working with JavaScript

571

 Each of these example scripts is built on top of a one of the major JavaScript libraries that you will see
used again and again if you explore other examples on the Web. So, the examples you meet in this
chapter are built upon:

 Scriptaculous (which is actually built on top of another JavaScript library called Prototype)

 JQuery

 MochiKit

 Yahoo User Interface (YUI)

 While you will meet several helpful scripts before the end of this chapter, the real purpose of this section
is to illustrate how you can easily integrate this type of JavaScript code (that someone else has written)
into your pages to offer complex functionality with minimum effort.

 I have included versions of each of these libraries with the code download for this chapter. If you look in
the code folder for Chapter 12, you will see inside the scripts folder that there are folders called scrip-
taculous , mochikit , and yui (each folder corresponding to the three libraries you will be using). It
is worth, however, checking the web sites for each of these libraries as they may have been updated since
this book was written.

 Animated Effects Using Scriptaculous
 To start with, I am going to show you some basic animation effects that can be created using a JavaScript
library called Scriptaculous, which is built on top of another JavaScript library called Prototype. I have
included a copy of Scriptaculous 1.8.2 and Prototype 1.6.0 with the code download for this chapter;
however, you can check for more recent versions and download your own copy of these files from
 http://script.aculo.us/ .

 Scriptaculous can help you with many kinds of tasks: animation, adding drag - and - drop functionality,
building editing tools, and creating autocompleting text inputs. It also includes utilities to help create
DOM fragments. But in this section, you will just focus on some of the animation effects. (You will see
examples of drag - and - drop and autocompleting text inputs later in the chapter.)

 Scriptaculous contains many functions that help you create different types of animations. The first
example is going to feature four of these animated effects, and it will demonstrate how easily you can
add powerful features into your page with very little code. You can see what this page will look like in
Figure 12 - 16, although you really need to try the example to see the actual animation by opening
 ch12_eg18.html in your browser.

❑

❑

❑

❑

c12.indd 571c12.indd 571 11/20/09 11:32:25 PM11/20/09 11:32:25 PM

Chapter 12: Working with JavaScript

572

 As you may remember from the last chapter, JavaScript programmers use objects to represent real life
objects or concepts. In the case of the Scriptaculous library, the animated effects are handled by an object
called Effect . There are different types of effects, which are each called using different methods. For
example, to create a shaking effect you need to call the Shake() method of the Effect object. To create a
fading effect you use the Fade() method of the Effect object. Some of these methods can take different
parameters that allow you to vary how the effect works.

 In order to use the animated effects and other features of the Scriptaculous library, you need to add both
the prototype.js library and the scriptaculous.js library, which I have placed in a folder called
 scriptaculous :

 < script src=”scripts/scriptaculous/prototype.js”
 type=”text/javascript” > < /script >
 < script src=”scripts/scriptaculous/scriptaculous.js”
 type=”text/javascript” > < /script >

 In the body of the page, there is a box to demonstrate each effect; when you click on the box, the effect is
triggered. Each box is created using a < div > element, inside which I have written the name of the
 Effect object and the method that box will demonstrate. Let ’ s start by looking at the first box, which
demonstrates the shake effect:

 Figure 12 - 16

c12.indd 572c12.indd 572 11/20/09 11:32:26 PM11/20/09 11:32:26 PM

Chapter 12: Working with JavaScript

573

 < div id=”effect-shake” onclick=”Effect.Shake(this)” >
 Effect.Shake()
 < /div >

 As you already know, the event attributes allow events to trigger JavaScripts. In this example, the
 onclick event causes the Effect object ’ s Shake() method to be called. As with the forms you looked
at earlier, the keyword this (which you can see inside the parentheses of the Shake() method) indicates
that we want to create a shake animation for this element.

 If you wanted the effect to be triggered by the user interacting with a different element, you could pass
the Shake() method the id of the box you want to shake. For example, here is a simple link; when the
user clicks on the words “ shake the above box, ” the first box will shake.

 < a onclick=”Effect.Shake(‘effect-shake’)” >
 shake the above box
 < /a >

 Let ’ s look at the second example, which shrinks the box when you click on it until it vanishes. It is very
similar but this time we are calling the Shrink() method of the Effect object.

 < div id=”demo-effect-shrink” onclick=”Effect.Shrink(this);” >
 Effect.Shrink
 < /div >

 Because the box disappears once it has shrunk, you can call the Appear() method of the Effect object
to make it re - appear. You cannot call this method right away; otherwise, you will not be able to see the
effect working, so you can call this method after a set period using the setTimeout() method of the
 window object (this is a JavaScript object, not one created by one of the JavaScript libraries). In this case,
the Appear() method is called after 2500 milliseconds.

 < div id=”demo-effect-shrink” onclick=”Effect.Shrink(this);
window.setTimeout(‘Effect.Appear(\’effect-shrink\’)’,2500);” >

 Here are the other two effects:

 < div id=”effect-fade” onclick=”Effect.Fade(this);
 window.setTimeout(‘Effect.Appear(\’effect-fade\’)’,2500);” >
 Effect.Fade()
 < /div >

 < div id=”effect-puff” onclick=”Effect.Puff(this);
 window.setTimeout(‘Effect.Appear(\’effect-puff\’)’,2500);” >
 Effect.Puff()
 < /div >

 You do not need to know how the Script creates these effects; all you need to know is the syntax of the
method that calls each effect.

 As you can see, this is a very simple way of creating animated effects using JavaScript; one that lots of
other scripts make use of.

c12.indd 573c12.indd 573 11/20/09 11:32:26 PM11/20/09 11:32:26 PM

Chapter 12: Working with JavaScript

574

 Drag - and - Drop Sortable Lists Using Scriptaculous
 Having seen how simple it is to create some animations using Scriptaculous, let ’ s have a look at an
example of something you might want to do in a user interface: create drag - and - drop lists. You may
have seen some sites where you can re - order lists (such as “ to do ” lists or top 10 lists) just by dragging
and dropping the elements.

 You can see the example you are going to build in Figure 12 - 17; when the page loaded, the boxes were in
numerical order. However, they have now been dragged and dropped to a different order.

 Figure 12 - 17

 In this example (ch12_eg19.html), you need to include the Scriptaculous and Prototype libraries again.
Then you have a simple unordered list (there are some CSS rules in the head of the document that control
the presentation of the list to make each list item appear in its own box).

 < script src=”scripts/prototype.js” type=”text/javascript” > < /script >
 < script src=”scripts/scriptaculous.js” type=”text/javascript” > < /script >
 < style type=”text/css” >
 li {border;1px solid #000000; padding:10px; margin-top:10px;
 font-family:arial, verdana, sans-serif;background-color:#d6d6d6;
 list-style-type:none; width:150px;}
 < /style >
 < /head >
 < body >
 < ul id=”items_list” >
 < li id=”item_1” > Item 1 < /li >
 < li id=”item_2” > Item 2 < /li >
 < li id=”item_3” > Item 3 < /li >
 < li id=”item_4” > Item 4 < /li >
 < /ul >

 In order to make this list sortable, you just need to add one < script > element after the list:

 < script type=”text/javascript” language=”javascript” >
 Sortable.create(“items_list”,{dropOnEmpty:true,constraint:false});
 < /script >

c12.indd 574c12.indd 574 11/20/09 11:32:26 PM11/20/09 11:32:26 PM

Chapter 12: Working with JavaScript

575

 Here you are using the Sortable object that is part of the Scriptaculous library, and calling its create()
method to turn the list into a sortable one. The create() method takes two parameters:

 The first is the value for the id attribute of the unordered list element, in this case items_list .

 The second features options that describe how the sortable list should work. The first of the
options specified here is dropOnEmpty with a value of true to indicate that element should only
be dropped between elements, not on top of another one, and the constraint property,
which is set to false . (If this were left off or true it would allow items to be moved along a
vertical axis only, whereas set to false you can move the list items to the left or right while
dragging them).

 This kind of drag - and - drop list is often linked to some kind of functionality that will update a database
(such as allowing users to re - order a “ to do ” or preference list), which would involve a script on the
server written in a language such as ASP.NET or PHP code. However, this example does demonstrate
something that is achieved very easily with just a few lines of code, thanks to the Scriptaculous library.

 Creating a Lightbox
 A lightbox is the term given to an image (or set of images) that opens up in the foreground of the
browser without reloading the page. The image appears in the middle of the browser window, and the
rest of the page is often dulled out. Figure 12 - 18 shows an example of a lightbox activated on a page
(ch12_eg20.html).

❑

❑

 Figure 12 - 18

c12.indd 575c12.indd 575 11/20/09 11:32:27 PM11/20/09 11:32:27 PM

Chapter 12: Working with JavaScript

576

 The script we will be looking at in this section is called Lightbox2, and was written by Lokesh Dhakar.
It is based on the Prototype and Scriptaculous libraries so we will include them as well as the
lightbox script.

 So, to create a lightbox, first you add in the following three scripts (ch12_eg20.html):

 < script type=”text/javascript” src=”scripts/scriptaculous/prototype.js” >
 < /script >
 < script type=”text/javascript”
 src=”scripts/scriptaculous/scriptaculous.js?load=effects,builder” > < /
script >
 < script type=”text/javascript” src=”scripts/lightbox.js” > < /script >

 There are also some CSS styles that are used in the lightbox, so you can either link to this style sheet or
include the rules from it in your own style sheet:

 < link rel=”stylesheet” href=”css/lightbox.css” type=”text/css”
 media=”screen” / >

 Finally, you create a link to each of the images in the lightbox; here you can see a lightbox that contains
three images:

 < a href=”images/image-1.jpg” rel=”lightbox[Japan]” > Picture 1 < /a >
 < a href=”images/image-2.jpg” rel=”lightbox[Japan]” > Picture 2 < /a >
 < a href=”images/image-3.jpg” rel=”lightbox[Japan]” > Picture 3 < /a >

 Note the use of the rel attribute on the links; this uses the keyword lightbox , followed by a name for
the lightbox in square brackets. This lightbox is called Japan .

 Inside the link, you can have anything. There is just some simple text in this example, although you
could include a thumbnail image to represent each of the larger images.

 You do not have to indicate the size of the image, as the script will automatically determine this and
resize the lightbox to fit the image.

 You can also have multiple lightboxes on the same page as long as you give each lightbox a different
name; here you can see a second lightbox added with photographs from Paris:

 < h1 > Images from Japan < /h1 >
 < a href=”images/Japan1.jpg” rel=”lightbox[Japan]” > Picture 1 < /a >
 < a href=”images/Japan2.jpg” rel=”lightbox[Japan]” > Picture 2 < /a >
 < a href=”images/Japan3.jpg” rel=”lightbox[Japan]” > Picture 3 < /a >
 < h1 > Images from Paris < /h1 >
 < a href=”images/Paris1.jpg” rel=”lightbox[Paris]” > Picture 1 < /a >
 < a href=”images/Paris2.jpg” rel=”lightbox[Paris]” > Picture 2 < /a >
 < a href=”images/Paris3.jpg” rel=”lightbox[Paris]” > Picture 3 < /a >

 This is just one of many examples of lightbox scripts you would find if you searched for a lightbox script
(other popular examples include Thickbox, Fancybox, and JQuery Lightbox).

 This is a similar technique you may have seen used to create modal dialog boxes.

c12.indd 576c12.indd 576 11/20/09 11:32:27 PM11/20/09 11:32:27 PM

Chapter 12: Working with JavaScript

577

 Creating a Modal Window
 A modal window is a “ child ” window that you have to interact with before you can go back to the main
window. You have probably seen modal windows on web sites you have visited; they are often used
for login or contact forms, and their appearance is similar to the lightbox that you just saw (with a
grayed-out page). You can see the example we are going to create in Figure 12 - 19.

 Figure 12 - 19

 The example of a modal window we will look at uses a script called Thickbox written by Cody Lindley;
this example is built on another of the main JavaScript libraries called JQuery.

 To re - create this example, first you need to include the JQuery library along with the Thickbox script and
style sheet in the head of your document like so (ch12_eg21.html):

 < script type=”text/javascript”
 src=”scripts/jquery/jquery-1.3.2.js” > < /script >
 < script type=”text/javascript” src=”scripts/thickbox/thickbox.js” > < /script >
 < link rel=”stylesheet” href=”scripts/thickbox/thickbox.css”
 type=”text/css” media=”screen” / >

c12.indd 577c12.indd 577 11/20/09 11:32:28 PM11/20/09 11:32:28 PM

Chapter 12: Working with JavaScript

578

 Next, you can write the content that you want to appear in the modal window:

 < div id=”myOnPageContent” > < p >
 Here is a message that will appear when the user opens the modal window.
 < /p > < /div >

 You do not want this to show when the page loads, so add the following style sheet rule into the header
of the page (or your style sheet):

 < style type=”text/css” > #myOnPageContent {display:none;} < /style >

 Finally, you can add a link that will open up the modal window. To do this, we will use an < a > element,
although you could trigger it using the onload event of the document (to bring the window up when
the page first loads), or you could use a form element.

 There are a few things to note about this < a > element, starting with the class attribute whose value is
 thickbox :

 < a class=”thickbox”
 href=”#TB_inline?height=300 & width=500 & inlineId=myOnPageContent”
 title=”add a caption to title attribute / or leave blank” > link < /a >

 As you can see, the value of the href attribute is quite long. Let ’ s break that down:

 #TB_inline? is used to trigger the lightbox.

 height and width specify the height and width of the box in pixels. You can adjust these
depending on the size of your message.

 inlineID is used to specify the value of the id attribute of the element that contains the
message to appear in the modal window. In our case, the < div > element containing the message
for the modal window was myOnPageContent .

 You may also have noticed that the link used a title attribute whose value appeared as a title at the top
of the modal window.

 Again this demonstrates how you can add a powerful technique to your page with very little code.

 Sortable Tables with MochiKit
 In this example, you will create a sortable table , which means you can re - order the contents of the table by
clicking on the heading for each column. This kind of feature is particularly helpful when dealing with a
long table where different users might want to sort the data in different ways (according to different
column headings).

 Figure 12 - 20 illustrates a table of employees; the up arrow next to the “ Date started ” table heading
indicates that the table ’ s contents are being ordered by the date the employee started (in ascending
order). If you clicked on the heading “ Name ” you would be able to sort the table by alphabetical order of
employee names.

❑

❑

❑

c12.indd 578c12.indd 578 11/20/09 11:32:28 PM11/20/09 11:32:28 PM

Chapter 12: Working with JavaScript

579

 This example uses another JavaScript library — MochiKit. By looking at examples that use different
libraries, you can see how easy it is to work with the various libraries (which offer different
functionality). You can download the latest version of MochiKit from www.mochikit.com/ , although I
have included version 1.3.1 with the download code for this chapter.

 In order to create a sortable table, you again need to include two scripts; the first is for the MochiKit.js
JavaScript library, and the second is for the sortable_tables.js file (ch12_eg22.html).

 < script type=”text/javascript”
 src=”scripts/MochiKit/MochiKit.js” > < /script >
 < script type=”text/javascript”
 src=”scripts/MochiKit/examples/sortable_tables/sortable_tables.js” >
 < /script >

 Next, I have added a couple of CSS styles to distinguish the headers from the columns and to set the
font used:

 < style type=”text/css” >
 th, td {font-family:arial, verdana, sans-serif;}
 th {background-color:#000000;width:200px;color:#ffffff;}
 < /style >

 Now let ’ s look at the actual table; there are just three things you need to add to your table so that you
can sort the contents by clicking on the headings:

 The < table > element needs an id attribute whose value is sortable_table .

 For each column, the < th > (table heading) elements need to have an attribute called mochi:
sortcolumn (we will look at the values this attribute takes after you have seen the code).

 The first row of < td > elements needs to have mochi:content (again we will look at the values
for this attribute after you have seen the code).

❑

❑

❑

 Figure 12 - 20

c12.indd 579c12.indd 579 11/20/09 11:32:28 PM11/20/09 11:32:28 PM

Chapter 12: Working with JavaScript

580

 So here is the table with these additions:

 < table id=”sortable_table” class=”datagrid” >
 < thead >
 < tr >
 < th mochi:sortcolumn=”name str” > Name < /th >
 < th mochi:sortcolumn=”department str” > Department < /th >
 < th mochi:sortcolumn=”datestarted isoDate” > Date started < /th >
 < th mochi:sortcolumn=”extension str” > Employee ID < /th >
 < /tr >
 < /thead >
 < tbody >
 < tr mochi:repeat=”item domains” >
 < td mochi:content=”item.name” > Tim Smith < /td >
 < td mochi:content=”item.department” > IT < /td >
 < td mochi:content=”item.datestarted” > 2007-02-10 < /td >
 < td mochi:content=”item.extension” > 12 < /td >
 < /tr >
 < tr >
 < td > Claire Waters < /td >
 < td > Finance < /td >
 < td > 2006-09-24 < /td >
 < td > 24 < /td >
 < /tr >
 < tr >
 < td > Hetal Patel < /td >
 < td > HR < /td >
 < td > 2006-01-10 < /td >
 < td > 05 < /td >
 < /tr >
 < tr >
 < td > Mark Whitehouse < /td >
 < td > Sales < /td >
 < td > 2007-03-28 < /td >
 < td > 09 < /td >
 < /tr >
 < /tbody >
 < /table >

 The < th > elements carry the mochi:sortcolumn attribute, which contains two items of information
separated by a space:

 A unique ID for that column.

 The format of the data in that column. This can be str if the data is a string or isoDate for a
date in the format shown.

 Now take a look at the first row of data because the < td > elements in this row carry mochi:content
attributes. Again these are made up of two items, this time separated by a period or full stop:

 The keyword item

 The unique ID for the column that was specified in the mochi:sortcolumn attribute in the
corresponding header

❑

❑

❑

❑

c12.indd 580c12.indd 580 11/20/09 11:32:29 PM11/20/09 11:32:29 PM

Chapter 12: Working with JavaScript

581

 As with the other examples in this section, it is best to try it using the download code so you can see how
it works and understand how easy it can be to add quite complex functionality to a table — creating
an effect similar to the Sort Data options in Excel, which are useful when dealing with large amounts
of data.

 Creating Calendars with YUI
 The fourth and final JavaScript library you will be looking at is the Yahoo User Interface library; it is the
largest of the three libraries, with all kinds of functionality split into many separate scripts. I have
only included a subset of version 2.7.0 of the YUI library with the code download for this chapter
(the full version is over 11MB in size); however, you can download the full and latest version from
 http://developer.yahoo.com/yui/ . Broadly speaking, the YUI is split into four sections:

 At the heart of the YUI there are three scripts: the Yahoo Global Object, the DOM Collection, and
the Event Utility. When using the library, sometimes you will only need to include one or two of
these scripts; other times you will need all three.

 Then there are library utilities, which provide functionality that you might use in many tasks,
such as libraries that help you create animated effects, drag - and - drop functionality, and image
loading. When one of these scripts requires functionality from one of the core scripts, you are
told in the accompanying documentation.

 At the other end of the spectrum, the library contains scripts to create individual kinds of user
interface controls, such as calendars, color pickers, image carousels, and a text editor. There are
helpful “ cheat sheets ” that show you how to quickly create each of these user interface
components.

 Finally, there is a set of CSS style sheets, which you might need to use with some of the UI
controls in order to make them appear as you want.

 In this section, we are going to see how to use the YUI to add a Calendar to your web page with just a
few lines of code. Figure 12 - 21 shows what the calendar will look like.

❑

❑

❑

❑

 Figure 12 - 21

c12.indd 581c12.indd 581 11/20/09 11:32:29 PM11/20/09 11:32:29 PM

Chapter 12: Working with JavaScript

582

 To start, you have to include three core JavaScript files from the YUI library:

 < script type=”text/javascript” src=”scripts/yui/yahoo/yahoo.js” > < /script >
 < script type=”text/javascript” src=”scripts/yui/event/event.js” > < /script >
 < script type=”text/javascript” src=”scripts/yui/dom/dom.js” > < /script >

 Next, you need to add the calendar.js script, which is used to create the calendar (ch12_eg23.html).

 < script type=”text/javascript”
 src=”scripts/yui/build/calendar/calendar.js” > < /script >

 For this example, you will also include one of the css files that is included with the YUI download:

 < link type=”text/css” rel=”stylesheet”
href=”scripts/YUI/skins/sam/calendar.css” >

 In the body of the page, you need to add a < div > element, which will be populated by the calendar.

 < div id=”cal1Container” > < /div >

 Finally, you add in the script, which calls the YUI library, and fills the < div > element with the calendar.

 < script >
 YAHOO.namespace(“example.calendar”);
 YAHOO.example.calendar.init = function() {
 YAHOO.example.calendar.cal1 =
 new YAHOO.widget.Calendar(“cal1”,”cal1Container”);
 YAHOO.example.calendar.cal1.render();
 }
 YAHOO.util.Event.onDOMReady(YAHOO.example.calendar.init);
 < /script >

 Rather like some of the other examples in this section, this is likely to be tied into some other kind of
functionality, such as a holiday booking form where you are specifying dates you want to travel or an
events list where you are looking at what is happening on a particular date. But this does demonstrate
how libraries can be used to add significant functionality to your pages with ease.

 Auto - Completing Text Inputs with YUI
 The final example you will look at in this section allows you to create a text input where users are offered
suggestions of options they might be trying to type. The example allows you to enter the name of a U.S.
state, and as you start typing suggestions will appear as to which state you are trying to enter.

 You can see what the input will look like in Figure 12 - 22.

c12.indd 582c12.indd 582 11/20/09 11:32:30 PM11/20/09 11:32:30 PM

Chapter 12: Working with JavaScript

583

 To start with in this example (ch12_eg24.html), you include the three core JavaScript files:

 < script type=”text/javascript” src=”scripts/yui/yahoo/yahoo.js” > < /script >
 < script type=”text/javascript” src=”scripts/yui/event/event.js” > < /script >
 < script type=”text/javascript” src=”scripts/yui/dom/dom.js” > < /script >

 Then you add the animation and data source library utilities.

 < script type=”text/javascript”
 src=”scripts/yui/animation/animation.js” > < /script >
 < script type=”text/javascript”
 src=”scripts/yui/datasource/datasource.js” > < /script >

 Finally, you add in the autocomplete.js JavaScript file:

 < script type=”text/javascript”
 src=”scripts/yui/automcomplete/automcomplete.js” > < /script >

 Then, in the body of the page, you add the text input and a < div > that will contain suggestions of what
you are trying to type in.

Select a US state:
 < input id=”myInput” type=”text” >
 < div id=”myContainer” > < /div >

 Next, a JavaScript array is created with all of the possibilities that someone might be trying to enter.

 < script type=”text/javascript” >
YAHOO.example.arrayStates = [
 “Alabama”,
 “Alaska”,
 “Arizona”,
 “Arkansas”,
 “California”,
 “Colorado”,
 // other states go here
];
 < /script >

 Figure 12 - 22

c12.indd 583c12.indd 583 11/20/09 11:32:30 PM11/20/09 11:32:30 PM

Chapter 12: Working with JavaScript

584

 Finally, the JavaScript is added to the page that ties the text input form control to the array, and calls the
Auto - Complete function so that the suggestions are made as users enter their cursors into the text input.

 < script type=”text/javascript” >
YAHOO.example.ACJSArray = new function() {
 // Instantiate first JS Array DataSource
 this.oACDS = new YAHOO.widget.DS_JSArray(YAHOO.example.statesArray);
 // Instantiate first AutoComplete
 this.oAutoComp =
 new YAHOO.widget.AutoComplete(‘statesinput’,’myContainer’,
 this.oACDS);
 this.oAutoComp.prehighlightClassName = “yui-ac-prehighlight”;
 this.oAutoComp.typeAhead = true;
 this.oAutoComp.useShadow = true;
 this.oAutoComp.minQueryLength = 0;
 this.oAutoComp.textboxFocusEvent.subscribe(function(){
 var sInputValue = YAHOO.util.Dom.get(‘statesinput’).value;
 if(sInputValue.length === 0) {
 var oSelf = this;
 setTimeout(function(){oSelf.sendQuery(sInputValue);},0);
 }
 });

};
 < /script >

 Again, you can see that by following a simple example made available with a JavaScript toolkit, you can
significantly enhance the usability or functionality of your page (without the need to write all of the code
to do the job from scratch).

 There are many more JavaScript libraries on the Web, each of which has different functionality, and each
of which is continually being developed and refined, so it is worthwhile taking some time to look at the
different libraries that are available, and checking in with your favorites every so often to see how they
have been updated.

 Summary
 In this chapter, you have seen many uses for JavaScript, and you should now have a better
understanding of how to apply it. With the help of these scripts you should now be able to use these
and other scripts in your page. You should also have an idea of how you can tailor or even write your
own scripts.

 You have seen how you can help a user fill in a form correctly by providing validation. For example, you
might check to make sure required fields have something in them or that an e - mail address follows the
expected pattern. This saves users time by telling them what they have to do before a page gets sent to a
server, processed, and then returned with errors. The validation examples highlight the access the DOM
gives to document content, so that you can perform operations on the values users provide.

c12.indd 584c12.indd 584 11/20/09 11:32:30 PM11/20/09 11:32:30 PM

Chapter 12: Working with JavaScript

585

 You also saw how the DOM can help make a form generally more usable by putting the focus on
appropriate parts of the form and manipulating the text users have entered, by removing or replacing
certain characters.

 Finally, you took a look at some popular JavaScript libraries: Scriptaculous, JQuery, MochiKit, and the
Yahoo User Interface Library. JavaScript libraries offer sophisticated functionality that you can easily
drop into your pages with just a few lines of code, and are the basis for many of the scripts available on
the web that allow you to add complex functionality to your site with minimum effort.

 Exercises
 There is only one exercise for this chapter because it is quite a long one. The answers to all the exercises
are in Appendix A.

 1. Your task is to create a validation function for the competition form in Figure 12 - 23.

 The function should check that the user has done the following things:

 ❑ Entered his or her name

❑ Provided a valid e - mail address

❑ Selected one of the radio buttons as an answer to the question

❑ Given an answer for the tiebreaker question, which is no more than 20 words

 These should be in the order that the controls appear on the form.

 Figure 12 - 23

c12.indd 585c12.indd 585 11/20/09 11:32:31 PM11/20/09 11:32:31 PM

Chapter 12: Working with JavaScript

586

 Here is the code for the form:

 < form name=”frmCompetition” action=”competition.aspx” method=”post”
onsubmit=”return validate(this);” >
 < h2 > An Example Competition Form < br / > (Sorry, there are no real
prizes!) < /h2 >
 < p > To enter the drawing to win a case of Jenny’s Jam, first answer
this question: “What color are strawberries?” Then provide an answer for
the tie-breaker question: “I would like to win a case of Jenny’s Jam
because...” in no more than 20 words. < /p >
 < table >
 < tr >
 < td class=”formTitle” > Name: < /td >
 < td > < input type=”text” name=”txtName” size=”18” / > < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Email: < /td >
 < td > < input type=”text” name=”txtEmail” size=”18” / > < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Answer: < /td >
 < td > < input type=”radio” name=”radAnswer” value=”Red” / > Red < br / >
 < input type=”radio” name=”radAnswer” value=”Gray” / > Gray < br / >
 < input type=”radio” name=”radAnswer” value=”Blue” / > Blue
 < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Tie breaker < br/ > < small > (no more than 20 words)
 < /small > : < /td >
 < td > < textarea name=”txtTieBreaker” cols=”30” rows=”3”/ > < /textarea >
 < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > < /td >
 < td > < input type=”submit” value=”Enter now” / > < /td >
 < /tr >
 < /table >
 < /form >

c12.indd 586c12.indd 586 11/20/09 11:32:31 PM11/20/09 11:32:31 PM

 13
Putting Your Site

on the Web

 Once you ’ ve created your web site, you ’ ll want to make it available for everyone to see. In this
chapter, you are going to look at preparing your site for the public, putting it on the Web, and
telling people about it once it is live.

 You will learn some checks and tests to perform before you put your site on the Web including
validating your documents, checking links, and ensuring that the site works in different browsers.

 When you are ready to share your site with the public, you will need to arrange hosting . In order to
help you choose the right hosting company and, indeed, the right package from a hosting company,
you need to learn the key terminology used by these companies. Therefore, I will explain what terms
such as shared and dedicated hosting are, how much space or bandwidth you need, and so on.

 Once your site is ready for the public to see, you will then want to ensure they know about it!
You will want to ensure that it is indexed by the major search engines, such as Google and
Yahoo. You might also consider a number of other strategies to let people know you are out there,
such as pay-per-click advertising (from the likes of Google ’ s AdWords or Yahoo! Search
Marketing). After putting all the hard work into creating a site, you want it to be a success.

 When visitors come to your site, you can learn a lot, such as how many people have looked at the
site, which pages are most popular, and how visitors found your site. Web analytics helps you
track and decipher this information, and I will introduce you to a web analytics tool from Google
called Google Analytics, which is free.

 We will finish up by looking at some other technologies that you might like to consider learning
once you are comfortable with what you have covered in this book.

 But before you look at all of this, you need to learn one final element that provides information
about documents and their content — the < meta > element.

c13.indd 587c13.indd 587 11/20/09 5:24:23 PM11/20/09 5:24:23 PM

Chapter 13: Putting Your Site on the Web

588

 In this chapter, you learn how to do the following:

 Use the < meta > element

 Perform tests to ensure your site will work as you intended

 Find a host to make sure your site can be accessed by everyone on the Web

 Move your site from your computer to your host ’ s web server using FTP

 Submit your site to search engines

 Increase visitor numbers

 Use pay-per-click advertising

 Discover other technologies you might like to look at next

 Control different versions of your site so that you can make changes without making mistakes

 Meta Tags
 Before you start looking at how to test your site, you need to learn about one last tag — the < meta > tag. Meta
tags live in the < head > rather than the < body > of a document and contain information about a document
(rather than information that is part of the document that you would see in the browser window). The
information can be used for a number of purposes including helping search engines index your site, specifying
the author of a document, and, if the document is time - sensitive, specifying when the page should expire.

 The < meta > element is an empty element and so does not have a closing tag. Instead, < meta > elements
carry information within attributes, so you need a forward slash character at the end of the element. For
example, here is a < meta > element that provides a description of a computer bookshop web site:

 < meta name=”description” content=”Buy computer programming books
 to learn HTML, XHTML, JavaScript, ASP.Net, PHP” / >

 The < meta > element can take eight attributes, four of which are universal attributes — dir , lang , xml:
lang , and title . The other four, however, are specific to the < meta > element:

 schema

 name

 content

 http - equiv

 The name and content attributes tend to be used together, as do the http - equiv and content
attributes. These pairings will be addressed next.

 name and content Attributes
 The name and content attributes specify properties of the entire page. The value of the name attribute is
the property you are setting, and the value of the content attribute is the setting that you want to give
this property.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c13.indd 588c13.indd 588 11/20/09 5:24:24 PM11/20/09 5:24:24 PM

Chapter 13: Putting Your Site on the Web

589

 Here you can see a < meta > element where the name attribute indicates that you are going to specify a
 description for the page, and the content attribute is where this description of the page goes:

 < meta name=”description” content=”Buy computer programming books to
learn HTML, XHTML, JavaScript, ASP.Net, PHP” / >

 The value of the name attribute can be anything; no restrictions are published in any standards.
Therefore, if you need to add your own information about a document and its content, you can use this
element. Some predefined values for this attribute that are commonly used are:

 description : Specifies a description of the page

 keywords : Contains a list of comma - separated keywords that a user might search on to find
the page

 robots : Indicates how search engines should index the page

 The description and keywords properties can be used by programs called crawlers, bots, or spiders,
which most search engines use to help index web sites. Therefore, they ’ re worth adding to any web
page. These programs go through web sites, adding information to the databases used by the
search engines, following links as they come across them, indexing those pages, and so on — this is
how search engines manage to index so many sites.

 Using name with a Value of description
 You have already seen an example of giving the name attribute a value of description , and using the
 content property to specify a sentence that describes the site. Some search engines display the value of
the description property in their search results.

 A description should be a maximum of 200 characters long, although some search engines, such as
Google, display only the first 100 characters. Therefore, you should try to get across the main content in
the first 100 characters.

 For example, here is the < meta > tag showing the description of the Wrox Press homepage (at the time
this book was being written):

 < meta name=”description” content=”Wrox.com has all the coding and
programming resources you need. Find books, articles, and other IT content,
programmer to programmer (p2p) forums, and free code downloads!” / >

 And here is the description that you will see if you type Wrox into Google:

 “ Wrox.com has all the coding and programming resources you need. Find books, articles, and other IT
content, programmer to programmer (p2p) forums ”

 Using name with a Value of keywords
 The keywords property was created to supply a list of words that a search engine could use to index the
site. In practice, search engines take very little (if any) notice of this anymore, although many sites will

❑

❑

❑

c13.indd 589c13.indd 589 11/20/09 5:24:24 PM11/20/09 5:24:24 PM

Chapter 13: Putting Your Site on the Web

590

still provide keywords in this manner. For example, an online computer bookstore might use keywords
such as this:

 < meta name=”keywords” content=”computer, programming, books, web, asp,
asp.net, C#, vb, visual basic, c++, Java, Linux, XML, professional,
developer, html, html, css, xslt, access, sql, php, mysql” / >

 A rough guideline to the limit of the text should be around 200 characters. You should never use words
that do not directly relate to the content of the site. Ideally, the same keywords should also appear in the
text for that page.

 You could also use the lang attribute in conjunction with the description and keywords to indicate the
language they are using, or to offer keywords in multiple languages. For example, here are the keywords
in U.S. English:

 < meta name=”keywords” content=”computer, programming, books”
lang=”en-us” / >

 And again in French:

 < meta name=”keywords” content=”livres, ordinatteur, programmation”
lang=”fr” / >

 And finally in German:

 < meta name=”keywords” content=”programmieren, bucher, computers”
lang=”de” / >

 Using name with a Value of robots
 As I mentioned earlier, many search engines use programs to index web pages on their behalf.
You can use the name attribute with a value of robots to prevent one of these programs from
indexing a page or from following links on the page (because many of these programs follow the
links they find on your site and index those, too). For example, you probably would not want a
search engine to index any pages that you are still developing, or which you use to administer
the site.

 Here you can see that the < meta > element tells search engines not to index the current page or to follow
any of the links on it to index those.

 < meta name=”robots” content=”noindex, nofollow” / >

 The content attribute can have the values shown in the table that follows.

c13.indd 590c13.indd 590 11/20/09 5:24:25 PM11/20/09 5:24:25 PM

Chapter 13: Putting Your Site on the Web

591

 Value Meaning

 all Index all pages.

 none Index no pages.

 index Index this page.

 noindex Do not index this page.

 follow Follow links from this page.

 nofollow Do not follow links from this page.

 By default the values would be all , index , and follow , allowing web crawlers to follow any link and
index all pages.

 If you want to prevent pages from being indexed you should use this technique in conjunction with a file
called robots.txt , which is discussed in the “ robots.txt ” section later in this chapter.

 http - equiv and content
 The http - equiv and content attributes are paired together to set HTTP header values. Every time a
web browser requests a page, HTTP headers are sent with the request, and each time the server responds
sending a page back to the client, it adds HTTP headers back to the client:

 The headers sent from a browser to a server when it requests a page contain information such as
the type of browser, the operating system, the screen resolution, the date, the formats the
browser will accept, and other information about the user ’ s configuration.

 The headers returned from a server to a web browser contain information such as the type of
web server, the date and time the page was sent, and the date and time the page was last
modified.

 Of course, the headers can contain much more information, and using the < meta > tags is one way of
adding new headers to be sent with the document. For example, you might want to add a header to
indicate when the page should expire (no longer be valid) — which is especially helpful if the document
contains things such as special offer prices which you know will expire on a certain date — or to refresh
a page after a period of time.

 Expiring Pages
 It can be important to expire pages because browsers have something known as a cache , a space on the
hard drive where they store pages of web sites you have visited. If you go back to a site you have already
visited, the browser can load some (or all) of the page from the cache rather than having to retrieve the
whole page again. This is done because it can make the page load quicker (since the browser does not
have to collect as much data).

 Here you can see a < meta > tag that will cause the page to expire on Friday, April 16, 2011, at 11:59 (and
59 seconds) p.m. Note that the date must follow the format shown.

❑

❑

c13.indd 591c13.indd 591 11/20/09 5:24:25 PM11/20/09 5:24:25 PM

Chapter 13: Putting Your Site on the Web

592

 < meta http-equiv=”expires” content=”Fri, 16 April 2011 23:59:59 GMT” / >

 If this were included in a document and the user tried to load the page after the expiry date, then the
browser would not use the cached version; rather it would try to find a fresh copy from the server. This
helps ensure that users get the latest copies of documents and thereby prevents people from using out -
 of - date information.

 Preventing a Browser from Caching a Page
 You can prevent some browsers from caching a page altogether using the value pragma for the http -
 equiv attribute and a value of no - cache for the content attribute like so:

 < meta http-equiv=”pragma” content=”no-cache” / >

 Refreshing and Redirecting Pages
 You can set a page to refresh after a certain number of seconds using the following < meta > tag, which
gives the http - equiv attribute a value of refresh :

 < meta http-equiv=”refresh”
content=”10;URL=http://www.wrox.com/latest.aspx” / >

 This will cause the page to refresh itself after 10 seconds. You can see the number of seconds given as the
first part of the value for the content attribute, which is followed by a semicolon, the keyword URL, an
equal sign, and the address of the page to be refreshed.

 You can even refresh to a different page. For example, if your site moves from one domain to another,
you can leave a page up for visitors who go to the old domain saying that you have moved and that the
user will be redirected automatically in five seconds.

 When you use this technique to reload the same page it is referred to as refreshing the page, while
sending the user to a new page or site is called redirecting the user.

 It is generally considered bad practice to refresh entire pages, in particular because someone might be in
the middle of reading the page when you refresh it. It is important to bear in mind that some people will
not read a page at the same speed as others (especially if they have a screen reader to read the page to
them, in which case the page ’ s automatically refreshing would be very frustrating). The one exception to
this rule would be sites such as sports results, online chat applications, or auction sites where parts of
the page refresh so that the user has the latest information — although this kind of refresh is done using
very different techniques.

 Specifying the Author Name
 You can set the name of the author of the document using a value of author for the http - equiv
attribute and then using the author ’ s name as the value of the content attribute, like so:

 < meta http-equiv=”author” content=”Jon Duckett” / >

 Setting the Character Encoding
 Character encodings indicate the character encoding that was used to store the characters within a file.
You can specify the encoding used in a document with a < meta > tag whose http - equiv attribute has a

c13.indd 592c13.indd 592 11/20/09 5:24:25 PM11/20/09 5:24:25 PM

Chapter 13: Putting Your Site on the Web

593

value of Content - Type . The value of the content attribute should then be the character encoding used
to save the document; for example:

 < meta http-equiv=”Content-Type” content=”ISO-8859-1” / >

 Here you can see that the document was written using the ISO - 8859 - 1 encoding. You will see more about
character encodings in Appendix E.

 The scheme Attribute
 The scheme attribute is not yet widely supported, although it was created to allow web page authors to
specify a scheme or format for a property value. For example, if you are working with dates, you can
write them in several ways. In the U.S., the date format is commonly written mm - dd - yyyy , whereas in
Europe it is written dd - mm - yyyy . So, you might use the scheme attribute to indicate a date format. In the
U.S., you could use the following:

 < meta scheme=”usa” name=”date” content=”04-16-1975” / >

 In Europe, you might use the following:

 < meta scheme=”Europe” name=”date” content=”16-04-75” / >

 The use of the scheme attribute does assume that the processing application understands the value of
the scheme attribute and name attribute — and given that the mainstream browsers would not
understand this, it would fall upon either a script or a custom application to interpret the use of
this element.

 Having taken a look at the < meta > element, it is time to start preparing your site for the public to visit.

 Testing Your Site
 Most web page authors build their first sites on their desktop or laptop computer. The site usually
works well on that machine, but different visitors to the site will be using different operating systems
and browsers, viewing the pages on different - sized monitors, and connecting to the Internet with
different connection speeds. With all this in mind, it is sensible to perform some tests on the site before
setting your site loose for everyone to look at.

 So, the two stages of testing are as follows:

 Pre - publishing tests: These are performed on your computer before asking anyone else to look
at the site.

 Pre - release tests: Performed on the site exactly as it will be published on the Web (on a
web server).

 These tests help ensure that as many people as possible view your site as you intended them to.

❑

❑

c13.indd 593c13.indd 593 11/20/09 5:24:26 PM11/20/09 5:24:26 PM

Chapter 13: Putting Your Site on the Web

594

 Validating HTML, XHTML, and CSS
 One of the best ways to ensure a site will work on the majority of browsers is to validate your code and
make sure that you have stuck to the rules of the language. A validator will check things such as whether
you have closed all tags correctly, that the attributes you have used are actually allowed on that element,
and so on. All it takes is for you to miss something as simple as one closing < /td > tag and, while the
page may look fine on your browser, it will not necessarily work on someone else ’ s computer.

 It is helpful to try to validate the first page you build of each site, as it is quite tempting to copy and
paste parts of your code from one file to the other and use your first page as a template for other pages of
the site. If you have an error in your template page and you use it to create all the other sites before you
test it, you might have to amend every page.

 As discussed in Chapter 1, each version of HTML and XHTML has a set of rules that govern that
version of the language, known as a DTD or schema. A validator can check whether a web page obeys
the rules of that DTD or schema. Therefore, by validating your pages you will know if you have left out
a tag or other important part of the markup. It is the DOCTYPE declaration at the start of your page that
will tell a validation tool which DTD or schema your page should match the rules of.

 The W3C (the body that oversees development of HTML, XHTML, and CSS) has a free online validation
tool at http://validator.w3.org/ . It allows you to enter a URL for a site or upload a page from your
computer as shown in Figure 13 - 1.

Figure 13-1

c13.indd 594c13.indd 594 11/20/09 5:24:26 PM11/20/09 5:24:26 PM

Chapter 13: Putting Your Site on the Web

595

 It will then tell you if there are errors in your document; you can see examples of this in Figure 13 - 2.

Figure 13-2

 While the W3C validation tool is very helpful — and free — having to validate each page individually
can take a while.

 Many web page authoring tools, such as Dreamweaver, contain tools that allow you to validate your
entire site.

 Dreamweaver (which appears to be the most popular authoring tool among web professionals)
introduced good validation features for XHTML pages in its Dreamweaver MX version (far better
than the validation offered by earlier versions of Dreamweaver). Validating a page is as simple as
saving it and then pressing Shift+F6; you should see errors appear in the results panel, as
in Figure 13 - 3.

c13.indd 595c13.indd 595 11/20/09 5:24:26 PM11/20/09 5:24:26 PM

Chapter 13: Putting Your Site on the Web

596

 For this to work correctly you must have the right settings in Dreamweaver. To get the settings, you can
right - click in the results panel and choose the setting dialog box (or Option - click on a Mac). You will then
see a whole range of document standards appear in the new Preferences dialog box. You want to make
sure that each option is unchecked except the version you want to check against. So, if you are trying to
validate Transitional XHTML 1.0, you must have only that box checked, as shown in Figure 13 - 4.

Figure 13-3

Figure 13-4

 Link Checking
 It is important to check your links both before your site goes live and after you have published it on the
Web. There are several online tools to help you check links; some of them charge, although there are
some free link - checking services such as:

c13.indd 596c13.indd 596 11/20/09 5:24:27 PM11/20/09 5:24:27 PM

Chapter 13: Putting Your Site on the Web

597

 The W3C ’ s link checker at http://validator.w3.org/checklink/

 HTMLHELP ’ s Link Valet at www.htmlhelp.com/tools/valet/

 You can also use the Link Valet tool to check whether any site you link to has been changed since
a specified date. This can be very helpful because an external site might restructure its pages, and
the old URL will no longer be valid, or it might start publishing content you no longer wish
to link to.

 In Figure 13 - 5, you can see the results of a single page validated with the W3C ’ s link validator.

 The results from these services might appear quite verbose, but you should be able to tell which
links are bad by looking for some kind of highlighting — which tends to be in red for broken
or questionable links.

❑

❑

Figure 13-5

c13.indd 597c13.indd 597 11/20/09 5:24:27 PM11/20/09 5:24:27 PM

Chapter 13: Putting Your Site on the Web

598

 Dreamweaver also contains its own link - checking tool. You can access this from the Results menu or by
pressing Control+Shift+F9.

 There are options to check a page, a folder, or a whole site. Once Dreamweaver has found your broken
links you can fix them in either the Results window or the Properties window as shown in Figure 13 - 6
(or by going into the code for the relevant page).

Figure 13-6

 Checking Color Depths
 Ideally you would already have checked that your color palette had enough contrast to ensure those
who suffer colorblindness can still view the site. But if you have not yet done this there are some handy
tools here:

 http://graybit.com/main.php

 www.snook.ca/technical/colour_contrast/colour.html

 www.vischeck.com/vischeck/vischeckURL.php

 Accessibility Checkers
 Chapter 14 contains a list of techniques to help ensure that your site meets accessibility requirements.
This not only helps make sure you reach any potential audience that may suffer from visual or physical
disabilities, but also has the benefit that your site is likely to work better on the ever - increasing range of
devices that can be used to access the Web.

 There are some online tools that help check whether your site meets some of the accessibility
requirements, although they cannot check for all aspects of accessibility. For example, these tools can
check whether you have used alt attributes on each image, but they cannot tell whether the alternative
text will make sense to someone who cannot see the image. Here are two of the online tools that you can
use to help check whether your site is accessible:

 www.webaim.org/resources/wave/

 www.section508.info/

❑

❑

❑

❑

❑

c13.indd 598c13.indd 598 11/20/09 5:24:28 PM11/20/09 5:24:28 PM

Chapter 13: Putting Your Site on the Web

599

 A very good reference on the topic of accessibility is Web Accessibility: Web Standards and Regulatory
Compliance by Jim Thatcher, et al. (Friends of Ed, 2006).

 Checking in Different Versions of Browsers
 Even if you write your pages to the letter as far as the recommendations go and your pages validate
perfectly, different versions of browsers on different operating systems behave differently. The page
that looked perfect on your monitor just doesn ’ t look the same on a friend ’ s or colleague ’ s monitor.
So, you should always try to test your web page on as many different browsers and platforms as
possible. You should, at the very least, have the latest versions of Internet Explorer and Firefox on your
computer, and ideally Opera and Safari too.

 I would also recommend checking your site in Internet Explorer 6. (At the time of this writing, I was
working on a popular web site that still had 16 percent of visitors using IE6, and it does not always show
your site as you might expect.) Unfortunately, you are able to install only one version of Internet Explorer
on a single computer (unless you have a partition running a second version of Windows or run a Windows
emulator), and you are likely to want the latest version for day - to - day use. If you have an old PC lying
around, you can keep older versions of browsers on that and use it to test your pages once you have built
them. If you need to download an old version of a browser, try http://browsers.evolt.org/ .

 Some web sites and services offer to take screenshots of each page of your web site on many different
versions of several makes of browser for you, so that you can check how the pages appear in different
browsers. However, this can be quite expensive and time consuming. Examples include:

 http://browsershots.org/

 www.browsercam.com/

 http://browserlab.adobe.com/

 Another great way to check that a site is working is to ask all your friends to check it before it goes live.
At least one or two of them will have different browsers or operating systems, if you ’ re lucky. Ask them
to check what it looks like and send you a screenshot of a couple of pages in their browser. If you want
to, you can even offer a small prize to one lucky tester as an incentive for them to test your site.

 Pilot Testing
 If you are able to, get people who have not been involved in the project to test your site before it is
released to the public. This is important because what might seem perfectly obvious to you is not always
so clear to someone who is coming to the site for the first time. By the time you have built the site, you
will be so close to the designs and workings that it will be very difficult to look at it with the same
objectivity as someone who has never seen it.

You want to sit your participants down in front of the site and ask them to perform the tasks. Ideally, the
people performing this kind of test on your site would be your target audience.

 In Chapter 9, you may remember that we discussed the idea of creating personae that reflect your target
audience, and that these actors should have roles that they want to achieve when coming to your site.

❑

❑

❑

c13.indd 599c13.indd 599 11/20/09 5:24:28 PM11/20/09 5:24:28 PM

Chapter 13: Putting Your Site on the Web

600

You can use these roles again when testing your site. For example, you might have a site that sells bikes
and you could ask users to complete the following tasks:

 Find a bike they think would be suitable for their 8 - year - old daughter

 Work out how much a particular model of bike costs

 Find out how to visit the store and when it ’ s open

 Check whether a helmet meets a certain safety standard

 You should only ask each tester to perform around five tasks; any more than this and they will be getting
used to the layout and operation of the site.

 You should just watch what the users do. You must resist all temptation to intervene at any point, even if
you want to ask what someone is trying to do or want to tell them how to get to something you think
they are trying to find. (As soon as you start talking to them, you affect their normal behavior — and you
won ’ t learn as much.)

 Watching where people go to achieve these tasks, how long they spend on each page, and how they
navigate can teach you a lot about your site.

 Some people prefer to watch silently while participants perform these tasks. Others ask participants to
talk their way through what they are doing. In this second scenario (sometimes known as the talking -
 aloud protocol), you need to make sure that users talk their way through every thought process. You
often get broken sentences, but you can get an idea of what you expect of them by performing the task
first yourself on a different site. Here is an example of a transcript you might end up with:

 1. “ I ’ m supposed to look for a bike for Julia. ”

 2. “ Looking at . . . home, store . . . “

 3. “ Clicking on store . . . ”

 4. “ List of brands appears on the left, not heard of many of these. ”

 5. “ Pictures on right saying men ’ s bikes, women ’ s bikes, boys ’ bikes, girls ’ bikes . . . ? ”

 6. “ Click on picture for girls ’ bikes . . . ”

 7. “ Shows ages, so click on ‘ first bikes ’ . . . ”

 8. “ Looking at pictures . . . ”

 9. “ This one looks good; click on that picture . . . ”

 10. “ Doesn ’ t do anything . . . thought it would show more information about it . . . ”

 11. “ Click on Raleigh Butterfly. ”

 12. “ There, that one looks fine. ”

 You could consider setting up a video camera over the user ’ s shoulder so that you can see the screen and
also record their voice, as long as it doesn ’ t put the user off too much. Again you must resist the
temptation to interrupt if users are doing something that is not what you think they should be doing in
order to achieve the task — after all, in this example you learned that the user expected to be able to click
on the image of the bike to see more details, but couldn ’ t.

❑

❑

❑

❑

c13.indd 600c13.indd 600 11/20/09 5:24:29 PM11/20/09 5:24:29 PM

Chapter 13: Putting Your Site on the Web

601

 If you have the time and budget, then there is a lot more you can do in terms of testing. But many web
developers avoid doing any testing because they feel that they do not have the time and budget, and if
you find yourself in this situation, you can find out a lot about your site and how it will be used by
simply watching a small group of people perform basic tasks.

 Proofreading
 If you are working on a commercial site, it can often help to hire a proofreader to check all your text. Silly
typos can affect people ’ s impression of the site you built and make both you (and the client, if you are
developing the site for someone else) look less professional.

 If your client finds errors throughout the site, you appear careless — even if the client supplied the error -
 ridden copy for the site.

 Taking the Leap to Live
 Your site should now be ready for the public to view it, so in this section we will look at how to get it on
the Web. In order to do this you will need to get a domain name and hosting space, and you will have to
transfer the site to the new server using an FTP program.

 Getting a Domain Name
 The domain name is the part of the web address you commonly see after the letters www . For example,
Wrox Press uses the domain name wrox.com , whereas Amazon uses the domain name amazon.com in
the U.S., amazon.co.uk in the U.K., amazon.de in Germany, and so on.

 You can register your domain name with a domain registration company, of which there are hundreds;
just search on your favorite search engine and you will find plenty. Most companies go for the suffix
 .com , but several other suffixes are available. For example, there are country - specific domain suffixes
(also known as top - level domains) such as .co.uk for the UK, .de for Germany, .com.au for Australia, and
 .ru for Russia. You should choose a country - specific domain only if you are based in that country. Indeed,
some domain names can only be bought by people with registered companies in that country. Then there
are also suffixes such as .me.uk , which is for personal sites; .info , which is for information - based sites;
and .org , which is for registered organizations. (Unless you are working for a large multi - national
corporation, you do not need to purchase all available suffixes for your domain name.)

 Before you register your name, you need to see if it is available; all domain name registration companies
should have a form that allows you to search to see if your domain name is available. You might find this
a frustrating process, as an incredibly high proportion of the .com domain names you might think of
have been taken already, as well as most popular words (even combinations of popular words).

 You might also like to check that the name of your site is not very similar to that of someone you would
not want to be associated with, just in case the user mistypes the URL. For example, you would not want
a children ’ s site to have a very similar URL to an adult - content site.

 You can order your domain name without actually having a site ready; this is known as domain parking .
You order the name as soon as you know you are going to create the site (after all, you will probably
want to use the URL in the site design, and will therefore need to order it before you start designing the
site), but you do not put anything up there until you have built the site.

c13.indd 601c13.indd 601 11/20/09 5:24:29 PM11/20/09 5:24:29 PM

Chapter 13: Putting Your Site on the Web

602

 Several domain - name registration companies also offer hosting (hosting is covered in the next section),
but you do not (generally speaking) have to order your domain name from the same people that host
your site. You can get the domain name registration company to point the domain to your hosting
company ’ s servers (usually there is a control panel on the site you registered the name with where you
specify where your domain name actually points).

 Your domain name should be easy to remember. Avoid names that are so long that users will find
them hard to remember or too long to type in. For example, if you were called the Sydney Slate Roofing
Services Limited, you might choose a domain such as www.SydneySlate.com rather than
www.SydneySlateRoofingServicesLimited.com .

 When you register the domain name, you will also be able to use this for your e - mail addresses. For
example, if you choose the domain www.example.com , then no one else will be able to use the e - mail
address bob@example.com without your permission. (Unfortunately, it is possible for spammers to
make e - mails appear as if they come from your domain, simply by changing the “ from ” address in their
e - mail programs, and there is nothing you can do to prevent this.)

 Hosting
 You already know that in order to view a web page, a browser requests a page from a web server. The
web server is a special computer that is constantly connected to the Internet.

 When you access a page using a domain name, such as www.example.com/ , something called a name
server changes the name into a number. The number (known as an IP address) uniquely identifies a
machine on the Web and this machine holds your web site.

 So when you are ready to put your site out on the Web, you are going to need some space on a web
server. Hundreds of companies will allow you to put your web site on their servers and will, of course,
charge you for the service. The service is known as web hosting because the company hosts your site
for you.

 Some ISPs will give you a small amount of web space free when you choose them to access the Internet.
There are also other sites that offer free hosting (these are often paid for by the use of pop - up
advertisements that appear when your pages load). For a personal site you may need only a small
amount of web space and you might be prepared to put up with any pop - up ads that come with the free
service. For commercial sites, however, it is better to choose some paid hosting — which can still be very
cheap but will not serve advertisements.

 Key Considerations for Choosing a Host
 As I said, literally hundreds of companies offer web hosting, and it can seem like a minefield deciding
which to go with. Following is a discussion of the key points you need to understand and consider when
choosing a site (these points are listed here in alphabetical order, rather than in order of importance):

 Backups: You should check whether your host performs backups on your sites and, if so, how often.
A backup is simply a copy of the site taken in case there is a problem with the computer it is on.

 Some companies will only create backups so that they can restore your web site in the event of
a server breaking down. Others will also allow you access to backups (which can be handy

❑

c13.indd 602c13.indd 602 11/20/09 5:24:29 PM11/20/09 5:24:29 PM

Chapter 13: Putting Your Site on the Web

603

if you accidentally break the site, because you can go to the backup and get an older version that
you know worked).

 If your site changes regularly, you will want to look for frequent backups (daily at least), and
you would want the hosting provider to do this automatically. But if the site does not change
regularly, you may be prepared to create a backup yourself, and do it less often.

 Bandwidth: This is the amount of data you are allowed to use on your site. If the average size of
one of your web pages is 75KB including images, and you get 100 visitors to your site per
month, with each visitor looking at 10 pages, you will need at least 75000kb (or 75MB) of
bandwidth per month. In reality, you will find that hosts often allow a lot more than this, but it
gives you an idea of how to calculate bandwidth.

 The tricky part of deciding how much bandwidth you will need is to judge how successful your
site will be. You can never predict how popular your site will be, and if it is mentioned in a pop-
ular newspaper or magazine, it can suddenly get a lot more traffic. Most hosting companies will
charge you an extra fee if you exceed the bandwidth allocated on your account, and their web
site will usually tell you how much bandwidth you have used in a month.

 Country: You might want to consider which country your site is hosted in. It is best to host the
site in the same country where you expect the majority of your visitors to be because the data
has less distance to travel, which should make your site appear to those users more quickly. If
you are setting up a site for an Australian market, for example, you would ideally host the site
in Australia as it would be quicker for Australian visitors to load the pages than if it were hosted
in Europe. In practice, however, you are rarely likely to see much of a performance difference.

 Data centers: Data centers are where the hosting company will have its servers (and it may be a
different building from where the company ’ s offices are). A lot of companies say that they have
multimillion - dollar data centers, but this does not necessarily mean your hosting company is a
big operation, because most hosting companies hire space in a large data center that is shared by
many companies.

 Disk space: This is the amount of space you get to store files on the computer that serves your
site. You will usually see a figure given in MB (megabytes) or GB (gigabytes) The disk space
governs how large your site can be; you must have more disk space than the total size of all of
the XHTML, CSS, script files, and images that make up your site. You can check how large your
web site is by simply looking at the size of the folder that your site is in (as long as you do not
have any other files in that folder).

 E - mail accounts: Hosting companies generally provide e - mail services with web hosting. You
need to consider two factors here: the size of mailbox you are allowed, and the number of
mailboxes you are given. Some hosts give you unlimited mailboxes but set a maximum amount
of storage space across all of them, so if you have five mailboxes and only 100 megabytes of
space to share among them, each account can hold only 20MB at capacity. Some hosting
companies allow you only a few mailboxes, but will allow a fixed amount for each mailbox (say
100MB each). Finally, some hosting companies allow you to take up the amount of space you
have allocated for your domain with mail, so the only limit is your storage limit.

 Shared versus dedicated hosting: The cheaper web hosting is nearly always provided on what
is known as a shared host . This means that your web site is on the same physical computer as
many other sites. Because the smaller sites do not have as many visitors, the computer can easily
cope with hosting several sites. However, larger sites that receive many thousands of visitors a
day or serve large files (such as music downloads or a lot of heavy graphics) require extra

❑

❑

❑

❑

❑

❑

c13.indd 603c13.indd 603 11/20/09 5:24:30 PM11/20/09 5:24:30 PM

Chapter 13: Putting Your Site on the Web

604

bandwidth and take up more resources on that server. When visitors to your site start to request
a lot of large files, the amount of data you are sending to them could exceed the bandwidth limit
set on your account, and this is likely to result in increased charges. Therefore, if your site
becomes extremely popular, it may be less expensive to get your own server, which is known as
a dedicated server because it is dedicated to your use.

 Some of the very popular sites on the Web are actually hosted across several servers — the site
may be so busy that one computer alone cannot handle the traffic, or one machine may require
maintenance so there are others to take the strain. Banks, large online stores, and multinational
corporations are examples of sites that would use this kind of setup — known by many names
including a load - balanced server or cluster of servers , a web farm, or a cloud platform.

 Some companies will offer to host your site on a cluster or cloud, which means that they have
several sites on the same set of servers (generally this is more reliable than having several sites
on one single server).

 Don ’ t be put off by this talk about dedicated or load - balanced servers. Generally, if your site is
so popular that you require your own dedicated server, you should be making enough money
from it to warrant the extra cost.

 Statistics packages: Every time a user requests a file from your site, the web server can store
certain details about the user — for example, the IP address, browser version, language of the
operating system, and so on. This information comes in the HTTP headers from the browser,
and is stored in what is known as a log file . Statistics packages can look at the log files that
contain this information and interpret some very useful information from them. For example,
you can see how many pages you have served to visitors, what users typed into search engines
to find you, and what the most common page people leave your site from is. All this information
helps you understand what users are doing on your site and can help you improve the site and
the number of visitors it receives. You learn more about statistics packages later in the chapter.

 Uptime: Uptime refers to the percentage of time your web server is working and available for
people to look at your site. You will generally see figures such as 99 percent uptime, which means
that, on average, 99 out of every 100 minutes your site will be available. But then that also means
that your site might be down for 1 percent of the time, which could be 87.6 hours per year, or four
days . If your site is your main source of income, you should find an alternative with more uptime.

 Unless you are a running a very large company, it is rarely worth the investment of running your own
servers because you are likely to need someone capable of administering the machines and taking care of
them on a regular basis. If you decide that you do need your own dedicated servers, several hosting
companies will manage a server on your behalf, updating it with new patches for the operating system
to fix security holes when needed — this is known as a managed dedicated server . While this is still
expensive, you will generally find it cheaper than hiring someone yourself to manage your servers.

 Putting Your Site on a Server Using FTP
 Once you have paid for some space on a web server, you need to be able to get the files that make up
your web site onto this computer — which can be on the other side of the world. The most efficient way
to do this is using FTP .

 FTP stands for File Transfer Protocol. The Internet uses a number of different protocols for sending
different types of information. For example, HTTP (Hypertext Transfer Protocol) is used for transmitting
hypertext files, which are better known as web pages (that ’ s why most web addresses start with http://).

❑

❑

c13.indd 604c13.indd 604 11/20/09 5:24:30 PM11/20/09 5:24:30 PM

Chapter 13: Putting Your Site on the Web

605

FTP is a protocol used to transfer binary files across the Internet and is much quicker at sending whole
web sites to a server than HTTP.

 Most hosting providers actually require that you use FTP to transfer your pages onto their servers, which
means that you need an FTP program (sometimes referred to as an FTP client) to put your files on a server.

 FTP programs usually have two windows, each with a file explorer. One represents the files and folders
on your computer; the other represents the folders on the web server. In Figure 13 - 7, you can see the
folders on my computer, and on the right you can see those on a web server.

Figure 13-7

 The table that follows shows some of the most popular FTP programs.

 Product Name URL OS

 FireFTP http://fireftp.mozdev.org/ Windows and Mac OS X

 Cute FTP www.cuteftp.com/ Windows and Mac OS X

 FTPX www.ftpx.com/ Windows

 Fetch www.fetchsoftworks.com/ Mac

 Transmit www.panic.com/transmit/ Mac

c13.indd 605c13.indd 605 11/20/09 5:24:30 PM11/20/09 5:24:30 PM

Chapter 13: Putting Your Site on the Web

606

 Each of the programs is slightly different, but they all follow similar principles.

 When you register with a host, this host will send you details of how to FTP your site to its servers. This
will include:

 An FTP address (such as ftp.example.com)

 An FTP username (usually the same as your username for the domain)

 An FTP password (usually the same as your password for the domain)

 Figure 13 - 8 shows you how these are entered into the FTP program called Transmit on a Mac.

❑

❑

❑

Figure 13-8

 Some hosting companies allow you to use a variant of FTP called SFTP or secure FTP. This is considered
to be more secure than standard FTP because the username and password are encrypted when they are
sent to the server. If your host supports this option, it is a good idea to use it.

 The Importance of Directory Structure
and Relative URLs

 Because a lot of people develop their first site on a desktop or a laptop computer they often use
relative URLs for all links, images, style sheets and scripts, rather than absolute ones (because they
do not have a full URL for the site yet). This is very helpful because it means that the links will work on
a web server of the hosting company without any changes.

c13.indd 606c13.indd 606 11/20/09 5:24:31 PM11/20/09 5:24:31 PM

Chapter 13: Putting Your Site on the Web

607

 When developing a site on your desktop machine, the address bar of your browser might contain
something like this:

 C:\Documents and Settings\administrator\websites\examplesite\index.html

 But when you are ready to make the switch to the new site, you are going to want it to appear here:

 http://www.example.com/index.html

 If you are using relative URLs to link to all of your other pages, images, script files, and so on,
then moving a site to a new folder or even a new URL will not be a problem. However, if you hard -
 code your paths, you may find that links, images, and other files do not load. For example, suppose
you used an image for the logo of your site, and used the full file path in the src attribute, like so:

 < img src=” C:\Documents and Settings\administrator\websites\
examplesite\mages\our_logo.gif” alt=”Our Logo” / >

 This image would not be loaded when you move the site to a server. It is better to use something
like this:

 < img src=”images/our_logo.gif” alt=”our logo” / >

 Now, as long as the images folder is within the directory that this page lives in, the image will be
loaded, no matter where the site is moved.

 Now that your site is on the server where the public can see it, you should check your pages
thoroughly again to ensure they appear as you intended. Remember to check that all of the links
work and that the images and other files are loading. You should consider running a link checking
tool (like the ones discussed earlier in this chapter) again to help check whether links are working.
Once you are happy that the site is functioning properly, you can start to tell the world about it.

 Telling the World about Your Site
 Now that you have built your site and put it up on the Web, you want people to discover it.
When creating a web site, many people take the “ build it and they will come ” approach, expecting
people to just find their site (perhaps through search engines such as Google). There are, however,
many things you can do to help promote your site and significantly increase the number of people who
will see it.

 There are whole books devoted to web marketing (and many web sites), but here are some pointers for
how to make more people aware of your site.

c13.indd 607c13.indd 607 11/20/09 5:24:31 PM11/20/09 5:24:31 PM

Chapter 13: Putting Your Site on the Web

608

 Always Mention Your URL
 The first thing to do is to mention your URL wherever you can. For a start, if you have any printed
material, from business cards and letterheads to brochures, posters and adverts, include your URL on
them. Likewise, ensure that you have it on your e - mail signature.

 Content Is King
 Entertaining or informative content is one of the best reasons for people to come to your site. If you are
able to, creating regular content not only gives people more reasons to come to your site (because you
are regularly adding new material that may be of interest to new people), but it also gives people who
have found your site a reason to come back regularly.

 If you want people to come back regularly, it is important to give people an idea of how often the site
is updated. This can be done through some fairly simple means such as adding the date that the items
are published under headlines (as you see on many blogs), or by spelling out how often the site is
updated.

 If you have any particularly interesting or noteworthy news that you think would benefit from a Press
Release, then you can consider writing one and submitting it to a PR news service such as PR Web
(www.PRweb.com). Other journalists and bloggers may pick up on your article and mention it.

 Some site owners will allow other web sites to republish content that they have written in return for a
link back to their web site. If you want to do this you can tell visitors that this is an option at the bottom
of your articles, and go out and offer your content to other sites.

 Forums, Communities, and Social Networks
 Many industries and hobbies have their own forums and online communities. You can also find groups
of people interested in the same topic on social networks, such as Facebook and LinkedIn.

 If you become a part of any online community that is relevant to your site, you can build your profile
amongst the community. By having your URL on the signature and profile page of sites you post to, or
on your social network profile pages, more people become aware of your site, and they may be regularly
reminded of it.

 It is very important when becoming part of an online community that you do not just post messages
when you have something to say about your site or have added something new to it. As with any
community you should get involved in the conversations and reply to other people ’ s posts offering
advice where you can (giving back to the community, not just using it to promote your site).

 Check for Trade Sites and Directories
 Many trades and hobbies have at least one site that lists all other sites in that field. Try to find out if there
are any sites that relate to the subject of your site and ask those sites to link to you.

c13.indd 608c13.indd 608 11/20/09 5:24:32 PM11/20/09 5:24:32 PM

Chapter 13: Putting Your Site on the Web

609

 While most of the sites shown in this button in Figure 13 - 9 will have pages that describe how to link to
each of them individually, a far simpler and quicker way to add these options to your site is using a web
site called www.addthis.com/ (this site provides very simple tools to create a link like this encouraging
visitors to share the site with others).

 You can also provide a page with buttons or banners that make it easy for other sites to link to you. This
is more likely to happen with hobby sites than with commercial ventures, but people who create sites in
their spare time will often link to other special - interest sites. If you provide them with attractive images,
and show them the code to add the images and links to their site, they are more likely to include these
ads. Figure 13 - 10 shows some examples from the Oxfam web site.

Figure 13-9

 Some trade directories charge for listings; if this is the case ask their monthly traffic and average number
of visits you can expect per month from your listing before handing over any money. You may then want
to suggest a trial period before handing over a full year ’ s subscription (you will see how to track how
many people come from such sites shortly).

 Reciprocal Links
 Many smaller sites offer reciprocal links; that is, they will link to you in return for your linking to them.
It is a way for everyone to boost traffic. If you do this, make sure that you are not putting someone on
the front page of your site when they are going to put a link to you tucked away on a page that few
people will come across — the term is reciprocal linking , after all.

 While it is good to have as many people linking to your site as possible, you will tend to get better trafic
from sites that cover topics relating to the subject of your site.

 Look at Your Competition
 Use a few search engines to search for competing sites or company names and see who is linking to and
talking about them — the sites that link to your competitors may well link to you, too, if you ask.

 Make It Easy for People to Link to You
 You have probably seen links like those shown in Figure 13 - 9 on many web pages, encouraging users to
bookmark a page on services such as Delicious or Stumble Upon, or to vote for the page on sites like Digg.

c13.indd 609c13.indd 609 11/20/09 5:24:32 PM11/20/09 5:24:32 PM

Chapter 13: Putting Your Site on the Web

610

 Pay - per - click Advertising
 When you have searched on Google you will probably have noticed the links down the right - hand side
of the page like those in Figure 13 - 11.

Figure 13-10

c13.indd 610c13.indd 610 11/20/09 5:24:32 PM11/20/09 5:24:32 PM

Chapter 13: Putting Your Site on the Web

611

 These are examples of what is known as pay - per - click advertisements, so called because the advertiser
only pays each time someone clicks on the ad.

 Google ’ s pay - per - click advertising system is called AdWords, and in order to advertise, you specify a set
of keywords that relate to your site (and create your ad copy). The ad will only appear when someone
searches on one of these keywords.

 There are two main factors that determine the order in which your advertisements will appear:

 The amount you are prepared to pay each time someone clicks the ad.

 The number of people who actually click on your ad. If users do not click the ad, then it slips
down in position no matter how much you pay, because Google stands to make more money if ten
people click a cheaper link than if one person clicks a slightly more expensive link. Also Google
wants to remain as relevant as possible to visitors, so it will prioritize the most popular links.

 This can be a very cost - effective way to generate traffic to your site. Yahoo offers a similar service called
Yahoo! Search Marketing, and Microsoft has a system called adCenter.

❑

❑

Figure 13-11

c13.indd 611c13.indd 611 11/20/09 5:24:33 PM11/20/09 5:24:33 PM

Chapter 13: Putting Your Site on the Web

612

 Display Advertising
 Display advertising is a term used to describe advertisements where you pay for your ad to appear on a
particular site. It is most commonly associated with banner ads.

 Companies are charged for display ads in two common ways. First, there is the cost-per-thousand
impressions confusingly named CPM (which stands for cost per mille). Second, you may be charged to
occupy a space on a page on a per month or per year basis.

 If you do take out display advertising it is worth noting that click-through rates on display ads are
very low.

 Remember that a lot of web users are immune to advertising and just scan pages to find what they really
want. If you are going to create a banner, make sure it ’ s visually attractive and gives people a clear
incentive for clicking on it. You want people to want to click on your ad so it ’ s worth the money you are
spending to have it appear on other sites.

 Some current thinking suggests that online display ads are more suited to brand awareness than
achieving specific actions such as getting people to visit your site, because click-through rates are very
low. It is not uncommon for display ads to have less than 1 percent of the people viewing the ad visiting
the site.

 Create an E - mail Newsletter
 If you have regularly changing content, consider adding an e - mail newsletter feature to your site. By
encouraging people to sign up for e - mail updates you can regularly remind them about your site and tell
them what has changed.

 Some good tools for creating and managing e - mail lists are:

 www.CampaignMonitor.com

 www.MailChimp.com

 Both of these tools not only help you send e - mails to visitors, but also help you create subscription forms
so that visitors can easily sign up to your newsletter.

 Near the form where people can subscribe to your newsletter, it is a good idea to explain to visitors the
incentives for signing up and tell them the benefits of giving you their e - mail address.

 You can also consider approaching other complimentary companies to see if they would mention you in
their newsletter in return for a mention on yours.

 Now that people are coming (you hope) to your site, you can learn a lot about what they are doing on
the site and how they found you.

❑

❑

c13.indd 612c13.indd 612 11/20/09 5:24:34 PM11/20/09 5:24:34 PM

Chapter 13: Putting Your Site on the Web

613

 Understanding Your Visitors
 As soon as you have people coming to your site, you should start looking at how they found you, what
they are looking at, the operating system and browser they are using, and when they are leaving.

 There are two main ways to learn about the visitors to your site:

 Log file analysis , which studies log files on your server

 Analytics software , which requires you to add a couple of lines of script into each page of your
web sites so that they can record information to a database

 When any file is requested from a server, it can create a log file to record information about the browser
that requested the page. Many hosting companies will then provide tools that allow you to analyze these
log files and give you information about your visitors (which tool they offer varies between hosting
companies but the tools will offer similar features).

 Analytics software uses a script that records similar information to that available in log files into a
database. It also provides tools to analyze this information.

 Personally, I install analytics software for all sites I develop. For most small and medium sized sites, I use
Google Analytics, which is a free service offered by Google (www.Google.com/analytics). The terms
used in site analysis can be confusing; for example, you may have heard people say that a site gets
10,000 hits . This can be quite misleading. The term “ hit ” refers to the number of files that have been
downloaded from the site — and every image counts as a file in this total as well as the XHTML pages.
Thus, a single web page with nine images will equal ten hits (and some graphics - intensive pages can
have over 30 images for each page that is served). Therefore, it is generally more helpful to look at page
views rather than hits, as this represents the number of pages that have been viewed on your site.

 You may also come across the term “ visits. ” You should be aware, however, that different statistics
packages calculate visits in different ways. Some count every visitor using the same IP address as the
same person — so if there are ten people, all of whom work in the same building, looking at the same
site at once, then that might look like only one user instead of ten. Different packages also tend to count
visits as different lengths of times; some packages remember an IP address for a whole day, so if the
same person comes to the site in the morning and then again in the evening it is counted as just one visit.
Others will remember the IP address for only 15 minutes.

 You will also find that some advertisers will ask for the number of unique visitors you receive each
month — again different statistics packages can count unique users in different ways, so this figure can
be a little misleading.

 Figure 13 - 12 shows you an example of a report from Google Analytics.

❑

❑

c13.indd 613c13.indd 613 11/20/09 5:24:34 PM11/20/09 5:24:34 PM

Chapter 13: Putting Your Site on the Web

614

 Ten Things to Check in Google Analytics
 There is an incredible amount of information available, but here are ten things I always look at first when
studying a Google Analytics report for a site:

 1. Pageviews: This shows the total number of pages all visitors have viewed on your site.

 2. Visits: This shows the number of times people have visited your site over a given period.

 3. Unique visits: This totals the number of visitors who have visited the web site over
a given period, with each visitor counted only once. This is important because when
compared with total visits you can get a good idea of how many people are returning to your
site regularly.

Figure 13-12

c13.indd 614c13.indd 614 11/20/09 5:24:34 PM11/20/09 5:24:34 PM

Chapter 13: Putting Your Site on the Web

615

 4. Referrers: These are the sites that are sending visitors to your site, and will include a mix
of sites that link to you and search engines. If a site is sending you a lot of traffic, you might
like to get in touch and see if you can work together to ensure that the traffic keeps flowing.

 5. Search terms: These are the terms that people are entering into a search engine such as Google
before visiting your site. This can be particularly helpful in letting you know how visitors de-
scribe the things they are looking for (because visitors often use very different terminology to
site owners).

 6. User ’ s browser, operating system, and screen resolution: This is important because it shows
you which browsers and operating systems you should be checking your site on.

 7. Top content: This shows the most popular pages and sections of your site.

 8. Top entry pages: This shows the most popular pages that people first see when coming to
your site (you can often find that referrers and search engines send visitors to specific pages
on your site rather than the homepage).

 9. Top exit pages: This shows the pages that people left on (if a lot of people are leaving on the
same page, then it is probably a good idea to consider changing that page).

 10. Bounce rate: This is the number of people who left on the same page they arrived on (if a lot of
people are leaving from the same page they arrived on, it suggests that the content is not what
people were looking for or that the page did not sufficiently encourage people to look around
after they arrived at the page and to explore more).

 Google Analytics lets you specify the timeframe you want to look at this data for. I find that looking at
monthly reports gives me a good overview and starting point for a site ’ s traffic.

 You can also instruct it to e - mail you reports on a daily, weekly, or monthly basis, which saves you
having to log in to check the statistics each day.

 Measuring Everything
 The ability to track where visitors come from using tools such as Google Analytics means that in
addition to discovering where people are coming from, you can also measure the success of marketing
activity, which allows you to determine the return on your investment (ROI).

 In addition to ascertaining whether your marketing investment has paid off in terms of financial cost,
you should also consider the time it took you to initiate the marketing activity. For example, you may
spend $100 in a month on Google AdWords and it could take you half a day to set it up, write your
ads, and check in again a few times while the ads are running. In this instance, it may be more cost -
 effective to spend 10 minutes writing to a few bloggers who might create a lot more traffic for you at
no cost.

c13.indd 615c13.indd 615 11/20/09 5:24:35 PM11/20/09 5:24:35 PM

Chapter 13: Putting Your Site on the Web

616

 So, wherever you can, try to ensure that you are able to measure the performance of each kind of
marketing and awareness activity you perform. In addition to looking at referrers, Google Analytics
allows you to add the following extra information to your URL so that you can measure the effectiveness
of links.

 Term Description Query String Property

 Campaign source The referring site utm_source

 Campaign medium Such as blog, e - mail, PPC, display utm_medium

 Campaign term Keywords for the campaign utm_term

 Campaign content Used to differentiate multiple links from
similar campaigns

 utm_content

 Campaign name A readable term you can use to determine
the source

 utm_campaign

 There is a handy tool that Google offers to add these links to your URL — just search for Google
Analytics URL Builder. Here is an example of a URL with additions to say that a display advert had been
added to www.referrer.com for a campaign about cheddar cheese:

http://www.example.com/?utm_source=referrer.org & utm_medium=display & utm_term
=cheese & utm_content=cheddar & utm_campaign=taste%2Bthe%20cheese

 What Next?
 You ’ ve learned all about XHTML and CSS, made a good start at learning JavaScript, and learned how to
put your site live on the Web. That is probably enough for now, so you might wonder why there is a
section entitled “ What Next? ” This section covers two topics:

 Tools you can use to add powerful features to your site, using knowledge you already have

 What technologies might be appropriate to learn next

 So, the first part of this final section will look at services provided on the Web that you can use
to enhance your site. You learn about blogs, discussion groups or forums, search, and e - mail
newsletters. While these might all sound complicated — and they are advanced features — they
can be remarkably easy to implement and you will see how they can be powerful and impressive
features on any site.

 The second will then look at some other technologies you might like to consider learning.

❑

❑

c13.indd 616c13.indd 616 11/20/09 5:24:35 PM11/20/09 5:24:35 PM

Chapter 13: Putting Your Site on the Web

617

 Tools
 There are lots of companies and individuals who create software that you can use on your web site:
blogs, message boards, content management systems, e - mail newsletters — the list is (almost) endless.
They allow you to add complex features to your site that would take a lot of time and experience to
create yourself. Many web design firms use off - the - shelf software, and customize it for their clients
(rather than building applications from scratch).

 You may find some of these tools will help you create a more advanced web site, and what you have
learned in this book will help you take control of the appearance of these tools and make them fit in with
the sites you design.

 Generally the tools discussed in this section are provided in one of two ways (or sometimes both):

 Services: The software is run on platforms that are hosted and managed by the company that
sells the service. You will get a unique log on to the service.

 Code: Those that provide the code for you to run on your own web site.

 Some companies charge for a license to use the software on your site, but there are also a lot of free
options out there.

 Many hosting companies will allow you to add some of the software discussed in this section to your
site using what are known as “ one - click - installations ,” where you only need to press one button on the
control panel for your web site to have them install the tools.

 Blogs
 The word “ blog ” is short for weblog . Blogs were initially devised as a way to add online journals or
diaries to a personal web site. The idea behind blogs was to allow users to easily add new entries or posts
to their web site without having to manually code the page (sometimes called one - click publishing).

 The posts are added to the site in a chronological order, and while they are often used for online diaries
or journals, they have been used for a wide variety of other purposes, such as a way for people to add
news, posts about a topic of shared interest, links, and so on to their site.

 Some blogging platforms are very simple to use. For example, to set up a Posterous blog, you just e - mail
them with your first post, and they reply once the service has been set up for you with details of how to
work with the platform. Here are some examples of hosted blogging services:

 www.posterous.com

 www.tumblr.com

 www.blogger.com

❑

❑

❑

❑

❑

c13.indd 617c13.indd 617 11/20/09 5:24:36 PM11/20/09 5:24:36 PM

Chapter 13: Putting Your Site on the Web

618

 Some other blogging platforms offer a lot more functionality, although the extra power comes at a price
of them being more complex to learn. Both of these are provided as software (although Wordpress.com
offers a hosted version of WordPress, too):

 www.wordpress.org

 www.movabletype.org

 Both of these blogging platforms actually offer far more functionality that makes them entire content
management systems (applications that make it easier for non - programmers to upload and edit the
content of their web site). Individual developers have also extended these platforms with more features
and functions (such as events calendars, advertising tools, mailing lists, and more).

 Discussion Boards or Forums
 Discussion boards or forums allow users to post questions or comments and then have other users
reply to them. They are a great way to add a community feeling to your site, and also provide new
content to your site without adding it yourself. They can also attract visitors back to your site at regular
intervals.

 You may choose to break down your subject area into different sub - topics. For example, if you were
running a site about a particular type of car you might have one discussion group for technical questions
and answers about fixing problems with that model of car, you might have another forum that allows
users to indicate when they are buying or selling parts for that car, and a third area for general chat
about the cars.

 One of the great things about discussion boards is that, if your site gets known for answering questions,
people will come to that site whenever they have a problem. You may well have to start the community
off by answering all the questions yourself, but with luck, other members will soon start adding their
thoughts.

 There is more forum software available to install on your own server than there are services. The
following table shows you some examples:

 Product Web site Format

 PHPBB www.phpBB.com PHP Code

 VBulletin www.vbulletin.com/ PHP Code

 AspNetForum www.jitbit.com/asp-net-forum.aspx ASP.NET Code

 Active Forums www.activemodules.com/products/
activeforums.aspx

 ASP.NET Code

 Zeta Boards www.zetaboards.com/ Hosted

 Pro Boards www.proboards.com/ Hosted

❑

❑

c13.indd 618c13.indd 618 11/20/09 5:24:36 PM11/20/09 5:24:36 PM

Chapter 13: Putting Your Site on the Web

619

 You should be aware that you may be held legally responsible for what people write on your discussion
board. If someone takes offense to something written on a board or forum on your site, you can be held
accountable as the publisher of the content on the Web — even if you do not share the opinion of the
person who wrote the item.

 Some discussion boards get around this by allowing the owner to moderate each post (read it before
allowing it to go on the site); others simply regularly check the site for offensive material and remove
any posts they consider offensive as soon as possible.

 Adding a Search Utility
 As mentioned in Chapter 10, you might want to add a search utility to your site. In Chapter 10, you saw
that you can add a Google search utility to your site, and you can even customize the search by going to
 www.google.com/coop/cse/ . Another site that offers a free customizable search service is the Atomz
service at www.Atomz.com/ .

 The addition of a search facility to your site can mean the difference between users finding what they
hoped to find or simply giving up and leaving. With both the Google and Atomz services, you are given
the code for a form that will allow users to send queries to the respective company ’ s web site. The
company ’ s servers will then return a page to your users with the results of the search. Both services
allow you to create custom headers for the page so that it contains your branding, although the
company ’ s servers generate the results.

 Creating an E - mail Newsletter
 Getting visitors to sign up to an e - mail newsletter is a great way to remind people of your site and drive
regular traffic. The problem with e - mail newsletters is sending attractive campaigns out to the people
who have signed up.

 The e - mail programs that you run on your desktop or laptop computers will not allow you to create the
kind of attractive e - mails that many companies send out (which are created in HTML). To send HTML
e - mails you can look at a third - party service.

 I also tend to recommend using an e - mail service rather than installing e - mail software on your
server because the e - mail services will have a lot higher delivery rates. If you send bulk e - mails from
a server used for shared hosting, it is less likely that your e - mails will get through to the intended
recipients.

 Such services charge based on the size of your e - mail list, and some have an additional charge per
newsletter you send. Two popular services (which were introduced earlier in the section on promoting
your site) are:

 www.CampaignMonitor.com/

 www.MailChimp.com/

❑

❑

c13.indd 619c13.indd 619 11/20/09 5:24:36 PM11/20/09 5:24:36 PM

Chapter 13: Putting Your Site on the Web

620

 It is important to remember that people must subscribe to receive your newsletter. You cannot just
upload all of the contacts from your address book to these services. To help increase subscribers, most
e - mail services will provide forms which you can drop into your site that allow people who visit your
site to subscribe to your newsletter.

 You should also be aware that e - mail clients are not as advanced as web browsers. Therefore you should
not use external CSS style sheets; rather you should use inline CSS rules in the style attribute on those
elements or old - style HTML markup that can control presentation of elements (which is covered in the
appendix on deprecated markup). Finally, you should never be tempted to use scripts or videos in
e - mails, although you can link to web pages that use both.

 Introducing Other Technologies
 This section provides an introduction to some other technologies, what they can do, and how you can
make use of them on web sites. I hope this helps you decide what technology you might want to start
learning next when you have gained experience with everything you ’ ve learned in this book.

 Server - Side Web Programming: ASP.NET and PHP
 You ’ ve already seen the very basics of what a programming language such as JavaScript can do
in a browser, but when a programming language is used on a web server, it becomes even more
powerful.

 Any time you want to collect information from a visitor to your site and return a page that is customized
for that visitor, you will want to look at server - side programming. Here are some examples of
applications where different users will need different pages:

 Shopping online: Users browse through a catalog of products and select which ones they want.
Their choices are often reflected in a shopping basket displayed on each page. After they have
chosen what they want, they provide their payment details and contact/delivery details. At the
same time, the people running the store are likely to have a browser - based interface that allows
them to add new products to the site (rather than having to create each new page and link to it
individually).

 Checking train times: The user enters the point he or she is traveling from and the destination,
along with preferred travel times. The application then creates a page that contains the
requested journey times.

 Discussion boards and forums: The examples you have already seen mentioned in this chapter
of discussion boards and forums rely on another company ’ s server - side programming and code
to handle all of the posts.

 Searching for content on a site: The user enters a term into a form that he or she wants to
search, which is then sent to the application on the server. The application creates a page that
contains results the user inquired about.

❑

❑

❑

❑

c13.indd 620c13.indd 620 11/20/09 5:24:37 PM11/20/09 5:24:37 PM

Chapter 13: Putting Your Site on the Web

621

 One thing that all these types of applications have in common is that the scripts on the server are being
used to store information in, and read information out of, a database. (You can think of a database being
a little like a set of spreadsheets where information is stored for use in many kinds of applications.) You
will learn more about this shortly in the section “ Content Management. ”

 Choosing a Server - Side Language
 You can work in several different server - side languages and environments, such as ASP.NET and
PHP, both of which offer very similar capabilities. Generally speaking (although there are exceptions to
the rule):

 ASP.NET runs on Microsoft IIS and Windows servers.

 PHP runs on UNIX servers.

 You can code these pages on your desktop computer with the right software installed, but you will want
to host the finished web site on a web server.

 The first applications created using a script on a server were known as CGI scripts. You may still see
 CGI or CGI - bin in the URL of some applications. However, the languages discussed here are in far
higher demand.

 Different developers will have different opinions about which language to choose. Most people learn one
language and environment and stick to it (although to a certain degree it is much simpler to learn a
second language and environment when you already understand one and know what can be done with
server - side scripting languages).

 If you are learning a technology in order to get a job, then it ’ s a good idea to keep an eye on job
advertisements. You will be able to track the technologies employers are asking for and also (if you look
regularly) you will be able to see the emerging technologies early on — first there will be only one or two
mentions of these technologies, and then the mentions will come more regularly. Job ads can therefore be
quite a good barometer for technologies you should consider learning. (And if your boss catches you
looking at job ads, you ’ ve got a great excuse — you ’ re just researching which technologies are going to
be more popular in the near future.)

 Content Management
 One of the key aspects of many sites is a content management system . This is actually a fancy name for
something that will allow you to easily update the content of your web site without actually having to
create a new page for each new article, posting, or product for sale.

 Content management systems tend to be based on a relational database. Relational databases contain
one or more tables, each of which is like a spreadsheet. Figure 13 - 13 shows you a database used on a site
about music. (This “ example ” site is adapted from an actual one.)

❑

❑

c13.indd 621c13.indd 621 11/20/09 5:24:37 PM11/20/09 5:24:37 PM

Chapter 13: Putting Your Site on the Web

622

 You can see that there are several rows in this table, each containing the details of a different
advertisement. The columns each contain different information about the article in that row:

 articleid is a number used to uniquely identify each article in the system.

 posted is the date the article was posted.

 lastupdate is the date that the article was last updated.

 headline is the headline for the article.

 headlinedate is the date that the article says it was written on.

 startdate is the date the article should be published on.

 enddate is the date that the article should stop being available on the site (several of the articles
have the date set to the 31 December 9999 — so if the site is still around then, the managers will
have to do something about the dates, but until then the article will remain published).

 This table actually contains a lot more fields, but this gives you an idea of how the information is stored.
When users come to the site that uses this database, they will navigate through categories to find the
items they are interested in. Rather than having a page containing the details of each article, the site
contains only one page that displays all news articles, called article.aspx . This is like a template for
all the articles, and the title, headline date, and article are added into the page at the same place in each
article. You can see an example of an article in Figure 13 - 14.

❑

❑

❑

❑

❑

❑

❑

Figure 13-13

c13.indd 622c13.indd 622 11/20/09 5:24:37 PM11/20/09 5:24:37 PM

Chapter 13: Putting Your Site on the Web

623

 The structure of the URL for this article is the key to how this template - based system works:

 http://www.example.com/news/features/article.aspx?a=1496

 The article.aspx page is requested, and when it is requested, the article identifier 1496 is also
requested. This corresponds with the number in the first column of the table in Figure 13 - 13. All the
details of this article are then placed into the template. So, where the text says “ Thursday December 6,
2007 ” this is the headline date field from the database.

Figure 13-14

Figure 13-14

c13.indd 623c13.indd 623 11/20/09 5:24:38 PM11/20/09 5:24:38 PM

Chapter 13: Putting Your Site on the Web

624

 Some sites contain the headlines in the URL rather than an article ID, for example:

 http://www.example.com/news/features/Interview-Duffy-(no-not-the-bass-player-in-GnR)

 Here you can see that the title of the article is used in the URL rather than the ID, which is known as URL
rewriting. Behind the scenes, the URL is compared to the database, and it will know to return the article
whose headline matches the end part of the URL.

 This approach is also what makes it possible for many authors to update the same site without having
to know how to code each individual page. They simply log into an administration tool that allows
them to submit articles using a simple form. Figure 13 - 15 shows one of the pages that enables users to
enter new articles.

Figure 13-15

 This approach of storing content in a database is employed in many different types of sites. For example,
auction sites such as eBay store each item for sale in a row of a database; likewise, e - commerce stores
tend to store product details in a database, with each product stored in a row of one of the tables. When
these sites use a row of a table for each article or product, new articles or products can be added to the
database using XHTML forms (rather than having to hand - code pages or manually update the database).

 Flash
 Flash is used on web sites for animated content, audio, and video. In order to view Flash files, users need
the free Flash plug - in — known as the Flash Player — installed on their computers. Statistics from
several sources suggest that over 90 percent of the computers connected to the Web have this installed.

c13.indd 624c13.indd 624 11/20/09 5:24:40 PM11/20/09 5:24:40 PM

Chapter 13: Putting Your Site on the Web

625

 In order to create Flash files, you need to purchase a special authoring tool made by Adobe. If you are
considering learning Flash, you can download a free trial version from the Adobe web site to start
practicing. It is a very powerful tool, and there are lots of examples of what you can do using Flash at the
following sites:

 www.adobe.com/products/flash/

 www.flashkit.com/gallery/

 Very few sites need to be designed completely in Flash. It is much more common to see parts of pages
created in Flash (such as banner ads and animations). This is partly because it is much quicker to
develop a site in XHTML and partly because fewer people have the skills to integrate Flash with
databases than do with XHTML.

 Learning Graphics Packages
 Learning how to deal with text, illustrations, photos, and images correctly is very important if you are
going to be involved with designing web pages as well as coding them. There are two key types of
graphics packages you might want to learn:

 A photo editing and manipulation package such as Adobe Photoshop or the “ lite ” version,
Photoshop Elements.

 A vector art package such as Adobe Illustrator or Macromedia Freehand. These work with
vector graphics (line drawings created using coordinates), which are then filled in with colors.

 Adobe Photoshop is by far the most popular graphics program used for developing web graphics, and a
lot of people use this program to design entire sites. You need only look at job ads for web designers and
you ’ ll see that knowing Photoshop is often a prerequisite.

 Photoshop not only allows you to work with photos, but it can also be used to create text and logos
(although an experienced designer would usually favor a vector graphics program when it comes to
creating logos and diagrams from scratch). It will then take these images and create optimized versions
of them ready for the Web with smaller file sizes for quicker downloads.

 When working in Photoshop, you can create an image built up from many layers — each layer is like a
piece of clear film over the first image you start with, allowing you to make changes on top of the image.

 When you have experience with a photo package, you might want to learn a vector image package,
especially if you are going to be creating lots of logos or diagrams. Vector packages are of little use when
it comes to working with photos, but they are great for doing line - based work. By their nature, vector
graphics scale very well, and logos are often created in a vector format because they allow you to scale a
logo to a large size for a poster or shrink it down for a small web graphic. By contrast, if you blow up a
bitmapped image (the type used in Photoshop) to a very large size it will look grainy — you will be able
to see all of the pixels that make up the image.

 Of course, there are many other technologies you could learn, but the ones discussed in this section offer
you the next logical steps in your web development career. If you want to work more with graphics,
Photoshop or Flash are a good place to start. If you want to work more on programming, consider
moving onto a server - side programming language.

❑

❑

❑

❑

c13.indd 625c13.indd 625 11/20/09 5:24:41 PM11/20/09 5:24:41 PM

Chapter 13: Putting Your Site on the Web

626

 Summary
 In this chapter, you have seen how to prepare your web site for a waiting world. You started off learning
about the < meta > tags that you can use to add content about your documents (such as the author,
expiration date, or default scripting language) — hence the name < meta > tags ; they contain information
about the web page rather than being part of the content of the page.

 You then learned about different sorts of tests that you should perform on your pages. These tests
included validating your pages (to make sure that your markup is written according to the relevant
recommendations and that you are following the rules you should), checking links to make sure all of
them work and are not pointing to the wrong place, and checking that your site meets accessibility
guidelines.

 Next, you looked at the potential minefield of choosing a host on whose servers you can put your web
site. This ever - changing market is hard to keep up with, but it can be well worth checking on a few hosts
rather than going with the first one you find. New deals with more storage, greater bandwidth, larger
mailboxes, and newer features are coming out all the time, so it pays to shop around.

 Once your site is live, you will want people to come and look at it. You should try to attract new visitors
through a combination of techniques, and this is an ongoing process that requires regular attention.

 You can also gain valuable information about your visitors by using statistics packages that analyze your
log files, working out how people came across your site, how many pages they looked at, what terms
they searched on in search engines to arrive at your site, and so on.

 The final part of the chapter looked at where you can go next with your site. You saw that there are
services such as blogs, discussion boards, and search features that have already been developed by
companies that allow you to integrate these services into your site. If you are interested in programming,
you should consider learning a server - side language such as ASP.NET or PHP. Alternatively, if you are
more interested in the visual appearance and design of sites you should consider learning a graphics
program such as Adobe Photoshop, and possibly some animation software such as Flash.

 This book has covered a lot, and the best way to make sure you have understood it properly is to get out
there and build some sites. Perhaps you can create a site about a hobby or interest of yours, or maybe
you can create a site for friends who run their own small business.

 Remember that if you like the way someone has done something on a site (perhaps you like the layout,
or the size and type of font used) you can simply go to the View menu on your browser and select the
option to display the source for the page. While you should never copy someone else ’ s design or layout,
you can learn a lot from looking at how other people have built their sites. But remember that they might
not be using XHTML; a lot of pages are out there that were built using earlier versions of HTML. HTML
is not as strict about how you write your pages, and there are a lot of coders who are not as aware of
such things as which elements require closing brackets, when to use quotes for attributes, or how to
use CSS well.

 While this more relaxed way of coding may seem easier, by being strict with how you use markup,
separating as much of your markup from styling as possible, and using JavaScript only to enhance
pages, you end up with pages that will be available to more browsers and more people for a longer time.

c13.indd 626c13.indd 626 11/20/09 5:24:41 PM11/20/09 5:24:41 PM

 14
Checklists

 This final chapter contains checklists on some helpful topics. The checklists are not intended to be
exhaustive and turn you into an expert on each of these topics (as there are entire books devoted to
the subjects of these checklists). Rather, the purpose is to show the key points, and bring together
some of the things you have learned throughout the book. There are four checklists, covering:

 Search engine optimization

 Accessibility

 Differences between HTML and XHTML

 HTML 5

 Search Engine Optimization Checklist
 On any successful site, a good proportion of traffic will come from search engines. In order
for people to find you on a search engine, you want to be as near the top of their search results
as possible.

 The techniques you can use to improve your visibility in search engines are known as Search
Engine Optimization or SEO for short, and can be grouped in two ways:

 Things you can do on the site (on - page)

 Things that appear on other people ’ s sites (off - page)

 We will mainly be focusing on the former because you have a lot more control over what appears
on the pages of your own site (although mentions will be made of off - page techniques).

❑

❑

❑

❑

❑

❑

c14.indd 627c14.indd 627 11/20/09 5:26:27 PM11/20/09 5:26:27 PM

Chapter 14: Checklists

628

 On - Page Techniques
 Before you can start optimizing your site for search engines, you need to determine what terms users
would type into a search engine in order to find your site; these are known as keywords and key phrases.

 You then need to include these keywords and phrases in the copy for your site. There are four places
where it is important for these words and phrases to appear:

 Title of the page: This is specified in the < title > element, which you met in Chapter 1. It
appears at the top of the browser window (above all the toolbars).

 Description of the page: This is added using the < meta > tag, which you met in Chapter 13.
While it is not visible in the page, it is often shown in the results pages of search engines.

 Headings: You met the < h1 > to < h6 > tags in Chapter 1; they are used to help structure the page,
providing headings that describe what will be found in the subsequent sections.

 Body text: This is the copy that appears in the < body > of the page, for example in paragraphs,
lists, and links.

 It is important to remember that search engines rely on text; they cannot see what is in images (other
than in the alt text that you provide on images and in filenames). Therefore, if you can incorporate the
keywords and phrases that you have identified into these four parts of your pages, your site is more
likely to get picked up by search engines.

 You can further help the search engines by carefully structuring your documents, and using semantic
markup. A good way to add structure to your pages is to organize the sections of pages using headings
that describe what will be found in the following paragraphs, lists, images, and forms. Furthermore,
elements such as the < address > , < cite > , < code > , and < em > elements help describe the information that
will be found inside those elements.

 When working with search engines, it is important to remember that you should not try to fool them
(for example, do not try to squeeze extra keywords onto your page by writing them in the same color as
the background of the page). Search engines know a lot of ways in which people try to fool them, and
they will penalize you for this kind of behavior. You should also avoid free (or paid) tools that promise to
submit your site to hundreds of search engines.

 I hope that all of the preceding information seems straightforward and easy to implement. For many
people, the biggest problem regarding SEO is in identifying the keywords and phrases that they should
be using in the first place, and that is what we will be focusing on in this checklist.

 Identifying Keywords and Phrases
 When choosing keywords and phrases, it is very important to remember that in most cases, it is
important to focus not just on attracting volumes of users, but also on attracting the right kind of visitors.
For example, if you are creating a site for a service that is offered locally, such as slate roofing, then you
probably are not interested in people who:

❑

❑

❑

❑

c14.indd 628c14.indd 628 11/20/09 5:26:34 PM11/20/09 5:26:34 PM

Chapter 14: Checklists

629

 Do not live in the same geographic area you work in

 Have a roof made of tiles or shingles

 Live in apartment blocks (and do not have roofs of their own)

 Therefore, getting 10,000 people to visit you by searching for “ new roof “ is not likely to be as valuable to
you as getting 100 people who are looking for “ slate roof Chicago. ”

 It is also important that the page people find in the search engine has a title and description that relates
to the keywords people are using when they search, because the titles and descriptions are commonly
displayed in search engine results. If users do not think the page looks relevant (by looking at the
information the search engine returns), they are less likely to click on the link to your page.

 So, in order to come up with the search terms you are going to use on your site, use the steps in the
following sections.

 Brainstorm for Words People Might Search On
 List every individual word you think people might search under when looking for your site.

 Select Five to Ten Major Keywords
 From your brainstorming list, select 5 – 10 major keywords, most of which will be single words (although
you may have a couple of phrases, such as “ slate roof ”).

 Write these 5 – 10 major keywords in columns because you are going to create lists underneath them.

 List Other Keywords and Phrases That Correspond
to Your Major Keywords

 Now that you have your list of major keywords, you can go back to your brainstorming session and
expand upon the 5 – 10 major keywords you selected. List keywords and phrases that closely correspond
to these major keywords.

 You might find it helpful to look up synonyms of words in your list and also the root words of terms (for
example, you might add light to a list that covers lighting).

 It is also important to consider more generic terms such as buy, download, free, info, or tips, if you think
that potential visitors might be hoping for one of these.

 You should be looking for a total of around 20 – 30 popular phrases that you think your target audience
will search for.

 If you have a phrase that contains words such as “ the ” or “ and, ” do not skip that word in the phrase.
For example, “ chicken and mushroom pie ” should not become “ chicken mushroom pie. ”

 Look Up Related Words (Not Exact Matches)
 Sometimes people will search for terms that are not exactly what your site offers, but they are close
enough for your site to be relevant to that visitor. For example, thinking back to our caf é example, we
might add restaurant and coffee shop to the lists.

❑

❑

❑

c14.indd 629c14.indd 629 11/20/09 5:26:35 PM11/20/09 5:26:35 PM

Chapter 14: Checklists

630

 If there are some terms that are not exact matches, but are relevant and related to the content of your site,
add them under the major keywords.

 Determine the Popularity of Terms
 Use one of the following web - based tools to look up the words and phrases on your list.

 Keyword Discovery: www.keyworddiscovery.com/

 Wordtracker: www.wordtracker.com/

 These tools both show alternative options for search terms. They also show the number of times people
have searched for these words.

 When you look at the alternative options for search terms on these sites, you want to look at the top 10
variations, and see how many are relevant — if several of the top 10 variations on the term apply to your
site, then this should be a core term (and you should list the top 10 variations with it).

 Prioritize the Core Terms
 To determine the priority of the core terms that you have found, you need to look at the number of
searches each core term got, and compare this number with how closely you think that search meets
your target audience. At first this will require you to judge which terms you think might be most
relevant to your audience, but as your site grows you will be able to use analytics software to discover
how people are really finding your site.

 If a search term generates 10,000 visitors, but only 10 percent would be interested in the content of your
site, that term is not as valuable as a term that attracts just 5,000 viewers of whom 50 percent would be
interested in your content.

 Location
 If the information, service or product your site offers is location - dependent, then the location should be
added to your core terms.

 The location you choose to include might not just be the name of the town that your business is based in.
If you have customers across the state, county, or region that you work in, you might like to use those
names, too (after all, more people might search on the name of the region than on your specific town).

 Mapping Core Terms to Pages
 Now you need to take each of the core terms (and its variations) and map them to the most
relevant page.

 Most of the core terms will match to internal pages. You might have more than one page focused
on one core term, but you should not try to get more than one core term per page (or one core term
plus location).

 Homepages
 The two or three most general (rather than specific) and the most popular core terms should be prime
targets for the homepage .

❑

❑

c14.indd 630c14.indd 630 11/20/09 5:26:35 PM11/20/09 5:26:35 PM

Chapter 14: Checklists

631

 Whenever you are looking at your on - page techniques for search engine optimization, it is important to
measure the success of your efforts. This involves not only looking at things such as your page rank in
Google, but also using analytics software to see which terms people are searching on most frequently
in order to find your site (a topic which was introduced in Chapter 13).

 Off - Page Techniques
 When search engines calculate where to position your site on a list of search results, the major search
engines will consider the number of sites that link to you.

 The search engines are not just looking for any site that links to you, but rather for sites that contain
terms similar to those that people are entering into search engines in order to find your site. For example,
a search engine would not consider a link from an acupuncture site to a site about slate roofing as having
the importance of a link between a building projects site and a site about slate roofing.

 Search engines also look at the words that appear between the opening < a > tag and the closing < /a > tag.
If the text in the link contains keywords, the search engines will consider that link more relevant than
one that just says something like “ Click here. ”

 If you use analytics software on your site, then you will be able to see which sites are linking to you. You
can then use this information to find more sites that cover similar topics and see if they would like to
cover you, too.

 Accessibility Checklist
 Accessibility is about ensuring that as many people as possible can access your web pages. Traditionally,
writing on accessibility has focused on people who may have disabilities such as vision impairments
(and therefore use screen readers to read the content of web sites to them). Others might have poor
motor control and find it hard to use a mouse. However, it is increasingly becoming apparent that
accessibility techniques apply to people who simply do not use a standard desktop PC to access web
pages — for example, those on mobile devices who might not be able to use a mouse or view as many
images at the same time.

 Entire books have been written on accessible design for the Web, but this checklist will help ensure that
your site meets basic accessibility requirements, and points you to the relevant part of the book where
each of these topics was discussed.

 Setting Up Your Document
 When creating any new document, you should:

 Use a DOCTYPE declaration to indicate which version of HTML or XHTML you are using.

 Specify the language of your document on the < body > element. If the language changes in the
middle of the text, specify it with the lang or xml:lang attributes.

❑

❑

c14.indd 631c14.indd 631 11/20/09 5:26:35 PM11/20/09 5:26:35 PM

Chapter 14: Checklists

632

 Structural and Semantic Markup
 In Chapter 1, you met lots of elements that are used to mark up text. You should always try to use these
elements to add structure and semantic information to the words on the page. Where possible:

 Use the different levels of headings < h1 > through < h6 > to organize and add structure to your
pages.

 Use elements for the purpose they were created, not just for visual effects (use CSS to control
presentation of documents).

 Use any elements available that describe the purpose or meaning of words in your page; for
example, use the < acronym > element when you have an acronym on the page, use the
 < address > element when you have an mail address to write out, and the < code > element when
you are writing code.

 Try to use relative units of measurement for your text (rather than absolute sizes) so that users
can easily increase and decrease the size of the text in their browser.

 Links and Navigation
 As you saw in Chapter 2, links are one of the key things that differentiate the Web from other media.
Your links need to be as accessible as possible so that people can navigate your site. When you are
creating links:

 Ensure that your links stand out on the page so visitors can easily see where they should be
clicking and thus can skim the page for links.

 Use text or images inside the link that will describe what visitors will see if they click the link
(do not just use terms such as “ click here ”). If you use images inside a link, it is important to
ensure that the alt text describes what users will see if they click the link.

 You can use the title attribute on an < a > element to provide additional information to a
visitor.

 In Chapter 5 you saw how forms can make use of keyboard shortcuts to help visitors navigate
the form. Keyboard shortcuts could also be used to link to other parts of pages.

 Avoid opening links in new windows as this can often confuse users who either do not see the
new window opening, or end up with more windows open than they wanted.

 Avoid links and interactive elements that require a user to have fine control over the mouse
(or other pointing device).

 Images and Multimedia
 Images, audio, and video (as you saw in Chapter 3) can really bring a page to life. But assistive
technologies used by those who have vision impairments are unable to describe the content of an image,
audio file, or video. Therefore, there is one key rule for all kinds of multimedia content: Always provide
a text description for non - text content. To achieve this:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 632c14.indd 632 11/20/09 5:26:35 PM11/20/09 5:26:35 PM

Chapter 14: Checklists

633

 Provide an alt attribute for every image, and ensure that the text you specify as a value of the
 alt attribute describes the content of that image to a visitor. The only exception to this rule is
when the image does not convey any meaning (perhaps it is just a decorative element). In this
case you still use the alt attribute, but you do not give it a value.

 If the image is quite complex and the description does not fit nicely into the alt attribute (for
example, if you have an information graphic), you can use the longdesc attribute to specify
where a longer description is, or use a letter D inside a normal link that points to a longer
description.

 If you have video or audio track, provide a text - based transcript (either on the same page or
link to it).

 If you use an image map, offer a text - based alternative to the image links.

 If you provide any animated content, ensure that there is an easy way for the visitor to pause or
stop that content.

 You should also avoid using animated content that could induce a seizure (for example, strobed
content). If you do want to include such content, there should be a clear warning before that
content, which the user should be forced to read and agree to.

 Color
 Color is an important part of any web site, but color blindness is far more prevalent than most
web designers realize. When creating a page, color can help add information and organize
the page. However:

 No information on the page should be conveyed by color alone.

 There must be sufficient contrast between backgrounds and text so that the user can read the
content. (You saw tools for checking this in Chapter 13.)

 Tables
 We looked at creating tables in Chapter 4. When you create a table you should:

 Use < th > elements for all headings.

 Describe the content of the table using the < caption > element.

 In complex tables, use the scope and headers attributes to describe which cells each heading
corresponds to.

 Not use tables as a way to control layout of entire pages.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 633c14.indd 633 11/20/09 5:26:36 PM11/20/09 5:26:36 PM

Chapter 14: Checklists

634

 Forms
 Chapter 5 introduced forms, which you will need to use if you want to collect information from visitors
to your site. I then discussed them again in the chapters that covered JavaScript. Some instructions for
their use follow:

 Use the < label > element to indicate the label for each individual type of form element.

 If a user makes an error, where possible write the error next to the appropriate form field, and
give that form element focus so the user can correct the element.

 Make use of the < fieldset > and < legend > elements to group form controls into related
functionality.

 Access keys can help users navigate long forms.

 Style Sheets
 You looked at CSS in Chapters 7 and 8. Using CSS to control the presentation of a document will
automatically help improve accessibility of the page (because style sheets can be overruled by a user
when necessary). But you should still:

 Use relative measurements rather than absolute measurements (or pixels) where possible
(particularly for text).

 Organize the page so it can still be read without style sheets.

 Ensure that you have provided enough contrast in colors so that any text can easily be read.

 Aim to design for device independence, or use CSS to provide alternative style sheets for
multiple devices.

 JavaScript
 JavaScript was covered in Chapters 11 and 12. It is important that your pages work even if the user does
not have JavaScript enabled. Here are some instructions that help ensure your scripts do not compromise
the accessibility of pages:

 If you need to use JavaScript on your pages (and they will not work without it), then you should
use the < noscript > element to provide an explanation that the page will not work if the visitor
does not have JavaScript enabled.

 Do not automatically refresh pages (and if you provide this feature, allow visitors the option to
turn it off).

 Do not use JavaScript to redirect people from one page to another.

 Ensure that your scripts can be controlled with accessible/assistive technologies (such as
screen readers).

 Skip Links
 One topic not covered in the main part of the book is the creation of skip links. These are links that allow
people who use screen readers (rather than visual browsers) to skip over the common content that

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 634c14.indd 634 11/20/09 5:26:36 PM11/20/09 5:26:36 PM

Chapter 14: Checklists

635

appears on every page, such as the header and main navigation. Imagine that you are browsing the Web
using technology that reads every single page to you; you can see that on sites where you viewed many
pages, it would not take long to get tired of hearing the same header repeatedly every time you moved
to a new page.

 The solution to this problem is a technique generally known as skip links or skip navigation . It simply
involves creating links to specific parts of the page, such as the main content, and then hiding those links
from users who are browsing visually using CSS. For example, take a look at the following links after the
opening body element:

 < body >
 < div class=”skip-links” >
 < a href=”#content” > skip to main content < /a >
 < a href=”#search” > skip to search < /a >
 < a href=”#footer” > skip to footer < /a >
 < /div >

 These links correspond to id attributes of < a > elements in the relevant sections of the page. For example,
the first < h1 > element might look like this:

 < h1 > < a id=”#content” > Introduction to Accessibility < /h1 >

 The links at the top of the page are hidden using a CSS rule like this so that visitors using a normal
visual browser do not see the skip links:

.skip-links {display:none;}

 This makes browsing a site much more pleasant for those who are having the site read to them.

 Differences Between HTML and XHTML
 Most of this book covers XHTML. But having learned XHTML, you are now able to code in HTML, too,
because XHTML is HTML 4 written using stricter rules. The sections that follow summarize the
differences between HTML and XHTML.

 All Tag Names and Attribute Names Must Be Written
in Lowercase

 In HTML you could use a mix of uppercase and lowercase characters:

 < P > Here is a bold word in a paragraph < /P > .

 In XHTML, all tag names and attribute names must be written in lowercase:

 < p > Here is a bold word in a paragraph < /p > .

c14.indd 635c14.indd 635 11/20/09 5:26:36 PM11/20/09 5:26:36 PM

Chapter 14: Checklists

636

 All Attributes Must Have a Value Given in Double
Quotation Marks

 In HTML, you could have attributes that did not have a value, and the values did not need to be in
quotation marks:

 < form method=post >

 In XHTML, all attributes must have a value (the value can just be the name of the attribute if no other is
given), and they must be given in double quotation marks:

 < form method=”post” >

 Elements Must Nest; There Must Be No Overlapping
 In HTML, you may find that some elements are not placed entirely within one element; the opening tag
may sit inside one element and be closed outside that element:

 < p > Here is a paragraph, the second half will be in bold. < /p >

 In XHTML, if an opening tag sits inside another element, the closing tag must also sit within the same
element:

 < p > Here is a paragraph, the second half will be in bold. < /p >

 Empty Elements Must Contain a Closing Slash
 In HTML, you might see an empty element written like this:

 < img src=”images/test.gif” alt=”Test image” >

 In XHTML, there should be a forward slash character before the closing angled bracket to indicate that
the element is empty:

 < img src=”images/test.gif” alt=”Test image” / >

 Scripts Should Live in a CDATA Section
 In HTML, scripts and style elements could be included in a document, even if they included characters
such as & or < :

 < script type=”text/javascript” >
test(value1, value2) {
 if ((value1 < value2) & & (value1.length > 5)) {
 x = true;
 }
}
 < /script >

c14.indd 636c14.indd 636 11/20/09 5:26:36 PM11/20/09 5:26:36 PM

Chapter 14: Checklists

637

 In XHTML, scripts should live inside a CDATA section like so:

 < script type=”text/javascript” >
 < ![CDATA[
test(value1, value2) {
 if ((value1 < value2) & & (value1.length > 5)) {
 x = true;
 }
}
]] >
 < /script >

 HTML 5
 Having reached the end of a book on HTML 4.01 and XHTML, you might not expect to see an additional
section showing HTML 5. But HTML 5 will be the next major version of HTML, designed to replace
HTML 4.01 and XHTML.

 Realistically, it is expected that the work on HTML 5 will take several years before it is finished and
released; however, some browsers are already implementing some features of HTML 5 (such as new
browser - side database and caching mechanisms, APIs that help add audio and video to pages or that
facilitate drag - and - drop functionality, and some new elements that help add semantic information
to pages).

 The purpose of this section is therefore just to give you a hint of how HTML will be developing in
the future.

 Language Compatibility in HTML 5
 In order to be backwards compatible with earlier versions of HTML, the markup of HTML 5 will not be
as strict as that of XHTML.

 Authors can used mixed case in tags and attributes (rather than all lowercase), closing elements may be
missed, and not all attributes need to have values or be given in quotes.

 There will be a new doctype declaration:

 < !DOCTYPE html >

 Stylistic Markup Will Be Removed
 Certain deprecated elements are being removed, including < big > , < center > , < font > , < s > , < strike > ,
 < tt > , and < u > because these effects should be achieved by CSS. Frames and their associated markup are
also being removed (although the < iframe > element is likely to remain part of the specification).

 Presentational attributes such as align , background , bgcolor , border , cellpadding , cellspacing ,
 char , compact , height , marginheight , nowrap , size , type , and width are all being removed.

c14.indd 637c14.indd 637 11/20/09 5:26:36 PM11/20/09 5:26:36 PM

Chapter 14: Checklists

638

 Having said this, in practice browsers are still likely to support these older elements so that they can
render older pages, which means that these elements may still work.

 New Semantic Elements
 There are several new elements and attributes that reflect the typical use of modern sites. Several of these
are semantic replacements for the generic < div > and < span > elements that are used to group parts of
pages. Here are a few examples:

 < nav > for a section of the page that shows navigation

 < header > for the header of a page with introductory or navigational content

 < footer > for footer information such as copyright and author information

 < article > to represent an independent piece of a document such as a blog entry or
newspaper article

 < section > to act as a generic section of a document or application (it has to be a logical section;
the element should not just be used to add styling to a group of elements, which remains the job
of the < div > element)

 < hgroup > to contain the header of an individual section

 < aside > to represent something that is only slightly related to the rest of the content

 < figure > to associate a caption with a graphic or video (for example)

 < figure >
 < video src=”BobsFirstBirthday.ogv” > < /video >
 < legend > A video of Bob’s first Birthday < /legend >
 < /figure >

 < progress > to represent the completion of a task

 < command > to represent a command a user can invoke

 < time > to represent a date or time

 To see how this new markup might be used in practice, let ’ s look at an example of how you might create
a page today using < div > elements to group together parts of the page, and then we can look at how
these new elements in HTML 5 would be used to recreate the same page:

 < div id=”header” >
 < div id=”navigation” > < /div >
 < /div >
 < div class=”article” >
 < div class=”section” < /div >
 < div class=”section” < /div >
 < div class=”section” < /div >
 < /div >
 < div class=”side_widget” > < /div >
 < div id=”footer” > < /div >

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 638c14.indd 638 11/20/09 5:26:37 PM11/20/09 5:26:37 PM

Chapter 14: Checklists

639

 Now, if we look at how the same structure might be represented in HTML 5 you can see that the new
elements add semantic information that explains what will be found in that section of the markup, rather
than just grouping elements using a generic < div > element:

 < header >
 < nav > < /nav >
 < /header >
 < article >
 < section > < /section >
 < section > < /section >
 < section > < /section >
 < /article >
 < footer > < /footer >

 New Values for the < input > Element ’ s type Attribute
 The < input > element can take new values for the type attribute, including:

 tel for a telephone number (a single line text box with no breaks)

 search for a search input (a single line text box with no breaks)

 url for a path to a page or other resource on the web

 email for an e-mail address or list of e-mail addresses

 datetime for a date and time (year, month, day, hour, minute, second, fraction of second, with
time zone set to UTC)

 date for a date (year, month and day with no time zone)

 month for a date with a year and a month (no time zone)

 week for a date consisting of a week number and year (no time zone)

 datetime - local for a date with year, month, day, hour, minute, second, fraction of a second,
with time zone

 number for a numerical value

 range for a numerical value with extra information that indicates a range of number (adding
 min and max attributes to describe the range)

 color for a color specified using a hex code or three numbers ranging from 0 to 255

 New Multimedia Elements
 Other new elements provide ways to integrate specific types of content, such as the < audio > and
 < video > element, without relying on plug - ins. The < audio > element will allow MP3s to be embedded
into the page; the < video > element is more controversial at the time of this writing, as browser
manufacturers are struggling to agree on one common format that all browsers will support.

 HTML 5 will also be able to use SVG and MathML inline.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 639c14.indd 639 11/20/09 5:26:37 PM11/20/09 5:26:37 PM

Chapter 14: Checklists

640

 New APIs
 In addition to the Document Object Model (which you learned about in Chapter 11, which introduced
JavaScript), new interfaces are being developed that cover the following:

 Offline storage of data: Allows the browser to store information locally; this is already being
used for things such as managing e - mail when you are not connected.

 Geolocation: Allows the browser to identify where you are, which then enables featuers such as
searches to be localized.

 Canvas: Allows you to create two - dimensional drawings using JavaScript, which could have
many applications from creating graphs and information graphics to producing interactive
animations .

 Timed media playback: Allows the browser to access and play time - based media such as audio
and video, as well as showing the states of the files (such as whether they are ready to play or
not, and whether they are loading).

 Drag and drop: Provides an event - based system for dragging and dropping elements of a page .

 Cross - document messaging: Allows part of a page to communicate with another part of the
page or even a different window, without the entire page being refreshed. For example, you
might have a text editor for creating a new blog post in one part of the page and a live preview
of what that page will look like in another (where updates are shown in real time, without
needing to refresh the page).

 All the information in this section is still subject to change over the next few years until those working on
the HTML 5 specification have finished it. Once the specification has become final, it is likely that many
visitors to sites you develop will still be using older browsers, so you may not be able to use these new
features for another few years. Having said this, many browsers are starting to implement some of the
features discussed in this section, and you should be able to experiment with them over the next few
years as they develop.

❑

❑

❑

❑

❑

❑

c14.indd 640c14.indd 640 11/20/09 5:26:37 PM11/20/09 5:26:37 PM

 A
Answers to Exercises

 This appendix covers the answers to each of the exercises at the end of each chapter.

 Chapter 1
 Exercise 1

 Mark up the following sentence with the relevant presentational elements.

The 1 st time the bold man wrote in italics , he underlined several key
words.

 Answer
 The sentence uses superscript, bold, italic, and underlined presentational elements.

 < p > The 1 < sup > st < /sup > time the bold man wrote in <i> italics</i> , he
 < u > underlined < /u > several key words. < /p >

 Exercise 2
 Mark up the following list, with inserted and deleted content:

 Ricotta pancake ingredients:

 1 1/2 3/4 cups ricotta

 3/4 cup milk

 4 eggs

 1 cup plain white flour

 1 teaspoon baking powder

❑

❑

❑

❑

❑

bapp01.indd 641bapp01.indd 641 11/21/09 12:19:23 AM11/21/09 12:19:23 AM

Appendix A: Answers to Exercises

642

 75g 50g butter

 pinch of salt

 Answer
 Here is the bulleted list with elements that show which content has been inserted and deleted:

 < h1 > Ricotta pancake ingredients: < /h1 >
 < ul >
 < li > 1 < del > 1/2 < /del > < ins > 3/4 < /ins > cups ricotta < /li >
 < li > 3/4 cup milk < /li >
 < li > 4 eggs < /li >
 < li > 1 cup plain < ins > white < /ins > flour < /li >
 < li > 1 teaspoon baking powder < /li >
 < li > < del > 75g < /del > < ins > 50g < /ins > butter < /li >
 < li > pinch of salt < /li >
 < /ul >

 Chapter 2
 Exercise 1

 Look back at the Try It Out example where you created a menu, and create a new page that links directly
to each course on the menu. Then add a link to the main Wrox web site (www.wrox.com). The page
should look something like Figure A - 1.

❑

❑

 Answer
 Here is the page with links to the menu first, and then a link to the Wrox Press web site:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Links to Example Cafe and Wrox.com < /title >
 < meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”/ >
 < /head >
 < body >

 Figure A - 1

bapp01.indd 642bapp01.indd 642 11/21/09 12:19:24 AM11/21/09 12:19:24 AM

643

Appendix A: Answers to Exercises

 < h1 > Links to Example Cafe < /h1 >
 < p >
 < a href=”http://www.examplecafe.com/menu.html#starters” > Starters < /a > |
 < a href=”http://www.examplecafe.com/menu.html#mains” > Main Courses < /a > |
 < a href=”http://www.examplecafe.com/menu.html#desserts” > Desserts < /a >
 < /p >
 < p > This is an example taken from a book published by
 < a href=”http://www.wrox.com” > Wrox Press < /a >
 < /p > .
 < /body >
 < /html >

 Exercise 2
 Go back to the pages in the sample application and make sure that you have updated the navigation
for each page.

 Answer
 Navigation for the homepage:

 < div >
 HOME
 < a href=”menu.html” > MENU < /a >
 < a href=”recipes.html” > RECIPES < /a >
 < a href=”contact.html” > CONTACT < /a >
 < /div >

 Navigation for the menu page:

 < div >
 < a href=”index.html” > HOME < /a >
 MENU
 < a href=”recipes.html” > RECIPES < /a >
 < a href=”contact.html” > CONTACT < /a >
 < /div >

 Navigation for the recipes page:

 < div >
 < a href=”index.html” > HOME < /a >
 < a href=”menu.html” > MENU < /a >
 RECIPES
 < a href=”contact.html” > CONTACT < /a >
 < /div >

 Navigation for the contact page:

 < div >
 < a href=”index.html” > HOME < /a >
 < a href=”menu.html” > MENU < /a >
 < a href=”recipes.html” > RECIPES < /a >
 CONTACT
 < /div >

bapp01.indd 643bapp01.indd 643 11/21/09 12:19:24 AM11/21/09 12:19:24 AM

Appendix A: Answers to Exercises

644

 Chapter 3
 Exercise 1

 Add the images of icons that represent a diary, a camera, and a newspaper to the following example. All
of the images are provided in the images folder in the download code for Chapter 3.

 < h1 > Icons < /h1 >
 < p > Here is an icon used to represent a diary. < /p >
 < img src=”images/diary.gif” alt=”Diary” width=”150” height=”120” / > < br / >

 < p > Here is an icon used to represent a picture. < /p >
Camera image goes here < br / >

 < p > Here is an icon used to represent a news item. < /p >
Newspaper image goes here < br / >

 Your finished page should resemble Figure A - 2.

Figure A-2

bapp01.indd 644bapp01.indd 644 11/21/09 12:19:25 AM11/21/09 12:19:25 AM

645

Appendix A: Answers to Exercises

 Answer
 Here is the code for this page:

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en” >

 < head >
 < title > Exercise 1 < /title >
 < /head >

 < body >
 < h1 > Icons < /h1 >
 < p > Here is an icon used to represent a diary. < /p >
 < img src=”images/diary.gif” alt=”Diary” width=”150” height=”120” / > < br / >

 < p > Here is an icon used to represent a picture. < /p >
 < img src=”images/picture.gif” alt=”Picture” width=”150” height=”120” / > < br / >

 < p > Here is an icon used to represent a news item. < /p >
 < img src=”images/news.gif” alt=”news” width=”150” height=”120” / > < br / >

 < /body >
 < /html >

 Exercise 2
 Look at the images shown in Figures A - 3 and A - 4 and decide whether you are more likely to get smaller
file sizes and better quality images if you save them as JPEGs or GIFs.

Figure A-3

bapp01.indd 645bapp01.indd 645 11/21/09 12:19:25 AM11/21/09 12:19:25 AM

Appendix A: Answers to Exercises

646

Figure A-4

 Answer
 As discussed in Chapter 3, images with large, flat areas of color, such as Image 1 where we see only the
silhouette of the people, compress better as GIFs than JPEGs, while JPEGs are better for saving
photographic images where there is greater variety of colors and more difference in the shades of
different colors.

 Image 1 (Figure A - 3): GIF or PNG (you may remember that PNGs are a replacement for GIFs)

 Image 2 (Figure A - 4): JPEG.

 Exercise 3
 Go through the files for the sample application and replace the main heading with the logo on each page.
On every page except for the homepage, make sure that the image links back to the index.html page.

 Answer
 The new heading should look like this:

 < a id=”top” href=”index.html” >
 < img src=”images/logo.gif” alt=”example cafe” width=”194” height=”80” / >
 < /a >

 Chapter 4
 Exercise 1

 Where should the < caption > element for a table be placed in the document and, by default, where is it
displayed?

❑

❑

bapp01.indd 646bapp01.indd 646 11/21/09 12:19:25 AM11/21/09 12:19:25 AM

647

Appendix A: Answers to Exercises

 Answer
 The < caption > element should appear after the opening < table > element but before the first
< tr > element.

 Exercise 2
 In what order would the cells in Figure A - 5 be read out by a screen reader?

Figure A-5

 Answer
 The names would be read in the following order: Emily, Jack, Frank, Mary, Dominic, Amy, Thomas,
Angela, and David.

 Exercise 3
 Create a table to hold the data shown in Figure A - 6. To give you a couple of clues, the document must be
Transitional XHTML 1.0 because the width attribute is used on the cells of the first row of the table. You
have also seen examples of how the border is generated in this chapter, using another deprecated
attribute, but on the < table > element rather than the cells.

Figure A-6

bapp01.indd 647bapp01.indd 647 11/21/09 12:19:26 AM11/21/09 12:19:26 AM

Appendix A: Answers to Exercises

648

 Answer
 Here is the code for the cinema timetable (ch04_exercise3.html):

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >

 < head >
 < title > Classic Movies Times < /title >
 < /head >

 < body >
 < table border=”1” width=”500” >
 < caption > Classic Movie Day < /caption >
 < tr >
 < th > < /th >
 < th width=”200” > 5 pm < /th >
 < th width=”200” > 7 pm < /th >
 < th width=”200” > 9 pm < /th >
 < th width=”200” > 11 pm < /th >
 < /tr >
 < tr >
 < th > Screen one < /th >
 < td > Star Wars < /td >
 < td > Empire Strikes Back < /td >
 < td > Return of the Jedi < /td >
 < td > The Exorcist < /td >
 < /tr >
 < tr >
 < th > Screen two < /th >
 < td colspan=”2” > Dances with Wolves < /td >
 < td colspan=”2” > Gone With the Wind < /td >
 < /tr >
 < tr >
 < th > Screen three < /th >
 < td colspan=”2” > 2001: A Space Odyssey < /td >
 < td > The Conversation < /td >
 < td > 5 Easy Pieces < /td >
 < /tr >
 < /table >

 < /body >
 < /html >

 Chapter 5
 Exercise 1

 Create an e - mail feedback form that looks like the one shown in Figure A - 7.

bapp01.indd 648bapp01.indd 648 11/21/09 12:19:26 AM11/21/09 12:19:26 AM

649

Appendix A: Answers to Exercises

Figure A-7

 Note that the first textbox is a readonly textbox so that the user cannot alter the name of the person the
mail is being sent to, and that readonly textboxes are displayed in different ways on different browsers
(in this example you can see the text input is grayed out, whereas on some other browsers you might just
see a lighter border around the text input).

 Answer
 Here is the code for the feedback form:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >

 < head >
 < title > Reply to ad < /title >
 < /head >

 < body >
 < h2 > Reply to ad < /h2 >
 < p > Use the following form to respond to the ad: < /p >

 < form action=”http://www.example.com/ads/respond.aspx” method=”post”
 name=”frmRespondToAd” >
 < table >
 < tr >
 < td > < label for=”emailTo” > To < /label > < /td >
 < td > < input type=”text” name=”txtTo” readonly=”readonly” id=”emailTo”
 size=”20” value=”Star Seller” / > < /td >
 < /tr >

bapp01.indd 649bapp01.indd 649 11/21/09 12:19:26 AM11/21/09 12:19:26 AM

Appendix A: Answers to Exercises

650

 < tr >
 < td > < label for=”emailFrom” > To < /label > < /td >
 < td > < input type=”text” name=”txtFrom” id=”emailFrom” size=”20” / > < /td >
 < /tr >
 < tr >
 < td > < label for=”emailSubject” > Subject < /label > < /td >
 < td > < input type=”text” name=”txtSubject” id=”emailSubject”
 size=”50” / > < /td >
 < /tr >
 < tr >
 < td > < label for=”emailBody” > Body < /label > < /td >
 < td > < textarea name=”txtBody” id=”emailBody” cols=”50” rows=”10” >
 < /textarea > < /td >
 < /tr >
 < /table >
 < input type=”submit” value=”Send email” / >

 < /form >

 < /body >
 < /html >

 Exercise 2
 Create a voting or ranking form that looks like the one shown in Figure A - 8.

Figure A-8

 Note that the following < style > element was added to the < head > of the document to make each
column of the table the same fixed width, with text aligned in the center.

 < head >
 < title > Voting < /title >

 < style type=”text/css” > td {width:100; text-align:center;} < /style >

 < /head >

bapp01.indd 650bapp01.indd 650 11/21/09 12:19:27 AM11/21/09 12:19:27 AM

651

Appendix A: Answers to Exercises

 Answer
 Here is the code for the voting form. Note how the checked attribute is used on the middle value for this
form so that it loads with an average score (in case the form is submitted without a value selected):

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >

 < head >
 < title > Voting < /title >
 < style type=”text/css” > td {width:100; text-align:center;} < /style >
 < /head >

 < body >
 < h2 > Register your opinion < /h2 >
 < p > How well do you rate the information on this site (where 1 is
 very poor and 5 is very good)? < /p >

 < form action=”http://www.example.com/ads/respond.aspx” method=”get”
 name=”frmRespondToAd” >

 < table >
 < tr >
 < td > < input type=”radio” name=”radVote” value=”1” id=”vpoor” / > < /td >
 < td > < input type=”radio” name=”radVote” value=”2” id=”poor” / > < /td >
 < td > < input type=”radio” name=”radVote” value=”3” id=”average”
 checked=”checked” / > < /td >
 < td > < input type=”radio” name=”radVote” value=”4” id=”good” / > < /td >
 < td > < input type=”radio” name=”radVote” value=”5” id=”vgood” / > < /td >
 < /tr >
 < tr >
 < td > < label for=”vpoor” > 1 < br / > Very Poor < /label > < /td >
 < td > < label for=”poor” > 2 < br / > Poor < /label > < /td >
 < td > < label for=”average” > 3 < br / > Average < /label > < /td >
 < td > < label for=”good” > 4 < br / > Good < /label > < /td >
 < td > < label for=”vgood” > 5 < br / > Very Good < /label > < /td >
 < /tr >
 < /table >
 < input type=”submit” value=”Vote now” / >
 < /form >

 < /body >
 < /html >

 Chapter 6
 Exercise 1

 Create a frameset like the one shown in Figure A - 9, where clicking a fruit loads a new page in the main
window. When the page loads in the main window, it will carry the details for the appropriate fruit

bapp01.indd 651bapp01.indd 651 11/21/09 12:19:27 AM11/21/09 12:19:27 AM

Appendix A: Answers to Exercises

652

(to save time, you can use the images and fruit description pages in the code download, but try to create
the frameset and navigation on your own).

Figure A-9

 Answer
 The first example required five files:

 A frameset document

 A navigation document

 The apple page

 The orange page

 The banana page

 Here is the frameset document (ch06_exercise1.html):

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd” >
 < html >
 < head >
 < title > Fruit example < /title >

❑

❑

❑

❑

❑

bapp01.indd 652bapp01.indd 652 11/21/09 12:19:27 AM11/21/09 12:19:27 AM

653

Appendix A: Answers to Exercises

 < /head >

 < frameset cols=”200, 450, *” >
 < frame src=”frames/fruitNav.html” / >
 < frame name=”main_frame” src=”frames/apple.html” / >

 < noframes > < body > This site makes use of a technology called frames.
 Unfortunately the browser you are using does not support this technology.
 We recommend that you update your browser. We apologize for any
 inconvenience this causes.
 < /body > < /noframes >

 < /frameset >

 < /html >

 This is a frameset document type, which contains two columns that are a fixed size, and then the
remainder of the window is left blank (hence there are only < frame > elements for the first two columns).
Note how the second < frame > element carries the name attribute so that the links in the navigation
frame can load in that part of the page.

 Here is the navigation pane (fruitNav.html):

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Navigation < /title >
 < style type=”text/css” > img {border-style:none; border-width:0px;} < /style >
 < /head >
 < body >

 < h1 > Navigation < /h1 >
 < p > Click on the fruit to find out more about it. < /p >
 < a href=”../frames/apple.html” target=”main_frame” > < img src=”../images/
 apple.jpg” alt=”apple” / > < /a >
 < a href=”../frames/orange.html” target=”main_frame” > < img src=”../images/
 orange.jpg” alt=”orange” / > < /a >
 < a href=”../frames/banana.html” target=”main_frame” > < img src=”../images/
 banana.jpg” alt=”banana” / > < /a >
 < /body >
 < /html >

 This is a normal XHTML document; the only things of note in this document are the target attributes
on the links to indicate that the link should open in the other frame, and the < style > element in
the < head > .

bapp01.indd 653bapp01.indd 653 11/21/09 12:19:28 AM11/21/09 12:19:28 AM

Appendix A: Answers to Exercises

654

 The pages about the fruit (apple.html , orange.html , and banana.html) are all the same except for
their text content. Here is apple.html :

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Apple < /title >
 < /head >

 < body >
 < h1 > Apples < /h1 >

 < p > Apples come in different colors, and there are over 7500 varieties
 of apples. < /p >

 < p > An apple contains about 5g of fiber (1/5 recommended daily
 average). < /p >

 < /body >
 < /html >

 Exercise 2
 Re - create the < iframe > element shown in Figure A - 10 (where you can load two different documents
inside the iframe window in the current page).

Figure A-10

 Answer
 The inline frame example requires four files:

 ch06_exercise2.html contains the page that you load.

 teamA.html contains the names of players in Team A.

❑

❑

bapp01.indd 654bapp01.indd 654 11/21/09 12:19:28 AM11/21/09 12:19:28 AM

655

Appendix A: Answers to Exercises

 teamB.html contains the names of players in Team B.

 clickForTeam.html is what loads in the iframe before the user clicks either team.

 First up is ch06_exercise2.html , which contains the < iframe > element. It is a normal XHTML
document, with two links that carry the target attribute so that they can indicate which frame the
document that they link to should go into.

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Football focus < /title >
 < /head >
 < body >
 < h1 > Quarter Final - Wintertons Cup < /h1 >
 < h3 >
 < a href=”frames/teamA.html” target=”iframe” > Manchester Rangers < /a >
 vs
 < a href=”frames/teamB.html” target=”iframe” > Birmingham United < /a >
 < /h3 >
 < p >
 < iframe name=”iframe” width=”300” height=”150”
 src=”frames/clickForTeams.html” align=”left” > < /iframe >

 Today’s big soccer game is between Manchester Rangers and Birmingham
 United. The match will be played at Highgate Fields stadium, and is
 Sure to be the big game of the week, with all eyes on the underdogs
 Birmingham United who did not expect to get this far in the
 competition.
 < /p >
 < /body >
 < /html >

 As you can see from the < iframe > element, it carries an src attribute that indicates that a page
called clickForTeams.html should load into the iframe when the page loads. This is just a plain
XHTML page:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Teams < /title >
 < /head >
 < body >
 < h3 > Click on a team name to load their players here < /h3 >
 < /body >
 < /html >

❑

❑

bapp01.indd 655bapp01.indd 655 11/21/09 12:19:28 AM11/21/09 12:19:28 AM

Appendix A: Answers to Exercises

656

 Now here is the page teamB.html , which contains a table for the players in the starting lineup of the
team. The page teamA.html is exactly the same, just with different players.

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Team B < /title >
 < /head >
 < body >
 < h3 > Birmingham United < /h3 >
 < p > The players of Birmingham United are < /p > :
 < table >
 < tr > < th > Number < /th > < th > Name < /th > < /tr >
 < tr > < td > 1 < /td > < td > Chris Warner < /td > < /tr >
 < tr > < td > 2 < /td > < td > Felix Thomlinson < /td > < /tr >
 < tr > < td > 3 < /td > < td > Barry Carr < /td > < /tr >
 < tr > < td > 4 < /td > < td > Mike Patterson < /td > < /tr >
 < tr > < td > 5 < /td > < td > Richard Neilson < /td > < /tr >
 < tr > < td > 6 < /td > < td > Brian Childer < /td > < /tr >
 < tr > < td > 7 < /td > < td > Micky Stephens < /td > < /tr >
 < tr > < td > 8 < /td > < td > Richard Brooks < /td > < /tr >
 < tr > < td > 9 < /td > < td > Nick Evans < /td > < /tr >
 < tr > < td > 10 < /td > < td > Joseph Barton < /td > < /tr >
 < tr > < td > 11 < /td > < td > Rob Bishop < /td > < /tr >
 < /table >
 < /body >
 < /html >

 Chapter 7
 Exercise 1

 In the exercises for this chapter, you are going to continue to work on the Example Caf é web site:

 a. First, open the index.html page and add a < div > element just inside the opening < body > tag
and the closing < /body > tag, and give the element an id attribute whose value is page . Repeat
this for each page of the site.

 b. Now, in the style sheet add a rule that gives this element a margin, border, and padding so that
it looks like the border in Figure A - 11.

bapp01.indd 656bapp01.indd 656 11/21/09 12:19:29 AM11/21/09 12:19:29 AM

657

Appendix A: Answers to Exercises

 Answer
 First, here is the XHTML for the homepage; you can see the new < div > element has been highlighted:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” >
 < head >
 < title > Example Cafe - community cafe in Newquay, Cornwall, UK < /title >
 < link rel=”stylesheet” type=”text/css” href=”css/interface.css” / >
 < meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”/ >
 < /head >

 < body >

 < div id=”page” >

 < a id=”top” > < img src=”images/logo.gif”
 alt=”example cafe” width=”194” height=”80” / >
 < div id=”navigation” >
 HOME
 < a href=”menu.html” > MENU < /a >
 < a href=”recipes.html” > RECIPES < /a >

Figure A-11

bapp01.indd 657bapp01.indd 657 11/21/09 12:19:29 AM11/21/09 12:19:29 AM

Appendix A: Answers to Exercises

658

 < a href=”opening.html” > OPENING < /a >
 < a href=”contact.html” > CONTACT < /a >
 < /div >

 < img src=”images/scrambled_eggs.jpg” width=”622” height=”370”
 alt=”Photo of scrambled eggs on an English muffin” align=”left” / >
 < h2 > A community cafe serving home cooked, locally sourced,
 organic food < /h2 >
 < p > With stunning views of the ocean, Example Cafe offers the perfect
 environment to unwind and recharge the batteries. < /p >
 < p > Our menu offers a wide range of breakfasts, brunches and lunches,
 including a range of vegetarian options. < /p >
 < p > Whether you sip on a fresh, hot coffee or a cooling smoothie,
 you never need to feel rushed - relax with friends or just watch
 the world go by. < /p >

 < h2 > This weekend’s special brunch < /h2 >
 < p > This weekend, our season of special brunches continues with scrambled
 egg on an English muffin. Not for the faint-hearted,
 the secret to these eggs is that they are made with
 half cream and cooked in butter, with no more than four eggs
 in the pan at a time. < /p >

 < /div >

 < /body >
 < /html >

 Now here is the CSS rule that creates the blue border:

#page {
 width:960px;
 border:10px solid #3399cc;
 padding:40px;
 margin:20px;}

 Exercise 2
 Create a CSS rule that will make the following changes to the navigation:

 a. Add a single - pixel gray border on the top and bottom.

 b. Give it 20 pixels of margin above and below the gray lines.

 c. Give it 10 pixels of padding on the top and bottom in the box.

 d. Add a margin to the right of each link in the navigation.

bapp01.indd 658bapp01.indd 658 11/21/09 12:19:30 AM11/21/09 12:19:30 AM

659

Appendix A: Answers to Exercises

 Answer
 The first three changes (for points a, b, and c) can be handled using one CSS rule. The rule will need to
control four properties:

 The border - top and border - bottom properties add a single - pixel gray line above and below
the navigation

 The padding property adds space between the lines and the items in the navigation

 The margin property adds a bit of space above and below the gray lines

 Then the margin - right property can be used to add space to the right of each individual link.

#navigation {
 border-top:1px solid #d6d6d6;
 border-bottom:1px solid #d6d6d6;
 padding:10px 0px 10px 0px;
 margin:20px 0px 20px 0px;}

#navigation a {
 color:#3399cc;
 text-decoration:none;
 margin-right:20px;}

 Exercise 3
 Give the main image on the homepage a class attribute whose value is main_image , and then create a
rule that gives the image a single - pixel black border, and also give the image a 10 - pixel margin on the
right and bottom sides of the image.

 Answer
 Here is the new CSS rule that controls the appearance of the image:

.main_image {
 border:1px solid #000000;
 margin:0px 10px 10px 0px;}

 Exercise 4
 Increase the gaps between each line of text to 1.3 em.

 Answer
 You can add the line - height property to the rule that controls the < p > elements to change the gap
between the text, which typesetters refer to as leading.

p {
 color:#333333;
 font-size:90%;
 line-height:1.3em;}

❑

❑

❑

bapp01.indd 659bapp01.indd 659 11/21/09 12:19:30 AM11/21/09 12:19:30 AM

Appendix A: Answers to Exercises

660

 Exercise 5
 Take a look at the following XHTML page:

 < ?xml version=”1.0” encoding=”iso-8859-1”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” >
 < head >
 < title > Font test < /title >
 < link rel=”stylesheet” type=”text/css” href=”ch07_exercise5.css” / >
 < /head >
 < body >
 < table >
 < tr >
 < th > Quantity < /th >
 < th > Ingredient < /th >
 < /tr >
 < tr class=”odd” >
 < td > 3 < /td >
 < td > Eggs < /td >
 < /tr >
 < tr >
 < td > 100ml < /td >
 < td > Milk < /td >
 < /tr >
 < tr class=”odd” >
 < td > 200g < /td >
 < td > Spinach < /td >
 < /tr >
 < tr >
 < td > 1 pinch < /td >
 < td > Cinnamon < /td >
 < /tr >
 < /table >
 < /body >
 < /html >

 Now create the ch07_exercise5.css style sheet, which makes this example look like it does in
Figure A - 12.

Figure A-12

bapp01.indd 660bapp01.indd 660 11/21/09 12:19:30 AM11/21/09 12:19:30 AM

661

Appendix A: Answers to Exercises

 Don ’ t worry about getting the sizes exactly the same as the screenshot, but do make sure you have
padding in the cells and a border around the outside. The white border is created by default in IE and
you find out how to remove this in Chapter 8.

 Answer
 First you need to add a style rule for the either the < body > element or all elements using the universal
selector * , which indicates that the rule applies to all elements. As I mentioned in the chapter, I always
set the background - color property of the < body > element on a site in case the user has set it to another
value. You can also set the font - family and font - size properties to control how the text appears.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:14px;}

 In order to give the entire table a single - pixel, dark gray border, you can use the following style rules (or
you could just use the border property shorthand):

table {
 border-style:solid;
 border-width:1px;
 border-color:#666666;}

 The table headings have a dark background with light writing; the font is also bold. In addition, there
is no border to the headings (note how the shorthand border property is used this time) and the cells
have padding:

th {
 color:#ffffff;
 background-color:#999999;
 font-weight:bold;
 border:none;
 padding:4px;}

 By default, the table rows will have a light background color:

tr {background-color:#cccccc;}

 To alternate the colors of the rows, the < tr > elements that have a class attribute whose value is odd
will have a different background color:

tr.odd {background-color:#efefef;}

 Finally, we should give two pixels of padding to each table cell, and ensure that the color of the text in
the cells is black.

bapp01.indd 661bapp01.indd 661 11/21/09 12:19:31 AM11/21/09 12:19:31 AM

Appendix A: Answers to Exercises

662

td {
 color:#000000;
 padding:2px;}

 Chapter 8
 Exercise 1

 In this exercise, you create a linked table of contents that will sit at the top of a long document in an
ordered list and link to the headings in the main part of the document.

 The XHTML file ch08_exercise1.html is provided with the download code for this book, ready for
you to create the style sheet. Your style sheet should do the following:

 Set the styles of all links including active and visited links

 Make the contents of the list bold

 Make the background of the list light gray and use padding to ensure the bullet points show

 Make the width of the links box 250 pixels wide

 Change the style of heading bullet points to empty circles

 Change the style of link bullet points to squares

 Your page should look something like Figure A - 13.

❑

❑

❑

❑

❑

❑

Figure A-13

bapp01.indd 662bapp01.indd 662 11/21/09 12:19:31 AM11/21/09 12:19:31 AM

663

Appendix A: Answers to Exercises

 Answer
 To start off, you can create a rule that applies to the < body > element to control the background color of
the page and the font used.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

 There were several tasks that related to the list of bullet points that make up the contents. If you look at
the following rule, you can see it starts by setting the background color of the list to a light gray. This is
followed by a property that sets the default style of bullet points to empty circles. Then all the text is
made bold. The fourth property sets the padding to the left of the list. Finally, the width of the lists are
set to 250 pixels wide.

ul {
 background-color:#d6d6d6;
 list-style:circle;
 font-weight:bold;
 padding-left:30px;
 width:250px;}

 The links to the sections are in nested unordered lists, and there are a couple of properties you need to
set for these lists. First, you have to set the bullet points to squares. Second, because all unordered lists
have a gray background and are 250 pixels wide, the nested lists would end up poking out to the right -
 hand side if you did not make them less wide.

ul ul {
 list-style:square;
 width:220px;}

 The final item on the list was to set the styles of all links including active and visited links, which
requires another four rules:

a:link {
 color:#0033ff;;
 text-decoration:none;}
a:visited {
 color:#0066ff;
 text-decoration:none;}
a:active {
 text-decoration:underline;}
a:link:hover {
 color:#003399;
 background-color:#e9e9e9;
 text-decoration:underline;}

bapp01.indd 663bapp01.indd 663 11/21/09 12:19:31 AM11/21/09 12:19:31 AM

Appendix A: Answers to Exercises

664

 Exercise 2
 In this exercise, you test your CSS positioning skills. You should create a page that represents the links to
the different sections of the chapter in a very different way. Each of the sections will be shown in a
different block, and each block will be absolutely positioned in a diagonal top left to bottom right
direction. The middle box should appear on top, as shown in the Figure A - 14.

Figure A-14

 You can find the source XHTML file (ch08_exercise2.html) with the download code for this chapter.

 Answer
 To begin, you set the background color for the entire page and default font in a rule that applies to the
 < body > element.

body {
 background-color:#ffffff;
 font-family:arial, verdana, sans-serif;
 font-size:12px;}

 Next, you can set a rule that applies to all of the < div > elements. Even though you will be changing the
background color of two of the boxes, whenever boxes are taken out of normal flow there is a risk that
they will overlap, so you should give them a background color (because by default boxes have no
background).

bapp01.indd 664bapp01.indd 664 11/21/09 12:19:32 AM11/21/09 12:19:32 AM

665

Appendix A: Answers to Exercises

 You can also set some common properties, adding padding to each box, as well as a border and the
width of the boxes.

div {
 background-color:#ffffff;
 padding:10px;
 border-style:groove; border-width:4px; border-color:#999999;
 width:300px;}

 Finally, you simply position each of the boxes. Because the containing element is the <body> element,
you position each box from the top - left corner of the browser window.

div.page1 {
 position:absolute;
 top:70px;
 z-index:2;
 background-color:#d6d6d6;}

div.page2 {
 position:absolute;
 top:170px; left:100px;
 z-index:3;}

div.page3 {
 position:absolute;
 top:270px; left:200px;
 z-index:1;
 background-color:#efefef;}

 Chapter 9
 Exercise 1

 Take another look at the article page from the Guardian newspaper ’ s web site; it is shown again in Figure
A - 15. List all the different elements on the page that would have been listed in the design stage, and put
them together in their relevant grouping or categories. For example, the main article section of the page
might need a list like this:

Title
Summary
Author
Date

bapp01.indd 665bapp01.indd 665 11/21/09 12:19:32 AM11/21/09 12:19:32 AM

Appendix A: Answers to Exercises

666

 Answer
 It should look something like the following list (although there will be some slight differences depending
on the level of detail you have gone into and the names you have chosen).

Header
 Sign in / Register
 Link to mobile site
 Text size
 Drop down select box of links to other parts of site

Advert

Figure A-15

bapp01.indd 666bapp01.indd 666 11/21/09 12:19:32 AM11/21/09 12:19:32 AM

667

Appendix A: Answers to Exercises

Site name / link to home page
Search

Navigation
 News, Sport, Comment, Culture, Business, Money, Life & Style,
 Travel, Environment, Blogs, Video, Community, Jobs

Breadcrumb trail

Article

Title
Summary
Author
Date
Article history
Main photograph
Photograph caption
Article body

Social media links
 Buzz Up, Digg

Tools
 Print, Send to friend, Share, Clip, Contact

Change text size

Related article links

Most viewed articles
 Last 24 hours, last 7 days, most talked about

Best sellers from shop

 Exercise 2
 Try to recreate the structure of the page you can see in Figure A - 15. It sits in the 12 - column 960 - pixel grid
we were using in this chapter, so you have seen much of the code you need already — you just need to
assemble it correctly.

 Answer
 The code in ch09_eg07.html and ch09_eg07.css shows several configurations for columns on the
grid, and covers most of what you need for the example.

bapp01.indd 667bapp01.indd 667 11/21/09 12:19:33 AM11/21/09 12:19:33 AM

Appendix A: Answers to Exercises

668

 What is missing from this example is a CSS class that splits the page into two, which is needed because
the main article only takes up half of the page. You also need to add a margin to the right-hand side of
the first column. The new rules should look like this:

.column1of2, .column2of2 {
 float:left;
 width:440px;
 background-color:#cccccc;
 padding:10px;
 margin-top:20px;}

.column1of2 {margin-right:20px;}

 Now, you have all of the combinations of columns that you need; you can start to build up the structure
that is shown in Figure A - 15.

 If you look at the main article, which takes up half of the page, we will use the new class we created for
that. Next to that is a column that takes up one - sixth of the page, so we will use the appropriate column
for that — column4of6 . The final column there takes up one - third of the page, so we use the class
 column3of3 to represent that one. It is important to remember that, in all of these classes, the column to
the right is different than the others because it does not have a margin to the right. And for clarity, it
helps to use the class that represents the element ’ s position.

 At the top of the page, all of the elements either take up the full width of the page, or fit into thirds of
a page.

 < ?xml version=”1.0” ? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitionalt//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >
 < html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en” >
 < head >
 < title > Layout Example < /title >
 < link rel=”stylesheet” type=”text/css” href=”ch09_exercise2.css” / >
 < /head >
 < body >
 < div id=”frame” >
 < div id=”page” >

 < div class=”columns1and2of3 clear” > sign in / register /
 text size < /div >
 < div class=”column3of3” > go to... site sections < /div >

 < div id=”header clear” > ad < /div >

 < div class=”column1of3 clear” > site name < /div >
 < div class=”column2of3” > empty < /div >
 < div class=”column3of3” > search < /div >

 < div id=”navigation clear” > navigation and breadcrumb < /div >

 < div class=”column1of2 clear” > article < /div >

bapp01.indd 668bapp01.indd 668 11/21/09 12:19:33 AM11/21/09 12:19:33 AM

669

Appendix A: Answers to Exercises

 < div class=”column4of6” > socia media links, tools, and other
 links < /div >
 < div class=”column3of3” > most viewed articles and best sellers from
 the shop < /div >

 < div class=”clear” > < /div >

 < /div >
 < /div >
 < /body >
 < /html >

 Chapter 10
 Exercise 1

 In this exercise, you should add a second page to the Try It Out form at the end of the chapter
(registration.html). The table that follows shows the new items you must add to the form.

 You should also add the following:

 An indication at the top of the page as to how much of the form the user has completed

 A Back button and a Proceed button at the bottom (instead of the Submit button)

 Information Form control Required

 Address 1 Text input Yes

 Address 2 Text input No

 Town/Suburb Text input No

 City/State Text input Yes

 Zip code Text input Yes

 When you have finished, the page should look something like Figure A - 16.

❑

❑

bapp01.indd 669bapp01.indd 669 11/21/09 12:19:33 AM11/21/09 12:19:33 AM

Appendix A: Answers to Exercises

670

 Answer
 To start, you need to add indicators to show how far the user is through the form. You are indicating that
they are at step 2 of 3. So you create an element to contain each of the steps.

 If you are following the same approach as you did in the last chapter, you could use a < div > element for
each of these steps and call these column1of3 , column2of3 , and column3of3 , or you could just create
one class that represents all of them, called step .

 In this case, however, you will use an unordered list for each of the steps rather than a < div > element
since they are related points.

 < ul class=”steps” >
 < li > Step 1 of 3 < /li >
 < li class=”on” > Step 2 of 3 < /li >
 < li > Step 3 of 3 < /li >
 < /ul >

 Because you are going to use the CSS float property to make these list items sit next to each other, and
because the form is in normal flow, the form might end up sitting next to the three steps unless you use
the CSS clear property. When you come to the CSS, you will create a CSS rule that will use the clear
property, and attach it to any element that has a class attribute whose value is clear .

 < br class=”clear” / >

 Then there is the main part of the form, which collects the address details. You will change the < legend >
for the fieldset at the same time as adding the address fields:

Figure A-16

bapp01.indd 670bapp01.indd 670 11/21/09 12:19:34 AM11/21/09 12:19:34 AM

671

Appendix A: Answers to Exercises

 < form name=”frmExample” action=”” method=”post” >
 < fieldset >
 < legend > Your address: < /legend >

 < label for=”address1” > Address 1: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”text” name=”txtAddress1” id=”address1” size=”12” / >
 < /div >

 < label for=”address2” > Address 2: < /label >
 < div class=”input” >
 < input type=”text” name=”txtAddress2” id=”address2” size=”12” / >
 < /div >

 < label for=”town” > Town / Suburb: < /label >
 < div class=”input” >
 < input type=”text” name=”txtTown” id=”town” size=”12” / >
 < /div >

 < label for=”city” > City: < span class=”required” > * < /span > < /label >
 < div class=”input” >
 < input type=”text” name=”txtCity” id=”city” size=”12” / >
 < /div >

 < label for=”zip” > ZIP Code: < /label >
 < div class=”input” >
 < input type=”text” name=”txtZIP” id=”zip” size=”5” / >
 < /div >

 Finally, you have to add in the Back and Proceed buttons that link between the pages.

 < br class=”clear” / >

 < span class=”back” > < input type=”submit” value=”Back” / > < /span >
 < span class=”next” > < input type=”submit” value=”Proceed” / > < /span >

 < div class=”clear” > < span class=”required” > * < /span > = required < /div >

 < /fieldset >

 < /form >

 In the CSS, you need to add five new rules to the style sheet. To start off, you set the styles for the
unordered list that represents the steps.

.steps {list-style-type:none;}

.steps li {display:inline; float:left; width:100px; margin:20px;
 padding:5px; color:#ffffff; background-color:#000000;

border:1px solid #000000;}
.steps .on {border: 1px solid #666666; background-color:#efefef;
 color:#000000; background-color:#ffffff;}

bapp01.indd 671bapp01.indd 671 11/21/09 12:19:34 AM11/21/09 12:19:34 AM

Appendix A: Answers to Exercises

672

 You also need to add the class that describes how to clear content that comes after floated elements:

.clear {clear:both;margin:20px;}

 Finally, in order to make the next button sit to the right of the form, you need to float that element to the
right of the fieldset:

.next {float:right;}

 Chapter 11
 Exercise 1

 Create a script to write out the multiplication table for the number 5 from 1 to 20 using a while loop.

 Answer
 The exercise is based around a counter (to work out where you are in your tables); each time the code is
run, the counter increments by 1. So, you need to make sure the counter can go up to 20, rather than 10.
This goes in the condition of the while loop:

while (i < 21) {

 Then you need to change the multiplier, which is both written out and used in the calculation:

document.write(i + “ x 5 = “ + (i * 5) + “ < br / > ”);

 The final code should look like this:

 < script type=”text/JavaScript” >
i = 1
while (i < 21) {
 document.write(i + “ x 5 = “ + (i * 5) + “ < br / > ”);
 i ++
}
 < /script >

 As you can see, this code is no longer than the loop in ch11_eg09.html , but it writes out twice the
numbers, which really shows you the power of using loops in your code.

 Exercise 2
 Modify ch11_eg06.html so that it can say one of three things:

 “ Good Morning ” to visitors coming to the page before 12 p.m. (using an if statement).

 “ Good Afternoon ” to visitors coming to the page between 12 and 6 p.m., again using an if
statement. (Hint: You might need to use a logical operator.)

❑

❑

bapp01.indd 672bapp01.indd 672 11/21/09 12:19:34 AM11/21/09 12:19:34 AM

673

Appendix A: Answers to Exercises

 “ Good Evening ” to visitors coming to the page after 6 p.m. up until midnight (again using an if
statement).

 Answer
 This script needs to use the getHours() method of the date object to determine the time and then uses
 if statements to check the appropriate time for each statement presented to the user.

 Note how the afternoon uses a logical operator to check that it is after 12 but before 6 p.m.

 < script type=”text/JavaScript” >
 date = new Date();
 time = date.getHours();

 if (time < 12)
 document.write(‘Good Morning’);

 if (time > = 12 & & time < 18)
 document.write(‘Good Afternoon’)

 if (time > = 18)
 document.write(‘Good Evening’);
 < /script >

 Chapter 12
 Exercise 1

 Your task is to create a validation function for the competition form in Figure A - 17.

❑

Figure A-17

bapp01.indd 673bapp01.indd 673 11/21/09 12:19:35 AM11/21/09 12:19:35 AM

Appendix A: Answers to Exercises

674

 The function should check that the user has done the following things:

 Entered his or her name

 Provided a valid e - mail address

 Selected one of the radio buttons as an answer to the question

 Given an answer for the tiebreaker question and that it is no more than 20 words

 These should be in the order that the controls appear on the form.

 Here is the code for the form:

 < form name=”frmCompetition” action=”competition.aspx” method=”post”
 onsubmit=”return validate(this);” >
 < h2 > An Example Competition Form < br / > (Sorry, there are no real
prizes!) < /h2 >
 < p > To enter the drawing to win a case of Jenny’s Jam, first answer
 this question: “What color are strawberries?” Then provide an answer for
 the tie-breaker question: “I would like to win a case of Jenny’s Jam
 because...” in no more than 20 words. < /p >
 < table >
 < tr >
 < td class=”formTitle” > Name: < /td >
 < td > < input type=”text” name=”txtName” size=”18” / > < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Email: < /td >
 < td > < input type=”text” name=”txtEmail” size=”18” / > < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Answer: < /td >
 < td > < input type=”radio” name=”radAnswer” value=”Red” / > Red < br / >
 < input type=”radio” name=”radAnswer” value=”Gray” / > Gray < br / >
 < input type=”radio” name=”radAnswer” value=”Blue” / > Blue
 < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > Tie breaker < br/ > < small > (no more than 20 words)
 < /small > :
 < /td >
 < td > < textarea name=”txtTieBreaker” cols=”30” rows=”3” / > < /textarea > < /td >
 < /tr >
 < tr >
 < td class=”formTitle” > < /td >
 < td > < input type=”submit” value=”Enter now” / > < /td >
 < /tr >
 < /table >

 < /form >

 Answer
 The validate() function for this example uses techniques you learned about in Chapter 12. It starts off
by setting a variable called returnValue that will either be true or false when the function finishes

❑

❑

❑

❑

bapp01.indd 674bapp01.indd 674 11/21/09 12:19:35 AM11/21/09 12:19:35 AM

675

Appendix A: Answers to Exercises

running — it starts off with a value of true , which is switched to false if any of the form fields fail to
meet the requirements.

 < script type=”text/JavaScript” >

 function validate(form) {
 var returnValue = true

 First you have to check whether the value of the txtName field has a value in it:

var name=form.txtName.value
if (name==””)
 {
 returnValue = false;
 alert(“You must enter a name”)
 document.frmCompetition.txtName.focus();
 }

 Next you have to check whether the e - mail address follows the format it is supposed to. If the address
is empty, it will not match the regular expression; therefore you do not need to check if the control is
empty first:

var email=form.txtEmail.value
var rxEmail = /^\ w(\.?[\w-])*@\w(\.?[\w-])*\.[a-z]{2,6}(\.[a-z]{2})?$/i;

if (!rxEmail.test(email))
 {
 returnValue = false;
 alert(“You must enter a valid email address”)
 document.frmCompetition.txtEmail.focus()
 }

 Next you must loop through the radio buttons to see if an answer was provided. This involves looping
through the buttons and testing whether each button has the checked property. If a radio button has
been checked then a variable (in this case called radioChosen) is changed to have a value of true . Once
all of the radio buttons have been looped through, there is a conditional if statement checking whether
the value of this attribute is true or false .

var radioChosen = false;
var radioButtons = form.radAnswer;
for (var i=0; i < radioButtons.length; i++) {
if (radioButtons[i].checked)
 {
 radioChosen=true;
 }
}

if (radioChosen == false) {
 returnValue = false;
 alert(“You did not answer the question”);
}

bapp01.indd 675bapp01.indd 675 11/21/09 12:19:35 AM11/21/09 12:19:35 AM

Appendix A: Answers to Exercises

676

 Finally, you come to the < textarea > element and the tiebreaker. This one needs to have a value, but
must not be longer than 20 words. To start then, it is checked to see if it has any value at all:

var tieBreaker=form.txtTieBreaker.value
if (tieBreaker==””)
 {
 returnValue = false;
 alert(“You must enter an answer for the tie breaker”)
 document.frmCompetition.txtTieBreaker.focus();
 }

 Then the value entered is split into separate words using the split() function of the string object and a
regular expression. Because the split() function splits the string after spaces, you can check how many
words were entered simply by finding out the length of the array created by the split() function.
Because the array is zero - based, you need to find out whether the number of items in the array is less
than or equal to 20. If there are too many words, the user is warned and told how many words she
entered in order to help her make the response shorter.

var tieBreakerWords = tieBreaker.split(/\s+/g);
wordCount = tieBreakerWords.length;

if (wordCount > 20) {
 returnValue = false;
 alert(“Your tie breaker answer must be no more than 20 words. You entered“
 +wordCount+ “words.”);
 document.frmCompetition.txtTieBreaker.focus();
}

 That is the final test and the returnValue (either true or false) indicates whether the form will be
submitted or not.

 return returnValue
}

 < /script >

 There were no exercises in Chapters 13 or 14.

bapp01.indd 676bapp01.indd 676 11/21/09 12:19:36 AM11/21/09 12:19:36 AM

B
 XHTML Element

Reference

 This appendix is a quick reference to the elements that are in the HTML and XHTML
recommendations. They are listed with the attributes each element can carry and a brief
description of their purpose.

 Please be aware that this appendix features deprecated elements, which are marked with the word
 “ deprecated ” next to them; you should avoid using these elements where possible because they
are marked for removal from future specifications.

 There are also several elements that are used just to control the presentation of documents, without
describing their contents or the structure of the information in the document. You should avoid
using these elements, and aim to use CSS to control the presentation of your documents instead.

 When an element has only been introduced recently, I will note the first version of Internet Explorer
(IE) and Firefox (FF) to support the element next to the element ’ s name, starting with IE6 and FF2.

 Finally, all attribute values should be given inside double quotation marks, and any attribute listed
without a value should have the name of the attribute repeated as its value in order to be XHTML -
 compliant — for example, disabled = “ disabled ” .

 Core Attributes
 Unless otherwise stated, the core attributes can be used with all of the elements in
this appendix.

 class = name Specifies a class for the element to associate it with rules in a
style sheet

 dir = ltr | rtl Specifies the direction for rendering text (left to right or right
to left)

(continued)

bapp02.indd 677bapp02.indd 677 11/20/09 5:30:18 PM11/20/09 5:30:18 PM

Appendix B: XHTML Element Reference

678

 id = name Defines a unique identification value for that element within the
document

 lang = language Specifies the (human) language for the content of the element

 onclick = script Specifies a script to be called when the user clicks the mouse over
this element

 ondblclick = script Specifies a script to be called when the user double - clicks the mouse
over this element

 onkeydown = script Specifies a script to be called when the user presses a key while this
element has focus

 onkeypress = script Specifies a script to be called when the user presses and releases a
key while this element has focus

 onkeyup = script Specifies a script to be called when the user releases a key while this
element has focus

 onmousedown = script Specifies a script to be called when the user presses the mouse
button while the cursor is over this element ’ s content

 onmousemove = script Specifies a script to be called when the user moves the mouse cursor
while over this element ’ s content

 onmouseout = script Specifies a script to be called when the mouse has been over an
element, and has moved outside of its border so that it is no longer
over the element

 onmouseover = script Specifies a script to be called when the mouse is moved over this
element ’ s content

 onmouseup = script Specifies a script to be called when the user releases a mouse button
while the cursor is over this element ’ s content

 style = style Specifies an inline CSS style rule for the element

 title = string Specifies a title for the element

 xml:lang Specifies the (human) language for the content of the element

 < a >
 Defines a link. The href or name attribute must be specified.

 accesskey = key _ character Defines a hotkey/keyboard shortcut for this
anchor

 charset = encoding Specifies a character set used to encode the target
document

bapp02.indd 678bapp02.indd 678 11/20/09 5:30:19 PM11/20/09 5:30:19 PM

679

Appendix B: XHTML Element Reference

 coords = x_y coordinates Specifies a list of coordinates indicating the shape
of a link in an image map

 href = url Specifies the URL of the hyperlink target

 hreflang = language_code Specifies the language encoding for the target of
the link

 rel = relationship (same | next |
parent | previous | string)

 Indicates the relationship of the current document
to the target document

 rev = relationship Indicates the reverse relationship of the target
document to this one

 shape = circ | circle | poly |
polygon | rect | rectangle

 Defines the shape of a region in an image map

 tabindex = number Defines this element ’ s position in the tabbing
order

 target = < window_name > | _parent |
_blank | _top | _self

 Defines the name of the frame or window that
should load the linked document

 type = MIME_type Defines the MIME type of the target

 < abbr >
 Indicates that the content of the element is an abbreviation.

 < acronym >
 Indicates that the content of the element is an acronym.

 < address >
 Indicates that the content of the element is an address.

bapp02.indd 679bapp02.indd 679 11/20/09 5:30:19 PM11/20/09 5:30:19 PM

Appendix B: XHTML Element Reference

680

 < applet > (Deprecated)
 Used to place a Java applet or executable code in the page.

 Takes only the attributes listed in the table that follows.

 align = top | middle | bottom | left
| right | absmiddle | baseline |
absbottom | texttop

 Aligns the applet within the containing
element

 alt = text Specifies alternative text to replace the
 < applet > for browsers that support the
element, but are unable to execute it

 archive = url Specifies a class archive that must be
downloaded to the browser and searched for

 class = name Specifies a class for the element to associate it
with rules in a style sheet

 code = classname Specifies the class name of the code (required)

 codebase = url Specifies a URL from which the code can be
downloaded

 height = number Specifies the height of the < applet > in pixels

 hspace = number Specifies the width to allow to the left and
right of the < applet > in pixels

 id = name Specifies a unique ID for the element

 name = name Specifies the name of this instance of the
applet

 object = data Specifies the filename of the compiled code
to run

 vspace = number Specifies the height to allow to the top and
bottom of the < applet > in pixels

 width = number Specifies the width of the < applet > in pixels

bapp02.indd 680bapp02.indd 680 11/20/09 5:30:26 PM11/20/09 5:30:26 PM

681

Appendix B: XHTML Element Reference

 < area >
 Used to specify coordinates for a clickable area or hotspot in an image map.

 accesskey = key_character Defines a hotkey/keyboard shortcut
for this area

 alt = text Specifies alternative text for the area if the
image cannot be loaded

 coords = string Specifies a list of coordinates for the area

 href = url Specifies the URL of the hyperlink target

 name = string Specifies a name for the element that can be
used to identify it

 nohref Specifies that there is not a document
associated with the area

 shape = circ | circle | poly | polygon
| rect | rectangle

 Defines the shape of a region

 tabindex = number Defines this element ’ s position in the tabbing
order

 target = < window_name > | _parent | _
blank | _top| _self

 Defines the name of the frame or window
that should load the linked document

 < b >
 The content of the element should be displayed in a bold font.

 < base >
 Specifies a base URL for the links in a document.

 Supports only the attributes listed in the table that follows.

 href = url Specifies the URL of the base for the links in
this document

 id = id Specifies a unique identifier for the element

 target = < window_name > | _parent | _
blank | _top | _self

 Defines the name of the frame or window
that should load the linked document

bapp02.indd 681bapp02.indd 681 11/20/09 5:30:26 PM11/20/09 5:30:26 PM

Appendix B: XHTML Element Reference

682

 < basefont > (Deprecated)
 Specifies a base font to be the default font when rendering a document.

 Supports only the attributes listed in the table that follows.

 color = color Specifies the color of text in this element

 face = font_family_name Specifies the font family in this element

 size = value Specifies the size of the font (required)

 < bdo >
 Turns off the bidirectional rendering algorithm for selected fragments of text.

 dir = ltr | rtl Specifies the font family in this element

 < big >
 Renders text in a font size larger than its containing element.

 < blockquote >
 The content of the element is a quotation. Usually used for a paragraph quote or longer (otherwise use
the < q > element).

 cite = url Specifies a URL for the source of the quote

 < body >
 Specifies the start and end of the body section of a page.

 alink = color Specifies the color of active links

 background = url Specifies the URL for a background image to be
used as wallpaper for the background of the
whole document

 bgcolor = color Specifies a background color for the document

bapp02.indd 682bapp02.indd 682 11/20/09 5:30:26 PM11/20/09 5:30:26 PM

683

Appendix B: XHTML Element Reference

 bgproperties = fixed Image does not scroll with document content

 link = color Specifies the color of unvisited links

 onload = script event handler Specifies a script to run when the page loads

 onunload = script event handler Specifies a script to run when the page is
unloaded

 text = color Specifies a color for the text in the document

 vlink = color Specifies the color of visited links

 < br / >
 Inserts a line break.

 Supports only the attributes listed in the table that follows.

 class = name Specifies a class for the element to associate it
with rules in a style sheet

 clear = left | right | none | all Breaks the flow of the page and moves the break
down until the specified margin is clear

 id = id Specifies a unique identifier for this element

 style = style Specifies inline CSS style rules for this element

 title = string Specifies a title for this element

 < button >
 Creates an HTML button. Any enclosed markup is used as the button ’ s caption.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this
element

 disabled = disabled Disables the button, preventing user intervention

 name = name Specifies a name for the form control passed to the
form ’ s processing application as part of the name/
value pair (required)

(continued)

bapp02.indd 683bapp02.indd 683 11/20/09 5:30:26 PM11/20/09 5:30:26 PM

Appendix B: XHTML Element Reference

684

 onblur = script Specifies a script to run when the mouse moves off
the button

 onfocus = script Specifies a script to run when the element gains
focus

 tabindex = number Defines this element ’ s position in the tabbing order

 type = button | submit | reset Specifies the type of button

 value = string Specifies the value of the parameter sent to the
processing application as part of the name/value
pair (required)

 < caption >
 The content of this element specifies a caption to be placed next to a table.

 align = top|bottom | right | left For IE this specifies the horizontal alignment of
the caption; in Netscape it sets vertical position

 valign = bottom | top Specifies the vertical position of the caption

 < center > (Deprecated)
 The content of this element (and child elements) should be centered on the page.

 < cite >
 The content of the element is a citation and tends to be rendered in italics.

 < code >
 The content of the element is code and should be rendered in a fixed - width font.

 < col >
 Specifies column - based defaults for a table.

 align = center | left | right |
justify | char

 Specifies the alignment of the column

 bgcolor = color Specifies a background color for the column

bapp02.indd 684bapp02.indd 684 11/20/09 5:30:27 PM11/20/09 5:30:27 PM

685

Appendix B: XHTML Element Reference

 char = string Specifies the alignment character for text within
the cells

 charoff = string Specifies the offset character that the alignment
character is set to

 span = number Number of columns affected by the < col > tag

 valign = bottom | top Specifies the vertical alignment of content within the
element

 width = number Specifies the width of the column in pixels

 < colgroup >
 Used to contain a group of columns.

 align = center | left | right |
justify | char

 Specifies the horizontal alignment of content
within the column

 bgcolor = color Specifies the background color for the group of
columns

 char = string Specifies the alignment character for text within
the cells

 charoff = string Specifies the offset character that the alignment
character is set to

 valign = bottom | top Specifies the vertical alignment of content within
the element

 width = number Specifies the width of the column group in pixels

 < dd >
 The definition of an item in a definition list. This is usually indented from other text.

 < del >
 The content of the element has been marked as having been deleted from an earlier version of the
document.

 cite = url Specifies a URL for justification of deletion

 datetime = date Specifies the date and time it was deleted

bapp02.indd 685bapp02.indd 685 11/20/09 5:30:27 PM11/20/09 5:30:27 PM

Appendix B: XHTML Element Reference

686

 < dfn >
 Defines an instance of a term.

 < dir > (Deprecated)
 The content of the element is rendered in a directory - style file list.

 type = bullet Specifies the type of bullet used to display the list

 < div >
 A containing element to hold other elements, defining a section of a page. This is a block - level
container.

 align = center | left | right Specifies the alignment of text within the < div > element

 nowrap = nowrap Prevents word - wrapping within this < div > element

 < dl >
 Denotes a definition list.

 compact = compact Makes the list more vertically compact

 < dt >
 Denotes a definition term within a definition list.

 < em >
 The element content is emphasized text, and is usually rendered in an italic font.

bapp02.indd 686bapp02.indd 686 11/20/09 5:30:27 PM11/20/09 5:30:27 PM

687

Appendix B: XHTML Element Reference

 < embed >
 Embeds files in a page that require another supporting application.

 align = absbottom | absmiddle |
baseline | bottom | left |
middle | right | texttop | top

 Specifies the alignment within the containing element

 border = number Specifies the width of the border around the
embedded object in pixels

 height = number Specifies the height of the embedded object in pixels

 hidden = hidden Specifies that the embedded object should be hidden

 hspace = number Specifies the amount of additional space to be added
to the left and right of the embedded object

 name = name Specifies a name for the embedded object

 palette=foreground | background Sets foreground and background colors of the
embedded object

 pluginspage = url Specifies the URL of the page where the plug - in
associated with the object can be downloaded

 src = url Specifies the URL of the data to be used by the object

 type = MIME_type Specifies the MIME type of the data used by the
object

 units = en | ems | pixels Sets units for height and width attributes

 vpsace = number Specifies the amount of additional space to be added
above and below the embedded object

 width = number Specifies the width of the embedded object in pixels

 < fieldset >
 Creates a box around the contained elements indicating that they are related items in a form.

 align = center | left | right Specifies the alignment of the group of elements

 tabindex = number Defines this < fieldset > ’ s position in the
tabbing order

bapp02.indd 687bapp02.indd 687 11/20/09 5:30:27 PM11/20/09 5:30:27 PM

Appendix B: XHTML Element Reference

688

 < font > (Deprecated)
 Specifies the typeface, size, and color of the font to be used for text within the element.

 color = color Specifies the color of text in this element

 face = font_family_list Specifies the family of font to be used for the text in this
element

 size = value Specifies the size of the text used in this element

 < form >
 Containing element for form controls and elements.

 accept - charset = list Specifies a list of accepted character sets the
processing application can handle

 action = url Specifies the URL of the processing
application that will handle the form

 enctype = encoding Specifies the encoding method for form
values

 method = get | post Specifies how the data gets sent from the
browser to the processing application

 onreset = script Specifies a script that is run when the form
values are reset

 onsubmit = script Specifies a script that is run before the form
is submitted

 target = < window_name > | _parent | _
blank | _top | _self

 Defines the name of the frame or window
that should load the results of the form

 < frame >
 Specifies a frame within a frameset.

 Supports only the attributes listed in the table that follows.

 [event_name] = script The intrinsic events supported by most elements

 bordercolor = color Specifies the color of the border of the frame

bapp02.indd 688bapp02.indd 688 11/20/09 5:30:28 PM11/20/09 5:30:28 PM

689

Appendix B: XHTML Element Reference

 class = name Specifies a class name to associate styles with the
element

 frameborder = no | yes | 0 | 1 Specifies the presence or absence of a frame
border

 id = string Specifies a unique value for the element

 lang = language_type Specifies the language used for the content of the
frame

 longdesc = url Specifies a URL for a description of the content
of the frame

 marginheight = number Specifies the height of the margin for the frame
in pixels

 marginwidth = number Specifies the width of the margin for the image
in pixels

 noresize = noresize Specifies that the frame cannot be resized

 scrolling = auto | yes | no Specifies whether the frame can have scrollbars
if the content does not fit in the space in the
browser

 style = style Specifies inline CSS style rules

 src = url Specifies a URL for the location of the content for
that frame

 title = title Specifies a title for the frame

 < noframes >
 The content of this element should be displayed if the browser does not support frames.

 < frameset >
 Specifies a frameset containing multiple frames (and possibly other nested framesets). This element
replaces the < body > element in a document.

 border = number Specifies the width of the borders for each frame in
the frameset

 bordercolor = color Specifies the color of the borders for frames in the
frameset

(continued)

bapp02.indd 689bapp02.indd 689 11/20/09 5:30:28 PM11/20/09 5:30:28 PM

Appendix B: XHTML Element Reference

690

 cols = list Specifies the number of columns in the frameset
allowing you to control layout of the frameset

 frameborder = no | yes | 0 | 1 Specifies whether borders will be present for the
frames in this frameset

 framespacing = number Specifies the space between each frame in pixels

 onblur = script Specifies a script to run when the mouse moves off
the frameset

 onload = script Specifies a script to run when the frameset loads

 onunload = script Specifies a script to run when the frameset is unloaded

 rows = number Specifies the number of rows in a frameset allowing
you to control the layout of the frameset

 < head >
 Container element for heading information about the document; its content will not be displayed
in the browser.

 Supports only the attributes listed in the table that follows.

 class = classname Specifies a class to associate style rules with this element

 dir = ltr | rtl Specifies the direction of text within this element

 Id = string Specifies a unique identifier for this element

 lang = language_type Specifies the language used in this element

 profile = url Specifies a URL for a profile of the document

 xml:lang = language_type Specifies the language used in this element

 < h n >
 Headings from < h1 > (largest) through < h6 > (smallest).

 align = left | center | right Specifies the horizontal alignment of the header
within its containing element

bapp02.indd 690bapp02.indd 690 11/20/09 5:30:28 PM11/20/09 5:30:28 PM

691

Appendix B: XHTML Element Reference

 < hr / >
 Creates a horizontal rule across the page (or containing element).

 Supports only the attributes listed in the table that follows.

 [event_name] = script The intrinsic events supported by most elements

 align = center | left | right Specifies the horizontal alignment of the rule

 class = classname Specifies a class for the element to associate it with rules
in a style sheet

 color = color Specifies the color of the horizontal rule

 dir = ltr | rtl Specifies the direction of the text

 id = string Specifies a unique identifier for this element

 noshade = noshade Specifies that there should not be a 3D shading on the
rule

 style = string Specifies inline CSS style rules for the element

 title = string Specifies a title for the element

 width = number Specifies the width of the rule in pixels or as a
percentage of the containing element

 < html >
 Containing element for an HTML or XHTML page.

 class = classname Specifies a class for the element to associate it with rules
in a style sheet

 dir = ltr | rtl Specifies the direction of the text within the element

 id = string Specifies a unique identifier for this element

 lang = language_type Specifies the language used in this element

 version = url Specifies the version of HTML used in the document —
 replaced by the DOCTYPE declaration in XHTML

 xmlns = uri Specifies namespaces used in XHTML documents

 xml:lang = language_type Specifies the language used in this element

bapp02.indd 691bapp02.indd 691 11/20/09 5:30:28 PM11/20/09 5:30:28 PM

Appendix B: XHTML Element Reference

692

 < i >
 The content of this element should be rendered in an italic font.

 < iframe >
 Creates an inline floating frame within a page.

 align = absbottom | absmiddle |
baseline | bottom | top | left |
middle | right | texttop | top

 Specifies the alignment of the frame in relation to
surrounding content or margins

 frameborder = no | yes | 0 | 1 Specifies the presence of a border: 1 enables borders,
 0 disables them

 height = number Specifies the height of the frame in pixels

 longdesc = url Specifies a URL for a description of the content of the
frame

 Marginheight = number Specifies the space above and below the frame and
surrounding content in pixels

 marginwidth = number Specifies the space to the left and right of the frame
and surrounding content in pixels

 scrolling = auto | yes | no Specifies whether scrollbars should be allowed to
appear if the content is too large for the frame

 src = url Specifies the URL of the file to be displayed in the frame

 width = number Specifies the width of the frame in pixels

 < img >
 Embeds an image within a document.

 align = absbottom | absmiddle
| baseline | bottom | top |
left | middle | right |
texttop | top

 Specifies the alignment of the image in relation to the
content that surrounds it

 alt = text Specifies alternative text if the application is unable to
load the image (required); also used in accessibility
devices

 border = number Specifies the width of the border of the image in pixels
— you must use this property if the image is a link, to
prevent borders from appearing

bapp02.indd 692bapp02.indd 692 11/20/09 5:30:29 PM11/20/09 5:30:29 PM

693

Appendix B: XHTML Element Reference

 height = number Specifies the height of the image in pixels

 hspace = number Specifies the amount of additional space to be added to
the left and right of the image

 ismap = ismap Specifies whether the image is a server - side image map

 longdesc = url Specifies a URL for a description of the content of the
image

 loop = number Specifies the number of times the video should be
played; can take a value of infinite

 lowsrc = url Specifies a URL for a low - resolution version of the image
that can be displayed while the full image is loading

 name = name Specifies a name for the element

 onabort = script Specifies a script to run if loading of the image is aborted

 onerror = script Specifies a script to run if there is an error loading the
image

 onload = script Specifies a script to run when the image has loaded

 src = url Specifies the URL of the image

 usemap = url Specifies the map containing coordinates and links that
define the links for the image (server - side image map)

 vspace = number Specifies the amount of additional space to be added
above and below the image

 width = name Specifies the width of the image

 < input type= “ button ” >
 Creates a form input control that is a button a user can click.

 accesskey = key_character Defines a hotkey/keyboard shortcut for the button

 disabled = disabled Disables the button, preventing user intervention

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the parameter sent to the processing
application as part of the name/value pair

bapp02.indd 693bapp02.indd 693 11/20/09 5:30:29 PM11/20/09 5:30:29 PM

Appendix B: XHTML Element Reference

694

 < input type= “ checkbox ” >
 Creates a form input control that is a checkbox a user can check.

 accesskey = key_character Defines a hotkey/keyboard shortcut for the checkbox

 checked = checked Specifies that the checkbox is checked (can be used to
make the checkbox selected by default)

 disabled = disabled Disables the checkbox, preventing user intervention

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 readonly = readonly Prevents user from modifying content

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < input type= “ file ” >
 Creates a form input control that allows a user to select a file.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this file input

 disabled = disabled Disables the file upload control, preventing user
intervention

 maxlength = number Maximum number of characters the user may enter

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 onblur = script Specifies a script to run when the mouse leaves the control

 onchange = script Specifies a script to run when the value of the element
changes

 onfocus = script Specifies a script to run when the element gains focus

 readonly = readonly Prevents user from modifying content

 size = number Specifies the number of characters to display for the
element

bapp02.indd 694bapp02.indd 694 11/20/09 5:30:29 PM11/20/09 5:30:29 PM

695

Appendix B: XHTML Element Reference

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < input type= “ hidden ” >
 Creates a form input control, similar to a text input, but is hidden from the user ’ s view (although the
value can still be seen if the user views the source for the page).

 name = name Specifies a name for the form control passed to the form ’ s processing
application as part of the name/value pair (required)

 value = string Specifies the value of the control sent to the processing application as
part of the name/value pair

 < input type= “ image ” >
 Creates a form input control that is like a button or submit control, but uses an image instead of a button.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this image
button

 align = center | left | right Specifies the alignment of the image

 alt = string Provides alternative text for the image

 border = number Specifies the width of the border in pixels

 disabled = disabled Disables the image button, preventing user
intervention

 name = name Specifies a name for the form control passed to the
form ’ s processing application as part of the name/
value pair (required)

 src = url Specifies the source of the image

 readonly = readonly Prevents user from modifying content

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the
processing application as part of the name/
value pair

bapp02.indd 695bapp02.indd 695 11/20/09 5:30:29 PM11/20/09 5:30:29 PM

Appendix B: XHTML Element Reference

696

 < input type= “ password ” >
 Creates a form input control that is like a single - line text input control but shows asterisks or bullet
marks rather than the characters to prevent an onlooker from seeing the values a user has entered. This
should be used for sensitive information — although you should note that the values get passed to the
servers as plain text. (If you have sensitive information, you should still consider making submissions
safe using a technique such as SSL.)

 accesskey = key_character Defines a hotkey/keyboard shortcut for this element

 disabled = disabled Disables the text input, preventing user intervention

 maxlength = number Maximum number of characters the user can enter

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 onblur = script Specifies a script to run when the mouse moves off the
element

 onchange = script Specifies a script to run when the value of the element
changes

 onfocus = script Specifies a script to run when the element gains focus

 onselect = script Specifies a script to run when the user selects this
element

 readonly = readonly Prevents user from modifying content

 size = number Specifies the width of the input in numbers of characters

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < input type= “ radio ” >
 Creates a form input control that is a radio button. These appear in groups that share the same value for
the name attribute and create mutually exclusive groups of values (only one of the radio buttons in the
group can be selected).

 accesskey = key_character Defines a hotkey/keyboard shortcut for this radio button

 checked = checked Specifies that the default condition for this radio button is
checked

bapp02.indd 696bapp02.indd 696 11/20/09 5:30:30 PM11/20/09 5:30:30 PM

697

Appendix B: XHTML Element Reference

 disabled = disabled Disables the radio button, preventing user intervention

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 readonly = readonly Prevents user from modifying content

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < input type= “ reset ” >
 Creates a form input control that is a button to reset the values of the form to the same values present
when the page loaded.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this button

 disabled = disabled Disables the button, preventing user intervention

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < input type= “ submit” >
 Creates a form input control that is a Submit button to send the form values to the server.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this element

 disabled = disabled Disables the button, preventing user intervention

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

bapp02.indd 697bapp02.indd 697 11/20/09 5:30:30 PM11/20/09 5:30:30 PM

Appendix B: XHTML Element Reference

698

 < input type= “ text ” >
 Creates a form input control that is a single - line text input.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this element

 disabled = disabled Disables the text input, preventing user intervention

 maxlength = number Maximum number of characters the user can enter

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 onblur = script Specifies a script to run when the mouse moves off the
element

 onchange = script Specifies a script to run when the value of the element
changes

 onfocus = script Specifies a script to run when the element gains focus

 onselect = script Specifies a script to run when the element is selected

 readonly = readonly Prevents user from modifying content

 size = number Specifies the width of the control in characters

 tabindex = number Defines this element ’ s position in the tabbing order

 value = string Specifies the value of the control sent to the processing
application as part of the name/value pair

 < ins >
 The content of the element has been added since an earlier version of the document.

 cite = url Specifies a URL indicating why the content was added

 datetime = date Specifies a date and time for the addition of content

bapp02.indd 698bapp02.indd 698 11/20/09 5:30:30 PM11/20/09 5:30:30 PM

699

Appendix B: XHTML Element Reference

 < isindex > (Deprecated)
 Creates a single - line text input; you should use the < input > element instead. Only the attributes listed
in the table that follows are supported.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this element

 action = url IE specifies only the URL of the search application

 class = classname Specifies a class for the element to associate it with rules in
a style sheet

 dir = ltr | rtl Specifies the direction of the text within the element

 id = string Specifies a unique identifier for this element

 lang = language_type Specifies the language used in this element

 prompt = string Specifies an alternative prompt for the field input

 style = string Specifies inline CSS style rules for the element

 tabindex = number Defines this element ’ s position in the tabbing order

 title = string Specifies a title for the element

 xml:lang = language_type Specifies the language used in this element

 < kbd >
 The content of the element is something that should be entered on a keyboard, and is rendered in a
fixed - width font.

 < label >
 The content of the element is used as a label for a form element.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this element

 for = name Specifies the value of the id attribute for the element it is a
label for

 onblur = script Specifies a script to run when the mouse moves off the label

 onfocus = string Specifies a script to run when the label gains focus

bapp02.indd 699bapp02.indd 699 11/20/09 5:30:30 PM11/20/09 5:30:30 PM

Appendix B: XHTML Element Reference

700

 < legend >
 The content of this element is the title text to place in a < fieldset > . It could be used in HTML 5 to
provide a title for < figure > and < details > elements.

 accesskey = key_character Defines a hotkey/keyboard shortcut for this
element

 align = top | left | bottom | right Specifies the position of the legend in relation to
the fieldset

 < li >
 The content of this element is an item in a list. The element is referred to as a line item. For appropriate
attributes, see the parent element for that kind of list (< ul > , < ol > , < menu >).

 type = bullet_type Specifies the type of bullet used to display the list items

 value = number Specifies the number the list will start with

 < link >
 Defines a link between the document and another resource. Often used to include style sheets in documents.

 Takes only the attributes listed in the table that follows.

 charset = character_set Specifies a character set used to encode the linked file

 href = url Specifies the URL of the linked document

 hreflang = language_type Specifies the language encoding for the target of the link

 media = list Types of media the document is intended for

 rel = same | next | parent
| previous | string

 Indicates the relationship of the document to the target
document

 rev = relation Indicates the reverse relationship of the target document to
this one

 type = type Specifies the MIME type of the document being linked to

bapp02.indd 700bapp02.indd 700 11/20/09 5:30:31 PM11/20/09 5:30:31 PM

701

Appendix B: XHTML Element Reference

 < map >
 Creates a client - side image map and specifies a collection of clickable areas or hotspots.

 name = string Name of the map (required)

 < menu > (Deprecated)
 Creates a menu list and renders the child elements as individual items. Replaced by lists (< ol > and
 < ul >). Deprecated in HTML 4.01.

 < meta >
 Allows for information about the document or instructions for the browser; these are not displayed
to the user.

 Takes only the attributes listed in the table that follows.

 charset = character_set Specifies a character set used to encode the document

 content= meta_content Specifies the value for the meta - information

 dir = ltr | rtl Specifies the direction of the text within the element

 http - equiv = string Specifies the HTTP equivalent name for the meta -
 information; causes the server to include the name and
content in the HTTP header

 lang = language_type Specifies the language used in this element

 name = string Specifies the name of the meta - information

 scheme = scheme Specifies the profile scheme used to interpret the property

 xml:lang = language_type Specifies the language used in this element

 < noframes >
 The content of the element is displayed for browsers that do not support frames.

 < noscript >
 The content of the element is displayed for browsers that do not support the script. Most browsers will
also display this content if scripting is disabled.

bapp02.indd 701bapp02.indd 701 11/20/09 5:30:31 PM11/20/09 5:30:31 PM

Appendix B: XHTML Element Reference

702

 < object >
 Adds an object or non - HTML control to the page. Will be the standard way of including images
in the future.

 align = absbottom | absmiddle |
baseline | bottom | left | middle
| right | texttop | top

 Specifies the position of an object in relation to
surrounding text

 archive = url Specifies a list of URLs for archives or resources
used by the object

 border = number Specifies the width of the border in pixels

 classid = url Specifies the URL of the object

 codebase = url Specifies the URL of the code required to run
the object

 codetype = MIME - type Specifies the MIME type of the code base

 data = url Specifies the data for the object

 declare Declares an object without instantiating it

 height = number Specifies the height of the object in pixels

 hspace = number Specifies the amount of additional space to be
added to the left and right of the embedded object

 name = name Specifies a name for the object

 shapes = shapes Specifies that the object has shaped hyperlinks

 standby = string Defines a message to display while the object is
loading

 tabindex = number Defines this element ’ s position in the tabbing
order

 type = MIME type Specifies the MIME type for the object ’ s data

 usemap = url Defines an image map for use with the object

 vspace = number Specifies the amount of additional space to be
added above and below the embedded object

 width = number Specifies the object ’ s width in pixels

bapp02.indd 702bapp02.indd 702 11/20/09 5:30:31 PM11/20/09 5:30:31 PM

703

Appendix B: XHTML Element Reference

 < ol >
 Creates an ordered or numbered list.

 compact = compact Attempts to make the list more vertically compact

 start = number Specifies the number with which the list should start

 type = bullet_type Specifies the type of bullet used to display the list items

 < optgroup >
 Used to group < option > elements in a select box.

 disabled = disabled Disables the group, preventing user intervention

 label = string Specifies a label for the option group

 < option >
 Contains one choice in a drop - down list or select box.

 disabled = disabled Disables the option, preventing user intervention

 label = string Specifies a label for the option

 selected = selected Indicates that the option should be selected by default when the
page loads

 value = string Specifies the value of this option in the form control sent to the
processing application as part of the name/value pair

 < p >
 The content of this element is a paragraph.

 align = center | left | right Specifies the alignment of the text within the paragraph

 < param >
 Used as a child of an < object > or < applet > element to set properties of the object. See the < object > or
 < applet > elements for details.

bapp02.indd 703bapp02.indd 703 11/20/09 5:30:31 PM11/20/09 5:30:31 PM

Appendix B: XHTML Element Reference

704

 < pre >
 The content of this element is rendered in a fixed - width type that retains the formatting (such as spaces
and line breaks) in the code.

 width = number Specifies the width of the preformatted area in pixels

 < q >
 The content of the element is a short quotation.

 cite = url Specifies the URL for the content of the quote in question

 < s > (Deprecated)
 The content of the element should be rendered with strikethrough.

 < samp >
 The content of the element is a sample code listing. Usually rendered in a smaller fixed - width font.

 < script >
 The content of the element is a script code that the browser should execute.

 charset = encoding Specifies a character set used to encode the script

 defer = defer Defers execution of the script

 language = name Specifies the language used in this element

 src = url URL for the location of the script file

 type = encoding Specifies the MIME type of the script

bapp02.indd 704bapp02.indd 704 11/20/09 5:30:32 PM11/20/09 5:30:32 PM

705

Appendix B: XHTML Element Reference

 < select >
 Creates a select or drop - down list box.

 disabled = disabled Disables the select box, preventing user intervention

 multiple = multiple Permits selection of multiple items from the list

 name = name Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair (required)

 onblur = script Specifies a script to run when the mouse moves off the control

 onchange = script Specifies a script to run when the value of the element changes

 onfocus = script Specifies a script to run when the element gains focus

 size = number Specifies the number of items that may appear at once

 tabindex = number Defines this element ’ s position in the tabbing order

 < small >
 The content of this element should be displayed in a smaller font than its containing element.

 < span >
 Used as a grouping element for inline elements (as opposed to block - level elements); also allows for the
definition of non - standard attributes for text on a page.

 < strike > (Deprecated)
 The content of this element should be rendered in strikethrough.

 < strong >
 The content of this element has strong emphasis and should be rendered in a bold typeface.

 < style >
 Contains CSS style rules that apply to that page.

 < sub >
 The content of this element is displayed as subscript.

bapp02.indd 705bapp02.indd 705 11/20/09 5:30:32 PM11/20/09 5:30:32 PM

Appendix B: XHTML Element Reference

706

 < sup >
 The content of this element is rendered as superscript.

 < table >
 Creates a table.

 align = center | left | right Specifies the alignment of the table within its
content

 background = url Specifies a URL for a background image

 bgcolor = color Specifies a background color for the table

 border = number Specifies the width of the border in pixels

 bordercolor = color Specifies the color of the border

 bordercolordark = color Specifies the darker border color

 bordercolorlight = color Specifies the lighter border color

 cellpadding = number Specifies the distance between the border and its
content in pixels

 cellspacing = number Specifies the distance between the cells in pixels

 cols = number Specifies the number of columns in the table

 frame = above | below | border | box
| hsides | lhs | rhs | void | vsides

 Defines where the borders are displayed

 height = number Specifies the height of the table in pixels

 hspace = number Specifies the amount of additional space to be
added to the left and right of the table

 nowrap = nowrap Prevents the content of the table from wrapping

 rules = all | cols | groups | none
| rows

 Specifies where the inner dividers are drawn

 summary = string Offers a summary description of the table

 valign = bottom | top Specifies the alignment of content in the table

 vspace = number Specifies the amount of additional space to be
added above and below the table

 width = number Specifies the width of the table in pixels

bapp02.indd 706bapp02.indd 706 11/20/09 5:30:32 PM11/20/09 5:30:32 PM

707

Appendix B: XHTML Element Reference

 < tbody >
 Denotes the body section of a table.

 align = center | left |
right

 Specifies the alignment of the content of the body of the table

 char = string Specifies an offset character for alignment

 charoff = string Specifies the offset within the cells from the offset character

 valign = bottom | top Specifies the vertical alignment of content in the body
of the table

 width = number Specifies the width of the table body in pixels

 < td >
 Creates a cell of a table.

 abbr = string Specifies an abbreviation for the cell ’ s content

 align = center | left |
right

 Specifies the alignment of the content of the cell

 axis = string Specifies a name for a related group of cells

 background = url Specifies a URL for a background image for the cell

 bgcolor = color Specifies the background color of the cell

 border = number Specifies the border width of the cell in pixels

 bordercolor = color Specifies the border color of the cell

 bordercolordark= color Specifies the dark border color of the cell

 bordercolorlight= color Specifies the light border color of the cell

 char = string Specifies the cell alignment character

 charoff = string Specifies the offset from the cell alignment character

 colspan = number Specifies the number of columns this cell spans

 headers = string Specifies the names of header cells associated
with this cell

 height = number Specifies the height of the cell in pixels

(continued)

bapp02.indd 707bapp02.indd 707 11/20/09 5:30:32 PM11/20/09 5:30:32 PM

Appendix B: XHTML Element Reference

708

 nowrap = nowrap Prevents the content of the cell from wrapping

 rowspan = number Specifies the number of rows the cell spans

 scope = row | col | rowgroup
| colgroup

 Specifies the scope of a header cell

 valign = bottom | top Specifies vertical alignment of the content of the cell

 width = number Specifies the width of the cell in pixels

 < textarea >
 Creates a multiple - line text input control in a form.

 accesskey= key_character Defines a hotkey/keyboard shortcut for this form control

 cols = number Specifies the number of columns of characters the text area
should be (the width in characters)

 disabled = disabled Disables the text area, preventing user intervention

 name = string Specifies a name for the form control passed to the form ’ s
processing application as part of the name/value pair
(required)

 onblur = script Specifies a script to run when the mouse moves off the
text area

 onchange = script Specifies a script to run when the value of the element
changes

 onfocus = script Specifies a script to run when the element gains focus

 onselect = script Specifies a script to run when the text area is selected

 readonly = readonly Prevents the user from modifying content

 rows = number Specifies the number of rows of text that should appear in the
text area without the scrollbar appearing

 tabindex = number Defines this element ’ s position in the tabbing order

 wrap = physical _
vertical _ off

 Specifies whether the text in a text area should wrap or
continue on the same line when width of text area is reached

bapp02.indd 708bapp02.indd 708 11/20/09 5:30:32 PM11/20/09 5:30:32 PM

709

Appendix B: XHTML Element Reference

 < tfoot >
 Denotes row or rows of a table to be used as a footer for the table.

 align = center | left | right Specifies the alignment of the content of the footer
of the table

 char = string Specifies an offset character for alignment

 charoff = string Specifies the offset within the cells from the offset
character

 valign = bottom | top Specifies the vertical alignment of content in the foot of
the table

 width = number Specifies the width of the table body in pixels

 < thead >
 Denotes row or rows of a table to be used as a header for the table.

 align = center | left | right Specifies the alignment of the content of the head of
the table

 char = string Specifies an offset character for alignment

 charoff = string Specifies the offset within the cells of the alignment
position

 valign = bottom | top Specifies the vertical alignment of content in the head
of the table

 width = number Specifies the width of the table body in pixels

 < th >
 Denotes a header cell of a table. By default, content is often shown in bold font.

 abbr = string Specifies an abbreviation for the cell ’ s content

 align = center | left | right Specifies the alignment of the content of the cell

 axis = string Specifies a name for a related group of cells

 background = url Specifies a URL for a background image for the cell

(continued)

bapp02.indd 709bapp02.indd 709 11/20/09 5:30:33 PM11/20/09 5:30:33 PM

Appendix B: XHTML Element Reference

710

 bgcolor = color Specifies the background color of the cell

 border = number Specifies the border width of the cell in pixels

 bordercolor = color Specifies the border color of the cell

 bordercolordark= color Specifies the dark border color of the cell

 bordercolorlight= color Specifies the light border color of the cell

 char = string Specifies the cell alignment character

 charoff = string Specifies the offset from the cell alignment character

 colspan = number Specifies the number of columns this cell spans

 headers = string Specifies the names of header cells associated with
this cell

 height = number Specifies the height of the cell in pixels

 nowrap Prevents the content of the cell from wrapping

 rowspan = number Specifies the number of rows the cell spans

 scope = row | col | rowgroup |
colgroup

 Specifies the scope of a header cell

 valign = bottom | top Specifies vertical alignment of the content of the cell

 width = number Specifies the width of the cell in pixels

 < title >
 The content of this element is the title of the document and will usually be rendered in the top title bar
of the browser; it may only live in the head of the page. Supports only the attributes listed in the table
that follows.

 dir = ltr | rtl Specifies the direction of the text within the element

 id = string Specifies a unique identifier for this element

 lang = language_type Specifies the language used in this element

 xml:lang = language_type Specifies the language used in this element

bapp02.indd 710bapp02.indd 710 11/20/09 5:30:33 PM11/20/09 5:30:33 PM

711

Appendix B: XHTML Element Reference

 < tr >
 Denotes a row of a table.

 align = center | left | right Specifies the alignment of the content of the row

 background = url Specifies a URL for a background image for the row

 bgcolor = color Specifies the background color of the row

 border = number Specifies the border width of the row in pixels

 bordercolor = color Specifies the border color of the row

 bordercolordark= color Specifies the dark border color of the row

 bordercolorlight= color Specifies the light border color of the row

 char = string Specifies the row alignment character

 charoff = string Specifies the offset from the row alignment character

 nowrap = nowrap Prevents the content of the cell from wrapping

 valign = bottom | top Specifies vertical alignment of the content of the cell

 < tt >
 The content of this element is rendered in a fixed - width font, as if on a teletype device.

 < u > (Deprecated)
 The content of this element is rendered with underlined text.

 < ul >
 Creates an unordered list.

 compact = compact Attempts to make the list more compact vertically

 type = bullet_type Specifies the type of bullet used to display the list items

 < var >
 The content of this element is a programming variable, and is usually rendered in a small
fixed - width font.

bapp02.indd 711bapp02.indd 711 11/20/09 5:30:33 PM11/20/09 5:30:33 PM

bapp02.indd 712bapp02.indd 712 11/20/09 5:30:33 PM11/20/09 5:30:33 PM

 C
CSS Properties

 This appendix is a reference to the main CSS properties that you will be using to control the
appearance of your documents.

 For each property covered, you will first see a very brief description of the property and then an
example of its usage. This is followed by two tables: the one on the left shows the possible values
the property can take along with the first versions of Internet Explorer and Firefox to support these
values, and the table on the right indicates whether the property can be inherited, what the default
value for the property is, and which elements it applies to.

 While browsers may support the inherit value of many properties, if the browser is unable to set
the property to some other value in the first place (perhaps because that value is not supported),
then the inherit value is of little use.

 At the end of the appendix are units of measurement.

 Font Properties
 The font properties allow you to change the appearance of a typeface.

 font
 Allows you to set several font properties at the same time, separated by spaces. You can specify
 font - size , line - height , font - family , font - style , font - variant , and font - weight in this
one property.

font {color:#ff0000; arial, verdana, sans-serif; 12pt;}

bapp03.indd 713bapp03.indd 713 11/20/09 5:32:11 PM11/20/09 5:32:11 PM

714

Appendix C: CSS Properties

 Value IE FF Inherited Yes

 [font - family] 3 1 Default n/a

 [font - size] 3 1 Applies to All elements

 [font - style] 3 1

 [font - variant] 4 1

 [font - weight] 3 1

 [line - height] 3 1

 inherit 8 1

 font - family
 Allows you to specify the typefaces you want to use. Can take multiple values separated by commas,
starting with your first preference, then your second choice, and ending with a generic font - family
(serif , sans - serif , cursive , fantasy , or monospace).

p {font-family:arial, verdana, sans-serif;}

 Value IE FF Inherited Yes

 [generic family] 3 1 Default Set by browser

 [specific family] 3 1 Applies to All elements

 inherit 8 1

 font - size
 Allows you to specify a size of font. The font - size property has its own specific values:

 Absolute sizes: xx - small , x - small , small , medium , large , x - large , xx - large

 Relative sizes: larger , smaller

 Percentage: Percentage of the parent font

 Length: A unit of measurement (as described at end of the appendix)

 Value IE FF Inherited Yes

 [absolute size] 3 1 Default medium

 [relative size] 4 1 Applies to All elements

 [percent] 3 1

 [length] 3 1

 inherit 8 1

❑

❑

❑

❑

bapp03.indd 714bapp03.indd 714 11/20/09 5:32:12 PM11/20/09 5:32:12 PM

715

Appendix C: CSS Properties

 font - size - adjust
 Allows you to adjust the aspect value of a font, which is the ratio between the height of a lowercase letter
 x in the font and the height of the font.

{font-size-adjust:0.5;}

 Value IE FF Inherited Yes

 [number] - - Default Specific to font

 none - - Applies to All elements

 inherit - 1

 font - stretch
 Allows you to specify the width of the letters in a font (not the size between them).

 Relative values: normal , wider , narrower

 Fixed values: ultra - condensed , extra - condensed , condensed , semi - condensed ,
semi - expanded , expanded , extra - expanded , ultra - expanded

p {font-family:courier; font-stretch:semi-condensed;}

 Value IE FF Inherited Yes

 [relative] - - Default Specific to font

 [fixed] - - Applies to All elements

 inherit - 1

 font - style
 Applies styling to a font. If the specified version of the font is available, it will be used; otherwise, the
browser will render it.

p {font-style:italic;}

 Value IE FF Inherited Yes

 normal 3 1 Default normal

 italic 3 1 Applies to All elements

 oblique 4 1

 inherit 8 1

❑

❑

bapp03.indd 715bapp03.indd 715 11/20/09 5:32:13 PM11/20/09 5:32:13 PM

716

Appendix C: CSS Properties

 font - variant
 Creates capital letters that are the same size as normal lowercase letters.

 Value IE FF Inherited Yes

 normal 4 1 Default normal

 small - caps 4 1 Applies to All elements

 inherit 8 1

 font - weight
 Specifies the thickness of the text — its “ boldness. ”

 Absolute values: normal , bold

 Relative values: bolder , lighter

 Numeric value: Between 0 and 100

p {font-weight:bold;}

 Value IE FF Inherited Yes

 [absolute] 3 1 Default normal

 [relative] 4 1 Applies to All elements

 [number 1 - 100] 4 1

 inherit 8 1

 Text Properties
 Text properties change the appearance and layout of text in general (as opposed to the font).

 letter - spacing
 Specifies the distance between letters as a unit of length.

p {letter-spacing:1em;}

 Value IE FF Inherited Yes

 [length] 4 1 Default normal

 normal 4 1 Applies to All elements

 inherit 8 1

❑

❑

❑

bapp03.indd 716bapp03.indd 716 11/20/09 5:32:13 PM11/20/09 5:32:13 PM

717

Appendix C: CSS Properties

 text - align
 Specifies whether text is aligned left , right , center , or justified .

p {text-align:center}

 Value IE FF Inherited Yes

 left 3 1 Default Depends on user agent and element (usually
 left except for < th > elements, which are
 center)

 right 3 1 Applies to All elements

 center 3 1

 justify 4 1

 inherit 8 1

 text - decoration
 Specifies whether text should have an underline , overline , line - through , or blink appearance.

p {text-decoration:underline;}

 Value IE FF Inherited No

 none 3 1 Default none

 underline 3 1 Applies to All elements

 overline 4 1

 line - through 3 1

 blink - 1

 inherit 8 1

 text - indent
 Specifies the indentation in length or as a percentage of the parent element ’ s width.

p {text-indent:3em;}

 Value IE FF Inherited Yes

 [length] 4 1 Default 0

 [percentage] 4 1 Applies to Block elements

 inherit 8 1

bapp03.indd 717bapp03.indd 717 11/20/09 5:32:13 PM11/20/09 5:32:13 PM

718

Appendix C: CSS Properties

 text - shadow
 Creates a drop shadow for the text. It should take three lengths; the first two specify X and Y coordinates
for the offset of the drop shadow, while the third specifies a blur effect. This is then followed by a color,
which can be a name or a hex value.

.dropShadow {text-shadow: 0.3em 0.3em 0.5em black}

 Value IE FF Inherited No

 [shadow effects] - 3.1b Default none

 none - 3.1b Applies to All elements

 inherit - 1

 (Also supported in Safari 3, Chrome 2 and Opera 9.6 and higher.)

 text - transform
 Specifies capitalization of text in an element:

 none : Removes inherited settings.

 uppercase : All characters are uppercase.

 lowercase : All characters are lowercase.

 capitalize : First letter of each word is capitalized.

p {text-transform:uppercase;}

 Value IE FF Inherited Yes

 none 4 1 Default none

 uppercase 4 1 Applies to All elements

 lowercase 4 1

 capitalize 4 1

 inherit 8 1

❑

❑

❑

❑

bapp03.indd 718bapp03.indd 718 11/20/09 5:32:13 PM11/20/09 5:32:13 PM

719

Appendix C: CSS Properties

 white - space
 This indicates how white space should be dealt with:

 normal : White space should be collapsed.

 pre : White space should be preserved.

 nowrap : Text should not be broken to a new line except with the < br / > element.

p {white-space:pre;}

 Value IE FF Inherited Yes

 normal 5.5 1 Default normal

 pre 5.5 1 Applies to Block elements

 nowrap 5.5 1

 inherit 8 1

 word - spacing
 This specifies the gap between words:

p {word-spacing:2em;}

 Value IE FF Inherited Yes

 normal 6 1 Default normal

 [length] 6 1 Applies to All elements

 inherit 8 1

 Color and Background Properties
 The following properties allow you to change the colors and backgrounds of both the page
and other boxes.

❑

❑

❑

bapp03.indd 719bapp03.indd 719 11/20/09 5:32:14 PM11/20/09 5:32:14 PM

720

Appendix C: CSS Properties

 background
 This is shorthand for specifying background properties for color , url , repeat , scroll , and position ;
separated by a space. By default, the background is transparent.

body {background: #efefef url("images/background.gif"); }

 Value IE FF Inherited No

 [background - attachment] 4 1 Default Not defined (by default
background is transparent)

 [background - color] 3 1 Applies to All elements

 [background - image] 3 1

 [background - position] 4 1

 [background - repeat] 3 1

 inherit - 1

 background - attachment
 This specifies whether a background image should be fixed in one position or scroll along the page:

body {background-attachment:fixed;
 background-image: url("images/background.gif");}

 Value IE FF Inherited No

 fixed 4 1 Default scroll

 scroll 4 1 Applies to All elements

 inherit 8 1

 background - color
 Sets the color of the background. This can be a single color or two colors blended together. Colors can be
specified as a color name, hex value, or RGB value. By default the box will be transparent.

body {background-color:#efefef;}

 Value IE FF Inherited No

 [color] 4 1 Default transparent

 transparent 4 1 Applies to All elements

 inherit 8 1

bapp03.indd 720bapp03.indd 720 11/20/09 5:32:14 PM11/20/09 5:32:14 PM

721

Appendix C: CSS Properties

 background - image
 This specifies an image to be used as a background, which by default will be tiled. Value is
a URL for the image.

body {background-image: url("images/background.gif");}

 Value IE FF Inherited No

 [url] 4 1 Default none

 none 4 1 Applies to All elements

 inherit 8 1

 background - position
 Specifies where a background image should be placed in the page, from the top - left corner. Values can be
an absolute distance, percentage, or one of the keywords. If only one value is given, it is assumed to be
horizontal.

 Keywords available are: top , bottom , left , right , center

body {background-position:center;
 background-image: url("images/background.gif");}

 Value IE FF Inherited No

 [length - x y] 4 1 Default top , left

 [percentage - x% y%] 4 1 Applies to Block - level elements

 top 4 1

 left 4 1

 bottom 4 1

 right 4 1

 center 4 1

 inherit 8 1

❑

bapp03.indd 721bapp03.indd 721 11/20/09 5:32:14 PM11/20/09 5:32:14 PM

722

Appendix C: CSS Properties

 background - repeat
 Specifies if a background image should be repeated, and if so in which directions. Values are repeat to
repeat horizontally and vertically, repeat - x to just repeat horizontally, repeat - y to just repeat
vertically, and no - repeat to prevent it from repeating.

 Value IE FF Inherited No

 repeat 4 1 Default none

 repeat - x 4 1 Applies to All elements

 repeat - y 4 1

 no - repeat 4 1

 inherit 8 1

 background - positionX
 Position of a background image to run horizontally across the page. Values are the same as for
background - position (default: top).

 background - positionY
 Position of a background image to run vertically down the page. Values are the same as for
background - position (default: left).

 Border properties
 The border properties allow you to control the appearance and size of a border around any box.

 border (border - bottom, border - left,
border - top, border - right)

 This is shorthand for specifying border - style , border - width , and border - color properties.

 Value IE FF Inherited No

 [border - style] 4 1 Default none , medium , none

 [border - width] 4 1 Applies to All elements

 [border - color] 4 1

 inherit 8 1

bapp03.indd 722bapp03.indd 722 11/20/09 5:32:15 PM11/20/09 5:32:15 PM

723

Appendix C: CSS Properties

 border - style (border - bottom - style, border - left - style,
border - top - style, border - right - style)

 This specifies the style of line that should surround a block box.

div.page {border-style:solid;}

 Value IE FF Inherited No

 none 4 1 Default none

 dotted 5.5 1 Applies to All elements

 dashed 5.5 1

 solid 4 1

 double 4 1

 groove 4 1

 ridge 4 1

 inset 4 1

 outset 4 1

 hidden - -

 inherit 8 1

 border - width (border - bottom - width, border - left - width,
border - top - width, border - right - width)

 Specifies the width of a border line; can be a width or a keyword.

div.page {border-width:2px;}

 Value IE FF Inherited No

 [length] 4 1 Default medium

 thin 4 1 Applies to All elements

 medium 4 1

 thick 4 1

 inherit 8 1

bapp03.indd 723bapp03.indd 723 11/20/09 5:32:15 PM11/20/09 5:32:15 PM

724

Appendix C: CSS Properties

 border - color (border - bottom - color, border - left - color,
border - top - color, border - right - color)

 Specifies the color of a border; values can be a color name, hex code, or RGB value.

table {border-color:#000000;}

 Value IE FF Inherited No

 [color value] 4 1 Default none

 inherit 8 1 Applies to All elements

 Dimensions
 The dimensions properties allow you to specify the size that boxes should be.

 height
 Specifies the vertical height of a block element.

table {height:400px;}

 Value IE FF Inherited No

 auto 4 1 Default auto

 [length] 4 1 Applies to Block - level elements

 [percentage] 4 1

 inherit 8 1

 width
 Specifies the horizontal width of an element.

td {width:150px;}

 Value IE FF Inherited No

 auto 4 1 Default auto

 [length] 4 1 Applies to Block level elements

 [percentage] 4 1

 inherit 8 1

bapp03.indd 724bapp03.indd 724 11/20/09 5:32:15 PM11/20/09 5:32:15 PM

725

Appendix C: CSS Properties

 line - height
 This specifies the height of a line of text. It is a way of controlling leading (space between multiple lines
of text) because the line height may be more or less than the size of the font.

p {line-height:18px;}

 Value IE FF Inherited Yes

 normal 3 1 Default Depends on browser

 [number] 4 1 Applies to All elements

 [length] 3 1

 [percentage] 3 1

 inherit 8 1

 max - height
 This specifies the maximum height of a block - level element (same values as for height).

td {max-height:200px;}

 Value IE FF Inherited No

 auto 7 1 Default auto

 [length] 7 1 Applies to Block - level elements

 [percentage] 7 1

 inherit 8 1

 max - width
 This specifies the maximum width of a block - level element (same values as for width).

td {max-width:400px;}

 Value IE FF Inherited No

 auto 7 1 Default auto

 [length] 7 1 Applies to Block elements

 [percentage] 7 1

 inherit 8 1

bapp03.indd 725bapp03.indd 725 11/20/09 5:32:15 PM11/20/09 5:32:15 PM

726

Appendix C: CSS Properties

 min - height
 This specifies the minimum height of a block - level element (same values as for height).

td {min-height:100px;}

 Value IE FF Inherited No

 auto 7 1 Default auto

 [length] 7 1 Applies to Block - level elements

 [percentage] 7 1

 inherit 8 1

 min - width
 This specifies the minimum width of a block - level element (same values as for width).

td {min-width:200px;}

 Value IE FF Inherited No

 auto 7 1 Default auto

 [length] 7 1 Applies to Block elements

 [percentage] 7 1

 inherit 8 1

 Margin Properties
 Margin properties allow you to specify a margin around a box and therefore create a gap between
elements ’ borders.

bapp03.indd 726bapp03.indd 726 11/20/09 5:32:16 PM11/20/09 5:32:16 PM

727

Appendix C: CSS Properties

 margin (margin - bottom, margin - left,
margin - top, margin - right)

 This specifies the width of a margin around a box.

p {margin:15px;}

 Value IE FF Inherited No

 auto 3 1 Default 0

 [length] 3 1 Applies to All elements

 [percentage — relative
to parent element]

 3 1

 inherit 8 1

 Padding Properties
 Padding properties set the distance between the border of an element and its content. They are important
for adding white space to documents (in particular table cells).

 padding (padding - bottom, padding - left,
padding - right, padding - top)

 This specifies the distance between an element ’ s border and its content.

td {padding:20px;}

 Value IE FF Inherited No

 auto 4 1 Default zero

 [length] 4 1 Applies to All elements

 [percentage — relative
to parent element]

 4 1

 inherit 8 1

bapp03.indd 727bapp03.indd 727 11/20/09 5:32:16 PM11/20/09 5:32:16 PM

728

Appendix C: CSS Properties

 List Properties
 List properties affect the presentation of bulleted, numbered, and definition lists.

 list - style
 This is shorthand allowing you to specify list - style - position and list - style - type .

ul {list-style: inside disc}

 Value IE FF Inherited Yes

 < position > 4 1 Default Depends on browser

 < type > 4 1 Applies to List elements

 < image > 4 1

 inherit 8 1

 list - style - position
 This specifies whether the marker should be placed inside each item of a list or to the left of them.

ul {list-style-position:inside;}

 Value IE FF Inherited Yes

 inside 4 1 Default outside

 outside 4 1 Applies to List elements

 inherit 8 1

bapp03.indd 728bapp03.indd 728 11/20/09 5:32:16 PM11/20/09 5:32:16 PM

729

Appendix C: CSS Properties

 list - style - type
 This indicates the type of bullet or numbering that a bullet should use.

ul {list-style-type:circle;}

 Value IE FF Inherited Yes

 None 4 1 Default disc

 disc (default) 4 1 Applies to List elements

 circle 4 1

 square 4 1

 decimal 4 1

 decimal - leading - zero - -

 lower - alpha 4 1

 upper - alpha 4 1

 lower - roman 4 1

 upper - roman 4 1

 Additional numbered list styles are available in CSS, but unfortunately they are not supported in IE7,
Netscape 7, or Firefox 2.

 hebrew Traditional Hebrew numbering

 georgian Traditional Georgian numbering (an, ban, gan, . . . , he, tan, in, in - an, . . .)

 armenian Traditional Armenian numbering

 cjk -
 ideographic

 Plain ideographic numbers

 hiragana (a, i, u, e, o, ka, ki, . . .)

 katakana (A, I, U, E, O, KA, KI, . . .)

 hiragana - iroha (i, ro, ha, ni, ho, he, to, . . .)

 katakana - iroha (I, RO, HA, NI, HO, HE, TO, . . .)

bapp03.indd 729bapp03.indd 729 11/20/09 5:32:16 PM11/20/09 5:32:16 PM

730

Appendix C: CSS Properties

 marker - offset
 This specifies the space between a list item and its marker.

ol {marker-offset:2em;}

 Value IE FF Inherited No

 [length] 7 1 Default auto

 auto 7 1 Applies to Marker elements

 inherit 8 1

 Positioning Properties
 Positioning properties allow you to use CSS for positioning boxes on the page.

 position
 Specifies the positioning schema that should be used for an element. When an element is positioned, you
also need to use the box - offset properties covered next (top , left , bottom , and right). Note that you
should not use top and bottom or left and right together (if you do, top and left take priority).

 absolute can be fixed on the canvas in a specific position from its containing element (which is
another absolutely positioned element); it will also move when the user scrolls the page.

 static will fix it on the page in the same place and keep it there even when the user scrolls.

 relative will be placed offset in relation to its normal position.

 fixed will fix it on the background of the page and not move when the user scrolls.

p.article{position:absolute; top:10px; left:20px;

 Value IE FF Inherited No

 absolute 4 1 Default static

 relative 4 1 Applies to All elements

 static 4 1

 fixed 7 1

 inherit 8 1

❑

❑

❑

❑

bapp03.indd 730bapp03.indd 730 11/20/09 5:32:17 PM11/20/09 5:32:17 PM

731

Appendix C: CSS Properties

 top
 This sets the vertical position of an element from the top of the window or containing element.

 Value IE FF Inherited No

 auto 4 1 Default auto

 [length] 4 1 Applies to Positioned elements

 [percentage — relative to
parent ’ s height]

 4 1

 inherit 8 1

 left
 This sets the horizontal position of an element from the left of the window or containing element.

 Value IE FF Inherited No

 auto 4 1 Default auto

 [length] 4 1 Applies to Positioned elements

 [percentage — relative to
parent ’ s width]

 4 1

 inherit 8 1

 bottom
 This sets the vertical position of an element from the bottom of the window or containing element.

 Value IE FF Inherited No

 auto 5 1 Default auto

 [length] 5 1 Applies to Positioned elements

 [percentage — relative to
parent ’ s height]

 5 1

 inherit 8 1

bapp03.indd 731bapp03.indd 731 11/20/09 5:32:17 PM11/20/09 5:32:17 PM

732

Appendix C: CSS Properties

 right
 This sets the horizontal position of an element from the right of the window or containing element.

 Value IE FF Inherited No

 auto 5 1 Default auto

 [length] 5 1 Applies to Positioned elements

 [percentage — relative to
parent ’ s width]

 5 1

 inherit 8 1

 vertical - align
 This sets the vertical positioning of an inline element:

 baseline aligns element with base of parent.

 middle aligns midpoint of element with half the height of parent.

 sub makes element subscript.

 super makes element superscript.

 text - top aligns element with the top of parent element ’ s font.

 text - bottom aligns element with the bottom of parent element ’ s font.

 top aligns top of element with the top of tallest element on current line.

 bottom aligns element with the bottom of lowest element on the current line.

span.superscript {vertical-align:super;}

 Value IE N Inherited No

 baseline 4 1 Default baseline

 middle 4 1 Applies to Inline elements

 sub 4 1

 super 4 1

 text - top 4 1

 text - bottom 4 1

❑

❑

❑

❑

❑

❑

❑

❑

bapp03.indd 732bapp03.indd 732 11/20/09 5:32:17 PM11/20/09 5:32:17 PM

733

Appendix C: CSS Properties

 Value IE N Inherited No

 top 4 1

 bottom 4 1

 [percentage relative to
line height]

 8 1

 [length] - -

 inherit 8 1

 z - index
 Controls which overlapping element appears to be on top. Positive and negative numbers are
permitted.

p {position:absolute; top:10px; left:20px; z-index:3;}

 Value IE FF Inherited No

 auto 4 1 Default Depends on position of
element in XHTML source
document

 [number] 4 1

 inherit 8 1 Applies to Positioned elements

 clip
 Controls which part of an element is visible. Parts outside the clip are not visible. If value is rect() , it
takes the following form:

 rect([top] [right] [bottom] [left])

rect(25 100 100 25)

 Value IE FF Inherited No

 auto 4 1 Default auto

 rect 4 1 Applies to Block elements

 inherit 8 1

❑

bapp03.indd 733bapp03.indd 733 11/20/09 5:32:18 PM11/20/09 5:32:18 PM

734

Appendix C: CSS Properties

 overflow
 This specifies how a container element will display content that is too large for its containing element.

p {width:200px; height:200px; overflow:scroll;}

 Value IE FF Inherited No

 auto 4 1 Default visible

 hidden 4 1 Applies to Block elements

 visible 4 1

 scroll 4 1

 inherit 8 6

 overflow - x
 Same as overflow , but only for the horizontal x - axis. First supported in IE5.

 overflow - y
 Same as overflow , but only for the vertical y - axis. First supported in IE5.

 Outline Properties
 Outlines act like borders, but do not take up any space — they sit on top of the canvas.

 Outline (outline - color, outline - style, outline - width)
 Shortcut for the outline - color , outline - style , and outline - width properties:

outline {solid #ff0000 2px}

 Note that outline - color , outline - style , and outline - width take the same values as border -
 color , border - style , and border - width .

 Value IE FF Inherited No

 outline - color 8 1.5 Default none

 outline - style 8 1.5 Applies to All elements

 outline - width 8 1.5

 outline 8 1.5

bapp03.indd 734bapp03.indd 734 11/20/09 5:32:18 PM11/20/09 5:32:18 PM

735

Appendix C: CSS Properties

 Table Properties
 Table properties allow you to affect the style of tables, rows, and cells.

 border - collapse
 This specifies the border model that the table should use (whether adjacent borders should be collapsed
into one value or kept separate).

table {border-collapse:separate;}

 Value IE FF Inherited Yes

 collapse 5 1 Default collapse

 separate 5 1 Applies to Table and inline elements

 inherit 8 1

 border - spacing
 This specifies the distance between adjacent cells ’ borders.

table {border-spacing:2px;}

 Value IE FF Inherited Yes

 [length] 8 1 Default 0

 inherit 8 1 Applies to Table and inline elements

 caption - side
 This indicates which side of a table a caption should be placed on.

caption {caption-side:bottom;}

 Value IE FF Inherited Yes

 top 8 1 Default top

 left 8 1 Applies to < caption > elements in < table > elements

 bottom 8 1

 right 8 1

 inherit 8 1

bapp03.indd 735bapp03.indd 735 11/20/09 5:32:18 PM11/20/09 5:32:18 PM

736

Appendix C: CSS Properties

 empty - cells
 This specifies whether borders should be displayed if a cell is empty.

td, th {empty-cells:hide;}

 Value IE FF Inherited Yes

 show 5 1 Default show

 hide 5 1 Applies to Table cell elements

 inherit 8 1

 table - layout
 Specifies how the browser should calculate the layout of a table; can affect the speed of rendering a large
or graphics - intensive table.

 Value IE FF Inherited No

 auto 5 1 Default auto

 fixed 5 1 Applies to Table and inline elements

 inherit 8 6

 Classification Properties
 Classification properties affect how the boxes in the box model are rendered.

 clear
 Forces elements, which would normally wrap around an aligned element, to be displayed below it.
Value indicates which side may not touch an aligned element.

p {clear:left;}

 Value IE FF Inherited No

 none 4 1 Default none

 both 4 1 Applies to All elements

 left 4 1

 right 4 1

 inherit 8 1

bapp03.indd 736bapp03.indd 736 11/20/09 5:32:18 PM11/20/09 5:32:18 PM

737

Appendix C: CSS Properties

 display
 Specifies how an element is rendered, if at all. If set to none the element is not rendered and it does not
take up any space. This property can also force an inline element to be displayed as a block or vice
versa.

span.important {display:block;}

 Value IE FF Inherited Yes

 none 4 1 Default inline

 inline 5 1 Applies to All elements

 block 5 1

 list - item 5 1

 inherit 8 1

 While the default value of this property is inline , browsers tend to treat the element depending on its
inherent display type. Block - level elements, such as headings and paragraphs, get treated as if the
default were block , whereas inline elements such as < i > , < b > , or < span > get treated as inline .

 float
 Subsequent elements should be wrapped to the left or right of the element, rather than below.

img.featuredItem {float:left;}

 Value IE FF Inherited No

 none 4 1 Default none

 left 4 1 Applies to All elements

 right 4 1

 inherit 8 1

bapp03.indd 737bapp03.indd 737 11/20/09 5:32:19 PM11/20/09 5:32:19 PM

738

Appendix C: CSS Properties

 visibility
 Specifies whether an element should be displayed or hidden. Even if hidden, elements take up space on
the page, but are transparent.

 Value IE FF Inherited No

 visible 4 1 Default inherit

 show 8 1 Applies to All elements

 hidden 4 1

 hide 8 1

 collapse 8 1

 inherit 8 1

 Internationalization Properties
 Internationalization properties affect how text is rendered in different languages.

 direction
 Specifies the direction of text from left to right or right to left. This should be used in association with the
 unicode - bidi property.

td.word{direction:rtl; unicode-bidi:bidi-override;}

 Value IE FF Inherited Yes

 ltr 5 1 Default ltr

 rtl 5 1 Applies to All elements

 inherit 8 1

bapp03.indd 738bapp03.indd 738 11/20/09 5:32:19 PM11/20/09 5:32:19 PM

739

Appendix C: CSS Properties

 unicode - bidi
 The unicode - bidi property allows you to override Unicode ’ s built - in directionality settings for
languages.

td.word{unicode-bidi:bidi-override; direction:rtl; }

 Value IE FF Inherited No

 normal 5 2 Default normal

 embed 5 2 Applies to All elements

 bidi - override 5 2

 inherit 8 2

 Lengths
 Following are the unit measurements for lengths that can be used in CSS.

 Absolute Lengths

 Unit IE FF

 cm 3 1

 in 3 1

 mm 3 1

 pc 3 1

 pt 3 1

 Relative Lengths

 Unit IE FF

 em 4 1

 ex 4 1

 px 3 1

bapp03.indd 739bapp03.indd 739 11/20/09 5:32:19 PM11/20/09 5:32:19 PM

bapp03.indd 740bapp03.indd 740 11/20/09 5:32:19 PM11/20/09 5:32:19 PM

 D
Color Names and Values

 The first thing you need to learn about color is how to specify exactly the color you want; after all,
there are a lot of different hues, tones, and shades and it ’ s important you choose the right ones.

 In XHTML there are two key ways of specifying a color:

 Hex codes: These are six - digit codes representing the amount of red, green, and blue that
make up the color, preceded by a pound or hash sign # (for example, #333333).

 Color names: A set of names that represent over 200 colors, such as red ,
 lightslategray , and fuchsia .

 In addition, when writing CSS style sheets you can also specify colors using RGB color values.
Here, numbers between 0 and 255 represent the amount of red, green, and blue that make up
each color.

 Using Hex Codes to Specify Colors
 When you start using hexadecimal codes (or hex codes for short), they can be a little daunting
because they use a mix of numbers and letters to represent colors. While we are used to numbers
that are represented with 10 digits (0 - 9), hexadecimal codes are represented with 16 digits (0 - 9
and A - F). The table that follows provides some examples of colors and their hex values; we will
come back to look at Understanding Hex Codes shortly, once you ’ ve seen what they ’ re trying to
represent.

❑

❑

bapp04.indd 741bapp04.indd 741 11/20/09 5:35:18 PM11/20/09 5:35:18 PM

Appendix D: Color Names and Values

742

 Color Hexadecimal Code

 Black #000000

 White #FFFFFF

 Red #FF0000

 Green #00FF00

 Blue #0000FF

 Purple #800080

 The idea that colors are represented by a mix of numbers and letters might seem a little strange, but what
follows the # sign is actually the amount of red, green, and blue that make up the color. The format for
hex codes is as follows:

#rrggbb

 As you might already know, the screens on computer monitors are made up of thousands of tiny squares
called pixels (if you look very closely at your monitor you should be able to see them). When it is not
turned on, the screen is black because it does not emit any light. When it is turned on, a picture is created
because each pixel can be a different color. Every one of these colors is expressed in terms of a mix of red,
green, and blue (just like a television screen).

 It ’ s hardly surprising, therefore, that you specify colors in the amounts of red, green, and blue that are
required to make a given color. The values of red, green, and blue required to make a color are specified
using numbers between 0 and 255, so when red, green, and blue all have a value of 0 you get black,
whereas if each has a value of 255 you get white. If red is given a value of 255, and green and blue have
a value of 0, you get red. You can make other colors by mixing the amounts of red, green, and blue as
well — for example if red and blue are given values of 255 and blue a value of 0, you get pink.

 You may have seen that some software represents colors using three sets of numbers between 0 and 255.
Figure D - 1 shows the color window in Adobe Photoshop.

Figure D-1

bapp04.indd 742bapp04.indd 742 11/20/09 5:35:27 PM11/20/09 5:35:27 PM

Appendix D: Color Names and Values

743

 The hexadecimal codes used on the Web for color are a direct translation of these values between 0 and
255, except they use two characters, not three, to represent the numbers between 0 and 255. For example,
FF represents 255 and 00 represents 0.

 When designing a site, you can use a tool such as Photoshop or a number of free resources on the Web to
find hex codes for colors:

 www.colorschemer.com/

 www.colourlovers.com/colors/add

 However, if you really want to understand how hex codes work, you need to understand how
computers store information, so read on in the following section.

 Understanding Hex Codes
 You may have heard people say that computers store all their information in 0s and 1s, and while it may
sound hard to believe, it ’ s true! The smallest unit of information a computer stores in is known as a bit ,
and a bit can have only one of two values:

 0, which means off (or false)

 1, which means on (or true)

 These two values on their own will not store much information, but if you combine 4 bits together, you
can get 16 different values. For example, using combinations of four 0s and 1s, you can represent the
digits 0 through 9 (and still have values to spare):

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 0 1 2 3 4 5 6 7 8 9 - - - - - -

 Four bits can be replaced by a single hexadecimal digit. There are 16 digits in hexadecimal numbers to
represent the 16 possible values of four 0s and 1s:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 0 1 2 3 4 5 6 7 8 9 A B C D E F

 0 is the smallest; F is the largest.

 Still, computers need to work with more than 16 possible values, so they tend to store information in
even larger segments. A group of 8 bits is known as a byte . A byte can therefore be represented using just
two hexadecimal digits. For example:

Binary 0100 1111
Hexadecimal 4 F

❑

❑

❑

❑

bapp04.indd 743bapp04.indd 743 11/20/09 5:35:31 PM11/20/09 5:35:31 PM

Appendix D: Color Names and Values

744

 This gives 256 possible combinations of 0s and 1s (16 � 16), plenty for the characters of the English
language, and that is why colors are represented in numbers between 0 and 255.

 So, while hexadecimal codes for web colors may appear a little complicated, I think you would agree
that #4F4F4F is a lot easier to read than 010011110100111101001111 . The following table shows some
more hexadecimal codes and their corresponding decimal numbers.

 Hexadecimal Decimal

 00 0

 33 51

 66 102

 99 153

 AA 170

 BB 187

 CC 204

 DD 221

 EE 238

 FF 255

 Using Color Names to Specify Colors
 Rather than using hex values to specify colors, you can also use the names of many colors such as red,
green, and white to specify the color you want. There are more than 200 different color names supported
by IE, Firefox, and Safari, all of which are listed at the end of this appendix.

 Although names might sound a lot easier to understand than hex codes, some of the colors are easier to
remember than others, and remembering which color corresponds to each of the 200 names is very
difficult. Here is a sample of some of the color names:

aqua, beige, coral, darkcyan, firebrick, green, honeydew, indianred,
lavenderblush, maroon, navy, oldlace, palegreen, red, saddlebrown,
tan, white, yellow

 Furthermore, if you do jobs for larger companies, such companies often want to specify very exact colors
that represent their brand, and their color might not have an HTML name. Indeed, when clients specify
the color they want, they usually specify a hex code.

 Given that hex codes give you many more choices of shades, tints, and hues of colors than color names,
and bearing in mind that a lot of companies ask for specific colors to represent their company, hex codes
tend to be the choice of web professionals.

bapp04.indd 744bapp04.indd 744 11/20/09 5:35:31 PM11/20/09 5:35:31 PM

Appendix D: Color Names and Values

745

 Color Name Hex Value

 aliceblue #f0f8ff

 antiquewhite #faebd7

 aqua #00ffff

 aquamarine #7fffd4

 azure #f0ffff

 beige #f5f5dc

 bisque #ffe4c4

 black #000000

 blanchedalmond #ffebcd

 blue #0000ff

 blueviolet #8a2be2

 brown #a52a2a

 burlywood #deb887

 cadetblue #5f9ea0

 chartreuse #7fff00

 chocolate #d2691e

 coral #ff7f50

 cornflowerblue #6495ed

 cornsilk #fff8dc

 crimson #dc143c

 cyan #00ffff

 darkblue #00008b

 darkcyan #008b8b

 Color Name Hex Value

 darkgoldenrod #b8860b

 darkgray #a9a9a9

 darkgreen #006400

 darkkhaki #bdb76b

 darkmagenta #8b008b

 darkolivegreen #556b2f

 darkorange #ff8b04

 darkorchid #9932cc

 darkred #8b0000

 darksalmon #e9967a

 darkseagreen #8fbc8f

 darkslateblue #483d8b

 darkslategray #2f4f4f

 darkturquoise #00ced1

 darkviolet #9400d3

 deeppink #ff1493

 deepskyblue #00bfff

 dimgray #696969

 dodgerblue #1e90ff

 firebrick #b22222

 floralwhite #fffaf0

 forestgreen #228b22

 fuchsia #ff00ff

 Color Name and Number Reference
 The following table shows the color names supported by the main browsers, and their corresponding
hex values. It is worth noting, however, that these are browser extensions, not part of the HTML or
XHTML recommendations.

Continued

bapp04.indd 745bapp04.indd 745 11/20/09 5:35:32 PM11/20/09 5:35:32 PM

Appendix D: Color Names and Values

746

 Color Name Hex Value

 gainsboro #dcdcdc

 ghostwhite #f8f8ff

 gold #ffd700

 goldenrod #daa520

 gray #808080

 green #008000

 greenyellow #adff2f

 honeydew #f0fff0

 hotpink #ff69b4

 indianred #cd5c5c

 indigo #4b0082

 ivory #fffff0

 khaki #f0e68c

 lavender #e6e6fa

 lavenderblush #fff0f5

 lawngreen #7cfb04

 lemonchiffon #fffacd

 lightblue #add8e6

 lightcoral #f08080

 lightcyan #e0ffff

 lightgoldenrodyellow #fafad2

 lightgreen #90ee90

 lightgrey #d3d3d3

 lightpink #ffb6c1

 lightsalmon #ffa07a

 lightseagreen #20b2aa

 lightskyblue #87cefa

 lightslategray #778899

 Color Name Hex Value

 lightsteelblue #b0c4de

 lightyellow #ffffe0

 lime #00ff00

 limegreen #32cd32

 linen #faf0e6

 magenta #ff00ff

 maroon #800000

 mediumaquamarine #66cdaa

 mediumblue #0000cd

 mediumorchid #ba55d3

 mediumpurple #9370db

 mediumseagreen #3cb371

 mediumslateblue #7b68ee

 mediumspringgreen #00fa9a

 mediumturquoise #48d1cc

 mediumvioletred #c71585

 midnightblue #191970

 mintcream #f5fffa

 mistyrose #ffe4e1

 moccasin #ffe4b5

 navajowhite #ffdead

 navy #000080

 oldlace #fdf5e6

 olive #808000

 olivedrab #6b8e23

 orange #ffa500

 orangered #ff4500

 orchid #da70d6

bapp04.indd 746bapp04.indd 746 11/20/09 5:35:32 PM11/20/09 5:35:32 PM

Appendix D: Color Names and Values

747

 Color Name Hex Value

 palegoldenrod #eee8aa

 palegreen #98fb98

 paleturquoise #afeeee

 palevioletred #db7093

 papayawhip #ffefd5

 peachpuff #ffdab9

 peru #cd853f

 pink #ffc0cb

 plum #dda0dd

 powderblue #b0e0e6

 purple #800080

 red #ff0000

 rosybrown #bc8f8f

 royalblue #4169e1

 saddlebrown #8b4513

 salmon #fa8072

 sandybrown #f4a460

 seagreen #2e8b57

 seashell #fff5ee

 Color Name Hex Value

 sienna #a0522d

 silver #c0c0c0

 skyblue #87ceeb

 slateblue #6a5acd

 slategray #708090

 snow #fffafa

 springgreen #00ff7f

 steelblue #4682b4

 tan #d2b48c

 teal #008080

 thistle #d8bfd8

 tomato #ff6347

 turquoise #40e0d0

 violet #ee82ee

 wheat #f5deb3

 white #ffffff

 whitesmoke #f5f5f5

 yellow #ffff00

 yellowgreen #9acd32

bapp04.indd 747bapp04.indd 747 11/20/09 5:35:32 PM11/20/09 5:35:32 PM

bapp04.indd 748bapp04.indd 748 11/20/09 5:35:33 PM11/20/09 5:35:33 PM

 E
Character Encodings

 In Appendix D, I discussed how computers store information, how a character - encoding scheme is
a table that translates between characters, and how they are stored in the computer.

 The most common character set (or character encoding) in use on computers is ASCII (The
American Standard Code for Information Interchange), and it is probably the most widely used
character set for encoding text electronically. You can expect all computers browsing the Web to
understand ASCII.

 Character Set Description

 ASCII American Standard Code for Information Interchange, which is used on
most computers

 The problem with ASCII is that it supports only the upper - and lowercase Latin alphabet, the
numbers 0 – 9, and some extra characters: a total of 128 characters in all. Here are the printable
characters of ASCII (the other characters are things such as line feeds and carriage - return
characters).

 ! ̀ ` # $ % & ̀ () * + , - . /
 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
 @ A B C D E F G H I J K L M N O
 P Q R S T U V W X Y Z [\] ̂ _
 ̀ a b c d e f g h i j k l m n o
 p q r s t u v w x y z { | } ~

 However, many languages use either accented Latin characters or completely different alphabets.
ASCII does not address these characters, so you need to learn about character encodings if you
want to use any non - ASCII characters.

bapp05.indd 749bapp05.indd 749 11/20/09 5:36:09 PM11/20/09 5:36:09 PM

Appendix E: Character Encodings

750

 Character encodings are also particularly important if you want to use symbols, as these cannot be
guaranteed to transfer properly between different encodings (from some dashes to some quotation
mark characters). If you do not indicate the character encoding the document is written in, some of the
special characters might not display.

 The International Standards Organization created a range of character sets to deal with different national
characters. ISO - 8859 - 1 is commonly used in Western versions of authoring tools such as Macromedia
Dreamweaver, as well as applications such as Windows Notepad.

 Character Set Description

 ISO - 8859 - 1 Latin alphabet part 1

 Covering North America, Western Europe, Latin America, the Caribbean,
Canada, Africa

 ISO - 8859 - 2 Latin alphabet part 2

 Covering Eastern Europe including Bosnian, Croatian, Czech, Hungarian,
Polish, Romanian, Serbian (in Latin transcription), Serbocroatian, Slovak,
Slovenian, Upper Sorbian, and Lower Sorbian

 ISO - 8859 - 3 Latin alphabet part 3

 Covering SE Europe, Esperanto, Maltese, Turkish, and miscellaneous others

 ISO - 8859 - 4 Latin alphabet part 4

 Covering Scandinavia/Baltics (and others not in ISO - 8859 - 1)

 ISO - 8859 - 5 Latin/Cyrillic alphabet part 5

 ISO - 8859 - 6 Latin/Arabic alphabet part 6

 ISO - 8859 - 7 Latin/Greek alphabet part 7

 ISO - 8859 - 8 Latin/Hebrew alphabet part 8

 ISO - 8859 - 9 Latin 5 alphabet part 9 (same as ISO - 8859 - 1 except Turkish characters replace
Icelandic ones)

 ISO - 8859 - 10 Latin 6 Lappish, Nordic, and Eskimo

 ISO - 8859 - 15 The same as ISO - 8859 - 1 but with more characters added

 ISO - 8859 - 16 Latin 10 Covering SE Europe Albanian, Croatian, Hungarian, Polish,
Romanian and Slovenian, plus can be used in French, German, Italian, and
Irish Gaelic

 ISO - 2022 - JP Latin/Japanese alphabet part 1

 ISO - 2022 - JP - 2 Latin/Japanese alphabet part 2

 ISO - 2022 - KR Latin/Korean alphabet part 1

bapp05.indd 750bapp05.indd 750 11/20/09 5:36:10 PM11/20/09 5:36:10 PM

Appendix E: Character Encodings

751

 It is helpful to note that the first 128 characters of ISO - 8859 - 1 match those of ASCII, so you can safely use
those characters as you would in ASCII.

 The Unicode Consortium was then set up to devise a way to show all characters of different languages,
rather than have these different incompatible character codes for different languages.

 Therefore, if you want to create documents that use characters from multiple character sets, you will be
able to do so using the single Unicode character encodings. Furthermore, users should be able to view
documents written in different character sets, providing their processor (and fonts) support the Unicode
standards, no matter what platform they are on or which country they are in. By having the single
character encoding, you can reduce software development costs because the programs do not need to be
designed to support multiple character encodings.

 One problem with Unicode is that a lot of older programs were written to support only 8 - bit character
sets (limiting them to 256 characters), which is nowhere near the number required for all languages.

 Unicode therefore specifies encodings that can deal with a string in special ways so as to make enough
space for the huge character set it encompasses. These are known as UTF - 8, UTF - 16, and UTF - 32.

 Character Set Description

 UTF - 8 A Unicode Translation Format that comes in 8 - bit units. That is, it comes in
 bytes . A character in UTF - 8 can be from 1 to 4 bytes long, making UTF - 8
variable width.

 UTF - 16 A Unicode Translation Format that comes in 16 - bit units. That is, it comes in
 shorts . It can be 1 or 2 shorts long, making UTF - 16 variable width.

 UTF - 32 A Unicode Translation Format that comes in 32 - bit units. That is, it comes in
 longs . It is a fixed - width format and is always 1 “ long ” in length.

 The first 256 characters of Unicode character sets correspond to the 256 characters of ISO - 8859 - 1.

 By default, HTML 4 processors should support UTF - 8, and XML processors are supposed to support
UTF - 8 and UTF - 16; therefore, all XHTML - compliant processors should also support UTF - 16 (as XHTML
is an application of XML).

 For more information on internationalization and different character sets and encodings, see
www.i18nguy.com/ .

bapp05.indd 751bapp05.indd 751 11/20/09 5:36:10 PM11/20/09 5:36:10 PM

bapp05.indd 752bapp05.indd 752 11/20/09 5:36:10 PM11/20/09 5:36:10 PM

F
Special Characters

 Some characters are reserved in XHTML; for example, you cannot use the greater - than and less -
 than signs or angle brackets within your text because the browser could mistake them for markup.
XHTML processors must support the five special characters listed in the table that follows.

 Symbol Description Entity Name Number Code

 & Ampersand & amp; & #38;

 < Less than & lt; & #60;

 > Greater than & gt; & #62;

 “ Double quote & quot; & #34;

 Non - breaking space & nbsp; & #160;

 To write an element and attribute into your page so that the code is shown to the user rather than
being processed by the browser (for example, as < div id= ” character ” >), you would write:

 & lt;div id= & quot;character & quot; & gt;

 There is also a long list of special characters that HTML 4.0 – aware processors should support. In
order for these to appear in your document, you can use either the numerical code or the entity
name. For example, to insert a copyright symbol you can use either of the following:

 & copy; 2008
 & #169; 2008

bapp06.indd 753bapp06.indd 753 11/20/09 11:26:23 PM11/20/09 11:26:23 PM

Appendix F: Special Characters

754

 The special characters have been split into the following sections:

 Character Entity References for ISO 8859 - 1 Characters

 Character Entity References for Symbols, Mathematical Symbols, and Greek Letters

 Character Entity References for Markup - Significant and Internationalization Characters

 They are taken from the W3C website at www.w3.org/TR/REC - html40/sgml/entities.html .

 Character Entity References for ISO 8859 - 1 Characters

 Symbol Description
 Entity
Name

 Number
Code

 No - break space = non - breaking space & nbsp; & #160;

 ¡ Inverted exclamation mark & iexcl; & #161;

 ¢ Cent sign & cent; & #162;

 £ Pound sign & pound; & #163;

 ¤ Currency sign & curren; & #164;

 ¥ Yen sign = yuan sign & yen; & #165;

 ¦ Broken bar = broken vertical bar & brvbar; & #166;

 § Section sign & sect; & #167;

 ̈ Diaeresis = spacing diaeresis & uml; & #168;

 © Copyright sign & copy; & #169;

 a− Feminine ordinal indicator & ordf; & #170;

 « Left - pointing double angle quotation mark = left -
 pointing guillemet

 & laquo; & #171;

 ¬ Not sign & not; & #172;

 Soft hyphen = discretionary hyphen & shy; & #173;

 ® Registered sign = registered trademark sign & reg; & #174;

 ̄ Macron = spacing macron = overline = APL overbar & macr; & #175;

 ̊ Degree sign & deg; & #176;

 ± Plus - minus sign = plus - or - minus sign & plusmn; & #177;

 2 Superscript two = superscript digit two = squared & sup2; & #178;

❑

❑

❑

bapp06.indd 754bapp06.indd 754 11/20/09 11:26:24 PM11/20/09 11:26:24 PM

Appendix F: Special Characters

755

 Symbol Description
 Entity
Name

 Number
Code

 3 Superscript three = superscript digit three = cubed & sup3; & #179;

 ́ Acute accent = spacing acute & acute; & #180;

 µ Micro sign & micro; & #181;

 ¶ Pilcrow sign = paragraph sign & para; & #182;

 · Middle dot = Georgian comma = Greek middle dot & middot; & #183;

 ̧ Cedilla = spacing cedilla & cedil; & #184;

 1 Superscript one = superscript digit one & sup1; & #185;

 ° Masculine ordinal indicator & ordm; & #186;

 » Right - pointing double angle quotation mark = right
pointing guillemet

 & raquo; & #187;

 ¼ Vulgar fraction one - quarter = fraction one - quarter & frac14; & #188;

 ½ Vulgar fraction one - half = fraction one - half & frac12; & #189;

 ¾ Vulgar fraction three - quarters = fraction three -
 quarters

 & frac34; & #190;

 ¿ Inverted question mark = turned question mark & iquest; & #191;

 À Latin capital letter A with grave = Latin capital letter
A grave

 & Agrave; & #192;

 Á Latin capital letter A with acute & Aacute; & #193;

 Â Latin capital letter A with circumflex & Acirc; & #194;

 Ã Latin capital letter A with tilde & Atilde; & #195;

 Ä Latin capital letter A with diaeresis & Auml; & #196;

 Å Latin capital letter A with ring above = Latin capital
letter A ring

 & Aring; & #197;

 Æ Latin capital letter AE = Latin capital ligature AE & AElig; & #198;

 Ç Latin capital letter C with cedilla & Ccedil; & #199;

 È Latin capital letter E with grave & Egrave; & #200;

 É Latin capital letter E with acute & Eacute; & #201;

 Ê Latin capital letter E with circumflex & Ecirc; & #202;

(continued)

bapp06.indd 755bapp06.indd 755 11/20/09 11:26:24 PM11/20/09 11:26:24 PM

Appendix F: Special Characters

756

 Symbol Description
 Entity
Name

 Number
Code

 Ë Latin capital letter E with diaeresis & Euml; & #203;

 Ì Latin capital letter I with grave & Igrave; & #204;

 Í Latin capital letter I with acute & Iacute; & #205;

 Î Latin capital letter I with circumflex & Icirc; & #206;

 Ï Latin capital letter I with diaeresis & Iuml; & #207;

 Ð Latin capital letter ETH & ETH; & #208;

 Ñ Latin capital letter N with tilde & Ntilde; & #209;

 Ò Latin capital letter O with grave & Ograve; & #210;

 Ó Latin capital letter O with acute & Oacute; & #211;

 Ô Latin capital letter O with circumflex & Ocirc; & #212;

 Õ Latin capital letter O with tilde & Otilde; & #213;

 Ö Latin capital letter O with diaeresis & Ouml; & #214;

 � Multiplication sign & times; & #215;

 Ø Latin capital letter O with stroke = Latin capital letter
O slash

 & Oslash; & #216;

 Ù Latin capital letter U with grave & Ugrave; & #217;

 Ú Latin capital letter U with acute & Uacute; & #218;

 Û Latin capital letter U with circumflex & Ucirc; & #219;

 Ü Latin capital letter U with diaeresis & Uuml; & #220;

 Ý Latin capital letter Y with acute & Yacute; & #221;

 Þ Latin capital letter THORN & THORN; & #222;

 ß Latin small letter sharp s = ess - zed & szlig; & #223;

 à Latin small letter a with grave = Latin small letter a
grave

 & agrave; & #224;

 á Latin small letter a with acute & aacute; & #225;

 â Latin small letter a with circumflex & acirc; & #226;

bapp06.indd 756bapp06.indd 756 11/20/09 11:26:25 PM11/20/09 11:26:25 PM

Appendix F: Special Characters

757

 Symbol Description
 Entity
Name

 Number
Code

 ã Latin small letter a with tilde & atilde; & #227;

 ä Latin small letter a with diaeresis & auml; & #228;

 å Latin small letter a with ring above = Latin small
letter a ring

 & aring; & #229;

 æ Latin small letter ae = Latin small ligature ae & aelig; & #230;

 ç Latin small letter c with cedilla & ccedil; & #231;

 è Latin small letter e with grave & egrave; & #232;

 é Latin small letter e with acute & eacute; & #233;

 ê Latin small letter e with circumflex & ecirc; & #234;

 ë Latin small letter e with diaeresis & euml; & #235;

 ì Latin small letter i with grave & igrave; & #236;

 í Latin small letter i with acute & iacute; & #237;

 î Latin small letter i with circumflex & icirc; & #238;

 ï Latin small letter i with diaeresis & iuml; & #239;

 ð Latin small letter eth & eth; & #240;

 ñ Latin small letter n with tilde & ntilde; & #241;

 ò Latin small letter o with grave & ograve; & #242;

 ó Latin small letter o with acute & oacute; & #243;

 ô Latin small letter o with circumflex & ocirc; & #244;

 õ Latin small letter o with tilde & otilde; & #245;

 ö Latin small letter o with diaeresis & ouml; & #246;

 ÷ Division sign & divide; & #247;

 ø Latin small letter o with stroke = Latin small letter o
slash

 & oslash; & #248;

 ù Latin small letter u with grave & ugrave; & #249;

 ú Latin small letter u with acute & uacute; & #250;

 û Latin small letter u with circumflex & ucirc; & #251;

(continued)

bapp06.indd 757bapp06.indd 757 11/20/09 11:26:25 PM11/20/09 11:26:25 PM

Appendix F: Special Characters

758

 Symbol Description
 Entity
Name

 Number
Code

 ü Latin small letter u with diaeresis & uuml; & #252;

 ý Latin small letter y with acute & yacute; & #253;

 þ Latin small letter thorn & thorn; & #254;

 ÿ Latin small letter y with diaeresis & yuml; & #255;

 Character Entity References for Symbols,
Mathematical Symbols, and Greek Letters

 Symbol Description Entity Name Number
Code

 Latin Extended - B

 ƒ Latin small f with hook = function =
florin

 & fnof; & #402;

 Greek

 Α Greek capital letter alpha & Alpha; & #913;

 Β Greek capital letter beta & Beta; & #914;

 Γ Greek capital letter gamma & Gamma; & #915;

 ∆ Greek capital letter delta & Delta; & #916;

 Ε Greek capital letter epsilon & Epsilon; & #917;

 Ζ Greek capital letter zeta & Zeta; & #918;

 Η Greek capital letter eta & Eta; & #919;

 Θ Greek capital letter theta & Theta; & #920;

 Ι Greek capital letter iota & Iota; & #921;

 Κ Greek capital letter kappa & Kappa; & #922;

 Λ Greek capital letter lambda & Lambda; & #923;

 Μ Greek capital letter mu & Mu & #924;

 Ν Greek capital letter nu & Nu; & #925;

bapp06.indd 758bapp06.indd 758 11/20/09 11:26:26 PM11/20/09 11:26:26 PM

Appendix F: Special Characters

759

 Symbol Description Entity Name Number
Code

 Ξ Greek capital letter xi & Xi; & #926;

 Ο Greek capital letter omicron & Omicron; & #927;

 Π Greek capital letter pi & Pi; & #928;

 Ρ Greek capital letter rho & Rho; & #929;

 Σ Greek capital letter sigma & Sigma; & #931;

 Τ Greek capital letter tau & Tau; & #932;

 Υ Greek capital letter upsilon & Upsilon; & #933;

 Φ Greek capital letter phi & Phi; & #934;

 � Greek capital letter chi & Chi; & #935;

 Ψ Greek capital letter psi & Psi; & #936;

 Ω Greek capital letter omega & Omega; & #937;

 α Greek small letter alpha & alpha; & #945;

 β Greek small letter beta & beta; & #946;

 γ Greek small letter gamma & gamma; & #947;

 δ Greek small letter delta & delta; & #948;

 ε Greek small letter epsilon & epsilon; & #949;

 ζ Greek small letter zeta & zeta; & #950;

 η Greek small letter eta & eta; & #951;

 θ Greek small letter theta & theta; & #952;

 ι Greek small letter iota & iota; & #953;

 κ Greek small letter kappa & kappa; & #954;

 λ Greek small letter lambda & lambda; & #955;

 µ Greek small letter mu & mu; & #956;

 ν Greek small letter nu & nu; & #957;

 ξ Greek small letter xi & xi; & #958;

 ο Greek small letter omicron & omicron; & #959;

(continued)

bapp06.indd 759bapp06.indd 759 11/20/09 11:26:27 PM11/20/09 11:26:27 PM

Appendix F: Special Characters

760

 Symbol Description Entity Name Number
Code

 π Greek small letter pi & pi; & #960;

 ρ Greek small letter rho & rho; & #961;

 ζ Greek small letter final sigma & sigmaf; & #962;

 σ Greek small letter sigma & sigma; & #963;

 τ Greek small letter tau & tau; & #964;

 υ Greek small letter upsilon & upsilon; & #965;

 ϕ Greek small letter phi & phi; & #966;

χ Greek small letter chi & chi; & #967;

ψ Greek small letter psi & psi; & #968;

ω Greek small letter omega & omega; & #969;

θ Greek small letter theta symbol & thetasym; & #977;

ϒ Greek upsilon with hook symbol & upsih; & #978;

ϖ Greek pi symbol & piv; & #982;

 General Punctuation

 • Bullet = black small circle & bull; & #8226;

 … Horizontal ellipsis = three dot
leader

 & hellip; & #8230;

′ Prime = minutes = feet & prime; & #8242;

″ Double prime = seconds = inches & Prime; & #8243;

� Overline = spacing overscore & oline; & #8254;

/ Fraction slash & frasl; & #8260;

 Letterlike Symbols

℘ Script capital P = power set =
Weierstrass p

 & weierp; & #8472;

ℑ Blackletter capital I = imaginary
part

 & image; & #8465;

ℜ Blackletter capital R = real part
symbol

 & real; & #8476;

™ Trademark sign & trade; & #8482;

bapp06.indd 760bapp06.indd 760 11/20/09 11:26:27 PM11/20/09 11:26:27 PM

Appendix F: Special Characters

761

 Symbol Description Entity Name Number
Code

ℵ Alef symbol = first transfinite
cardinal

 & alefsym; & #8501;

 Arrows

← Left arrow & larr; & #8592;

↑ Up arrow & uarr; & #8593;

 → Right arrow & rarr; & #8594;

 ↓ Down arrow & darr; & #8595;

↔ Left - right arrow & harr; & #8596;

↵ Down arrow with corner leftward =
carriage return

 & crarr; & #8629;

⇐ Left double arrow & lArr; & #8656;

⇑ Up double arrow & uArr; & #8657;

⇒ Right double arrow & rArr; & #8658;

⇓ Down double arrow & dArr; & #8659;

⇔ Left - right double arrow & hArr; & #8660;

 Mathematical Operators

∀ For all & forall; & #8704;

∂ Partial differential & part ; & #8706;

∃ There exists & exist; & #8707;

∅ Empty set = null set = diameter & empty; & #8709;

∇ Nabla = backward difference & nabla; & #8711;

∈ Element of & isin; & #8712;

∉ Not an element of & notin; & #8713;

� Contains as member & ni; & #8715;

∏ n - ary product = product sign & prod; & #8719;

∑ n - ary summation & sum; & #8721;

(continued)

bapp06.indd 761bapp06.indd 761 11/20/09 11:26:28 PM11/20/09 11:26:28 PM

Appendix F: Special Characters

762

 Symbol Description Entity Name Number
Code

− Minus sign & minus; & #8722;

∗ Asterisk operator & lowast; & #8727;

√ Square root = radical sign & radic; & #8730;

∝ Proportional to & prop; & #8733;

∞ Infinity & infin; & #8734;

∠ Angle & ang; & #8736;

∧ Logical and = wedge & and; & #8743;

∨ Logical or = vee & or ; & #8744;

∩ Intersection = cap & cap; & #8745;

∪ Union = cup & cup; & #8746;

∫ Integral & int; & #8747;

∴ Therefore & there4; & #8756;

∼ Tilde operator = varies with =
similar to

 & sim; & #8764;

≅ Approximately equal to & cong; & #8773;

≈ Almost equal to = asymptotic to & asymp; & #8776;

≠ Not equal to & ne; & #8800;

≡ Identical to & equiv; & #8801;

≤ Less than or equal to & le; & #8804;

≥ Greater than or equal to & ge; & #8805;

⊂ Subset of & sub; & #8834;

⊃ Superset of & sup; & #8835;

⊄ Not a subset of & nsub; & #8836;

⊆ Subset of or equal to & sube; & #8838;

⊇ Superset of or equal to & supe; & #8839;

⊕ Circled plus = direct sum & oplus; & #8853;

⊗ Circled times = vector product & otimes; & #8855;

bapp06.indd 762bapp06.indd 762 11/20/09 11:26:29 PM11/20/09 11:26:29 PM

Appendix F: Special Characters

763

 Symbol Description Entity Name Number
Code

⊥ Up tack = orthogonal to =
perpendicular

 & perp; & #8869;

⋅ Dot operator & sdot; & #8901;

 Miscellaneous Technical

� Left ceiling = apl upstile & lceil; & #8968;

� Right ceiling & rceil; & #8969;

 � Left floor = apl downstile & lfloor; & #8970;

 � Right floor & rfloor; & #8971;

〈 Left - pointing angle bracket = bra & lang; & #9001;

〉 Right - pointing angle bracket = ket & rang; & #9002;

 Geometric Shape

◊ Lozenge & loz; & #9674;

 Miscellaneous Symbols

♠ Black spade suit & spades; & #9824;

♣ Black club suit = shamrock & clubs; & #9827;

♥ Black heart suit = valentine & hearts; & #9829;

♦ Black diamond suit & diams; & #9830;

 Markup - Significant and Internationalization
Characters

 Symbol Description Entity Name Number Code

 " Quotation mark = APL quote & quot; & #34;

 & Ampersand & amp; & #38;

 < Less - than sign & lt; & #60;

 > Greater - than sign & gt; & #62;

(continued)

bapp06.indd 763bapp06.indd 763 11/20/09 11:26:29 PM11/20/09 11:26:29 PM

Appendix F: Special Characters

764

 Symbol Description Entity Name Number Code

 Œ Latin capital ligature OE & OElig; & #338;

 œ Latin small ligature oe & oelig; & #339;

 Š Latin capital letter S with caron & Scaron; & #352;

 š Latin small letter s with caron & scaron; & #353;

Ÿ Latin capital letter Y with diaeresis & Yuml; & #376;

Spacing Modifiers

 ̂ Modifier letter circumflex accent & circ; & #710;

 ̃ Small tilde & tilde; & #732;

General Punctuation

 En space & ensp; & #8194;

 Em space & emsp; & #8195;

 Thin space & thinsp; & #8201;

 Zero width non - joiner & zwnj; & #8204;

 Zero width joiner & zwj; & #8205;

 Left - to - right mark & lrm; & #8206;

 Right - to - left mark & rlm; & #8207;

 – En dash & ndash; & #8211;

 — Em dash & mdash; & #8212;

’ Left single quotation mark & lsquo; & #8216;

‘ Right single quotation mark & rsquo; & #8217;

‚ Single low - 9 quotation mark & sbquo; & #8218;

“ Left double quotation mark & ldquo; & #8220;

” Right double quotation mark & rdquo; & #8221;

„ Double low - 9 quotation mark & bdquo; & #8222;

 † Dagger & dagger; & #8224;

 ‡ Double dagger & Dagger; & #8225;

bapp06.indd 764bapp06.indd 764 11/20/09 11:26:30 PM11/20/09 11:26:30 PM

Appendix F: Special Characters

765

 Symbol Description Entity Name Number Code

‰ Per mille sign & permil; & #8240;

‹ Single left - pointing angle quotation
mark (proposed, but not yet
standardized)

 & lsaquo; & #8249;

› Single right - pointing angle quotation
mark (proposed, but not yet
standardized)

 & rsaquo; & #8250;

€ Euro sign & euro; & #8364;

bapp06.indd 765bapp06.indd 765 11/20/09 11:26:36 PM11/20/09 11:26:36 PM

bapp06.indd 766bapp06.indd 766 11/20/09 11:26:36 PM11/20/09 11:26:36 PM

 G
Language Codes

 The following table shows the two - letter ISO 639 language codes that are used to declare the
language of a document in the lang and xml:lang attributes. It covers many of the world ’ s
major languages.

 Country ISO Code

 Abkhazian AB

 Afan (Oromo) OM

 Afar AA

 Afrikaans AF

 Albanian SQ

 Amharic AM

 Arabic AR

 Armenian HY

 Assamese AS

 Aymara AY

 Azerbaijani AZ

 Bashkir BA

 Basque EU

 Bengali; Bangla BN

Continued

 Country ISO Code

 Bhutani DZ

 Bihari BH

 Bislama BI

 Breton BR

 Bulgarian BG

 Burmese MY

 Byelorussian BE

 Cambodian KM

 Catalan CA

 Chinese ZH

 Corsican CO

 Croatian HR

 Czech CS

 Danish DA

bapp07.indd 767bapp07.indd 767 11/20/09 5:39:30 PM11/20/09 5:39:30 PM

Appendix G: Language Codes

768

 Country ISO Code

 Dutch NL

 English EN

 Esperanto EO

 Estonian ET

 Faroese FO

 Fiji FJ

 Finnish FI

 French FR

 Frisian FY

 Galician GL

 Georgian KA

 German DE

 Greek EL

 Greenlandic KL

 Guarani GN

 Gujarati GU

 Hausa HA

 Hebrew HE

 Hindi HI

 Hungarian HU

 Icelandic IS

 Indonesian ID

 Interlingua IA

 Interlingue IE

 Inuktitut IU

 Inupiak IK

 Irish GA

 Italian IT

 Country ISO Code

 Japanese JA

 Javanese JV

 Kannada KN

 Kashmiri KS

 Kazakh KK

 Kinyarwanda RW

 Kirghiz KY

 Korean KO

 Kurdish KU

 Kurundi RN

 Laothian LO

 Latin LA

 Latvian; Lettish LV

 Lingala LN

 Lithuanian LT

 Macedonian MK

 Malagasy MG

 Malay MS

 Malayalam ML

 Maltese MT

 Maori MI

 Marathi MR

 Moldavian MO

 Mongolian MN

 Nauru NA

 Nepali NE

 Norwegian NO

 Occitan OC

bapp07.indd 768bapp07.indd 768 11/20/09 5:39:31 PM11/20/09 5:39:31 PM

Appendix G: Language Codes

769

 Country ISO Code

 Oriya OR

 Pashto; Pushto PS

 Persian (Farsi) FA

 Polish PL

 Portuguese PT

 Punjabi PA

 Quechua QU

 Rhaeto - Romance RM

 Romanian RO

 Russian RU

 Samoan SM

 Sangho SG

 Sanskrit SA

 Scots Gaelic GD

 Serbian SR

 Serbo - Croatian SH

 Sesotho ST

 Setswana TN

 Shona SN

 Sindhi SD

 Singhalese SI

 Siswati SS

 Slovak SK

 Slovenian SL

 Somali SO

 Spanish ES

 Sudanese SU

 Swahili SW

 Country ISO Code

 Swedish SV

 Tagalog TL

 Tajik TG

 Tamil TA

 Tatar TT

 Telugu TE

 Thai TH

 Tibetan BO

 Tigrinya TI

 Tonga TO

 Tsonga TS

 Turkish TR

 Turkmen TK

 Twi TW

 Uigur UG

 Ukrainian UK

 Urdu UR

 Uzbek UZ

 Vietnamese VI

 Volapuk VO

 Welsh CY

 Wolof WO

 Xhosa XH

 Yiddish YI

 Yoruba YO

 Zhuang ZA

 Zulu ZU

bapp07.indd 769bapp07.indd 769 11/20/09 5:39:31 PM11/20/09 5:39:31 PM

bapp07.indd 770bapp07.indd 770 11/20/09 5:39:32 PM11/20/09 5:39:32 PM

 H
MIME Media Types

 You have seen the type attribute used throughout this book on a number of elements, the value of
which is a MIME media type.

 MIME (Multipurpose Internet Mail Extension) media types were originally devised so that e - mails
could include information other than plain text. MIME media types indicate the following things:

 How the parts of a message, such as text and attachments, are combined into the message

 The way in which each part of the message is specified

 The way the items are encoded for transmission so that even software that was designed
to work only with ASCII text can process the message

 As you have seen, however, MIME types are not just for use with e - mail; they were adopted by
web servers as a way to tell web browsers what type of material was being sent to them so that
they could cope with that kind of file correctly.

 MIME content types consist of two parts:

 A main type

 A sub - type

 The main type is separated from the sub - type by a forward slash character — for example,
text/html for HTML.

 This appendix is organized by the main types:

 text

 image

 multipart

 audio

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp08.indd 771bapp08.indd 771 11/20/09 5:41:38 PM11/20/09 5:41:38 PM

Appendix H: MIME Media Types

772

 video

 message

 model

 application

 For example, the text main type contains types of plain - text files, such as:

 text/plain for plain text files

 text/html for HTML files

 text/rtf for text files using rich text formatting

 MIME types are officially supposed to be assigned and listed by the Internet Assigned Numbers
Authority (IANA).

 Many of the popular MIME types in this list (all those that begin with “ x - ”) are not assigned by the
IANA and do not have official status. (Having said that, I should mention that some of these are very
popular and browsers support them, such as audio/x - mp3 . You can see the list of official MIME types at
 www.iana.org/assignments/media-types/).

 Those preceded with .vnd are vendor - specific.

 The most popular MIME types are listed in this appendix in a bold typeface to help you find them.

 text
 Note that, when specifying the MIME type of a content - type field (for example in a < meta > element),
you can also indicate the character set for the text being used. For example:

content-type:text/plain; charset=iso-8859-1

 If you do not specify a character set, the default is US - ASCII.

❑

❑

❑

❑

❑

❑

❑

 calendar

 css

 directory

 enriched

 html

 parityfec

 plain

 prs.fallenstein.rst

 prs.lines.tag

 rfc822 - headers

 richtext

 rtf

bapp08.indd 772bapp08.indd 772 11/20/09 5:41:46 PM11/20/09 5:41:46 PM

Appendix H: MIME Media Types

773

 sgml

 t140

 tab - separated - values

 uri - list

 vnd.abc

 vnd.curl

 vnd.DMClientScript

 vnd.fly

 vnd.fmi.flexstor

 vnd.in3d.3dml

 vnd.in3d.spot

 vnd.IPTC.NewsML

 vnd.IPTC.NITF

 vnd.latex - z

 vnd.motorola.reflex

 vnd.ms - mediapackage

 vnd.net2phone.commcenter.command

 vnd.sun.j2me.app - descriptor

 vnd.wap.si

 vnd.wap.sl

 vnd.wap.wml

 vnd.wap.wmlscript

 xml

 xml - external - parsed - entity

 image

 bmp

 cgm

 g3fax

 gif

 ief

 jpeg

 naplps

 png

 prs.btif

 prs.pti

 t38

 tiff

 tiff - fx

 vnd.cns.inf2

 vnd.djvu

 vnd.dwg

 vnd.dxf

 vnd.fastbidsheet

 vnd.fpx

 vnd.fst

 vnd.fujixerox.edmics - mmr

 vnd.fujixerox.edmics - rlc

 vnd.globalgraphics.pgb

 vnd.microsoft.icon

Continued

bapp08.indd 773bapp08.indd 773 11/20/09 5:41:47 PM11/20/09 5:41:47 PM

Appendix H: MIME Media Types

774

 vnd.mix

 vnd.ms - modi

 vnd.net - fpx

 vnd.sealed.png

 vnd.sealedmedia.softseal.gif

 vnd.sealedmedia.softseal.jpg

 vnd.svf

 vnd.wap.wbmp

 vnd.xiff

 x - portable - pixmap

 x - xbitmap

 multipar t

 alternative

 appledouble

 byteranges

 digest

 encrypted

 form - data

 header - set

 mixed

 parallel

 related

 report

 signed

 voice - message

 audio

 32kadpcm

 AMR

 AMR - WB

 basic

 CN

 DAT12

 dsr - es201108

 DVI4

 EVRC

 EVRC0

 EVRC - QCP

 G722

 G.722.1

 G723

 G726 - 16

 G726 - 24

(continued)

bapp08.indd 774bapp08.indd 774 11/20/09 5:41:47 PM11/20/09 5:41:47 PM

Appendix H: MIME Media Types

775

 G726 - 32

 G726 - 40

 G728

 G729

 G729D

 G729E

 GSM

 GSM - EFR

 L8

 L16

 L20

 L24

 LPC

 MPA

 MP4A - LATM

 mpa - robust

 mpeg

 mpeg4 - generic

 parityfec

 PCMA

 PCMU

 prs.sid

 QCELP

 RED

 SMV

 SMV0

 SMV - QCP

 telephone - event

 tone

 VDVI

 vnd.3gpp.iufp

 vnd.cisco.nse

 vnd.cns.anp1

 vnd.cns.inf1

 vnd.digital - winds

 vnd.everad.plj

 vnd.lucent.voice

 vnd.nokia.mobile - xmf

 vnd.nortel.vbk

 vnd.nuera.ecelp4800

 vnd.nuera.ecelp7470

 vnd.nuera.ecelp9600

 vnd.octel.sbc

 vnd.qcelp — deprecated, use audio/qcelp

 vnd.rhetorex.32kadpcm

 vnd.sealedmedia.softseal.mpeg

 vnd.vmx.cvsd

 x - aiff

 x - midi

 x - mod

 x - mp3

 x - wav

bapp08.indd 775bapp08.indd 775 11/20/09 5:41:47 PM11/20/09 5:41:47 PM

Appendix H: MIME Media Types

776

 video

 BMPEG

 BT656

 CelB

 DV

 H261

 H263

 H263 - 1998

 H263 - 2000

 JPEG

 MP1S

 MP2P

 MP2T

 MP4V - ES

 MPV

 mpeg

 mpeg4 - generic

 nv

 parityfec

 pointer

 quicktime

 SMPTE292M

 vnd.fvt

 vnd.motorola.video

 vnd.motorola.videop

 vnd.mpegurl

 vnd.nokia.interleaved - multimedia

 vnd.objectvideo

 vnd.sealed.mpeg1

 vnd.sealed.mpeg4

 vnd.sealed.swf

 vnd.sealedmedia.softseal.mov

 vnd.vivo

 x - sgi - movie

 x - msvideo

 message

 CPIM

 delivery - status

 disposition - notification

 external - body

 http

 news

 partial

 rfc822

 s - http

 sip

 sipfrag

bapp08.indd 776bapp08.indd 776 11/20/09 5:41:47 PM11/20/09 5:41:47 PM

Appendix H: MIME Media Types

777

 model

 iges

 mesh

 vnd.dwf

 vnd.flatland.3dml

 vnd.gdl

 vnd.gs - gdl

 vnd.gtw

 vnd.mts

 vnd.parasolid.transmit.binary

 vnd.parasolid.transmit.text

 vnd.vtu

 vrml

 application

 activemessage

 andrew - inset

 applefile

 atomicmail

 batch - SMTP

 beep+xml

 cals - 1840

 cnrp+xml

 commonground

 cpl+xml

 cybercash

 dca - rft

 dec - dx

 dicom

 dvcs

 EDI - Consent

 EDI - X12

 EDIFACT

 eshop

 font - tdpfr

 http

 hyperstudio

 iges

 index

 index.cmd

 index.obj

 index.response

 index.vnd

 iotp

 ipp

 isup

 mac - binhex40

Continued

bapp08.indd 777bapp08.indd 777 11/20/09 5:41:48 PM11/20/09 5:41:48 PM

Appendix H: MIME Media Types

778

 macwriteii

 marc

 mathematica

 mpeg4 - generic

 msword

 news - message - id

 news - transmission

 ocsp - request

 ocsp - response

 octet - stream

 oda

 ogg

 parityfec

 pdf

 pgp - encrypted

 pgp - keys

 pgp - signature

 pidf+xml

 pkcs10

 pkcs7 - mime

 pkcs7 - signature

 pkix - cert

 pkix - crl

 pkix - pkipath

 pkixcmp

 postscript

 prs.alvestrand.titrax - sheet

 prs.cww

 prs.nprend

 prs.plucker

 qsig

 reginfo+xml

 remote - printing

 riscos

 rtf

 sdp

 set - payment

 set - payment - initiation

 set - registration

 set - registration - initiation

 sgml

 sgml - open - catalog

 sieve

 slate

 timestamp - query

 timestamp - reply

 tve - trigger

 vemmi

 vnd.3gpp.pic - bw - large

 vnd.3gpp.pic - bw - small

 vnd.3gpp.pic - bw - var

 vnd.3gpp.sms

 vnd.3M.Post - it - Notes

 vnd.accpac.simply.aso

 vnd.accpac.simply.imp

 vnd.acucobol

(continued)

bapp08.indd 778bapp08.indd 778 11/20/09 5:41:48 PM11/20/09 5:41:48 PM

Appendix H: MIME Media Types

779

 vnd.acucorp

 vnd.adobe.xfdf

 vnd.aether.imp

 vnd.amiga.ami

 vnd.anser - web - certificate - issue - initiation

 vnd.anser - web - funds - transfer - initiation

 vnd.audiograph

 vnd.blueice.multipass

 vnd.bmi

 vnd.businessobjects

 vnd.canon - cpdl

 vnd.canon - lips

 vnd.cinderella

 vnd.claymore

 vnd.commerce - battelle

 vnd.commonspace

 vnd.contact.cmsg

 vnd.cosmocaller

 vnd.criticaltools.wbs+xml

 vnd.ctc - posml

 vnd.cups - postscript

 vnd.cups - raster

 vnd.cups - raw

 vnd.curl

 vnd.cybank

 vnd.data - vision.rdz

 vnd.dna

 vnd.dpgraph

 vnd.dreamfactory

 vnd.dxr

 vnd.ecdis - update

 vnd.ecowin.chart

 vnd.ecowin.filerequest

 vnd.ecowin.fileupdate

 vnd.ecowin.series

 vnd.ecowin.seriesrequest

 vnd.ecowin.seriesupdate

 vnd.enliven

 vnd.epson.esf

 vnd.epson.msf

 vnd.epson.quickanime

 vnd.epson.salt

 vnd.epson.ssf

 vnd.ericsson.quickcall

 vnd.eudora.data

 vnd.fdf

 vnd.ffsns

 vnd.fints

 vnd.FloGraphIt

 vnd.framemaker

 vnd.fsc.weblaunch

 vnd.fujitsu.oasys

 vnd.fujitsu.oasys2

 vnd.fujitsu.oasys3

 vnd.fujitsu.oasysgp

 vnd.fujitsu.oasysprs

Continued

bapp08.indd 779bapp08.indd 779 11/20/09 5:41:48 PM11/20/09 5:41:48 PM

Appendix H: MIME Media Types

780

 vnd.fujixerox.ddd

 vnd.fujixerox.docuworks

 vnd.fujixerox.docuworks.binder

 vnd.fut - misnet

 vnd.genomatix.tuxedo

 vnd.grafeq

 vnd.groove - account

 vnd.groove - help

 vnd.groove - identity - message

 vnd.groove - injector

 vnd.groove - tool - message

 vnd.groove - tool - template

 vnd.groove - vcard

 vnd.hbci

 vnd.hhe.lesson - player

 vnd.hp - HPGL

 vnd.hp - hpid

 vnd.hp - hps

 vnd.hp - PCL

 vnd.hp - PCLXL

 vnd.httphone

 vnd.hzn - 3d - crossword

 vnd.ibm.afplinedata

 vnd.ibm.electronic - media

 vnd.ibm.MiniPay

 vnd.ibm.modcap

 vnd.ibm.rights - management

 vnd.ibm.secure - container

 vnd.informix - visionary

 vnd.intercon.formnet

 vnd.intertrust.digibox

 vnd.intertrust.nncp

 vnd.intu.qbo

 vnd.intu.qfx

 vnd.ipunplugged.rcprofile

 vnd.irepository.package+xml

 vnd.is - xpr

 vnd.japannet - directory - service

 vnd.japannet - jpnstore - wakeup

 vnd.japannet - payment - wakeup

 vnd.japannet - registration

 vnd.japannet - registration - wakeup

 vnd.japannet - setstore - wakeup

 vnd.japannet - verification

 vnd.japannet - verification - wakeup

 vnd.jisp

 vnd.kde.karbon

 vnd.kde.kchart

 vnd.kde.kformula

 vnd.kde.kivio

 vnd.kde.kontour

 vnd.kde.kpresenter

 vnd.kde.kspread

 vnd.kde.kword

 vnd.kenameaapp

 vnd.kidspiration

(continued)

bapp08.indd 780bapp08.indd 780 11/20/09 5:41:49 PM11/20/09 5:41:49 PM

Appendix H: MIME Media Types

781

 vnd.koan

 vnd.liberty - request+xml

 vnd.llamagraphics.life - balance.desktop

 vnd.llamagraphics.life - balance
.exchange+xml

 vnd.lotus - 1 - 2 - 3

 vnd.lotus - approach

 vnd.lotus - freelance

 vnd.lotus - notes

 vnd.lotus - organizer

 vnd.lotus - screencam

 vnd.lotus - wordpro

 vnd.mcd

 vnd.mediastation.cdkey

 vnd.meridian - slingshot

 vnd.micrografx.flo

 vnd.micrografx.igx

 vnd.mif

 vnd.minisoft - hp3000 - save

 vnd.mitsubishi.misty - guard.trustweb

 vnd.Mobius.DAF

 vnd.Mobius.DIS

 vnd.Mobius.MBK

 vnd.Mobius.MQY

 vnd.Mobius.MSL

 vnd.Mobius.PLC

 vnd.Mobius.TXF

 vnd.mophun.application

 vnd.mophun.certificate

 vnd.sss - ntf

 vnd.street - stream

 vnd.svd

 vnd.swiftview - ics

 vnd.triscape.mxs

 vnd.trueapp

 vnd.truedoc

 vnd.ufdl

 vnd.uiq.theme

 vnd.uplanet.alert

 vnd.uplanet.alert - wbxml

 vnd.uplanet.bearer - choice

 vnd.uplanet.bearer - choice - wbxml

 vnd.uplanet.cacheop

 vnd.uplanet.cacheop - wbxml

 vnd.uplanet.channel

 vnd.uplanet.channel - wbxml

 vnd.uplanet.list

 vnd.uplanet.list - wbxml

 vnd.uplanet.listcmd

 vnd.uplanet.listcmd - wbxml

 vnd.uplanet.signal

 vnd.vcx

 vnd.vectorworks

 vnd.vidsoft.vidconference

 vnd.visio

Continued

bapp08.indd 781bapp08.indd 781 11/20/09 5:41:49 PM11/20/09 5:41:49 PM

Appendix H: MIME Media Types

782

 vnd.visionary

 vnd.vividence.scriptfile

 vnd.vsf

 vnd.wap.sic

 vnd.wap.slc

 vnd.wap.wbxml

 vnd.wap.wmlc

 vnd.wap.wmlscriptc

 vnd.webturbo

 vnd.wqd

 vnd.wrq - hp3000 - labelled

 vnd.wt.stf

 vnd.wv.csp+wbxml

 vnd.wv.csp+xml

 vnd.wv.ssp+xml

 vnd.xara

 vnd.xfdl

 vnd.yamaha.hv - dic

 vnd.yamaha.hv - script

 vnd.yamaha.hv - voice

 vnd.yamaha.smaf - audio

 vnd.yamaha.smaf - phrase

 vnd.yellowriver - custom - menu

 watcherinfo+xml

 whoispp - query

 whoispp - response

 wita

 wordperfect5.1

 x - debian - package

 x - gzip

 x - java

 x - javascript

 x - msaccess

 x - msexcel

 x - mspowerpoint

 x - rpm

 x - zip

 x400 - bp

 xhtml+xml

 xml

 xml - dtd

 xml - external - parsed - entity

 zip

(continued)

bapp08.indd 782bapp08.indd 782 11/20/09 5:41:49 PM11/20/09 5:41:49 PM

I
Deprecated and

Browser - Specific Markup

 As the versions of HTML and XHTML have developed, quite a lot of markup has been deprecated ,
which is the W3C’s way of alerting web developers that is is likely to be removed from future
versions of HTML and XHTML and that web - page authors should stop using it (although there is
an acknowledgment that some people may still need to use it for a while). Where markup is
deprecated, there is usually an acceptable alternative way to achieve the same goal (in many cases
using CSS).

 You can still use quite a lot of the deprecated markup that you meet in this chapter when using the
Transitional XHTML DOCTYPE, but Strict XHTML has already removed most of the elements and
attributes that affect presentation of elements.

 I have included the details of these elements and attributes in this book, despite the fact that the
markup is deprecated or out of date, because you are likely to come across it in other people ’ s
code, and on very rare occasions you might need to resort to using some of this markup in order to
get a specific job done.

 In addition to deprecated markup, I will introduce some of the browser - specific markup that you
may come across. This is markup that browser manufacturers added to their browsers to allow
users to do more things than they could in competing browsers — but these browser - specific
elements and attributes never made it into the HTML recommendations, and are therefore referred
to as browser - specific markup .

 This appendix covers the following:

 Elements and attributes that have been deprecated in recent versions of HTML and
XHTML

 Specification of font appearances without using CSS

 Control of backgrounds without using CSS

❑

❑

❑

bapp09.indd 783bapp09.indd 783 11/20/09 5:43:52 PM11/20/09 5:43:52 PM

Appendix I: Deprecated and Browser-Specifi c Markup

784

 Control of presentations of links, lists, and tables without using CSS

 Elements and attributes that control the formatting of a document

 Elements, attributes, and styles that Microsoft added to IE (but that are not supported by other
browser manufacturers)

 Before you look at any of this markup, however, here ’ s a quick word on why a good part of this
appendix is deprecated markup.

 Why Deprecated Markup Exists
 In the introduction to this book, I explained how XHTML 1.0 was created after HTML had reached
version 4.01. The elements and attributes are virtually identical, but the syntax of XHTML is much
stricter (for example, you must use lowercase letters in tag names, attributes must be enclosed in double
quotes, and so on).

 Up to that point, with each version of HTML, new elements and attributes were added and old ones
removed. These changes have been necessary because web - page authors have wanted to create
increasingly complicated pages, and also because there has been an increasing drive to separate the
content of web pages from the rules that describe how the page should be displayed.

 In older versions of HTML, before CSS was introduced, HTML contained markup that could be used to
control the presentation of a web page (such as the < font > element that would control the font used in a
document, or the bgcolor attribute that would set the background color of a page).

 When CSS was introduced to style web pages, all of the HTML markup that had previously controlled
how a page would appear could be removed. (This is a big source of deprecated markup.)

 When your web pages just focus on the content (the words themselves), its structure (the headings and
paragraphs), and its meaning (using elements that indicate their contents are an address or a quote), you
end up with much simpler documents. You can also present the same document in different ways, which
is particularly helpful considering that there are an increasing number of different devices being used to
access the Web (from mobile phones to game consoles), all of which have different - sized screens and
abilities, which may need styling in different ways.

 Older Pages Break Many Rules
 You should be aware that a lot of the pages you see on the Web probably break a lot of the rules you have
learned in this book so far. You will see element and attribute names in upper - and lowercase, you will
see missing quotation marks on attribute values, even attributes without values, and you will see
elements that do not have closing tags. You will see pages without DOCTYPE declarations and pages
littered with deprecated markup. Keep in mind, however, that many of the pages that break the rules
you have learned might have been written when the rules were not as strict, and at the time of writing
the code may have been perfectly acceptable. Indeed, the fact that web browsers would try to show
pages even if the markup contained errors (and that they would skip over tags that they did not

❑

❑

❑

bapp09.indd 784bapp09.indd 784 11/20/09 5:43:59 PM11/20/09 5:43:59 PM

Appendix I: Deprecated and Browser-Specifi c Markup

785

understand) significantly helped the adoption of HTML, because it helped people who did not program
to develop web pages far more easily than languages that showed complex error messages when they
encountered something they didn ’ t understand.

 It wasn ’ t just humans who wrote code that might be frowned upon these days. The early versions of
authoring tools such as Microsoft FrontPage and Macromedia Dreamweaver sometimes generated code
that had strange capitalization or missing quotation marks, and featured attributes without values. This
does not make it okay to follow their lead; the first versions of these programs were written before
XHTML came along with its stricter rules.

 Having said all this, it is also worth noting that when HTML 5 comes out (which is unlikely to be before
2011), it will probably relax some of the rules imposed by XHTML (for example it is likely to allow
authors to mix upper - and lowercase again, and they might not need to close all elements). Having said
that, I think that there will still be advantages to learning code using the stricter XHTML syntax. For
example, many of the tools written to work with XML can also be used with XHTML. These might not
work if you have written HTML 5 pages that do not adhere to the stricter XHTML syntax.

 Even if a page with bad or deprecated markup renders fine in your browser, it ’ s still wise to avoid this
markup because your pages are less likely to appear as you intended on the increasing number of devices
being used on the Web.

 Fonts
 In this section, you learn about several elements (and their attributes) that affect the appearance of text
and fonts, all of which have been deprecated.

 The < font > Element
 The < font > element was introduced in HTML 3.2 and deprecated in HTML 4.0. It allows you to indicate
the typeface, size, and color of font the browser should display between the opening < font > and closing
 < /font > tags. You could probably find many sites that are still littered with < font > tags, one for each
time you see the style of text change on the page.

 The following table shows the three attributes the < font > element relies upon:

 Attribute Name Use Values

 face Specify the typeface that
should be used

 Name of the typeface to use (can include more
than one name in order of preference)

 size Specify the size of the font A number between 1 and 7 where 1 is the
smallest font size and 7 is the largest font size

 color Specify the color of the font A color name or hex value (see Appendix D)

bapp09.indd 785bapp09.indd 785 11/20/09 5:44:00 PM11/20/09 5:44:00 PM

Appendix I: Deprecated and Browser-Specifi c Markup

786

 The following is an example of how the < font > element would have been used (ai_eg01.html). You
can see that there are three occurrences of the < font > element:

 < html >
 < head >
 < title > Example of & lt;font & gt; Element < /title >
 < /head >
 < body >
 < p > This is the browser’s default font. < /p >
 < font face=”arial, verdana, sans-serif” size=”2” >
 < h1 > Example of the & lt;font & gt; Element < /h1 >
 < p > < font size=”4” color=”darkgray” > Here is some size 3 writing
 in the color called darkgray. The typeface is determined by the
 previous & lt;font & gt; element that contains this paragraph. < /font > < /p >
 < p > < font face=”courier” size=”2” color=”#000000” > Now here is a courier
 font, size 2, in black < /font > < /p >
 < /font >
 < /body >
 < /html >

 The result of this example is shown in Figure I - 1.

Figure I-1

 As you can see from Figure I - 1, all the writing within a < font > element follows the rules laid down in
the attributes that you can see on the opening < font > tag. The first paragraph is in the browser ’ s default
font (which is probably a size 3 Times family font in black). The first < font > element appears directly
after this paragraph and contains the rest of the page, therefore acting like a default setting for the rest of
the page, which should appear in an Arial typeface.

 As you can see, the name of the Arial typeface is followed by the typeface Verdana; this is supposed to be
a second choice if Arial is not available. Then if Verdana is not available, the browser ’ s default sans - serif
font should be used:

 < font face=”arial, verdana, sans-serif” size=”2” >

 This < font > element also indicates that the default size of the text in the rest of the document should be
size 2. Note that this < font > element does not override the size of the < h1 > element, but it does affect
the typeface used — the heading is written in Arial.

bapp09.indd 786bapp09.indd 786 11/20/09 5:44:00 PM11/20/09 5:44:00 PM

Appendix I: Deprecated and Browser-Specifi c Markup

787

 While this < font > element is acting as a default for most of the page, if you want a particular part of the
page to have any other font properties, you can indicate so in another < font > element.

 You can see in the second paragraph that color and the size of the font are changed to dark gray and size 4.

 < p > < font size=”4” color=”darkgray” > Here is some size 4 darkgray
 writing < /font > < /p >

 The third paragraph then uses a different typeface, a smaller size, and black:

 < p > < font face=”courier” size=”2” color=”#000000” > Now here is a courier
 font, size 2, in back < /font > < /p >

 Note that you may have to use < font > elements inside < td > and < th > elements, as the styles specified
outside tables are not inherited by the text inside cells. Figure I - 2 shows you the different font sizes from
1 to 7 (ai_eg02.html).

Figure I-2

 Font sizes can change slightly from browser to browser, so you cannot rely on them to be exactly the
same number of pixels tall or wide in a layout.

 The preferred method with CSS would be to use the font - family , font - size , and color properties
on the element containing the text that you wanted to style. You learned about these CSS properties in
Chapter 7.

 The text Attribute
 The text attribute is used on the < body > element to indicate the default color for text in the document;
it was deprecated in HTML 4. Its value should be either a color name or a hex color. For example
(ai_eg03.html):

 < body text=”#999999” >
 This text should be in a different color than the next bit
 < font color=”#000000” > which is black < /font > , and now back to gray.
 < /body >

bapp09.indd 787bapp09.indd 787 11/20/09 5:44:03 PM11/20/09 5:44:03 PM

Appendix I: Deprecated and Browser-Specifi c Markup

788

 You can see the result in Figure I - 3.

Figure I-3

 The < basefont > Element
 The < basefont > element is supposed to set a default font size, color, and typeface for the page. You can
then use the < font > elements to override the < basefont > settings. However, this is not supported in
Firefox or Safari, and other browsers do not always obey the settings in tables or headings.

 The attributes that the < basefont > element takes are exactly the same as for the < font > element, which
you ’ ve just seen. And again, elements such as the heading elements will retain their own size.

 You can also set the size of fonts relative to the size of the < basefont > by giving them a value of +1 for a
size larger or - 2 for two sizes smaller (on the same scale from 1 to 7).

 You can see these effects by revisiting the last example, and making some changes — the changes are
highlighted (ai_eg04.html):

 < html >
 < head >
 < title > Example of & lt;basefont & gt; Element < /title >
 < /head >
 < body >

 < basefont face=”arial, verdana, sans-serif” size=”2” color=”#999999” >
 < p > This is the page’s default font. < /p >

 < h2 > Example of the & lt;basefont & gt; Element < /h2 >

 < p > < font size=”+4” color=”333333” > Here is some dark gray text

 four sizes larger < /font > < /p >

 < p > < font face=”courier” size=”-1” color=”#000000” > Here is a courier

 font, a size smaller, in black < /font > < /p >
 < /body >
 < /html >

 You can see the result in Figure I - 4, shown in Internet Explorer (because the example does not work in
Firefox or Safari).

 As you can see, the default font now takes on the properties specified in the < basefont > element; it is
gray, size 2, and uses the Arial typeface.

 The paragraph after the < h2 > element uses a font size four sizes larger than the default size and is gray
text, whereas the following paragraph uses a font one size smaller than the default font — you can also
see that the color of this font is black (overriding the default).

bapp09.indd 788bapp09.indd 788 11/20/09 5:44:03 PM11/20/09 5:44:03 PM

Appendix I: Deprecated and Browser-Specifi c Markup

789

 Because this element was deprecated in HTML 4, the preferred option is to use CSS styles attached to the
 < body > element to set default font properties for the document.

 The < s > and < strike > Elements
 Both the < s > and < strike > elements were added to HTML in version 3.2 and deprecated in version 4.
They indicate that their content should have a strikethrough style. For example (ai_eg05.html):

 < s > This text will have a line through it < /s > < br/ >
 < strike > This text will also have a line through it. < /strike >

 You can see the results in Figure I - 5.

Figure I-4

Figure I-5

 You should now use the text - decoration property in CSS, with a value of line - through , unless you
are trying to indicate deleted content, in which case you should use the < del > element.

 The < u > Element
 The < u > element renders its content underlined. It was introduced in HTML 3.2 and deprecated in
version 4.

 < u > This text should be underlined. < /u >

bapp09.indd 789bapp09.indd 789 11/20/09 5:44:03 PM11/20/09 5:44:03 PM

Appendix I: Deprecated and Browser-Specifi c Markup

790

 You can see the effect in Figure I - 6.

Figure I-6

 You should now use the text - decoration property in CSS with a value of underline unless you are
trying to indicate added content (when a document has been revised), in which case you should use the
 < ins > element.

 The < listing > , < plaintext > , and < xmp > Elements
 These three elements are all obsolete; they were introduced in HTML 2 and removed from HTML 4. They
are included here only because you may come across them in old examples.

 All three elements display text in a monospaced font as the < pre > element does.

 The < xmp > element was designed for a short snippet of example code, and cannot contain any other
markup; any characters such as angle brackets in element names get displayed as if they are text, so you
do not need to use escape characters for them. The HTML 2 specification suggested that the author use a
maximum limit of 80 characters on any one line.

 The < listing > element, meanwhile, has a recommended limit of 132 characters per line, and tends to
display text in a small font.

 The < plaintext > tag indicates that anything following it should appear as plain text, even markup.
Because everything following the < plaintext > element is displayed as normal text, including tags,
there is no closing tag (if you tried to use a < /plaintext > tag, it too would be displayed as normal text).

 Here is an example of these three elements (ai_eg07.html):

 < body >
 < h2 > Example of the & lt;listing & gt;, & lt;plaintext & gt;, and & lt;xmp & gt;
 Elements < /h2 >
 < listing > These words are written inside a & lt;listing & gt; element. < /listing >
 < xmp > These words are written inside an < xmp > element. < /xmp >
 < plaintext > These words are written inside a < plaintext >
 element.
 < /body >

 You can see the result in Figure I - 7. Note how the escape characters in the < xmp > element are ignored
and not escaped (this could also contain angle brackets and they would display normally). You will also
see the closing < /body > and < /html > tags because anything after the opening < plaintext > tag is
treated as plain text.

bapp09.indd 790bapp09.indd 790 11/20/09 5:44:04 PM11/20/09 5:44:04 PM

Appendix I: Deprecated and Browser-Specifi c Markup

791

 The replacements in XHTML are < pre > and < samp > .

 Backgrounds
 There were two attributes in HTML that would allow you to change the background of a whole page or
part of it:

 bgcolor , which allowed you to specify a background color on the < body > and various table
elements

 background , which allowed you to specify a background image on the < body > element

 The bgcolor Attribute
 The bgcolor attribute allowed you to specify a background color for the whole document, or just part of
it. It could be used on the following elements:

 < body > < table > < tr > < th > < td >

 The value of the attribute should be a color name or hex color, as described in Appendix D.

 The following is an example of a document using some different background colors (ai_eg08.html):

 < html >
 < head >
 < title > Example of bgcolor Attribute < /title >
 < /head >
 < body bgcolor=”#efefef” >
 < h2 > Example of the bgcolor Attribute < /h2 >
 < table bgcolor=”#999999” >
 < tr >
 < th bgcolor=”#cccccc” > Heading One < /th >
 < th bgcolor=”#cccccc” > Heading Two < /th >
 < /tr >
 < tr bgcolor=”#f2f2f2” >

❑

❑

Figure I-7

bapp09.indd 791bapp09.indd 791 11/20/09 5:44:04 PM11/20/09 5:44:04 PM

Appendix I: Deprecated and Browser-Specifi c Markup

792

 < td > Cell One < /td >
 < td > Cell Two < /td >
 < /tr >
 < tr >
 < td > Cell Three < /td >
 < td > Cell Four < /td >
 < /tr >
 < /body >
 < /html >

 You can see this page in Figure I - 8.

Figure I-8

 The page has a very light gray background color specified on the < body > element. The table then has a
background color, which you can see on the bottom row and all around the edges of the table. This is the
default color for the table. Then you can see that the bgcolor attribute is used both on the < th >
elements (the table headings) and the following < tr > element that contains the first row.

 The preferred method of changing background colors now is to use the background - color
property in CSS.

 The background Attribute
 The background attribute allowed you to specify a background image for the whole page, and its value
should be the URL to the background image (which can be an absolute or relative URL). Netscape and
Microsoft also allowed this attribute to be used on tables to create a background image for the tables.

 Here you can see an example of the background attribute being used (ai_eg09.html):

 < html >
 < head >
 < title > Example of background Attribute < /title >
 < /head >
 < body background=”images/background_large.gif” bgcolor=”#f2f2f2” >
 < h2 > Example of the background Attribute < /h2 >
 < /body >
 < /html >

bapp09.indd 792bapp09.indd 792 11/20/09 5:44:04 PM11/20/09 5:44:04 PM

Appendix I: Deprecated and Browser-Specifi c Markup

793

 Note that the bgcolor attribute has also been used on the < body > element, which will be used if the
image cannot be found. You can see the result of this example in Figure I - 9.

Figure I-9

 Formatting
 The next set of elements and attributes help you format and position elements and their content on the page.

 The < center > Element
 The < center > element was introduced by Netscape to allow authors to center content on a page.
Anything between the opening and closing < center > tags will be centered horizontally in the middle of
the page or the containing element. It was added to the HTML 3.2 specification and deprecated in HTML 4.

 The following is an example of how the < center > element was used. The example also contains a
table because of the interesting way in which tables are dealt with inside a < center > element
(ai_eg10.html).

 < body >
 < h2 > Example of the & lt;center & gt; Element < /h2 >
 < center >
 Anything inside a & lt;center & gt; element is centered on the page, or within
 its containing element. < br / > < br / >
 < table width=”600” border=”1” >
 < tr >
 < td > Cells whose content is written inside a & lt;center & gt; will be
 centered within the cell, like the one to the right. < /td >
 < td > < center > This cell’s content should be centered. < /center > < /td >
 < /tr >
 < tr >
 < td > < center > This cell’s content should be centered. < /center > < /td >
 < td > Cells whose content is written inside a & lt;center & gt; will
 be centered within the cell, like the one to the left. < /td >
 < /tr >
 < /table >
 < /center >
 < /body >

bapp09.indd 793bapp09.indd 793 11/20/09 5:44:05 PM11/20/09 5:44:05 PM

Appendix I: Deprecated and Browser-Specifi c Markup

794

 In this example (see Figure I - 10), you can see how the < center > tag (just after the < h1 > element) centers
the content of the rest of the page. Interestingly, it centers any text on the page, and the table itself, but it
does not center the text in the cells unless they contain < center > elements inside the < td > elements.
(The table in this example has been given a border using the border attribute to illustrate where its
edges lie.)

Figure I-10

 The preferred method of aligning text content is to use CSS properties such as text - align .

 The align Attribute
 The align attribute is used with many elements to indicate positioning of an element within the
browser or its containing element. It was deprecated in HTML 4.01.

 The possible values for the align attribute are shown in the table that follows. Note that the value
 justify works with text only, and that top , middle , and bottom are less supported than left , right ,
and center .

 Value Purpose

 left Aligns element with the left side of the page or containing element

 right Aligns element with the right side of the page or containing element

 center Centers the element within the page or containing element

 justify Justifies words across the page or containing element so that the left and right side of
the text touches the container

 top Aligns element with the top of the browser window or containing element

 middle Vertically aligns element in the middle of the browser window or containing element

 bottom Aligns element with the bottom of the browser window or containing element

bapp09.indd 794bapp09.indd 794 11/20/09 5:44:06 PM11/20/09 5:44:06 PM

Appendix I: Deprecated and Browser-Specifi c Markup

795

 Here are the elements that could carry the align attribute:

 < caption > < applet > < iframe > < img > < input > < object > < legend > < table > < hr >
 < div > < h1 > < h2 > < h3 > < h4 > < h5 > < h6 > < p >

 The following code contains a few examples of how the align attribute can be used (ai_eg11.html):

 < body >
 < h2 align=”center” > Example of the align Attribute < /h2 >

 < table width=”600” align=”center” border=”1” >
 < tr >
 < td align=”left” > This cell’s content should be left-aligned. < /td >
 < td align=”right” > This cell’s content should be right-aligned. < /td >
 < /tr >
 < tr >
 < td align=”center” > This cell’s content should be centered. < /td >
 < td width=”300” align=”justify” > This cell’s content should be
 justified, but it needs to spread across more than one line to
 show it working. < /td >
 < /tr >
 < /table >
 < /body >

 You can see here that the < h1 > and < table > elements are both centered, and then each cell in the table
uses a different kind of alignment.

 In order for text to be justified, it needs to wrap onto more than one line (which is why that < td >
element carries a width attribute in this example). The last line of a justified paragraph does not have to
stretch to the left and right borders of the browser or its containing element as the other lines do.

 Figure I - 11 shows what this page looks like.

Figure I-11

 The preferred method of aligning text and inline elements in CSS is to use the text - align and
 vertical - align properties, and for block - level elements, the float property.

bapp09.indd 795bapp09.indd 795 11/20/09 5:44:07 PM11/20/09 5:44:07 PM

Appendix I: Deprecated and Browser-Specifi c Markup

796

 The width Attribute
 The width attribute sets the width of an element in pixels. While we still use this attribute on the
and <object> elements, it also used to be seen on many other elements, in particular on tables, and
<div> elements.

 Here you can see an example of the width attribute on a table and an < hr / > element
(ai_eg12.html):

 < body >
 < h2 > Example of the width Attribute < /h2 >

 < table width=”600” border=”1” >
 < tr >
 < td width=”200” > This cell should be 200 pixels wide. < /td >
 < td width=”400” > This cell should be 400 pixels wide. < /td >
 < /tr >
 < tr >
 < td width=”200” > This cell should be 200 pixels wide. < /td >
 < td width=”400” > This cell should be 400 pixels wide. < /td >
 < /tr >
 < /table >
 < br / > < br / >
 < hr width=”300” / >
 < /body >

 Figure I - 12 shows what this looks like in a browser.

Figure I-12

 The preferred method of setting the width for these elements is the width property in CSS.

bapp09.indd 796bapp09.indd 796 11/20/09 5:44:07 PM11/20/09 5:44:07 PM

Appendix I: Deprecated and Browser-Specifi c Markup

797

 The height Attribute
 The height attribute sets the height of an element in pixels. While we still use this attribute on the
and <object> elements, it also used to be seen on many other elements, such as the < th > , < td > , and
 < applet > elements. Here you can see the height attribute used on the < td > element (ai_eg13.html):

 < body >
 < h2 > Example of the height Attribute < /h2 >

 < table width=”600” border=”1” >
 < tr >
 < td width=”300” height=”300” > This cell should be 300 pixels
 high. < /td >
 < td width=”300” height=”300” > This cell should be 300 pixels
 high. < /td >
 < /tr >
 < /table >

 < /body >

 As you can see from Figure I - 13, these table cells are square.

 The preferred method of setting the height for these elements is the height property in CSS.

Figure I-13

 The vspace Attribute
 The vspace attribute specifies the amount of white space or padding that should appear above or below
an HTML element. Its value is given in pixels.

bapp09.indd 797bapp09.indd 797 11/20/09 5:44:07 PM11/20/09 5:44:07 PM

Appendix I: Deprecated and Browser-Specifi c Markup

798

 The following example shows how the vspace attribute on the < img > element makes sure that there are
20 pixels above and beneath the image to separate it from the text (ai_eg14.html):

 < body >
 < h2 > Example of the vspace Attribute < /h2 >

 < p > Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

 < img src=”images/logo_small.gif” alt=”wrox logo” vspace=”20” border=”1” / >

 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum. < /p >

 < /body >

 You can see the result in Figure I - 14.

Figure I-14

 This has been replaced by the padding and margin properties in the CSS box model, and could also be
reproduced with the border property in CSS.

bapp09.indd 798bapp09.indd 798 11/20/09 5:44:07 PM11/20/09 5:44:07 PM

Appendix I: Deprecated and Browser-Specifi c Markup

799

 The hspace Attribute
 The hspace attribute is the horizontal equivalent of the vspace attribute and ensures that there is
padding or white space to the left and right of an element.

 Here you can see that the hspace attribute is used to create 40 pixels of padding to the left and right of
the image (ai_eg15.html):

 < body >
 < h2 > Example of the hspace Attribute < /h2 >

 < p > < img src=”images/logo_small.gif” alt=”wrox logo” hspace=”40” border=”1” / >
 There should be 40 pixels between the image and the edge of the window, and
 another 40 pixels between the edge of the image and this text. < /p >

 < /body >

 You can see the result in Figure I - 15.

 This has been replaced by the padding and margin properties in the CSS box model.

Figure I-15

 The clear Attribute (on < br / > element)
 The clear attribute used on a line break element < br / > indicates how the browser should display the
line after the < br / > element. The clear attribute can take the values left , right , all , and none . Its
use is best explained by way of an example (ai_eg16.html):

 < body >
 < h2 > Example of the clear Attribute < /h2 >
 < img src=”images/logo_small.gif” alt=”wrox logo” align=”left” border=”1”/ >
 The text after this image will be displayed next to the image and wrap
 to the next line until you see the line break element. < br clear=”left” >
 Now it should be on a new line underneath (not next to) the image.
 < /body >

bapp09.indd 799bapp09.indd 799 11/20/09 5:44:08 PM11/20/09 5:44:08 PM

Appendix I: Deprecated and Browser-Specifi c Markup

800

 If the clear attribute is used on a < br / > element, then the text or element that follows it will
not be displayed until there is nothing next to the border indicated as a value of the clear attribute.
In this case, because the < br / > element has a clear attribute whose value is left , the text after
the < br / > element will not be shown until there is nothing to the left of it (within the containing
element or box). In this example, the text does not continue until after the image, which was to the
left of this text.

 You can see the result in Figure I - 16 — and note how the text continues under the image. If it were not
for the clear attribute, this text would simply appear on the next line.

Figure I-16

 If the value all is given, there must not be anything to the left or right of the text or element.

 CSS has its own clear property to replace this attribute.

 Links
 You may have noticed on some web sites that the colors of links change when you have visited a page
or when you click the link. As you can see in the table that follows, there are three attributes that
allow you to change the colors of links: alink , link , and vlink . Each should be specified on the
 < body > element.

 Attribute Use Values

 alink Specify the color of an active link or selected link. A hex code or color name

 link Specify the default color of all links in the document. A hex code or color name

 vlink Specify the color of visited links. A hex code or color name

 The following is an example of the how these attributes affect the colors of links (ai_eg17.html):

 < body alink=”333399” link=”#ccffff” vlink=”#669999” >
 < h2 > Example of the Link Attribute < /h2 >
 < p > This example contains some links, which you should play with to see
 how they behave: < /p >

bapp09.indd 800bapp09.indd 800 11/20/09 5:44:09 PM11/20/09 5:44:09 PM

Appendix I: Deprecated and Browser-Specifi c Markup

801

 < ul >
 < li > The < a href=”http://www.wrox.com/” > Wrox Web site < /a > tells you
 about existing and forthcoming Wrox books. < /li >
 < li > The < a href=”http://www.w3.org/” > W3C Web site < /a > is the home of
 the XHTML and CSS recommendations. < /li >
 < li > The < a href=”http://www.google.com/” > Google Web site < /a > is a
 popular search engine. < /li >
 < /ul >
 < /body >

 In this example, there are different shades of blue for links that have not yet been visited and those that
the user has already been to. This helps users navigate a site because they can identify links they have
already visited (which helps them find a page again).

 Usually the colors for links that have and have not been visited are quite similar. This is the case with the
links you can see in Figure I - 17 (which may be hard to distinguish in the grayscale used in this book).
For a better idea of how this example works, try it out for yourself (it is available for download along
with the rest of the code for this appendix).

Figure I-17

 Lists
 Several elements and attributes relating to lists have been deprecated or are no longer permitted,
from attributes that helped order and style lists to other elements that created visual effects
similar to lists.

bapp09.indd 801bapp09.indd 801 11/20/09 5:44:09 PM11/20/09 5:44:09 PM

Appendix I: Deprecated and Browser-Specifi c Markup

802

 The start Attribute
 The start attribute is used on the < ol > element of ordered lists to indicate at what number a browser
should start numbering a list. The default is, of course, 1. The following example shows a list starting at
number 4 (ai_eg18.html):

 < body >
 < ol start=”4” >
 < li > This list should start at four < /li >
 < li > Therefore this item should be five < /li >
 < li > And this item should be six < /li >
 < /ol >
 < /body >

 You can see the result of this in Figure I - 18.

Figure I-18

 This has been replaced by CSS counters and the counter - reset property. However, browsers were
slow to support CSS counters, so you will probably have to use this attribute if you want a list to start
with a number other than 1 and to work in a wide range of browsers.

 The value Attribute
 The value attribute was designed to be used on the < li > element to indicate what number that line item
should be in numbered lists. It therefore allows you to create numbered lists that leave out numbers or
are out of sequence. Here you can see an example (ai_eg19.html):

 < body >
 < ol >
 < li value=”3” > one < /li >
 < li value=”7” > two < /li >
 < li value=”1” > three < /li >
 < li value=”9” > four < /li >
 < li value=”4” > five < /li >
 < /ol >
 < /body >

 You can see the result and how the points are numbered out of sequence in Figure I - 19.

bapp09.indd 802bapp09.indd 802 11/20/09 5:44:09 PM11/20/09 5:44:09 PM

Appendix I: Deprecated and Browser-Specifi c Markup

803

 The type Attribute
 The type attribute controls the type of bullet point or numbering (also known as the marker) that is used
on lists. This attribute can be used on the < li > , < ol > , and < ul > elements.

The following table shows different types of markers for bullet points and numbering systems:

 Value Description

 disc A solid circle

 square A solid square

 circle An empty circle

 1 Numbers 1, 2, 3, 4

 a Lowercase letters a, b, c, d

 A Uppercase letters A, B, C, D

 i Lowercase Roman numerals i, ii, iii, iv

 I Uppercase Roman numerals I, II, III, IV

 The default for unordered lists is the disc, and the default for ordered lists is 1, 2, 3, and so on. Here you
can see these values for the type attribute in use (ai_eg20.html):

 < body >
 < ul >
 < li type=”disc” > Disc bullet point < /li >
 < li type=”square” > Square bullet point < /li >
 < li type=”circle” > Circle bullet point < /li >
 < /ul >

 < ol >
 < li type=”1” > Numbers < /li >
 < li type=”a” > Lowercase letters < /li >

Figure I-19

bapp09.indd 803bapp09.indd 803 11/20/09 5:44:10 PM11/20/09 5:44:10 PM

Appendix I: Deprecated and Browser-Specifi c Markup

804

 < li type=”A” > Uppercase letters < /li >
 < li type=”i” > Lowercase Roman numerals < /li >
 < li type=”I” > Uppercase Roman numerals < /li >
 < /ol >

 < /body >

 You can see each of these in Figure I - 20.

Figure I-20

 The < dir > and < menu > Elements
 The < dir > and < menu > elements were added in the HTML 2.0 specification, and are used to create
unordered bulleted lists and nested lists. They are almost exactly the same as each other and the
< ul > element (ai_eg21.html).

 < dir >
 < li > Item 1 < /li >
 < li > Item 2 < /li >
 < li > Item 3 < /li >
 < li > Item 4 < /li >
 < dir >
 < li > Item 4.1 < /li >
 < li > Item 4.2 < /li >
 < li > Item 4.3 < /li >
 < li > Item 4.4 < /li >
 < /dir >
 < /dir >

 < menu >
 < li > Item 1 < /li >
 < li > Item 2 < /li >

bapp09.indd 804bapp09.indd 804 11/20/09 5:44:11 PM11/20/09 5:44:11 PM

Appendix I: Deprecated and Browser-Specifi c Markup

805

 < li > Item 3 < /li >
 < li > Item 4 < /li >
 < menu >
 < li > Item 4.1 < /li >
 < li > Item 4.2 < /li >
 < li > Item 4.3 < /li >
 < li > Item 4.4 < /li >
 < /menu >
 < /menu >

 You can see the result of each of these elements in Figure I - 21.

Figure I-21

 The < dir > element was initially intended to list files in a directory, whereas the < menu > element was
devised for a menu of links and can therefore be displayed a little bit more compactly in some browsers
than the content of < ul > and < dir > elements. You should simply use the < ul > element instead of either
of these deprecated elements.

 Tables
 There are a few attributes that have been deprecated that were previously allowed on the < table >
element — notably the align , bgcolor , and width attributes, which you have already met, and also the
 nowrap attribute, which is covered next.

bapp09.indd 805bapp09.indd 805 11/20/09 5:44:11 PM11/20/09 5:44:11 PM

Appendix I: Deprecated and Browser-Specifi c Markup

806

 The nowrap Attribute
 The nowrap attribute used to be available on the < td > and < th > elements, and prevented the text from
wrapping within that table cell. For example (ai_eg22.html):

 < table width=”200” >
 < tr >
 < td nowrap > This text should not wrap even though the table is only
 supposed to be 200 pixels wide. < /td >
 < /tr >
 < /table >

 As you can see in Figure I - 22, although the table is supposed to be only 200 pixels wide, it actually
stretches for as long as the line — the text does not wrap.

Figure I-22

 The replacement for the nowrap attribute is the white - space property in CSS with the value
of nowrap .

 Miscellaneous Attributes
 This section describes a selection of other elements and attributes that have been deprecated but do not
easily fit into one of the preceding sections.

 The border Attribute
 The border attribute specifies the thickness of a border around an element in pixels. For example, here is
an < img > element with a border attribute (ai_eg23.html):

 < body >
 < img src=”images/logo_small.gif” border=”4” alt=”wrox logo” / >
 < /body >

 You can see the result in Figure I - 23.

bapp09.indd 806bapp09.indd 806 11/20/09 5:44:11 PM11/20/09 5:44:11 PM

Appendix I: Deprecated and Browser-Specifi c Markup

807

 This attribute has been replaced by the border - width property of CSS.

 You are most likely to see this attribute used with a value of 0 on images that are links. This is because IE
will, by default, draw a single - pixel blue border around any image that is a link. Therefore, by giving the
 border attribute a value of 0 it is possible to remove this extra line. This can also be removed using the
 border property in CSS.

 The compact Attribute
 The compact attribute tells the browser to show text with less height between lines than normal.
It does not take a value (although if it were used with Transitional XHTML 1.0, it would require a value
of compact).

 The default value is false . This attribute has been replaced by the line - height property in CSS.

 The language Attribute
 The language attribute was most commonly used on the < script > element to indicate what scripting
language is being used. For example:

 < script language=”JavaScript” >

 The language attribute has been replaced with the type attribute, whose value is a MIME type (for
example type= ” text/JavaScript ”).

 The version Attribute
 The version attribute specifies which version of the HTML DTD the document is written according to.

 This has been dropped because it duplicates information that should be provided by the DOCTYPE
declaration.

 The < applet > Element
 The < applet > element was used to embed Java applets into an HTML page. The element and its
attributes were introduced in HTML 3.2 and have been replaced by the < object > element, which was
discussed in Chapter 3.

Figure I-23

bapp09.indd 807bapp09.indd 807 11/20/09 5:44:12 PM11/20/09 5:44:12 PM

Appendix I: Deprecated and Browser-Specifi c Markup

808

 The table that follows shows the attributes that < applet > can carry.

 Attribute Use

 code The filename of the Java applet ’ s compiled code. The path to the applet file specified
by the code is relative to the codebase of the applet (not a URL or absolute path).

 codebase Specifies the directory for the Java applet code. If the codebase attribute is not
specified, the applet files are assumed to be in the same directory as the HTML file.

 object Specifies the filename of the Java applet ’ s compiled code that stores a serialized
representation of an applet ’ s state. The path to the file should be relative only to the
 codebase of the applet (not a URL or absolute path).

 name Specifies the name of the element so that scripts can communicate with it (only
deprecated for use with the < applet > element).

 archive A space - delimited set of URLs with multiple Java classes or other resources that will
be loaded into the browser to improve applet performance (only deprecated for use
with the < applet > element).

 width The width of the applet in pixels.

 height The height of the applet in pixels.

 The < embed > Element
 The < embed > element was used before the < object > element was introduced into HTML as a way of
including a file that required a special plug - in application. For example, it was used to include Flash
animations in pages.

 Once the < object > element had been introduced into HTML it was still used as a way of ensuring that
plug - ins were implemented across different browsers because the support for the < embed > element was
poor in IE; you will still often see it in use today (you can refer to Chapter 3 to see examples of how the
 < embed > element was used inside the < object > element).

 The object to be included would be identified using the src attribute — just like an image. You indicate
the type of content to be included using the type attribute, whose value is a MIME type for that resource
(or just leave the browser to work it out itself).

 The attributes that the < embed > element can take are listed in the table that follows:

 Attribute Use

 align Specifies the alignment of the object within the page or its containing element.

 border Specifies the width of the border for the object (in pixels).

 height Specifies the height of the object (in pixels).

bapp09.indd 808bapp09.indd 808 11/20/09 5:44:12 PM11/20/09 5:44:12 PM

Appendix I: Deprecated and Browser-Specifi c Markup

809

 Attribute Use

 hidden Hides the object from the user (making it 0 pixels wide and 0 pixels high). This is
sometimes used for audio.

 hspace Specifies the horizontal space that should be left to the left and right of the object
(in pixels).

 name As with the name attribute on other elements, this is used to identify that element.

 palette In IE, the value is a pair of hexadecimal color values separated by a vertical bar.
The first is the foreground color and the second is the background color. In
Netscape, the palette attribute is either foreground or background, indicating
which palette of window system colors the plug - in should use.

 pluginspage Specifies the URL of a Web page from which you can download the plug - in
required to use the file (Netscape only).

 src The URL of the object you want to embed.

 type Indicates the MIME type of the object to be included in the page (which
determines the plug - in used to view the object).

 units Allows you to change the units of measurement that indicate the height and width
of the embedded object from the default of pixels to the relative en unit (half of the
width of the text ’ s point size).

 vspace Specifies the amount of vertical space that should be left to the top and bottom of
the object (in pixels).

 width Specifies the width of the object (in pixels).

 The < embed > element can also carry attributes that are specific to the plug - in required to view them. You
should refer to the documentation for the particular plug - in you need to use for documentation on these
attributes, as there are too many to list here.

 If you are using Flash to include graphics in your pages, you will find that some versions of the publish-
ing tool give you the HTML code to include Flash animations in your pages, which not only uses the
 < object > element to include the animation in the page, but also provides the < embed > element for
any browser that is older and does not understand the < object > element.

 The < isindex > Element
 The < isindex > element was introduced in HTML 2.0 to create a single - line text field without the need
for a < form > element (the user ’ s entry would be sent using the HTTP get method back to the same page
that contains the < isindex > element). When the user presses the Enter (or Return) key, the form is
submitted and spaces are replaced with a + character. (A program or page on the server would then have
to respond to, or act upon, the data sent.)

 When it is displayed, the textbox will have a horizontal rule above and beneath it.

bapp09.indd 809bapp09.indd 809 11/20/09 5:44:12 PM11/20/09 5:44:12 PM

Appendix I: Deprecated and Browser-Specifi c Markup

810

 While you can use several < isindex > tags, only the last one with content will be sent to the server. It
can also carry the prompt attribute, which allows you to provide a hint to users as to what they should
be entering into the box. For example, here is an < isindex > element used to create a search box
(ai_eg24.html):

 < body >
 < isindex prompt=”search” >
 < /body >

 You can see the result of this with its horizontal lines in Figure I - 24, although you could not use it with
an HTML page because HTML has no way to process the value the user entered (it would need to go to a
page that contained a server - side script or program to interpret the content).

Figure I-24

 The < nobr > Element
 Firefox, Netscape, and IE all support an extension to the XHTML recommendation that prevents line
breaks: the < nobr > element. (This retains the normal style of its containing element and does not result
in the text being displayed in a monospaced font like the < pre > element does.) If you choose to use the
 < nobr > element, it can contain another child element called < wbr > to indicate where a break can occur
within a < nobr > element, although this is an extension as well.

 IE - Specific Elements
 The table that follows lists five elements that IE supports that are not part of the HTML recommendations,
but which you might still come across. You should generally avoid these elements unless you are
providing different pages for different browsers or you know all your visitors will be using IE.

 Element IE Purpose

 < bgsound > 2 Plays a sound file in the background (replaced by the < object > element)

 < marquee > 2 Renders text in a scrolling fashion

 < ruby > 5 Provides pronunciation support

 < rt > 5 Provides pronunciation support

 < xml > 5 Creates an XML data island, embedding an XML recordset into the page

bapp09.indd 810bapp09.indd 810 11/20/09 5:44:13 PM11/20/09 5:44:13 PM

Appendix I: Deprecated and Browser-Specifi c Markup

811

 IE - Specific Attributes
 The following table lists IE - specific attributes:

 Attribute Purpose

 atomicselection Specifies whether the grouping element (such as < div > and < span >) and its
content must be selected as a whole.

 balance The balance of audio between the left and right speakers (used with
 < bgsound >).

 behavior Specifies how content of a < marquee > element scrolls.

 bgproperties Sets a fixed background image for a page; also known as a watermark.

 bordercolordark When cells in a table are rendered with 3D borders, this attribute specifies
the darker of the colors used. Used on the < table > element.

 bordercolorlight When cells in a table are rendered with 3D borders, this attribute specifies
the lighter of the colors used. Used on the < table > element.

 bottommargin Specifies the bottom margin for the page in pixels. Used on the < body >
element.

 contenteditable Determines whether the content of a grouping element can be edited by
a user.

 dataformatas Sets or retrieves whether data contained by the grouping element should be
displayed as text or HTML.

 datafld Used in databinding when the browser is connected to a server - side database
(see a reference on ASP/ASP.NET for more information).

 datasrc Used in databinding when the browser is connected to a server - side database
(see a reference on ASP/ASP.NET for more information).

 datapagesize Used in databinding when the browser is connected to a server - side database
(see a reference on ASP/ASP.NET for more information).

 direction Indicates the direction of scrolling text within a < marquee > element.

 dynsrc Used for embedding movies into client - side caches.

 framespacing Specifies the amount of space between frames in a frameset in pixels.

 hidefocus Used to prevent a visible line showing around an element when it
is in focus.

 leftmargin Specifies the left margin for the page in pixels. Used on the < body >
element.

(continued)

bapp09.indd 811bapp09.indd 811 11/20/09 5:44:13 PM11/20/09 5:44:13 PM

Appendix I: Deprecated and Browser-Specifi c Markup

812

 Attribute Purpose

 rightmargin Specifies the right margin for the page in pixels. Used on the < body >
element.

 loop Specifies the number of times the content of a < marquee > element
should scroll.

 lowsrc Allows you to specify a low - resolution version of an image on an < img >
element that should be loaded first.

 scrolldelay Specifies the time delay in milliseconds between each drawing of the
 < marquee > element. (The default is that it is redrawn every 60
milliseconds.)

 topmargin Specifies the top margin for the page in pixels. Used on the < body > element.

 truespeed A Boolean attribute indicating whether the scrolldelay value should be
used. Default is false ; if true , the < marquee > element will use the values
that are indicated in the scrollamount and scrolldelay attributes. (Any
value under 60 milliseconds is ignored.)

 unselectable Indicates an element cannot be selected.

 volume Indicates the volume at which the content of a < bgsound > element should
be played, with values from – 10000 to 0 (default is 0, which is full
volume).

 Of particular note from this table are the topmargin and leftmargin attributes, which you might see
used on the < body > element of some pages; this prevents IE from adding a gap between the edge of the
browser window and the content.

 < body topmargin=”0” leftmargin=”0” border=”0” >

 You can safely use the topmargin and leftmargin attributes in Transitional XHTML, as Netscape and
other browsers should simply ignore the attributes they do not understand, although they would not be
valid as they are not part of the markup. (Validation is discussed in Chapter 13.) It would be preferable
to use the margin property in CSS instead of these attributes.

 IE - Specific CSS Styles
 The table that follows lists some CSS styles that are supported only by IE (and the version they were
introduced with). The layout - gri d properties are used with Asian languages that often employ page
layout for characters in order to format text using a one - or two - dimensional grid.

bapp09.indd 812bapp09.indd 812 11/20/09 5:44:14 PM11/20/09 5:44:14 PM

Appendix I: Deprecated and Browser-Specifi c Markup

813

 Property IE Purpose

 behavior 5 Was used to specify the URL of a behavior file, for a short lived
technology called DHTML behaviors.

 ime - mode 5 Allows input of Chinese, Japanese, and Korean characters when
used with an input method indicator.

 layout - grid 5 Shorthand for other layout - grid properties.

 layout - grid - char 5 Specifies the size of the character grid for rendering text (similar to
 line - height property).

 layout - grid -
 charspacing

 5 Specifies spacing between characters (similar effect to
line - height).

 layout - grid - line 5 Specifies grid line value used to render text (similar to
 line - height).

 layout - grid - mode 5 Specifies whether the grid uses one or two dimensions.

 layout - grid - type 5 Specifies the type (if any) of page layout grid to be used when
rendering an element ’ s content.

 line - break 5 Specifies rules for when a line should break in Japanese.

 text - autospace 5 Controls the autospacing and narrow space width adjustment
behavior of text; of particular use with ideographs used in Asian
languages.

 text - justify 5 Justifies text in an element.

 text - kashida -
 space

 5.5 Controls the ratio of kashida expansion to white - space expansion
when justifying text in an element. A kashida is a typographic effect
that justifies lines of text by elongating certain characters in specific
points; often used in Arabic.

 text - underline -
 position

 5.5 Specifies how far an underline should appear beneath the text when
the text - decoration property is used.

 word - break 5 Controls line breaking within words; of particular use with
documents containing multiple languages.

 word - wrap 5.5 Controls where a long word should break if it is too large for its
containing element.

 writing - mode 5.5 Controls horizontal and vertical direction of flow of content
in object.

 zoom 5.5 Specifies magnification scale of an object.

bapp09.indd 813bapp09.indd 813 11/20/09 5:44:14 PM11/20/09 5:44:14 PM

Appendix I: Deprecated and Browser-Specifi c Markup

814

 There are also several CSS styles that are particular to the presentation of a scrollbar. It does not hurt
to add these properties to any CSS style sheet, as browsers that do not understand these properties
will just ignore them. All colors can be specified as a color name, hex code, or RGB value (as with all
colors in CSS).

 Property IE Purpose

 scrollbar - 3dlight - color 5.5 Color of top and left edges of scroll box and scroll arrows
on the scrollbar

 scrollbar - arrow - color 5.5 Color of the arrows on a scroll arrow

 scrollbar - base - color 5.5 Color of main elements of a scrollbar, which includes the
scroll box, track, and scroll arrows

 scrollbar - darkshadow -
 color

 5.5 Color of the gutter of a scrollbar

 scrollbar - face - color 5.5 Color of the scroll box and scroll arrows of a scrollbar

 scrollbar - highlight -
 color

 5.5 Color of the top and left edges of the scroll box and scroll
arrows of a scrollbar

 s crollbar - shadow - color 5.5 Color of the bottom and right edges of the scroll box and
scroll arrows of a scrollbar

bapp09.indd 814bapp09.indd 814 11/20/09 5:44:15 PM11/20/09 5:44:15 PM

Index

In
de

x

Symbols
“, 753
&, 753
*, 277

required information, 469
wildcards, 193

../, 65
<, 753
<!--, 40
>, 753

A
<a>, 7–8, 251, 678–679

attributes, 70–76
href, 56
keywords, 631
links, 55, 66

abbr
<td>, 146
<th>, 146

<abbr>, 25, 679
above, frame, 142
above the fold, 366
absbottom, 84
absmiddle, 84
absolute, position, 342,

344–345
absolute lengths, 739
absolute size

CSS, 284
font-size, 259, 714

absolute URLs, 63–65
JavaScript, 485

accept, 174
file select boxes, 193

accept-charset, 174
access keys, 204–205

accessibility, 631–635
tables, 160–164
testing, 598–599

accesskey, 70–71
buttons, 181
checkboxes, 186
radio buttons, 187
<textarea>, 179

<acronym>, 25, 679
accessibility, 632

action, <form>, 171,
493–494

:active, 330
activemodules.com, 618
ActiveX, 106
actors, 359
<address>, 24–25, 679

accessibility, 632
adjacent sibling selector,

class, 279–280
Adobe. See also Flash

Illustrator, 599
Image Ready, 100
Photoshop, 103, 599

Adwords, Google, 587
:after, 331
align, 13–14, 83–84,

794–796, 808
bottom, 794
center, 14, 794
clear, 140–141
<iframe>, 236
justify, 794
left, 14, 794
middle, 794
right, 14, 144, 794
tables, 139–141
<td>, 146
<th>, 146

top, 794
<tr>, 144

alink, 800
alinkColor, 492
all, 252
content, 591
rules, 143

alphabetic characters,
Regular Expressions, 551

alphanumeric characters,
Regular Expressions, 551

alt, 80–81, 90, 93
accessibility, 633
background-image, 312
buttons, 182
text, 258

alt =”description of
image or text on
image”, 450

American Standard Code for
Information Interchange
(ASCII), 749

analytics software, 613
anchors, 66. See also

destination anchors;
source anchors

DOM, 489
animation

Flash, 104–113
GIF, 100

APIs, HTML 5, 640
applet, DOM, 489
<applet>, 680, 807–808
application, MIME, 777–782
application/x-www-

form-urlencoded, 173
archive, 176, 808
area, DOM, 489
<area>, 90–94, 681

Index

bindex.indd 815bindex.indd 815 11/20/09 5:46:17 PM11/20/09 5:46:17 PM

816

arguments, 493
arithmetic operators, 504
arrays, 525–526
<article>, 638
ascenders, leading, 428
ASCII. See American Standard

Code for Information
Interchange

<aside>, 638
aspect value, fonts, 263
ASP.NET, 620–624

e-mail addresses, 58
forms, 167

assignment operators,
504–505

atomicselection, 811
atomz.com, 453, 619
atrr(xx), content, 332
attributes
<a>, 70–76
elements, 7–8
groups, 47–51
HTML, 636
internationalization,

49–51
name, 8
<option>, 193
<select>, 193
selectors, 281–282
value, 8
XHTML, 43, 636

audio, 118–123
classid, 120–121
MIME, 774–775
<object>, 119–121

<audio>, 105
HTML 5, 639

aural, 252
author, 592
auto, table-layout,

327–328
auto-completion

text, 582–584
YUI, 582–584

auto-tabbing, 557–558
AVI, 114–115
axis
<td>, 146

<th>, 146
axis character, 145

B
, 20, 681
Back button, frames, 219
background, 300, 302,

316–317, 720, 792–793
background(s)

CSS, 309–317, 719–722
HTML, 791–793
page layout, 405–407

background-attachment,
316, 720

background-color, 141,
247, 720

<body>, 310
links, 308
tables, 320
three-column layouts, 396

background-image,
310–312, 392, 721

alt, 312
tables, 320

background-position,
314–315, 721

background-positionX,
722

background-positionY,
722

background-repeat,
312–314, 394, 722

backups, 602–603
/bad/, 547
/bad/g, 547
/bad/gi, 547
balance, 811
bandwidth, 603
<base>, 46, 66, 230–231,

681
<basefont>, 682, 788–789
baseline, 84
valign, 145
vertical-align,

266
baseline grids

borders, 433

line-height, 431–432
margin-bottom, 432
margin-top, 432
padding, 433
typography, 430–433

basic text formatting, 10–19
basket, 483
/\bbad\b/gi, 547
bcc, e-mail, 77
<bdo>, 682
:before, 331
behavior, 811, 813
below, frame, 142
bgcolor, 492, 791–792

tables, 141
<td>, 147
<th>, 147
<tr>, 144

bgproperties, 811
<bgsound>, 810
<big>, 22, 682
binary operators, 503
black, hexcode, 742
Blackberry, 417
_blank, 8, 230
target, 73

blink, text-decoration,
267

block, 331
block-level elements, 16,

41–42, 287–288
, 38
<ins>, 38
Strict XHTML 1.0, 288
Transitional XHTML, 288

<blockquote>, 26–27, 682
cite, 27

blogger.com, 617
blogs, 617–618
blue, hexcode, 742
blueprintcss.org, 407
body, e-mail, 77
<body>, 3, 6, 682–683

accessibility, 631
background-color, 310
CSS, 247
DOM, 491
font size, 424

arguments

bindex.indd 816bindex.indd 816 11/20/09 5:46:37 PM11/20/09 5:46:37 PM

817

In
de

xcascading style sheets (CSS)

<frameset>, 216–217
grids, 394
<head>, 47
JavaScript, 485
keywords, 628
<meta>, 588
<noframes>, 228
padding, 291
universal selector, 277

body and content, web pages,
383

bold, 20
page layout, 387

bold, font-weight, 261
bolder, font-weight, 261
Boolean operators, 506, 529
border, 84, 85, 176, 222–223,

722, 806–807, 808
box model, 285, 288–291
<caption>, 322
frame, 142
images, 498
<table>, 322
tables, 141, 320
three-column layouts, 396

border(s)
baseline grids, 433
CSS, 722–724
images, 450

border-collapse,
323–324, 735

border-color, 288–289,
724

bordercolordark, 811
bordercolorlight, 811
border-spacing, 324, 735
border-style, 289–290,

723
border-width, 290, 723

percentage, 290
both, clear, 350
bottom, 84, 731
align, 794
background-position,

315
box offset, 342
caption-side, 326
<iframe>, 236

percentage, 297
valign, 145
vertical-align, 266

bottommargin, 811
box, frame, 142
box model

CSS, 285–299
Internet Explorer Box Model

bug, 299, 391–392
box offset, 342–346

percentage, 343
boxText, 300, 302

, 15–16, 683
clear, 799–800
paragraphs, 16

braille, 252
branding, 386, 390
breadcrumbs, menus, 445
break, 510
Browser Object Model, 491
browser versions, testing, 599
browsercam.com, 599
browserlab.adobe.com,

599
browsershots.org, 599
browser-specific markup,

783–814
built-in objects, JavaScript,

501, 516–528
bulleted lists, 31
<button>, 183, 683–684
buttons. See also radio

buttons; submit buttons
forms, 180–183, 495
images, 182

C
c, 119–121
cache, 591–592
calendars, YUI, 581–582
cameras, mobile devices, 409
CampaignMonitor.com, 619
canvas, HTML 5, 640
capitalize, text-

transform, 269
<caption>, 160, 684

accessibility, 633

border, 322
font-weight, 322
tables, 151, 320
text-align, 322

caption-side, 326, 735
cascading style sheets (CSS),

243–306
absolute size, 284
accessibility, 634
advantages of, 253
backgrounds, 309–317,

719–722
border, 722–724
box model, 285–299
classification, 736–738
dimensions, 724–726
Flash movies, 111
fonts, 255–263, 713–716
forms, 473
IE, 812–814
internationalization,

738–739
length, 283–284, 739
links, 308–309
lists, 317–320, 728–730
margins, 726–727
MIME, 251
normal flow, 341
outline, 734
outlines, 328–330
padding, 727
paragraphs, 27
percentage, 284
position, 730–734
positioning schemes,

340–354
properties, 254–255,

713–739
pseudo-classes, 273–274,

330–335
px, 284
relative size, 283–284
Reset, 429–430
selectors, 276–282
sprites, 451–452
tables, 320–328, 735–736
testing, 594–596
text, 716–719

bindex.indd 817bindex.indd 817 11/20/09 5:46:38 PM11/20/09 5:46:38 PM

818

cascading style sheets
(CSS) (continued)

text control, 255–263
text formatting, 264–273
typeface, 255–263
XHTML, 245–248, 307–356

case conversion, 560
cc, e-mail, 77
CDATA

HTML, 636
sections, 486
XHTML, 637

cellpadding
percentage, 141
pixels, 141
tables, 141–142

cellspacing
percentage, 142
px, 142
tables, 142

center
align, 14, 144, 794
background-position,

315
text-align, 265

<center>, 684, 793–794
char
align, 144
<td>, 147
<th>, 147
<tr>, 144–145

character encoding, 592–593,
749–751

character entities, special
characters, 39–40

charoff
<td>, 147
<th>, 147
<tr>, 145

charset, 71
@charset, 340
checkboxes, 168

checking and unchecking,
562–563

forms, 183–185, 460, 461,
495

JavaScript, 554–556
onsubmit, 555–556

checked
checkboxes, 185–186
form elements, 495
radio buttons, 186

child
document, 488
elements, 5
margin, 292
window, 577–578

child selectors, 278
class, 279–280

chk, 185
chunking, typography,

436–437
circle, 808
shape, 92

cite, <blockquote>, 27
<cite>, 27–28

italics, 684
class, 48

adjacent sibling selector,
279–280

child selectors, 279–280
class selector, 277–278
code, 322
CSS, 246, 248
font-variant, 262
<p>, 257
selectors, 276
<td>, 322

class selector, 277–278
classid, 108, 110, 114, 176

audio, 120–121
classification, CSS, 736–738
clear, 16, 349–350, 736
align, 140–141

, 799–800
three-column layouts, 396

clear form, 173
client-side image maps, 90–94
clip, 733
close-quote, 334–335
content, 332

closing tags, 4–5
cloud platform, 604
cluster servers, 604
code, 808
class, 278, 322

CSS, 248
width, 322

<code>, 28–29, 684
accessibility, 632

codeBackground, 300, 302
codebase, 176, 808
codeForeground, 300–301
codeInText, 300–301
codetype, 176
col, scope, 148
<col>, 684–685
<colgroup>, 158
tables, 158

colgroup, scope, 148
<colgroup>, 685
<col>, 158
tables, 157

collapse, 323
color

accessibility, 633
forms, 472–473
gutter, 814
links, 492, 800–801
menus, 444, 448
mobile devices, 415
names and values, 741–747

color, 639, 785
links, 308
text, 264

cols
<frameset>, 220–222
percentage, 220
px, 220–221
rules, 143
<textarea>, 179

colspan, 160
tables, 151–153
<td>, 147
<th>, 147

columns
four-column layouts,

400–401
gutter, 376
<head>, 650
six-column layouts,

401–402
<style>, 650
tables, 136, 151–153

cascading style sheets (CSS) (continued)

bindex.indd 818bindex.indd 818 11/20/09 5:46:39 PM11/20/09 5:46:39 PM

819

In
de

x

three-column layouts,
394–397

two-column layouts,
398–400

columns grouping, tables, 157
combinators, 278
comma-delimited, 277
<command>, 638
comments, 40

JavaScript, 486–487
common events, 51
communities, 608
compact, 807
comparison operators, 505
complete, images, 498
composition, page layout,

374–380
compression, 99–101
concat(), 526
concatenation, 506
conditional statements, 501,

508–511
constraint, 575
containing elements, 81
content, 332–335
http-equiv, 591–593
<meta>, 588–591
name, 588–591

content management
systems, 621–624

content pages, 389
contenteditable, 811
contrast, typography, 437–440
control, 544
control.id, 545
coords, 71, 92–93
core attributes, 47–49

XHTML, 677–678
counters, 332–334
country codes, 767–769
create(), 575
credit card details, Regular

Expressions, 551
cross-document messaging,

HTML 5, 640
CSS. See cascading style

sheets

currency, Regular Expressions,
551

cursive, 258
cursor, 335–337
custom objects, 501
cuteftp.com, 605

D
\D, 548
\d, 548
dashed, border-style, 289
data, 177, 179
data centers, 603
data types, 529–530
datafld, 811
dataformaatas, 811
datapagesize, 811
datasrc, 811
date, 520–523, 639
datetime, 39, 639
datetime-local, 639
<dd>, 34, 320, 685
decimal numbers, Regular

Expressions, 551
declarations

CSS, 244
variables, 502

declare, 177
dedicated server, 604
default, shape, 92
definition lists, 33–34
, 10, 38–39, 685
deprecated attributes,

783–814
align, 794–796
<applet>, 807–808
background, 792–793
<basefont>, 788–789
bgcolor, 791–792
border, 806–807

, 799–800
<center>, 793–794
clear, 799–800
color, 800–801
compact, 807
CSS, 812–814
<dir>, 804–805

<embed>, 808–809
, 785–787
height, 797
hspace, 799
HTML, 791–793
IE, 810–814
<isindex>, 809–810
language, 807
links, 800–801
<listing>, 790–791
lists, 801–805
<menu>, 804–805
<nobr>, 810
nowrap, 806
<plaintext>, 790–791
<s>, 789
start, 802
<strike>, 789
<table>, 139–143
tables, 805–806
text, 787–788
type, 803–804
<u>, 790
value, 802–803
version, 807
vspace, 797–798
width, 796
<xmp>, 790–791

descendant selector, 278–279
descenders, leading, 428
description, name, 589
design, 421–479

forms, 456–475
mobile devices, 408–418
navigation, 440–454
tables, 454–456
typography, 422–440

destination anchors, 66
id, 67–70
name, 67–70
rev, 72
source anchors, 70

device detection, mobile
devices, 413

<dfn>, 26, 686
Digital Rights Management

(DRM), 119
dimensions, CSS, 724–726

dimensions, CSS

bindex.indd 819bindex.indd 819 11/20/09 5:46:39 PM11/20/09 5:46:39 PM

820

dir, 50
direction, 272
<meta>, 588
tables, 142

<dir>, 804–805
direction, 264, 272–273,

738, 811
directories, 55, 61–62

links, 64
disabled, 205–206

buttons, 181
checkboxes, 186
form elements, 495
JavaScript, 555–556
<option>, 193
radio buttons, 187
<select>, 193
text inputs, 558–559
<textarea>, 179

disc, 808
discussion boards, 618–619
disk space, 603
display, 331, 337, 737

hidden controls, 195
display advertising, 612
dithering, 98
<div>, 10, 638–639, 686

element grouping, 42–43
grids, 393–394
JavaScript, 111
<label>, 465
page layout, 370–371

<dl>, 33–34, 686
DOCTYPE, 43–44

accessibility, 631
XHTML, 45, 216, 391–392

!DOCTYPE, 281
document, 483

child, 488
document object model

(DOM), 483, 488–501
methods, 488, 493
property, 488

Document Type Declaration,
43–44

documents, Internet, 1–53
DOM. See document object

model

domain name, 601–602
mobile devices, 413

domain name server (DNS), 63
doodle.com, 474
dot notation, 490–491
dotMobi emulator, 417
dotted, border-style, 289
double, border-style, 289
do...while, 512–513
drag-and-drop

HTML 5, 640
lists, 574–575

Dreamweaver, 595–596
Image Map, 92–93

DRM. See Digital Rights
Management

drop shadow, 269
<dt>, 34, 686
DTD, 594
dynsrc, 811

E
editing elements, 10
element(s), 38

attributes, 7–8
block-level, 16, 41–42,

287–288
child, 5
containing, 81
, 38
editing, 10
empty, 15, 636
<form>, 495–496
grouping, 10
HTML, 636
inline, 41–42, 287–288
nesting, 636
parent, 5
phrase, 9, 23–30
presentation, 9, 19–23
tags, 4–5
XHTML, 636

element grouping
IE, 810–814
, 42–43

em, 283–284
, 20, 24

italics, 686
margin, 293

email, 639
e-mail
bcc, 77
body, 77
cc, 77
forms, 564–570
hosting, 603
newsletter, 612, 619–620
subject, 77

e-mail addresses
form validation, 535
links, 58–60, 76–77
Regular Expressions, 551

<embed>, 687, 808–809
Flash, 110–111
<object>, 105–106
src, 108
type, 109

embossed, 252
emphasis, 24
empty cells, tables, 138
empty element, 15

HTML, 636
XHTML, 636

empty-cells, 324–326, 736
encoding, 43
enctype, 173–174
post, 173

equality selector, 281
errormessage, 544
escape characters, 39
events, 51, 483, 514–516.

See also UI events
common, 51
intrinsic, 514
submit buttons, 172–173

ex, 284
existence selector, 281
expiring pages, 591–592
Extensible Hypertext Markup

Language (XHTML), 2–10
attributes, 43, 636
CDATA, 637
CSS, 245–248, 307–356
DOCTYPE, 45, 216,

391–392

dir

bindex.indd 820bindex.indd 820 11/20/09 5:46:40 PM11/20/09 5:46:40 PM

821

In
de

x

elements, 636, 677–711
empty element, 636
forms, 167
framesets, 216
HTML, 635–637
<iframe>, 235
JavaScript, 486
<link>, 250–251
mobile devices, 413–414
style, 250
tags, 3, 5, 635
testing, 594–596

external link, 55
external style sheet, 250

F
\f, 548
face, 785
fantasy, 258
fetchsoftworks.com, 605
fgcolor, 492
<fieldset>, 687

accessibility, 634
forms, 200–202
forms whitespace, 462–463

<figure>, 638
file select boxes, 193–194
File Transfer Protocol (FTP),

604–606
filepath, 63
Firefox Web Developer Toolbar,

418
fireftp.mozdev.org, 605
first-letter, 273–274
first-line, 274
fixed
background-attachment,

316
position, 342, 345–346
table-layout, 327–328

fixed width design, 367–370,
371–373

margin-left, 373
margin-right, 373
text-align, 373
width, 372

.fla, 107
flags, 547
Flash, 624–625

Adobe, 116
animation, 104–113
<embed>, 110–111
fonts, 259
MP3, 121–123
<object>, 110–111
YouTube Player, 107–109

Flash audio, SWFObject, 122
Flash movies, 106–113

CSS, 111
JavaScript, 111–113
SWFObject, 111–113

Flash Player, 106
Flash Video (FLV), 115–117
FlashDen.net, 109
flat color, 97
Flickr.com, 109
float, 13, 348–349, 737

page layout, 405–407
three-column layouts,

396
floating frames. See

<iframe>
flow, 10–11
Flow Player, 116
FLV. See Flash Video
focus, tabindex, 202–204
focus(), 557, 762
:focus, 330
follow, content, 591
font, 256
, 40, 688, 785–787
font(s)

aspect value, 263
CSS, 255–263, 713–716
generic, 258
monospace, 426–427
sans-serif, 256, 426–427
serif, 256–257, 426–427
typography, 426–427

font size, 21
<body>, 424
<p>, 424–425
typography, 424–426

font-family, 256, 257–
259, 714

generic family, 714
specific family, 714

font-size, 256, 259–260,
714

absolute size, 714
inherit, 714
length, 714
percent, 714
relative size, 714

font-size-adjust, 256,
263, 715

font-stretch, 256, 263,
715

font-style, 256, 714, 715
font-variant, 256, 262–

263, 714, 716
font-weight, 256, 261,

714, 716
<caption>, 322

<footer>, 638
footers

tables, 154
web pages, 383

for, 513–514
<label>, 465

form
form elements, 495
methods, 494–495

<form>, 169, 171–175, 688
action, 171
elements, 495–496
file select boxes, 193
form validation, 536
id, 172
name, 172
<object>, 195
onsubmit, 172–173, 495
properties, 494
white space, 174–175

form(s), 167–213
accessibility, 634
ASP .NET, 167
buttons, 180–183
checkboxes, 183–185, 460,

461, 495

form(s)

bindex.indd 821bindex.indd 821 11/20/09 5:46:40 PM11/20/09 5:46:40 PM

822

form(s) (continued)
color, 472–473
controls, 175–198
CSS, 473
design, 456–475
e-mail, 564–570
<fieldset>, 200–202
layout, 464–475
<legend>, 200–202
mobile devices, 417
name, 170
PHP, 167
radio buttons, 185–187,

460, 461, 495
requirered information, 469
select boxes, 460, 461–462,

495
separate pages, 463–464
tab, 471–472
testing, 474
text, 460–461
value, 170
XHTML, 167

form controls
<label>, 198–200,

464–475
title, 471

form validation, JavaScript,
535–556

forms, DOM, 489, 493–495
forms enhancements,

JavaScript, 556–570
forms whitespace,

<fieldset>, 462–463
forums, 608, 618–619
four-column layouts, 400–401
frame, tables, 142–143
<frame>, 225–228, 688–689
name, 230

frameborder, 223–224, 226
<iframe>, 237

frames, 215–241
<base>, 230–231
drawbacks to, 218–219
links, 228–230

<frameset>, 219–225,
689–690

<body>, 216–217

cols, 220–222
rows, 222–225

Frameset XHTML 1.0, 44
framesets, 215, 216–217

nesting, 231
XHTML, 216

framespacing, 224–225,
811

frm, 176
FTP. See File Transfer Protocol
ftpx.com, 605
functions, 501, 506–508

variables, 503

G
general sibling selector, 279
generic family, font-family,

714
generic fonts, 258
geolocation, HTML 5, 640
get, 172

HTTP, 207–208
GIF. See Graphics Interchange

Format
Gimp, 103
Golden Ratio, 375–376
Google, 453–454

Adwords, 587
Google Analytics, 613––615
Google Custom Search, 453
Google Site Search, 453
GPS, mobile devices, 409
Graphics Interchange Format

(GIF), 96–100
animation, 100
typeface, 258

graphics packages, 599
graybit.com, 598
Greek letters, 758–763
green, hexcode, 742
grids. See also baseline grids
<body>, 394
<div>, 393–394
margin-left, 394
margin-right, 394
page layout, 374–380,

392–394

groove, border-style, 289
grouping elements, 10
groups, rules, 143
>, 28
gutters

color, 814
columns, 376
liquid design, 402
margin, 397

H
handheld, 252
handleOther(), 558
<head>, 5, 6, 45–46, 690
base>, 230
<body>, 47
columns, 650
CSS, 246, 250
JavaScript, 485
<meta>, 588
<style>, 252
<title>, 46

<header>, 638
headers, 160

accessibility, 633
scope, 148, 162
tables, 161–162
<td>, 139, 147
<th>, 147, 161
voice browsers, 162
web pages, 383

headings
page layout, 386
tables, 138, 160, 455
tags, 5

height, 81–83, 177, 724,
797, 808

box model, 294–295
<iframe>, 235
images, 498
<object>, 108
tables, 320
<td>, 147
<th>, 147, 322
three-column layouts, 396

hex code, 141, 741–744
<hgroup>, 638

form(s) (continued)

bindex.indd 822bindex.indd 822 11/20/09 5:46:41 PM11/20/09 5:46:41 PM

823

In
de

x

hidden, 337–338, 809
border-style, 289
<input>, 195
overflow, 298

hidden controls, 194–195
hide, empty-cells, 324–326
hidefocus, 811
<hn>, 9, 11–13, 628, 690

accessibility, 632
CSS, 245, 248
<style>, 252

homepages, 388
horizontal rule, 23
host address, 62
hosting, 602–604
HotScripts.com, 533
hotspots, 72, 90
coords, 92

hover, menus, 449
<hr>, 23, 691
href, 8, 93
<a>, 56
CSS, 246
<link>, 251
rel, 71
source anchors, 66–67
URLs, 251

hreflang, 71, 251
hsides, frame, 142
hspace, 84–85, 177, 799,

809
images, 498

HTML. See Hypertext Markup
Language

<html>, 3, 5, 45, 691
</html>, 5

</html>, 4
<html>, 5

HTML 5, 637–640
htmlhelp.com/tools/

valet/, 597
HTTP. See Hypertext Transfer

Protocol
http://, 62
HTTP headers, 172
http-equiv, 591
lastModified, 492

http-equiv
content, 591–593
HTTP headers, 591
<meta>, 588

Hypertext Markup Language
(HTML), 2–10

attributes, 636
backgrounds, 791–793
CDATA, 636
elements, 636
empty element, 636
tags, 635
testing, 594–596
XHTML, 635–637

Hypertext Transfer Protocol
(HTTP), 62, 604–605

get, 207–208
method, 171
methods, 172
post, 208

hyphen selector, 281

I
<i>, 20

italics, 692
icons, menus, 447
id, 48, 545

destination anchors, 67–70
<form>, 172
id selector, 278
<label>, 465
paragraphs, 48
selectors, 276
<style>, 253
tables, 161–162

id selector, 278
IE. See Internet Explorer
if, 508–509

passwords, 539
if...else, 509–510, 558
<iframe>, 234–237, 692
ii8nguy.com, 743
@iimport, 430
image, DOM, 489
image(s), 79–104

accessibility, 632–633

border, 450
buttons, 182
files sizes of, 102–104
formats, 95–104
galleries, 103
JavaScript, 498–499
links, 88–89, 450
maps, 89–95
MIME, 773–774
page layout, 387, 390
resolution, 96
title, 73

Image Map, Dreamweaver,
92–93

Image Ready, Adobe, 100
ime-mode, 813
, 79–88, 692–693
@import, 338–339
important, class, 278
!important, 339–340
importantWords, 300
@include, 430
incremental leading, 432
index, content, 591
indexed color format, 97
index.html, 56, 63
infinite loops, 514
inherit, 714
direction, 272
empty-cells, 324–326
float, 348
font-size, 714
margin, 292
padding, 291
table-layout, 327–328

inheritance, 249–250
inline elements, 41–42,

287–288
inline frames. See <iframe>
<input>, 176, 639

buttons, 180
checkboxes, 185
file select boxes, 193
hidden, 195
radio buttons, 186
text, 460
type, 460

inline frames

bindex.indd 823bindex.indd 823 11/20/09 5:46:42 PM11/20/09 5:46:42 PM

824

<input/>, , 543
<input type=

”button”>, 693
<input type=

”checkbox”>, 694
<input type=”file”>,

694–695
<input type=

”hidden”>, 695
<input type=

”image”>, 695
<input type=

”password”>, 696
<input type=”radio”>,

696–697
<input type=

”reset”>, 697
<input type=

”submit”>, 697
<input type=”text”>, 698
<ins>, 10, 38–39, 698
inset, border-style, 289
interface, 483
interface.css, 251
internal link, 55
internal style sheet, 250
International Standards

Organization (ISO), 750
internationalization

attributes, 49–51
characters, 763–765
CSS, 738–739

Internet
documents, 1–53
typeface, 257

Internet Explorer (IE)
CSS, 812–814
element grouping, 810–814

Internet Explorer Box Model,
bug in, 299, 391–392

intrinsic events, 514
IP address, 62–63, 602
iPhoney, 417
<isindex>, 699, 809–810
ismap, 85, 94–95
ISO. See International

Standards Organization

ISO 8859-1 characters,
754–758

italics, 20
<cite>, 684
, 686
<i>, 692

J
JavaScript, 481–531,

533–586
accessibility, 634
built-in objects, 501,

516–528
checkboxes, 554–556
comments, 486–487
disabled, 555–556
<div>, 111
e-mail addresses, 58
Flash movies, 111–113
fonts, 259
form validation, 535–556
forms enhancements,

556–570
images, 498–499
libraries, 570–584
radio buttons, 553–554
<script>, 112
select boxes, 551–552
src, 112
starting programs, 501–502
submit buttons, 193
writing, 528–530
XHTML, 486

JavaScript.Internet.
com, 533

JavaScriptKit.com, 533
jit.bit.com, 618
join(separator), 526
Joint Photographic Experts

Group Format (JPEG), 101
JPEG. See Joint Photographic

Experts Group Format
.js, 485
justify
align, 144, 794
text-align, 265

JW FLV Player, 116

K
<kbd>, 29, 699
keyboard, 29
keystroke, 300, 302
keyworddiscovery.com,

630
keywords, 530
<a>, 631
<body>, 628
SEO, 628–631
<title>, 628

keywords, name, 589–590

L
label, <option>, 189, 193
<label>, 699
for, 465
accessibility, 634
<div>, 465
form controls, 198–200,

464–475
id, 465

lang, 50
<meta>, 588

language, 807
language codes, 767–769
Last.fm, 109
lastModified, HTTP

headers, 492
layout, forms, 464–475
layout-grid, 813
layout-grid-char, 813
layout-grid-

charspacing, 813
layout-grid-line, 813
layout-grid-mode, 813
lazy registration, 474
leading, 295

ascenders, 428
descenders, 428
incremental, 432
line-height, 428
typography, 427–429
x height, 427

left, 84, 731
align, 14, 144, 794

<input/>,

bindex.indd 824bindex.indd 824 11/20/09 5:46:42 PM11/20/09 5:46:42 PM

825

In
de

x

background-position,
315

box offset, 342
caption-side, 326
clear, 350
float, 348
<iframe>, 236
percentage, 297
text-align, 265

leftmargin, 811
<legend>, 700

accessibility, 634
forms, 200–202

length
CSS, 283–284, 739
font-size, 259

length, 544
font-size, 714
<form>, 494
form elements, 495

letter-spacing, 264,
270–271, 301, 716

lhs, frame, 142
, 31, 317, 700
lightbox, 575–576
lighter, font-weight, 261
line breaks, 15–16
linearization, tables, 160–161
line-break, 813
line-height, 714, 725

baseline grids, 431–432
box model, 294, 295–296
leading, 428
percentage, 295

line-through, text-
decoration, 267

link, 800
DOM, 489

<link>, 46, 700
CSS, 246
<style>, 252
XHTML, 250–251

link(s)
<a>, 55, 66
accessibility, 632
background-color, 308
color, 492, 800–801

color, 308
CSS, 308–309
directories, 64
e-mail addresses, 58–60,

76–77
external, 55
frames, 228–230
images, 88–89, 450
internal, 55
mobile devices, 417
navigation, 55–78, 449–452
page layout, 387
parent directory, 65
reciprocal, 609
subdirectories, 64–65
testing, 596–598
text-decoration, 308
title, 57
web pages, 56–58

Link Valet, 597
linkColor, 492
links

accessibility, 634–635
reciprocal, 609
skip, 634–635
text, 449

linksNav.html, 230
liquid design, 367–371,

402–405
gutters, 402
min-width, 405
overflow, 405

list(s), 9, 30–37
bulleted, 31
CSS, 317–320, 728–730
definition, 33–34
deprecated, 801–805
drag-and-drop, 574–575
nesting, 34–37
ordered, 31–33
unordered, 31

list item, 31
menus, 448

<listing>, 790–791
list-style, 320, 728
list-style-image,

318–319

list-style-position,
318–319, 728

list-style-type, 32,
317–318, 729

load-balanced server, 604
local variables, 503
log file analysis, 613
logical operators, 506
login.aspx, 171
logos, 386, 390
longdesc, 85–86,

227–228
accessibility, 633
<iframe>, 237

loop, 81, 812
loops, 502, 511–514
lossless compression. See

LZW compression
lossy compression, 100, 101
lowercase, text-

transform, 269
lowsrc, 812

images, 498
ltr, direction, 272
LZW compression, 99–100

M
macro white space, 434
Macromedia Freehand, 599
MailChimp.com, 619
main_page, 230
<map>, 90–94, 701
margin, 85, 726

box model, 285, 292–294
gutter, 397
inherit, 292
percentage, 292
three-column layouts, 396

margin(s), CSS, 726–727
margin-bottom, baseline

grids, 432
marginheight, 226–227
<iframe>, 237

margin-left
fixed width design, 373
grids, 394

margin-left

bindex.indd 825bindex.indd 825 11/20/09 5:46:43 PM11/20/09 5:46:43 PM

826

margin-right
fixed width design, 373
grids, 394

margin-top, baseline grids,
432

marginwidth, 226–227
<iframe>, 237

marker-offset, 730
marketing, 607–612
markup-significant characters,

763–765
<marquee>, 810
math, 523–525
mathematical symbols,

758–763
MathML, 639
max-height, 725

box model, 294
percentage, 297

maxlength, single-line text
input controls, 177

max-width, 725
box model, 294, 296–297
percentage, 296

measure, typography, 422–423
media, 252
medium, border-width, 290
<menu>, 804–805
menus

breadcrumbs, 445
color, 444, 448
hover, 449
icons, 447
list item, 448
navigation, 440–449
padding, 448
tabs, 444
underline, 444

message, MIME, 776
<meta>, 46, 701
<body>, 588
<head>, 588
web pages, 587–593

method
<form>, 494
HTTP, 171

methods, 483
DOM, 488, 493

form, 494–495
HTTP, 172

Meyer, Eric, 429
micro white space, 434
middle, 84
align, 794
<iframe>, 236
valign, 145
vertical-align, 266

MIDI, 119
MIME. See Multipurpose

Internet Mail Extension
min-height, 726

box model, 294, 297
percentage, 297

min-width, 726
box model, 294, 296–297
liquid design, 405
percentage, 296

MMS, 409
mobile devices

cameras, 409
color, 415
design, 408–418
device detection, 413
domain name, 413
forms, 417
GPS, 409
links, 417
navigation, 416
payment systems, 409
testing, 417
voice data, 409
XHTML, 413–414

MochiKit, sortable tables,
578–581

modal window, 577–578
model, MIME, 777
monospace, 258
monospace fonts, 426–427
month, 639
MOV, 114–115
movabletype.org, 618
MP3, 118

Flash, 121–123
HTML 5, 639

MP4, 114–115

multi-line text input controls,
178–180

multimedia
accessibility, 632–633
HTML 5, 639

multipart, MIME, 774
multipart/form-data, 173
multiple
<select>, 188, 193
select boxes, 190

Multipurpose Internet Mail
Extension (MIME)

application, 777–782
audio, 774–775
CSS, 251
file select boxes, 193
images, 773–774
media types, 771–782
message, 776
model, 777
multipart, 774
text, 772–773
type, 73, 114, 179, 251
video, 776
wildcards, 193

N
\n, 539, 548
name

attributes, 8
forms, 170

name, 177, 808, 809
buttons, 181
checkboxes, 186
content, 588–591
description, 589
destination anchors,

67–70
<form>, 172, 494
form elements, 495
<frame>, 230
frames, 226
images, 86, 498
keywords, 589–590
<map>, 91
<meta>, 588–591
<object>, 108

margin-right

bindex.indd 826bindex.indd 826 11/20/09 5:46:43 PM11/20/09 5:46:43 PM

827

In
de

x

<param>, 178
radio buttons, 186
robots, 590–591
<select>, 188, 193
single-line text input controls,

176
<textarea>, 179

name server, 602
namespace identifier, 45
<nav>, 638
navigation

accessibility, 632
design, 440–454
frames, 218–219
links, 55–78, 449–452
menus, 440–449
mobile devices, 416
page layout, 363–364, 386
page sections, 363–364
search, 452–454

negative space. See white
space

nesting, 172
elements, 636
framesets, 231
lists, 34–37
tables, 157–158, 160

newsletter, e-mail, 612,
619–620

nextSibling, 545
960.gs, 407
<nobr>, 17, 810
no-close-quote, content,

332
nofollow, content, 591
<noframes>, 216, 689, 701
nohref, 93
noindex, content, 591
Nokia Mobile Browser

Simulator, 417
none
border-style, 289
clear, 350
content, 591
float, 348
rules, 143
text-transform, 269

no-open-quote, content,
332

no-repeat, 313–314
noresize, 227
normal
font-variant, 262
font-weight, 261
letter-spacing, 270
white-space, 272

normal flow, CSS, 341
<noscript>, 487, 701

accessibility, 634
Notepad, 3
nowrap, 806
<td>, 147–148
<th>, 147–148
white-space, 272

null, 530
number, 639
numbers, 529

O
object, 179, 808
<object>, 46, 122–126, 702

audio, 119–121
client-side image maps, 94
<embed>, 105–106
Flash, 110–111
height, 108
name, 108
<param>, 105
rich media, 105
value, 108
width, 108

object controls, 195
object model, 483
object-oriented programming,

483
off, <textarea>, 180
, 31–33, 317, 703
onblur, 516
onchange, 516
onclick, 51, 515, 562

buttons, 181
ondblclick, 515
onfocus, 516
onkeydown, 516

onkeypress, 516
onkeyup, 516
onload, 515
onmousedown, 515
onmousemove, 51
onmouseout, 51, 515
onmouseover, 515
onmouseup, 515
onreset, 173, 516
onselect, 516
onsubmit, 516

checkboxes, 555–556
<form>, 172–173, 495
form validation, 536

onunload, 515
opening tags, 4–5
open-quote, 334–335
content, 332

Openwave phone simulator,
417

Opera Mini Simulator, 417
operands, 503
operators, 501, 503–506
<optgroup>, 191–193, 703
<option>, 187, 188–189,

193, 703
ordered lists, 31–33
OS FLV Player, 116
other, 558
outline, 329–330, 734
outline(s), CSS, 328–330, 734
outline-color, 329
outline-style, 329
outline-width, 329
outset, border-style, 289
overflow, 734

box model, 298
liquid design, 405

overflow-x, 734
overflow-y, 734
overline, text-

decoration, 267

P
<p>, 9, 703
class, 257
CSS, 248

<p>

bindex.indd 827bindex.indd 827 11/20/09 5:46:44 PM11/20/09 5:46:44 PM

828

<p> (continued)
font size, 424–425
paragraphs, 15

padding, 248
baseline grids, 433
CSS, 727
menus, 448
tables, 454–455

padding, 291–292, 727
box model, 285
tables, 320
three-column layouts, 396

page layout, 357–419
backgrounds, 405–407
bold, 387
composition, 374–380
<div>, 370–371
fixed-width design, 367–370,

371–373
float, 405–407
four-column, 400–401
grids, 374–380, 392–394
headings, 386
images, 387, 390
key elements, 365
links, 387
liquid design, 367–371,

402–405
navigation, 363–364, 386
page size, 365–367
screen resolution, 365–367
search, 386
site map, 364–365
six-column, 401–402
target audience, 358–359
templates, 383
text, 387
three-column, 394–397
two-column, 398–400

Paint Shop Pro, 103
palette, 809
panic.com/transmit/, 605
paragraphs, 9, 15

, 16
CSS, 27
id, 48
<p>, 15

<param>, 178–179, 703
<object>, 105

parameters, 493
parent, elements, 5
_parent, 230
parent directory, 62

links, 65
password
if, 539
security, 178
validation, 536–541

password input controls,
177–178

payment systems, mobile
devices, 409

pay-per-click advertising,
610–611

percentage
border-width, 290
bottom, 297
box offset, 342, 343
cellpadding, 141
cellspacing, 142
cols, 220
CSS, 284
font-size, 259, 714
left, 297
line-height, 295
margin, 292
max-height, 297
max-width, 296
min-height, 297
min-width, 296
px, 221
right, 297
top, 297
width, 143, 691

personae, 359
Photoshop, 103, 599
PHP, 620–624

e-mail addresses, 58
forms, 167

phpBB.com, 618
phrase elements, 9, 23–30
physical, <textarea>, 180
pilot testing, 599–601
pixels (px), 283

cellpadding, 141
cellspacing, 142
cols, 220–221
CSS, 284
font-size, 259
percentages, 221

<plaintext>, 790–791
play, 81
players, 105
plug-ins, 105

HTML 5, 639
video, 113

pluginspage, 81, 687, 809
PNG. See Portable Network

Graphics
polygon, shape, 92
Portable Network Graphics

(PNG), 102
position, CSS, 730–734
position, 342–350, 730
absolute, 342, 344–345
fixed, 345–346
relative, 342, 343–344
static, 342

post, 172
enctype, 173
file select boxes, 193
HTTP, 208
HTTP headers, 172

posterous.com, 474, 617
pre, white-space, 272
<pre>, 16–19, 178, 704
<code>, 29
white-space, 271–272

prefix selector, 281
preformatted text, 16–19
pre-publishing tests, 593
pre-release tests, 593
presentation elements, 9,

19–23
press releases, 608
print, 252
proboards.com, 618
profile, 46
<progress>, 638
projection, 252
proofreading, 601

<p> (continued)

bindex.indd 828bindex.indd 828 11/20/09 5:46:44 PM11/20/09 5:46:44 PM

829

In
de

x

properties, 483
CSS, 244
DOM, 488
<form>, 494
tables, 322–328

pseudo-classes, CSS,
273–274, 330–335

pt, CSS, 248
purple, hexcode, 742
pwd, 177
px. See pixels

Q
<q>, 26, 27, 704
quality, 81
Quick Time, 118
Quick Time Movie, 114
quotation marks, 334–335
quotes, 26–27

R
\r, 548
radio buttons, 168, 187

forms, 185–187, 460,
461, 495

JavaScript, 553–554
range, 639
readonly, 205–206

buttons, 181
checkboxes, 186
<textarea>, 179

Real Audio, 118
Real Media, 114
Real Video, 114–115
reciprocal links, 609
rect, shape, 92
rectangle, shape, 92
red, hexcode, 742
ref, 179
referrer, 492
refresh, 592
Regular Expressions, 547–551
test(), 549–551

rel, 71–72
<link>, 251

stylesheet, 251
relative, position, 342,

343–344
relative lengths, 739
relative size

box offset, 342
CSS, 283–284
font-size, 259, 714

relative URLs, 55, 63–65,
606–607

JavaScript, 485
repeat, 313
repeat-x, 313
repeat-y, 313
replace(), 546–547
required information,

forms, 469
reset, 173
reset(), 494
resets, CSS, 429–430
resolution, images, 96
return, 508
returnValue, 539, 542
rev, destination anchors, 72
reverse(), 526
rhs, frame, 142
rich media, 104
<object>, 105

ridge, border-style, 289
right, 84, 732
align, 14, 144, 794
background-position,

315
box offset, 342
caption-side, 326
clear, 350
float, 348
<iframe>, 236
percentage, 297
text-align, 265

rightmargin, 812
Riva FLV, 116
robots, name, 590–591
root directory, 62
root folder, 65
row, scope, 148
rowgroup, scope, 148

rows
shading alternate, 456
tables, 136, 153–154

rows
<frameset>, 219,

222–225
rules, 143
<textarea>, 179

rowspan, 160
tables, 153–154
<td>, 148
<th>, 148

<rt>, 810
rtl, direction, 272
<ruby>, 810
rule of thirds, 376
rules, tables, 143

S
<s>, 21, 704, 789
\S, 548
\s, 548
<samp>, 30
sans-serif, 258
sans-serif fonts, 256,

426–427
schema, <meta>, 588
scheme, <meta>, 593
scope, 160

accessibility, 633
col, 148
colgroup, 148
headers, 162
row, 148
rowgroup, 148
tables, 161–162
<td>, 148
<th>, 148

screen, 252
screen reader, tables, 160
screen resolution, page layout,

365–367
<script>, 46, 484, 704

JavaScript, 112
Scriptaculous, 571–573
scripts, folder, 534

scripts, folder

bindex.indd 829bindex.indd 829 11/20/09 5:46:45 PM11/20/09 5:46:45 PM

830

scroll
background-attachment,

316
overflow, 298

scrollbar, 227
scrollbar-3dlight-

color, 814
scrollbar-arrow-

color, 814
scrollbar-base-

color, 814
scrollbar-darkshadow-

color, 814
scrollbar-face-

color, 814
scrollbar-highlight-

color, 814
scrollbar-shadow-

color, 814
scrolldelay, 812
scrolling, 227
<iframe>, 237

scrolling select boxes,
189–190

search
navigation, 452–454
page layout, 386
utilities, 619

search, 639
search engine(s), frames, 218
search engine optimization

(SEO), 627–631
keywords, 628–631
on-page techniques, 628

<section>, 638
section homepages, 389–390
section508.info, 598
security, passwords, 178
sel, 187
select, 551
select(), 762
<select>, 188, 705

attributes, 193
select boxes, 168, 187–193

forms, 460, 461–462, 495
JavaScript, 551–552
scrolling, 189–190

Select color, 187–188

selectAll(), 562
selected, <option>, 189
selectedIndex, 551–552

form elements, 495
selectors, CSS, 244, 276–282
_self, 230
Send Query, 182
SEO. See search engine

optimization
separate, 323
serif, 258
serif fonts, 256–257, 426–427
server-side image maps,

94–95
server-side web programming,

620–625
shape, 72
shared hosting, 603–604
show, empty-cells,

324–326
SIFR, 259, 427
Silverlight, 113
simple selector, 276
single-line text input controls,

176–177
site map, page layout,

364–365
site:sitename.com, 453
six-column layouts, 401–402
size, 785

radio buttons, 186
<select>, 188, 193
select boxes, 190
single-line text input controls,

177
skip links, accessibility,

634–635
Skype, 409
slice(), 526
Slide.com, 109
SlideShowPro, 116
<small>, 22, 705
small-caps, font-

variant, 262
SMS, 409
snook.ca/technical/

colour_contrast/
colour.html, 438, 598

social networks, 608
solid, border-style, 289
sort(), 526
Sortable, 575
sortable tables, MochiKit,

578–581
source anchors

destination anchors, 70
href, 66–67
rel, 71

source code, 8–9
CSS, 249

space selector, 281
, 10, 545, 705

element grouping, 42–43
font-variant, 262
<input />, 543

special characters, 753–765
character entities, 39–40

special terms, 26
specific family,

font-family, 714
square, 808
src, 809

buttons, 182
<embed>, 108
frames, 225–226
<iframe>, 236
images, 498
JavaScript, 112, 485
<style>, 253
URLs, 80

SSL, 178
stacking context, 346
standby, 177
start, 33, 802
static, position, 342
statistics, 604
stock photography, 390
Strict XHTML 1.0, 44

block-level elements, 288
style, 250

<strike>, 21, 705, 789
string, 516–518
strings, 493, 529
content, 332
operators, 506

, 20, 24, 705

scroll

bindex.indd 830bindex.indd 830 11/20/09 5:46:46 PM11/20/09 5:46:46 PM

831

In
de

x

style, 49
CSS, 250
XHTML, 250

<style>, 46, 252–253, 705
columns, 650
CSS, 250

style sheets, 245
stylesheet, rel, 251
sub, vertical-align, 266
<sub>, 22, 705
subdirectories, 62

links, 64–65
subheadings, 387

page layout, 387
tags, 5

subject, e-mail, 77
submit(), 494
submit buttons, 168, 169

events, 172–173
JavaScript, 193

subscript, 21
substring (), 560–561
substring selector, 281
suffix selector, 281
summary, tables, 143
<sup>, 22, 706
super, vertical-align,

266
superscript, 21
SVG, 639
.swf, 106, 107, 114
SWFObject

Flash audio, 122
Flash movies, 111–113

switch, 510–511
symbols, 758–763

T
\t, 548
tab

forms, 471–472
menus, 444

tabindex, 73, 94, 177
buttons, 181
checkboxes, 186
focus, 202–204

radio buttons, 187
<select>, 193
<textarea>, 179

<table>, 136, 320, 706
border, 322
deprecated attributes,

139–143
width, 322

table(s), 131–165
accessibility, 160–164, 633
align, 139–141
bgcolor, 141
border, 141
<caption>, 151
cellpadding, 141–142
cellspacing, 142
<col>, 158
<colgroup>, 157
colspan, 151–153
columns, 136, 151–153
columns grouping, 157
CSS, 320–328, 735–736
deprecated, 805–806
design, 454–456
dir, 142
empty cells, 138
footers, 154
frame, 142–143
headers, 161–162
headings, 138, 160, 455
id, 161–162
linearization, 160–161
nested, 157–158, 160
padding, 454–455
properties, 322–328
rows, 136, 153–154
rowspan, 153–154
rules, 143
scope, 161–162
screen reader, 160
shading alternate rows, 456
sortable, 578–581
summary, 143
<tbody>, 154–157
<tfoot>, 154–157
<thead>, 154–157
voice browser, 160

width, 143
table data, 136
table rows, 136
table-layout, 327–328,

736
tags

closing, 4–5
elements, 4–5
headings, 5
HTML, 635
opening, 4–5
subheadings, 5
XHTML, 3, 5, 635

target, 8, 73, 94, 174
base>, 230
<form>, 494
frames, 230

target audience, page layout,
358–359

<tbody>, 707
tables, 154–157

<td>, 136–139, 146–150,
244, 320, 707–708

class, 322
headers, 139

tel, 639
templates, page layout,

383
test(), Regular Expressions,

549–551
testing, 594–596

accessibility, 598–599
browser versions, 599
CSS, 594–596
forms, 474
HTML, 594–596
links, 596–598
mobile devices, 417
pilot, 599–601
pre-publishing, 593
pre-release, 593
web pages, 593–601
XHTML, 594–596

text
alt, 258
auto-completion, 582–584
control, 255–263

text

bindex.indd 831bindex.indd 831 11/20/09 5:46:46 PM11/20/09 5:46:46 PM

832

text (continued)
CSS, 255–263, 264–273,

716–719
editing, 38–39
formatting, 264–273
forms, 460–461
links, 449
MIME, 772–773
page layout, 387

text, 787–788
<input>, 460

text inputs, 168, 175–180
disabled, 558–559

text-align, 13, 264, 717
<caption>, 322
fixed width design, 373
tables, 320

<textarea>, 178–180, 708
text-autospace, 813
text-bottom, vertical-

align, 266
text/css, 251
text-decoration, 264,

267–268, 717
links, 308

text-indent, 264, 268, 717
text/JavaScript, 484
text-justify, 813
text-kashida-space, 813
text-shadow, 264, 269, 718
texttop, 84
text-top, vertical-

align, 266
text-transform, 264,

269–270, 718
text-underline-

position, 813
<tfoot>, 709

tables, 154–157
<th>, 137–139, 146–150,

160, 709–710
accessibility, 633
headers, 161
height, 322

<thead>, 709
tables, 154–157

thick, border-width, 290

thin, border-width, 290
this, 558
three-column layouts,

394–397
thumbnails, 103

frames, 219
<time>, 638
timed media playback, HTML

5, 640
title, 49
, 39
DOM, 492
form controls, 471
images, 73
<ins>, 39
links, 57
<meta>, 588

<title>, 3, 5, 710
<head>, 46
keywords, 628

title=”where the link
will take the user”,
450

toLowerCase(), 560
top, 84, 731
align, 794
background-position,

315
box offset, 342
caption-side, 326
<iframe>, 236
percentage, 297
valign, 145
vertical-align, 266

_top, 230
topmargin, 812
toUpperCase(), 560
<tr>, 136, 144–145, 711
Track Changes, Word, 38
tracking, 270

typography, 434
Transitional XHTML, 44

block-level element, 288
style, 250

transparent background,
98–99

triggers, 360

truespeed, 812
<tt>, 21, 711
tty, 252
tumblr.com, 617
tv, 252
two-column layouts, 398–400
txt, 176
type, 108, 803–804, 809

buttons, 180, 181
checkboxes, 185, 186
<embed>, 109
form elements, 495
<input>, 460
<link>, 251
MIME, 73, 114, 179, 251
, 32
radio buttons, 186
single-line text input controls,

176
type selector, 277
typeface. See also font

CSS, 255–263
GIF, 258
Internet, 257

Typekit, 259, 427
typography

baseline grids, 430–433
chunking, 436–437
contrast, 437–440
design, 422–440
font size, 424–426
fonts, 426–427
leading, 427–429
measure, 422–423
tracking, 434
white space, 434–436

U
<u>, 21, 711, 790
UI events, 51

buttons, 181
checkboxes, 186
<option>, 193
radio buttons, 187
<select>, 193
<textarea>, 179

text (continued)

bindex.indd 832bindex.indd 832 11/20/09 5:46:47 PM11/20/09 5:46:47 PM

833

In
de

x

, 31, 317, 711
unary operators, 503
undefined, 530
underline, 21

menus, 444
underline, text-

decoration, 267
Unicode Consortium, 743
unicode-bidi, 739
Uniform Resource Locators

(URLs), 62–66. See also
absolute URLs; relative
URLs

content, 332
frames, 218
href, 251
<iframe>, 234
src, 80

units, 809
universal attributes, 9
<option>, 193
radio buttons, 187
<select>, 193

universal selector. See
wildcards

unordered lists, 31
unselectable, 812
uppercase, text-

transform, 269
uptime, 604
url, 639
URLs. See Uniform Resource

Locators
usemap, 85, 91, 178

V
\v, 548

validate(), 537–538
validateConfirmPass

word(), 542–543
validateMinimumLength,

542
validator.w3.org, 594
validator.w3.org/

checklink/, 597
valign

<td>, 148
<th>, 148
<tr>, 145

value
attributes, 8
CSS, 244
forms, 170
ismap, 95
variables, 502–503

value, 802–803
buttons, 181
checkboxes, 185, 186
form elements, 495
<object>, 108
<option>, 189
<param>, 178
radio buttons, 186
shape, 91–92
single-line text input controls,

177
valuetype, 178–179
<var>, 30, 711
variables, 30, 501, 502–503

functions, 503
vbulletin.com, 618
Vector format, 104
version, 45, 807
vertical-align, 264,

732–733
tables, 320

video
formats, 113
MIME, 776
plug-ins, 113
size of, 117–118
web pages, 113–115

<video>, 105
HTML 5, 639

View Source, 249
virtual, <textarea>, 180
vischeck.com, 598
visibility, 337–338, 738

hidden controls, 195
visual hierarchy, 380,

385–386
vlink, 800
vlinkColor, DOM, 492

voice browsers
headers, 162
table, 160

voice data, mobile devices,
409

void, frame, 142
volume, 812
vsides, frame, 142
vspace, 84–85, 177,

797–798, 809
images, 499

W
\W, 548
\w, 548
W3C DOM objects, 501
wallpaper, 312–314
WAVE, 118
web farm, 604
web marketing, 607–612
web pages

backgrounds, 405–407
body and content, 383
bold, 387
composition, 374–380
<div>, 370–371
fixed-width design, 367–370,

371–373
float, 405–407
footers, 383
four-column, 400–401
frames, 219
grids, 374–380, 392–394
headers, 383
headings, 386
images, 387, 390
key elements, 365
layout, 357–419
links, 56–58, 387
liquid design, 367–371,

402–405
<meta>, 587–593
navigation, 363–364, 386
page size, 365–367
publishing, 587–626
screen resolution, 365–367

web pages

bindex.indd 833bindex.indd 833 11/20/09 5:46:47 PM11/20/09 5:46:47 PM

834

web pages (continued)
search, 386
site map, 364–365
six-column, 401–402
target audience, 358–359
templates, 383
testing, 593–601
text, 387
three-column, 394–397
two-column, 398–400
videos, 113–115

webaim.org, 598
webreference.com/

programming/
javascript, 533

week, 639
while, 512
white, hexcode, 742
white space

collapsing, 10–11
<form>, 174–175
Regular Expressions, 551
trimming, 560–562
typography, 434–436

white-space, 264, 271–272,
719

width, 81–83, 177, 724, 796,
808, 809

box model, 294–295
code, 322
fixed width design, 372
<iframe>, 235
images, 499
<object>, 108

percentage, 143, 691
<table>, 322
tables, 143, 320
<td>, 148
<th>, 148
three-column layouts, 396

wildcards, 220, 277
*, 193, 277
cols, 221
MIME, 193

window, 526–528
Windows Media Audio, 118
Windows Media Video (WMV),

114–115
wire frame, 381
WMV. See Windows Media

Video
Word, Track Changes, 38
word-break, 813
wordpress.org, 618
word-spacing, 264, 271, 719
wordtracker.com, 630
wrap, 11
wrap, <textarea>, 180
write(), 493
write(string), 493
writeln(string), 493
writing-mode, 813

X
x height, leading, 427
x y, 315
x% y%, 315

XHTML. See Extensible
Hypertext Markup
Language

<xml>, 810
XML Declaration, 43
xml:lang, 25, 51

accessibility, 631
<meta>, 588

xmlns, 45
<xmp>, 790–791

Y
Yahoo! Search Marketing, 587
Yahoo User Interface (YUI)

auto-completion, 582–584
calendars, 581–582

yahoo.com/yui/grids/,
407

YouTube Player, Flash,
107–109

YUI. See Yahoo User Interface
YUI Grids, 407

Z
zetaboards.com, 618
z-index, 346–347, 733
zoom, 813

web pages (continued)

bindex.indd 834bindex.indd 834 11/20/09 5:46:48 PM11/20/09 5:46:48 PM

badvert.indd 838badvert.indd 838 11/20/09 5:54:15 PM11/20/09 5:54:15 PM

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books

Beginning CSS: Cascading Style Sheets for Web Design, 2nd Edition
ISBN: 978-0-470-09697-0
This comprehensive introduction clearly shows you how to combine Cascading Style Sheets (CSS) with HTML, XHTML, or XML to create
rich, aesthetically compelling web designs. Packed with detailed examples in syntax-colored code and showing the resulting web pages
in color, the second edition will help you discover how and why CSS works.

Beginning JavaScript, 4th Edition
ISBN: 978-0-470-52593-7
Serving as a great introduction to JavaScript, this book offers all you need to start using JavaScript on your web pages right away. It’s
fully updated and covers utilizing JavaScript with the latest versions of the Internet Explorer, Firefox, and Safari browsers and walks you
through the basics of JavaScript: what it is, how it works, and what you can do with it.

Beginning JavaScript and CSS Development with jQuery
ISBN: 978-0-470-22779-4
With this unique, project-oriented book, author Richard York teaches even the most novice of JavaScript users how to quickly get started
utilizing the JavaScript jQuery Library to decrease the amount of code that needs to be written and tested. A four-color code syntax
highlighting system provides a visual reinforcement and allows you to see the nuts and bolts that comprise each line and section of code.
With this helpful guide and hands-on exercises, you’ll be able to put jQuery to work for you and avoid having to write code from scratch.

JavaScript Programmer’s Reference
ISBN: 978-0-470-34472-9
This book covers the JavaScript language in its entirety, showing you how to leverage its many features to create the next generation of
standards-compliant Rich Internet Applications (RIAs) using Ajax, JSON, and much more. Alexei White, a veteran programming instructor,
provides you with both a practical tutorial and an easily accessible reference to a range of topics from basic JavaScript syntax and core
functions to advanced topics such as animation, debugging, remote server interaction, and offline storage.

Professional JavaScript for Web Developers, 2nd Edition
ISBN: 978-0-470-22780-0
This book covers JavaScript from its very beginning to the present-day incarnations that include support for the DOM and Ajax. It also
shows you how to extend this powerful language to meet specific needs and create seamless client-server communication without inter-
mediaries such as Java or hidden frames. You’ll explore the components that make up a JavaScript implementation, with specific focus on
standards such as ECMAScript and DOM. You’ll also learn how to utilize regular expressions and build dynamic user interfaces. This valu-
able insight will help you apply JavaScript solutions to the business problems faced by Web developers everywhere.

Professional JavaScript Frameworks: Prototype, YUI, ExtJS, Dojo and MooTools
ISBN: 978-0-470-38459-6
Packed with coverage of many of the most popular JavaScript frameworks, this authoritative guide examines how these frameworks can
present unique and varying approaches to problems in web development. This unparalleled team of authors has assembled some of the
most active and popular JavaScript frameworks available and they walk you through common web development tasks addressed by each
framework, while also examining how the framework approaches a particular set of tasks. Practical examples and clear explanations
demonstrate the many aspects of contemporary web development and exactly what the selection of JavaScript frameworks has to offer
so that you can get up and running quickly

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Jon Duckett

Duckett

 $34.99 USA
 $41.99 CAN

Since the web was first created, the languages used to build web sites
have been constantly evolving. Now a set of best practices has emerged
using HTML or XHTML to create your basic web pages, CSS to control
their appearance and make them look attractive, and JavaScript to add
interactivity. Without assuming any previous experience, this valuable
resource makes it easy to learn how to build web sites using the most up-
to-date web standards. Whether you’re a beginner eager to start writing
your first web page or a more experienced programmer seeking to update
your skills, you will find practical introductions to these essential lan-
guages, as well as invaluable tips and techniques used by experienced web
professionals.

• How to create HTML and XHTML pages that incorporate links, images,
tables, audio, and video

• Ways to use CSS to control text, colors, backgrounds, and page layout

• Design principles employed by experienced designers to create attractive layouts

• The basics of JavaScript and working with AJAX libraries

• How to build sites that are accessible, easy to use, and will work
on a variety of devices including mobile phones

• How to test your web site and put it on the web

• First-hand experience of coding practices commonly used in the real world

• The elements of basic text formatting

• Text markup and character entities for special characters

Jon Duckett has spent over a decade helping a wide range of companies implement
innovative web strategies. Taking a hands-on approach, he designs many of the
projects he works on and helps to code them. During this time, Jon has written
several books covering web design, programming, accessibility and usability.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

Web Site Development

Learn to create attractive
web sites that are easy to use

Beginning
HTML, XHTML,
CSS, and JavaScript®

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Beginning

H
TM

L, X
H

TM
L, CSS,

and JavaScript
®

	Beginning HTML, XHTML, CSS and JavaScript
	About the Author
	Credits
	Contents
	Introduction
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Structuring Documents for the Web
	A Web of Structured Documents
	Introducing HTML and XHTML
	Basic Text Formatting
	Presentational Elements
	Phrase Elements
	Lists
	Editing Text
	Using Character Entities for Special Characters
	Comments
	The Element (Deprecated)
	Understanding Block and Inline Elements
	Grouping Elements with <div> and
	Core Elements and Attributes
	Attribute Groups
	Summary
	Exercises

	Chapter 2: Links and Navigation
	Basic Links
	Understanding Directories and Directory Structures
	Understanding URLs
	Creating Links with the <a> Element
	Advanced E-mail Links
	Summary
	Exercises

	Chapter 3: Images, Audio, and Video
	Adding Images Using the Element
	Using Images as Links
	Image Maps
	Choosing the Right Image Format
	Adding Flash, Video, and Audio to Your Web Pages
	Summary
	Exercises

	Chapter 4: Tables
	Introducing Tables
	Basic Table Elements and Attributes
	Adding a <caption> to a Table
	Grouping Sections of a Table
	Nested Tables
	Accessible Tables
	Summary
	Exercises

	Chapter 5: Forms
	Introducing Forms
	Creating a Form with the <form> Element
	Form Controls
	Creating Labels for Controls and the <label> Element
	Structuring Your Forms with <fieldset> and <legend> Elements
	Focus
	Disabled and Read-Only Controls
	Sending Form Data to the Server
	Summary
	Exercises

	Chapter 6: Frames
	Introducing the Frameset
	When To Use Frames
	The <frameset> Element
	The <frame> Element
	The <noframes> Element
	Creating Links Between Frames
	Setting a Default Target Frame Using the <base> Element
	Nested Framesets
	Inline or Floating Frames with <iframe>
	Summary
	Exercises

	Chapter 7: Cascading Style Sheets
	Introducing CSS
	Where You Can Add CSS Rules
	CSS Properties
	Controlling Text
	Text Formatting
	Text Pseudo-Classes
	Selectors
	Lengths
	Introducing the Box Model
	Summary
	Exercises

	Chapter 8: More Cascading Style Sheets
	Links
	Backgrounds
	Lists
	Tables
	Outlines
	The :focus and :active Pseudo-Classes
	Generated Content
	Miscellaneous Properties
	Additional Rules
	Positioning and Layout with CSS
	Summary
	Exercises

	Chapter 9: Page Layout
	Understanding the Site’s Audience
	Page Size (and Screen Resolution)
	Designing Pages
	Coding Your Design
	Developing for Mobile Devices
	Summary
	Exercises

	Chapter 10: Design Issues
	Typography
	Navigation
	Tables
	Forms
	Summary
	Exercises

	Chapter 11: Learning JavaScript
	What Is Programming About?
	How to Add a Script to Your Pages
	The Document Object Model
	Starting to Program with JavaScript
	Variables
	Operators
	Functions
	Conditional Statements
	Looping
	Events
	Built-in Objects
	Writing JavaScript
	Summary
	Exercises

	Chapter 12: Working with JavaScript
	Practical Tips for Writing Scripts
	Form Validation
	Form Enhancements
	JavaScript Libraries
	Summary
	Exercises

	Chapter 13: Putting Your Site on the Web
	Meta Tags
	Testing Your Site
	Taking the Leap to Live
	Telling the World about Your Site
	Understanding Your Visitors
	What Next?
	Summary

	Chapter 14: Checklists
	Search Engine Optimization Checklist
	Accessibility Checklist
	Differences Between HTML and XHTML
	HTML 5

	Appendix A: Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Appendix B: XHTML Element Reference
	Appendix C: CSS Properties
	Font Properties
	Text Properties
	Color and Background Properties
	Border properties
	Dimensions
	Margin Properties
	Padding Properties
	List Properties
	Positioning Properties
	Outline Properties
	Table Properties
	Classification Properties
	Internationalization Properties
	Lengths

	Appendix D: Color Names and Values
	Using Hex Codes to Specify Colors
	Understanding Hex Codes
	Using Color Names to Specify Colors
	Color Name and Number Reference

	Appendix E: Character Encodings
	Appendix F: Special Characters
	Character Entity References for Symbols, Mathematical Symbols, and Greek Letters
	Markup-Significant and Internationalization Characters

	Appendix G: Language Codes
	Appendix H: MIME Media Types
	text
	image
	multipart
	audio
	video
	message
	model
	application

	Appendix I: Deprecated and Browser-Specific Markup
	Why Deprecated Markup Exists
	Older Pages Break Many Rules
	Fonts
	Backgrounds
	Formatting
	Links
	Lists
	Tables
	Miscellaneous Attributes
	IE-Specific Elements

	Index

