
Flutter
Recipes

Mobile Development Solutions for
iOS and Android
—
Fu Cheng

www.allitebooks.com

http://www.allitebooks.org

Flutter Recipes
Mobile Development Solutions

for iOS and Android

Fu Cheng

www.allitebooks.com

http://www.allitebooks.org

Flutter Recipes: Mobile Development Solutions for iOS and Android

ISBN-13 (pbk): 978-1-4842-4981-9 ISBN-13 (electronic): 978-1-4842-4982-6
https://doi.org/10.1007/978-1-4842-4982-6

Copyright © 2019 by Fu Cheng

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4981-9. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Fu Cheng
Sandringham, Auckland, New Zealand

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4982-6
http://www.allitebooks.org

iii

About the Author ���xxxi

About the Technical Reviewer ���xxxiii

Chapter 1: Get Started ��1

1-1. Installing Flutter SDK on Windows... 1

Problem ... 1

Solution ... 1

Discussion ... 1

1-2. Installing Flutter SDK on Linux .. 4

Problem ... 4

Solution ... 4

Discussion ... 4

1-3. Installing Flutter SDK on macOS .. 5

Problem ... 5

Solution ... 6

Discussion ... 6

1-4. Setting Up iOS Platform ... 7

Problem ... 7

Solution ... 7

Discussion ... 7

1-5. Setting Up iOS Simulators ... 9

Problem ... 9

Solution ... 9

Discussion ... 9

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

iv

1-6. Setting Up iOS Devices ..9

Problem ...9

Solution ...9

Discussion ...10

1-7. Setting Up Android Platform ..11

Problem ...11

Solution ...11

Discussion ...11

1-8. Setting Up Android Emulators ..13

Problem ...13

Solution ...13

Discussion ...13

1-9. Setting Up Android Devices ...18

Problem ...18

Solution ...18

Discussion ...18

1-10. Creating Flutter Apps Using Command Line ..19

Problem ...19

Solution ...19

Discussion ...19

1-11. Creating Flutter Apps Using Android Studio ...20

Problem ...20

Solution ...20

Discussion ...20

1-12. Creating Flutter Apps Using VS Code ...24

Problem ...24

Solution ...24

Discussion ...25

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

1-13. Running Flutter Apps ...26

Problem ...26

Solution ...26

Discussion ...26

1-14. Understanding Code Structure of Flutter Apps ..27

Problem ...27

Solution ...27

Discussion ...27

1-15. Fixing Configuration Issues of Flutter SDK ..28

Problem ...28

Solution ...28

Discussion ...28

1-16. Summary ...28

Chapter 2: Know the Tools ��29

2-1. Using Dart Observatory ...29

Problem ...29

Solution ...29

Discussion ...29

2-2. Using Hot Reload and Hot Restart ...31

Problem ...31

Solution ...31

Discussion ...32

2-3. Upgrading Flutter SDK ...34

Problem ...34

Solution ...34

Discussion ...35

Table of ConTenTsTable of ConTenTs

vi

2-4. Debugging Flutter Apps in Android Studio ...36

Problem ...36

Solution ...36

Discussion ...36

2-5. Viewing Outline of Flutter Apps in Android Studio39

Problem ...39

Solution ...39

Discussion ...40

2-6. Debugging Flutter Apps in VS Code ...41

Problem ...41

Solution ...41

Discussion ...41

2-7. Creating Flutter Projects ..42

Problem ...42

Solution ...42

Discussion ...43

2-8. Running Flutter Apps ...46

Problem ...46

Solution ...46

Discussion ...46

2-9. Building Flutter App Binaries ...51

Problem ...51

Solution ...51

Discussion ...51

2-10. Installing Flutter Apps ..53

Problem ...53

Solution ...53

Discussion ...53

Table of ConTenTsTable of ConTenTs

vii

2-11. Managing Packages ..54

Problem ...54

Solution ...54

Discussion ...54

2-12. Running Flutter Tests ...56

Problem ...56

Solution ...56

Discussion ...56

2-13. Analyzing the Code ..58

Problem ...58

Solution ...59

Discussion ...59

2-14. Managing Emulators ..61

Problem ...61

Solution ...61

Discussion ...61

2-15. Taking Screenshots ...62

Problem ...62

Solution ...62

Discussion ...62

2-16. Attaching to Running Apps ..63

Problem ...63

Solution ...63

Discussion ...64

2-17. Tracing Running Flutter Apps ...65

Problem ...65

Solution ...65

Discussion ...65

Table of ConTenTsTable of ConTenTs

viii

2-18. Configuring Flutter SDK ...66

Problem ...66

Solution ...66

Discussion ...66

2-19. Showing App Logs ...67

Problem ...67

Solution ...67

Discussion ...68

2-20. Formatting Source Code ..68

Problem ...68

Solution ...69

Discussion ...69

2-21. Listing Connected Devices ..70

Problem ...70

Solution ...70

Discussion ...70

2-22. Running Integration Tests ..70

Problem ...70

Solution ...71

Discussion ...71

2-23. Enabling Bash Completion of Flutter SDK Commands72

Problem ...72

Solution ...72

Discussion ...72

2-24. Cleaning Build Files of Flutter Apps ...74

Problem ...74

Solution ...74

Discussion ...74

Table of ConTenTsTable of ConTenTs

ix

2-25. Managing Flutter SDK Cache ...74

Problem ...74

Solution ...74

Discussion ...75

2-26. Summary ...75

Chapter 3: Essential Dart ��77

3-1. Understanding Built-In Types ...77

Problem ...77

Solution ...77

Discussion ...77

3-2. Using Enumerated Types ...81

Problem ...81

Solution ...81

Discussion ...82

3-3. Using Dynamic Type ..83

Problem ...83

Solution ...83

Discussion ...83

3-4. Understanding Functions ...84

Problem ...84

Solution ...84

Discussion ...84

3-5. Using Typedefs ..86

Problem ...86

Solution ...86

Discussion ...86

Table of ConTenTsTable of ConTenTs

x

3-6. Using Cascade Operator ..87

Problem ...87

Solution ...87

Discussion ...87

3-7. Overriding Operators ...88

Problem ...88

Solution ...88

Discussion ...88

3-8. Using Constructors ..89

Problem ...89

Solution ...89

Discussion ...90

3-9. Extending a Class ..92

Problem ...92

Solution ...92

Discussion ...92

3-10. Adding Features to a Class ..94

Problem ...94

Solution ...94

Discussion ...94

3-11. Using Interfaces ...96

Problem ...96

Solution ...96

Discussion ...96

3-12. Using Generics ...97

Problem ...97

Solution ...97

Discussion ...98

Table of ConTenTsTable of ConTenTs

xi

3-13. Using Libraries ...100

Problem ...100

Solution ...100

Discussion ...100

3-14. Using Exceptions ...101

Problem ...101

Solution ...101

Discussion ...101

3-15. Summary ...104

Chapter 4: Widget Basics ���105

4-1. Understanding Widgets ...105

Problem ...105

Solution ...105

Discussion ...105

4-2. Understanding BuildContext ..108

Problem ...108

Solution ...109

Discussion ...109

4-3. Understanding Stateless Widget ...111

Problem ...111

Solution ...111

Discussion ...111

4-4. Understanding Stateful Widget ..112

Problem ...112

Solution ...112

Discussion ...112

Table of ConTenTsTable of ConTenTs

xii

4-5. Understanding Inherited Widget ..113

Problem ...113

Solution ...113

Discussion ...113

4-6. Displaying Text ...116

Problem ...116

Solution ...116

Discussion ...116

Text ..116

TextSpan ..119

RichText ...121

4-7. Applying Styles to Text ...122

Problem ...122

Solution ...122

Discussion ...122

4-8. Displaying Images ...126

Problem ...126

Solution ...126

Discussion ...126

4-9. Displaying Icons ..128

Problem ...128

Solution ...128

Discussion ...128

4-10. Using Buttons with Text ...130

Problem ...130

Solution ...130

Discussion ...130

Table of ConTenTsTable of ConTenTs

xiii

4-11. Using Buttons with Icons ...132

Problem ...132

Solution ...132

Discussion ...132

4-12. Adding Placeholders ..133

Problem ...133

Solution ...133

Discussion ...133

4-13. Summary ...134

Chapter 5: Layout Widgets ��135

5-1. Understanding Layout in Flutter ..135

Problem ...135

Solution ...135

Discussion ...135

RenderObject ...137

BoxConstraints ..138

Layout Algorithm ...138

Layout Widgets ..139

5-2. Placing Widgets in the Center..139

Problem ...139

Solution ...139

Discussion ...139

5-3. Aligning Widgets ..140

Problem ...140

Solution ...140

Discussion ...140

Table of ConTenTsTable of ConTenTs

xiv

5-4. Imposing Constraints on Widgets ..144

Problem ...144

Solution ...144

Discussion ...144

5-5. Imposing No Constraints on Widgets ...146

Problem ...146

Solution ...147

Discussion ...147

5-6. Imposing Constraints on Widgets when Ignoring Parents148

Problem ...148

Solution ...148

Discussion ...148

5-7. Limiting Size to Allow Child Widget to Overflow ..149

Problem ...149

Solution ...149

Discussion ...150

5-8. Limiting Widgets Size when Unbounded ...150

Problem ...150

Solution ...150

Discussion ...151

5-9. Scaling and Positioning Widgets ...151

Problem ...151

Solution ...151

Discussion ...152

5-10. Rotating Widgets ...156

Problem ...156

Solution ...156

Discussion ...156

Table of ConTenTsTable of ConTenTs

xv

5-11. Adding Padding when Displaying Widgets ..156

Problem ...156

Solution ...157

Discussion ...157

5-12. Sizing Widgets to Aspect Ratio ..158

Problem ...158

Solution ...158

Discussion ...158

5-13. Transforming Widgets ..160

Problem ...160

Solution ...160

Discussion ...160

5-14. Controlling Different Layout Aspects on a Widget161

Problem ...161

Solution ...161

Discussion ...162

5-15. Implementing Flex Box Layout ..164

Problem ...164

Solution ...164

Discussion ...165

Flex Box Layout Algorithm ...165

Flexible ..168

5-16. Displaying Overlapping Widgets ..169

Problem ...169

Solution ...169

Discussion ...169

Table of ConTenTsTable of ConTenTs

xvi

5-17. Displaying Widgets in Multiple Runs ...171

Problem ...171

Solution ...171

Problem ...171

5-18. Creating Custom Single Child Layout ..173

Problem ...173

Solution ...173

Discussion ...173

5-19. Creating Custom Multiple Children Layout ..176

Problem ...176

Solution ...176

Discussion ...176

5-20. Summary ...180

Chapter 6: Form Widgets ��181

6-1. Collecting Text Inputs ..181

Problem ...181

Solution ...181

Discussion ...181

Using TextEditingController ..182

Using Listeners of TextEditingController ..184

Using Callbacks ...186

6-2. Customizing Keyboard for Text Input ...188

Problem ...188

Solution ...189

Discussion ...189

6-3. Add Decorations to Text Input in Material Design191

Problem ...191

Solution ...192

Table of ConTenTsTable of ConTenTs

xvii

Discussion ...192

Borders ..192

Prefix and Suffix ..194

Text ..195

6-4. Setting Text Limits ...196

Problem ...196

Solution ...196

Discussion ...197

6-5. Selecting Text ..198

Problem ...198

Solution ...198

Discussion ...198

6-6. Formatting Text ..202

Problem ...202

Solution ...202

Discussion ...202

6-7. Selecting a Single Value ..203

Problem ...203

Solution ...204

Discussion ...204

6-8. Selecting a Single Value from Dropdown ..206

Problem ...206

Solution ...206

Discussion ...207

6-9. Selecting Multiple Values ..209

Problem ...209

Solution ...209

Discussion ...209

Table of ConTenTsTable of ConTenTs

xviii

6-10. Toggling On/Off State ...211

Problem ...211

Solution ...211

Discussion ...211

6-11. Selecting from a Range of Values ..214

Problem ...214

Solution ...214

Discussion ...215

6-12. Using Chips ..217

Problem ...217

Solution ...217

Discussion ...217

6-13. Selecting Date and Time ..221

Problem ...221

Solution ...221

Discussion ...221

6-14. Wrapping Form Fields ..225

Problem ...225

Solution ...225

Discussion ...225

6-15. Creating Forms ..230

Problem ...230

Solution ...230

Discussion ...230

6-16. Summary ...234

Table of ConTenTsTable of ConTenTs

xix

Chapter 7: Common Widgets ��235

7-1. Displaying a List of Items ..235

Problem ...235

Solution ...235

Discussion ...235

ListView with Static Children ...236

ListView with Item Builders ...237

ListTile ...238

7-2. Displaying Items in a Grid ..244

Problem ...244

Solution ...244

Discussion ...244

7-3. Displaying Tabular Data ...250

Problem ...250

Solution ...250

Discussion ...250

7-4. Scaffolding Material Design Pages ..255

Problem ...255

Solution ...255

Discussion ...255

App Bar ..256

Floating Action Button ...258

Drawer ...258

Bottom App Bar ...260

Bottom Navigation Bar...260

Bottom Sheet ...263

Scaffold State ..264

SnackBar ...264

Table of ConTenTsTable of ConTenTs

xx

7-5. Scaffolding iOS Pages ...265

Problem ...265

Solution ...265

Discussion ...265

7-6. Creating Tab Layout in Material Design ...266

Problem ...266

Solution ...266

Discussion ...267

7-7. Implementing Tab Layout in iOS ..270

Problem ...270

Solution ...270

Discussion ...270

7-8. Summary ...271

Chapter 8: Page Navigation ��273

8-1. Implementing Basic Page Navigation ..273

Problem ...273

Solution ...273

Discussion ...273

8-2. Using Named Routes ...276

Problem ...276

Solution ...276

Discussion ...276

8-3. Passing Data Between Routes ...278

Problem ...278

Solution ...278

Discussion ...278

Table of ConTenTsTable of ConTenTs

xxi

8-4. Implementing Dynamic Route Matching ...284

Problem ...284

Solution ...284

Discussion ...284

8-5. Handling Unknown Routes ..285

Problem ...285

Solution ...285

Discussion ...286

8-6. Displaying Material Design Dialogs ...286

Problem ...286

Solution ...287

Discussion ...287

8-7. Displaying iOS Dialogs ...290

Problem ...290

Solution ...291

Discussion ...291

8-8. Displaying iOS Action Sheets ...293

Problem ...293

Solution ...293

Discussion ...293

8-9. Showing Material Design Menus ...296

Problem ...296

Solution ...296

Discussion ...296

8-10. Managing Complicated Page Flows Using Nested Navigators301

Problem ...301

Solution ...301

Discussion ...301

Table of ConTenTsTable of ConTenTs

xxii

8-11. Observing Navigator State Changes ..305

Problem ...305

Solution ...305

Discussion ...305

8-12. Stopping Routes from Popping ..310

Problem ...310

Solution ...310

Discussion ...310

8-13. Summary ...312

Chapter 9: Service Interaction ��313

9-1. Working with Futures ..313

Problem ...313

Solution ...313

Discussion ...313

9-2. Using async and await to Work with Futures ..317

Problem ...317

Solution ...317

Discussion ...317

9-3. Creating Futures ..318

Problem ...318

Solution ...319

Discussion ...319

9-4. Working with Streams ...320

Problem ...320

Solution ...320

Discussion ...320

Table of ConTenTsTable of ConTenTs

xxiii

9-5. Creating Streams ...328

Problem ...328

Solution ...328

Discussion ...328

9-6. Building Widgets Based on Streams and Futures330

Problem ...330

Solution ...330

Discussion ...330

9-7. Handle Simple JSON Data ...335

Problem ...335

Solution ...335

Discussion ...335

9-8. Handle Complex JSON Data...337

Problem ...337

Solution ...338

Discussion ...338

9-9. Handling XML Data ..344

Problem ...344

Solution ...344

Discussion ...344

9-10. Handling HTML Data ..349

Problem ...349

Solution ...349

Discussion ...349

9-11. Sending HTTP Requests ..350

Problem ...350

Solution ...351

Discussion ...351

Table of ConTenTsTable of ConTenTs

xxiv

9-12. Connecting to WebSocket ..353

Problem ...353

Solution ...354

Discussion ...354

9-13. Connecting to Socket...355

Problem ...355

Solution ...355

Discussion ...355

9-14. Interacting JSON-Based REST Services ..356

Problem ...356

Solution ...356

Discussion ...357

9-15. Interacting with gRPC Services ...360

Problem ...360

Solution ...361

Discussion ...361

9-16. Summary ...363

Chapter 10: State Management ��365

10-1. Managing State Using Stateful Widgets ..365

Problem ...365

Solution ...365

Discussion ...365

10-2. Managing State Using Inherited Widgets ..371

Problem ...371

Solution ...371

Discussion ...371

Table of ConTenTsTable of ConTenTs

xxv

10-3. Managing State Using Inherited Model ...378

Problem ...378

Solution ...378

Discussion ...379

10-4. Managing State Using Inherited Notifier ...382

Problem ...382

Solution ...382

Discussion ...382

10-5. Managing State Using Scoped Model ..384

Problem ...384

Solution ...384

Discussion ...385

10-6. Managing State Using Bloc ...389

Problem ...389

Solution ...389

Discussion ...389

10-7. Managing State Using Redux ..397

Problem ...397

Solution ...397

Discussion ...397

10-8. Managing State Using Mobx ..405

Problem ...405

Solution ...406

Discussion ...406

10-9. Summary ...412

Table of ConTenTsTable of ConTenTs

xxvi

Chapter 11: Animations ��413

11-1. Creating Simple Animations ..413

Problem ...413

Solution ...413

Discussion ...413

11-2. Creating Animations Using Linear Interpolation418

Problem ...418

Solution ...418

Discussion ...418

11-3. Creating Curved Animations ..421

Problem ...421

Solution ...421

Discussion ...421

11-4. Chaining Tweens ..425

Problem ...425

Solution ...425

Discussion ...425

11-5. Creating Sequences of Tweens ...426

Problem ...426

Solution ...426

Discussion ...426

11-6. Running Simultaneous Animations ..427

Problem ...427

Solution ...427

Discussion ...427

Table of ConTenTsTable of ConTenTs

xxvii

11-7. Creating Staggered Animations ...428

Problem ...428

Solution ...428

Discussion ...429

11-8. Creating Hero Animations ..430

Problem ...430

Solution ...430

Discussion ...431

11-9. Using Common Transitions ..434

Problem ...434

Solution ...434

Discussion ...434

11-10. Creating Physics Simulations ..436

Problem ...436

Solution ...436

Discussion ...437

11-11. Summary ...440

Chapter 12: Platform Integration ��441

12-1. Reading and Writing Files ..441

Problem ...441

Solution ...441

Discussion ...441

12-2. Storing Key-Value Pairs ...444

Problem ...444

Solution ...444

Discussion ...444

Table of ConTenTsTable of ConTenTs

xxviii

12-3. Writing Platform-Specific Code ...446

Problem ...446

Solution ...446

Discussion ...446

12-4. Creating Plugins ..452

Problem ...452

Solution ...452

Discussion ...452

12-5. Displaying Web Pages ...456

Problem ...456

Solution ...456

Discussion ...456

12-6. Playing Videos ...460

Problem ...460

Solution ...460

Discussion ...461

12-7. Using Cameras ..465

Problem ...465

Solution ...466

Discussion ...466

12-8. Using System Share Sheet ..470

Problem ...470

Solution ...470

Discussion ...470

12-9. Summary ...471

Table of ConTenTsTable of ConTenTs

xxix

Chapter 13: Miscellaneous ���473

13-1. Using Assets ..473

Problem ...473

Solution ...473

Discussion ...473

13-2. Using Gestures ..476

Problem ...476

Solution ...476

Discussion ...476

13-3. Supporting Multiple Locales ..478

Problem ...478

Solution ...478

Discussion ...478

13-4. Generating Translation Files ..483

Problem ...483

Solution ...483

Discussion ...483

13-5. Painting Custom Elements...486

Problem ...486

Solution ...486

Discussion ...486

13-6. Customizing Themes ...489

Problem ...489

Solution ...489

Discussion ...489

13-7. Summary ...490

Table of ConTenTsTable of ConTenTs

xxx

Chapter 14: Testing and Debugging ��491

14-1. Writing Unit Tests ...491

Problem ...491

Solution ...491

Discussion ...491

14-2. Using Mock Objects in Tests ..495

Problem ...495

Solution ...495

Discussion ...495

14-3. Writing Widget Tests ..498

Problem ...498

Solution ...498

Discussion ...498

14-4. Writing Integration Tests ..502

Problem ...502

Solution ...503

Discussion ...503

14-5. Debugging Apps ..507

Problem ...507

Solution ...507

Discussion ...507

14-6. Summary ...509

Index ���511

Table of ConTenTsTable of ConTenTs

xxxi

About the Author

Fu Cheng is a full-stack software developer living in Auckland, New

Zealand, with rich experience in applying best practices in real product

development and strong problem-solving skills. He is the author of

the book Exploring Java 9: Build Modularized Applications in Java,

which covers the new features of Java SE 9 and provides a deep dive

of Java platform core features. He is also a regular contributor to IBM

developerWorks China and InfoQ China, with more than 50 published

technical articles covering various technical topics.

xxxiii

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and software developer

and has helped many oil and gas companies automate and enhance

their oil field solutions through field data capture, SCADA, and machine

learning. Jason obtained his Bachelor of Science in Computer Science

from Arkansas State University, but he traces his passion for development

back many years before then, having first taught himself to program BASIC

on his family’s computer while still in middle school.

When he’s not mentoring and helping his team at work, writing, or

pursuing one of his many side projects, Jason enjoys spending time with

his wife and four children and living in the Tulsa, Oklahoma, region. More

information about Jason can be found on his web site https://jason.

whitehorn.us.

https://jason.whitehorn.us/
https://jason.whitehorn.us/

1© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_1

CHAPTER 1

Get Started
Recipes in this chapter help you set up your local development

environment to get ready for building Flutter apps. Depending on the

operating system of your machine, the steps to set up may be different. You

only need to use the recipes for your own requirement. After using recipes

in this chapter, you should be able to get the first Flutter app running on

emulators or physical devices.

1-1. Installing Flutter SDK on Windows
 Problem
You have a Windows machine, and you want to start Flutter development

on this machine.

 Solution
Install Flutter SDK and set up Android platform on the Windows machine.

 Discussion
Flutter SDK supports Windows platform. Installing Flutter on Windows is

not a hard task as you may think. First of all, you need to make sure that your

local development environment meets the minimum requirements. You’ll

need to have 64-bit Windows 7 SP1 or later and at least 400MB free disk

2

space for Flutter SDK to use. Flutter SDK also requires Windows PowerShell

5.0 or newer and Git for Windows to be available on the machine.

Windows PowerShell 5.0 is pre-installed with Windows 10. For

Windows versions older than Windows 10, you need to install PowerShell

5.0 manually by following instructions from Microsoft (https://docs.

microsoft.com/en-us/powershell/scripting/setup/installing-

windows- powershell). You may already have Git for Windows installed

since Git is a very popular tool for development. If you can run Git

commands in PowerShell, then you are good to go. Otherwise, you need

to download Git for Windows (https://git-scm.com/download/win) and

install it. When installing Git for Windows, make sure the option “Git from

the command line and also from 3rd-party software” is selected in the page

“Adjusting your PATH environment”; see Figure 1-1.

Figure 1-1. Git for Windows setup

Chapter 1 Get Started

https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://git-scm.com/download/win

3

After these minimum requirements have been satisfied, you

can download the Flutter SDK zip bundles from the official web site

(https://flutter.dev/docs/get-started/install/windows). Extract

the downloaded zip file to the desired location on the local machine.

It’s recommended to avoid using the system driver where Windows

is installed. In the extracted directory, double-click the file flutter_

console.bat to start Flutter Console and run Flutter SDK commands.

To be able to run Flutter SDK commands in any Windows console, we

need to add Flutter SDK to the PATH environment variable. The full path to

bin of the installation directory should be added to the PATH. To modify the

PATH on Windows 10

 1. Open the Start Search and type “env” and select

“Edit the system environment variables”.

 2. Click the “Environment Variables…” button and find

the row with “Path” in the first column under the

“System Variables” section.

 3. In the “Edit environment variable” dialog, click

“New” and input the path of the bin directory of

installed Flutter SDK.

 4. Close all dialogs by clicking “OK”.

Now you can open a new PowerShell windows and type the command

flutter --version to verify the installation; see Figure 1-2.

Figure 1-2. Success installation of Flutter SDK on Windows

Chapter 1 Get Started

https://flutter.dev/docs/get-started/install/windows

4

Only Android platform is supported on Windows. Continue the setup

following Recipe 1-7.

1-2. Installing Flutter SDK on Linux
 Problem
You have a Linux machine, and you want to start Flutter development on

this machine.

 Solution
Install Flutter SDK and set up Android platform on the Linux machine.

 Discussion
Flutter SDK supports Linux platform. However, given that there are many

different Linux distributions available, the actual steps to get Flutter SDK

installed may be slightly different. This recipe is based on installing Flutter

SDK on Ubuntu 18.04 LTS.

Flutter SDK requires several command-line tools to be available in the

local environment, including bash, mkdir, rm, git, curl, unzip, and which.

For most Linux distributions, the commands bash, mkdir, rm, unzip, and

which should already be included by default. The easiest way to verify that

is to open a terminal window and type these commands to see the output.

You’ll see “command not found” error if a command is not installed. git

and curl are unlikely to be included by default. Most Linux distributions

provide built-in package managers to install these tools. For Ubuntu, you

can use apt-get; see the following command.

$ sudo apt-get update

$ sudo apt-get install -y curl git

Chapter 1 Get Started

5

After the installation finishes successfully, you can type commands

curl and git to verify.

Now you can download the Flutter SDK zip bundles from the official

web site (https://flutter.dev/docs/get-started/install/linux).

Extract the downloaded zip file to the desired location on the local

machine. Open a terminal window, navigate to the directory of extracted

Flutter SDK, and run the following command to verify the installation.

$ bin/flutter --version

It’s recommended to add the bin directory of Flutter SDK to the

PATH environment variable, so the flutter command can be run in any

terminal session. For Ubuntu, you can edit the file ~/.profile.

$ nano ~/.profile

Add the following line to this file and save.

export PATH="<flutter_dir>/bin:$PATH"

In the current terminal window, you need to run source ~/.profile

for the change to take effect. Or you can simply create a new terminal

window. Type flutter --version in any terminal window to verify. You’ll

see the same output as Figure 1-2.

Only Android platform is supported on Linux. Continue the setup

following Recipe 1-7.

1-3. Installing Flutter SDK on macOS
 Problem
You have a macOS machine, and you want to start Flutter development on

this machine.

Chapter 1 Get Started

https://flutter.dev/docs/get-started/install/linux

6

 Solution
Install Flutter SDK and set up Android and iOS platforms on the macOS

machine.

 Discussion
For macOS, Flutter SDK requires several command-line tools to be

available in the local environment. These tools are bash, mkdir, rm, git,

curl, unzip, and which. macOS should already have these tools as part

of the system. You can simply type these commands in the terminal

to verify. The easiest way to install missing tools is to use Homebrew

(https://brew.sh/). Homebrew is also important when setting up the iOS

development environment. Use brew install to install tools, for example,

brew install git to install Git.

After installing required tools, we can download the Flutter SDK zip

bundle from the official web site (https://flutter.dev/docs/get-

started/install/macos). Extract the downloaded zip file to the desired

location on the local machine. The flutter command is located under the

bin directory of the extracted location.

To run flutter command in any terminal session, the PATH

environment variable should be updated to include the bin directory of

the Flutter SDK. This is typically done by updating the profile of the shell.

For the default bash, this file is ~/.bash_profile. For zsh, this file is

~/.zshrc. Modify this file to include the following line.

export PATH=<flutter_install_dir>/bin:$PATH

To make the current terminal window use the updated PATH, you

need to run source ~/.bash_profile. You can also start a new terminal

window which will automatically use the updated value of PATH.

Chapter 1 Get Started

https://brew.sh/
https://flutter.dev/docs/get-started/install/macos
https://flutter.dev/docs/get-started/install/macos

7

Run flutter --version in any terminal window to verify the

installation. You’ll see the same output as Figure 1-2.

Both Android and iOS platforms are supported on macOS. Continue

the setup following Recipes 1-4 and 1-7.

1-4. Setting Up iOS Platform
 Problem
You want to develop Flutter apps for iOS platform.

 Solution
Set up iOS platform for Flutter SDK on your Mac.

 Discussion
To develop Flutter apps for iOS, you need to have a Mac with at least Xcode

9.0. To set up the iOS platform, you need to go through the following steps:

 1. Install Xcode (https://developer.apple.com/

xcode/) from App Store.

 2. Verify the path of the Xcode command-line tools.

Run the following command to show the current

path to the command-line tools. Usually you

should see output like /Applications/Xcode.app/

Contents/Developer.

$ xcode-select -p

Chapter 1 Get Started

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

8

If the path shown in the output is not the one you

want, for example, you have different versions of Xcode

command-line tools installed, use xcode-select -s

to switch to a different path. If you don’t have the

command-line tools installed, use xcode-select

--install to open the installation dialog.

 3. You need to open Xcode once to accept its license

agreement. Or you can choose to run the command

sudo xcodebuild -license to view and accept it.

 4. Flutter SDK requires other tools for iOS

platform, including libimobiledevice, usbmuxd,

ideviceinstaller, ios-deploy, and CocoaPods

(https://cocoapods.org/). All these tools can be

installed using Homebrew. If you run the command

flutter doctor, it shows the commands to install

these tools using Homebrew. Simply run these

commands and use flutter doctor to check again.

When you see the green tick of “iOS toolchain,” the

iOS platform is set up successfully for Flutter SDK to

use; see Figure 1-3 for a sample output.

Figure 1-3. Output of flutter doctor

Chapter 1 Get Started

https://cocoapods.org/

9

1-5. Setting Up iOS Simulators
 Problem
You need a quick way to test Flutter apps on iOS platform.

 Solution
Set up the iOS simulator.

 Discussion
Xcode provides simulators for different iOS versions. You can download

additional simulators using the tab Components in Xcode ➤ Preferences.

To open the simulator, run the following command.

$ open -a Simulator

When the simulator is opened, you can switch the combination of

different devices and iOS versions using the menu Hardware ➤ Device.

After the simulator is started, running flutter devices should show

the simulator.

1-6. Setting Up iOS Devices
 Problem
You have finished the testing of your Flutter apps on iOS simulator, and

you want to test them on real iOS devices.

 Solution
Deploy Flutter apps to iOS devices.

Chapter 1 Get Started

10

 Discussion
Before deploying Flutter apps to iOS devices, you need to run flutter

doctor to verify that iOS toolchain is set up correctly. To develop and

test Flutter apps on devices, you need to have an Apple ID. If you want

to distribute apps to App Store, you also need to enroll Apple Developer

Program.

The first time you connect a physical device for iOS development,

you need to trust the Mac to connect your device. Flutter apps need to be

signed before deploying to devices. Open the ios/Runner.xcworkspace

file of the Flutter app in Xcode. In the General tab, select the correct team

in the Signing section. If you select the connected device as the running

target, Xcode will finish the necessary configurations for code signing. The

Bundle Identifier must be unique.

Figure 1-4. App signing in Xcode

Chapter 1 Get Started

11

The Flutter app can be deployed to the device using Xcode or the

command flutter run. The first time you deploy the app, you may need

to trust the development certificate in General ➤ Device Management of

the Settings app on the iOS device.

1-7. Setting Up Android Platform
 Problem
You want to develop Flutter apps for Android platform.

 Solution
Install Android Studio to set up Android platform on your local machine.

 Discussion
To develop Flutter apps for Android platform, we need to set up Android

platform first. Flutter SDK requires a full installation of Android Studio for

its Android platform dependencies, so we have to install Android Studio.

Go to Android Studio download page (https://developer.android.

com/studio/) and click the “DOWNLOAD ANDROID STUDIO” button.

You need to accept the terms and conditions to download it. The

download page checks your platform and provides the most suitable

version to download. If the provided option is not what you want, click the

“DOWNLOAD OPTIONS” and select from the list of all download options;

see Figure 1-5.

Chapter 1 Get Started

https://developer.android.com/studio/
https://developer.android.com/studio/

12

Android Studio provides a GUI-based installer, so it’s very easy to get it

installed and running on the local machine. Installing Android Studio also

installs Android SDK, Android SDK platform tools, and Android SDK build

tools. Even you choose not to use Android Studio as the IDE, Android SDK

and related tools are still required for Android development.

In the Android SDK page of preferences in Android Studio, you can

also install additional Android SDK platforms and tools; see Figure 1-6.

Android Studio also prompts available updates to installed Android SDK

platforms and tools.

Figure 1-5. Download options of Android Studio

Chapter 1 Get Started

13

1-8. Setting Up Android Emulators
 Problem
You need a quick way to test Flutter apps for Android platform.

 Solution
Set up the Android emulators.

 Discussion
When developing Flutter apps, you can run them on Android emulators to

see the results of running apps. To set up Android emulators, you can go

through the following steps.

Figure 1-6. Manage Android SDK in Android Studio

Chapter 1 Get Started

14

Open an Android project in Android Studio and select Tools ➤

Android ➤ AVD Manager to open AVD Manager and click “Create Virtual

Device…”; see Figure 1-7.

Choose a device definition, for example, Nexus 6P, and click Next; see

Figure 1-8.

Figure 1-7. Android Virtual Device Manager

Chapter 1 Get Started

15

Select a system image for the Android version you want to emulate and

click Next; see Figure 1-9.

Figure 1-8. Select Hardware

Chapter 1 Get Started

16

Select Hardware - GLE 2.0 for Emulated Performance to enable

hardware acceleration and click Finish; see Figure 1-10.

Figure 1-9. Select a system image

Chapter 1 Get Started

17

A new AVD is created and listed in AVD Manager. Android Studio

official web site provides a comprehensive guide (https://developer.

android.com/studio/run/managing-avds) on how to manage AVDs, if you

want to know more details about AVD configurations.

In the AVD Manager, click the green triangle button to start the

emulator. It may take some time for the emulator to start up and show the

default Android home screen.

Figure 1-10. Select emulated performance

Chapter 1 Get Started

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

18

1-9. Setting Up Android Devices
 Problem
You have finished the testing of your Flutter apps on emulators, and you

want to test them on real Android devices.

 Solution
Set up your Android device to run Flutter apps.

 Discussion
To set up your Android device, you can go through the following steps:

 1. You need to enable Developer options and USB

debugging on your device. Check the instructions on

the official Android web site (https://developer.

android.com/studio/debug/dev- options#enable).

You may also need to install Google USB driver

(https://developer.android.com/studio/run/

win-usb) on Windows machines.

 2. Plug your device into your computer with a USB

cable. The device prompts a dialog to ask for

permissions, authorizing your computer to access

your device.

 3. Run the command flutter devices to verify

Flutter SDK can recognize your device.

The Flutter app can be deployed to the device using Android Studio or

the command flutter run.

Chapter 1 Get Started

https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/run/win-usb
https://developer.android.com/studio/run/win-usb

19

1-10. Creating Flutter Apps Using
Command Line
 Problem
You have already set up your local environment to develop Flutter apps.

Even though using Android Studio or VS Code is a good choice for

development, you may still want to know how to do this from command line.

 Solution
Use the commands from Flutter SDK to create and build Flutter apps.

 Discussion
Using tools like Android Studio and VS Code can make Flutter

development much easier. However, it’s still valuable to know how to

build Flutter apps using the command-line tools. This is important for

continuous integration. It also allows you to use any other editors to

develop Flutter apps.

The command flutter create can be used to create a new Flutter

app. Actually, Android Studio and VS Code both use this command to

create new Flutter apps. The following command creates a new Flutter app

in the directory flutter_app.

$ flutter create flutter_app

This command creates various files in the specified directory as the

skeleton code of the new app. Navigate to the directory flutter_app and

use flutter run to run this app.

Chapter 1 Get Started

20

1-11. Creating Flutter Apps Using Android
Studio
 Problem
You want to have a powerful IDE that meets most of the requirements

when developing Flutter apps.

 Solution
Use Android Studio to create Flutter apps.

 Discussion
Since we already have Android Studio installed to set up Android platform

for Flutter SDK, it’s a natural choice to use Android Studio as the IDE to

develop Flutter apps. Android Studio itself is a powerful IDE based on

IntelliJ platform. If you have used other products from JetBrains, like

IntelliJ IDEA or WebStorm, you may find it’s quite easy to get started with

Android Studio.

To use Android Studio for Flutter development, Flutter and Dart

plugins are required. To install these two plugins, open the Plugins page in

Preferences dialog of Android Studio and click the “Browse repositories…”

button. In the opened dialog, type in “Flutter” to search for the Flutter

plugin to install; see Figure 1-11. Click the green Install button to install it.

This will also prompt you to install the Dart plugin. Click Yes to install that

as well. Restart Android Studio.

Chapter 1 Get Started

21

After restarting Android Studio, you should see a new option to start a

new Flutter project. The wizard for Flutter projects has different pages to

configure the new project.

The first page allows you to select type of the new Flutter project. The

description in the page shows the difference of these four different project

types. Most of the time, we are going to create a Flutter Application.

Figure 1-11. Install Flutter plugin in Android Studio

Chapter 1 Get Started

22

The second page allows you to customize basic configurations of the

new Flutter project, including project name, location, and description.

Figure 1-12. Select type of Flutter project

Chapter 1 Get Started

23

The last page allows you to customize some advanced project

configurations. The company domain is used to create unique identifier

for the project.

Figure 1-13. Basic project configurations

Chapter 1 Get Started

24

After finishing the wizard, a new project is created and opened in

Android Studio.

1-12. Creating Flutter Apps Using VS Code
 Problem
You want to use a light-weight editor to develop Flutter apps.

 Solution
Use VS Code to create Flutter apps.

Figure 1-14. Advanced project configurations

Chapter 1 Get Started

25

 Discussion
VS Code (https://code.visualstudio.com/) is a popular light-weight

editor in the community of front-end developers. With the extensions

for Flutter and Dart, we can also use VS Code for Flutter development.

Open the Extensions tab in VS Code and search for “flutter” to install

the Flutter extension; see Figure 1-15. Flutter extension depends on the

Dart extension, which will also be installed. After installing these two

extensions, we can open the command palette and search “flutter” for

available Flutter commands.

To create a new Flutter in VS Code, open the command palette and run

the Flutter: New Project command. Input the name of the new project in

the opened dialog. Select the directory of the project. VS Code opens a new

window for the newly created project.

Figure 1-15. Install Flutter extension in VS Code

Chapter 1 Get Started

https://code.visualstudio.com/

26

1-13. Running Flutter Apps
 Problem
You want to run Flutter apps on emulators or devices.

 Solution
Use flutter run command or IDEs to run Flutter apps.

 Discussion
Depending on your preferred approach to develop Flutter apps, there are

different ways to run Flutter apps. Before running Flutter apps, you must

have at least one running emulator or connected device:

• The command flutter run starts the current

Flutter app.

• In Android Studio, select the emulator or device from

the dropdown menu shown in Figure 1-16, then click

the Run button to start the app.

• In VS Code, select Debug ➤ Start Without Debugging

to start the app.

Figure 1-16. Select device in Android Studio

Chapter 1 Get Started

27

1-14. Understanding Code Structure of
Flutter Apps
 Problem
You want to know the typical structure of Flutter apps.

 Solution
Go through the sample app generated by Flutter SDK and understand the files.

 Discussion
Before going into details of developing Flutter apps, you should know

about the code structure of Flutter apps, so you know where to add new

files. Flutter apps have a predefined directory structure for various files in

the app. When a new app is created, you can take a look of the generated

files and have a basic understanding of them. Table 1-1 shows directories

and files of the created app.

Table 1-1. Directories and files of a Flutter app

Name Description

lib Main directory of app source code. the file main.dart is

usually the entry point of the app.

test directory that contains test files.

android Files for android platform.

ios Files for iOS platform.

pubspec.yaml package description for dart pub tool.

pubspec.lock Lock file for dart pub tool.

.metadata Flutter project description used by Flutter SdK.

Chapter 1 Get Started

28

1-15. Fixing Configuration Issues of
Flutter SDK
 Problem
You want to make sure the configuration of your local development

environment is correct for Flutter development.

 Solution
Use the command flutter doctor.

 Discussion
After Flutter SDK is installed, it needs to be configured with other supporting

tools. The command flutter doctor is the primary tool to provide

necessary help. This command checks the local environment and reports

status of the Flutter SDK installation. For each problem it finds, it also gives

instructions on how to fix them. All you need to do is to apply the suggested

fixes and run flutter doctor again to verify the result. It’s not necessary to

fix all issues reported by flutter doctor. You can safely ignore some issues

if they are not relevant. For example, if you are not going to use VS Code as

the primary IDE, then it doesn’t matter if VS Code is installed or not.

1-16. Summary
Recipes in this chapter provide instructions on how to get your local

machine prepared for Flutter apps development. flutter doctor is a useful

tool for setup. You should be able to fix most of the configuration issues by

following instructions provided by this command. In the next chapter, we’ll

see recipes about using tools provided by Dart SDK, Flutter SDK, and IDEs.

Chapter 1 Get Started

29© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_2

CHAPTER 2

Know the Tools
Building Flutter apps cannot succeed without the help of various tools.

During the development, we may need to use tools from Dart SDK,

Flutter SDK, and IDEs. Making good use of these tools can increase your

productivity. This chapter covers usage of tools from Dart SDK, Flutter

SDK, Android Studio, and VS Code.

2-1. Using Dart Observatory
 Problem
You want to know the internals of a running Flutter app.

 Solution
Use Dart Observatory provided by Dart SDK.

 Discussion
Dart Observatory is a tool provided by Dart SDK to profile and debug Dart

applications. Since Flutter apps are also Dart applications, Observatory

is also available for Flutter apps. Observatory is an important tool for

debugging, tracing, and profiling Flutter apps. Observatory allows you to

• View an app’s CPU profile.

• View an app’s memory allocation profile.

30

• Debug an app interactively.

• View snapshots of an app’s heap.

• View logs generated by an app.

When a Flutter app is started using flutter run, Observatory is

also started and waiting for connections. You can specify the port for

Observatory to listen on, or let it listen on a random port by default.

You can see the URL to access the Observatory in the command output.

Navigate to the URL in the browser and you can see the UI of Observatory.

Note For best results, Google Chrome is recommended when using
the Observatory. Other browsers may not function properly.

The top section of the Observatory UI shows the Dart VM information;

see Figure 2-1. Click the Refresh button to update the information.

Figure 2-1. VM information in Dart Observatory

Chapter 2 KnOw the tOOls

31

The bottom section shows a list of isolates; see Figure 2-2. Every Flutter

app has an initial isolate for its entry point file. For each isolate, a pie chart

shows the breakdown of activities of the VM. On the right side of the pie chart,

a list of links points to different screens of other Observatory functionalities.

The details of these Observatory screens are out of the scope of this

recipe; refer to the official documentation (https://dart-lang.github.

io/observatory/) for instructions.

2-2. Using Hot Reload and Hot Restart
 Problem
When developing Flutter apps, after you made some code changes, you

want to see the result quickly.

 Solution
Use hot reload and hot restart provided by Flutter SDK.

Figure 2-2. Isolate information in Dart Observatory

Chapter 2 KnOw the tOOls

https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/

32

 Discussion
When building mobile apps, it’s crucial to be able to view effects of

code changes efficiently, especially when building the UI. This enables

us to quickly see the actual UI and update code iteratively. It’s also

very important to keep the app’s current state when updating the

app. Otherwise, it’ll be very painful to manually reset the app to the

previous state and continue testing. Suppose that the component you

are developing is only accessible to registered users, to actually test the

component, you may need to log in every time you made a code change, if

the state is not preserved between app updates.

Hot reload provided by Flutter SDK is a killer feature that can

significantly increase developers’ productivity. With hot reload, the state is

perverse between app updates, so you can see the UI updates instantly and

continue the development and testing from the last execution point where

you made the changes.

Depending on how a Flutter app is started, there are different ways to

trigger hot reload. Only Flutter apps in debug mode can be hot reloaded:

• When the app is started by the command flutter run,

enter r in the terminal window to trigger hot reload.

• When the app is started by Android Studio, saving the

files automatically triggers hot reload. You can also click

the Flutter Hot Reload button to manually trigger it.

• When the app is started by VS Code, saving the files

automatically triggers hot reload. You can also run

the command Flutter: Hot Reload with the keyboard

shortcut Control-F5 to manually trigger it.

If the app is hot reloaded successfully, you can see output in the

console with details of the hot reload. Figure 2-3 shows the console output

when a hot reload is triggered by saving files in Android Studio.

Chapter 2 KnOw the tOOls

33

Hot reload is so useful that you may want it to be available for all code

changes you made. Unfortunately, there are still some cases that hot reload

may not work:

• Your code change introduces compilation errors. You

need to fix these compilation errors before hot reload

can continue.

• Hot reload preserves the app state, and it tries to

rebuild the widgets tree using the preserved state to

reflect new changes. If your code change modifies the

state, then the change to widgets may not be able to

work with the old preserved state. Suppose that we

have a widget that is designed to display a user’s profile

information. In the previous version, the state for a

user only contains the username and name. In the new

version, the state is updated to include a new property

email, and the widget is updated to display the new

property. After hot reload, the widget still uses the old

state and doesn’t see the new property. A hot restart is

required in this case to pick up the state change.

• Changes to initializers of global variables and static

fields can only be reflected after a hot restart.

Figure 2-3. Hot reload output

Chapter 2 KnOw the tOOls

34

• Changes to the app’s main() method may only be

reflected after a hot restart.

• Hot reload is not supported when an enumerated

type is changed to a regular class or a regular class is

changed to an enumerated type.

• Hot reload is not supported when changing the generic

declarations of types.

If hot reload doesn’t work, you can still use hot restart, which restarts

the app from scratch. You can be sure that hot restart will reflect all

changes you made. Depending on how a Flutter app is started, there are

different ways to trigger hot restart:

• When the app is started by flutter run, enter R in the

terminal window to trigger hot restart.

• When the app is started by Android Studio, click the

Flutter Hot Restart button to trigger hot restart.

• When the app is started by VS Code, click the Restart

button, or run the command Flutter: Hot Restart from

command palette to trigger hot restart.

2-3. Upgrading Flutter SDK
 Problem
You want to keep the Flutter SDK up to date to get latest features, bug fixes,

and performance improvements.

 Solution
Track different Flutter SDK channels and upgrade the SDK.

Chapter 2 KnOw the tOOls

35

 Discussion
From time to time, we may need to upgrade Flutter SDK to get new

features, bug fixes, and performance improvements. Flutter SDK has

different channels to get updates. Each channel is actually a Git branch in

Flutter SDK’s repository. Executing the command flutter channel shows

all available channels; see Figure 2-4. The channel marked with a star

symbol is the current channel. In Figure 2-4, the current channel is stable.

Table 2-1 shows four channels of Flutter SDK.

Figure 2-4. Output of the command flutter channel

Table 2-1. Flutter SDK channels

Channel Description

stable Channel for stable builds. It’s the recommended channel for product

development.

beta Channel for best build of the previous month.

dev Channel for latest fully tested build. More tests are run in this channel

than master.

master Channel for active development with latest changes. If you want to try

the latest features, this is the channel to track. Code in this channel

usually works, but sometimes it may break accidentally. Use this

channel at your own risk.

Chapter 2 KnOw the tOOls

36

We can use the command flutter channel [<channel-name>] to

switch to a different channel. For example, flutter channel master

changes to the master channel. To get updates of the current channel, run

the command flutter upgrade. The following command shows a typical

way to switch channels.

$ flutter channel master

$ flutter upgrade

2-4. Debugging Flutter Apps in
Android Studio
 Problem
You are using Android Studio to develop Flutter apps and want to find out

why the code doesn’t work the way you expected.

 Solution
Use the built-in Flutter debugging support in Android Studio.

 Discussion
Debugging is an important part of developers’ daily routines. When

debugging, we can see the actual code execution path in the runtime

and inspect values of variables. If you have experiences with other

programming languages, you should already have the basic debugging

skills.

In Android Studio, you can click on the left gutter of a line in the editor

to add breakpoints to that line. Click the Debug icon or use the menu Run

➤ Debug to start the app in debug mode; see Figure 2-5.

Chapter 2 KnOw the tOOls

37

Once the code execution hits a breakpoint, the execution is paused.

You can inspect values of variables and interactively continue the

execution using the buttons in the debug toolbar. There are different

panels to see related information in debug mode.

Frames view in Figure 2-6 shows the current execution frames.

Variables view in Figure 2-7 shows values of variables and objects. In

this view, we can also add expressions to watch for values.

Figure 2-5. Click Debug icon to start debugging

Figure 2-6. Frames view in Android Studio

Chapter 2 KnOw the tOOls

38

Console view in Figure 2-8 shows messages displayed to the console.

Figure 2-7. Variables view in Android Studio

Chapter 2 KnOw the tOOls

39

2-5. Viewing Outline of Flutter Apps
in Android Studio
 Problem
You want to see outline of Flutter apps to have a clear view of how widgets

are organized.

 Solution
Use Flutter Outline view in Android Studio.

Figure 2-8. Console view in Android Studio

Chapter 2 KnOw the tOOls

40

 Discussion
In Android Studio, Flutter Outline view can be opened from menu View ➤

Tool Windows ➤ Flutter Outline. This view displays a tree-like hierarchy

of current open file; see Figure 2-9. Flutter Outline view is linked with

the file editor. Selecting an element in the Flutter Outline view makes the

editor to scroll and highlight the source code of this element. This link is

bidirectional; selection in the editor also causes corresponding element to

be selected in the Flutter Outline view.

Figure 2-9. Flutter Outline view in Android Studio

Chapter 2 KnOw the tOOls

41

The toolbar in Flutter Outline view has different actions to manage

widgets. For example, Center widget button wraps the current widget with

a Center widget.

2-6. Debugging Flutter Apps in VS Code
 Problem
You are using VS Code to develop Flutter apps and want to find out why

the code doesn’t work the way you expected.

 Solution
Use the built-in Flutter debugging support in VS Code.

 Discussion
In VS Code, you can click on the left gutter of a line in the editor to add

breakpoints to that line. Use the menu Debug ➤ Start Debugging to start

the app in debug mode.

Figure 2-10 shows the VS Code view in debug mode. There are different

panels in this view:

• Variables – Shows values of variables.

• Watch – Manages watch expressions and views their

values.

• Call stack – Views current call stack.

• Breakpoints – Views added breakpoints.

• Debug console – Views messages output to the console.

Chapter 2 KnOw the tOOls

42

The actions bar in the top contains actions including Continue, Step

Over, Step Into, Step Out, Restart, and Stop.

2-7. Creating Flutter Projects
 Problem
You want to create different types of Flutter projects.

 Solution
Use the command flutter create with different arguments.

Figure 2-10. Debug in VS Code

Chapter 2 KnOw the tOOls

43

 Discussion
flutter create is the command provided by Flutter SDK to create Flutter

projects. In Recipe 1-10, we use this command to create a simple Flutter

app. In Recipe 1-11, we also see the wizard provided by Android to create

new Flutter projects, which allows customizations of the created projects.

Under the hood, Android Studio also uses flutter create command.

This command supports different arguments for various scenarios. The

following code is the basic usage of flutter create. The output directory

will contain files of the new project.

$ flutter create <output directory>

 Type of Project

Use the argument -t or --template to specify the type of project to create.

There are four types of projects; see Table 2-2.

The following command shows how to create a Flutter package and

plugin.

$ flutter create -t package my_package

$ flutter create -t plugin my_plugin

Table 2-2. Flutter project types

Project type Description

app a Flutter application. this is the default type.

package a sharable Flutter project that contains modular Dart code.

plugin a sharable Flutter project that contains platform-specific code

for android and iOs.

Chapter 2 KnOw the tOOls

44

When creating plugins, we can also use the argument -i or --ios-

language to specify the programming language of iOS code. Possible

values are objc for Objective-C and swift for Swift. The default value

is objc. For Android code, we can use the argument -a or --android-

language to specify the programming language of Android code. Possible

values are java for Java and kotlin for Kotlin. The default value is java.

The following command shows how to create a Flutter plugin with Swift for

iOS and Kotlin for Android.

$ flutter create -t plugin -i swift -a kotlin my_plugin

 Code Sample

When creating a Flutter application, we can use the argument -s or

--sample to specify the sample code to use as the file lib/main.dart of the

new app. Given a sample id, the command tries to load the dart file with

the URL https://docs.flutter.dev/snippets/<sample_id>.dart.

 Project Configurations

There are some general configurations available when creating projects;

see Table 2-3.

Chapter 2 KnOw the tOOls

https://docs.flutter.dev/snippets/<sample_id>.dart

45

The following command uses the project configurations in Table 2-3.

$ flutter create --org=com.mycompany --description="E-commerce

app" my_ecommerce_app

 Enable or Disable Features

There are additional flags to enable or disable some features; see Table 2-4.

Only one argument of each pair can be specified at a time. The argument

name with the prefix --no means disabling a feature, while the other one

means enabling a feature. For example, --overwrite means enabling

overwriting, while --no-overwrite means disabling overwriting. The

default value On or Off means whether the feature is enabled or disabled

by default, respectively. For example, the default value Off for the pair

--overwrite and --no-overwrite means the --no-overwrite is used by

default.

Table 2-3. Flutter project configurations

Argument Description Default value

--project-name name of this new Flutter project. the

name must be a valid dart package

name.

Derived from the

output directory

name

--org Organization name of this new Flutter

project. the value should be in reverse

domain notation, for example, com.

example. the value is used as the Java

package name for android code and the

prefix in the iOs bundle identifier.

com.example

--description the description of this new Flutter

project.

a new Flutter

project

Chapter 2 KnOw the tOOls

46

2-8. Running Flutter Apps
 Problem
You want to run Flutter apps.

 Solution
Use the command flutter run with different arguments.

 Discussion
flutter run is the command provided by Flutter SDK to start Flutter apps.

flutter run has a lot of arguments for different usage scenarios.

Table 2-4. Features of flutter create

Arguments Description Default value

--overwrite /

--no-overwrite

whether to overwrite existing files. Off

--pub /

--no-pub

whether to run flutter packages

get after the project has been

created.

On

--offline /

--no- offline

whether to run flutter packages

get in offline mode or not. Only

applicable when --pub is on.

Off

--with-driver- test /

--no-with- driver-test

whether to add a flutter_driver

dependency and generate a sample

Flutter Drive test.

Off

Chapter 2 KnOw the tOOls

47

 Different Build Flavors

By default, flutter run builds a debug version of the app. Debug version

is good for development and testing with hot reload support. There are

other build flavors you can use for different scenarios; see Table 2-5.

 Other Options

The argument -t or --target specifies the main entry point file of the app.

It must be a Dart file that contains the main() method. The default value is

lib/main.dart. The following command uses lib/app.dart as the entry

point file.

$ flutter run -t lib/app.dart

If your app has different routes, use the argument --route to specify

the route to load when running the app.

If you want to record the process id of the running Flutter app, use

the argument --pid-file to specify the file to write the process id. With

the process id, you can send the signal SIGUSR1 to trigger a hot reload and

Table 2-5. Build flavors of flutter run

Argument Description

--debug a debug version. this is the default build flavor.

--profile a version specialized for performance profiling. this option does

not currently support emulator targets.

--release a release version ready for publishing to app store.

--flavor a custom app flavor defined by platform-specific build setup.

this requires using product flavors in android Gradle scripts and

custom Xcode schemes.

Chapter 2 KnOw the tOOls

48

SIGUSR2 to trigger a hot restart. In the following command, the process id

is written to the file ~/app.pid.

$ flutter run --pid-file ~/app.pid

Now we can send signals to the running Flutter app using kill.

$ kill -SIGUSR1 $(<~/app.pid)

$ kill -SIGUSR2 $(<~/app.pid)

Table 2-6 shows other arguments supported by flutter run.

Table 2-6. Extra arguments of flutter run

Arguments Description Default value

--hot / --not- hot whether hot reload should be enabled. On

--build / --no- build whether the app should be built if

necessary before running it.

On

--pub / --no- pub whether to run flutter packages

get before running it.

On

--target- platform specify the target platform when

building the app for android devices.

possible values are default,

android-arm, and android- arm64.

default

--observatory- port specify the port for Observatory

debugger connections.

0 (a random

free port)

--start-paused Make the app to start in a paused mode

and wait for a debugger to connect.

--trace- startup start tracing.

(continued)

Chapter 2 KnOw the tOOls

49

Figure 2-11 shows the output of running the command flutter run.

From the output, we can see the Observatory port of the running app,

which is very important for other Flutter SDK commands to work with the

running app. We can interact with the console by pressing different keys.

For example, pressing “r” triggers hot reload. After pressing “h”, flutter

run shows a help message about all commands it can accept.

Arguments Description Default value

--enable- software-

rendering

enable rendering using skia.

--skia-

deterministic-

rendering

provide 100% deterministic skia

rendering when used with --enable-

software- rendering.

--trace-skia enable tracing of skia code.

Table 2-6. (continued)

Chapter 2 KnOw the tOOls

50

Figure 2-11. Output of the command flutter run

Chapter 2 KnOw the tOOls

51

2-9. Building Flutter App Binaries
 Problem
You want to build app binaries for Android and iOS platforms.

 Solution
Use the command flutter build.

 Discussion
To deploy Flutter apps to devices and publish to app stores, we need to

build the binaries for Android and iOS platforms. The command flutter

build supports building these binaries.

 Build APK Files for Android

The command flutter build apk builds the APK file for your app.

Table 2-7 shows the arguments supported by this command.

Table 2-7. Arguments of flutter build apk

Argument Description

--debug Build a debug version.

--profile Build a version specialized for performance profiling.

--release Build a release version ready for publishing to app store.

--flavor Build a custom app flavor defined by platform-specific

build setup. this requires using product flavors in

android Gradle scripts and custom Xcode schemes.

(continued)

Chapter 2 KnOw the tOOls

52

When building APK file, --release is the default mode. The following

command builds a release version with build number 5 and version name

0.1.0.

$ flutter build apk --build-number=5 --build-name=0.1.0

 Build for iOS

The command flutter build ios builds iOS application bundles. This

command has the same arguments --debug, --profile, --release,

--flavor, --pub, --no-pub, --build-number, and --build-version

as flutter build apk. The value of --build-number is used as

“CFBundleVersion”, while the value of --build-name is used as

“CFBundleShortVersionString”.

It also has other arguments; see Table 2-8.

Argument Description

--pub / --no- pub whether to run flutter packages get before

building the app.

--build-

number=<int>

an integer to specify an increasing internal version

number. this value must be unique for each build. the

value is used as “versionCode”.

--build- name=<x.y.z> a string version number in the format of x.y.z. the

value is used as “versionName”.

--build- shared-

library

Compile to a ∗.so file.

--target- platform the target platform. possible values are android-arm

and android-arm64.

Table 2-7. (continued)

Chapter 2 KnOw the tOOls

53

By default, flutter build ios builds the app for device, that is,

--no- simulator is used. The following command builds a debug version

for the simulator without signing the application bundle.

$ flutter build ios --debug --no-codesign --simulator

2-10. Installing Flutter Apps
 Problem
You want to install Flutter apps to emulators or devices.

 Solution
Use the command flutter install.

 Discussion
The command flutter install installs the current Flutter app to

emulators or devices. To install the app, you need to have at least one

emulator started or one device connected. Before installing the app,

a binary file should be available for the target emulator or device. Use

flutter build to build the binary file first.

Table 2-8. Extra arguments of flutter build ios

Argument Description

--simulator Build a version for the iOs simulator.

--no-simulator Build a version for the iOs device.

--codesign /

--no- codesign

whether to sign the application bundle. Default value is

--codesign.

Chapter 2 KnOw the tOOls

54

The following command installs the built binary.

$ flutter install

2-11. Managing Packages
 Problem
You want to manage dependencies of Flutter apps.

 Solution
Use the command flutter packages.

 Discussion
Using packages is the Dart way to manage project dependencies. Flutter

inherits the same way for dependency management. You may have seen

similar concepts in other programming platforms. For the dependency

management to work, we need to have a way to describe sharable

components and their dependencies. We also need a tool to fetch

dependencies. Table 2-9 shows package management tools for different

platforms. Flutter SDK uses command flutter packages to manage

dependencies, which uses Dart pub tool under the hood.

Chapter 2 KnOw the tOOls

55

The command flutter packages get downloads dependent

packages in a Flutter project. The command flutter packages upgrade

upgrades packages in a Flutter project. These two commands simply

wrap around the underlying pub tool from Dart. We can also use flutter

packages pub to directly invoke Dart pub tool. The command flutter

packages cannot do much as functionalities it provides are limited. You

can always use flutter packages pub to delegate tasks to Dart pub tool.

Note You should use flutter packages get and flutter
packages upgrade to manage dependencies of Flutter apps.
Commands pub get and pub upgrade from Dart pub tool
shouldn’t be used. If you need more functionalities from Dart pub
tool, use flutter packages pub.

Table 2-9. Package management tools

Platform Description file Tool

node.js package.json npm

Yarn

Dart

Flutter

pubspec.yaml pub

flutter packages

Java pom.xml

build.gradle

Maven

Gradle

ruby Gemfile Bundler

Chapter 2 KnOw the tOOls

56

The command flutter packages test is the same as pub run test,

but different from flutter test. The tests run by flutter packages

test are hosted in a pure Dart environment, so libraries like dart:ui are

not available. This makes the tests run faster. If you are building libraries

that don’t depend on any packages from Flutter SDK, you should use this

command to run tests.

2-12. Running Flutter Tests
 Problem
You have written tests for Flutter apps, and you want to make sure these

tests passed.

 Solution
Use the command flutter test.

 Discussion
Tests are essential part of maintainable software projects. You should

have tests for Flutter apps. The command flutter test runs tests for

a Flutter app. When running the command, you can provide a list of

space-separated relative file paths to specify the test files to run. If no files

provided, all files in the test directory that have file name ending with

_test.dart are included. The following command runs the test file test/

mytest.dart.

$ flutter test test/mytest.dart

Chapter 2 KnOw the tOOls

57

 Filter the Tests to Run

The argument --name specifies the regular expression to match the names

of tests to run. A test file may contain multiple tests. If you only need to

do simple substring matching, use --plain-name instead. The following

commands show the usage of --name and --plain-name.

$ flutter test --name="smoke\d+"

$ flutter test --plain-name=smoke

You can specify multiple matching conditions using --name and

--plain-name. The tests to run need to match all given conditions. The

following command uses both --name and --plain-name.

$ flutter test --name="smoke.*" --plain-name=test

 Test Coverage

If you want to know the coverage of your tests, use the argument

--coverage. After the testing, flutter test generates test coverage

information and saves to the file coverage/lcov.info. The output

path of the coverage information can be specified using the argument

--coverage-path. If you have base coverage data, you can put it into the

path coverage/lcov.base.info and pass the argument --merge-coverage

to flutter test, then Flutter SDK will use lcov to merge these two

coverage files.

To view the coverage report, you need to have lcov installed. On

macOS, lcov can be installed using Homebrew.

$ brew install lcov

Chapter 2 KnOw the tOOls

58

The command genhtml generates HTML files from the lcov coverage

information file. The following command generates the HTML coverage

report. Open the generated file index.html to view the report.

$ genhtml coverage/lcov.info --output-directory coverage_report

 Debug a Test

If you want to debug a test file, you can use the argument --start-paused.

Only a single test file is allowed in this mode. The execution is paused until

a debugger is connected. The following command debugs the file test/

simple.dart.

$ flutter test --start-paused test/simple.dart

 Other Options

There are other useful arguments; see Table 2-10.

2-13. Analyzing the Code
 Problem
Your Flutter code compiles successfully and looks good in tests. However,

you want to know if there are any potential errors or bad code practices in

your code.

Table 2-10. Extra arguments of flutter test

Arguments Description Default value

--j,

--concurrency

the number of concurrent tests to run. 6

--pub / --no- pub whether to run flutter packages get

before running the tests.

On

Chapter 2 KnOw the tOOls

59

 Solution
Use the command flutter analyze.

 Discussion
Even though your code compiles successfully and passes all tests, it’s still

possible for the code to have potential errors or bad smells. For example,

a local variable is declared but never used. It’s a good practice to keep the

code as clean as possible. Dart provides the analyzer to analyze source

code to find potential errors.

The command flutter analyze accepts a list of directories to scan

Dart files. If no path is provided, flutter analyze simply analyzes current

working directory. The following command analyzes the directory

~/my_app/lib.

$ flutter analyze ~/my_app/lib

The analysis result can be written to a file with the argument --write.

By default, the result is written to the console. You can also pass the

argument --watch to let the analyzer watch for file system changes and

run analysis continuously.

Table 2-11 shows extra arguments of flutter analyze.

Chapter 2 KnOw the tOOls

60

The command flutter analyze delegates the code analysis to Dart

dartanalyzer tool. We can use the file analysis_options.yaml in the

project’s root directory to customize the analysis behavior.

Figure 2-12 shows the output of flutter analyze with one issue found

in the code.

Table 2-11. Extra arguments of flutter analyze

Arguments Description Default value

--current- package /

--no- current- package

whether to analyze current project. If

--no- current- package is enabled

and no directory is specified, then

nothing will be analyzed.

On

--pub / --no-pub whether to run flutter packages

get before running the analysis.

On

--preamble /

--no-preamble

whether to show the current file being

analyzed.

On

--congratulate /

--no- congratulate

whether to show output even there are

no errors, warnings, hints, or lints.

On

--watch Continuously monitors for file system

changes, and runs analysis in response.

Figure 2-12. Output of the command flutter analyze

Chapter 2 KnOw the tOOls

61

2-14. Managing Emulators
 Problem
You want to manage different emulators used by Flutter SDK.

 Solution
Use the command flutter emulators.

 Discussion
When setting up the Android and iOS platforms for Flutter SDK, we also

created emulators for Android and iOS. For Android, we can use AVD

Manager to manage emulators. For iOS, we can use Xcode to manage

simulators. It will be convenient if we can manage both Android emulators

and iOS simulators in the same way. The command flutter emulators is

the tool for managing emulators.

Running flutter emulators shows all available emulators for Flutter

SDK to use; see Figure 2-13.

Figure 2-13. Output of the command flutter emulators

Chapter 2 KnOw the tOOls

62

To start a simulator, use flutter emulators --launch <emulator_

id>. The following command launches the Nexus_6P_API_28 emulator.

You only need to provide a partial ID to find the exact emulator to launch.

The partial ID must only match one emulator.

$ flutter emulators --launch Nexus

We can also create a new Android emulator using flutter emulators

--create. The following command creates a new emulator with the name

Pixel. This command can only create emulators based on Pixel devices.

$ flutter emulators --create --name Pixel

2-15. Taking Screenshots
 Problem
You want to take screenshots of your running apps.

 Solution
Use the command flutter screenshot.

 Discussion
Android emulators and iOS simulators both provide the native

functionalities to take screenshots. For iOS simulators, this can be done

using the menu File ➤ New Screen Shot. For Android emulators, this can

be done by clicking the Screenshot icon in the floating control bar. But

using the UI controls is not quite convenient. The screenshots taken by

emulators are saved to the desktop by default. You have to configure the

emulators to save to the desired location.

Chapter 2 KnOw the tOOls

63

The command flutter screenshot is much easier to use than the

built-in features in emulators. You can use the argument -o or --output to

specify the location to save the screenshot; see the following command.

$ flutter screenshot -o ~/myapp/screenshots/home.png

flutter screenshot can take different types of screenshots. The

argument --type accepts values in Table 2-12.

For the types of rasterizer and skia, the argument --observatory- port

is required to provide the Dart Observatory port number of the running app.

This port is displayed in the output of the command flutter run.

2-16. Attaching to Running Apps
 Problem
Your Flutter app is not launched using flutter run, but you need want to

interact with it.

 Solution
Use the command flutter attach.

Table 2-12. Types of screenshots

Type Description

Device Use the device’s native screenshot capabilities. the screenshot

includes the entire screen currently being displayed. this is the

default type.

Rasterizer screenshot of the Flutter app rendered using the rasterizer.

skia screenshot of the Flutter app rendered as a skia picture.

Chapter 2 KnOw the tOOls

64

 Discussion
When a Flutter app is launched using flutter run, we can interact with

using the console. However, the app can also be launched in other ways.

For example, we can close the app on the device and open it again. In this

case, we lose the control of the running app. flutter attach provides a

way to attach to running apps.

If the app is already running and you know the port of its observatory,

use flutter attach --debug-port to attach to it. The following

command attaches to a running app.

$ flutter attach --debug-port 10010

If no observatory port is provided, flutter attach starts listening

and scanning for new apps that become active. When a new observatory is

detected, this command attaches to the app automatically.

$ flutter attach

In Figure 2-14, flutter attach is initially waiting for a new Flutter app

to start. Once a Flutter app is started, flutter attach connects to it and

shows the same console as flutter run.

Figure 2-14. Output of the command flutter attach

Chapter 2 KnOw the tOOls

65

2-17. Tracing Running Flutter Apps
 Problem
You want to trace the execution of a running app.

 Solution
Use the command flutter trace.

 Discussion
To start tracing, we need to know the observatory port of the running app

and provide this port to flutter trace with the argument --debug-port.

By default the tracing runs for 10 seconds and writes the result JSON file to

the current directory with names like trace_01.json, trace_02.json, and

so on. In the following command, the observatory port is 51240.

$ flutter trace --debug-port=51240

Use the argument -d or --duration to specify the duration in seconds

for the tracing to run. The following command runs the tracing for 5

seconds.

$ flutter trace --debug-port=51240 -d 5

If you prefer to manually control the tracing progress, you can use

flutter trace --start to start the tracing first, then use flutter trace

--stop to stop the tracing at a later time. It’s worth noting that when calling

flutter trace --stop, the tracing needs to wait for the time specified

in --duration before it’s stopped. In the following command, after the

Chapter 2 KnOw the tOOls

66

second flutter trace --stop, the tracing waits for another 10 seconds

before stopping, which is the default value of --duration.

$ flutter trace --start

$ flutter trace --stop

To stop the tracing immediately, use the following command.

$ flutter trace --stop -d 0

2-18. Configuring Flutter SDK
 Problem
You want to configure different settings of Flutter SDK.

 Solution
Use the command flutter config.

 Discussion
The command flutter config allows configuring some Flutter SDK

settings. Table 2-13 shows arguments of flutter config.

Chapter 2 KnOw the tOOls

67

To remove a setting, simply configure it to an empty string. The

following command disables analytics reporting.

$ flutter config --no-analytics

2-19. Showing App Logs
 Problem
You want to see logs generated by Flutter apps running on emulators or

devices.

 Solution
Use the command flutter logs.

Table 2-13. Arguments of flutter config

Arguments Description Default value

--analytics /

--no-analytics

whether to report anonymous tool usage

statistics and crash reports.

On

--clear-ios-

signing-cert

Clear the saved development certificate used

to sign apps for iOs device deployment.

--gradle-dir set the Gradle install directory.

--android-sdk set the android sDK directory.

--android-

studio- dir

set the android studio install directory.

Chapter 2 KnOw the tOOls

68

 Discussion
Even though we can debug a Flutter app’s code to find out causes of certain

problems, logs are still very valuable for error diagnosis. The easiest way to

generate logs in Flutter apps is calling the print() method. The command

flutter logs watches for logs generated on the device and prints out to

the console.

$ flutter logs

Use the argument -c or --clear if you want to clear the log history

before reading the logs.

$ flutter logs -c

Figure 2-15 shows the output of flutter logs.

2-20. Formatting Source Code
 Problem
You want to make sure that the source code of your app follows the same

code style.

Figure 2-15. Output of the command flutter logs

Chapter 2 KnOw the tOOls

69

 Solution
Use the command flutter format.

 Discussion
It’s a good practice to have the same code style for your app, especially

for a development team. The consistent code style is also good for code

reviews. The command flutter format can format the source code files

to match the default code style of Dart.

To run flutter format, you need to provide a space-separated list of

paths. The following command formats the current directory.

$ flutter format .

flutter format simply delegates the formatting task to Dart dartfmt

tool. The code style is described in the official guide (https://dart.dev/

guides/language/effective-dart/style) of Dart language. Table 2-14

shows extra arguments of flutter format.

Table 2-14. Extra arguments of flutter format

Argument Description

-n, --dry-run Just show which files would be modified without

actually modifying them.

--set-exit- if-changed return exit code 1 if there are any formatting

changes made by this command.

-m, --machine set the output format to JsOn.

Chapter 2 KnOw the tOOls

https://dart.dev/guides/language/effective-dart/style
https://dart.dev/guides/language/effective-dart/style

70

2-21. Listing Connected Devices
 Problem
You want to see all connected devices that can be used by Flutter SDK.

 Solution
Use the command flutter devices.

 Discussion
Flutter SDK requires at least one emulator or device to be ready before

running certain commands. Flutter SDK uses the term “device” to

reference Android emulators, iOS simulators, and real devices. The

command flutter devices lists all devices that can be used by Flutter

SDK. Figure 2-16 shows the output of flutter devices.

2-22. Running Integration Tests
 Problem
You have written integration tests using Flutter Driver, and you want to run

these tests.

Figure 2-16. Output of flutter devices

Chapter 2 KnOw the tOOls

71

 Solution
Use the command flutter drive.

 Discussion
Flutter Driver is the tool provided by Flutter SDK to run integration tests.

When running integration tests, the app itself is running in an emulator or a

device, but the test scripts run on your local machine. During the tests, the

test script connects to the running app and sends commands to the app to

simulate different user actions. The test script can perform actions like tapping

and scrolling. It can also read widget properties and verify their correctness.

flutter drive is the command to run integration tests. It can launch

the app itself or connect to an existing running app. When flutter

drive launches the app, it can take the same arguments as flutter

run, including --debug, --profile, --flavor, --route, --target,

--observatory-port, --pub, --no-pub, and --trace-startup. These

arguments have the same meaning as in flutter run. When connecting to

an existing app, the argument --use-existing-app needs to be specified

with the observatory URL of the existing app; see the following command.

$ flutter drive --use-existing-app=http://localhost:50124

When launching the test script, flutter drive uses a convention to

locate the test script file based on the entry point file of the app. The entry

point file is specified using the argument --target with a default value

of lib/main.dart. flutter drive tries to find the test script file in the

test_driver directory with the same name but with a suffix _test.dart.

For example, if the entry point file is lib/main.dart, it tries to find the test

script file test_driver/main_test.dart. You can explicitly specify the test

script file using the argument --driver; see the following command.

$ flutter drive --driver=test_driver/simple.dart

Chapter 2 KnOw the tOOls

72

If the app is started by flutter drive, then the app will be stopped

after test script finishes, unless the argument --keep-app-running is

specified to keep it running. When connecting to an existing app, the app

keeps running after test script finishes, unless the argument --no-keep-

app-running is specified to stop it. The following command keeps the app

running after the test.

$ flutter drive --keep-app-running

2-23. Enabling Bash Completion of Flutter
SDK Commands
 Problem
When typing Flutter SDK commands, you want to have the completion

support for your shell.

 Solution
Use the command flutter bash-completion to set up completion.

 Discussion
With shell completion support, when you type some commands, the shell

tries to complete it. flutter bash-completion prints the setup script to

enable completion for bash and zsh. If no argument is provided, the setup

script is printed out to the console. If a file path is provided, the setup

script is then written to this file.

Chapter 2 KnOw the tOOls

73

On macOS, we can use Homebrew to install bash-completion first.

$ brew install bash-completion

If you are using bash, you need to modify the file ~/.bash_profile to

add the following line.

[-f /usr/local/etc/bash_completion] && . /usr/local/etc/bash_

completion

Then you can run flutter bash-completion to save the setup script

to the directory /usr/local/etc/bash_completion.d; see the following

command.

$ flutter bash-completion /usr/local/etc/bash_completion.d/

flutter

Finally, you should run source ~/.bash_profile or restart the shell to

enable the completion.

If you are using zsh, you can add the setup script to the file ~/.zshrc.

First you need to add the following line to the top of ~/.zshrc.

autoload bashcompinit

bashcompinit

Then you need to run the following command to add the setup script

to ~/.zshrc.

$ flutter bash-completion >> ~/.zshrc

Finally, you should run source ~/.zshrc or restart the shell to enable

the completion.

Chapter 2 KnOw the tOOls

74

2-24. Cleaning Build Files of Flutter Apps
 Problem
You want to clean build files of Flutter apps.

 Solution
Use the command flutter clean.

 Discussion
The command flutter clean deletes files in the build directory. The disk

size of the build directory can be large even for small apps. For example,

after building the Flutter sample app, the size of the build directory is

about 200M. When learning Flutter, you may create many small apps for

testing. It’s a good idea to run flutter clean for those apps when you

think you have done with them. You’ll find out that you can reclaim a large

amount of disk space.

2-25. Managing Flutter SDK Cache
 Problem
You want to explicitly manage the cache of Flutter SDK.

 Solution
Use the command flutter precache.

Chapter 2 KnOw the tOOls

75

 Discussion
Flutter SDK keeps a cache of required artifacts in the bin/cache directory.

This directory contains binary files of Dart SDK, Flutter Engine, Material

fonts, and Gradle wrapper. This cache is populated automatically if it

doesn’t exist. The command flutter precache explicitly updates the

cache. Most of Flutter commands update the cache automatically before

execution, except for commands config, precache, bash-completion,

and upgrade, so most of the time you don’t need to explicitly run this

command.

flutter precache has the argument -a or --all-platforms to specify

whether artifacts for all platforms should be downloaded. By default, only

artifacts of the current platform are downloaded.

$ flutter precache -a

2-26. Summary
This chapter is about the tools you may need to use when developing

Flutter apps. You may not need to use all of these tools. With the help of

IDEs, you can perform most of the actions inside of IDEs. Knowledge of

these tools is still valuable because you can do more with these tools. In

the next chapter, we’ll see recipes about essential parts of Dart language.

Chapter 2 KnOw the tOOls

77© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_3

CHAPTER 3

Essential Dart
Flutter projects can have cross-platform code and platform-specific code.

Cross-platform code is written in Dart. Sufficient knowledge of Dart is a

prerequisite for building Flutter apps. Details of Dart language is out of the

scope of this book. You can find plenty of online resources related to Dart.

However, it’s still very helpful to cover essential part of Dart for building

Flutter apps. Recipes in this chapter cover different aspects of Dart. You

can skip this chapter if you are confident about your knowledge of Dart.

3-1. Understanding Built-In Types
 Problem
You want to know the built-in types of Dart.

 Solution
Dart has built-in types of numbers, strings, booleans, lists, maps, runes,

and symbols.

 Discussion
Dart has several built-in types, including numbers, strings, booleans, lists,

maps, runes, and symbols.

78

 Numbers

Numbers in Dart can be integer values no larger than 64 bits or 64-

bit double-precision floating-point number specified by the IEEE 754

standard. Types int and double represent these two types of numbers,

respectively. Type num is the supertype of int and double. Unlike primitive

types in Java, numbers in Dart are also objects. They have methods to work

with them.

In Listing 3-1, the type of x is int, while the type of y is double. The

method toRadixString() returns a string value by converting the value

to the specified radix. The method toStringAsFixed() makes sure that

the given number of fraction digits is kept in the string representation. The

static method tryParse() of double tries to parse a string as a double literal.

Listing 3-1. Numbers

var x = 10;

var y = 1.5;

assert(x.toRadixString(8) == '12');

assert(y.toStringAsFixed(2) == '1.50');

var z = double.tryParse('3.14');

assert(z == 3.14);

 Strings

Dart strings are sequences of UTF-16 code units. Either single or double

quotes can be used to create strings. It doesn’t matter which quote is used.

The key point is to be consistent across the whole code base. Dart has

built-in support for string interpolation. Expressions can be embedded

into strings using the form ${expression}. Values of embedded

expressions are evaluated when strings are used. If the expression is an

identifier, then {} can be omitted. In Listing 3-2, name is an identifier, so we

can use $name in the string.

Chapter 3 essential Dart

79

Listing 3-2. String interpolation

var name = 'Alex';

assert('The length of $name is ${name.length}' == 'The length

of Alex is 4');

If you want to concatenate strings, you can simply place these string

literals next to each other without the + operator; see Listing 3-3.

Listing 3-3. String concatenation

var longString = 'This is a long'

 'long'

 'long'

 'string';

Another way to create a multi-line string is to use a triple quote with

either single or double quotes; see Listing 3-4.

Listing 3-4. Multi-line string

var longString2 = "'

This is also a long

 long

 long

 string

"';

 Booleans

Boolean values are represented using the type bool. bool type has only

two objects: true and false. It’s worth noting that only bool values can

be used in if, while, and assert as conditions to check. JavaScript has

a broader concept of truthy and falsy values, while Dart follows a stricter

rule. For example, if ('abc') is valid in JavaScript, but not in Dart.

Chapter 3 essential Dart

80

In Listing 3-5, name is an empty string. To use it in if, we need to invoke

the getter isEmpty. We also need explicit check for null and 0.

Listing 3-5. Booleans

var name = ";

if (name.isEmpty) {

 print('name is emtpy');

}

var value;

assert(value == null);

var count = 5;

while(count-- != 0) {

 print(count);

}

 Lists and Maps

Lists and maps are commonly used collection types. In Dart, arrays are

List objects. Lists and maps can be created using literals or constructors.

It’s recommended to use collection literals when possible. Listing 3-6

shows how to create lists and maps using literals and constructors.

Listing 3-6. Lists and maps

var list1 = [1, 2, 3];

var list2 = List<int>(3);

var map1 = {'a': 'A', 'b': 'B'};

var map2 = Map<String, String>();

Chapter 3 essential Dart

81

 Runes

Runes are UTF-32 code points of a string. To express 32-bit Unicode

values in a string, we can use the form \uXXXX, where XXXX is the four-digit

hexadecimal value of the code point. If the code point cannot be expressed

as four-digit hexadecimal value, then {} is required to wrap those digits, for

example, \u{XXXXX}. In Listing 3-7, the string value contains two emojis.

Listing 3-7. Runes

var value = '\u{1F686} \u{1F6B4}';

print(value);

 Symbols

A Symbol object represents an operator or identifier. Symbols can be

created using constructor Symbol(<name>) or symbol literal #<name>.

Symbols created with the same name are equal; see Listing 3-8. Symbols

should be used when you want to reference identifiers by name.

Listing 3-8. Symbols

assert(Symbol('a') == #a);

3-2. Using Enumerated Types
 Problem
You want to have a type-safe way to declare a set of constant values.

 Solution
Use enumerated type.

Chapter 3 essential Dart

82

 Discussion
Like other programming languages, Dart has enumerated types. To declare

an enumerated type, use the enum keyword. Each value in an enum has an

index getter to get the zero-based position of the value. Use values to get a

list of all values in an enum. Enums are usually used in switch statements.

In Listing 3-9, the enum type TrafficColor has three values. The index of

first value red is 0.

Listing 3-9. Enumerated type

enum TrafficColor { red, green, yellow }

void main() {

 assert(TrafficColor.red.index == 0);

 assert(TrafficColor.values.length == 3);

 var color = TrafficColor.red;

 switch (color) {

 case TrafficColor.red:

 print('stop');

 break;

 case TrafficColor.green:

 print('go');

 break;

 case TrafficColor.yellow:

 print('be careful');

 }

}

Chapter 3 essential Dart

83

3-3. Using Dynamic Type
 Problem
You don’t know the type of an object or you don’t care about the type.

 Solution
Use the dynamic type.

 Discussion
Dart is a strong-typed language. Most of the time, we want an object to

have a defined type. However, sometimes we may not know or don’t care

about the actual type; we can use dynamic as the type. The dynamic type

is often confused with the Object type. Both Object and dynamic permit

all values. Object should be used if you want to state that all objects are

accepted. If the type is dynamic, we can use is operator to check whether

it’s the desired type. The actual type can be retrieved using runtimeType.

In Listing 3-10, the actual type of value is int, then the type is changed to

String.

Listing 3-10. Use dynamic type

dynamic value = 1;

print(value.runtimeType);

value = 'test';

if (value is String) {

 print('string');

}

Chapter 3 essential Dart

84

3-4. Understanding Functions
 Problem
You want to understand functions in Dart.

 Solution
Functions in Dart are very powerful and flexible.

 Discussion
Functions in Dart are objects and have the type Function. Functions

can be assigned to values, passed in function arguments, and used as

function return values. It’s very easy to create high-order functions in

Dart. A function may have zero or many parameters. Some parameters

are required, while some are optional. Required arguments come first in

the parameters list, followed by optional parameters. Optional positional

parameters are wrapped in [].

When a function has a long list of parameters, it’s hard to remember

the position and meaning of these parameters. It’s better to use named

parameters. Named parameters can be marked as required using the

@required annotation. Parameters can have default values specified

using =. If no default value is provided, the default value is null.

In Listing 3-11, the function sum() has an optional positional argument

initial with the default value 0. The function joinToString() has a

required named argument separator and two optional named arguments

prefix and suffix. The arrow syntax used in joinToString() is a

shorthand for function body with only one expression. The syntax => expr

is the same as { return expr; }. Using arrow syntax makes code shorter

and easier to read.

Chapter 3 essential Dart

85

Listing 3-11. Function parameters

import 'package:meta/meta.dart';

int sum(List<int> list, [int initial = 0]) {

 var total = initial;

 list.forEach((v) => total += v);

 return total;

}

String joinToString(List<String> list,

 {@required String separator, String prefix = ", String

suffix = "}) =>

 '$prefix${list.join(separator)}$suffix';

void main() {

 assert(sum([1, 2, 3]) == 6);

 assert(sum([1, 2, 3], 10) == 16);

 assert(joinToString(['a', 'b', 'c'], separator: ',') ==

'a,b,c');

 assert(

 joinToString(['a', 'b', 'c'], separator: '-', prefix:

'*', suffix: '?') ==

 '*a-b-c?');

}

Sometimes you may not need a name for a function. These anonymous

functions are useful when providing callbacks. In Listing 3-12, an

anonymous function is passed to the method forEach().

Listing 3-12. Anonymous functions

var list = [1, 2, 3];

list.forEach((v) => print(v * 10));

Chapter 3 essential Dart

86

3-5. Using Typedefs
 Problem
You want to have an alias of a function type.

 Solution
Use typedefs.

 Discussion
In Dart, functions are objects. Functions are instances of the type

Function. But the actual type of a function is defined by the types of its

parameters and the type of its return value. What matters is the actual

function type when a function is used as a parameter or return value.

typedef in Dart allows us to create an alias of a function type. The type

alias can be used just like other types. In Listing 3-13, Processor<T> is an

alias of the function type which has a parameter of type T and a return type

of void. This type is used as the parameter type in the function process().

Listing 3-13. typedef

typedef Processor<T> = void Function(T value);

void process<T>(List<T> list, Processor<T> processor) {

 list.forEach((item) {

 print('processing $item');

 processor(item);

 print('processed $item');

 });

}

Chapter 3 essential Dart

87

void main() {

 process([1, 2, 3], print);

}

3-6. Using Cascade Operator
 Problem
You want to make a sequence of operations on the same object.

 Solution
Use the cascade operator (..) in Dart.

 Discussion
Dart has a special cascade operator (..) which allows us to make a

sequence of operations on the same object. To chain operations on the

same object in other programming languages, we usually need to create a

fluent API in which each method returns the current object. The cascade

operator in Dart makes this requirement unnecessary. Methods can still

be chained even though they don’t return the current object. The cascade

operator also supports field access. In Listing 3-14, cascade operator is

used to access the fields and method in classes User and Address.

Listing 3-14. Using cascade operator

class User {

 String name, email;

 Address address;

 void sayHi() => print('hi, $name');

}

Chapter 3 essential Dart

88

class Address {

 String street, suburb, zipCode;

 void log() => print('Address: $street');

}

void main() {

 User()

 ..name = 'Alex'

 ..email = 'alex@example.org'

 ..address = (Address()

 ..street = 'my street'

 ..suburb = 'my suburb'

 ..zipCode = '1000'

 ..log())

 ..sayHi();

}

3-7. Overriding Operators
 Problem
You want to override operators in Dart.

 Solution
Define overriding methods in class for operators.

 Discussion
Dart has many operators. Only a subset of these operators can be

overridden. These overridable operators are <, +, |, [], >, /, ^, []=, <=,

~/, &, ~, >=, *, <<, ==, -, %, and >>. For some classes, using operators is

Chapter 3 essential Dart

89

more concise than using methods. For example, the List class overrides

the + operator for list concatenation. The code [1] + [2] is very easy to

understand. In Listing 3-15, the class Rectangle overrides operators < and

> to compare instances by area.

Listing 3-15. Overriding operators

class Rectangle {

 int width, height;

 Rectangle(this.width, this.height);

 get area => width * height;

 bool operator <(Rectangle rect) => area < rect.area;

 bool operator >(Rectangle rect) => area > rect.area;

}

void main() {

 var rect1 = Rectangle(100, 100);

 var rect2 = Rectangle(200, 150);

 assert(rect1 < rect2);

 assert(rect2 > rect1);

}

3-8. Using Constructors
 Problem
You want to create new instances of Dart classes.

 Solution
Use constructors.

Chapter 3 essential Dart

90

 Discussion
Like other programming languages, objects in Dart are created by

constructors. Usually, constructors are created by declaring functions

with the same name as their classes. Constructors can have arguments

to provide necessary values to initialize new objects. If no constructor is

declared for a class, a default constructor with no arguments is provided.

This default constructor simply invokes the no-argument constructor

in the superclass. However, if a constructor is declared, this default

constructor doesn’t exist.

A class may have multiple constructors. You can name these

constructors in the form ClassName.identifier to better clarify the

meanings.

In Listing 3-16, the class Rectangle has a regular constructor that takes

four arguments. It also has a named constructor Rectangle.fromPosition.

Listing 3-16. Constructors

class Rectangle {

 final num top, left, width, height;

 Rectangle(this.top, this.left, this.width, this.height);

Rectangle.fromPosition(this.top, this.left, num bottom, num

right)

 : assert(right > left),

 assert(bottom > top),

 width = right - left,

 height = bottom - top;

 @override

 String toString() {

Chapter 3 essential Dart

91

 return 'Rectangle{top: $top, left: $left, width: $width,

height: $height}';

 }

}

void main(List<String> args) {

 var rect1 = Rectangle(100, 100, 300, 200);

 var rect2 = Rectangle.fromPosition(100, 100, 300, 200);

 print(rect1);

 print(rect2);

}

It’s common to use factories to create objects. Dart has a special

kind of factory constructors that implements this pattern. A factory

constructor doesn’t always return a new instance of a class. It may return

a cached instance, or an instance of a subtype. In Listing 3-17, the class

ExpensiveObject has a named constructor ExpensiveObject._create()

to actually create a new instance. The factory constructor only invokes

ExpensiveObject._create() when _instance is null. When running the

code, you can see that the message “created” is only printed once.

Listing 3-17. Facto+ry constructor

class ExpensiveObject {

 static ExpensiveObject _instance;

 ExpensiveObject._create() {

 print('created');

 }

 factory ExpensiveObject() {

 if (_instance == null) {

 _instance = ExpensiveObject._create();

 }

Chapter 3 essential Dart

92

 return _instance;

 }

}

void main() {

 ExpensiveObject();

 ExpensiveObject();

}

3-9. Extending a Class
 Problem
You want to inherit behavior from an existing class.

 Solution
Extend from the existing class to create a subclass.

 Discussion
Dart is an object-oriented programming language. It provides support

for inheritance. A class can extend from a superclass using the keyword

extends. The superclass can be referred as super in the subclass.

Subclasses can override instance methods, getters, and setters of

superclasses. Overriding members should be annotated with the @

override annotation.

Abstract classes are defined using the abstract modifier. Abstract

classes cannot be instantiated. Abstract methods in abstract classes

don’t have implementations and must be implemented by non-abstract

subclasses.

Chapter 3 essential Dart

93

In Listing 3-18, the class Shape is abstract with an abstract method

area(). Classes Rectangle and Circle both extend from Shape and

implement the abstract method area().

Listing 3-18. Inheritance

import 'dart:math' show pi;

abstract class Shape {

 double area();

}

class Rectangle extends Shape {

 double width, height;

 Rectangle(this.width, this.height);

 @override

 double area() {

 return width * height;

 }

}

class Square extends Rectangle {

 Square(double width) : super(width, width);

}

class Circle extends Shape {

 double radius;

 Circle(this.radius);

 @override

 double area() {

 return pi * radius * radius;

 }

}

Chapter 3 essential Dart

94

void main() {

 var rect = Rectangle(100, 50);

 var square = Square(50);

 var circle = Circle(50);

 print(rect.area());

 print(square.area());

 print(circle.area());

}

3-10. Adding Features to a Class
 Problem
You want to reuse a class’s code but are limited by single inheritance of

Dart.

 Solution
Use mixins.

 Discussion
Inheritance is a common way to reuse code. Dart only supports single

inheritance, that is, a class can have at most one superclass. If you want

to reuse code from multiple classes, mixins should be used. A class

can declare multiple mixins using the keyword with. A mixin is a class

that extends from Object and declares on constructors. A mixin can be

declared as a regular class using class or as a dedicated mixin using

mixin. In Listing 3-19, CardHolder and SystemUser are mixins. The class

Assistant extends from Student and has the mixin SystemUser, so we can

use the useSystem() method of Assistant instances.

Chapter 3 essential Dart

95

Listing 3-19. Mixins

class Person {

 String name;

 Person(this.name);

}

class Student extends Person with CardHolder {

 Student(String name) : super('Student: $name') {

 holder = this;

 }

}

class Teacher extends Person with CardHolder {

 Teacher(String name) : super('Teacher: $name') {

 holder = this;

 }

}

mixin CardHolder {

 Person holder;

 void swipeCard() {

 print('${holder.name} swiped the card');

 }

}

mixin SystemUser {

 Person user;

 void useSystem() {

 print('${user.name} used the system.');

 }

}

Chapter 3 essential Dart

96

class Assistant extends Student with SystemUser {

 Assistant(String name) : super(name) {

 user = this;

 }

}

void main() {

 var assistant = Assistant('Alex');

 assistant.swipeCard();

 assistant.useSystem();

}

3-11. Using Interfaces
 Problem
You want to have a contract for classes to follow.

 Solution
Use implicit interface of a class.

 Discussion
You should be familiar with interfaces as the contract of classes. Unlike

other object-oriented programming languages, Dart has no concept

of interfaces. Every class has an implicit interface that contains all the

instance members of this class and the interfaces it implements. You can

use implements to declare that a class implements the API of another class.

In Listing 3-20, class CachedDataLoader implements the implicit interface

of class DataLoader.

Chapter 3 essential Dart

97

Listing 3-20. Interfaces

class DataLoader {

 void load() {

 print('load data');

 }

}

class CachedDataLoader implements DataLoader {

 @override

 void load() {

 print('load from cache');

 }

}

void main() {

 var loader = CachedDataLoader();

 loader.load();

}

3-12. Using Generics
 Problem
You want to have type safety when your code is designed to work with

different types.

 Solution
Use generic classes and generic methods.

Chapter 3 essential Dart

98

 Discussion
Generics are not a strange concept to developers, especially for Java and

C# developers. With generics, we can add type parameters to classes and

methods. Generics are usually used in collections to create type-safe

collections. Listing 3-21 shows the usage of generic collections in Dart.

Dart generic types are reified, which means type information are available

at runtime. That’s why the type of names is List<String>.

Listing 3-21. Generic collections

var names = <String>['a', 'b', 'c'];

print(names is List<String>);

var values = <String, int>{'a': 1, 'b': 2, 'c': 3};

print(values.values.toList());

We can use generics to create classes that deal with different types.

In Listing 3-22, Pair<F, S> is a generic class with two type parameters F

and S. Use extends to specify the upper bound of a generic type parameter.

The type parameter P in CardHolder has an upper bound of type Person,

so that CardHolder<Student> is valid.

Listing 3-22. Generic types

class Pair<F, S> {

 F first;

 S second;

 Pair(this.first, this.second);

}

class Person {}

class Teacher extends Person {}

Chapter 3 essential Dart

99

class Student extends Person {}

class CardHolder<P extends Person> {

 P holder;

 CardHolder(this.holder);

}

void main() {

 var pair = Pair('a', 1);

 print(pair.first);

 var student = Student();

 var cardHolder = CardHolder(student);

 print(cardHolder is CardHolder<Student>);

 print(cardHolder);

}

Generic methods can be added to regular classes. In Listing 3-23, the

regular class Calculator has two generic methods add and subtract.

Listing 3-23. Generic methods

class Calculator {

 T add<T extends num>(T v1, T v2) => v1 + v2;

 T subtract<T extends num>(T v1, T v2) => v1 - v2;

}

void main() {

 var calculator = Calculator();

 int r1 = calculator.add(1, 2);

 double r2 = calculator.subtract(0.1, 0.2);

 print(r1);

 print(r2);

}

Chapter 3 essential Dart

100

3-13. Using Libraries
 Problem
You want to reuse libraries from Dart SDK or the community.

 Solution
Use import to import libraries to use them in your app.

 Discussion
When developing non-trivial Dart apps, it’s inevitable to use libraries.

These can be built-in libraries in Dart SDK or libraries contributed by the

community. To use these libraries, we need to import them with import

first. import has only one argument to specify the URI of the library.

Built-in libraries have the URI scheme dart:, for example, dart:html

and dart:convert. Community packages have the URI scheme package:

and are managed by the Dart pub tool. Listing 3-24 shows examples of

importing libraries.

Listing 3-24. Import libraries

import 'dart:html';

import 'package:meta/meta.dart';

It’s possible that two libraries export the same identifiers. To avoid

conflicts, we can use as to provide prefixes for one of the libraries or both.

In Listing 3-25, both lib1.dart and lib2.dart export the class Counter.

After assigning different prefixes to these two libraries, we can use the

prefix to access the class Counter.

Chapter 3 essential Dart

101

Listing 3-25. Rename libraries

import 'lib1.dart' as lib1;

import 'lib2.dart' as lib2;

lib1.Counter counter;

You don’t need to import all members of a library. Use show to

explicitly include members. Use hide to explicitly exclude members.

In Listing 3-26, when importing the library dart:math, only Random

is imported; when importing the library dart:html, only Element is

excluded.

Listing 3-26. Show and hide members

import 'dart:math' show Random;

import 'dart:html' hide Element;

3-14. Using Exceptions
 Problem
You want to deal with failures in Dart apps.

 Solution
Report failures using throw. Handle exceptions using try-catch-finally.

 Discussion
Code fails. It’s natural for code to report failures and handle them. Dart has

a similar exception mechanism as Java, except that all exceptions in Dart are

unchecked exceptions. Methods in Dart don’t declare exceptions they may

Chapter 3 essential Dart

102

throw, so it’s not required to catch exceptions. However, uncaught exceptions

cause the isolate to suspend and may result in program termination. Proper

failure handing is also a key characteristic of robust apps.

 Report Failures

We can use throw to throw exceptions. In fact, all non-null objects can

be thrown, not only types that implement types Error or Exception. It’s

recommended to only throw objects of types Error and Exception.

An Error object represents a bug in the code that should not happen.

For example, if a list only contains three elements, trying to access the

fourth element causes a RangeError to be thrown. Unlike Exceptions,

Errors are not intended to be caught. When an error occurred, the safest

way is to terminate the program. Errors carry clear information about why

they happen.

Comparing to Errors, Exceptions are designed to be caught and

handled programmatically. For example, sending HTTP requests may not

succeed, so we need to handle exceptions in the code to deal with failures.

Exceptions usually carry useful data about the failures. We should create

custom types that extend from Exception to encapsulate necessary data.

 Catch Exceptions

When an exception is thrown, you can catch it to stop it from propagating,

unless you rethrow it. The goal to catch an exception is to handle it. You

shouldn’t catch an exception if you don’t want to handle it. Exceptions are

caught using try, catch, and on. If you don’t need to access the exception

object, using on is enough. With catch, you can access the exception object

and the stack trace. Use on to specify the type of exception to be caught.

When you catch an exception, you should handle it. However,

sometimes you may only want to partially handle it. In this case, you

should use rethrow to rethrow the exception. It’s a bad practice to catch an

exception but not handle it completely.

Chapter 3 essential Dart

103

If you want some code to run whether or not an exception is thrown,

you can put the code in a finally clause. If no exception is thrown,

finally clause runs after the try block. If an exception is thrown, finally

clause runs after the matching catch clause.

In Listing 3-27, the function getNumber() throws a custom exception

type ValueTooLargeException. In the function main(), the exception is

caught and rethrown.

Listing 3-27. Use exceptions

import 'dart:math' show Random;

var random = Random();

class ValueTooLargeException implements Exception {

 int value;

 ValueTooLargeException(this.value);

 @override

 String toString() {

 return 'ValueTooLargeException{value: $value}';

 }

}

int getNumber() {

 var value = random.nextInt(10);

 if (value > 5) {

 throw ValueTooLargeException(value);

 }

 return value;

}

Chapter 3 essential Dart

104

void main() {

 try {

 print(getNumber());

 } on ValueTooLargeException catch (e) {

 print(e);

 rethrow;

 } finally {

 print('in finally');

 }

}

3-15. Summary
Learning a new programming language is not an easy task. Even though

Dart looks similar with other programming languages, there are still some

unique features in Dart. This chapter only provides a brief introduction of

important features in Dart.

Chapter 3 essential Dart

105© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_4

CHAPTER 4

Widget Basics
When building Flutter apps, most of the time you are dealing with widgets.

This chapter provides basic background information about widgets in

Flutter. It also covers several basic widgets that display texts, images, icons,

buttons, and placeholders.

4-1. Understanding Widgets
 Problem
You want to know how to use components in Flutter.

 Solution
Widgets are everywhere in Flutter.

 Discussion
If you have been involved in development of user interface, you should

be familiar with concepts like widgets or components. These concepts

represent reusable building blocks to create user interface. A good user

interface library should have a large number of high-quality and easy- to- use

components. Buttons, icons, images, menus, dialogs, and form inputs are

all examples of components. Components can be big or small. Complicated

components are usually composed of small components. You can create

your own components by following the component model. You can also

106

choose to share your components to the community. A good eco-system of

components is a key factor for a user interface library to be successful.

Flutter uses widgets to describe reusable building blocks in the user

interface. Comparing to other libraries, widget in Flutter is a much broader

concept. Not only common components like buttons and form inputs are

widgets, layout constraints are also expressed as widgets in Flutter. For

example, if you want to place a widget in the center of a box, you simply

wrap the widget into a Center widget. Widgets are also used to retrieve

context data. For example, DefaultTextStyle widget gets the TextStyle

applies to un-styled Text widgets.

Widget in Flutter is an immutable description of a part of the user

interface. All fields of a widget class are final and set in the constructor. Widget

constructors only have named parameters. A widget can have one or many

widgets as the children. Widgets of a Flutter app creates a tree- like hierarchy.

The main() method of a Flutter app’s entry point file uses the runApp()

method to start the app. The only parameter of runApp() is a Widget object.

This Widget object is the root of the app’s widgets tree. Widgets are only static

configurations that describe how to configure a subtree in the hierarchy. To

actually run the app, we need a way to manage instantiation of widgets.

Flutter uses Element to represent an instantiation of a Widget at a

particular location in the tree. A Widget can be instantiated zero or many

times. The process to turn Widgets to Elements is called inflation. Widget

class has a createElement() method to inflate the widget to a concrete

instance of Element. Flutter framework is responsible for managing the

lifecycle of elements. The widget associated with an element may change

over time. The framework updates the element to use the new configuration.

When running the app, Flutter framework is responsible for rendering

elements to create a render tree, so the end user can actually see the user

interface. A render tree is composed of RenderObjects with the root of

a RenderView. If you are using Android Studio, you can actually see the

widgets tree and the render tree in Flutter Inspector view. Select View

➤ Tool Windows ➤ Flutter Inspector to open the Flutter Inspector view.

Chapter 4 Widget BasiCs

107

Figure 4-1 shows the widgets tree in Flutter Inspector. The top panel shows

the widgets tree, while the bottom panel shows the details of a widget.

Figure 4-1. Widgets tree in Flutter Inspector

Chapter 4 Widget BasiCs

108

Figure 4-2 shows the render tree in Flutter Inspector. The root is a

RenderView.

Figure 4-2. Render tree in Flutter Inspector

4-2. Understanding BuildContext
 Problem
You want to access information related to a widget in the widgets tree.

Chapter 4 Widget BasiCs

109

 Solution
WidgetBuilder functions have a BuildContext parameter to access

information related to a widget in the widgets tree. You can see

BuildContext in StatelessWidget.build() and State.build() methods.

 Discussion
When building a widget, the location of the widget in the widgets tree may

determine its behavior, especially when it has an InheritedWidget as its

ancestor. BuildContext class provides methods to access information

related to the location; see Table 4-1.

Table 4-1. Methods of BuildContext

Name Description

ancestorInheritedElement

ForWidgetOfExactType

get the InheritedElement corresponding to

the nearest ancestor widget of the given type

of InheritedWidget.

ancestorRender

ObjectOfType

get the RenderObject of the nearest

ancestor RenderObjectWidget widget.

ancestorStateOfType get the State object of the nearest ancestor

StatefulWidget widget.

rootAncestorStateOfType get the State object of the furthest ancestor

StatefulWidget widget.

ancestorWidgetOfExactType get the nearest ancestor Widget.

findRenderObject get the current RenderObject for the widget.

(continued)

Chapter 4 Widget BasiCs

110

BuildContext is actually the interface of Element class. In

StatelessWidget.build() and State.build() methods, the

BuildContext object represents the location where the current widget is

inflated. In Listing 4-1, ancestorWidgetOfExactType() method is used to

get the ancestor widget of type Column.

Listing 4-1. Use BuildContext

class WithBuildContext extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 Column column = context.ancestorWidgetOfExactType(Column);

 return Text(column.children.length.toString());

 }

}

Name Description

inheritFromElement register this BuildContext with the given

ancestor InheritedElement such that this

BuildContext is rebuilt when the ancestor’s

widget changes.

inheritFromWidgetOf

ExactType

get the nearest InheritedWidget of the

given type and register this BuildContext

such that this BuildContext is rebuilt when

the widget changes.

visitAncestorElements Visit ancestor elements.

visitChildElements Visit children elements.

Table 4-1. (continued)

Chapter 4 Widget BasiCs

111

4-3. Understanding Stateless Widget
 Problem
You want to create a widget that has no mutable state.

 Solution
Extend from StatelessWidget class.

 Discussion
When using a widget to describe a part of user interface, if the part can be

fully described using the configuration information of the widget itself and

the BuildContext in which it’s inflated, then this widget should extend from

StatelessWidget. When creating a StatelessWidget class, you need to

implement the build() method which accepts a BuildContext and returns

a Widget. In Listing 4-2, HelloWorld class extends from StatelessWidget

class and returns a Center widget in the build() method.

Listing 4-2. Example of StatelessWidget

class HelloWorld extends StatelessWidget {

 const HelloWorld({Key key}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 return Center(

 child: Text('Hello World!'),

);

 }

}

Chapter 4 Widget BasiCs

112

4-4. Understanding Stateful Widget
 Problem
You want to create a widget that has mutable state.

 Solution
Extend from StatefulWidget class.

 Discussion
If a part of user interface may change dynamically, you need to extend

from StatefulWidget class. StatefulWidgets themselves are immutable

with states managed in State objects created by them. A StatefulWidget

subclass needs to implement the createState() method that returns a

State<StatefulWidget> object. When the state changes, the State object

should call setState() method to notify the framework to trigger the

update. In Listing 4-3, _CounterState class is the State object of the Counter

widget. When the button is pressed, the value is updated in the setState()

method, which updates the _CounterState widget to show the new value.

Listing 4-3. Example of StatefulWidget

class Counter extends StatefulWidget {

 @override

 _CounterState createState() => _CounterState();

}

class _CounterState extends State<Counter> {

 int value = 0;

 @override

 Widget build(BuildContext context) {

Chapter 4 Widget BasiCs

113

 return Row(

 children: <Widget>[

 Text('$value'),

 RaisedButton(

 child: Text('+'),

 onPressed: () {

 setState(() {

 value++;

 });

 },

),

],

);

 }

}

4-5. Understanding Inherited Widget
 Problem
You want to propagate data down the widgets tree.

 Solution
Extend from InheritedWidget class.

 Discussion
When building a subtree of widgets, you may need to propagate data down

the widgets tree. For example, your root widget of a subtree may define

some context data, for example, configuration data retrieved from the

server. Other widgets in the subtree may also need to access the context

Chapter 4 Widget BasiCs

114

data. One possible way is to add the context data to a widget’s constructor,

then propagate the data as constructor parameter of children widgets. The

major drawback of this solution is that you need to add the constructor

parameter to all widgets in the subtree. Even though some widgets may

not actually need the data, they still need to have the data to pass to their

children widgets.

A better approach is to use InheritedWidget class. BuildContext

class has an inheritFromWidgetOfExactType() method to get the

nearest instance of a particular type of InheritedWidget. With

InheritedWidget, you can store the context data in an InheritedWiget

instance. If a widget needs to access the context data, you can use

inheritFromWidgetOfExactType() method to get the instance and access

the data. If an inherited widget changes state, it will cause its consumers to

rebuild.

In Listing 4-4, ConfigWidget class has the data config. The static

of() method gets the nearest ancestor ConfigWidget instance for the

config value. The method updateShouldNotify() determines when the

consumer widgets should be notified.

Listing 4-4. Example of InheritedWidget

class ConfigWidget extends InheritedWidget {

 const ConfigWidget({

 Key key,

 @required this.config,

 @required Widget child,

 }) : assert(config != null),

 assert(child != null),

 super(key: key, child: child);

 final String config;

 static String of(BuildContext context) {

 final ConfigWidget configWidget =

Chapter 4 Widget BasiCs

115

 context.inheritFromWidgetOfExactType(ConfigWidget);

 return configWidget?.config ?? ";

 }

 @override

 bool updateShouldNotify(ConfigWidget oldWidget) {

 return config != oldWidget.config;

 }

}

In Listing 4-5, ConfigUserWidget class uses the ConfigWidget.of()

method to get the config value.

Listing 4-5. Use of ConfigWidget

class ConfigUserWidget extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Text('Data is ${ConfigWidget.of(context)}');

 }

}

In Listing 4-6, ConfigWidget instance has a config value of “Hello!”

and a descendant ConfigUserWidget instance.

Listing 4-6. Complete example

ConfigWidget(

 config: 'Hello!',

 child: Center(

 child: ConfigUserWidget(),

),

);

Chapter 4 Widget BasiCs

116

4-6. Displaying Text
 Problem
You want to display some text.

 Solution
Use the Text and RichText widgets.

 Discussion
Almost all apps need to display some text to the end users. Flutter provides

several classes related to text. Text and RichText are the two widgets to

display text. In fact, Text uses RichText internally. The build() method

of Text widget returns a RichText instance. The difference between

Text and RichText is that Text uses the style from the closest enclosing

DefaultTextStyle object, while RichText requires explicit style.

 Text
Text has two constructors. The first constructor Text() accepts a String as

the text to display. Another constructor Text.rich() accepts a TextSpan

object to represent both text and style. The simplest form to create a Text

widget is Text('Hello world'), which displays text using the style from

the closest enclosing DefaultTextStyle object. Both Text() and Text.

rich() constructors have several named parameters to customize them;

see Table 4-2.

Chapter 4 Widget BasiCs

117

TextAlign is an enum type with values shown in Table 4-3.

Table 4-2. Named parameters of Text() and Text.rich()

Name Type Description

style TextStyle style of the text.

textAlign TextAlign how text should be aligned horizontally.

textDirection TextDirection direction of text.

locale Locale Locale to select font based on Unicode.

softWrap bool Whether to break text at soft line breaks.

overflow TextOverflow how to handle text overflow.

textScaleFactor double the factor to scale the text.

maxLines int the maximum number of lines. if the

text exceeds the limit, it will be truncated

according to the strategy specified in

overflow.

semanticsLabel String semantics label for the text.

Chapter 4 Widget BasiCs

118

It’s recommended to always use TextAlign values start and

end instead of left and right to better handle bidirectional text.

TextDirection is an enum type with values ltr and rtl. TextOverflow is

an enum type with values shown in Table 4-4.

Table 4-4. TextOverflow values

Name Description

clip Clip the overflowing text.

fade Fade the overflowing text to be transparent.

ellipsis add an ellipsis after the overflowing text.

Table 4-3. TextAlign values

Name Description

left align text on the left edge of its container.

right align text on the right edge of its container.

center align text in the center of its container.

justify For lines of text end with soft line breaks, stretch these lines to fill the

width of the container; for lines of text end with hard line breaks, align

them toward the start edge.

start align text on the leading edge of its container. the leading edge is the left

edge for left-to-right text, while it’s the right edge for right-to-left text.

end align text on the trailing edge of its container. the trailing edge is the

opposite of the leading edge.

Chapter 4 Widget BasiCs

119

DefaultTextStyle is an InheritedWidget that has properties style,

textAlign, softWrap, overflow, and maxLines which have the same

meaning as named parameters shown in Table 4-2. If a named parameter

is provided in the constructors Text() and Text.rich(), then the provided

value overrides the value in the nearest ancestor DefaultTextStyle object.

Listing 4-7 shows several examples of using Text widget.

Listing 4-7. Examples of Text

Text('Hello World')

Text(

 'Bigger Bold Text',

 style: TextStyle(fontWeight: FontWeight.bold),

 textScaleFactor: 2.0,

);

Text(

 'Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

do eiusmod tempor incididunt',

 maxLines: 1,

 overflow: TextOverflow.ellipsis,

);

 TextSpan
The constructor Text.rich() takes a TextSpan object as the required

parameter. TextSpan represents an immutable span of text. TextSpan()

constructor has four named parameters; see Table 4-5. TextSpans are

organized in a hierarchy. A TextSpan object may have many TextSpan

objects as the children. Children TextSpans can override styles from their

parent.

Chapter 4 Widget BasiCs

120

Listing 4-8 shows the example of using Text.rich(). This example

displays the sentence “The quick brown fox jumps over the lazy dog” using

different styles.

Listing 4-8. Example of Text.rich()

Text.rich(TextSpan(

 style: TextStyle(

 fontSize: 16,

),

 children: [

 TextSpan(text: 'The quick brown '),

 TextSpan(

 text: 'fox',

 style: TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.red,

)),

 TextSpan(text: ' jumps over the lazy '),

 TextSpan(

 text: 'dog',

 style: TextStyle(

Table 4-5. Named parameters of TextSpan()

Name Type Description

style TextStyle style of the text and children.

text String text in the span.

children List<TextSpan> TextSpans as children of this span.

recognizer GestureRecognizer a gesture recognizer to receive events.

Chapter 4 Widget BasiCs

121

 color: Colors.blue,

)),

],

));

 RichText
RichText always uses TextSpan objects to represent text and styles.

RichText() constructor has a required named parameter text of the

type TextSpan. It also has optional named parameters textAlign,

textDirection, softWrap, overflow, textScaleFactor, maxLines, and

locale. These optional named parameters have the same meaning as

Text() constructor shown in Table 4-2.

Text displayed in RichText requires explicit styling. You can use

DefaultTextStyle.of() to get the default style from the BuildContext

object. This is exactly what Text does internally. Text widget gets the

default style and merges with the style provided in the style parameter,

then creates a RichText with a TextSpan wrapping the text and merged

style. If you find out that you do need to use the default style as the base,

you should use Text directly instead of RichText. Listing 4-9 shows an

example of using RichText.

Listing 4-9. Example of RichText

RichText(

 text: TextSpan(

 text: 'Level 1',

 style: TextStyle(color: Colors.black),

 children: [

 TextSpan(

 text: 'Level 2',

 style: TextStyle(fontWeight: FontWeight.bold),

Chapter 4 Widget BasiCs

122

 children: [

 TextSpan(

 text: 'Level 3',

 style: TextStyle(color: Colors.red),

),

],

),

],

),

);

4-7. Applying Styles to Text
 Problem
You want the displayed text to have different styles.

 Solution
Use TextStyle to describe styles.

 Discussion
TextStyle describes styles applied to text. TextStyle() constructor has

many named parameters to describe the style; see Table 4-6.

Chapter 4 Widget BasiCs

123

Table 4-6. Named parameters of TextStyle()

Name Type Description

color Color Color of the text.

fontSize Double size of font.

fontWeight FontWeight typeface thickness.

fontStyle FontStyle typeface variant.

letterSpacing Double space between each letter.

wordSpacing Double space between each word.

textBaseLine TextBaseLine Common baseline to align this

text span and its parent span.

height Double height of the text.

locale Locale Locale to select region-specific

glyphs.

foreground Paint Foreground for the text.

background Paint Background for the text.

shadows List<Shadow> shadows painted underneath the

text.

decoration TextDecoration decoration of the text.

decorationColor Color Color of text decorations.

decorationStyle TextDecorationStyle style of text decorations.

debugLabel String description of the style for

debugging.

fontFamily String Name of the font.

package String Use with fontFamily if the font

is defined in a package.

Chapter 4 Widget BasiCs

124

FontWeight class defines values w100, w200, w300, w400, w500, w600,

w700, w800, and w900. FontWeight.w100 is the thinnest, while w900 is

the thickest. FontWeight.bold is an alias of FontWeight.w700, while

FontWeight.normal is an alias of FontWeight.w400. FontStyle is an enum

type with two values italic and normal. TextBaseline is an enum type

with values alphabetic and ideographic.

TextDecoration class defines different types of text decorations. You

can also use constructor TextDecoration.combine() to create a new

TextDecoration instance by combing a list of TextDecoration instances.

For example, TextDecoration.combine([TextDecoration.underline,

TextDecoration.overline]) instance draws lines underneath and above

text. Table 4-7 shows constants in TextDecoration.

Table 4-7. TextDecoration constants

Name Description

none No decoration.

underline draw a line underneath text.

overline draw a line above text.

lineThrough draw a line through text.

TextDecorationStyle is an enum type with values shown in

Table 4-8. TextDecorationStyle defines the style of lines created by

TextDecoration.

Chapter 4 Widget BasiCs

125

Listing 4-10 shows an example of using TextDecoration and

TextDecorationStyle.

Listing 4-10. Example of using TextDecoration and

TextDecorationStyle

Text(

 'Decoration',

 style: TextStyle(

 fontWeight: FontWeight.w900,

 decoration: TextDecoration.lineThrough,

 decorationStyle: TextDecorationStyle.dashed,

),

);

If you want to create a copy of a TextStyle instance with some

properties updated, use the copyWith() method. The apply() method

also creates a new TextStyle instance, but it allows updating some

properties using factor and delta. For example, the named parameters

fontSizeFactor and fontSizeDelta can update the font size. The updated

value of fontSize is calculated with "fontSize * fontSizeFactor +

fontSizeDelta". You can also update values of height, letterSpacing,

and wordSpacing using the same pattern. For fontWeight, only

Table 4-8. TextDecorationStyle values

Name Description

solid draw a solid line.

double draw two lines.

dotted draw a dotted line.

dashed draw a dashed line.

wavy draw a sinusoidal line.

Chapter 4 Widget BasiCs

126

fontWeightDelta is supported. In Listing 4-11, the TextStyle applied to

the text has updated values of fontSize and decoration.

Listing 4-11. Update TextStyle

Text(

 'Scale',

 style: DefaultTextStyle.of(context).style.apply(

 fontSizeFactor: 2.0,

 fontSizeDelta: 1,

 decoration: TextDecoration.none,

),

);

4-8. Displaying Images
 Problem
You want to display images loaded from network.

 Solution
Use Image.network() with the image URL to load and display an image.

 Discussion
If you have images hosted in your own servers or other places, you can

display them using the Image.network() constructor. Image.network()

constructor only requires the URL of the image to load. An image widget

should be given specific dimension using the named parameters width

and height or placed in a context that sets tight layout constraints. This

is because the dimension of the image may change when the image is

Chapter 4 Widget BasiCs

127

loaded. Without a strict size constraint, the image widget may affect layout

of other widgets. In Listing 4-12, the size of the image widget is specified

with named parameters width and height.

Listing 4-12. Example of Image.network()

Image.network(

 'https://picsum.photos/400/300',

 width: 400,

 height: 300,

);

All downloaded images are cached regardless of HTTP headers. This

means that all HTTP cache control headers will be ignored. You can use

cache buster to force cached images to refresh. For example, you can add a

random string to the image URL.

If extra HTTP headers are required to load the image, you can specify

the headers parameter of type Map<String, String> to provide these

headers. A typical use case is to load protected images that require HTTP

headers for authentication.

If an image cannot cover the whole area of a box, you can use the

repeat parameter of type ImageRepeat to specify how images are repeated.

ImageRepeat is an enum type with values shown in Table 4-9. The default

value is noRepeat.

Table 4-9. ImageRepeat values

Name Description

Repeat repeat in both x and y directions.

repeatX repeat only in the x direction.

repeatY repeat only in the y direction.

noRepeat No repeat. the uncovered area will be transparent.

Chapter 4 Widget BasiCs

128

In Listing 4-13, the image is placed into a SizedBox which is larger than

the image. By using ImageRepeat.repeat, the box is filled with this image.

Listing 4-13. Repeated images

SizedBox(

 width: 400,

 height: 300,

 child: Image.network(

 'https://picsum.photos/300/200',

 alignment: Alignment.topLeft,

 repeat: ImageRepeat.repeat,

),

);

4-9. Displaying Icons
 Problem
You want to use icons.

 Solution
Use Icon to show icons from Material Design or icon packs from

community.

 Discussion
Icons are used extensively in mobile apps. Comparing to text, icons take

less screen estate to express the same semantics. Icons can be created from

font glyphs or images. The Icon widget is drawn with a font glyph. A font

glyph is described with IconData class. To create an IconData instance, the

Unicode code point of this icon in the font is required.

Chapter 4 Widget BasiCs

129

Icons class has a number of predefined IconData constants for icons

in Material Design (https://material.io/tools/icons/). For example, Icons.

call is the IconData constant for the icon named “call”. If the app uses

Material Design, then these icons can be used out of box. CupertinoIcons

class has a number of predefined IconData constants for iOS-style icons.

Icon() constructor has named parameters size and color to specify the

size and color of the icon, respectively. Icons are always square with width

and height both equal to size. The default value of size is 24. Listing 4-14

creates a red Icons.call icon of size 100.

Listing 4-14. Example of Icon()

Icon(

 Icons.call,

 size: 100,

 color: Colors.red,

);

To use the popular Font Awesome icons, you can use the package

font_awesome_flutter (https://pub.dartlang.org/packages/font_

awesome_flutter). After adding the package dependency to pubspec.

yaml file, you can import the file to use FontAwesomeIcons class. Similar

with Icons class, FontAwesomeIcons class has a number of IconData

constants for different icons in Font Awesome. Listing 4-15 creates a blue

FontAwesomeIcons.angry icon of size 80.

Listing 4-15. Use Font Awesome icon

Icon(

 FontAwesomeIcons.angry,

 size: 80,

 color: Colors.blue,

);

Chapter 4 Widget BasiCs

https://material.io/tools/icons/
https://pub.dartlang.org/packages/font_awesome_flutter
https://pub.dartlang.org/packages/font_awesome_flutter

130

4-10. Using Buttons with Text
 Problem
You want to use buttons with text.

 Solution
Use button widgets FlatButton, RaisedButton, OutlineButton, and

CupertinoButton.

 Discussion
Flutter has different types of buttons for Material Design and iOS. These

button widgets all have a required parameter onPressed to specify the

handler function when pressed. If the onPressed handler is null, the

button is disabled. The content of a button is specified with the parameter

child of type Widget. FlatButton, RaisedButton, and OutlineButton have

different styles and behaviors reacting to touches:

• A FlatButton has zero elevation and no visible borders.

It reacts to touches by filling with color specified by

highlightColor.

• A RaisedButton has elevation and is filled with

color. It reacts to touches by increasing elevation to

highlightElevation.

• An OutlineButton has borders, an initial elevation of

0.0, and transparent background. It reacts to touches

by making its background opaque with the color and

increasing its elevation to highlightElevation.

FlatButtons should be used on toolbars, in dialogs, in cards, or inline

with other content where there is enough space to make buttons’ presence

Chapter 4 Widget BasiCs

131

obvious. RaisedButtons should be used where using space is not enough

to make the buttons stand out. OutlineButton is the cross between

RaisedButton and FlatButton. OutlineButtons can be used when neither

FlatButtons nor RaisedButtons are appropriate.

If you prefer the iOS-style button, you can use the CupertinoButton

widget. CupertinoButton reacts to touches by fading out and in. Listing 4-16

shows examples of creating different types of buttons.

Listing 4-16. Different types of buttons

FlatButton(

 child: Text('Flat'),

 color: Colors.white,

 textColor: Colors.grey,

 highlightColor: Colors.red,

 onPressed: () => {},

);

RaisedButton(

 child: Text('Raised'),

 color: Colors.blue,

 onPressed: () => {},

);

OutlineButton(

 child: Text('Outline'),

 onPressed: () => {},

);

CupertinoButton(

 child: Text('Cupertino'),

 color: Colors.green,

 onPressed: () => {},

);

Chapter 4 Widget BasiCs

132

4-11. Using Buttons with Icons
 Problem
You want to use buttons with icons.

 Solution
Use IconButton widget, FlatButton.icon(), RaisedButton.icon(), and

OutlineButton.icon().

 Discussion
There are two ways to create a button with an icon. If only the icon is

enough, use IconButton widget. If both the icon and text are required,

use constructors FlatButton.icon(), RaisedButton.icon(), or

OutlineButton.icon().

IconButton constructor requires the icon parameter to specify the

icon. FlatButton.icon(), RaisedButton.icon(), and OutlineButton.

icon() use the parameters icon and label to specify the icon and text,

respectively. Listing 4-17 shows examples of using IconButton() and

RaisedButton.icon().

Listing 4-17. Examples of IconButton() and RaisedButton.icon()

IconButton(

 icon: Icon(Icons.map),

 iconSize: 50,

 tooltip: 'Map',

 onPressed: () => {},

);

Chapter 4 Widget BasiCs

133

RaisedButton.icon(

 icon: Icon(Icons.save),

 label: Text('Save'),

 onPressed: () => [],

);

4-12. Adding Placeholders
 Problem
You want to add placeholders to represent widgets that will be added later.

 Solution
Use Placeholder.

 Discussion
Before implementing the interface of an app, you usually have a basic idea

about how the app looks like. You can start by breaking down the interface

into many widgets. You can use placeholders to represent unfinished

widgets during development, so you can test the layout of other widgets.

For example, if you need to create two widgets, one displays at the top,

while the other one displays at the bottom. If you choose to create the

bottom widget first and use a placeholder for the top widget, you can see

the bottom widget in its desired position.

The Placeholder() constructor takes named parameters color,

strokeWidth, fallbackWidth, and fallbackHeight. The placeholder

is drawn as a rectangle and two diagonals. The parameters color and

strokeWidth specify color and width of the lines, respectively. By default,

the placeholder fits its container. However, if the placeholder’s container

is unbounded, it uses the given fallbackWidth and fallbackHeight to

Chapter 4 Widget BasiCs

134

determine the size. Both fallbackWidth and fallbackHeight have the

default value 400.0. Listing 4-18 shows an example of Placeholder widget.

Listing 4-18. Example of Placeholder

Placeholder(

 color: Colors.red,

 strokeWidth: 1,

 fallbackHeight: 200,

 fallbackWidth: 200,

);

4-13. Summary
Widgets are everywhere in Flutter apps. This chapter provides basic

introduction of widgets in Flutter, including StatelessWidget,

StatefulWidget, and InheritedWidget. This chapter also covers usage

of common basic widgets to display text, images, icons, buttons, and

placeholders. The next chapter will discuss layout in Flutter.

Chapter 4 Widget BasiCs

135© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_5

CHAPTER 5

Layout Widgets
Layout is always a challenging task when building user interface. When

it comes to mobile apps, layout is much more complicated considering

the large number of different screen resolutions for devices. This chapter

covers recipes related to layout in Flutter.

5-1. Understanding Layout in Flutter
 Problem
You want to know how layout works in Flutter.

 Solution
Layout in Flutter is implemented by a set of widgets. These layout widgets

wrap other widgets to apply different layout constraints.

 Discussion
For mobile apps, the layout must be responsive to work with different

screen resolutions without writing a lot of hard-to-maintain code. Luckily,

with the evolution of layout techniques, it’s now easier to build responsive

layout. If you have experiences with web development with CSS, you

may have heard CSS Flexible Box Layout Module specification by W3C

(https://www.w3.org/TR/css-flexbox-1/). The flex layout model is

http://www.w3.org/TR/css-flexbox-1/

136

powerful because it allows developers to express what the layout should

be, instead of how to implement the actual layout. This declarative

approach shifts the heavy lifting work to the underlying framework. The

result layout code is easier to understand and maintain.

For example, if you want to place a box in the center of a container, the

old approach may require calculating the size of the box and container to

determine the position of the box. When using flex layout, the layout can

be simplified as CSS code in Listing 5-1.

Listing 5-1. CSS code to center an item

.container {

 display: flex;

 width: 400px;

 height: 400px;

 justify-content: center;

 align-items: center;

 border: 1px solid green;

}

.item {

 width: 200px;

 height: 200px;

 border: 1px solid red;

}

The idea of flex layout has now been used not only in web design but also

in mobile apps. React Native uses flex layout (https://facebook.github.

io/react-native/docs/flexbox). Flutter also uses the idea of flex layout.

As discussed in Recipe 4-1, layout is implemented as widgets. You can see

widget classes like Flex, Row, Column, and Flexible in Flutter, which have

names derived from flex layout concepts. The flex layout model in CSS is out

of the scope of this book. However, it’s still valuable to understand this W3C

specification, which can help you better understand flex layout in Flutter.

Chapter 5 Layout Widgets

https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox

137

 RenderObject
The layout algorithm in Flutter is responsible for determining the

dimension and position for each RenderObject instance in the render tree.

RenderObject class is very flexible to work with any coordinate system

or layout protocol. RenderObject class defines the basic layout protocol

with the layout() method. The layout() method has one required

positional parameter of type Constraints. Constraints class specifies the

layout constraints that children must obey. For a particular Constraints

instance, there may be multiple results that can satisfy it. The child is

free to use any of these results as long as it’s permissible. Sometimes, a

Constraints instance may only leave one valid result to the child. This

kind of Constraints instances are said to be tight. Tight constraints are

generally less flexible, but they offer better performance as widgets with

tight constraints don’t need to relayout.

The layout() method has a named parameter parentUsesSize to specify

whether the parent needs to use the layout information computed by the

child. If parentUsesSize is true, it means the layout of the parent depends on

the layout of the child. In this case, whenever the child needs to lay out, the

parent may also need to lay out. After the layout is done, each RenderObject

instance will have some fields set to include the layout information. The

actual stored information depends on the layout implementation. This piece

of layout information is stored in the parentData property.

By default, Flutter uses a 2D Cartesian coordinate system implemented

with the RenderBox class. RenderBox class implements the box layout

model with BoxConstraints class. In the box layout model, each

RenderBox instance is treated as a rectangle with the size specified as a

Size instance. Each box has its own coordinate system. The coordinate

of the upper left corner is (0,0), while the lower right corner has the

coordinate (width, height). RenderBox class uses BoxParentData as the

type of layout data. The BoxParentData.offset property specifies the

offset to paint the child in the parent’s coordinate system.

Chapter 5 Layout Widgets

138

 BoxConstraints
A BoxConstraints instance is specified by four named double parameters:

minWidth, maxWidth, minHeight, and maxHeight. The values of these must

satisfy the following rules. double.infinity is a valid value for constraints:

• 0.0 <= minWidth <= maxWidth <= double.infinity

• 0.0 <= minHeight <= maxHeight <= double.infinity

After the box layout, the size of a RenderBox instance must satisfy

constraints of the BoxConstraints instance applied to it:

• minWidth <= Size.width <= maxWidth

• minHeight <= Size.height <= maxHeight.

If the minimum constraint and the maximum constraint are the

same in an axis, then this axis is tightly constrained. For example, if the

values of minWidth and maxWidth are the same, then width is tight. A

BoxConstraints instance is said to be tight when both width and height

are tight. If the minimum constraint is 0.0 in an axis, then this axis is

loose. If the maximum constraint is not infinite in an axis, then this axis is

bounded; otherwise, this axis is unbounded.

 Layout Algorithm
In the box layout model, layout is done in one pass with the render tree.

It first walks down the render tree by passing constraints. In this phase,

render objects are laid out using constraints passed by their parents. In the

second phase, it walks up the render tree by passing concrete results that

determine the size and offset of each render object.

Chapter 5 Layout Widgets

139

 Layout Widgets
Flutter provides a set of layout widgets for different layout requirements.

There are two categories of these widgets. The first category is for

widgets that contain a single child, which are descendant classes of

SingleChildRenderObjectWidget class. The second category is for

widgets that can contain multiple children, which are descendant classes

of MultiChildRenderObjectWidget class. Constructors of these widgets

have a similar pattern. The first named parameter is key of type Key. The

last named parameter of single child layout widget constructors is child

of type Widget, while the last named parameter of multiple children layout

widget constructor is children of type List<Widget>.

These layout widgets are subclasses of RenderObjectWidget class.

RenderObjectWidget class is used to configure RenderObjectElements.

RenderObjectElements wrap RenderObjects.

5-2. Placing Widgets in the Center
 Problem
You want to place a widget in the center of another widget.

 Solution
Wrap the widget with a Center widget.

 Discussion
To place a widget in the center of another widget, you can simply wrap the

widget in a Center widget. This widget will be placed in the center of the

Center widget both horizontally and vertically. This Center widget will be

the child of the original parent widget. Center constructor has two named

Chapter 5 Layout Widgets

140

parameters widthFactor and heightFactor to specify the size factor for

width and height, respectively. Listing 5-2 shows an example of using

Center widget.

Listing 5-2. Example of Center widget

Center(

 widthFactor: 2.0,

 heightFactor: 2.0,

 child: Text("Center"),

)

Center widget is actually a subclass of Align widget with alignment set

of Alignment.center. The behavior of Center widget is the same as Align

widget discussed in Recipe 5-3.

5-3. Aligning Widgets
 Problem
You want to align a widget in different position of its parent widget.

 Solution
Wrap the widget with an Align widget.

 Discussion
With Align widget, you can align a child widget in different position.

Align widget constructor has the named parameter alignment of type

AlignmentGeometry to specify the alignment. Center widget is actually

a special kind of Align widget with alignment always set to Alignment.

Chapter 5 Layout Widgets

141

center. Align widget constructor also has the named parameters

widthFactor and heightFactor.

AlignmentGeometry class has two subclasses to be used in different

situations. Alignment class represents alignment in visual coordinates.

Alignment has two properties x and y to represent the position in the

rectangle of the 2D coordinate system. The properties x and y specify

the position in the horizontal and vertical direction, respectively.

Alignment(0.0, 0.0) means the center of the rectangle. A unit of 1.0

means the distance from the center to one side of the rectangle. A unit

of 2.0 means the length of the rectangle in a particular direction. For

example, the value 2.0 of x means the width of the rectangle. Positive

values of x mean positions to the right of the center, while negative values

of x mean positions to the left. The same rule also applies to values of y.

Align has several constants for commonly used positions; see Table 5-1.

Table 5-1. Alignment constants

Name Value Description

bottomCenter Alignment(0.0, 1.0) Center point of the bottom edge.

bottomLeft Alignment(-1.0, 1.0) Leftmost point of the bottom edge.

bottomRight Alignment(1.0, 1.0) rightmost point of the bottom

edge.

center Alignment(0.0, 0.0) Center point both horizontally and

vertically.

centerLeft Alignment(-1.0, 0.0) Center point of the left edge.

centerRight Alignment(1.0, 0.0) Center point of the right edge.

topCenter Alignment(0,0, -1.0) Center point of the top edge.

topLeft Alignment(-1.0, -1.0) Leftmost point of the top edge.

topRight Alignment(1.0, -1.0) rightmost point of the top edge.

Chapter 5 Layout Widgets

142

If you want to consider text direction in alignment, you need

to use AlignmentDirectional class instead of Alignment class.

AlignmentDirectional class has the property start instead of x. The

start value grows in the same direction as the text direction. The value

of start has the same meaning of x in Alignment when the text direction

is left-to-right. If the text direction is right-to-left, the value of start is the

opposite of x in Alignment. AlignmentDirectional class also has several

constants for commonly used positions; see Table 5-2. These constants use

start and end instead of left and right to represent different directions.

Table 5-2. AlignmentDirectional constants

Name Value Description

bottomCenter AlignmentDirectional

(0.0, 1.0)

Center point of the bottom edge.

bottomStart AlignmentDirectional

(-1.0, 1.0)

Bottom corner on the start side.

bottomEnd AlignmentDirectional

(1.0, 1.0)

Bottom corner on the end side.

center AlignmentDirectional

(0.0, 0.0)

Center point both horizontally and

vertically.

centerStart AlignmentDirectional

(-1.0, 0.0)

Center point of the start edge.

centerEnd AlignmentDirectional

(1.0, 0.0)

Center point of the end edge.

topCenter AlignmentDirectional

(0,0, -1.0)

Center point of the top edge.

topStart AlignmentDirectional

(-1.0, -1.0)

top corner on the start side.

topEnd AlignmentDirectional

(1.0, -1.0)

top corner on the end side.

Chapter 5 Layout Widgets

143

The resolve() method of AlignmentGeometry takes a parameter of

type TextDirection and returns an Alignment instance. You can use this

method to convert an AlignmentDirectional instance to an Alignment

instance.

The constrained passed to its child is the result of calling the

loosen() method on this widget’s constraints object. This means the

child can choose a size not exceeding this widget. The size of the widget

itself depends on values of parameters widthFactor and heightFactor

and its constraints object. For the width, if widthFactor is not null or

constraints.maxWidth is double.infinity, then the width is the closest

value to childWidth * (widthFactory ?? 1.0) constrained by the

constraints. Otherwise, the width is determined by the constraints. The

same rule applies to the height.

Listing 5-3 shows an example of using Align widget.

Listing 5-3. Example of Align widget

Align(

 alignment: Alignment.topLeft,

 child: SizedBox(

 width: 200,

 height: 200,

 child: Center(

 child: Text("TopLeft"),

),

),

)

Chapter 5 Layout Widgets

144

5-4. Imposing Constraints on Widgets
 Problem
You want to impose layout constraints on widgets.

 Solution
Use ConstrainedBox or SizedBox.

 Discussion
As discussed in Recipe 5-1, Constraints and BoxContraints instances

are usually used in the layout() method of RenderObject and RenderBox,

respectively. When building the widgets tree, you may also want to impose

layout constraints on widgets. In this case, you can use ConstrainedBox

widget. ConstrainedBox constructor has a required named parameter

constraints of type BoxConstraints to specify the constraints to impose on

the child.

SizedBox widget can be treated as a special kind of ConstrainedBox.

SizedBox has named parameters width and height which are used to

create a tight constraint using BoxConstraints.tightFor() method.

SizedBox(width: width, height: height, child: child) is the same

as ConstrainedBox(constraints: BoxConstraints.tightFor(width:

width, height: height), child: child). If you want to impose tight

constraints, then SizedBox is more convenient than ConstrainedBox.

SizedBox has other named constructors for other common use cases; see

Table 5-3.

Chapter 5 Layout Widgets

145

The actual constraints applied to the child widget is the combination

of provided constraints parameter and the constraints provided by the

parent of ConstrainedBox or SizedBox. The combination is done by calling

providedContraints.enforce(parentContraints). The result constraints

respect the parent constraints and are as close as possible to the provided

constraints. The size of ConstrainedBox or SizedBox is the size of the child

widget after layout.

Listing 5-4 shows four examples of using ConstrainedBox and

SizedBox. The first example is a typical usage pattern of SizedBox. The

second example with SizedBox.shrink() causes the image not to be

displayed. The third example is a typical usage pattern of ConstrainedBox.

The last example shows how a ConstrainedBox instance respects

constraints from parent.

Listing 5-4. Examples of ConstrainedBox and SizedBox

SizedBox(

 width: 100,

 height: 100,

 child: Text('SizedBox'),

)

Table 5-3. SizedBox constructors

Name Meaning Description

SizedBox.

expand()

SizedBox(width: double.

infinity, height: double.

infinity)

as large as its parent

allows.

sizedBox.

shrink()

SizedBox(width: 0.0,

height: 0.0)

as small as its parent

allows.

SizedBox.

fromSize()

SizedBox(width: size.width;

height: size.height)

a box with the specified

size.

Chapter 5 Layout Widgets

146

SizedBox.shrink(

 child: Image.network('https://picsum.photos/50'),

)

ConstrainedBox(

 constraints: BoxConstraints(

 maxWidth: 50,

 minHeight: 50,

),

 child: Text('ConstrainedBox'),

)

ConstrainedBox(

 constraints: BoxConstraints(

 maxWidth: 200,

),

 child: ConstrainedBox(

 constraints: BoxConstraints(

 maxHeight: 200,

),

 child: Image.network('https://picsum.photos/300'),

),

)

5-5. Imposing No Constraints on Widgets
 Problem
You want to impose constraints on widgets to allow them to render at

natural size.

Chapter 5 Layout Widgets

147

 Solution
Use UnconstrainedBox.

 Discussion
UnconstrainedBox is the opposite of ConstrainedBox in Recipe 5-4.

UnconstrainedBox imposes no constraints on its child. The child can

render freely on the unlimited space provided by the UnconstrainedBox

instance. UnconstrainedBox will try to use the child widget’s size to

determine its own size by following the limitations of its own constraints.

If the child widget’s size is bigger than the maximum size of

UnconstrainedBox can provide, the child widget will be clipped.

Otherwise, the child widget is aligned based on the value of the parameter

alignment of type AlignmentGeometry. If the child overflows the parent,

a warning is displayed in debug mode. When using UnconstrainedBox,

it’s still possible to add constraints to one axis using the parameter

constrainedAxis of type Axis. Then the child is only allowed to render

unconstrained on the other axis.

In Listing 5-5, the UnconstrainedBox widget is placed in a SizedBox

widget with fixed width and height. The UnconstrainedBox widget is

constrained on the horizontal axis, which means the minimum and

maximum width are both 100px. The image’s width is 200px, so it’s scaled

down to 100px to meet the width constraint. This causes the image height

to scale down to 150px, which exceeds the maximum height 100px of

the parent SizedBox widget. When running in debug mode, you can see

warning messages that the top and bottom are overflowed by 25px.

Listing 5-5. Example of UnconstrainedBox

SizedBox(

 width: 100,

 height: 100,

Chapter 5 Layout Widgets

148

 child: UnconstrainedBox(

 constrainedAxis: Axis.horizontal,

 child: Image.network('https://picsum.photos/200/300'),

),

)

5-6. Imposing Constraints on Widgets
when Ignoring Parents
 Problem
You want to impose constraints no matter where a widget is placed.

 Solution
Use OverflowBox.

 Discussion
When imposing constraints on widgets, constraints from the parent widget

are generally respected. Respecting parent constraints makes a widget’s

layout flexible to adapt different use cases. Sometimes you may want a

widget to only respect explicitly provided constraints and ignore parent’s

constraints. In this case, you can use OverflowBox.

OverflowBox constructor has named parameters alignment, minWidth,

maxWidth, minHeight, and maxHeight. If any of the constraints related

parameter is null, the corresponding value from parent’s constraints

is used. If you provide non-null values to all four constraints related

parameters, the layout of OverflowBox’s child is completely irrelevant to

the current widget.

Chapter 5 Layout Widgets

149

In Listing 5-6, the OverflowBox widget is created with non-null values

of all four constraints related parameters, so even though it’s placed inside

of a SizedBox widget, its size is always Size(200, 200).

Listing 5-6. Example of OverflowBox

SizedBox(

 width: 100,

 height: 100,

 child: OverflowBox(

 minWidth: 200,

 minHeight: 200,

 maxWidth: 200,

 maxHeight: 200,

 child: Image.network('https://picsum.photos/300'),

),

)

5-7. Limiting Size to Allow Child Widget
to Overflow
 Problem
You want a widget to have a size and allow child widget to overflow.

 Solution
Use SizedOverflowBox.

Chapter 5 Layout Widgets

150

 Discussion
SizedOverflowBox is created with a size. The widget’s actual size respects

its constraints and is as close as possible to the requested size. The child’s

layout only uses SizedOverflowBox widget’s constraints.

In Listing 5-7, the SizedOverflowBox widget is placed in

a ConstrainedBox widget with constraints BoxConstraints.

loose(Size(100, 100)). The requested size of SizedOverflowBox

widget is Size(50, 50). The actual size of SizedOverflowBox is also

Size(50, 50). The child Image widget only uses the constraints of

SizedOverflowBox. The result is the image widget has a size of Size(100,

100), which overflows its parent.

Listing 5-7. Example of SizedOverflowBox

ConstrainedBox(

 constraints: BoxConstraints.loose(Size(100, 100)),

 child: SizedOverflowBox(

 size: Size(50, 50),

 child: Image.network('https://picsum.photos/400'),

),

)

5-8. Limiting Widgets Size when Unbounded
 Problem
You have a widget that normally matches its parent’s size, but you want it

to be used in other places where size constraints are required.

 Solution
Use LimitedBox.

Chapter 5 Layout Widgets

151

 Discussion
Some widgets are normally designed to be as big as possible to match their

parents’ size. But these widgets need to be constrained in other places. For

example, when these widgets are added to a vertical list, the height need to

be limited. LimitedBox constructor has named parameters maxWidth and

maxHeight to specify the limitations. If a LimitedBox widget’s maximum

width is unbounded, then its child’s width is limited to maxWidth. If this

LimitedBox’s maximum height is unbounded, then its child’s height is

limited to maxHeigth.

In Listing 5-8, the maxHeight of a LimitedBox widget is set to 100, so

the child’s maximum height is 100px.

Listing 5-8. Example of LimitedBox

LimitedBox(

 maxHeight: 100,

 child: Image.network('https://picsum.photos/400'),

)

5-9. Scaling and Positioning Widgets
 Problem
You want to scale and position a widget.

 Solution
Use FittedBox with different fit mode and alignment.

Chapter 5 Layout Widgets

152

 Discussion
Align widget in Recipe 5-3 can position its child using different alignments.

FittedBox widget supports scaling and positioning of its child. The fit

mode is specified using the parameter fit of type BoxFit. BoxFit is an

enum type with values shown in Table 5-4.

Table 5-4. BoxFit values

Name Description

fill Fill the target box. source's aspect ratio is ignored.

contain as large as possible to contain the source entirely in the target box.

cover as small as possible to cover the entire target box.

fitWidth only make sure the full width of the source is shown.

fitHeight only make sure the full height of the source is shown.

none align the source within the target box and discard anything outside

the box.

scaleDown align the source with the target box and scale down when necessary

to ensure the source fits in the box. if the source is shrunk, this is

the same as contain; otherwise, it is the same as none.

FittedBox is usually used when displaying images. Listing 5-9 shows

an example to demonstrate different values of BoxFit. ImageBox widget

uses a SizedBox widget to limit its size and places the image inside of a

FittedBox widget. The DecoratedBox widget creates a red border to show

the boundary of ImageBox widget.

Chapter 5 Layout Widgets

153

Listing 5-9. Different values of BoxFit

class FitPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Fit'),

),

 body: Center(

 child: Wrap(

 spacing: 20,

 runSpacing: 20,

 alignment: WrapAlignment.spaceAround,

 children: <Widget>[

 ImageBox(fit: BoxFit.fill),

 ImageBox(fit: BoxFit.contain),

 ImageBox(fit: BoxFit.cover),

 ImageBox(fit: BoxFit.fitWidth),

 ImageBox(fit: BoxFit.fitHeight),

 ImageBox(fit: BoxFit.none),

 ImageBox(fit: BoxFit.scaleDown),

],

),

),

);

 }

}

class ImageBox extends StatelessWidget {

 const ImageBox({

 Key key,

Chapter 5 Layout Widgets

154

 this.boxWidth = 150,

 this.boxHeight = 170,

 this.imageWidth = 200,

 this.fit,

 });

 final double boxWidth;

 final double boxHeight;

 final double imageWidth;

 final BoxFit fit;

 @override

 Widget build(BuildContext context) {

 return DecoratedBox(

 decoration: BoxDecoration(border: Border.all(color:

Colors.red)),

 child: SizedBox(

 width: boxWidth,

 height: boxHeight,

 child: FittedBox(

 fit: fit,

 child: SizedBox(

 width: imageWidth,

 height: imageWidth,

 child: Image.network('https://dummyimage.

com/${imageWidth.toInt()}'

 '&text=${fit.toString().substring(7)}'),

),

),

),

);

 }

}

Chapter 5 Layout Widgets

155

Figure 5-1 shows the screenshot of code in Listing 5-9. Text in an image

shows the BoxFit value used in this ImageBox widget.

Figure 5-1. Different values of BoxFit

Chapter 5 Layout Widgets

156

5-10. Rotating Widgets
 Problem
You want to rotate a widget.

 Solution
Use RotatedBox.

 Discussion
RotatedBox widget rotates its child before layout. Rotation is specified by

an int type of clockwise quarter turns with quarterTurns parameter. The

value 1 of quarterTurns parameter means rotating 90 degrees clockwise.

In Listing 5-10, the Text widget is rotated one quarter turn.

Listing 5-10. Example of RotatedWidget

RotatedBox(

 quarterTurns: 1,

 child: Text(

 'Hello World',

 textScaleFactor: 2,

),

)

5-11. Adding Padding when Displaying
Widgets
 Problem
You want to add padding around a widget.

Chapter 5 Layout Widgets

157

 Solution
Use Padding.

 Discussion
Padding widget creates empty space around its child. The layout

constraints passed to its child are the widget’s constraints after shrinking

by the padding, which causes the child to lay out at a smaller size.

The padding is specified in the required padding parameter of type

EdgeInsetsGeometry.

Similar with AlignmentGeometry, EdgeInsetsGeometry has two

subclasses EdgeInsets and EdgeInsetsDirectional. EdgeInsets class

expresses offsets in visual coordinates. Offsets values are specified for left,

right, top, and bottom edges. Table 5-5 shows constructors of EdgeInsets

class.

Table 5-5. EdgeInsets constructors

Name Description

EdgeInsets.all() all the offsets have the given value.

EdgeInsets.

fromLTRB()

specify values of offsets for left, top, right, and bottom

edges.

EdgeInsets.only() it has named parameters left, top, right, and bottom

with default value of 0.0.

EdgeInsets.

symmetric()

it has named parameters vertical and horizontal to

create symmetrical offsets.

Chapter 5 Layout Widgets

158

To consider text direction, EdgeInsetsDirectional class should be

used instead of EdgeInsets. EdgeInsetsDirectional class uses start and

end instead of left and right. It has EdgeInsetsDirectional.fromSTEB()

constructor to create insets from offsets of start, top, end, and bottom. The

EdgeInsetsDirectional.only() constructor is similar with EdgeInsets.

only().

Listing 5-11 shows an example of Padding widget.

Listing 5-11. Example of Padding

Padding(

 padding: EdgeInsets.all(20),

 child: Image.network('https://picsum.photos/200'),

)

5-12. Sizing Widgets to Aspect Ratio
 Problem
You want to size widgets to maintain a specific aspect ratio.

 Solution
Use AspectRatio.

 Discussion
AspectRatio constructor has the required parameter aspectRatio to

specify the aspect ratio value of width/height. For example, a 4:3 aspect

ratio uses the value of 4.0/3.0. AspectRatio widget tries to find the best

size to maintain the aspect ratio while respecting its layout constraints.

Chapter 5 Layout Widgets

159

The process starts from setting the width to the maximum width of the

constraints. If the maximum width is finite, then the height is calculated by

width / aspectRatio. Otherwise, the height is set to the maximum height

of the constraints and width is set to height * aspectRatio. There may

be extra steps to make sure the result width and height meet the layout

constraints. For example, if the height is less than the minimum height

of the constraints, then height is set to this minimum value and width

is calculated based on the height and aspect ratio. The general rule is to

check width before height and maximum value before minimum value.

The final size may not meet the ratio requirement, but it must meet the

layout constraints.

In Listing 5-12, AspectRatio widget is placed in a ConstrainedBox with

a loose constraints of Size(200, 200). The aspect ratio is 4.0/3.0, so the

height is calculated based on 200 / (4.0 / 3.0) = 150.0. The result size

of ApsectRatio is Size(200.0, 150.0).

Listing 5-12. Example of AspectRatio

ConstrainedBox(

 constraints: BoxConstraints.loose(Size(200, 200)),

 child: AspectRatio(

 aspectRatio: 4.0 / 3.0,

 child: Image.network('https://picsum.photos/400/300'),

),

)

Chapter 5 Layout Widgets

160

5-13. Transforming Widgets
 Problem
You want to apply a transformation on a widget.

 Solution
Use Transform.

 Discussion
Transform widget can apply a transformation on its child before painting

it. Transformations are expressed using Matrix4 instances. Transform

constructor has named parameters shown in Table 5-6.

Table 5-6. Named parameters of Transform

Name Type Description

transform Matrix4 Matrix to transform the child.

origin Offset origin of the coordinate system

to apply the transform.

alignment AlignmentGeometry alignment of the origin.

transformHitTests bool should the transform be applied

when performing hit tests.

Transform class has other constructors to create common

transformations:

• Tranform.rotate() – Transform the child by rotating

specified angle.

Chapter 5 Layout Widgets

161

• Transform.scale() – Transform the child by scaling

uniformly with specified scale factor.

• Transform.translate() – Transform the child by

translating specified offset.

Listing 5-13 shows examples of using Transform’s named constructors.

Listing 5-13. Examples of Transform

Transform.rotate(

 angle: pi / 4.0,

 origin: Offset(10, 10),

 child: Text('Hello World'),

)

Transform.translate(

 offset: Offset(50, 50),

 child: Text('Hello World'),

)

5-14. Controlling Different Layout Aspects
on a Widget
 Problem
You want to define different layout aspects for a widget.

 Solution
Use Container.

Chapter 5 Layout Widgets

162

 Discussion
Flutter has many widgets to control different aspects of layout. For example,

SizedBox widget controls the size, while Align widget controls the alignment.

If you want to control different layout aspects on the same widget, you can

wrap these widgets in a nested way. Actually, Flutter provides a Container

widget to make it easier to define different layout aspects.

Table 5-7 shows the named parameters of Container constructor.

You cannot provide non-null values to both color and decoration,

because color is just a shorthand to create decoration with value

BoxDecoration(color: color). If width or height is not null, their values

are used to tighten the constraints.

Table 5-7. Named parameters of Container

Name Type Description

alignment alignmentgeometry alignment of the child.

padding EdgeInsetsGeometry empty space inside the decoration.

color Color Background color.

decoration Decoration decoration to paint behind the child.

foreground

Decoration

Decoration decoration to paint in front of the child.

width double Width of the child.

height double height of the child.

constraints BoxConstraints additional constraints.

margin EdgeInsetsGeometry empty space to surround the decoration.

transform Matrix4 transformation applied to the container.

Container is a composition of different widgets based on the values of

parameters. Listing 5-14 shows the nesting structure of different widgets

Chapter 5 Layout Widgets

163

used by Container and the parameters these widgets may use. If the value

of a parameter is null, then the corresponding widget may not exist.

Listing 5-14. Structure of Container

Transform (transform)

 - Padding (margin)

 - ConstrainedBox (constraints, width, height)

 - DecoratedBox (foregroundDecoration)

 - DecoratedBox (decoration, color)

 - Padding (padding, decoration)

 - Align (alignment)

 - child

Listing 5-15 shows an example of Container widget that uses all

named parameters.

Listing 5-15. Example of Container

Container(

 alignment: Alignment.bottomRight,

 padding: EdgeInsets.all(16),

 color: Colors.red.shade100,

 foregroundDecoration: BoxDecoration(

 image: DecorationImage(

 image: NetworkImage('https://picsum.photos/100'),

),

),

 width: 300,

 height: 300,

 constraints: BoxConstraints.loose(Size(400, 400)),

 margin: EdgeInsets.all(32),

 transform: Matrix4.rotationZ(0.1),

 child: Text(

Chapter 5 Layout Widgets

164

 'Hello World',

 textScaleFactor: 3,

),

)

Figure 5-2 shows the structure of the Container widget in Listing 5-15.

You can see clearly how these widgets are nested.

5-15. Implementing Flex Box Layout
 Problem
You have multiple widgets to lay out, and you want them to be able to take

extra space.

 Solution
Use Flex, Column, Row, Flexible, and Expanded.

Figure 5-2. Structure of Container

Chapter 5 Layout Widgets

165

 Discussion
To lay out multiple widgets using the flex box model, you can use a set

of widgets provided by Flutter, including Flex, Column, Row, Flexible,

Expanded, and Spacer. In fact, only Flex and Flexible widgets are

important to understand. Flex widget is used as the layout container, while

Flexible widget is used to wrap children widgets inside the container. Flex

widget displays its children in one-dimension array. It supports layout of

children in two directions, horizontal and vertical. Row and Column are

subclasses of Flex that only places children in the horizontal and vertical

direction, respectively. Flexible widget of a Flex container can control how

a child flexes to take extra space. Children of Flex widget can be flexible or

not. If you want a child to be flexible, you can simply wrap it in a Flexible

widget.

Same as CSS flex box layout, Flex widget uses two axes for layout. The

axis where children are placed along is the main axis. The other axis is the

cross axis. The main axis is configured using the direction parameter of

type Axis. If the value is Axis.horizontal, then the main axis is horizontal

axis, while the cross axis is vertical axis. If the value is Axis.vertical, then the

main axis is vertical axis, while the cross axis is horizontal axis. Row widget

always uses horizontal axis as the main axis, and Column widget always

uses vertical axis as the main axis. If the main axis is known, then Row or

Column widget should be used instead of Flex widget.

 Flex Box Layout Algorithm
Layout of Flex children is complicated and done in multiple steps. The first

step is to lay out each child with a null or zero flex factor. These are non-

flexible children. The constraints used to lay out these children depend

on the value of crossAxisAlignment. If the value of crossAxisAlignment

is CrossAxisAlignment.stretch, then the constraints will be tight cross-

axis constraints of the maximum size on the cross axis. Otherwise,

Chapter 5 Layout Widgets

166

the constraints only set the maximum value for the cross axis. For

example, if the direction is Axis.horizontal and crossAxisAlignment is

CrossAxisAlignment.stretch, then the constraints for these non-flexible

children set both minHeight and maxHeight to maxHeight of the Flex’s

constraints. This makes these children take all space on the cross axis.

During the first step, the total allocated size for these children and the

maximum value of cross-axis size are recorded.

The second step is to lay out each child with a flex factor. These are

flexible children. From the first step, the allocated size of main axis is

known. The free space can be calculated based on the max size and

allocated size of main axis. The free space is distributed among all flexible

children based on the flex factor. A child with a flex factor of 2.0 will receive

twice the amount of free space as a child with a flex factor of 1.0. Suppose

there are three children with flex factors 1.0, 2.0, and 3.0, if the free space

is 120px, then these children will receive space of 20px, 40px, and 60px,

respectively. The calculated value based on flex factor for each child will

be the maximum constraints on the main axis. The minimum constraints

on the main axis depends on the value of FlexFit for the child. If fit value

is FlexFit.tight, then the minimum value is the same as the maximum,

which creates tight constraints on the main axis. If fit value is FlexFit.loose,

then the minimum value is 0.0, which creates loose constraints on the

main axis. The constraints on the cross axis are the same as Flex widget’s

constraints. The final constraints are used to lay out these flex children.

The third step is to determine the extent of main and cross axis. If the

value of mainAxisSize is MainAxisSize.max, then the main-axis extent is

the maximum constraints of current Flex widget. Otherwise, the main-axis

extent is the allocated size for all children. The extent of cross axis is the

maximum value of cross-axis constraints of all children.

The last step is to determine the position of each child based on the

value of mainAxisAlignment and crossAxisAlignment.

Table 5-8 shows values of the enum MainAxisAlignment.

Chapter 5 Layout Widgets

167

Table 5-9 shows values of the enum CrossAxisAlignment.

Table 5-8. MainAxisAlignment values

Name Description

start place the children close to the start of the main axis. the start

position is determined by textdirection for horizontal direction

and Verticaldirection for vertical direction.

end place the children close to the end of the main axis. the end

position is determined using the same way as start.

center place the children close to the middle.

spaceBetween distribute the free space evenly between the children.

spaceAround distribute the free space evenly between the children with half

of the space before and after the first and last child.

spaceEvenly distribute the free space evenly between the children including

before and after the first and last child.

Table 5-9. CrossAxisAlignment values

Name Description

start place the children with start edge aligned with the start side of

the cross axis. the start position is determined by textdirection for

horizontal direction and Verticaldirection for vertical direction.

end place the children with end edge aligned with the end side of the cross

axis. the end position is determined using the same way as start.

center place the children with center aligned with the middle of the cross

axis.

stretch require the children to fill the cross axis.

baseline Match baselines of children on the cross axis.

Chapter 5 Layout Widgets

168

 Flexible
Flexible has the flex parameter to specify the flex factor and fit parameter

to specify the BoxFit value. The default value of flex parameter is 1, while

the default value of fit is BoxFit.loose. Expanded is a subclass of Flexible

with fit parameter set to BoxFit.tight.

In Listing 5-16, Column widget is placed in a LimitedBox widget to

limit its height. All children of Column widget are non-flexible.

Listing 5-16. Flex widget with non-flexible children

LimitedBox(

 maxHeight: 320,

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.end,

 mainAxisAlignment: MainAxisAlignment.spaceAround,

 children: <Widget>[

 Image.network('https://picsum.photos/50'),

 Image.network('https://picsum.photos/70'),

 Image.network('https://picsum.photos/90'),

],

),

)

In Listing 5-17, Column widget has both flexible and non-flexible

children. Flexible widgets can be created by wrapping with Flexible or

Expanded widgets.

Listing 5-17. Flex widget with flexible and non-flexible children

LimitedBox(

 maxHeight: 300,

 child: Column(

 mainAxisAlignment: MainAxisAlignment.spaceBetween,

Chapter 5 Layout Widgets

169

 children: <Widget>[

 Flexible(

 child: Image.network('https://picsum.photos/50'),

),

 Image.network('https://picsum.photos/40'),

 Expanded(

 child: Image.network('https://picsum.photos/50'),

),

 Expanded(

 flex: 2,

 child: Image.network('https://picsum.photos/50'),

),

],

),

)

5-16. Displaying Overlapping Widgets
 Problem
You want to lay out widgets that may overlap with each other.

 Solution
Use Stack or IndexedStack.

 Discussion
Children of Stack widget can be positioned or non-positioned. Positioned

children are wrapped in a Positioned widget with at least one non-null

property. Size of a Stack widget is determined by all the non-positioned

children. The layout process has two phases.

Chapter 5 Layout Widgets

170

The first phase is to lay out all non-positioned children. The

constraints used for non-positioned children depend on the value of fit

property of type StackFit:

• StackFit.loose – Loose constraints created by

constraints.loosen()

• StackFilt.expand – Tight constraints created by

BoxConstraints.tight(constraints.biggest)

• StackFilt.passthrough – The same constraints as Stack

widget

Size of the Stack widget is determined by the maximum size of all non-

positioned children.

In the second phase, all non-positioned children are positioned

according to the alignment property. The constraints used for positioned

children are determined by the size of Stack widget and their properties.

Positioned widget has six properties: left, top, right, bottom, width, and

height. Properties left, right, and width are used to determine the tight

width constraint. Properties top, bottom, and height are used to determine

the tight height constraint. For example, if both left and right values are not

null, the tight width constraint is widthOfStack – right – left. The positioned

child is then positioned based on the left, right, top, and bottom values in

two axes. If all these values are null, it’s positioned based on the alignment.

Children of Stack are painted in the order with the first child being

at the bottom. The order in the children array determines how children

overlap with each other.

IndexedStack class is a subclass of Stack. An IndexedStack instance

only shows a single child from a list of children. IndexedStack constructor

not only has the same parameters as Stack constructor but also includes

a parameter index of type int to specify the index of child to display. If

the value of parameter index is null, then nothing will be displayed. The

layout of IndexedStack is the same as Stack. IndexedStack class simply has

Chapter 5 Layout Widgets

171

a different way to paint itself. This means even though only one child is

displayed, all the children still need to lay out the same way as Stack.

Listing 5-18 shows an example of Stack widget with positioned child.

Listing 5-18. Example of Stack

Stack(

 children: <Widget>[

 Image.network('https://picsum.photos/200'),

 Image.network('https://picsum.photos/100'),

 Positioned(

 right: 0,

 bottom: 0,

 child: Image.network('https://picsum.photos/150'),

),

],

)

5-17. Displaying Widgets in Multiple Runs
 Problem
You want to display widgets in multiple horizontal or vertical runs.

 Solution
Use Wrap.

 Problem
Flex widget doesn’t allow size of children to exceed the size of the main

axis. Wrap widget creates new runs; there is no enough space to fit the

children. Table 5-10 shows named parameters of Wrap constructor.

Chapter 5 Layout Widgets

172

Ta
bl

e
5-

10
.

N
am

ed
 p

ar
am

et
er

s
of

 W
ra

p

Na
m

e
Va

lu
e

De
fa

ul
t v

al
ue

De
sc

rip
tio

n

di
re
ct
io
n

Ax
is

ax
is

.h
or

iz
on

ta
l

di
re

ct
io

n
of

 th
e

m
ai

n
ax

is
.

al
ig
nm
en
t

Wr
ap
Al
ig
nm
en
t

W
ra

pa
lig

nm
en

t.s
ta

rt
al

ig
nm

en
t o

f c
hi

ld
re

n
w

ith
in

 a
 ru

n
in

 th
e

m
ai

n
ax

is
.

sp
ac
in
g

Do
ub
le

0.
0

sp
ac

e
be

tw
ee

n
ch

ild
re

n
in

 a
 ru

n
in

 th
e

m
ai

n

ax
is

.

ru
nA
li
gn

me
nt

Wr
ap
Al
ig
nm
en
t

W
ra

pa
lig

nm
en

t.s
ta

rt
al

ig
nm

en
t o

f r
un

s
in

 th
e

cr
os

s
ax

is
.

ru
nS
pa
ci
ng

Do
ub
le

0.
0

sp
ac

e
be

tw
ee

n
ru

ns
 in

 th
e

cr
os

s
ax

is
.

cr
os
sA
xi
sA
li
gn
me
nt

Wr
ap
Cr
os
sA
li
gn
me
nt

W
ra

pC
ro

ss
al

ig
nm

en
t.

st
ar

t

al
ig

nm
en

t o
f c

hi
ld

re
n

w
ith

in
 a

 ru
n

in
 th

e

cr
os

s
ax

is
.

te
xt
Di
re

ct
io
n

Te
xt
Di
re
ct
io
n

or
de

r t
o

la
y

ou
t c

hi
ld

re
n

ho
riz

on
ta

lly
.

ve
rt
ic
al
Di
re
ct
io
n

Ve
rt
ic
al
Di
re
ct
io
n

Ve
rti

ca
ld

ire
ct

io
n.

do
w

n
or

de
r t

o
la

y
ou

t c
hi

ld
re

n
ve

rti
ca

lly
.

ch
il
dr
en

Li
st
<W
id
ge
t>

[]
Ch

ild
re

n.

Chapter 5 Layout Widgets

173

WrapAlignment enum has the same values as MainAxisAlignment.

WrapCrossAlignment enum only has values start, end, and center.

Listing 5-19 shows an example of Wrap widget by wrapping ten Image

widgets.

Listing 5-19. Example of Wrap

Wrap(

 spacing: 10,

 runSpacing: 5,

 crossAxisAlignment: WrapCrossAlignment.center,

 children: List.generate(

 10,

 (index) => Image.network('https://picsum.photos/${50 +

index * 10}'),

),

)

5-18. Creating Custom Single Child Layout
 Problem
You want to create a custom layout for a single child.

 Solution
Use CustomSingleChildLayout.

 Discussion
If those built-in layout widgets for a single child cannot meet

your requirement, you can create a custom layout using

CustomSingleChildLayout. CustomSingleChildLayout widget simply

Chapter 5 Layout Widgets

174

delegates the layout to a SingleChildLayoutDelegate instance. You need

to create your own subclass of SingleChildLayoutDelegate to implement

methods shown in Table 5-11.

Table 5-11. Methods of SingleChildLayoutDelegate

Name Description

getConstraintsForChild

(BoxConstraints constraints)

get the constraints for the child.

getPositionForChild(Size

size, Size childSize)

get the position of the child based on the

size of this widget and child.

getSize(BoxConstraints

constraints)

get the size of this widget.

shouldRelayout() should relayout.

The size of this widget is the result of the size returned by delegate’s

getSize() method after applying the constraints. Layout of child is done

using the constraints returned by delegate’s getConstraintsForChild()

method. Finally the position of child is updated with the value returned by

delegate’s getPositionForChild() method.

In Listing 5-20, FixedPositionLayoutDelegate class overrides getSize()

method to provide the size of the parent widget. It also overrides

getPositionForChild() methods to provide the position of the child. The

getConstraintsForChild() method is also overridden to return tighten

constraints.

Listing 5-20. Custom single child layout delegate

class FixedPositionLayoutDelegate extends SingleChildLayout

Delegate {

 @override

Chapter 5 Layout Widgets

175

 bool shouldRelayout(SingleChildLayoutDelegate oldDelegate) {

 return false;

 }

 @override

 Size getSize(BoxConstraints constraints) {

 return constraints.constrain(Size(300, 300));

 }

 @override

 BoxConstraints getConstraintsForChild(BoxConstraints

constraints) {

 return constraints.tighten(width: 300, height: 300);

 }

 @override

 Offset getPositionForChild(Size size, Size childSize) {

 return Offset(50, 50);

 }

}

Listing 5-21 shows how to use FixedPositionLayoutDelegate.

Listing 5-21. Example of FixedPositionLayoutDelegate

CustomSingleChildLayout(

 delegate: FixedPositionLayoutDelegate(),

 child: Image.network('https://picsum.photos/100'),

)

Chapter 5 Layout Widgets

176

5-19. Creating Custom Multiple Children
Layout
 Problem
You want to create a custom layout for multiple children.

 Solution
Use CustomMultiChildLayout and MultiChildLayoutDelegate.

 Discussion
If those built-in widgets for multiple children cannot meet

your requirement, you can create a custom layout using

CustomMultiChildLayout. Similar to CustomSingleChildLayout,

CustomMultiChildLayout delegates the layout logic to

a MultiChildLayoutDelegate instance. All children of

CustomMultiChildLayout must be wrapped in a LayoutId widget to

provide unique ids for them. Of all the methods shown in Table 5-12,

performLayout() and shouldRelayout() methods must be implemented.

All other methods have default implementation. In the implementation of

performLayout() method, the layoutChild() method must be called exactly

once for each child.

Chapter 5 Layout Widgets

177

Listing 5-22 shows a custom multiple children layout delegate. This

delegate uses increasing int values as the layout id. Layout ids of children

must start from 0. In the performLayout() method, layoutChild() method

is called on each child, starting with the first child with loose constraints,

which allows the first child to take the natural size. The actual size of the

first child is recorded. Then positionChild() method is called with Offset.

zero to place the first child at the top left corner. After the first child,

layoutChild() and positionChild() methods are called on all the other

children with increasing size and position offsets, respectively.

Listing 5-22. Custom multiple children layout delegate

class GrowingSizeLayoutDelegate extends MultiChildLayout

Delegate {

 @override

 void performLayout(Size size) {

 int index = 0;

Table 5-12. Methods of MultiChildLayoutDelegate

Name Description

hasChild(Object childId) Check if a child with the given id exists.

layoutChild(Object childId,

BoxConstraints constraints)

Layout the child with the provided

constraints.

positionChild(Object childId,

Offset offset)

position the child with the given offset.

getSize(BoxConstraints

constraints)

get the size of this widget.

performLayout(Size size) the actual layout logic.

shouldRelayout() should relayout.

Chapter 5 Layout Widgets

178

 Size childSize = layoutChild(index, BoxConstraints.

loose(size));

 Offset offset = Offset.zero;

 positionChild(index, offset);

 index++;

 while (hasChild(index)) {

 double sizeFactor = 1.0 + index * 0.1;

 double offsetFactor = index * 10.0;

 childSize = layoutChild(

 index,

 BoxConstraints.tight(Size(

 childSize.width * sizeFactor, childSize.height *

sizeFactor)));

 offset = offset.translate(offsetFactor, offsetFactor);

 positionChild(index, offset);

 index++;

 }

 }

 @override

 bool shouldRelayout(MultiChildLayoutDelegate oldDelegate) {

 return false;

 }

 @override

 Size getSize(BoxConstraints constraints) =>

 constraints.constrain(Size(400, 400));

}

Listing 5-23 shows the usage of GrowingSizeLayoutDelegate. The

children of CustomMultiChildLayout are six images nested in SizedBox.

The wrapping LayoutId widget is required to pass the layout id to the

delegate.

Chapter 5 Layout Widgets

179

Listing 5-23. Example of GrowingSizeLayoutDelegate

CustomMultiChildLayout(

 delegate: GrowingSizeLayoutDelegate(),

 children: List.generate(

 6,

 (index) => LayoutId(

 id: index,

 child: DecoratedBox(

 decoration:

 BoxDecoration(border: Border.all(color: Colors.

red)),

 child: SizedBox(

 width: 70,

 height: 70,

 child: Image.network(

 'https://dummyimage.com/${50 + index * 10}'),

),

),

),

),

)

Figure 5-3 shows the result of using GrowingSizeLayoutDelegate.

Chapter 5 Layout Widgets

180

5-20. Summary
With the layout widgets in Flutter, it’s easy to satisfy common layout

requirements in build Flutter apps. This chapter covers many layout

widgets for single child and multiple children. In the next chapter, we’ll

discuss form widgets.

Figure 5-3. Result of using GrowingSizeLayoutDelegate

Chapter 5 Layout Widgets

181© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_6

CHAPTER 6

Form Widgets
Form controls are important in mobile apps to interact with the user. Flutter

provides a set of form widgets for Material Design and iOS style. These form

widgets generally have no internal state. Their appearance and behavior

are purely defined by constructor parameters. With state maintained in

ancestor widgets, form widgets are re-rendered to reflect to state changes.

This chapter covers recipes related to basic usage of form widgets.

6-1. Collecting Text Inputs
 Problem
You want to collect text inputs.

 Solution
Use TextField for Material Design and CupertinoTextField for iOS style.

 Discussion
To collect user inputs in Flutter apps, you can use TextField widget for

Material Design or CupertinoTextField widget for iOS style. Both widgets

have similar usage pattern and behavior. In fact, both widgets wrap the

same EditableText which provides the basic text input capability with

support for scrolling, selection, and cursor movement. EditableText is a

182

highly customizable widget with many named parameters. This recipe

focuses on how to set the initial value of a TextField or CupertinoTextField

widget and get the text from it.

The text of an EditableText widget is controlled by a

TextEditingController instance. You can use the controller parameter to

set a TextEditingController instance when creating a new EditableText

widget. The controller maintains a bidirectional data binding with the

corresponding EditableText widget. The controller has a text property

to track the current editing text and a selection property of type

TextSelection to track the currently selected text. Whenever the text

in a EditableText widget is modified or selected by user, the text and

selection properties of the associated TextEditingController instance

will be updated. If you modify the text or selection properties of the

TextEditingController instance, the EditableText widget will update itself.

TextEditingController class is a subclass of ValueNotifier<TextEditingVa

lue>, so you can add listeners to the controller to get notifications when

the text or selection changes. When creating a new TextEditingController

instance, you can pass some text with the text parameter, which becomes

the initial text of the corresponding EditableText widget.

Let’s see three different ways to get the text from EditableText widgets.

 Using TextEditingController
The first way is using TextEditingController. The ReverseText widget in

Listing 6-1 is used to reverse an input string. The TextEditingController

instance is created with initial text “<input>”. When the button is pressed,

the _value is updated to the text retrieved from the controller. The reversed

string is displayed.

Chapter 6 Form Widgets

183

Listing 6-1. Use TextEditingController to get text

class ReverseText extends StatefulWidget {

 @override

 _ReverseTextState createState() => _ReverseTextState();

}

class _ReverseTextState extends State<ReverseText> {

 final TextEditingController _controller =

TextEditingController(

 text: "<input>",

);

 String _value;

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Row(

 children: <Widget>[

 Expanded(

 child: TextField(

 controller: _controller,

),

),

 RaisedButton(

 child: Text('Go'),

 onPressed: () {

 this.setState(() {

 _value = _controller.text;

 });

 },

Chapter 6 Form Widgets

184

),

],

),

 Text((_value ?? "). split(").reversed.join()),

],

);

 }

}

Figure 6-1 shows the screenshot of code in Listing 6-1.

Figure 6-1. Use TextEditingController

 Using Listeners of TextEditingController
A TextEditingController instance is also an instance of ValueNotifier<Te

xtEditingValue>, so you can add listeners to it and react to notifications.

In Listing 6-2, the listener function _handleTextChanged calls setState()

function to update the state when receiving change notifications. The

listener is added in the initState() function and removed in the dispose()

function, which makes sure resource is properly cleaned up.

Listing 6-2. Use TextEditingController listener

class ReverseTextWithListener extends StatefulWidget {

 @override

 _ReverseTextWithListenerState createState() =>

 _ReverseTextWithListenerState();

}

Chapter 6 Form Widgets

185

class _ReverseTextWithListenerState extends

State<ReverseTextWithListener> {

 TextEditingController _controller;

 String _value;

 @override

 void initState() {

 super.initState();

 _controller = TextEditingController(

 text: "<input>",

);

 _controller.addListener(_handleTextChanged);

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 TextField(

 controller: _controller,

),

 Text((_value ?? "). split(").reversed.join()),

],

);

 }

 @override

 void dispose() {

 _controller.removeListener(_handleTextChanged);

 super.dispose();

 }

Chapter 6 Form Widgets

186

 void _handleTextChanged() {

 this.setState(() {

 this._value = _controller.text;

 });

 }

}

Figure 6-2 shows the screenshot of code in Listing 6-2.

Figure 6-2. Use TextEditingController listener

Table 6-1. EditableText callbacks

Name Type Description

onChanged ValueChanged<string> Called when text changed.

onEditingComplete VoidCallback Called when user submits

the text.

onSubmitted ValueChanged<string> Called when user finishes

editing the text.

 Using Callbacks
The last way to get text from EditableText widgets is using the callbacks.

There are three types of callbacks related to text editing; see Table 6-1.

If you want to actively watch for text changes, you should use

onChanged callback. When user finishes editing the text, both

onEditingComplete and onSubmitted callbacks will be invoked.

Chapter 6 Form Widgets

187

The difference is that onEditingComplete callback doesn’t provide

access to the submitted text.

In Listing 6-3, different messages are logged in different callbacks. All

the log messages are displayed in a RichText widget.

Listing 6-3. EditableText callbacks

class TextFieldCallbacks extends StatefulWidget {

 @override

 _TextFieldCallbacksState createState() =>

_TextFieldCallbacksState();

}

class _TextFieldCallbacksState extends

State<TextFieldCallbacks> {

 List<String> _logs = List();

 void _log(String value) {

 this.setState(() {

 this._logs.add(value);

 });

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 TextField(

 onChanged: (text) => _log('changed: $text'),

 onEditingComplete: () => _log('completed'),

 onSubmitted: (text) => _log('submitted: $text'),

),

Chapter 6 Form Widgets

188

 Text.rich(TextSpan(

 children: this._logs.map((log) => TextSpan(text:

'$log\n')).toList(),

)),

],

);

 }

}

Figure 6-3 shows the screenshot of code in Listing 6-3.

Figure 6-3. EditableText callbacks

Although examples in Listings 6-1, 6-2, and 6-3 use TextField, the same

pattern can also be applied to CupertinoTextField.

6-2. Customizing Keyboard for Text Input
 Problem
You want to customize the keyboard used to edit the text.

Chapter 6 Form Widgets

189

 Solution
Use keyboardType, textInputAction, and keyboardAppearance parameters.

 Discussion
EditableText widget allows customization of the keyboard used for editing

the text. You can use keyboardType parameter of type TextInputType class

to set a keyboard type suitable for the text. For example, if the EditableText

widget is used to edit phone numbers, then TextInputType.phone is a

better choice for the keyboardType parameter. Table 6-2 shows constants

in TextInputType. TextInputType.number constant is used for unsigned

numbers without a decimal point. For other types of numbers, you can

use TextInputType.numberWithOptions({bool signed: false, bool decimal:

false }) constructor to set whether the numbers should be signed or a

decimal point should be included.

Table 6-2. TextInputType constants

Name Description

text plain text.

multiline multi-line text.

number Unsigned number without a decimal point.

phone phone numbers.

datetime date and time.

emailAddress email addresses.

url UrLs.

Chapter 6 Form Widgets

190

The textInputAction parameter of type TextInputAction enum sets the

logic action to perform when user is submitting the text. For example, if the

text field is for use to input search queries, then the TextInputAction.search

value makes the keyboard to display the text “Search”. The user can expect

a search action to perform after tapping the action button. TextInputAction

enum defined a set of actions. The buttons for these actions may have

different appearances on different platforms or different versions of the

same platform. Most of these actions are supported by both Android

and iOS. They are mapped to IME input types on Android and keyboard

return types on iOS. Table 6-3 shows values of TextInputAction and their

mappings on Android and iOS. Some actions may only be supported on

Android or iOS. Using an unsupported action will cause an error to be

thrown in the debug mode. However, in the release mode, an unsupported

action will be mapped to IME_ACTION_UNSPECIFIED on Android and

UIReturnKeyDefault on iOS, respectively.

Table 6-3. TextInputAction values

Name Android IME input type iOS keyboard return type

none ime_aCtioN_NoNe N/a

unspecified ime_aCtioN_UNspeCiFied UireturnKeydefault

done ime_aCtioN_doNe UireturnKeydone

search ime_aCtioN_searCh UireturnKeysearch

send ime_aCtioN_seNd UireturnKeysend

next ime_aCtioN_NeXt UireturnKeyNext

previous ime_aCtioN_preVioUs N/a

continueAction N/a UireturnKeyContinue

join N/a UireturnKeyJoin

route N/a UireturnKeyroute

emergencyCall N/a UireturnKeyemergencyCall

newline ime_aCtioN_NoNe UireturnKeydefault

Chapter 6 Form Widgets

191

The last keyboardAppearance parameter of type Brightness sets the

appearance of the keyboard. Brightness enum has two values, dark and

light. The parameter is only used for iOS.

Listing 6-4 shows the usage of textInputAction and last

keyboardAppearance parameters.

Listing 6-4. keyboardType and keyboardAppearance parameters

TextField(

 keyboardType: TextInputType.phone,

)

TextField(

 keyboardType: TextInputType.numberWithOptions(

 signed: true,

 decimal: true,

),

)

TextField(

 textInputAction: TextInputAction.search,

 keyboardAppearance: Brightness.dark,

)

6-3. Add Decorations to Text Input
in Material Design
 Problem
You want to add decorations like prefix and suffix to text fields in Material

Design.

Chapter 6 Form Widgets

192

 Solution
Use the decoration parameter of type InputDecoration.

 Discussion
TextField widget supports adding different decorations to present various

information to user. For example, if the value of text input is invalid, you

can add a red border and some text below the text input to indicate that.

You can also add text or icons as the prefix or suffix. If the TextField widget

is for editing currency value, you can add a currency symbol as the prefix.

The decoration parameter of type InputDecoration of TextField is used to

add this information. InputDecoration class has many named parameters,

which we will review next.

 Borders
Let’s start from adding borders to text input widgets. InputDecoration

constructor has several parameters of type InputBorder that are related

to borders, including errorBorder, disabledBorder, focusedBorder,

focusedErrorBorder, and enabledBorder. The names of these parameters

indicate when these borders will be displayed based on the state. There

is also a border parameter, but this parameter is only used to provide the

shape of the border.

InputBorder class is abstract, so one of its subclasses UnderlineInputBorder

or OutlineInputBorder should be used. UnderlineInputBorder class only

has a border at the bottom side. UnderlineInputBorder constructor has

parameters borderSide of type BorderSide and borderRadius of type

BorderRadius. BorderSide class defines color, width, and style of one side of

a border. A border’s style is defined by BorderStyle enum which has values

none and solid. A BorderSide with style BorderStyle.none won’t be rendered.

BorderRadius class defines a set of radii for each corner of a rectangle.

Chapter 6 Form Widgets

193

The radius for a corner is created using Radius class. The shape of a radius

can be circular or elliptical. Circular or elliptical radii can be created using

constructors Radius.circular(double radius) and Radius.elliptical(double x,

double y), respectively. BorderRadius has topLeft, topRight, bottomLeft, and

bottomRight properties of type Radius to represent radii of these four corners.

You can use BorderRadius.only() to specify different Radius instances for each

corner or use BorderRadius.all() to use a single Radius instance for all corners.

OutlineInputBorder class draws a rectangle around the widget.

OutlineInputBorder constructor also has parameters borderSide and

borderRadius. It also has the gapPadding parameter to specify the

horizontal padding for the label text displayed in a gap of the border.

In Listing 6-5, both TextField widgets declare borders that are rendered

when they gain focus using focusedBorder parameter.

Listing 6-5. Examples of InputDecoration

TextField(

 decoration: InputDecoration(

 enabledBorder: UnderlineInputBorder(

 borderSide: BorderSide(color: Colors.red),

 borderRadius: BorderRadius.all(Radius.elliptical(5, 10)),

),

),

)

TextField(

 decoration: InputDecoration(

 labelText: 'Username',

 focusedBorder: OutlineInputBorder(

 borderSide: BorderSide(color: Colors.blue),

 borderRadius: BorderRadius.circular(10),

Chapter 6 Form Widgets

194

 gapPadding: 2,

),

),

)

Figure 6-4 shows the screenshot of code in Listing 6-5. The second

TextField is focused, so the focused border is displayed.

Figure 6-4. Borders

 Prefix and Suffix
Prefix and suffix in a text input can provide information and actions

that are useful when editing text. Prefix and suffix can both be plain

text or widgets. When using text, you can customize the style of the text.

InputDecoration constructor has parameters prefix, prefixIcon, prefixText,

and prefixStyle to customize the prefix. It also has parameters suffix,

suffixIcon, suffixText, and suffixStyle to customize the suffix. You cannot

specify non-null values to both prefix and prefixText. This restriction also

applies to suffix and suffixText. You can only provide a widget or text, but

not both at the same time.

Listing 6-6. Example of prefix and suffix

TextField(

 decoration: InputDecoration(

 prefixIcon: Icon(Icons.monetization_on),

Chapter 6 Form Widgets

195

 prefixText: 'Pay ',

 prefixStyle: TextStyle(fontStyle: FontStyle.italic),

 suffixText: '.00',

),

)

Figure 6-5 shows the screenshot of Listing 6-6.

Figure 6-5. Prefix and suffix

Table 6-4. Different types of text

Type Text Style Description

Label labeltext labelstyle Labels are displayed above the input field.

helper helpertext helperstyle helper text are displayed below the input

field.

hint hinttext hintstyle hints are displayed in the input field when

it’s empty.

error errortext errorstyle errors are displayed below the input field.

Counter countertext counterstyle Counters are displayed below the input

field but aligned to the right.

 Text
You can add different types of text as the decorations and customize their

styles. There are five types of text shown in Table 6-4.

If errorText value is not null, the input field is set to the error state.

Chapter 6 Form Widgets

196

Listing 6-7. Example of text

TextField(

 keyboardType: TextInputType.emailAddress,

 decoration: InputDecoration(

 labelText: 'Email',

 labelStyle: TextStyle(fontWeight: FontWeight.bold),

 hintText: 'Email address for validation',

 helperText: 'For receiving validation emails',

 counterText: '10',

),

)

Figure 6-6 shows the screenshot of code in Listing 6-7.

Figure 6-6. Text of TextField

6-4. Setting Text Limits
 Problem
You want to control the length of text.

 Solution
Use maxLength parameter.

Chapter 6 Form Widgets

197

 Discussion
To set the maximum length of text in TextField and CupertinoTextField,

you can use the maxLength parameter. The default value of maxLength

parameter is null, which means there is no restriction on the number

of characters. If maxLength parameter is set, a character counter is

displayed below the text input, which shows the number of characters

entered and the number of allowed characters. If maxLength parameter

is set to TextField.noMaxLength, then only the number of characters

entered is displayed. When maxLength is set, if the characters reach

the limit, the behavior depends on the value of maxLengthEnforced

parameter. If maxLengthEnforced is true, which is the default value,

no more characters can be entered. If maxLengthEnforced is false,

additional characters can be entered, but the widget switches to the

error style.

Listing 6-8. Examples of maxLength

TextField(

 maxLength: TextField.noMaxLength,

)

TextField(

 maxLength: 10,

 maxLengthEnforced: false,

)

CupertinoTextField(

 maxLength: 10,

)

Figure 6-7 shows the screenshot of two TextField widgets in Listing 6-8.

Chapter 6 Form Widgets

198

6-5. Selecting Text
 Problem
You want to select some text in the text input.

 Solution
Use selection property of TextEditingController.

 Discussion
In Recipe 6-1, you have seen the example of using TextEditingController

to get and set the text of widgets using EditableText. TextEditingController

can also be used to get the text selection by user and select text. This

is done by getting or setting the value of selection property of type

TextSelection.

TextSelection is a subclass of TextRange. You can use TextRange.

textInside() to get the selected text. TextSelection class uses baseOffset

and extentOffset properties to represent the position which the selection

originates and terminates, respectively. The value of baseOffset may be

larger than, smaller than, or equal to extentOffset. If baseOffset equals to

Figure 6-7. Text limits

Chapter 6 Form Widgets

199

extentOffset, the selection is collapsed. Collapsed text selection contains

zero characters, but they are used to represent text insertion points.

TextSelection.collapsed() constructor can create a collapsed selection at

specified offset.

In Listing 6-9, when text selection changes, the selected text is

displayed. The first button selected the text in the range [0, 5], while thp7;e

second button moves the cursor to offset 1.

Listing 6-9. Text selection

class TextSelectionExample extends StatefulWidget {

 @override

 _TextSelectionExampleState createState() =>

_TextSelectionExampleState();

}

class _TextSelectionExampleState extends

State<TextSelectionExample> {

 TextEditingController _controller;

 String _selection;

 @override

 void initState() {

 super.initState();

 _controller = new TextEditingController();

 _controller.addListener(_handleTextSelection);

 }

 @override

 void dispose() {

 _controller.removeListener(_handleTextSelection);

 super.dispose();

 }

Chapter 6 Form Widgets

200

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 TextField(

 controller: _controller,

),

 Row(

 children: <Widget>[

 RaisedButton(

 child: Text('Select text [0, 5]'),

 onPressed: () {

 setState(() {

 _controller.selection =

 TextSelection(baseOffset: 0,

extentOffset: 5);

 });

 },

),

 RaisedButton(

 child: Text('Move cursor to offset 1'),

 onPressed: () {

 setState(() {

 _controller.selection = TextSelection.

collapsed(offset: 1);

 });

 },

),

],

),

Chapter 6 Form Widgets

201

 Text.rich(TextSpan(

 children: [

 TextSpan(

 text: 'Selected:',

 style: TextStyle(fontWeight: FontWeight.bold),

),

 TextSpan(text: _selection ?? "),

],

)),

],

);

 }

 _handleTextSelection() {

 TextSelection selection = _controller.selection;

 if (selection != null) {

 setState(() {

 _selection = selection.textInside(_controller.text);

 });

 }

 }

}

Figure 6-8 shows the screenshot of code in Listing 6-9.

Figure 6-8. Text selection

Chapter 6 Form Widgets

202

6-6. Formatting Text
 Problem
You want to format the text.

 Solution
Use TextInputFormatter with EditableText.

 Discussion
When the user is typing in a text input, you may want to validate and

format the entered text. A common requirement is to remove characters in

a blacklist. This is done by providing a list of TextInputFormatter instances

as the inputFormatters parameter of TextField and CupertinoTextField.

TextInputFormatter is an abstract class with only formatEditUpdate

(TextEditingValue oldValue, TextEditingValue newValue) to implement.

The oldValue and newValue parameters represent the previous text and

new text, respectively. The return value is another TextEditingValue

instance representing the formatted text. TextInputFormatter instances

can be chained. When chained, the value of oldValue to invoke

formatEditUpdate method is always the previous text, but the value of

newValue is the return value of invoking the formatEditUpdate method of

previous TextInputFormatter instance in the chain.

There are already three built-in implementation classes of

TextInputFormatter shown in Table 6-5. These classes are used in

implementation of TextField and CupertinoTextField. For example, when

the value of maxLines parameter is 1, BlacklistingTextInputFormatter.

singleLineFormatter is added to the list of TextInputFormatter instances to

filter out the “\n” character.

Chapter 6 Form Widgets

203

Instead of declaring new subclasses of TextInputFormatter, an easier

way is to use TextInputFormatter.withFunction() method with a function

matching the type of formatEditUpdate() method.

In Listing 6-10, the input text is formatted to use uppercase.

Listing 6-10. Format text

TextField(

 inputFormatters: [

 TextInputFormatter.withFunction((oldValue, newValue) {

 return newValue.copyWith(text: newValue.text?.

toUpperCase());

 }),

],

)

6-7. Selecting a Single Value
 Problem
You want to select a single value from a list of values.

Table 6-5. Implementations of TextInputFormatter

Name Description

LengthLimitingText

InputFormatter

Limit the number of characters can be entered.

BlacklistingText

InputFormatter

replace characters matching regular expression pattern

with given string.

WhitelistingText

InputFormatter

allow only characters matching given regular expression

pattern.

Chapter 6 Form Widgets

204

 Solution
Use a group of Radio widgets.

 Discussion
Radio buttons are commonly used for scenarios requiring single selections.

Only one radio button in a group can be selected. Radio class has a type

parameter T representing the type of values. When creating Radio instances,

you need to provide required parameters including value, groupValue, and

onChanged. A Radio widget doesn’t maintain any state. Its appearance is

purely determined by value and groupValue parameters. When the selection

of a radio group is changed, onChanged listener is invoked with the selected

value. Table 6-6 shows the named parameters of Radio constructor.

Table 6-6. Named parameters of Radio

Name Type Description

value T Value of this radio button.

groupValue T selected value of this group of radio

buttons. the radio button with groupValue is

in selected state.

onChanged ValueChanged<T> Listener function when selection changed.

activeColor Color Color when this radio button is selected.

In Listing 6-11, Fruit.allFruits variable is a list of all Fruit instances. _

selectedFruit is the currently selected Fruit instance. For each Fruit instance,

a Radio<Fruit> widget is created with the groupValue set to _selectedFruit.

Chapter 6 Form Widgets

205

Listing 6-11. Example of using Radio

class FruitChooser extends StatefulWidget {

 @override

 _FruitChooserState createState() => _FruitChooserState();

}

class _FruitChooserState extends State<FruitChooser> {

 Fruit _selectedFruit;

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Column(

 children: Fruit.allFruits.map((fruit) {

 return Row(

 children: <Widget>[

 Radio<Fruit>(

 value: fruit,

 groupValue: _selectedFruit,

 onChanged: (value) {

 setState(() {

 _selectedFruit = value;

 });

 },

),

 Expanded(

 child: Text(fruit.name),

),

],

);

 }).toList(),

Chapter 6 Form Widgets

206

),

 Text(_selectedFruit != null ? _selectedFruit.name : ")

],

);

 }

}

Figure 6-9 shows the screenshot of the example in Listing 6-11.

Figure 6-9. Radio widgets

6-8. Selecting a Single Value
from Dropdown
 Problem
You want to select a single value from a dropdown list.

 Solution
Use DropdownButton.

Chapter 6 Form Widgets

207

 Discussion
A DropdownButton widget shows a list of items when tapped.

DropdownButton class is generic with the type parameter representing

the type of values. The list of items is specified using the items parameter

of type List< DropdownMenuItem<T>>. DropdownMenuItem widget is

a simple wrapper with the value and a child widget. When the selection

is changed, the onChanged callback will be invoked with the value of

selected item. Value of the selected item is passed as value parameter.

If value is null, the hint widget is displayed instead.

In Listing 6-12, each Fruit instance is mapped to a

DropdownMenuItem widget.

Listing 6-12. Example of DropdownButton

class FruitChooser extends StatefulWidget {

 @override

 _FruitChooserState createState() => _FruitChooserState();

}

class _FruitChooserState extends State<FruitChooser> {

 Fruit _selectedFruit;

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 DropdownButton(

 value: _selectedFruit,

 items: Fruit.allFruits.map((fruit) {

 return DropdownMenuItem(

 value: fruit,

 child: Text(fruit.name),

Chapter 6 Form Widgets

208

);

 }).toList(),

 onChanged: (fruit) {

 setState(() {

 _selectedFruit = fruit;

 });

 },

 hint: Text('Select a fruit'),

),

],

);

 }

}

Figure 6-10 shows the screenshot of an expanded DropdownButton.

Figure 6-10. Expanded DropdownButton

Chapter 6 Form Widgets

209

6-9. Selecting Multiple Values
 Problem
You want to select multiple values.

 Solution
Use Checkbox widget.

 Discussion
Checkboxes are commonly used to allow multiple selections. A checkbox

can display three values, true, false, and null, if this checkbox is created

with parameter tristate set to true. Otherwise, only values true and false

are allowed. If the value is null, a dash is displayed. A checkbox itself

doesn’t maintain any state. Its appearance is purely determined by the

value parameter. When the value of a checkbox is changed, the onChanged

callback is invoked with the value of the new state.

In Listing 6-13, selected fruits are maintained in a List<Fruit> instance.

Each Fruit instance is mapped to a Checkbox widget. The value of a Checkbox

depends on whether corresponding Fruit instance is in the _selectedFruits list.

Listing 6-13. Example of Checkbox

class FruitSelector extends StatefulWidget {

 @override

 _FruitSelectorState createState() => _FruitSelectorState();

}

class _FruitSelectorState extends State<FruitSelector> {

 List<Fruit> _selectedFruits = List();

 @override

 Widget build(BuildContext context) {

Chapter 6 Form Widgets

210

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Column(

 children: Fruit.allFruits.map((fruit) {

 return Row(

 children: <Widget>[

 Checkbox(

 value: _selectedFruits.contains(fruit),

 onChanged: (selected) {

 setState(() {

 if (selected) {

 _selectedFruits.add(fruit);

 } else {

 _selectedFruits.remove(fruit);

 }

 });

 },

),

 Expanded(

 child: Text(fruit.name),

)

],

);

 }).toList(),

),

 Text(_selectedFruits.join(', ')),

],

);

 }

}

Chapter 6 Form Widgets

211

6-10. Toggling On/Off State
 Problem
You want to toggle the on/off state.

 Solution
Use Switch for Material Design and CupertinoSwitch for iOS style.

 Discussion
Switch is a commonly used UI control to toggle the on/off state of a setting.

Switch widget is used for Material Design. A Switch widget can be in two

states, active and inactive. A Switch widget itself doesn’t maintain any

state. Its behavior and appearance are purely determined by values of

constructor parameters. If the value parameter is true, then Switch widget

is in active state; otherwise, it’s in inactive state. When the on/off state of

Figure 6-11. Checkbox

Figure 6-10 shows the screenshot of the example in Listing 6-13.

Chapter 6 Form Widgets

212

a Switch widget is changed, the onChanged callback is invoked with the

new state to be. You can customize the appearance of a Switch widget

in different states using parameters activeColor, activeThumbImage,

activeTrackColor, inactiveThumbColor, inactiveThumbImage, and

inactiveTrackColor.

In Listing 6-14, the Switch widget is used to control the state of another

TextField widget.

Listing 6-14. Example of Switch

class NameInput extends StatefulWidget {

 @override

 _NameInputState createState() => _NameInputState();

}

class _NameInputState extends State<NameInput> {

 bool _useCustomName = false;

 _buildNameInput() {

 return TextField(

 decoration: InputDecoration(labelText: 'Name'),

);

 }

 _buildToggle() {

 return Row(

 children: <Widget>[

 Switch(

 value: _useCustomName,

 onChanged: (value) {

 setState(() {

 _useCustomName = value;

 });

 },

Chapter 6 Form Widgets

213

 activeColor: Colors.green,

 inactiveThumbColor: Colors.grey.shade200,

),

 Expanded(

 child: Text('Use custom name'),

),

],

);

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: _useCustomName

 ? [_buildToggle(), _buildNameInput()]

 : [_buildToggle()],

);

 }

}

Figure 6-12 shows the screenshot of example in Listing 6-14.

Figure 6-12. Switch

Chapter 6 Form Widgets

214

CupertinoSwitch widget creates an iOS-style switch and it works the

same way as Switch, but it only supports customization of the active color.

Switch widget has the constructor Switch.adaptive() to create either a

Switch widget or CupertinoSwitch widget depends on the target platform.

When a CupertinoSwitch widget is created using Switch.adaptive(), only

constructor parameters accepted by CupertinoSwitch() are used; other

parameters are ignored.

Listing 6-15 shows examples of using CupertinoSwitch and Switch.

adaptive().

Listing 6-15. Example of CupertinoSwitch

CupertinoSwitch(

 value: true,

 onChanged: (value) => {},

 activeColor: Colors.red.shade300,

)

Switch.adaptive(

 value: true,

 onChanged: (value) => {},

)

6-11. Selecting from a Range of Values
 Problem
You want to select from a range of continuous or a discrete set of values.

 Solution
Use Slider for Material Design or CupertinoSlider for iOS style.

Chapter 6 Form Widgets

215

 Discussion
A slider is commonly used to select from a range of continuous or a

discrete set of values. You can use Slider widget for Material Design or

CupertinoSlider for iOS style. These two widgets have the same behavior

but different visual appearance. When creating sliders, you need to provide

a valid range of the values using min and max parameters. If non-null value

is used for divisions parameter, a set of discrete values will be the selections.

Otherwise, a continuous range of values will be the selections. For example,

if value in min is 0.0 and max is 10.0, with the divisions set to 5, then values

of selections are 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0. A slider widget doesn’t

maintain any state. Its behavior and appearance are purely determined

by constructor parameters. When the value of a slider is changed, the

onChanged callback is invoked with the selected value. You can also use

onChangeStart and onChangeEnd callbacks to get notifications when the

value starts to change and it’s done changing, respectively. You can further

customize a slider’s appearance using label, activeColor, and inactiveColor.

Only activeColor parameter is supported by CupertinoSlider. The slider

widget will be disabled if onChanged is null or if the range is empty.

In Listing 6-16, a Slider widget is created with the given value of

divisions parameter and shows the current value.

Listing 6-16. Example of Slider

class SliderValue extends StatefulWidget {

 SliderValue({Key key, this.divisions}) : super(key: key);

 final int divisions;

 @override

 _SliderValueState createState() =>

_SliderValueState(divisions);

}

Chapter 6 Form Widgets

216

class _SliderValueState extends State<SliderValue> {

 _SliderValueState(this.divisions);

 final int divisions;

 double _value = 0.0;

 @override

 Widget build(BuildContext context) {

 return Row(

 children: <Widget>[

 Expanded(

 child: Slider(

 value: _value,

 min: 0.0,

 max: 10.0,

 divisions: divisions,

 onChanged: (value) {

 setState(() {

 _value = value;

 });

 },

),

),

 Text(_value.toStringAsFixed(2)),

],

);

 }

}

The usage of CupertinoSlider is similar with Slider. You can simply

replace Slider with CupertinoSlider in Listing 6-16. Figure 6-13 shows

screenshot of Slider and CupertinoSlider.

Chapter 6 Form Widgets

217

6-12. Using Chips
 Problem
You want to have compact alternatives to represent different types of entities.

 Solution
Use different types of Chips.

 Discussion
When space is limited, traditional widget like buttons, radio buttons, and

checkboxes may not be suitable. Chips in Material Design can be used in

this case to represent the same semantic but use less space.

Chip widget is the generic chip implementation that has a required

label and an optional avatar. It can also include a delete button when

setting a non-null onDeleted callback.

InputChip widget is more powerful than Chip widget. An InputChip

widget can be selectable by setting the onSelected callback and pressable

by setting the onPressed callback. However, you cannot set non-null values

Figure 6-13. Slider and CupertinoSlider

Chapter 6 Form Widgets

218

to both onSelected and onPressed callbacks. When using onSelected,

an InputChip widget behaves like a checkbox. You can use the selected

parameter to set the state. When using onPressed, an InputChip widget

behaves like a button.

A ChoiceChip widget behaves like a radio button with selected

parameter to set its state and onSelected callback to notify state changes.

However, ChoiceChip widget doesn’t have a parameter similar with

groupValue in Radio widget, so you have to set the selected state manually.

A FilterChip widget behaves like a checkbox. FilterChip constructor

has the same parameters as ChoiceChip constructor.

An ActionChip widget behaves like a button with the onPressed

parameter. The difference between action chips and buttons is that action

chips cannot be disabled by setting onPressed parameter to null. Action

chips should be removed if their actions are not applicable. This behavior

is consistent with the goal to using chips for reducing space.

In fact, all these chip widgets wrap RawChip widgets by using only a

subset of parameters supported by RawChip constructor.

In Listing 6-17, ChoiceChip widget is used to implement single

selection.

Listing 6-17. Example of ChoiceChip

class FruitChooser extends StatefulWidget {

 @override

 _FruitChooserState createState() => _FruitChooserState();

}

class _FruitChooserState extends State<FruitChooser> {

 Fruit _selectedFruit;

 @override

 Widget build(BuildContext context) {

Chapter 6 Form Widgets

219

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Wrap(

 spacing: 5,

 children: Fruit.allFruits.map((fruit) {

 return ChoiceChip(

 label: Text(fruit.name),

 selected: _selectedFruit == fruit,

 onSelected: (selected) {

 setState(() {

 _selectedFruit = selected ? fruit : null;

 });

 },

 selectedColor: Colors.red.shade200,

);

 }).toList(),

),

 Text(_selectedFruit != null ? _selectedFruit.name : ")

],

);

 }

}

In Listing 6-18, FilterChip widget is used to implement multiple

selections.

Listing 6-18. Example of FilterChip

class FruitSelector extends StatefulWidget {

 @override

 _FruitSelectorState createState() => _FruitSelectorState();

}

Chapter 6 Form Widgets

220

class _FruitSelectorState extends State<FruitSelector> {

 List<Fruit> _selectedFruits = List();

 @override

 Widget build(BuildContext context) {

 return Column(

 crossAxisAlignment: CrossAxisAlignment.start,

 children: <Widget>[

 Wrap(

 spacing: 5,

 children: Fruit.allFruits.map((fruit) {

 return FilterChip(

 label: Text(fruit.name),

 selected: _selectedFruits.contains(fruit),

 onSelected: (selected) {

 setState(() {

 if (selected) {

 _selectedFruits.add(fruit);

 } else {

 _selectedFruits.remove(fruit);

 }

 });

 },

 selectedColor: Colors.blue.shade200,

);

 }).toList(),

),

 Text(_selectedFruits.join(', ')),

],

);

 }

}

Chapter 6 Form Widgets

221

Figure 6-14 shows the screenshot of examples in Listings 6-17 and 6- 18.

Figure 6-14. ChoiceChip and FilterChip

6-13. Selecting Date and Time
 Problem
You want to select date and time.

 Solution
Use showDatePicker() and showTimePicker() functions for Material

Design or CupertinoDatePicker and CupertinoTimerPicker for iOS style.

 Discussion
For Material Design, you can use widgets like YearPicker, MonthPicker, and

DayPicker or showDatePicker() function to allow user to pick dates. The

showTimePicker() function is used to pick times. Widgets are rarely used

to pick dates. Most of the time, showDatePicker() and showTimePicker()

functions are used to show dialogs.

YearPicker widget shows a list of years to pick. When creating

YearPicker widgets, you need to provide DateTime instances for selected

date, earliest date, and latest date using selectedDate, firstDate, and

Chapter 6 Form Widgets

222

lastDate parameters, respectively. When the selection is changed, the

onChanged callback is invoked with the selected DateTime instance.

MonthPicker widget shows a list of months to pick. MonthPicker

constructor has the same parameters selectedDate, firstDate, lastDate,

and onChanged as YearPicker. It also has a predicate function

selectableDayPredicate to customize which days are selectable.

DayPicker widget shows the days of a given month to pick.

DayPicker constructor has all the parameters of MonthPicker and the

displayedMonth parameter to set the month to pick for days.

If you want to show a dialog for user to select dates, showDatePicker()

function is easier to use than creating your own dialogs. You need to

pass DateTime instances for parameters initialDate, firstDate, and

lastDate. The context parameter of type BuildContext is also required.

This function can work in two modes defined in the DatePickerMode

enum. DatePickerMode.day means choosing a month a day, while

DatePickerMode.year means choosing a year. The return value of

showDatePicker() function is a Future<DateTime> representing the

selected date.

In Listing 6-19, the TextField widget has an IconButton as the suffix.

When the button is pressed, showDatePicker() function is invoked to

show the date picker dialog. The selected date is displayed in the TextField

widget.

Listing 6-19. Pick date

class PickDate extends StatefulWidget {

 @override

 _PickDateState createState() => _PickDateState();

}

class _PickDateState extends State<PickDate> {

 DateTime _selectedDate = DateTime.now();

 TextEditingController _controller = TextEditingController();

Chapter 6 Form Widgets

223

 @override

 Widget build(BuildContext context) {

 return TextField(

 controller: _controller,

 decoration: InputDecoration(

 labelText: 'Date',

 suffix: IconButton(

 icon: Icon(Icons.date_range),

 onPressed: () {

 showDatePicker(

 context: context,

 initialDate: _selectedDate,

 firstDate: DateTime.now().subtract(Duration(days:

30)),

 lastDate: DateTime.now().add(Duration(days: 30)),)

 .then((selectedDate) {

 if (selectedDate != null) {

 _selectedDate = selectedDate;

 controller.text = DateFormat.yMd().format(

selectedDate);

 }

 });

 },

),

),

);

 }

}

The showTimePicker() function shows a dialog to pick times. You need

to pass the initialTime parameter of type TimeOfDay as the initial time to

show. The return value is a Future<TimeOfDay> instance representing the

Chapter 6 Form Widgets

224

selected time. The code in Listing 6-20 uses the similar pattern as Listing

6-19 to show the time picker dialog.

Listing 6-20. Pick time

class PickTime extends StatefulWidget {

 @override

 _PickTimeState createState() => _PickTimeState();

}

class _PickTimeState extends State<PickTime> {

 TimeOfDay _selectedTime = TimeOfDay.now();

 TextEditingController _controller = TextEditingController();

 @override

 Widget build(BuildContext context) {

 return TextField(

 controller: _controller,

 decoration: InputDecoration(

 labelText: 'Time',

 suffix: IconButton(

 icon: Icon(Icons.access_time),

 onPressed: () {

 showTimePicker(

 context: context,

 initialTime: _selectedTime,

).then((selectedTime) {

 if (selectedTime != null) {

 _selectedTime = selectedTime;

 _controller.text = _selectedTime.

format(context);

 }

 });

Chapter 6 Form Widgets

225

 },

)),

);

 }

}

For iOS style, you can use CupertinoDatePicker and

CupertinoTimerPicker widgets to pick date and time, respectively. A

CupertinoDatePicker can have different modes based on the mode

parameter of enum CupertinoDatePickerMode, including date, time, and

dateAndTime. Similar to widgets in Material Design, CupertinoDatePicker

constructor has parameters initialDateTime, minimumDate, maximumDate,

and onDateTimeChanged. A CupertinoTimerPicker can also have different

modes based on the mode parameter of enum CupertinoTimerPickerMode,

including hm, ms, and hms. The difference is that CupertinoTimerPicker

uses Duration instances to set the initial value and as the value in

onTimerDurationChanged callback.

6-14. Wrapping Form Fields
 Problem
You want to wrap form widgets as form fields.

 Solution
Use FormField or TextFormField.

 Discussion
Form widgets can be used as normal widgets. However, these form widgets

don’t maintain any state; you always need to wrap them in stateful widgets

to keep the state. A typical usage pattern is to use the onChanged callback

Chapter 6 Form Widgets

226

to update the state and trigger the rebuild of the form widget. Since this

is a typical pattern of using form widgets, Flutter has a built-in FormField

widget to maintain the current state of a form widget. It handles the

updates and validation errors.

FormField class is generic with type parameter T representing the type

of value. A FormField can be used as a standalone widget or be part of a

Form widget. This recipe only discusses the standalone usage. Table 6-7

shows the named parameters of FormField constructor.

Table 6-7. Named parameters of FormField

Name Type Description

builder FormFieldBuilder<T> Build the widget representing this

form field.

onSaved FormFieldSetter<T> Callback when the form is saved.

validator FormFieldValidator<T> Validator of the form field.

initialValue T initial value.

autovalidate boolean Whether to validate automatically

after every change.

enabled boolean Whether this form field is enabled.

FormFieldBuilder<T> type is a typedef in the form of Widget

(FormFieldState<T> field). FormFieldState<T> class extends from State

class and represents the current state of the form field. FormFieldBuilder

is responsible for building the widget based on the state. From

FormFieldState, you can get the current value and error text of the

form field. You can also use methods of FormFieldState in Table 6-8.

FormFieldValidator<T> is also a typedef in the form of String(T value).

It takes the current value as the input and returns a non-null string as the

error message if the validation fails. FormFieldSetter<T> type is a typedef

in the form of void(T newValue).

Chapter 6 Form Widgets

227

When wrapping TextFields inside of FormFields, it’s better to use the

built-in TextFormField. TextFormField widget already handles setting

text using TextEditingController and using the error text returned by

FormFieldValidator to update the input decoration. TextFormField

constructor supports parameters from TextField and FormField constructors.

TextFormField in Listing 6-21 has a validator to validate text length.

Listing 6-21. TextFormField

class NameInput extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return TextFormField(

 decoration: InputDecoration(

 labelText: 'Name',

),

 validator: (value) {

 if (value == null || value.isEmpty) {

 return 'Name is required.';

 } else if (value.length < 6) {

 return 'Minimum length is 6.';

Table 6-8. Methods in FormFieldState

Name Description

save() Call the onsaved() method with the current value.

validate() Call the validator and set the errortext if validation fails.

didChange(T

value)

Update the field’s state to the new value.

reset() reset the field to its initial value.

Chapter 6 Form Widgets

228

 } else {

 return null;

 }

 },

 autovalidate: true,

);

 }

}

Figure 6-15 shows the screenshot of code in Listing 6-21.

Figure 6-15. TextFormField

FormFieldState instances are only accessible in the builder function of

FormField. If you need to access the state from other places, you can pass

a GlobalKey as the key parameter of FormField, then use the currentState

property to access the current state.

In Listing 6-22, the state of FormField is a List<PizzaTopping> instance.

With the GlobalKey, the current value can be retrieved when the button is

pressed.

Listing 6-22. FormField

class PizzaToppingsSelector extends StatelessWidget {

 final GlobalKey<FormFieldState<List<PizzaTopping>>>

_formFieldKey =

 GlobalKey();

Chapter 6 Form Widgets

229

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 FormField<List<PizzaTopping>>(

 key: _formFieldKey,

 initialValue: List(),

 builder: (state) {

 return Wrap(

 spacing: 5,

 children: PizzaTopping.allPizzaToppings.

map((topping) {

 return ChoiceChip(

 label: Text(topping.name),

 selected: state.value.contains(topping),

 onSelected: state.value.length < 2 ||

 state.value.contains(topping)

 ? (selected) {

 List<PizzaTopping> newValue = List.

of(state.value);

 if (selected) {

 newValue.add(topping);

 } else {

 newValue.remove(topping);

 }

 state.didChange(newValue);

 }

 : null,

);

 }).toList(),

);

Chapter 6 Form Widgets

230

 },

),

 RaisedButton(

 child: Text('Get toppings'),

 onPressed: () => print(_formFieldKey.currentState?.

value),

),

],

);

 }

}

6-15. Creating Forms
 Problem
You want to create a form with multiple form fields.

 Solution
Use Form.

 Discussion
When using form fields, generally you’re trying to build a form with

multiple form fields. Managing form fields separately is a tedious task

when dealing with multiple form fields. Form is a convenient wrapper for

multiple form fields. You need to wrap all form fields in FormField widgets

and use a Form widget as the common ancestor of all these FormField

widgets. Form widget is a stateful widget with state managed by associated

FormState instance. FormState class has methods save(), validate(), and

Chapter 6 Form Widgets

231

reset(). These methods call corresponding functions on all FormFieldState

instances of descendant FormField widgets.

There are two ways to get the FormState instance depends on the

location of the widget wants to use FormState. If the widget is a descendant

of the Form widget, using Form.of(BuildContext context) is an easy way

to get the closest FormState instance. The second way is to use GlobalKey

instance when creating the Form widget, then use GlobalKey.currentState

to get the FormState.

Listing 6-23 shows the code of a login form. Two TextFormField

widgets are created with GlobalKey instances.

Listing 6-23. Login form

class LoginForm extends StatefulWidget {

 @override

 _LoginFormState createState() => _LoginFormState();

}

class _LoginFormState extends State<LoginForm> {

 final GlobalKey<FormFieldState<String>> _usernameFormFieldKey

= GlobalKey();

 final GlobalKey<FormFieldState<String>> _passwordFormFieldKey

= GlobalKey();

 _notEmpty(String value) => value != null && value.isNotEmpty;

 get _value => ({

 'username': _usernameFormFieldKey.currentState?.value,

 'password': _passwordFormFieldKey.currentState?.value

 });

 @override

 Widget build(BuildContext context) {

 return Form(

Chapter 6 Form Widgets

232

 child: Column(

 children: <Widget>[

 TextFormField(

 key: _usernameFormFieldKey,

 decoration: InputDecoration(

 labelText: 'Username',

),

 validator: (value) =>

 !_notEmpty(value) ? 'Username is required' :

null,

),

 TextFormField(

 key: _passwordFormFieldKey,

 obscureText: true,

 decoration: InputDecoration(

 labelText: 'Password',

),

 validator: (value) =>

 !_notEmpty(value) ? 'Password is required' :

null,

),

 Builder(builder: (context) {

 return Row(

 mainAxisAlignment: MainAxisAlignment.end,

 children: <Widget>[

 RaisedButton(

 child: Text('Log In'),

 onPressed: () {

 if (Form.of(context).validate()) {

 print(_value);

 }

Chapter 6 Form Widgets

233

 },

),

 FlatButton(

 child: Text('Reset'),

 onPressed: () => Form.of(context).reset(),

)

],

);

 }),

],

),

);

 }

}

Figure 6-16 shows the screenshot of the login form.

Figure 6-16. Login form

Chapter 6 Form Widgets

234

6-16. Summary
Form widgets are important to interact with user. This chapter covers

form widgets for Material Design and iOS style, including text input, radio

button, checkbox, dropdown, switch, chip, and slider. In the next chapter,

we’ll discuss widgets for application scaffolding.

Chapter 6 Form Widgets

235© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_7

CHAPTER 7

Common Widgets
In Flutter apps, some widgets are widely used for different purposes. This

chapter discusses some common widgets.

7-1. Displaying a List of Items
 Problem
You want to display a scrollable list of items.

 Solution
Use ListView widget as the container of items.

 Discussion
Flutter layout widgets like Flex, Row, and Column don’t support scrolling,

and these widgets are not designed to be used to display items when

scrolling is required. If you want to display a large number of items, you

should use ListView widget. You can think ListView as the scrollable

counterpart of Flex widget.

236

There are three different ways to create ListView widgets using

different constructors:

• Create from a static list of children widgets.

• Create by building children on demand based on the

scrolling position.

• Create a custom implementation.

• This recipe focuses on the first two ways.

 ListView with Static Children
If you have a static list of children that may exceed the size of their parent

widget, you can wrap them in a ListView widget to enable scrolling. This is

done by invoking the ListView() constructor with the children parameter of

type Widget[]. The scrolling direction is determined by the scrollDirection

parameter of type Axis. The default scroll direction is Axis.vertical. If you

want to display the children in a reverse order, you can set the reverse

parameter to true. Listing 7-1 shows a ListView widget with three children.

Listing 7-1. ListView with static children

ListView(

 children: <Widget>[

 ExampleWidget(name: 'Box 1'),

 ExampleWidget(name: 'Box 2'),

 ExampleWidget(name: 'Box 3'),

],

)

The default ListView() constructor should only be used when you have

a small number of children. All children will be created, even though some

of them are not visible in the viewport. This is likely to have performance

impact.

Chapter 7 Common Widgets

237

 ListView with Item Builders
If you have a large number of items or items need to be dynamically

created, you can use ListView.builder() and ListView.separated()

constructors. Instead of a static list of widgets, you need to provide builder

functions of type IndexedWidgetBuilder to build items on demand.

IndexedWidgetBuilder is typedef of Widget (BuildContext context, int

index). The index parameter is the index of the item to build. ListView

widget determines the indices of items in the viewport and invokes the

builder function to build the items to render. If the total number of items

is known, you should pass this number as the itemCount parameter. If

itemCount is non-null, the builder function will only be invoked with

indices greater than or equal to zero and less than itemCount. If itemCount

is null, the builder function needs to return null to indicate that no more

items are available.

When using ListView.builder() constructor, you only need to

provide the itemBuilder parameter of type IndexedWidgetBuilder. For

ListView.separated() constructor, apart from the itemBuilder parameter,

you also need to provide the separatorBuilder parameter of type

IndexedWidgetBuilder to build the separators between items. When using

ListView.separated(), the itemCount parameter is required. Listing 7-2

shows examples of using ListView.builder() and ListView.separated().

Listing 7-2. ListView with item builders

ListView.builder(

 itemCount: 20,

 itemBuilder: (context, index) {

 return ExampleWidget(name: 'Dynamic Box ${index + 1}');

 },

);

Chapter 7 Common Widgets

238

ListView.separated(

 itemBuilder: (context, index) {

 return ExampleWidget(name: 'Separated Box ${index + 1}');

 },

 separatorBuilder: (context, index) {

 return Divider(

 height: 8,

);

 },

 itemCount: 20,

);

If the extent of an item in the scroll direction is known, you should

pass this value as the itemExtent parameter. Non-null values of itemExtent

parameter make the scrolling more efficient.

 ListTile
You can use any widget as child of ListView. If you the item to include

text, icon, and other control, you can use ListTile and its subclasses.

A list tile contains one to three lines of text and leading and trailing

widgets surrounding the text. Table 7-1 shows

Chapter 7 Common Widgets

239

Listing 7-3 shows an example of using ListTile.

Listing 7-3. Example of ListTile

ListTile(

 title: Text('Title'),

 subtitle: Text('Description'),

 leading: Icon(Icons.shop),

 trailing: Icon(Icons.arrow_right),

)

Table 7-1. Parameters of ListTile

Name Type Description

title Widget title of the list tile.

subtitle Widget optional content displayed below the

title.

isthreeLine bool Whether the list tile may have three

lines of text.

leading Widget Widget displayed before the title.

trailing Widget Widget displayed after the title.

enabled bool Whether the list tile is enabled.

selected bool Whether the list tile is selected. When

selected, icons and text are rendered

with the same color.

ontap gesturetapCallback Callback when the title is tapped.

onLongpress gestureLongpressCallback Callback when the title is long pressed.

dense bool When true, the size of the tile is

reduced.

contentpadding edgeinsetsgeometry padding inside of the tile.

Chapter 7 Common Widgets

240

If you want to have a checkbox in a list tile, you can use

CheckboxListTile widget which combines ListTile and Checkbox.

CheckboxListTile constructor has the same parameters title, subtitle,

isThreeLine, selected, and dense as ListTile constructor. It also has

parameters value, onChanged, and activeColor used for Checkbox

constructor.

Table 7-2. Parameters of CheckboxListTile

Name Type Description

secondary Widget Widget displayed on the opposite side of

the tile.

controlaffinity ListtileControlaffinity Where to place the control in the tile.

ListTileControlAffinity enum defines the position of control in the list

tile. It has three values, leading, trailing, and platform. When the position

of control is specified, the secondary widget is always placed on the

opposite side.

Listing 7-4. Example of CheckboxListTile

class CheckboxInListTile extends StatefulWidget {

 @override

 _CheckboxInListTileState createState() => _

CheckboxInListTileState();

}

class _CheckboxInListTileState extends

State<CheckboxInListTile> {

 bool _value = false;

 @override

 Widget build(BuildContext context) {

 return CheckboxListTile(

Chapter 7 Common Widgets

241

 title: Text('Checkbox'),

 subtitle: Text('Description'),

 value: _value,

 onChanged: (value) {

 setState(() {

 _value = value;

 });

 },

 secondary: Icon(_value ? Icons.monetization_on : Icons.

money_off),

);

 }

}

If you want to add a radio button in a list tile, you can use

RadioListTile<T> widget. For the parameters of RadioListTile constructor,

value, groupValue, onChanged, and activeColor have the same

meaning as in Radio constructor; title, subtitle, isThreeLine, dense,

secondary, selected, and controlAffinity have the same meaning as in

CheckboxListTile constructor. Listing 7-5 shows an example of using

RadioListTile.

Listing 7-5. Example of RadioListTile

enum CustomColor { red, green, blue }

class RadioInListTile extends StatefulWidget {

 @override

 _RadioInListTileState createState() => _

RadioInListTileState();

}

Chapter 7 Common Widgets

242

class _RadioInListTileState extends State<RadioInListTile> {

 CustomColor _selectedColor;

 @override

 Widget build(BuildContext context) {

 return Column(

 children: CustomColor.values.map((color) {

 return RadioListTile<CustomColor>(

 title: Text(color.toString()),

 value: color,

 groupValue: _selectedColor,

 onChanged: (value) {

 setState(() {

 _selectedColor = value;

 });

 },

);

 }).toList(),

);

 }

}

If you want to add switch to a list tile, you can use SwitchListTile. Some

parameters of SwitchListTile constructor come from Switch constructor,

while other parameters come from ListTile constructor. Listing 7-6 shows

an example of using SwitchListTile.

Listing 7-6. Example of SwitchListTile

class SwitchInListTile extends StatefulWidget {

 @override

 _SwitchInListTileState createState() => _

SwitchInListTileState();

}

Chapter 7 Common Widgets

243

class _SwitchInListTileState extends State<SwitchInListTile> {

 bool _value = false;

 @override

 Widget build(BuildContext context) {

 return SwitchListTile(

 title: Text('Switch'),

 subtitle: Text('Description'),

 value: _value,

 onChanged: (value) {

 setState(() {

 _value = value;

 });

 },

);

 }

}

Figure 7-1 shows the screenshot of different ListTiles.

Chapter 7 Common Widgets

244

7-2. Displaying Items in a Grid
 Problem
You want to display items in a grid.

 Solution
Use GridView.

 Discussion
ListView widget displays items in a linear array. To display widgets

in a two-dimensional array, you can use GridView. The actual

layout of children of GridView is delegated to an implementation of

SliverGridDelegate. Flutter provides two built-in implementations of

Figure 7-1. ListTiles

Chapter 7 Common Widgets

245

SliverGridDelegate, SliverGridDelegateWithFixedCrossAxisCount and

SliverGridDelegateWithMaxCrossAxisExtent. You can also create your own

implementations of SliverGridDelegate.

There are three ways to provide the children of the GridView.

You can provide a static list of widgets, or use builder function

of type IndexedWidgetBuilder, or provide an implementation of

SliverChildDelegate.

Depending on the choice of SliverGridDelegate and providing

children, you can use different GridView constructors. Table 7-3 shows the

usage of different constructors.

Table 7-3. GridView constructors

Name Delegate Children

gridView() slivergriddelegate Widget[]

gridView.builder() slivergriddelegate indexedWidgetBuilder

gridView.count() slivergriddelegateWithFixedCross

axisCount

Widget[]

gridView.extent() slivergriddelegateWithmaxCross

axisextent

Widget[]

gridView.custom() slivergriddelegate sliverChilddelegate

SliverGridDelegateWithFixedCrossAxisCount class uses the

crossAxisCount parameter to specify the fixed number of tiles in the

cross axis. For example, if the scroll direction of GridView is vertical, the

crossAxisCount parameter specifies the number of columns. Listing 7-7

shows an example of using GridView.count() to create a grid with three

columns.

Chapter 7 Common Widgets

246

Listing 7-7. Example of using Gridview.count()

GridView.count(

 crossAxisCount: 3,

 children: List.generate(10, (index) {

 return ExampleWidget(

 name: 'Fixed Count ${index + 1}',

);

 }),

);

SliverGridDelegateWithMaxCrossAxisExtent class uses the

maxCrossAxisExtent parameter to specify the maximum extent in the

cross axis. The actual cross-axis extent for tiles will be as large as possible

to evenly divide the cross-axis extent of the GridView and won’t exceed

the specified maximum value. For example, if the cross-axis extent of the

GridView is 400 and the value of maxCrossAxisExtent is 120, then the

cross-axis extent for tiles is 100. If the GridView’s scroll direction is vertical,

it will have four columns. Listing 7-8 shows an example of using GridView.

extent().

Listing 7-8. Example of using GridView.extent()

GridView.extent(

 maxCrossAxisExtent: 250,

 children: List.generate(10, (index) {

 return ExampleWidget(

 name: 'Max Extent ${index + 1}',

);

 }),

);

To use a builder function to create children, you need to use GridView.

builder() constructor with a SliverGridDelegate implementation.

Chapter 7 Common Widgets

247

Listing 7-9 shows an example of using GridView.builder() with

SliverGridDelegateWithFixedCrossAxisCount.

Listing 7-9. Example of using GridView.builder()

GridView.builder(

 itemCount: 32,

 gridDelegate:

 SliverGridDelegateWithFixedCrossAxisCount

(crossAxisCount: 3),

 itemBuilder: (context, index) {

 return ExampleWidget(

 name: 'Builder ${index + 1}',

);

 },

);

Both SliverGridDelegateWithFixedCrossAxisCount and

SliverGridDelegateWithMaxCrossAxisExtent classes have other named

parameters to configure the layout; see Table 7-4.

Table 7-4. Parameters of built-in SliverGridDelegate

implementations

Name Type Description

mainaxisspacing double spacing of tiles along the main axis.

crossaxisspacing double spacing of tiles along the cross axis.

childaspectratio double ratio of cross-axis to main-axis extent for the tiles.

When using these two SliverGridDelegate implementations, the

cross-axis extent of each tile is determined first, then the main-axis extent

is determined by the childAspectRatio parameter. If GridView is used

Chapter 7 Common Widgets

248

to display images with desired aspect ratio, you can use the same ratio

as the value of childAspectRatio parameter. Both GridView.count() and

GridView.extent() constructors have the same named parameters in

Table 7-4 to pass these parameters to the underlying SliverGridDelegate

implementations. Listing 7-10 shows an example of using childAspectRatio

parameter when displaying images.

Listing 7-10. Using childAspectRatio parameter

GridView.count(

 crossAxisCount: 3,

 childAspectRatio: 4 / 3,

 children: List.generate(10, (index) {

 return Image.network('https://picsum.photos/400/300');

 }),

);

Just like using ListTiles in ListView, you can also use GridTiles in

GridView. A grid tile has a required child widget and optional header

and footer widgets. For header and footer of grid tiles, it’s typical to use

the GridTileBar widget. GridTileBar is similar with ListTile. GridTileBar

constructor has parameters title, subtitle, leading, trailing, and

backgroundColor.

Listing 7-11. Example of GridTile and GridTileBar

GridView.count(

 crossAxisCount: 2,

 children: <Widget>[

 GridTile(

 child: ExampleWidget(name: 'Simple'),

),

 GridTile(

Chapter 7 Common Widgets

249

 child: ExampleWidget(name: 'Header & Footer'),

 header: GridTileBar(

 title: Text('Header'),

 backgroundColor: Colors.red,

),

 footer: GridTileBar(

 title: Text('Footer'),

 subtitle: Text('Description'),

 backgroundColor: Colors.blue,

),

)

],

);

Figure 7-2 shows the screenshot of code in Listing 7-11.

Simple

Header

Header & Footer

Footer
Description

Figure 7-2. GridTile and GridTileBar

Chapter 7 Common Widgets

250

7-3. Displaying Tabular Data
 Problem
You want to display tabular data or use table layout for children.

 Solution
Use Table widget.

 Discussion
If you want to display tabular data, using data tables is a natural choice.

Tables can also be used for layout purpose to organize children. For these

two usage scenarios, you can use the Table widget.

A Table widget may have multiple rows. A table row is represented with

TableRow widget. Table widget constructor has the children parameter of

type List<TableRow> to provide the list of rows. TableRow constructor also

has the children parameter of type List<Widget> to provide the list of cells

in this row. Every row in a table must have the same number of children.

The border of a table is defined using TableBorder class. TableBorder is

similar with Border, but TableBorder has two extra sides:

• horizontalInside – The inner horizontal borders

between rows

• verticalInside – The inner vertical borders between

columns

Listing 7-12 shows an example of a simple table with three rows and

four columns.

Chapter 7 Common Widgets

251

Listing 7-12. Simple table

Table(

 border: TableBorder.all(color: Colors.red.shade200),

 children: [

 TableRow(children: [Text('A'), Text('B'), Text('C'),

Text('D')]),

 TableRow(children: [Text('E'), Text('F'), Text('G'),

Text('H')]),

 TableRow(children: [Text('I'), Text('J'), Text('K'),

Text('L')]),

],

);

Width of columns in a table is configured by TableColumnWidth

implementations. The columnWidths parameter of type Map<int,

TableColumnWidth> defines the mapping between column index

and its TableColumnWidth implementation. Table 7-5 shows built-

in TableColumnWidth implementations. MinColumnWidth and

MaxColumnWidth classes combine other TableColumnWidth

implementations. If no TableColumnWidth implementation is found

for a column, the defaultColumnWidth parameter is used to get the

default TableColumnWidth implementation. The default value of

defaultColumnWidth is FlexColumnWidth(1.0), which means all columns

share the same width.

Chapter 7 Common Widgets

252

Listing 7-13 shows an example of a table with different column width.

Listing 7-13. Table with different column width

Table(

 border: TableBorder.all(color: Colors.blue.shade200),

 columnWidths: {

 0: FixedColumnWidth(100),

 1: FlexColumnWidth(1),

 2: FlexColumnWidth(2),

 3: FractionColumnWidth(0.2),

 },

 children: [

 TableRow(children: [Text('A'), Text('B'), Text('C'),

Text('D')]),

Table 7-5. TableColumnWidth implementations

Name Performance Description

FixedColumnWidth high Use fixed number of pixels as the column

width.

FlexColumnWidth medium Use flex factor to divide remaining space

once all the other non-flexible columns have

been sized.

FractionColumnWidth medium Use a fraction of the table’s max width as the

column width.

intrinsicColumnWidth Low Use the intrinsic dimensions of all cells in a

column to determine the column width.

minColumnWidth minimum of two tableColumnWidth objects.

maxColumnWidth maximum of two tableColumnWidth objects.

Chapter 7 Common Widgets

253

 TableRow(children: [Text('E'), Text('F'), Text('G'),

Text('H')]),

 TableRow(children: [Text('I'), Text('J'), Text('K'),

Text('L')]),

],

);

The vertical alignment of cells is configured with values of

TableCellVerticalAlignment enum. TableCellVerticalAlignment

enum has values top, middle, bottom, baseline, and fill. The

defaultVerticalAlignment parameter of Table constructor specifies the

default TableCellVerticalAlignment value. If you want to customize vertical

alignment of a single cell, you can wrap the cell widget inside of TableCell

widget and specify the verticalAlignment parameter. Listing 7-14 shows an

example of specifying vertical alignment for cells.

Listing 7-14. Vertical alignment of table cells

class VerticalAlignmentTable extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Table(

 border: TableBorder.all(color: Colors.green.shade200),

 defaultVerticalAlignment: TableCellVerticalAlignment.

bottom,

 children: [

 TableRow(children: [

 TextCell('A'),

 TableCell(

 verticalAlignment: TableCellVerticalAlignment.

middle,

 child: Text('B'),

),

Chapter 7 Common Widgets

254

 Text('C'),

 Text('D'),

]),

 TableRow(children: [Text('E'), Text('F'), Text('G'),

Text('H')]),

 TableRow(children: [Text('I'), Text('J'), Text('K'),

Text('L')]),

],

);

 }

}

class TextCell extends StatelessWidget {

 TextCell(this.text, {this.height = 50});

 final String text;

 final double height;

 @override

 Widget build(BuildContext context) {

 return ConstrainedBox(

 constraints: BoxConstraints(

 minHeight: height,

),

 child: Text(text),

);

 }

}

Figure 7-3 shows the screenshot of different tables.

Chapter 7 Common Widgets

255

7-4. Scaffolding Material Design Pages
 Problem
You want to scaffold Material Design pages.

 Solution
Use Scaffold and other related widgets.

 Discussion
Material Design apps have common layout structures. Scaffold widget

puts together other common widgets to create the basic page structures.

Table 7-6 shows the elements that can be included in a Scaffold widget.

Widgets specified as drawer and endDrawer are initially hidden and can be

revealed by swiping. The swiping direction depends on the text direction.

The drawer widget uses the same direction as the text direction, while the

A
E
I

B
F
J

C
G
K

D
H
L

A
E
I

B
F
J

C
G
K

D
H
L

A

E
I

B

F
J

C
G
K

D
H
L

Figure 7-3. Tables

Chapter 7 Common Widgets

256

endDrawer widget uses the opposite direction. For example, if the text

direction is left-to-right, drawer widget is opened by swiping from left to

right, and endDrawer widget is opened by swiping from right to left.

The second column in Table 7-6 only lists preferred widget types for

these elements. Scaffold constructor actually accepts any type of widgets.

For example, you can use ListView widget as the drawer. However, these

preferred widgets are more suitable.

Table 7-6. Scaffold elements

Parameter Widget Description

appBar appBar an app bar to display at the top.

floatingactionButton FloatingactionButton a button to float above the body in

the bottom right corner.

drawer drawer a hidden panel to display to the side

of the body.

enddrawer drawer a hidden panel to display to the side

of the body.

bottomnavigationBar BottomappBar

BottomnavigationBar

navigation bar to display at the

bottom.

bottomsheet Bottomsheet persistent bottom sheet.

persistentFooterButtons List<Widget> a set of buttons to display at the

bottom.

body Widget primary content.

 App Bar
AppBar widget displays basic information of the current screen. It consists

of a toolbar and other widgets. Table 7-7 shows the elements of an AppBar

widget. These elements are also named parameters of AppBar constructor.

Chapter 7 Common Widgets

257

If the leading widget is null and automaticallyImplyLeading parameter

is true, the actual leading widget is deduced from the state. If the Scaffold

has a drawer, the leading widget is a button to open the drawer. If the

nearest Navigator has previous routes, the leading widget is a BackButton

to go back to previous route.

Widgets in the list of actions are usually IconButtons. If there is no

enough space for these IconButtons, you can use a PopupMenuButton as

the last action and put other actions in the popup menu. TabBar widget is

usually used as the bottom widget. Listing 7-15 shows an example of using

AppBar.

Listing 7-15. Example of AppBar

AppBar(

 title: Text('Scaffold'),

 actions: <Widget>[

 IconButton(

 icon: Icon(Icons.search),

 onPressed: () {},

),

],

);

Table 7-7. Parameters of AppBar

Name Description

title primary widget in the toolbar.

leading Widget to display before the title.

actions List of widgets to display after the title.

bottom Widget to display at the bottom.

flexiblespace Widget to stack behind the toolbar and the bottom.

Chapter 7 Common Widgets

258

 Floating Action Button
FloatingActionButton widget is a special kind of buttons to provide quick

access to primary action. A floating action button is a circular icon that

usually displays at the bottom right corner of the screen. In the Gmail app,

the email list screen has a floating action button to compose new emails.

There are two types of FloatingActionButtons. When using

FloatingActionButton() constructor, you only need to provide the child

widget and onPressed callback. When using FloatingActionButton.

extend() constructor, you need to provide icon and label widgets

and onPressed callback. For both constructors, foregroundColor and

backgroundColor parameters can customize the colors. Listing 7-16 shows

an example of using FloatingActionButton.

Listing 7-16. Example of FloatingActionButton

FloatingActionButton(

 child: Icon(Icons.create),

 onPressed: () {},

);

 Drawer
Drawer widget is a convenient wrapper for the panel that displays at the

edge of a Scaffold widget when sliding. Although you can use Drawer to

wrap any widget, it’s common to show app logo, information of current

user, and links to app pages in the drawer. ListView widget is usually used

as the child of Drawer widget to enable scrolling in the drawer.

To show app logo and information of current user, you

can use the provided DrawerHeader widget and its subclass

UserAccountsDrawerHeader. DrawerHeader widget wraps a child widget

and has a predefined style. UserAccountsDrawerHeader is a specific

Chapter 7 Common Widgets

259

widget to show user details. Table 7-8 shows sections that can be added in

a UserAccountsDrawerHeader widget. You can also use onDetailsPressed

parameter to add a callback when the area with account name and email is

tapped.

Table 7-8. Sections in UserAccountsDrawerHeader

Name Description

currentaccountpicture picture of the current user’s account.

otheraccountspictures List of pictures of the current user’s other accounts.

You can only have up to three of these pictures.

accountname name of the current user’s account.

accountemail email of the current user’s account.

Listing 7-17 shows an example of using Drawer with

UserAccountsDrawerHeader.

Listing 7-17. Example of Drawer

Drawer(

 child: ListView(

 children: <Widget>[

 UserAccountsDrawerHeader(

 currentAccountPicture: CircleAvatar(

 child: Text('JD'),

),

 accountName: Text('John Doe'),

 accountEmail: Text('john.doe@example.com'),

),

 ListTile(

 leading: Icon(Icons.search),

 title: Text('Search'),

Chapter 7 Common Widgets

260

),

 ListTile(

 leading: Icon(Icons.history),

 title: Text('History'),

),

],

),

);

 Bottom App Bar
BottomAppBar widget is a simplified version of AppBar that displays at the

bottom of a Scaffold. It’s common to only add icon buttons in the bottom

app bar. If the scaffold also has a floating action button, the bottom app

bar also creates the notch for the button to dock. Listing 7-18 shows an

example of using BottomAppBar.

Listing 7-18. Example of BottomAppBar

BottomAppBar(

 child: Text('Bottom'),

 color: Colors.red,

);

 Bottom Navigation Bar
BottomNavigationBar widget provides extra links to navigate between

different views. Table 7-9 shows the parameters of BottomNavigationBar

constructor.

Chapter 7 Common Widgets

261

When an item is tapped, the onTap callback is invoked with index

of the tapped item. Depending on the number of items, there can be

different ways to show these items. The layout of items is defined by

values of BottomNavigationBarType enum. If the value is fixed, these

items have fixed width and always display text labels. If the value is

shifting, location of items may change according to the selected item

and only text label of selected item is displayed. BottomNavigationBar

has a default strategy to select the type. When there are less than

four items, BottomNavigationBarType.fixed is used; otherwise,

BottomNavigationBarType.shifting is used. You can use the type parameter

to override the default behavior.

Table 7-10 shows parameters of BottomNavigationBarItem

constructor. Both icon and title parameters are required. If the type of

BottomNavigationBar is BottomNavigationBarType.shifting, then the

background of navigation bar is determined by the background color

of selected item. You should specify the backgroundColor parameter to

differentiate items.

Table 7-9. Parameters of BottomNavigationBar

Name Type Description

items List

< BottomnavigationBaritem>

List of items.

currentindex int index of the selected item.

ontap ValueChanged<int> Callback when selected item changed.

type BottomnavigationBartype type of the navigation bar.

fixedColor Color Color of selected item when type if

BottomnavigationBartype.fixed.

iconsize double size of icons.

Chapter 7 Common Widgets

262

Listing 7-19 shows an example of using BottomNavigationBar and

BottomNavigationBarItem.

Listing 7-19. Example of BottomNavigationBar

 BottomNavigationBar(

 currentIndex: 1,

 type: BottomNavigationBarType.shifting,

 items: [

 BottomNavigationBarItem(

 icon: Icon(Icons.cake),

 title: Text('Cake'),

 backgroundColor: Colors.red.shade100,

),

 BottomNavigationBarItem(

 icon: Icon(Icons.map),

 title: Text('Map'),

 backgroundColor: Colors.green.shade100,

),

 BottomNavigationBarItem(

 icon: Icon(Icons.alarm),

 title: Text('Alarm'),

Table 7-10. Parameters of BottomNavigationBarItem

Name Type Description

icon Widget item’s icon.

title Widget item’s title.

activeicon Widget icon to display when the item is selected.

backgroundColor Color item's background color.

Chapter 7 Common Widgets

263

 backgroundColor: Colors.blue.shade100,

),

],

);

 Bottom Sheet
BottomSheet widget displays at the bottom of the app to provide additional

information. The system sharing sheet is a typical example of bottom

sheet. There are two types of bottom sheets:

• Persistent bottom sheets are always visible. Persistent

bottom sheets can be created using ScaffoldState.

showBottomSheet function and bottomSheet

parameter of Scaffold constructor.

• Modal bottom sheets behave like modal dialogs.

Modal bottom sheets can be created using

showModalBottomSheet function.

BottomSheet constructor uses a WidgetBuilder function to create

the actual content. You also need to provide an onClosing callback that’s

invoked when the bottom sheet begins to close. Listing 7-20 shows an

example of using BottomSheet.

Listing 7-20. Example of BottomSheet

BottomSheet(

 onClosing: () {},

 builder: (context) {

 return Text('Bottom');

 },

);

Chapter 7 Common Widgets

264

 Scaffold State
Scaffold is a stateful widget. You can use Scaffold.of() method to get the

ScaffoldState object of nearest Scaffold widget from the build context.

ScaffoldState has different methods to interact with other components; see

Table 7-11.

Table 7-11. Methods of ScaffoldState

Name Description

opendrawer() open the drawer.

openenddrawer() open the drawer on the end side.

showsnackBar(snackBar snackbar) show the snackBar.

hideCurrentsnackBar() hide the current snackBar.

removeCurrentsnackBar() remove the current snackBar.

showBottomsheet() show a persistent bottom sheet.

 SnackBar
SnackBar widget shows a message with an optional action at the bottom

of the screen. To create a SnackBar widget, the constructor requires the

content parameter to specify the content. The duration parameter controls

how long the snack bar is displayed. To add an action to the snack bar,

you can use action parameter of type SnackBarAction. When an action is

provided, the snack bar is dismissed when the action is pressed.

To create a SnackBarAction instance, you need to provide the label and

onPressed callback. You can customize the button label color using textColor

parameter. The button of a snack bar action can only be pressed once.

The showSnackBar() method of ScaffoldState shows a SnackBar

widget. There can be at most one snack bar displayed at a time. If

ScaffoldState() method is invoked when another snack bar is still visible,

Chapter 7 Common Widgets

265

the given snack bar is added to a queue and will be displayed after other

snack bars are dismissed. The return type of showSnackBar() method

is ScaffoldFeatureController<SnackBar, SnackBarClosedReason>.

SnackBarClosedReason is an enum that defines the reasons a snack bar

may be closed.

Listing 7-21 shows an example of opening snack bar.

Listing 7-21. Example of SnackBar

Scaffold.of(context).showSnackBar(SnackBar(

 content: Text('This is a message.'),

 action: SnackBarAction(label: 'OK', onPressed: () {}),

));

7-5. Scaffolding iOS Pages
 Problem
You want to scaffold iOS pages.

 Solution
Use CupertinoPageScaffold.

 Discussion
For iOS apps, you can use CupertinoPageScaffold widget to create

the basic layout of pages. Comparing to Scaffold in Material Design,

customizations provided by CupertinoPageScaffold are limited. You can

only specify navigation bar, child, and background color.

CupertinoNavigationBar widget is similar with AppBar in Material

Design, but CupertinoNavigationBar can only have leading, middle, and

trailing widgets. The middle widget is centered between leading and

Chapter 7 Common Widgets

266

trailing widgets. The leading widget can be automatically implied based

on the navigation state when automaticallyImplyLeading parameter

is true. The middle widget can also be automatically implied when

automaticallyImplyMiddle parameter is true.

Listing 7-22 shows an example of using CupertinoPageScaffold and

CupertinoNavigationBar.

Listing 7-22. Example of CupertinoPageScaffold

CupertinoPageScaffold(

 navigationBar: CupertinoNavigationBar(

 middle: Text('App'),

 trailing: CupertinoButton(

 child: Icon(CupertinoIcons.search),

 onPressed: () {},

),

),

 child: Container(),

);

7-6. Creating Tab Layout in Material Design
 Problem
You want to create tab bars and tabs.

 Solution
Use TabBar, Tab, and TabController.

Chapter 7 Common Widgets

267

 Discussion
Tab layout is widely used in mobile apps to organize multiple sections

in one page. To implement tab layout in Material Design, you need to

work with several widgets. TabBar widget is the container of Tab widgets.

TabController widget is responsible for coordinating TabBar and TabView.

A Tab widget must have at least some text, an icon, or a child widget,

but it cannot have both text and child widget. To create a TabBar, you

need to provide a list of tabs. You can choose to use an explicitly created

TabController instance or use the shared DefaultTabController instance.

DefaultTabController is an inherited widget. TabBar will try to look up an

ancestor DefaultTabController instance if no TabController is provided.

You can choose to provide a TabController instance or use the

inherited DefaultTabController. To create a TabController, you need to

provide the number of tabs and a TickerProvider instance.

In Listing 7-23, the mixin SingleTickerProviderStateMixin

of _TabPageState is an implementation of TickerProvider, so the

current instance of _TabPageState is passed as the vsync parameter of

TabController constructor. The TabController instance is shared by TabBar

and TabBarView.

Listing 7-23. TabBar with provided TabController

class TabPage extends StatefulWidget {

 @override

 _TabPageState createState() => _TabPageState();

}

class _TabPageState extends State<TabPage> with

SingleTickerProviderStateMixin {

 final List<Tab> _tabs = [

 Tab(text: 'List', icon: Icon(Icons.list)),

 Tab(text: 'Map', icon: Icon(Icons.map)),

Chapter 7 Common Widgets

268

];

 TabController _tabController;

 @override

 void initState() {

 super.initState();

 _tabController = TabController(length: _tabs.length, vsync:

this);

 }

 @override

 void dispose() {

 _tabController.dispose();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Tab'),

 bottom: TabBar(

 tabs: _tabs,

 controller: _tabController,

),

),

 body: TabBarView(

 children: _tabs.map((tab) {

 return Center(

 child: Text(tab.text),

);

 }).toList(),

 controller: _tabController,

Chapter 7 Common Widgets

269

),

);

 }

}

If you don’t need to interact with TabController, using

DefaultTabController is a better choice. Code in Listing 7-24 uses

DefaultTabController to implement the same functionality as code in

Listing 7-23.

Listing 7-24. DefaultTabController

class DefaultTabControllerPage extends StatelessWidget {

 final List<Tab> _tabs = [

 Tab(text: 'List', icon: Icon(Icons.list)),

 Tab(text: 'Map', icon: Icon(Icons.map))

];

 @override

 Widget build(BuildContext context) {

 return DefaultTabController(

 length: _tabs.length,

 child: Scaffold(

 appBar: AppBar(

 bottom: TabBar(tabs: _tabs),

),

 body: TabBarView(

 children: _tabs.map((tab) {

 return Center(

 child: Text(tab.text),

);

 }).toList(),

),

Chapter 7 Common Widgets

270

),

);

 }

}

7-7. Implementing Tab Layout in iOS
 Problem
You want to implement tab layout in iOS apps.

 Solution
Use CupertinoTabScaffold, CupertinoTabBar, and CupertinoTabView.

 Discussion
Tab layout can also be implemented for iOS apps with widgets

CupertinoTabScaffold, CupertinoTabBar, and CupertinoTabView. When

creating CupertinoTabScaffold, you should use CupertinoTabBar as the

value of tabBar parameter. Tabs in CupertinoTabBar are represented as

BottomNavigationBarItem widgets. The tabBuilder parameter specifies

the builder function to build the view for each tab. Listing 7-25 shows an

example of implementing tab layout.

Listing 7-25. Tab layout for iOS style

class CupertinoTabPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return CupertinoTabScaffold(

 tabBar: CupertinoTabBar(items: [

Chapter 7 Common Widgets

271

 BottomNavigationBarItem(icon: Icon(CupertinoIcons.

settings)),

 BottomNavigationBarItem(icon: Icon(CupertinoIcons.

info)),

]),

 tabBuilder: (context, index) {

 return CupertinoTabView(

 builder: (context) {

 return Center(

 child: Text('Tab $index'),

);

 },

);

 },

);

 }

}

7-8. Summary
This chapter discusses common widgets in Flutter, including list view, grid

view, table layout, page scaffolding, and tab layout. These widgets create

the basic structure of pages in Flutter. In the next chapter, we’ll discuss

page navigation in Flutter apps.

Chapter 7 Common Widgets

273© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_8

CHAPTER 8

Page Navigation
Flutter apps may have multiple screens or pages. Pages are groups of

functionalities. The user navigates between different pages to use different

functionalities. Concepts like pages are called routes in Flutter. Routes not

only include full-screen pages but also modal dialogs and popups. Routes

are managed by Navigator widget. This chapter discusses recipes related

to page navigation in Flutter.

8-1. Implementing Basic Page Navigation
 Problem
You want to have basic page navigation support.

 Solution
Use Navigator.push() to navigate to a new route and Navigator.pop() to

navigate to the previous route.

 Discussion
Routes are managed by Navigator widget. The navigator manages a

stack of routes. Routes can be pushed on the stack using push() method

and popped off the stack using pop() method. The top element in the

stack is the currently active route. Navigator is a stateful widget with

274

NavigatorState as its state. To interact with the navigator, you can use

the static methods of Navigator or get an instance of NavigatorState.

By using Navigator.of() method, you can get the nearest enclosing

NavigatorState instance of the given build context. You can explicitly

create Navigator widgets, but most of the time you’ll use the Navigator

widget created by WidgetsApp, MaterialApp, or CupertinoApp widget.

Routes are represented using implementations of abstract Route

class. For example, PageRoute represents full-screen modal route, and

PopupRoute represents modal routes that overlay a widget over the

current route. Both PageRoute and PopupRoute classes are subclasses of

ModalRoute class. For Material Design apps, the easiest way to create a full-

screen page is using MaterialPageRoute class. MaterialPageRoute uses a

WidgetBuilder function to build the content of the route.

In Listing 8-1, Navigator.of(context) gets the NavigatorState

instance to work with. The new route pushed to the navigator is a

MaterialPageRoute instance. The new route has a button that uses

NavigatorState.pop() method to pop the current route off the navigator.

In fact, when using Scaffold widget, a back button is added automatically

in the app bar, so there is no need to use an explicit back button.

Listing 8-1. Page navigation using Navigator

class SimpleNavigationPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Simple Navigation'),

),

 body: Center(

 child: RaisedButton(

 child: Text('Show page'),

Chapter 8 page NavigatioN

275

 onPressed: () {

 Navigator.of(context).

push(MaterialPageRoute(builder: (context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('New Page'),

),

 body: Center(

 child: Column(

 crossAxisAlignment: CrossAxisAlignment.

center,

 children: <Widget>[

 Text('A new page'),

 RaisedButton(

 child: Text('Go back'),

 onPressed: () {

 Navigator.of(context).pop();

 },

),

],

),

),

);

 }));

 },

),

),

);

 }

}

Chapter 8 page NavigatioN

276

Navigator class has static methods like push() and pop() which do

the same thing as the same method in NavigatorState class, but these

static methods require an extra BuildContext parameter. Navigator.

push(context) is actually the same as Navigator.of(context).push().

You can choose to use either method.

8-2. Using Named Routes
 Problem
You want to navigate to the same route from different places.

 Solution
Use named routes with Navigator.pushNamed() method.

 Discussion
When using Navigator.push() method to push new routes to the

navigator, new routes are built on demand using builder functions. This

approach doesn’t work well when routes can be navigated from different

places, because we don’t want to duplicate the code of building the routes.

In this case, using named routes is a better choice. A named route has a

unique name. Navigator.pushNamed() method uses the name to specify

the route to push to the navigator.

Named routes need to be registered before they can be navigated to.

The easiest way to register named routes is using the routes parameter

of WidgetsApp, MaterialApp, or CupertinoApp constructor. The routes

parameter is a Map<String, WidgetBuilder> object with keys as the route

names. Route names are usually in path-like format starting with “/”. This

is similar to how web apps organize the pages. For example, you can have

route names like /log_in, /orders, and /orders/1234.

Chapter 8 page NavigatioN

277

In Listing 8-2, pressing the “Sign Up” button pushes the named route /

sign_up to the navigator.

Listing 8-2. Use named route

class LogInPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Log In'),

),

 body: Center(

 child: RaisedButton(

 child: Text('Sign Up'),

 onPressed: () {

 Navigator.pushNamed(context, '/sign_up');

 },

),

),

);

 }

}

In Listing 8-3, two named routes are registered in routes parameter.

Listing 8-3. Register named routes

class PageNavigationApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Page Navigation',

Chapter 8 page NavigatioN

278

 home: IndexPage(),

 routes: {

 '/sign_up': (context) => SignUpPage(),

 '/log_in': (context) => LogInPage(),

 },

);

 }

}

8-3. Passing Data Between Routes
 Problem
You want to pass data between different routes.

 Solution
Pass data to routes using constructor parameters or RouteSettings objects

and pass data from routes using result parameter of Navigator.pop()

method.

 Discussion
A route may require additional data when building its content. A route

may also return some data when popped off. For example, a route to edit

user details may need the current details as the input and return updated

details as the output. Depending on how routes are navigated to, there are

different ways to pass data between routes.

When using Navigator.push() method to push new routes, the easiest

way is to pass the data as constructor parameters of the widget returned

by WidgetBuilder function. When using Navigator.pop() method, you

Chapter 8 page NavigatioN

279

can use the optional result parameter to pass return value to the previous

route. The return value of Navigator.push() method is a Future<T>

object. This Future object will be resolved when the newly pushed route

is popped off. The resolved value is the return value passed when invoking

Navigator.pop() method. If the route is popped off using the back button,

then the resolved value is null.

In Listing 8-4, UserDetails class contains first name and last name of

a user. UserDetailsPage displays the user’s details. When the edit button

is pressed, a new route is pushed to the navigator. Content of the new

route is an EditUserDetailsPage widget with the UserDetails object

as the constructor parameter. The return value of the new route is also a

UserDetails object, which is used to update the state of UserDetailsPage.

Listing 8-4. User details page

class UserDetails {

 UserDetails(this.firstName, this.lastName);

 final String firstName;

 final String lastName;

}

class UserDetailsPage extends StatefulWidget {

 @override

 _UserDetailsPageState createState() =>

_UserDetailsPageState();

}

class _UserDetailsPageState extends State<UserDetailsPage> {

 UserDetails _userDetails = UserDetails('John', 'Doe');

 @override

 Widget build(BuildContext context) {

 return Scaffold(

Chapter 8 page NavigatioN

280

 appBar: AppBar(

 title: Text('User Details'),

),

 body: Column(

 children: <Widget>[

 Text('First name: ${_userDetails.firstName}'),

 Text('Last name: ${_userDetails.lastName}'),

 RaisedButton.icon(

 label: Text('Edit (route builder)'),

 icon: Icon(Icons.edit),

 onPressed: () async {

 UserDetails result = await Navigator.push(

 context,

 MaterialPageRoute<UserDetails>(

 builder: (BuildContext context) {

 return EditUserDetailsPage(_userDetails);

 },

),

);

 if (result != null) {

 setState(() {

 _userDetails = result;

 });

 }

 },

),

],

),

);

 }

}

Chapter 8 page NavigatioN

281

In Listing 8-5, EditUserDetailsPage uses two TextFormField

widgets to edit user details. When the save button is pressed, the updated

UserDetails object is returned using Navigator.pop() method.

Listing 8-5. Edit user details page

class EditUserDetailsPage extends StatefulWidget {

 EditUserDetailsPage(this.userDetails);

 final UserDetails userDetails;

 @override

 _EditUserDetailsPageState createState() =>

 _EditUserDetailsPageState(userDetails);

}

class _EditUserDetailsPageState extends

State<EditUserDetailsPage> {

 _EditUserDetailsPageState(this._userDetails);

 UserDetails _userDetails;

 final GlobalKey<FormFieldState<String>> _firstNameKey =

GlobalKey();

 final GlobalKey<FormFieldState<String>> _lastNameKey =

GlobalKey();

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Edit User Details'),

),

 body: Column(

 children: <Widget>[

 TextFormField(

Chapter 8 page NavigatioN

282

 key: _firstNameKey,

 decoration: InputDecoration(

 labelText: 'First name',

),

 initialValue: _userDetails.firstName,

),

 TextFormField(

 key: _lastNameKey,

 decoration: InputDecoration(

 labelText: 'Last name',

),

 initialValue: _userDetails.lastName,

),

 RaisedButton(

 child: Text('Save'),

 onPressed: () {

 Navigator.pop(

 context,

 UserDetails(_firstNameKey.currentState?.

value,

 _lastNameKey.currentState?.value));

 },

)

],

),

);

 }

}

If named routes are used, data can be passed to the route using the

arguments parameter of Navigator.pushNamed() method. In Listing 8-6,

pushNamed() method is used to navigate to the /edit_user route with

current UserDetails object.

Chapter 8 page NavigatioN

283

Listing 8-6. Pass data to named route

UserDetails result = await Navigator.pushNamed(

 context,

 '/edit_user',

 arguments: _userDetails,

);

The named route /edit_user is registered in MaterialApp. The route

parameters cannot be used, because you cannot access the data passed

to the route in the builder function. The onGenerateRoute parameter of

WidgetsApp, MaterialApp, or CupertinoApp should be used instead. The

type of onGenerateRoute parameter is RouteFactory, which is a typedef

of function type Route (RouteSettings settings). RouteSettings

class contains data that may be required when creating the Route object.

Table 8-1 shows properties of RouteSettings class.

Table 8-1. Properties of RouteSettings

Name Type Description

name String Name of the route.

arguments Object Data passed to the route.

isInitialRoute bool Whether this route is the first route pushed to

the navigator.

When implementing the onGenerateRoute function, you need to

return routes based on the provided RouteSettings object. In Listing 8-7,

the name property is checked first, then a MeterialPageRoute is returned

with EditUserDetailsPage as the content. The arguments property of

RouteSettings is used in EditUserDetailsPage constructor. The value of

arguments property is the UserDetails object passed in Listing 8-6.

Chapter 8 page NavigatioN

284

Listing 8-7. Use onGenerateRoute

MaterialApp(

 onGenerateRoute: (RouteSettings settings) {

 if (settings.name == '/edit_user') {

 return MaterialPageRoute<UserDetails>(

 settings: settings,

 builder: (context) {

 return EditUserDetailsPage(settings.arguments);

 },

);

 }

 },

);

8-4. Implementing Dynamic Route
Matching
 Problem
You want to use complicated logic to match route names.

 Solution
Use onGenerateRoute parameter.

 Discussion
When named routes are registered using the routes parameter of WidgetsApp,

only the whole route name can be used to match the Route objects. If you want

to use complicated logic to match Route objects with route names, you can

Chapter 8 page NavigatioN

285

use onGenerateRoute parameter and RouteSettings object. For example, you

can match all route names start with /order to a single Route object.

In Listing 8-8, all route names starting with /order will navigate to a

route using OrderPage.

Listing 8-8. Route matching

MaterialApp(

 onGenerateRoute: (RouteSettings settings) {

 if (settings.name.startsWith('/order')) {

 return MaterialPageRoute(

 settings: settings,

 builder: (context) {

 return OrderPage();

 },

);

 }

 },

);

8-5. Handling Unknown Routes
 Problem
You want to handle the case of navigating to an unknown route.

 Solution
Use onUnknownRoute parameter of Navigator, WidgetsApp, MaterialApp,

and CupertinoApp.

Chapter 8 page NavigatioN

286

 Discussion
It’s possible that the navigator may be asked to navigate to an unknown

route. This can be caused by programming errors in the app or external

requests for route navigation. If onGenerateRoute function returns null

for the given RouteSettings object, the onUnknownRoute function is

invoked to provide a fallback route. This onUnknownRoute function is

usually used for error handling, just like 404 pages in web apps. The type of

onUnknownRoute is also RouteFactory.

In Listing 8-9, onUnknownRoute function returns the route that shows

the NotFoundPage widget.

Listing 8-9. Use onUnknownRoute

MaterialApp(

 onUnknownRoute: (RouteSettings settings) {

 return MaterialPageRoute(

 settings: settings,

 builder: (BuildContext context) {

 return NotFoundPage(settings.name);

 },

);

 },

);

8-6. Displaying Material Design Dialogs
 Problem
You want to show Material Design dialogs.

Chapter 8 page NavigatioN

287

 Solution
Use showDialog() function and Dialog, SimpleDialog, and AlertDialog

widgets.

 Discussion
To use Material Design dialogs, you need to create dialog widgets

and show them. Dialog class and its subclasses SimpleDialog and

AlertDialog can be used to create dialogs.

SimpleDialog widget presents several options to the user. Options

are represented using SimpleDialogOption class. A SimpleDialogOption

widget can have a child widget and an onPressed callback. When creating

SimpleDialog, you can provide a list of children and an optional title.

AlertDialog widget presents content and a list of actions to the user.

AlertDialog is used to acknowledge user or ask for confirmation.

To show dialogs, you should use showDialog() function. Invoking

this function pushes dialog route to the navigator. Dialogs are closed

using Navigator.pop() method. The showDialog() function uses a

WidgetBuilder function to build the dialog content. The return value of

showDialog() function is a Future<T> object which is actually the return

value of Navigator.push() method.

In Listing 8-10, pressing the button shows a simple dialog with two

options.

Listing 8-10. Show simple dialogs

RaisedButton(

 child: Text('Show SimpleDialog'),

 onPressed: () async {

 String result = await showDialog<String>(

 context: context,

Chapter 8 page NavigatioN

288

 builder: (BuildContext context) {

 return SimpleDialog(

 title: Text('Choose Color'),

 children: <Widget>[

 SimpleDialogOption(

 child: Text('Red'),

 onPressed: () {

 Navigator.pop(context, 'Red');

 },

),

 SimpleDialogOption(

 child: Text('Green'),

 onPressed: () {

 Navigator.pop(context, 'Green');

 },

),

],

);

 });

 print(result);

 },

);

Figure 8-1 shows the screenshot of code in Listing 8-10.

Chapter 8 page NavigatioN

289

In Listing 8-11, pressing the button shows an alert dialog with two

actions.

Listing 8-11. Show alert dialog

RaisedButton(

 child: Text('Show AlertDialog'),

 onPressed: () async {

 bool result = await showDialog<bool>(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 title: Text('Delete'),

 content: Text('Delete this item?'),

 actions: <Widget>[

 FlatButton(

 child: Text('Yes'),

 onPressed: () {

 Navigator.pop(context, true);

 },

),

Figure 8-1. Material Design simple dialog

Chapter 8 page NavigatioN

290

 FlatButton(

 child: Text('No'),

 onPressed: () {

 Navigator.pop(context, false);

 },

),

],

);

 },

);

 print(result);

 },

);

Figure 8-2 shows the screenshot of code in Listing 8-11.

Figure 8-2. Material Design alert dialog

8-7. Displaying iOS Dialogs
 Problem
You want to display iOS dialogs.

Chapter 8 page NavigatioN

291

 Solution
Use showCupertinoDialog() function and CupertinoAlertDialog and

CupertinoPopupSurface widgets.

 Discussion
For iOS apps, you can use showCupertinoDialog() function and widgets

like CupertinoAlertDialog and CupertinoPopupSurface to show dialogs.

The showCupertinoDialog() function is similar with showDialog()

function for Material Design. This function also uses Navigator.push()

method to push dialog route to the navigator. CupertinoAlertDialog

is a built-in dialog implementation to acknowledge user or require for

confirmation. A CupertinoAlertDialog may have title, content, and a list

of actions. Actions are represented using CupertinoDialogAction widget.

Table 8-2 shows parameters of CupertinoDialogAction constructor.

Table 8-2. Parameters of CupertinoDialogAction

Name Type Description

child Widget Content of the action.

onPressed VoidCallback action pressed callback.

isDefaultAction bool Whether this action is the default action.

isDestructiveAction bool Whether this action is destructive.

Destructive actions have a different style.

textStyle TextStyle text style applied to the action.

In Listing 8-12, pressing the button shows an iOS-style alert dialog.

Chapter 8 page NavigatioN

292

Listing 8-12. Show iOS alert dialog

CupertinoButton(

 child: Text('Show Alert Dialog'),

 onPressed: () async {

 bool result = await showCupertinoDialog<bool>(

 context: context,

 builder: (BuildContext context) {

 return CupertinoAlertDialog(

 title: Text('Delete'),

 content: Text('Delete this item?'),

 actions: <Widget>[

 CupertinoDialogAction(

 child: Text('Delete'),

 onPressed: () {

 Navigator.pop(context, true);

 },

 isDestructiveAction: true,

),

 CupertinoDialogAction(

 child: Text('Cancel'),

 onPressed: () {

 Navigator.pop(context, false);

 },

),

],

);

 },

);

 print(result);

 },

);

Chapter 8 page NavigatioN

293

Figure 8-3 shows the screenshot of code in Listing 8-12.

Figure 8-3. iOS alert dialog

If you want to create a custom dialog, you can use

CupertinoPopupSurface widget which creates rounded rectangle surface.

8-8. Displaying iOS Action Sheets
 Problem
You want to present a set of actions for the user to choose in iOS apps.

 Solution
Use showCupertinoModalPopup() function and CupertinoActionSheet

widget.

 Discussion
If you want to present a set of actions for the user to choose in iOS

apps, you can use showCupertinoModalPopup() function to display

CupertinoActionSheet widgets. A CupertinoActionSheet can have a title,

a message, a cancel button, and a list of actions. Actions are represented

Chapter 8 page NavigatioN

294

as CupertinoActionSheetAction widgets. CupertinoActionSheetAction

constructor has parameters child, onPressed, isDefaultAction,

and isDestructiveAction, which have the same meaning as in

CupertinoDialogAction constructor shown in Table 8-2.

In Listing 8-13, pressing the button shows an action sheet with three

actions and a cancel button.

Listing 8-13. Show iOS action sheet

CupertinoButton(

 child: Text('Show Action Sheet'),

 onPressed: () async {

 String result = await showCupertinoModalPopup<String>(

 context: context,

 builder: (BuildContext context) {

 return CupertinoActionSheet(

 title: Text('What to do'),

 message: Text('Please select an action'),

 actions: <Widget>[

 CupertinoActionSheetAction(

 child: Text('Duplicate'),

 isDefaultAction: true,

 onPressed: () {

 Navigator.pop(context, 'duplicate');

 },

),

 CupertinoActionSheetAction(

 child: Text('Move'),

 onPressed: () {

 Navigator.pop(context, 'move');

 },

),

Chapter 8 page NavigatioN

295

 CupertinoActionSheetAction(

 isDestructiveAction: true,

 child: Text('Delete'),

 onPressed: () {

 Navigator.pop(context, 'delete');

 },

),

],

 cancelButton: CupertinoActionSheetAction(

 child: Text('Cancel'),

 onPressed: () {

 Navigator.pop(context);

 },

),

);

 },

);

 print(result);

 },

);

Figure 8-4 shows the screenshot of code in Listing 8-13.

Chapter 8 page NavigatioN

296

8-9. Showing Material Design Menus
 Problem
You want to show menus in Material Design apps.

 Solution
Use showMenu() function and implementations of PopupMenuEntry class.

 Discussion
To use showMenu() function, you need to have a list of PopupMenuEntry

objects. There are different types of PopupMenuEntry implementations:

• PopupMenuItem – Menu item for a single value

• CheckedPopupMenuItem – Menu item with a checkmark

Figure 8-4. iOS action sheet

Chapter 8 page NavigatioN

297

• PopupMenuDivider – Horizontal divider between menu

items

PopupMenuItem is a generic with the type of its value. Table 8-3 shows

parameters of PopupMenuItem constructor. CheckedPopupMenuItem is

a subclass of PopupMenuItem. CheckedPopupMenuItem has the checked

property to specify whether to display a checkmark.

Table 8-3. Parameters of PopupMenuItem constructor

Name Type Description

child Widget Content of the menu item.

value T value for the menu item.

enabled bool Whether this menu item can be selected.

height double height of the menu item. Default to 48.

Table 8-4. Parameters of showMenu()

Name Type Description

items List<PopupMenuEntry<T>> a list of menu items.

initialValue T initial value to highlight menu

item.

position RelativeRect position to show the menu.

The showMenu() function returns a Future<T> object which resolves

to the value of selected menu item. This function also uses Navigator.

push() method to show the menu. Table 8-4 shows major parameters of

showMenu() function. When initialValue is specified, the first item with a

matching value is highlighted.

Chapter 8 page NavigatioN

298

The menu in Listing 8-14 contains a PopupMenuItem, a

PopupMenuDivider, and a CheckedPopupMenuItem.

Listing 8-14. Show menu

RaisedButton(

 child: Text('Show Menu'),

 onPressed: () async {

 String result = await showMenu<String>(

 context: context,

 position: RelativeRect.fromLTRB(0, 0, 0, 0),

 items: [

 PopupMenuItem(

 value: 'red',

 child: Text('Red'),

),

 PopupMenuDivider(),

 CheckedPopupMenuItem(

 value: 'green',

 checked: true,

 child: Text('Green'),

)

],

 initialValue: 'green',

);

 print(result);

 },

);

The main difficulty of using showMenu() function is to provide proper

value for the position parameter. If the menu is triggered by pressing

a button, using PopupMenuButton is a better choice, because the menu

position is calculated automatically based on the button’s position.

Chapter 8 page NavigatioN

299

Table 8-5 shows major parameters of PopupMenuButton constructor.

PopupMenuItemBuilder function takes a BuildContext object as the

argument and returns a List<PopupMenuEntry<T>> object.

Table 8-5. Parameters of PopupMenuButton

Name Type Description

itemBuilder PopupMenu

ItemBuilder<T>

Builder function to create menu

items.

initialValue T initial value.

onSelected PopupMenu

ItemSelected<T>

Callback when a menu item is

selected.

onCanceled PopupMenuCanceled Callback when the menu is dismissed

without selection.

tooltip String tooltip of the button.

child Widget Content of the button.

icon Icon icon of the button.

Listing 8-15 shows how to use PopupMenuButton to implement the

same menu as in Listing 8-14.

Listing 8-15. Use PopupMenuButton

PopupMenuButton(

 itemBuilder: (BuildContext context) {

 return <PopupMenuEntry<String>>[

 PopupMenuItem(

 value: 'red',

 child: Text('Red'),

),

Chapter 8 page NavigatioN

300

 PopupMenuDivider(),

 CheckedPopupMenuItem(

 value: 'green',

 checked: true,

 child: Text('Green'),

)

];

 },

 initialValue: 'green',

 child: Text('Select color'),

 onSelected: (String value) {

 print(value);

 },

 onCanceled: () {

 print('no selections');

 },

);

Figure 8-5 shows the screenshot of the menu created in Listings 8-14

and 8-15.

Figure 8-5. Material Design menu

Chapter 8 page NavigatioN

301

8-10. Managing Complicated Page Flows
Using Nested Navigators
 Problem
You want to have complicated page flows.

 Solution
Use nested Navigator instances.

 Discussion
A Navigator instance manages its own stack of routes. For simple apps,

one Navigator instance is generally enough, and you can simply use the

Navigator instance created by WidgetsApp, MaterialApp, or CupertinoApp.

If your app has complicated page flows, you may need to use nested

navigators. Since Navigator itself is also a widget, Navigator instances

can be created like normal widgets. The Navigator instance created by

WidgetsApp, MaterialApp, or CupertinoApp becomes the root navigator.

All navigators are organized in a hierarchy. To get the root navigator, you

can set rootNavigator parameter to true when invoking Navigator.of()

method. Table 8-6 shows parameters of Navigator constructor.

Table 8-6. Parameters of Navigator

Name Type Description

onGenerateRoute RouteFactory generate a route for a given

RouteSettings object.

onUnknownRoute RouteFactory handle unknown routes.

initialRoute String Name of the first route.

observers List<Navigator

Observer>

observers of state changes in the

navigator.

Chapter 8 page NavigatioN

302

Let’s use a concrete example to explain how nested navigators can be

used. Suppose that you are building a social news reading app, after a new

user is signed up, you want to show the user an optional on-boarding page.

This on-boarding page has several steps for the user to complete. The user

can go back and forth to only complete interested steps. The user can also

skip this page and return to app’s home page. The on-boarding page has its

own navigator to handle navigation of steps.

In Listing 8-16, the navigator has two named routes. The initial route is

set to on_boarding/topic, so UserOnBoardingTopicPage is displayed first.

Listing 8-16. User on-boarding page

class UserOnBoardingPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Get Started'),

),

 body: Navigator(

 initialRoute: 'on_boarding/topic',

 onGenerateRoute: (RouteSettings settings) {

 WidgetBuilder builder;

 switch (settings.name) {

 case 'on_boarding/topic':

 builder = (BuildContext context) {

 return UserOnBoardingTopicPage();

 };

 break;

 case 'on_boarding/follower':

 builder = (BuildContext context) {

 return UserOnBoardingFollowPage();

 };

Chapter 8 page NavigatioN

303

 break;

 }

 return MaterialPageRoute(

 builder: builder,

 settings: settings,

);

 },

),

);

 }

}

In Listing 8-17, pressing the “Next” button navigates to the next step

with route name on_boarding/follower. Pressing the “Done” button uses

the root navigator to pop off the on-boarding page.

Listing 8-17. Step to select topics

class UserOnBoardingTopicPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Text('Select interested topics'),

 RaisedButton.icon(

 icon: Icon(Icons.arrow_forward),

 label: Text('Next'),

 onPressed: () {

 Navigator.pushNamed(context, 'on_boarding/

follower');

 },

),

Chapter 8 page NavigatioN

304

 RaisedButton.icon(

 icon: Icon(Icons.check),

 label: Text('Done'),

 onPressed: () {

 Navigator.of(context, rootNavigator: true).pop();

 },

)

],

);

 }

}

Figure 8-6 shows the screenshot of code in Listing 8-17.

Figure 8-6. Step to select topics

CupertinoTabView has its own navigator instance. When creating

CupertinoTabView, you can provide routes, onGenerateRoute,

onUnknownRoute, and navigatorObservers parameters. These

parameters are used to configure the Navigator instance. When using

CupertinoTabScaffold to create tab layout, each tab view has its own

navigation state and history.

When using nested navigators, it’s important to make sure that the

correct navigator instance is used. If you want to show and close full-

screen pages or modal dialogs, you should use the root navigator obtained

Chapter 8 page NavigatioN

305

by Navigator.of(context, rootNavigator: true). Invoking Navigator.

of(context) can only get the nearest enclosing Navigator instance. There

is no way to get intermediate Navigator instances in the hierarchy. You

need to use the BuildContext object at the correct location of the widgets

tree. Functions like showDialog() and showMenu() always use Navigator.

of(context) internally. You can only use the passed-in BuildContext

object to control which Navigator instance is used by these functions.

8-11. Observing Navigator State Changes
 Problem
You want to get notified when state of navigator is changed.

 Solution
Use NavigatorObserver.

 Discussion
Sometimes, you may want to get notified when the state of navigator is

changed. For example, you want to analyze the page flows of users using

the app to improve user experiences. When creating Navigator instances,

you can provide a list of NavigatorObserver objects as the observers of

navigator state changes. Table 8-7 shows methods of NavigatorObserver

interface.

Chapter 8 page NavigatioN

306

In Listing 8-18, LoggingNavigatorObserver class logs messages when

routes are pushed and popped.

Listing 8-18. Logging navigator observer

class LoggingNavigatorObserver extends NavigatorObserver {

 @override

 void didPush(Route<dynamic> route, Route<dynamic>

previousRoute) {

 print('push: ${_routeName(previousRoute)} ->

${_routeName(route)}');

 }

Table 8-7. Methods of NavigatorObserver

Name Description

didPop(Route route, Route

previousRoute)

the route is popped and previousRoute

is the newly active route.

didPush(Route route, Route

previousRoute)

the route is pushed and previousRoute

is the previously active route.

didRemove(Route route,

Route previousRoute)

the route is removed and previousRoute

is the route immediately below the removed

route.

didReplace(Route newRoute,

Route oldRoute)

the oldRoute is replaced with newRoute.

didStartUserGesture(Route

route, Route previousRoute)

User starts moving the route using gesture.

the route immediately below route is

previousRoute.

didStopUserGesture() User stops moving route using gesture.

Chapter 8 page NavigatioN

307

 @override

 void didPop(Route<dynamic> route, Route<dynamic>

previousRoute) {

 print(' pop: ${_routeName(route)} -> ${_

routeName(previousRoute)}');

 }

 String _routeName(Route<dynamic> route) {

 return route != null

 ? (route.settings?.name ?? route.runtimeType.

toString())

 : 'null';

 }

}

NavigatorObserver interface is useful when you want to have a global

handler for all state changes in a navigator. If you are only interested in

state changes related to a particular route, then using RouteObserver

class is a better choice. RouteObserver class is also an implementation of

NavigatorObserver interface.

To get notified of state changes related to a Route object, your class

needs to implement RouteAware interface. Table 8-8 shows methods of

RouteAware interface.

Table 8-8. Methods of RouteAware

Name Description

didPop() Callback when the current route is popped off.

didPopNext() Called when the current route becomes active after the top

route is popped off.

didPush() Called when the current route is pushed.

didPushNext() Called when the current route is no longer active after a new

route is pushed.

Chapter 8 page NavigatioN

308

To actually get notified for a Route object, you need to use subscribe()

method of RouteObserver to subscribe a RouteAware object to a Route

object. When the subscription is no longer required, you should use

unsubscribe() to unsubscribe the RouteAware object.

In Listing 8-19, _ObservedPageState class implements RouteAware

interface and overrides didPush() and didPop() methods to print

out some messages. ModalRoute.of(context) gets the nearest

enclosing ModalRoute object from build context, which is the route that

ObservedPage is in. By using ModalRoute.of(context), there is no need

for explicitly passing Route objects. The current _ObservedPageState

object subscribes to state changes in current route using the subscribe()

method of the passed-in RouteObserver object. The subscription is

removed when the _ObservedPageState object is disposed.

Listing 8-19. Use RouteObserver

class ObservedPage extends StatefulWidget {

 ObservedPage(this.routeObserver);

 final RouteObserver<PageRoute<dynamic>> routeObserver;

 @override

 _ObservedPageState createState() => _ObservedPageState(routeO

bserver);

}

class _ObservedPageState extends State<ObservedPage> with

RouteAware {

 _ObservedPageState(this._routeObserver);

 final RouteObserver<PageRoute<dynamic>> _routeObserver;

 @override

 void didChangeDependencies() {

 super.didChangeDependencies();

Chapter 8 page NavigatioN

309

 _routeObserver.subscribe(this, ModalRoute.of(context));

 }

 @override

 void dispose() {

 _routeObserver.unsubscribe(this);

 super.dispose();

 }

 @override

 void didPush() {

 print('pushed');

 }

 @override

 void didPop() {

 print('popped');

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Observed (Stateful)'),

),

);

 }

}

Chapter 8 page NavigatioN

310

8-12. Stopping Routes from Popping
 Problem
You want to stop routes from popping off the navigator.

 Solution
Use WillPopCallback with ModalRoute objects.

 Discussion
When a route is pushed to a navigator, the route can be popped off using

the back button in the Scaffold or system’s back button in Android.

Sometimes you may want to stop the route from being popped off. For

example, if there are unsaved changes in the page, you may want to show

an alert dialog first to ask for confirmation. When Navigator.maybePop()

method is used instead of Navigator.pop() method, you have a chance to

decide whether the request to pop off a route should proceed.

ModalRoute class has addScopedWillPopCallback() method to add

WillPopCallback that decides whether the route should be popped off.

WillPopCallback is a typedef of function type Future<bool> (). If the

returned Future<bool> object resolves to true, then the route can be

popped off. Otherwise, the route cannot be popped off. You can add

multiple WillPopCallback functions to a ModalRoute object. If any of

the WillPopCallback function vetoes the request, the route won’t be

popped off.

In Listing 8-20, a WillPopCallback function is added to the current

route. The return value of WillPopCallback function is the Future<bool>

object returned by showDialog().

Chapter 8 page NavigatioN

311

Listing 8-20. Veto route popping request

class VetoPopPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 ModalRoute.of(context).addScopedWillPopCallback(() {

 return showDialog<bool>(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 title: Text('Exit?'),

 actions: <Widget>[

 FlatButton(

 child: Text('Yes'),

 onPressed: () {

 Navigator.pop(context, true);

 },

),

 FlatButton(

 child: Text('No'),

 onPressed: () {

 Navigator.pop(context, false);

 },

),

],

);

 },

);

 });

 return Scaffold(

 appBar: AppBar(

Chapter 8 page NavigatioN

312

 title: Text('Veto Pop'),

),

 body: Container(),

);

 }

}

8-13. Summary
It’s common to have multiple pages in Flutter apps. This chapter discusses

basic concepts of implementing page navigation in Flutter. This chapter

also covers dialogs, menus, and action sheets. In the next chapter, we’ll

discuss backend service interaction in Flutter.

Chapter 8 page NavigatioN

313© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_9

CHAPTER 9

Service Interaction
Many non-trivial mobile apps require interaction with backend services.

This chapter covers essential concepts related to service interactions in

Flutter.

9-1. Working with Futures
 Problem
You want to work with Future objects.

 Solution
Use then() and catchError() methods to handle results of Future

objects.

 Discussion
When using code from Flutter and Dart libraries, you may encounter

functions that return Future objects. Future<T> class from dart:async

library is a representation of delayed computations. A Future object

represents a potential value or error that will be available in the future.

When given a Future object, you can register callbacks to handle the value

or error once it is available. Future class is one of the basic building blocks

of asynchronous programming in Dart.

314

Given a Future object, there are three different cases regarding its

result:

• The computation never completes. No callbacks will be

invoked.

• The computation completes with a value. Value

callbacks are invoked with the value.

• The computation completes with an error. Error

callbacks are invoked with the error.

To register callbacks to a Future object, you can use then() method

to register a value callback and an optional error callback or use

catchError() method to register an error callback only. It’s recommended

to use then() method to only register a value callback. This is because if

an error callback is registered using onError parameter of then() method,

this error callback cannot handle the error thrown in the value callback.

Most of the time, you want the error callback to handle all possible errors.

If an error of a Future object is not handled by its error callbacks, this error

will be handled by the global handler.

In Listing 9-1, the Future object may complete with value 1 or an Error

object. Both value and error callbacks are registered to handle the result.

Listing 9-1. Use then() and catchError() methods to handle result

Future.delayed(

 Duration(seconds: 1),

 () {

 if (Random().nextBool()) {

 return 1;

 } else {

 throw Error();

 }

 },

Chapter 9 ServiCe interaCtion

315

).then((value) {

 print(value);

}).catchError((error) {

 print('error: $error');

});

Return values of then() and catchError() methods are also Future

objects. Given a Future object A, the result of invoking A.then(func) is

another Future object B. If the func callback runs successfully, the Future

B will complete with the return value of invoking func function. Otherwise,

Future B will complete with the error thrown when invoking func

function. Invoking B.catchError(errorHandler) returns a new Future

object C. The error handler can handle errors thrown in Future B, which

may be thrown in Future A itself or in its value handler. By using then()

and catchError() methods, Future objects form a chain of handling

asynchronous computations.

In Listing 9-2, multiple then() methods are chained together to

process the result in sequence.

Listing 9-2. Chained then() methods

Future.value(1)

 .then((value) => value + 1)

 .then((value) => value * 10)

 .then((value) => value + 2)

 .then((value) => print(value));

If you want to call functions when a future completes, you can use

whenComplete() method. Functions added using whenComplete() are

called when this future completes, no matter it completes with a value or

an error. The whenComplete() method is equivalent of a finally block

in other programming languages. The chain of then().catchError().

whenComplete() is equivalent of “try-catch-finally”.

Chapter 9 ServiCe interaCtion

316

Listing 9-3 shows an example of using whenComplete() method.

Listing 9-3. Using whenComplete()

Future.value(1).then((value) {

 print(value);

}).whenComplete(() {

 print('complete');

});

It’s possible for the computation of Future object to take a long time

to complete. You can use timeout() method to set the time limit on the

computation. When invoking timeout() method, you need to provide a

Duration object as the time limit and an optional onTimeout function to

provide the value when a timeout happens. The return value of timeout()

method is a new Future object. If the current Future object doesn’t

complete before the time limit, the result of calling onTimeout function is

the result of the new Future object. If no onTimeout function is provided,

the new Future object will complete with a TimeoutException when

current future is timed out.

In Listing 9-4, the Future object will complete in 5 seconds with value

1, but the time limit is set to 2 seconds. The value 10 returned by onTimeout

function will be used instead.

Listing 9-4. Use timeout() method

Future.delayed(Duration(seconds: 5), () => 1)

 .timeout(

 Duration(seconds: 2),

 onTimeout: () => 10,

)

 .then((value) => print(value));

Chapter 9 ServiCe interaCtion

317

9-2. Using async and await to Work
with Futures
 Problem
You want to work with Future objects like they are synchronous.

 Solution
Use async and await.

 Discussion
Future objects represent asynchronous computations. The usual way to

work with Future objects is registering callbacks to handle results. This

callback-based style may create a barrier for developers that are used to

synchronous operations. Using async and await is a syntax sugar in Dart to

make working with Future objects like normal synchronous operations.

Given a Future object, await can wait for its completion and return

its value. The code after the await can use the returned value directly, just

like it is the result of a synchronous call. When await is used, its enclosing

function must be marked as async. This means the function returns a

Future object.

In Listing 9-5, the return value of getValue() function is a Future

object. In calculate() function, await is used to get the return value of

getValue() function and assign to value variable. Since await is used,

calculate() function is marked as async.

Listing 9-5. Use async/await

Future<int> getValue() {

 return Future.value(1);

}

Chapter 9 ServiCe interaCtion

318

Future<int> calculate() async {

 int value = await getValue();

 return value * 10;

}

When await is used to handle Future objects, you can use try-catch-

finally to handle errors thrown in Future objects. This allows Future

objects to be used just like normal synchronous operations. Listing 9-6

shows an example of using try-catch-finally and await/async together.

Listing 9-6. Use try-catch-finally and await/async

Future<int> getErrorValue() {

 return Future.error('invalid value');

}

Future<int> calculateWithError() async {

 try {

 return await getErrorValue();

 } catch (e) {

 print(e);

 return 1;

 } finally {

 print('done');

 }

}

9-3. Creating Futures
 Problem
You want to create Future objects.

Chapter 9 ServiCe interaCtion

319

 Solution
Use Future constructors Future(), Future.delayed(), Future.sync(),

Future.value(), and Future.error() to create Future objects.

 Discussion
If you need to create Future objects, you can use its constructors,

Future(), Future.delayed(), Future.sync(), Future.value(), and

Future.error():

• Future() constructor creates a Future object that runs

the computation asynchronously.

• Future.delayed() constructor creates a Future object

that runs the computation after a delay specified using

a Duration object.

• Future.sync() constructor creates a Future object that

runs the computation immediately.

• Future.value() constructor creates a Future object

that completes with the given value.

• Future.error() constructor creates a Future object

that completes with the given error and optional stack

trace.

Listing 9-7 shows examples of using different Future constructors.

Listing 9-7. Create Future objects

Future(() => 1).then(print);

Future.delayed(Duration(seconds: 3), () => 1).then(print);

Future.sync(() => 1).then(print);

Future.value(1).then(print);

Future.error(Error()).catchError(print);

Chapter 9 ServiCe interaCtion

320

9-4. Working with Streams
 Problem
You want to work with a stream of events.

 Solution
Use Stream<T> class and its subclasses.

 Discussion
With Future class, we can represent a single value which may be available

in the future. However, we may also need to work with a sequence of events.

Stream<T> class in dart:async library represents a source of asynchronous

events. To help with this, the Future class has asStream() method to create

a Stream containing the result of the current Future object.

If you have experiences with Reactive Streams (www.reactive-

streams.org/), you may find Stream in Dart is a similar concept. There

can be three types of events in a stream:

• Data event represents actual data in the stream. These

events are also called elements in the stream.

• Error event represents errors occurred.

• Done event represents that the end of stream has

reached. No more events will be emitted.

To receive events from a stream, you can use the listen()

method to set up listeners. The return value of listen() method is

a StreamSubscription object representing the active subscription.

Depending on the number of subscriptions allowed on the stream, there

are two types of streams:

Chapter 9 ServiCe interaCtion

http://www.reactive-streams.org/
http://www.reactive-streams.org/

321

• A single-subscription stream allows only a single

listener during the whole lifecycle of the stream. It only

starts emitting events when a listener is set up, and it

stops emitting events when the listener unsubscribes.

• A broadcast stream allows any number of listeners.

Events are emitted when they are ready, even though

there are no subscribed listener.

Given a Stream object, the property isBroadcast can be used to check

whether it is a broadcast stream. You can use the asBroadcastStream()

method to create a broadcast stream from a single-subscription stream.

 Stream Subscription

Table 9-1 shows parameters of listen() method. You can provide any

number of handlers for different events and ignore those uninterested

events.

Table 9-1. Parameters of listen() method

Name Type Description

onData void (T event) handler of data events.

onError Function handler of error events.

onDone void () handler of done event.

cancelOnError bool Whether to cancel the subscription when

the first error event is emitted.

In Listing 9-8, handlers for three types of events are provided.

Chapter 9 ServiCe interaCtion

322

Listing 9-8. Use listen() method

Stream.fromIterable([1, 2, 3]).listen(

 (value) => print(value),

 onError: (error) => print('error: $error'),

 onDone: () => print('done'),

 cancelOnError: true,

);

With the StreamSubscription object returned by listen()

method, you can manage the subscription. Table 9-2 show methods of

StreamSubscription class.

Table 9-2. Methods of StreamSubscription

Name Description

cancel() Cancels this subscription.

pause([Future

resumeSignal])

requests the stream to pause events emitting. if

resumeSignal is provided, the stream will resume when the

future completes.

resume() resumes the stream after a pause.

onData() replaces the data event handler.

onError() replaces the error event handler.

onDone() replaces the done event handler.

asFuture([E

futureValue])

returns a future that handles the completion of stream.

The asFuture() method is useful when you want to handle the

completion of a stream. Since a stream can complete normally or with an

error, using this method overwrites existing onDone and onError callbacks.

In the case of an error event, the subscription is cancelled, and the

Chapter 9 ServiCe interaCtion

323

returned Future object is completed with the error. In the case of a done

event, the Future object completes with the given futureValue.

 Stream Transformation

The power of stream is to apply various transformations on the stream to

get another stream or a value. Table 9-3 shows methods in Stream class

that return another Stream object.

Table 9-3. Stream transformations

Name Description

asyncExpand<E>(Stream<E>

convert(T event))

transforms each element into a stream

and concatenates elements in these

streams as the new stream.

asyncMap<E>(FutureOr<E>

convert(T event))

transforms each element into a new

event.

distinct([bool equals

(T previous, T next)])

Skips duplicate elements.

expand<S>(Iterable<S>

convert(T element))

transforms each element into a

sequence of elements.

handleError(Function onError,

{ bool test(dynamic error) })

handles errors in the stream.

map<S>(S convert(T event)) transforms each element into a new

event.

skip(int count) Skips elements in the stream.

skipWhile(bool test

(T element))

Skips elements while they match the

predicate.

(continued)

Chapter 9 ServiCe interaCtion

324

Listing 9-9 shows examples of using stream transformations. Code

below each statement shows the result of the execution.

Listing 9-9. Stream transformations

Stream.fromIterable([1, 2, 3]).asyncExpand((int value) {

 return Stream.fromIterable([value * 5, value * 10]);

}).listen(print);

// -> 5, 10, 10, 20, 15, 30

Stream.fromIterable([1, 2, 3]).expand((int value) {

 return [value * 5, value * 10];

}).listen(print);

// -> 5, 10, 10, 20, 15, 30

Stream.fromIterable([1, 2, 3]).asyncMap((int value) {

 return Future.delayed(Duration(seconds: 1), () => value * 10);

Table 9-3. (continued)

Name Description

take(int count) takes only the first count elements from

the stream.

takeWhile(bool test

(T element))

takes elements while they match the

predicate.

timeout(Duration timeLimit, {

void onTimeout(EventSink<T>

sink) })

handles error when the time between

two events exceeds the time limit.

transform<S>(StreamTransformer

<T, S> streamTransformer)

transforms the stream.

where(bool test(T event)) Filters elements in the stream.

Chapter 9 ServiCe interaCtion

325

}).listen(print);

// -> 10, 20, 30

Stream.fromIterable([1, 2, 3]).map((value) => value * 10).

listen(print);

// -> 10, 20, 30

Stream.fromIterable([1, 1, 2]).distinct().listen(print);

// -> 1, 2

Stream.fromIterable([1, 2, 3]).skip(1).listen(print);

// -> 2, 3

Stream.fromIterable([1, 2, 3])

 .skipWhile((value) => value % 2 == 1)

 .listen(print);

// -> 2, 3

Stream.fromIterable([1, 2, 3]).take(1).listen(print);

// -> 1

Stream.fromIterable([1, 2, 3])

 .takeWhile((value) => value % 2 == 1)

 .listen(print);

// -> 1

Stream.fromIterable([1, 2, 3]).where((value) => value % 2 ==

1).listen(print);

// -> 1, 3

There are other methods in Stream class that return a Future object;

see Table 9-4. These operations return a single value instead of a stream.

Chapter 9 ServiCe interaCtion

326

Table 9-4. Methods for single values

Name Description

any(bool test(T element)) Checks whether any element in the

stream matches the predicate.

every(bool test(T element)) Checks whether all elements in the

stream match the predicate.

contains(Object needle) Checks whether the stream contains the

given element.

drain<E>([E futureValue]) Discards all elements in the stream.

elementAt(int index) Gets the element at the given index.

firstWhere(bool test(T

element), { T orElse() })

Finds the first element matching the

predicate.

lastWhere(bool test(T

element), { T orElse() })

Finds the last element matching the

predicate.

singleWhere(bool test(T

element), { T orElse() })

Finds the single element matching the

predicate.

fold<S>(S initialValue,

S combine(S previous,

T element))

Combines elements in the stream into a

single value.

forEach(void action(T

element))

runs an action on each element of the

stream.

join([String separator = ""]) Combines the elements into a single

string.

pipe(StreamConsumer<T>

streamConsumer)

pipes the events into a StreamConsumer.

(continued)

Chapter 9 ServiCe interaCtion

327

Listing 9-10 shows examples of using methods in Table 9-4. Code

below each statement shows the result of the execution.

Listing 9-10. Methods return Future objects

Stream.fromIterable([1, 2, 3]).forEach(print);

// -> 1, 2, 3

Stream.fromIterable([1, 2, 3]).contains(1).then(print);

// -> true

Stream.fromIterable([1, 2, 3]).any((value) => value % 2 ==

0).then(print);

// -> true

Stream.fromIterable([1, 2, 3]).every((value) => value % 2 ==

0).then(print);

// -> false

Stream.fromIterable([1, 2, 3]).fold(0, (v1, v2) => v1 + v2).

then(print);

// -> 6

Stream.fromIterable([1, 2, 3]).reduce((v1, v2) => v1 * v2).

then(print);

// -> 6

Table 9-4. (continued)

Name Description

reduce(T combine(T previous,

T element))

Combines elements in the stream into a

single value.

toList() Collects the elements into a list.

toSet() Collects the elements into a set.

Chapter 9 ServiCe interaCtion

328

Stream.fromIterable([1, 2, 3])

 .firstWhere((value) => value % 2 == 1)

 .then(print);

// -> 1

Stream.fromIterable([1, 2, 3])

 .lastWhere((value) => value % 2 == 1)

 .then(print);

// -> 3

Stream.fromIterable([1, 2, 3])

 .singleWhere((value) => value % 2 == 1)

 .then(print);

// -> Unhandled exception: Bad state: Too many elements

9-5. Creating Streams
 Problem
You want to create Stream objects.

 Solution
Use different Stream constructors.

 Discussion
There are different Stream constructors to create Stream objects:

• Stream.empty() constructor creates an empty

broadcast stream.

• Stream.fromFuture() constructor creates a single-

subscription stream from a Future object.

Chapter 9 ServiCe interaCtion

329

• Stream.fromFutures() constructor creates a stream

from a list of Future objects.

• Stream.fromInterable() constructor creates a single-

subscription stream from elements of an Iterable

object.

• Stream.periodic() constructor creates a stream that

periodically emits data events at the given intervals.

Listing 9-11 shows examples of different Stream constructors.

Listing 9-11. Use Stream constructors

Stream.fromIterable([1, 2, 3]).listen(print);

Stream.fromFuture(Future.value(1)).listen(print);

Stream.fromFutures([Future.value(1), Future.error('error'),

Future.value(2)])

 .listen(print);

Stream.periodic(Duration(seconds: 1), (int count) => count * 2)

 .take(5)

 .listen(print);

Another way to create streams is using StreamController class.

A StreamController object can send different events to the stream it

controls. The default StreamController() constructor creates a single-

subscription stream, while StreamController.broadcast() constructor

creates a broadcast stream. With StreamController, you can generate

elements in stream programmatically.

In Listing 9-12, different events are sent to the stream controlled by the

StreamController object.

Chapter 9 ServiCe interaCtion

330

Listing 9-12. Use StreamController

StreamController<int> controller = StreamController();

controller.add(1);

controller.add(2);

controller.stream.listen(print, onError: print, onDone: () =>

print('done'));

controller.addError('error');

controller.add(3);

controller.close();

9-6. Building Widgets Based on Streams
and Futures
 Problem
You want to build a widget that updates its content based on the data in a

stream or a future.

 Solution
Use StreamBuilder<T> or FutureBuilder<T> widget.

 Discussion
Given a Steam or Future object, you may want to build a widget that

updates its content based on the data in it. You can use StreamBuilder<T>

widget to work with Stream objects and FutureBuilder<T> widget to work

with Future objects. Table 9-5 shows parameters of StreamBuilder<T>

constructor.

Chapter 9 ServiCe interaCtion

331

AsyncWidgetBuilder is a typedef of function type Widget

(BuildContext context, AsyncSnapshot<T> snapshot). AsyncSnapshot

class represents the snapshot of interaction with an asynchronous

computation. Table 9-6 shows properties of AsyncSnapshot<T> class.

Table 9-5. Parameters of StreamBuilder<T>

Name Type Description

stream Stream<T> the stream for the builder.

builder AsyncWidgetBuilder<T> Builder function for the widget.

initialData T initial data to build the widget.

Table 9-6. Properties of AsyncSnapshot<T>

Name Type Description

connectionState ConnectionState State of connection to the

asynchronous computation.

data T the latest data received by the

asynchronous computation.

error Object the latest error object received by the

asynchronous computation.

hasData bool Whether data property is not null.

hasError bool Whether error property is not null.

You can determine the connection state using the value of

connectionState. Table 9-7 shows values of ConnectionState enum.

Chapter 9 ServiCe interaCtion

332

When using StreamBuilder widget to build the UI, the typical way is to

return different widgets according to the connection state. For example, if

the connection state is waiting, then a process indicator may be returned.

In Listing 9-13, the stream has five elements that are generated

every second. If the connection state is none or waiting, a

CircularProgressIndicator widget is returned. If the state is active or

done, a Text widget is returned according to the value of data and error

properties.

Listing 9-13. Use StreamBuilder

class StreamBuilderPage extends StatelessWidget {

 final Stream<int> _stream =

 Stream.periodic(Duration(seconds: 1), (int value) =>

value * 10).take(5);

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Stream Builder'),

),

Table 9-7. Values of ConnectionState

Name Description

none not connected to the asynchronous computation.

waiting Connected to the asynchronous computation and waiting for

interaction.

active Connected to an active asynchronous computation.

done Connected to a terminated asynchronous computation.

Chapter 9 ServiCe interaCtion

333

 body: Center(

 child: StreamBuilder(

 stream: _stream,

 initialData: 0,

 builder: (BuildContext context, AsyncSnapshot<int>

snapshot) {

 switch (snapshot.connectionState) {

 case ConnectionState.none:

 case ConnectionState.waiting:

 return CircularProgressIndicator();

 case ConnectionState.active:

 case ConnectionState.done:

 if (snapshot.hasData) {

 return Text('${snapshot.data ?? "}');

 } else if (snapshot.hasError) {

 return Text(

 '${snapshot.error}',

 style: TextStyle(color: Colors.red),

);

 }

 }

 return null;

 },

),

),

);

 }

}

The usage of FutureBuilder widget is similar with StreamBuilder

widget. When using a FutureBuilder with a Future object, you can

convert the Future object to a Stream object using asStream() method

first, then use StreamBuilder with the converted Stream object.

Chapter 9 ServiCe interaCtion

334

In Listing 9-14, we use a different way to build the UI. Instead of

checking the connection state, hasData and hasError properties are used

to check the status.

Listing 9-14. Use FutureBuilder

class FutureBuilderPage extends StatelessWidget {

 final Future<int> _future = Future.delayed(Duration(seconds: 1),

() {

 if (Random().nextBool()) {

 return 1;

 } else {

 throw 'invalid value';

 }

 });

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Future Builder'),

),

 body: Center(

 child: FutureBuilder(

 future: _future,

 builder: (BuildContext context, AsyncSnapshot<int>

snapshot) {

 if (snapshot.hasData) {

 return Text('${snapshot.data}');

 } else if (snapshot.hasError) {

 return Text(

 '${snapshot.error}',

 style: TextStyle(color: Colors.red),

Chapter 9 ServiCe interaCtion

335

);

 } else {

 return CircularProgressIndicator();

 }

 },

),

),

);

 }

}

9-7. Handle Simple JSON Data
 Problem
You want to have a simple way to handle JSON data.

 Solution
Use jsonEncode() and jsonDecode() functions from dart:convert

library.

 Discussion
JSON is a popular data format for web services. To interact with backend

services, you may need to handle JSON data in two scenarios:

• JSON data serialization converts objects in Dart to

JSON strings.

• JSON data deserialization converts JSON strings to

objects in Dart.

Chapter 9 ServiCe interaCtion

336

For both scenarios, if you only need to handle simple JSON data

occasionally, then using jsonEncode() and jsonDecode() functions

from dart:convert library is a good choice. The jsonEncode() function

converts Dart objects to strings, while jsonDecode() function converts

strings to Dart objects. In Listing 9-15, data object is serialized to JSON

string first, then the JSON string is deserialized to Dart object again.

Listing 9-15. Handle JSON data

var data = {

 'name': 'Test',

 'count': 100,

 'valid': true,

 'list': [

 1,

 2,

 {

 'nested': 'a',

 'value': 123,

 },

],

};

String str = jsonEncode(data);

print(str);

Object obj = jsonDecode(str);

print(obj);

The JSON encoder in dart:convert library only supports a limited

number of data types, including numbers, strings, booleans, null, lists,

and maps with string keys. To encode other types of objects, you need to

use the toEncodable parameter to provide a function which converts the

object to an encodable value first. The default toEncodable function calls

Chapter 9 ServiCe interaCtion

337

toJson() method on the object. It’s a common practice to add toJson()

method to custom classes that need to be serialized as JSON strings.

In Listing 9-16, toJson() method of ToEncode class returns a list which

will be used as the input of JSON serialization.

Listing 9-16. Use toJson() function

class ToEncode {

 ToEncode(this.v1, this.v2);

 final String v1;

 final String v2;

 Object toJson() {

 return [v1, v2];

 }

}

print(jsonEncode(ToEncode('v1', 'v2')));

If you want to have indent in the serialized JSON strings, you need to

use JsonEncoder class directly. In Listing 9-17, two spaces are used as the

indent.

Listing 9-17. Add indent

String indentString = JsonEncoder.withIndent(' ').

convert(data);

print(indentString);

9-8. Handle Complex JSON Data
 Problem
You want to have a type-safe way to handle JSON data.

Chapter 9 ServiCe interaCtion

338

 Solution
Use json_annotation and json_serializable libraries.

 Discussion
Using jsonEncode() and jsonDecode() functions from dart:convert

library can easily work with simple JSON data. When the JSON data has a

complicated structure, using these two functions is not quite convenient.

When deserializing JSON strings, the results are usually lists or maps. If the

JSON data has a nested structure, it’s not easy to extract the values from

lists or maps. When serializing objects, you need to add toJson() methods

to these classes to build the lists or maps. These tasks can be simplified

using code generation with json_annotation and json_serializable

libraries.

The json_annotation library provides annotations to customize JSON

serialization and deserialization behavior. The json_serializable library

provides the build process to generate code that handles JSON data. To

use these two libraries, you need to add them into pubspec.yaml file. In

Listing 9-18, json_serializable library is added to dependencies, while

json_serializable library is added to dev_dependencies.

Listing 9-18. Add json_annotation and json_serializable

dependencies:

 json_annotation: ^2.0.0

dev_dependencies:

 build_runner: ^1.0.0

 json_serializable: ^2.0.0

In Listing 9-19, Person class is in the json_serialize.dart file. The

annotation @JsonSerializable() means generating code for Person

Chapter 9 ServiCe interaCtion

339

class. The generated code is in the json_serialize.g.dart file. Functions

_$PersonFromJson() and _$PersonToJson() used in Listing 9-19 come

from the generated file. The _$PersonFromJson() function is used in the

Person.fromJson() constructor, while _$PersonToJson() function is used

in the toJson() method.

Listing 9-19. Use json_serializable

import 'package:json_annotation/json_annotation.dart';

part 'json_serialize.g.dart';

@JsonSerializable()

class Person {

 Person({this.firstName, this.lastName, this.email});

 final String firstName;

 final String lastName;

 final String email;

 factory Person.fromJson(Map<String, dynamic> json) =>

_$PersonFromJson(json);

 Map<String, dynamic> toJson() => _$PersonToJson(this);

}

To generate the code, you need to run flutter packages pub run

build_runner build command. Listing 9-20 shows the generated file.

Listing 9-20. Generated code to handle JSON data

part of 'json_serialize.dart';

Person _$PersonFromJson(Map<String, dynamic> json) {

 return Person(

 firstName: json['firstName'] as String,

Chapter 9 ServiCe interaCtion

340

 lastName: json['lastName'] as String,

 email: json['email'] as String);

}

Map<String, dynamic> _$PersonToJson(Person instance) =>

<String, dynamic>{

 'firstName': instance.firstName,

 'lastName': instance.lastName,

 'email': instance.email

 };

JsonSerializable annotation has different properties to customize

the behavior; see Table 9-8.

Table 9-8. Properties of JsonSerializable

Name Default value Description

anyMap false When true, use Map as the map type;

otherwise, Map<String, dynamic> is

used.

checked false Whether to add extra checks to validate

data types.

createFactory true Whether to generate the function that

converts maps to objects.

createToJson true Whether to generate the function that can

be used as toJson() function.

disallow

UnrecognizedKeys

false When true, unrecognized keys are treated

as an error; otherwise, they are ignored.

explicitToJson false When true, generated toJson() function

uses toJson on nested objects.

(continued)

Chapter 9 ServiCe interaCtion

341

Table 9-8. (continued)

Name Default value Description

fieldRename FieldRename.

none

Strategy to convert names of class fields

to JSon map keys.

generateTo

JsonFunction

true When true, generate top-level function;

otherwise, generate a mixin class with

toJson() function.

includeIfNull true Whether to include fields with null values.

nullable true Whether to handle null values gracefully.

useWrappers false Whether to use wrapper classes to

minimize the usage of Map and List

instances during serialization.

The generateToJsonFunction property determines how toJson()

functions are generated. When the value is true, top-level functions

like _$PersonToJson() in Listing 9-20 will be generated. In Listing 9-21,

generateToJsonFunction property is set to false for User class.

Listing 9-21. User class

@JsonSerializable(

 generateToJsonFunction: false,

)

class User extends Object with _$UserSerializerMixin {

 User(this.name);

 final String name;

}

Chapter 9 ServiCe interaCtion

342

In Listing 9-22, instead of a function, the _$UserSerializerMixin class

is generated with toJson() method. User class in Listing 9-21 only needs

to use this mixin class.

Listing 9-22. Generated code for User class

User _$UserFromJson(Map<String, dynamic> json) {

 return User(json['name'] as String);

}

abstract class _$UserSerializerMixin {

 String get name;

 Map<String, dynamic> toJson() => <String, dynamic>{'name':

name};

}

JsonKey annotation specifies how a field is serialized. Table 9-9 shows

properties of JsonKey.

Table 9-9. Properties of JsonKey

Name Description

name JSon map key. if null, the field name is used.

nullable Whether to handle null values gracefully.

includeIfNull Whether to include this field if the value is null.

ignore Whether to ignore this field.

fromJson a function to deserialize this field.

toJson a function to serialize this field.

defaultValue the value to use as the default value.

required Whether this field is required in the JSon map.

disallowNullValue Whether to disallow null values.

Chapter 9 ServiCe interaCtion

343

Listing 9-23 shows an example of using JsonKey.

Listing 9-23. Use JsonKey

@JsonKey(

 name: 'first_name',

 required: true,

 includeIfNull: true,

)

final String firstName;

JsonValue annotation specifies the enum value used for serialization.

In Listing 9-24, JsonValue annotation is added to all enum values of Color.

Listing 9-24. Use JsonValue

enum Color {

 @JsonValue('R')

 Red,

 @JsonValue('G')

 Green,

 @JsonValue('B')

 Blue

}

JsonLiteral annotation reads JSON data from a file and converts the

content into an object. It allows easy access to content of static JSON data

files. In Listing 9-25, JsonLiteral annotation is added to the data getter.

_$dataJsonLiteral is the generated variable of the data in the JSON file.

Listing 9-25. Use JsonLiteral

@JsonLiteral('data.json', asConst: true)

Map get data => _$dataJsonLiteral;

Chapter 9 ServiCe interaCtion

344

9-9. Handling XML Data
 Problem
You want to handle XML data in Flutter apps.

 Solution
Use xml library.

 Discussion
XML is a popular data exchange format. You can use xml library to handle

XML data in Flutter apps. You need to add xml: ^3.3.1 to dependencies

of pubspec.yaml file first. Similar with JSON data, there are two usage

scenarios of XML data:

• Parse XML documents and query data.

• Build XML documents.

 Parse XML Documents

To parse XML documents, you need to use parse() function which takes a

XML string as the input and returns parsed XmlDocument object. With the

XmlDocument object, you can query and traverse the XML document tree to

extract data from it.

To query the document tree, you can use findElements() and

findAllElements() methods. These two methods accept a tag

name and an optional namespace as the parameters and return an

Iterable<XmlElement> object. The difference is that findElements()

method only searches direct children, while findAllElements() method

searches all descendant children. To traverse the document tree, you can

use properties shown in Table 9-10.

Chapter 9 ServiCe interaCtion

345

Table 9-10. Properties of XmlParent

Name Type Description

children XmlNodeList<XmlNode> Direct children of this node.

ancestors Iterable<XmlNode> ancestors of this node in

reverse document order.

descendants Iterable<XmlNode> Descendants of this node in

document order.

attributes List<XmlAttribute> attribute nodes of this node in

document order.

preceding Iterable<XmlNode> nodes preceding the opening

tag of this node in document

order.

following Iterable<XmlNode> nodes following the closing

tag of this node in document

order.

parent XmlNode parent of this node, can be

null.

firstChild XmlNode First child of this node, can be

null.

lastChild XmlNode Last child of this node, can be

null.

nextSibling XmlNode next sibling of this node, can

be null.

previousSibling XmlNode previous sibling of this node,

can be null.

root XmlNode root of the tree.

Chapter 9 ServiCe interaCtion

346

In Listing 9-26, the input XML string (excerpt from https://msdn.

microsoft.com/en-us/windows/desktop/ms762271) is parsed and queried

for the first book element. Then text of the title element and value of the

id attribute are extracted.

Listing 9-26. XML document parsing and querying

String xmlStr = "'

 <?xml version="1.0"?>

 <catalog>

 <book id="bk101">

 <Author>Gambardella, Matthew</author>

 <title>XML Developer's Guide</title>

 <genre>Computer</genre>

 <price>44.95</price>

 <publish_date>2000-10-01</publish_date>

 <description>An in-depth look at creating applications

 with XML.</description>

 </book>

 <book id="bk102">

 <Author>Ralls, Kim</author>

 <title>Midnight Rain</title>

 <genre>Fantasy</genre>

 <price>5.95</price>

 <publish_date>2000-12-16</publish_date>

 <description>A former architect battles corporate

zombies, an evil sorceress, and her own childhood to

become queen of the world.</description>

 </book>

 </catalog>

"';

Chapter 9 ServiCe interaCtion

https://msdn.microsoft.com/en-us/windows/desktop/ms762271
https://msdn.microsoft.com/en-us/windows/desktop/ms762271

347

XmlDocument document = parse(xmlStr);

XmlElement firstBook = document.rootElement.

findElements('book').first;

String title = firstBook.findElements('title').single.text;

String id = firstBook.attributes

 .firstWhere((XmlAttribute attr) => attr.name.local == 'id')

 .value;

print('$id => $title');

 Build XML Documents

To build XML documents, you can use XmlBuilder class. XmlBuilder class

provides methods to build different components of XML documents; see

Table 9-11. With these methods, we can build XML documents in a top-

down fashion, which starts from the root element and build nested content

layer by layer.

Table 9-11. Methods of XmlBuilder

Name Description

element() Creates a XmlElement node with specified tag name,

namespaces, attributes, and nested content.

attribute() Creates a XmlAttribute node with specified name, value,

namespace, and type.

text() Creates a XmlText node with specified text.

namespace() Binds namespace prefix to the uri.

cdata() Creates a XmlCDATA node with specified text.

comment() Creates a XmlComment node with specified text.

processing() Creates a XmlProcessing node with specified target and

text.

Chapter 9 ServiCe interaCtion

348

After finishing the building, the build() method of XmlBuilder can be

used to build the XmlNode as the result. In Listing 9-27, the root element

is a note element with id attribute. Value of nest parameter is a function

which uses builder methods to build the content of the node element.

Listing 9-27. Use XmlBuilder

XmlBuilder builder = XmlBuilder();

builder.processing('xml', 'version="1.0"');

builder.element(

 'note',

 attributes: {

 'id': '001',

 },

 nest: () {

 builder.element('from', nest: () {

 builder.text('John');

 });

 builder.element('to', nest: () {

 builder.text('Jane');

 });

 builder.element('message', nest: () {

 builder

 ..text('Hello!')

 ..comment('message to send');

 });

 },

);

XmlNode xmlNode = builder.build();

print(xmlNode.toXmlString(pretty: true));

Listing 9-28 shows the built XML document by code in Listing 9-27.

Chapter 9 ServiCe interaCtion

349

Listing 9-28. Built XML document

<?xml version="1.0"?>

<note id="001">

 <from>John</from>

 <to>Jane</to>

 <message>Hello!

 <!--message to send-->

 </message>

</note>

9-10. Handling HTML Data
 Problem
You want to parse HTML document in Flutter apps.

 Solution
Use html library.

 Discussion
Even though JSON and XML data format are popular in Flutter apps, you

may still need to parse HTML document to extract data. This process is

called screen scraping. You can use html library to parse HTML document.

To use this library, you need to add html: ^0.13.4+1 to the dependencies

of pubspec.yaml file.

The parse() function parses HTML strings into Document objects. These

Document objects can be queried and manipulated using W3C DOM API.

In Listing 9-29, HTML string is parsed first, then getElementsByTagName()

Chapter 9 ServiCe interaCtion

350

method is used to get the li elements, and finally id attribute and text are

extracted from li elements.

Listing 9-29. Parse HTML document

import 'package:html/dom.dart';

import 'package:html/parser.dart' show parse;

void main() {

 String htmlStr = "'

 <li id="001">John

 <li id="002">Jane

 <li id="003">Mary

 "';

 Document document = parse(htmlStr);

 var users = document.getElementsByTagName('li').map((Element

element) {

 return {

 'id': element.attributes['id'],

 'name': element.text,

 };

 });

 print(users);

}

9-11. Sending HTTP Requests
 Problem
You want to send HTTP requests to backend services.

Chapter 9 ServiCe interaCtion

351

 Solution
Use HttpClient from dart:io library.

 Discussion
HTTP protocol is a popular choice to expose web services. The

representation can be JSON or XML. By using HttpClient class from

dart:io library, you can easily interact with backend services over HTTP.

To use HttpClient class, you need to choose a HTTP method first,

then prepare the HttpClientRequest object for the request, and process

the HttpClientResponse object for the response. HttpClient class has

different pairs of methods corresponding to different HTTP methods. For

example, get() and getUrl() methods are both used to send HTTP GET

requests. The difference is that get() method accepts host, port, and path

parameters, while getUrl() method accepts url parameter of type Uri.

You can see other pairs like post() and postUrl(), put() and putUrl(),

patch() and patchUrl(), delete() and deleteUrl(), and head() and

headUrl().

These methods return Future<HttpClientRequest> objects. You

need to chain the returned Future objects with then() method to

prepare HttpClientRequest object. For example, you can modify HTTP

request headers or write request body. The then() method needs to

return the value of HttpClientRequest.close() method, which is a

Future<HttpClientResponse> object. In the then() method of the

Future<HttpClientResponse> object, you can use this object to get

response body, headers, cookies, and other information.

In Listing 9-30, request.close() method is called directly in the

first then() method, because we don’t need to do anything to the

HttpClientRequest object. The _handleResponse() function decodes

Chapter 9 ServiCe interaCtion

352

HTTP response as UTF-8 strings and prints them out. HttpClientResponse

class implements Stream<List<int>>, so the response body can be read as

streams.

Listing 9-30. Send HTTP GET request

void _handleResponse(HttpClientResponse response) {

 response.transform(utf8.decoder).listen(print);

}

HttpClient httpClient = HttpClient();

httpClient

 .getUrl(Uri.parse('https://httpbin.org/get'))

 .then((HttpClientRequest request) => request.close())

 .then(_handleResponse);

If you need to send HTTP POST, PUT, and PATCH requests with body,

you can use HttpClientRequest.write() method to write the body; see

Listing 9-31.

Listing 9-31. Write HTTP request body

httpClient

 .postUrl(Uri.parse('https://httpbin.org/post'))

 .then((HttpClientRequest request) {

 request.write('hello');

 return request.close();

}).then(_handleResponse);

If you need to modify HTTP request headers, you can use the

HttpClientRequest.headers property to modify the HttpHeaders object;

see Listing 9-32.

Chapter 9 ServiCe interaCtion

353

Listing 9-32. Modify HTTP request headers

httpClient

 .getUrl(Uri.parse('https://httpbin.org/headers'))

 .then((HttpClientRequest request) {

 request.headers.set(HttpHeaders.userAgentHeader, 'my-agent');

 return request.close();

}).then(_handleResponse);

If you need to support HTTP basic authentication, you

can use HttpClient.addCredentials() method to add

HttpClientBasicCredentials objects; see Listing 9-33.

Listing 9-33. Basic authentication

String username = 'username', password = 'password';

Uri uri = Uri.parse('https://httpbin.org/basic-

auth/$username/$password');

httpClient.addCredentials(

 uri, null, HttpClientBasicCredentials(username, password));

httpClient

 .getUrl(uri)

 .then((HttpClientRequest request) => request.close())

 .then(_handleResponse);

9-12. Connecting to WebSocket
 Problem
You want to connect to WebSocket servers in Flutter apps.

Chapter 9 ServiCe interaCtion

354

 Solution
Use WebSocket class in dart:io library.

 Discussion
WebSockets are widely used in web apps to provide bidirectional

communications between browser and server. They can also provide

real-time updates of data in the backend. If you already have a WebSocket

server that interacts with the web app running in the browser, you may

also want the same feature to be available in Flutter apps. WebSocket class

in dart:io library can be used to implement the WebSocket connections.

The static WebSocket.connect() method connects to a WebSocket

server. You need to provide the server URL with scheme ws or wss. You can

optionally provide a list of subprotocols and a map of headers. The return

value of connect() method is a Future<WebSocket> object. WebSocket

class implements Stream class, so you can read data sent from server as

streams. To send data to the server, you can use add() and addStream()

methods.

In Listing 9-34, the WebSocket connects to the demo echo server.

By using listen() method to subscribe to the WebSocket object, we can

process data sent from the server. The two add() method calls send two

messages to the server.

Listing 9-34. Connect to WebSocket

WebSocket.connect('ws://demos.kaazing.com/echo').

then((WebSocket webSocket) {

 webSocket.listen(print, onError: print);

 webSocket.add('hello');

 webSocket.add('world');

 webSocket.close();

}).catchError(print);

Chapter 9 ServiCe interaCtion

355

9-13. Connecting to Socket
 Problem
You want to connect to socket servers.

 Solution
Use Socket class in dart:io library.

 Discussion
If you want to connect to socket servers in Flutter apps, you can use Socket

class from dart:io library. The static Socket.connect() method connects

to a socket server at specified host and port and returns a Future<Socket>

object. Socket class implements Stream<List<int>>, so you can read data

from server by subscribing to the stream. To send data to the server, you

can use add() and addStream() methods.

In Listing 9-35, a socket server is started on port 10080. This server

converts the received strings into uppercase and sends back the results.

Listing 9-35. Simple socket server

import 'dart:io';

import 'dart:convert';

void main() {

 ServerSocket.bind('127.0.0.1', 10080).then((serverSocket) {

 serverSocket.listen((socket) {

 socket.addStream(socket

 .transform(utf8.decoder)

 .map((str) => str.toUpperCase())

 .transform(utf8.encoder));

Chapter 9 ServiCe interaCtion

356

 });

 });

}

In Listing 9-36, Socket.connect() method is used to connect to the

socket server shown in Listing 9-35. Data received from the server is

printed out. Two strings are sent to the server.

Listing 9-36. Connect to socket server

void main() {

 Socket.connect('127.0.0.1', 10080).then((socket) {

 socket.transform(utf8.decoder).listen(print);

 socket.write('hello');

 socket.write('world');

 socket.close();

 });

}

9-14. Interacting JSON-Based REST
Services
 Problem
You want to use JSON-based REST services.

 Solution
Use HttpClient, json_serialize library, and FutureBuilder widget.

Chapter 9 ServiCe interaCtion

357

 Discussion
It’s a popular choice for mobile apps backend to expose services over

HTTP protocol with JSON as the representation. By using HttpClient,

json_serialize library, and FutureBuilder widget, you can build the UI

to work with these REST services. This recipe provides a concrete example

which combines content in Listings 9-6, 9-8, and 9-11.

This example uses GitHub Jobs API (https://jobs.github.com/api)

to get job listings on GitHub web site. In Listing 9-37, Job class represents

a job listing. In the JsonSerializable annotation, createToJson property

is set to false, because we only need to parse JSON response from the

API. The _parseDate function parses the string in created_at field of the

JSON object. You need to add intl library to use DateFormat class.

Listing 9-37. Job class

part 'github_jobs.g.dart';

DateFormat _dateFormat = DateFormat('EEE MMM dd HH:mm:ss

yyyy');

DateTime _parseDate(String str) =>

 _dateFormat.parse(str.replaceFirst(' UTC', "), true);

@JsonSerializable(

 createToJson: false,

)

class Job {

 Job();

 String id;

 String type;

 String url;

 @JsonKey(name: 'created_at', fromJson: _parseDate)

 DateTime createdAt;

Chapter 9 ServiCe interaCtion

https://jobs.github.com/api

358

 String company;

 @JsonKey(name: 'company_url')

 String companyUrl;

 @JsonKey(name: 'company_logo')

 String companyLogo;

 String location;

 String title;

 String description;

 @JsonKey(name: 'how-to-apply')

 String howToApply;

 factory Job.fromJson(Map<String, dynamic> json) =>

_$JobFromJson(json);

}

In Listing 9-38, a HttpClient object is used to send a HTTP

GET request to GitHub Jobs API and parse the JSON response using

jsonDecode() function. The Future object of type Future<List<Job>> is

used by FutureBuilder widget to build the UI. JobsList widget takes a

List<Job> object and displays the list using ListView widget.

Listing 9-38. Widget to show jobs

class GitHubJobsPage extends StatelessWidget {

 final Future<List<Job>> _jobs = HttpClient()

 .getUrl(Uri.parse('https://jobs.github.com/positions.

json'

 '?description=java&location=new+york'))

 .then((HttpClientRequest request) => request.close())

 .then((HttpClientResponse response) {

 return response.transform(utf8.decoder).join(").

then((String content) {

 return (jsonDecode(content) as List<dynamic>)

Chapter 9 ServiCe interaCtion

359

 .map((json) => Job.fromJson(json))

 .toList();

 });

 });

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('GitHub Jobs'),

),

 body: FutureBuilder<List<Job>>(

 future: _jobs,

 builder: (BuildContext context,

AsyncSnapshot<List<Job>> snapshot) {

 if (snapshot.hasData) {

 return JobsList(snapshot.data);

 } else if (snapshot.hasError) {

 return Center(

 child: Text(

 '${snapshot.error}',

 style: TextStyle(color: Colors.red),

),

);

 } else {

 return Center(

 child: CircularProgressIndicator(),

);

 }

 },

),

);

Chapter 9 ServiCe interaCtion

360

 }

}

class JobsList extends StatelessWidget {

 JobsList(this.jobs);

 final List<Job> jobs;

 @override

 Widget build(BuildContext context) {

 return ListView.separated(

 itemBuilder: (BuildContext context, int index) {

 Job job = jobs[index];

 return ListTile(

 title: Text(job.title),

 subtitle: Text(job.company),

);

 },

 separatorBuilder: (BuildContext context, int index) {

 return Divider();

 },

 itemCount: jobs.length,

);

 }

}

9-15. Interacting with gRPC Services
 Problem
You want to interact with gRPC services.

Chapter 9 ServiCe interaCtion

361

 Solution
Use grpc library.

 Discussion
gRPC (https://grpc.io/) is a high-performance, open-source universal

RPC framework. This recipe shows how to interact with gRPC services. The

gRPC service to interact is the greeter service from gRPC official examples

(https://github.com/grpc/grpc/tree/master/examples/node). You

need to start the gRPC server first.

To use this gRPC service in Flutter apps, you need to install Protocol

Buffers compiler (https://github.com/protocolbuffers/protobuf)

first. After downloading the release file for your platform and extracting

its content, you need to add the extracted bin directory to the PATH

environment variable. You can run protoc --version command to verify

the installation. The version used in this recipe is 3.7.1.

You also need to install Dart protoc plugin (https://github.com/

dart-lang/protobuf/tree/master/protoc_plugin). The easiest way to

install is to run the following command.

$ flutter packages pub global activate protoc_plugin

Because we use flutter packages to run the installation, the binary

file is put under the .pub-cache/bin directory of the Flutter SDK. You need

to add this path to PATH environment variable. The plugin requires dart

command to be available, so you also need to add bin/cache/dart-sdk/

bin directory of Flutter SDK to PATH environment variable. Now we can

use protoc to generate Dart files for interactions with the greeter service.

In the following command, lib/grpc/generated is the output path of

generated files. proto_file_path is the path of proto files. helloworld.

proto file contains the definition for greeter service. Libraries protobuf

and grpc also need to be added to the dependencies of pubspec.yaml file.

Chapter 9 ServiCe interaCtion

https://grpc.io/
https://github.com/grpc/grpc/tree/master/examples/node
https://github.com/protocolbuffers/protobuf
https://github.com/dart-lang/protobuf/tree/master/protoc_plugin
https://github.com/dart-lang/protobuf/tree/master/protoc_plugin

362

$ protoc --dart_out=grpc:lib/grpc/generated --proto_

path=<proto_file_path> <proto_file_path>/helloworld.proto

The generated helloworld.pbgrpc.dart file provides GreeterClient

class to interact with the service. In Listing 9-39, a ClientChannel is

created to connect to the gRPC server. The channel is required when

creating a GreeterClient object. The sayHello() method sends requests

to the server and receives responses.

Listing 9-39. Interact with gRPC service

import 'package:grpc/grpc.dart';

import 'generated/helloworld.pbgrpc.dart';

void main() async {

 final channel = new ClientChannel('localhost',

 port: 50051,

 options: const ChannelOptions(

 credentials: const ChannelCredentials.insecure()));

 final stub = new GreeterClient(channel);

 try {

 var response = await stub.sayHello(new HelloRequest()..name =

'John');

 print('Received: ${response.message}');

 } catch (e) {

 print('Caught error: $e');

 }

 await channel.shutdown();

}

Chapter 9 ServiCe interaCtion

363

9-16. Summary
This chapter focuses on different ways to interact with backend services,

including HTTP, WebSocket, Socket, and gRPC. Futures and Streams

play an important role in asynchronous computations. This chapter also

discusses how to handle JSON, XML, and HTML data. In the next chapter,

we’ll discuss state management in Flutter apps.

Chapter 9 ServiCe interaCtion

365© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_10

CHAPTER 10

State Management
When building Flutter apps, you need to manage the state when the apps

are running. The state may change due to user interactions or background

tasks. This chapter covers recipes that use different solutions for state

management in Flutter.

10-1. Managing State Using Stateful
Widgets
 Problem
You want to have a simple way to manage state in the UI.

 Solution
Create your own subclasses of StatefulWidget.

 Discussion
StatefulWidget class is the fundamental way in Flutter to manage state.

A stateful widget rebuilds itself when its state changes. If the state to

manage is simple, using stateful widgets is generally good enough. You

don’t need to use third-party libraries discussed in other recipes.

366

Stateful widgets use State objects to store the state. When creating

your own subclasses of StatefulWidget, you need to override

createState() method to return a State object. For each subclass

StatefulWidget, there will be a corresponding subclass of State class

to manage the state. The createState() method returns an object of the

corresponding subclass of State. The actual state is usually kept as private

variables of the subclass of State.

In the subclass of State, you need to implement build() method to

return a Widget object. When the state changes, the build() method will

be called to get the new widget to update the UI. To trigger the rebuild

of the UI, you need to call setState() method explicitly to notify the

framework. The parameter of setState() method is a VoidCallback

function that contains the logic to update the internal state. When

rebuilding, the build() method uses the latest state to create widget

configurations. Widgets are not updated but replaced when necessary.

SelectColor widget in Listing 10-1 is a typical example of stateful

widget. _SelectColorState class is the State implementation for

SelectColor widget. _selectedColor is the internal variable that

maintains the current selected color. The value of _selectedColor is used

by the DropdownButton widget to determine the selected option to render

and the Text widget to determine the text to display. In the onChanged

handler of DropdownButton, setState() method is called to update the

value of _selectedColor variable, which notifies the framework to run _

SelectColorState.build() method again to get the new widget configuration

to update the UI.

Listing 10-1. Example of stateful widget

class SelectColor extends StatefulWidget {

 @override

 _SelectColorState createState() => _SelectColorState();

}

Chapter 10 State ManageMent

367

class _SelectColorState extends State<SelectColor> {

 final List<String> _colors = ['Red', 'Green', 'Blue'];

 String _selectedColor;

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 DropdownButton(

 value: _selectedColor,

 items: _colors.map((String color) {

 return DropdownMenuItem(

 value: color,

 child: Text(color),

);

 }).toList(),

 onChanged: (value) {

 setState(() {

 _selectedColor = value;

 });

 },

),

 Text('Selected: ${_selectedColor ?? "}'),

],

);

 }

}

State objects have their own lifecycle. You can override different

lifecycle methods in subclasses of State to perform actions on different

stages. Table 10-1 shows these lifecycle methods.

Chapter 10 State ManageMent

368

Of the methods listed in Table 10-1, initState() and dispose()

methods are easy to understand. These two methods will only be called

once during the lifecycle. However, other methods may be invoked

multiple times.

The didChangeDependencies() method is typically used when

the state object uses inherited widgets. This method is called when an

inherited widget changes. Most of the time, you don’t need to override

this method, because the framework calls build() method automatically

after a dependency changes. Sometimes you may need to perform some

expensive tasks after a dependency changes. In this case, you should put

Table 10-1. Lifecycle methods of State

Name Description

initState() Called when this object is inserted into the

widgets tree. Should be used to perform

initialization of state.

didChangeDependencies() Called when a dependency of this object changes.

didUpdateWidget

(T oldWidget)

Called when the widget of this object changes. Old

widget is passed as a parameter.

reassemble() Called when the app is reassembled during

debugging. this method is only called during

development.

build(BuildContext

context)

Called when the state changes.

deactivate() Called when this object is removed from the

widgets tree.

dispose() Called when this object is removed from the

widgets tree permanently. this method is called

after deactivate().

Chapter 10 State ManageMent

369

the logic into didChangeDependencies() method instead of performing

the task in build() method.

The reassemble() method is only used during development, for

example, during hot reload. This method is not called in release builds.

Most of the time, you don’t need to override this method.

The didUpdateWidget() method is called when the state’s widget

changes. You should override this method if you need to perform

cleanup tasks on the old widget or reuse some state from the old widget.

For example, _TextFieldState class for TextField widget overrides

didUpdateWidget() method to initialize TextEditingController object

based on the value of the old widget.

The deactivate() method is called when the state object is removed

from the widgets tree. This state object may be inserted back to the widgets

tree at a different location. You should override this method if the build

logic depends on the widget’s location. For example, FormFieldState class

for FormField widget overrides deactivate() method to unregister the

current form field from the enclosing form.

In Listing 10-1, the whole content of the widget is built in the build()

method, so you can simply call setState() method in the onPressed

callback of DropdownButton. If the widget has a complex structure, you

can pass down a function that updates the state to the children widgets.

In Listing 10-2, the onPressed callback of RaisedButton is set by the

constructor parameter of CounterButton. When the CounterButton is

used in Counter widget, the provided handler function uses setState() to

update the state.

Listing 10-2. Pass state change function to descendant widget

class Counter extends StatefulWidget {

 @override

 _CounterState createState() => _CounterState();

}

Chapter 10 State ManageMent

370

class _CounterState extends State<Counter> {

 int count = 0;

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 CounterButton(() {

 setState(() {

 count++;

 });

 }),

 CounterText(count),

],

);

 }

}

class CounterText extends StatelessWidget {

 CounterText(this.count);

 final int count;

 @override

 Widget build(BuildContext context) {

 return Text('Value: ${count ?? "}');

 }

}

class CounterButton extends StatelessWidget {

 CounterButton(this.onPressed);

 final VoidCallback onPressed;

 @override

 Widget build(BuildContext context) {

Chapter 10 State ManageMent

371

 return RaisedButton(

 child: Text('+'),

 onPressed: onPressed,

);

 }

}

10-2. Managing State Using Inherited
Widgets
 Problem
You want to propagate state down the widgets tree.

 Solution
Create your own subclasses of InheritedWidget.

 Discussion
When using stateful widgets to manage state, the state is stored in State

objects. If a descendant widget needs to access the state, the state needs

to be passed down to it from the root of subtree, just like how count state

is passed in Listing 10-2. When the widget has a relatively deep subtree

structure, it’s inconvenient to add constructor parameters for passing the

state down. In this case, using InheritedWidget is a better choice.

When InheritedWidget is used, the method BuildContext.

inheritFromWidgetOfExactType() can get the nearest instance of a

particular type of inherited widget from the build context. Descendant

widgets can easily access state data stored in an inherited widget. When

inheritFromWidgetOfExactType() method is called, the build context

Chapter 10 State ManageMent

372

registers itself to the inherited widget. When the inherited widget changes,

the build context is rebuilt automatically to get the new values from

the inherited widget. This means no manual updates are required for

descendant widgets that use state from the inherited widget.

The Config class in Listing 10-3 represents the state. It has color and

fontSize properties. Config class overrides == operator and hashCode

property to implement correct equality check. The copyWith() method

can be used to create new instances of Config class by updating a partial

set of properties. The Config.fallback() constructor creates a Config

object with default values.

Listing 10-3. Config class for inherited widget

class Config {

 const Config({this.color, this.fontSize});

 const Config.fallback()

 : color = Colors.red,

 fontSize = 12.0;

 final Color color;

 final double fontSize;

 Config copyWith({Color color, double fontSize}) {

 return Config(

 color: color ?? this.color,

 fontSize: fontSize ?? this.fontSize,

);

 }

 @override

 bool operator ==(other) {

 if (other.runtimeType != runtimeType) return false;

 final Config typedOther = other;

Chapter 10 State ManageMent

373

 return color == typedOther.color && fontSize == typedOther.

fontSize;

 }

 @override

 int get hashCode => hashValues(color, fontSize);

}

The ConfigWidget in Listing 10-4 is an inherited widget. It keeps a

Config object as its internal state. The updateShouldNotify() method is

called to check whether registered build contexts should be notified after

the inherited widget changes. This is a performance optimization to avoid

unnecessary updates. The static of() method is a common practice to get

the inherited widget or the state associated with the inherited widget. The

of() method of ConfigWidget uses inheritFromWidgetOfExactType() to

get the nearest enclosing ConfigWidget instance from build context and

gets config property from the widget. If no ConfigWidget object is found,

the default Config instance is returned.

Listing 10-4. ConfigWidget as inherited widget

class ConfigWidget extends InheritedWidget {

 const ConfigWidget({

 Key key,

 @required this.config,

 @required Widget child,

 }) : super(key: key, child: child);

 final Config config;

 static Config of(BuildContext context) {

 final ConfigWidget configWidget =

 context.inheritFromWidgetOfExactType(ConfigWidget);

 return configWidget?.config ?? const Config.fallback();

 }

Chapter 10 State ManageMent

374

 @override

 bool updateShouldNotify(ConfigWidget oldWidget) {

 return config != oldWidget.config;

 }

}

In Listing 10-5, both ConfiguredText and ConfiguredBox widgets use

ConfigWidget.of(context) to get the Config object and use its properties

when building the UI.

Listing 10-5. Use ConfigWidget to get the Config object

class ConfiguredText extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 Config config = ConfigWidget.of(context);

 return Text(

 'Font size: ${config.fontSize}',

 style: TextStyle(

 color: config.color,

 fontSize: config.fontSize,

),

);

 }

}

class ConfiguredBox extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 Config config = ConfigWidget.of(context);

 return Container(

 decoration: BoxDecoration(color: config.color),

 child: Text('Background color: ${config.color}'),

Chapter 10 State ManageMent

375

);

 }

}

ConfigUpdater widget in Listing 10-6 is used to update the Config

object. It also uses ConfigWidget.of(context) to get the Config object

to update. The onColorChanged and onFontSizeIncreased callbacks are

used to trigger update of Config object.

Listing 10-6. ConfigUpdater to update Config object

typedef SetColorCallback = void Function(Color color);

class ConfigUpdater extends StatelessWidget {

 const ConfigUpdater({this.onColorChanged, this.

onFontSizeIncreased});

 static const List<Color> _colors = [Colors.red, Colors.green,

Colors.blue];

 final SetColorCallback onColorChanged;

 final VoidCallback onFontSizeIncreased;

 @override

 Widget build(BuildContext context) {

 Config config = ConfigWidget.of(context);

 return Column(

 children: <Widget>[

 DropdownButton(

 value: config.color,

 items: _colors.map((Color color) {

 return DropdownMenuItem(

 value: color,

 child: Text(color.toString()),

);

Chapter 10 State ManageMent

376

 }).toList(),

 onChanged: onColorChanged,

),

 RaisedButton(

 child: Text('Increase font size'),

 onPressed: onFontSizeIncreased,

)

],

);

 }

}

Now we can put these widgets together to build the whole UI. In

Listing 10-7, ConfiguredPage is a stateful widget with a Config object as

its state. ConfigUpdater widget is a child of ConfiguredPage to update

the Config object. ConfiguredPage constructor also has child parameter

to provide child widget that uses ConfigWidget.of(context) to get the

correct Config object. For the onColorChanged and onFontSizeIncreased

callbacks of ConfigWidget, setState() method is used to update the

state of ConfiguredPage widget and triggers update of ConfigWidget. The

framework notifies ConfigUpdater and other widgets to update with latest

value of Config object.

Listing 10-7. ConfiguredPage to use ConfigWidget

class ConfiguredPage extends StatefulWidget {

 ConfiguredPage({Key key, this.child}) : super(key: key);

 final Widget child;

 @override

 _ConfiguredPageState createState() => _ConfiguredPageState();

}

Chapter 10 State ManageMent

377

class _ConfiguredPageState extends State<ConfiguredPage> {

 Config _config = Config(color: Colors.green, fontSize: 16);

 @override

 Widget build(BuildContext context) {

 return ConfigWidget(

 config: _config,

 child: Column(

 children: <Widget>[

 ConfigUpdater(

 onColorChanged: (Color color) {

 setState(() {

 _config = _config.copyWith(color: color);

 });

 },

 onFontSizeIncreased: () {

 setState(() {

 _config = _config.copyWith(fontSize: _config.

fontSize + 1.0);

 });

 },

),

 Container(

 decoration: BoxDecoration(border: Border.all()),

 padding: EdgeInsets.all(8),

 child: widget.child,

),

],

),

);

 }

}

Chapter 10 State ManageMent

378

In Listing 10-8, ConfigWidgetPage widget uses ConfiguredPage widget

to wrap ConfiguredText and ConfiguredBox widgets.

Listing 10-8. ConfigWidgetPage to build the UI

class ConfigWidgetPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Inherited Widget'),

),

 body: ConfiguredPage(

 child: Column(

 children: <Widget>[

 ConfiguredText(),

 ConfiguredBox(),

],

),

),

);

 }

}

10-3. Managing State Using Inherited Model
 Problem
You want to get notified and rebuild UI based on aspects of changes.

 Solution
Create your own subclasses of InheritedModel.

Chapter 10 State ManageMent

379

 Discussion
If we take a closer look at the ConfiguredText and ConfiguredBox widgets

in Listing 10-5 of Recipe 10-2, we can see that ConfiguredBox widget

only depends on the color property of the Config object. If the fontSize

property changes, there is no need for ConfiguredBox widget to rebuild.

These unnecessary rebuilds may cause performance issues, especially if

the widget is complex.

InheritedModel widget allows you to divide a state into multiple

aspects. A build context can register to get notified only for a particular

aspect. When state changes in InheritedModel widget, only dependent

build contexts registered to matching aspects will be notified.

InheritedModel class extends from InheritedWidget class. It has

a type parameter to specify the type of aspect. ConfigModel class in

Listing 10-9 is the InheritedModel subclass for Config object. The type

of aspect is String. When implementing InheritedModel class, you still

need to override updateShouldNotify() method to determine whether

dependents should be notified. The updateShouldNotifyDependent()

method determines whether a dependent should be notified based on

the set of aspects it depends on. The updateShouldNotifyDependent()

method is only called when updateShouldNotify() method returns true.

For the ConfigModel, only “color” and “fontSize” aspects are defined. If the

dependent depends on the “color” aspect, then it’s notified only when the

color property of Config object changes. This is also applied to “fontSize”

aspect for fontSize property.

The static of() method has an extra aspect parameter to specify

the aspect the build context depends on. The static InheritedModel.

inheritFrom() method is used to make the build context depend on

specified aspect. When aspect is null, this method is the same as using

BuildContext.inheritFromWidgetOfExactType() method.

Chapter 10 State ManageMent

380

Listing 10-9. ConfigModel as InheritedModel

class ConfigModel extends InheritedModel<String> {

 const ConfigModel({

 Key key,

 @required this.config,

 @required Widget child,

 }) : super(key: key, child: child);

 final Config config;

 static Config of(BuildContext context, String aspect) {

 ConfigModel configModel =

 InheritedModel.inheritFrom(context, aspect: aspect);

 return configModel?.config ?? Config.fallback();

 }

 @override

 bool updateShouldNotify(ConfigModel oldWidget) {

 return config != oldWidget.config;

 }

 @override

 bool updateShouldNotifyDependent(

 ConfigModel oldWidget, Set<String> dependencies) {

 return (config.color != oldWidget.config.color &&

 dependencies.contains('color')) ||

 (config.fontSize != oldWidget.config.fontSize &&

 dependencies.contains('fontSize'));

 }

}

In Listing 10-10, ConfiguredModelText widget uses null as the

aspect, because it depends on both “color” and “fontSize” aspects.

Chapter 10 State ManageMent

381

ConfiguredModelBox widget uses color as the aspect. If font size is

updated, only ConfiguredModelText widget is rebuilt.

Listing 10-10. Use ConfigModel to get Config object

class ConfiguredModelText extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 Config config = ConfigModel.of(context, null);

 return Text(

 'Font size: ${config.fontSize}',

 style: TextStyle(

 color: config.color,

 fontSize: config.fontSize,

),

);

 }

}

class ConfiguredModelBox extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 Config config = ConfigModel.of(context, 'color');

 return Container(

 decoration: BoxDecoration(color: config.color),

 child: Text('Background color: ${config.color}'),

);

 }

}

Chapter 10 State ManageMent

382

10-4. Managing State Using Inherited
Notifier
 Problem
You want dependent widgets to rebuild based on notifications from

Listenable objects.

 Solution
Create your own subclasses of InheritedNotifier widget.

 Discussion
Listenable class is typically used to manage listeners and notify clients

for updates. You can use the same pattern to notify dependents to rebuild

with InheritedNotifier. InheritedNotifier widget also extends from

InheritedWidget class. When creating InheritedNotifier widgets, you

need to provide Listenable objects. When the Listenable object sends

notifications, dependents of this InheritedNotifier widget are notified

for rebuilding.

In Listing 10-11, ConfigNotifier uses ValueNotifier<Config> as the

type of Listenable. The static of() method gets the Config object from

ConfigNotifier object.

Listing 10-11. ConfigNotifier as InheritedNotifier

class ConfigNotifier extends InheritedNotifier<ValueNotifier

<Config>> {

 ConfigNotifier({

 Key key,

 @required notifier,

Chapter 10 State ManageMent

383

 @required Widget child,

 }) : super(key: key, notifier: notifier, child: child);

 static Config of(BuildContext context) {

 final ConfigNotifier configNotifier =

 context.inheritFromWidgetOfExactType(ConfigNotifier);

 return configNotifier?.notifier?.value ?? Config.

fallback();

 }

}

To use ConfigNotifier widget, you need to create a new instance of

ValueNotifier<Config>. To update the Config object, you can simply

set the value property to a new value. ValueNotifier object will send

notifications, which notify dependent widgets to rebuild.

Listing 10-12. ConfiguredNotifierPage to use ConfigNotifier

class ConfiguredNotifierPage extends StatelessWidget {

 ConfiguredNotifierPage({Key key, this.child}) : super(key:

key);

 final Widget child;

 final ValueNotifier<Config> _notifier =

 ValueNotifier(Config(color: Colors.green, fontSize: 16));

 @override

 Widget build(BuildContext context) {

 return ConfigNotifier(

 notifier: _notifier,

 child: Column(

 children: <Widget>[

 ConfigUpdater(

 onColorChanged: (Color color) {

Chapter 10 State ManageMent

384

 _notifier.value = _notifier.value.copyWith(color:

color);

 },

 onFontSizeIncreased: () {

 Config oldConfig = _notifier.value;

 _notifier.value =

 oldConfig.copyWith(fontSize: oldConfig.

fontSize + 1.0);

 },

),

 Container(

 decoration: BoxDecoration(border: Border.all()),

 padding: EdgeInsets.all(8),

 child: child,

),

],

),

);

 }

}

10-5. Managing State Using Scoped Model
 Problem
You want to have a simple solution to handle model changes.

 Solution
Use scoped_model package.

Chapter 10 State ManageMent

385

 Discussion
In Recipes 10-1, 10-2, 10-3, and 10-4, you have seen the usage

of StatefulWidget, InheritedWidget, InheritedModel, and

InheritedNotifier widgets to manage state. These widgets are provided

by Flutter framework. These widgets are low-level APIs, so they are

inconvenient to use in complex apps. The scoped_model package

(https://pub.dev/packages/scoped_model) is a library to allow easily

passing a data model from a parent widget down to its descendants. It’s

built on top of InheritedWidget, but with an easy-to-use API. To use this

package, you need to add scoped_model: ^1.0.1 to the dependencies

of pubspec.yaml file. We’ll use the same example as in Recipe 10-2 to

demonstrate the usage of scoped_model package.

Listing 10-13 shows the Config model using scoped_model package.

The Config class extends from Model class. It has private fields to store

the state. The setColor() and increaseFontSize() methods update

_color and _fontSize fields, respectively. These two methods use

notifyListeners() internally to notify descendant widgets to rebuild.

Listing 10-13. Config model as scoped model

import 'package:scoped_model/scoped_model.dart';

class Config extends Model {

 Color _color = Colors.red;

 double _fontSize = 16.0;

 Color get color => _color;

 double get fontSize => _fontSize;

 void setColor(Color color) {

 _color = color;

 notifyListeners();

 }

Chapter 10 State ManageMent

https://pub.dev/packages/scoped_model

386

 void increaseFontSize() {

 _fontSize += 1;

 notifyListeners();

 }

}

In Listing 10-14, ScopedModelText widget shows how to use the model

in descendant widgets. ScopedModelDescendant widget is used to get the

nearest enclosing model object. The type parameter determines the model

object to get. The builder parameter specified the build function to build

the widget. The build function has three parameters. The first parameter

of type BuildContext is common for build functions. The last parameter

is the model object. If a portion of the widget UI doesn’t rely on the model

and should not be rebuilt when model changes, you can specify it as the

child parameter of ScopedModelDescendant widget and access it in the

second parameter of the build function.

Listing 10-14. ScopedModelText uses ScopedModelDescendant

class ScopedModelText extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return ScopedModelDescendant<Config>(

 builder: (BuildContext context, Widget child, Config

config) {

 return Text(

 'Font size: ${config.fontSize}',

 style: TextStyle(

 color: config.color,

 fontSize: config.fontSize,

),

);

 },

Chapter 10 State ManageMent

387

);

 }

}

In Listing 10-15, ScopedModelUpdater widget simply uses setColor()

and increaseFontSize() methods to update the state.

Listing 10-15. ScopedModelUpdater to update Config object

class ScopedModelUpdater extends StatelessWidget {

 static const List<Color> _colors = [Colors.red, Colors.green,

Colors.blue];

 @override

 Widget build(BuildContext context) {

 return ScopedModelDescendant<Config>(

 builder: (BuildContext context, Widget child, Config

config) {

 return Column(

 children: <Widget>[

 DropdownButton(

 value: config.color,

 items: _colors.map((Color color) {

 return DropdownMenuItem(

 value: color,

 child: Text(color.toString()),

);

 }).toList(),

 onChanged: (Color color) {

 config.setColor(color);

 },

),

 RaisedButton(

Chapter 10 State ManageMent

388

 child: Text('Increase font size'),

 onPressed: () {

 config.increaseFontSize();

 },

)

],

);

 },

);

 }

}

ScopedModel widget in Listing 10-16 is the last piece to put

Model and ScopedModelDescendant together. The model parameter

specifies the model object managed by the ScopedModel object. All the

ScopedModelDescendant widgets under the ScopedModel object get the

same model object.

Listing 10-16. ScopedModelPage uses ScopedModel

class ScopedModelPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Scoped Model'),

),

 body: ScopedModel(

 model: Config(),

 child: Column(

 children: <Widget>[

 ScopedModelUpdater(),

 ScopedModelText()

Chapter 10 State ManageMent

389

],

),

),

);

 }

}

You can also use static ScopedModel.of() method to get the

ScopedModel object, then use its model property to get the model object.

10-6. Managing State Using Bloc
 Problem
You want to use Bloc pattern to manage state.

 Solution
Use bloc and flutter_bloc packages.

 Discussion
Bloc (Business Logic Component) is an architecture pattern to separate

presentation from business logic. Bloc was designed to be simple,

powerful, and testable. Let’s start from core concepts in Bloc.

States represent a part of the application’s state. When state changes,

UI widgets are notified to rebuild based on the latest state. Each

application has its own way to define states. Typically, you’ll use Dart

classes to describe states.

Events are sources of changes to states. Events can be generated by

user interactions or background tasks. For example, pressing a button may

generate an event that describes the intended action. When the response

Chapter 10 State ManageMent

390

of a HTTP request is ready, an event can also be generated to include the

response body. Events are typically described as Dart classes. Events may

also have payload carried with them.

When events are dispatched, handling these events may cause the

current state transits to a new state. UI widgets are then notified to rebuild

using the new state. An event transition consists of the current state, the

event, and the next state. If all state transitions are recorded, we can easily

track all user interactions and state changes. We can also implement time-

travelling debugging.

Now we can have a definition of Bloc. A Bloc component transforms

a stream of events into a stream of states. A Bloc has an initial state as

the state before any events are received. For each event, a Bloc has a

mapEventToState() function that takes a received event and returns a

stream of states to be consumed by the presentation layer. A Bloc also has

the dispatch() method to dispatch events to it.

In this recipe, we’ll use the GitHub Jobs API (https://jobs.github.

com/api) to get job listings on GitHub. The user can input a keyword for

search and see the results. To consume this, we will be using the http

package (https://pub.dev/packages/http). Add this package to your

pubspec.yaml file.

Let’s start from the states. Listing 10-17 shows classes for different

states. JobsState is the abstract base class for all state classes. JobsState

class extends from Equatable class in the equatable package. Equatable

class is used to provide implantations for == operator and hashCode

property. JobsEmpty is the initial state. JobsLoading means the job listing

data is still loading. JobsLoaded means job listing data is loaded. The

payload type of JobsLoaded event is List<Job>. JobsError means an error

occurred when fetching the data.

Chapter 10 State ManageMent

https://jobs.github.com/api
https://jobs.github.com/api
https://pub.dev/packages/http

391

Listing 10-17. Bloc states

import 'package:http/http.dart' as http;

abstract class JobsState extends Equatable {

 JobsState([List props = const []]) : super(props);

}

class JobsEmpty extends JobsState {}

class GetJobsEvent extends JobsEvent {

 GetJobsEvent({@required this.keyword})

 : assert(keyword != null),

 super([keyword]);

 final String keyword;

}

class GitHubJobsClient {

 Future<List<Job>> getJobs(keyword) async {

 final response = await http.get('https://jobs.github.com/

positions.json?description=${keyword}');

 if (response.statusCode != 200) {

 throw new Exception("Unable to fetch data");

 }else{

 var result = new List<Job>();

 final rawResult = json.decode(response.body);

 for(final jsonJob in rawResult){

 result.add(Job.fromJson(jsonJob));

 }

 }

 }

}

Chapter 10 State ManageMent

392

class JobsLoading extends JobsState {}

class JobsLoaded extends JobsState {

 JobsLoaded({@required this.jobs})

 : assert(jobs != null),

 super([jobs]);

 final List<Job> jobs;

}

class JobsError extends JobsState {}

Listing 10-18 shows the events. JobsEvent is the abstract base class for

event classes. GetJobsEvent class represents the event to get jobs data.

Listing 10-18. Bloc events

abstract class JobsEvent extends Equatable {

 JobsEvent([List props = const []]) : super(props);

}

class GetJobsEvent extends JobsEvent {

 GetJobsEvent({@required this.keyword})

 : assert(keyword != null),

 super([keyword]);

 final String keyword;

}

Listing 10-19 shows the Bloc. JobsBloc class extends from

Bloc<JobsEvent, JobsState> class. Type parameters of Bloc are event

and state classes. JobsEmpty is the initial state. In the mapEventToState()

method, if the event is GetJobsEvent, a JobsLoading state is emitted first

to the stream. Then GitHubJobsClient object is used to fetch the data.

If the data is fetched successfully, a JobsLoaded state is emitted with the

loaded data. Otherwise, a JobsError state is emitted instead.

Chapter 10 State ManageMent

393

Listing 10-19. Bloc

class JobsBloc extends Bloc<JobsEvent, JobsState> {

 JobsBloc({@required this.jobsClient}) : assert(jobsClient !=

null);

 final GitHubJobsClient jobsClient;

 @override

 JobsState get initialState => JobsEmpty();

 @override

 Stream<JobsState> mapEventToState(JobsEvent event) async* {

 if (event is GetJobsEvent) {

 yield JobsLoading();

 try {

 List<Job> jobs = await jobsClient.getJobs(event.

keyword);

 yield JobsLoaded(jobs: jobs);

 } catch (e) {

 yield JobsError();

 }

 }

 }

}

GitHubJobs class in Listing 10-20 is the widget to use the JobsBloc

class in Listing 10-19. The JobsBloc object is created in initState()

method and disposed in dispose() method. In the KeywordInput widget,

when user inputs the keyword in the text field and presses the search

button, a GetJobsEvent is dispatched to the JobsBloc object. In the

JobsView widget, BlocBuilder widget is used to build UI based on the

state in the Bloc. Here we check the actual type of JobsState and return

different widgets.

Chapter 10 State ManageMent

394

Listing 10-20. GitHub jobs widget using Bloc

class GitHubJobs extends StatefulWidget {

 GitHubJobs({Key key, @required this.jobsClient})

 : assert(jobsClient != null),

 super(key: key);

 final GitHubJobsClient jobsClient;

 @override

 _GitHubJobsState createState() => _GitHubJobsState();

}

class _GitHubJobsState extends State<GitHubJobs> {

 JobsBloc _jobsBloc;

 @override

 void initState() {

 super.initState();

 _jobsBloc = JobsBloc(jobsClient: widget.jobsClient);

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: KeywordInput(

 jobsBloc: _jobsBloc,

),

),

 Expanded(

 child: JobsView(

Chapter 10 State ManageMent

395

 jobsBloc: _jobsBloc,

),

),

],

);

 }

 @override

 void dispose() {

 _jobsBloc.dispose();

 super.dispose();

 }

}

class KeywordInput extends StatefulWidget {

 KeywordInput({this.jobsBloc});

 final JobsBloc jobsBloc;

 @override

 _KeywordInputState createState() => _KeywordInputState();

}

class _KeywordInputState extends State<KeywordInput> {

 final GlobalKey<FormFieldState<String>> _keywordFormKey =

GlobalKey();

 @override

 Widget build(BuildContext context) {

 return Row(

 children: <Widget>[

 Expanded(

 child: TextFormField(

 key: _keywordFormKey,

),

Chapter 10 State ManageMent

396

),

 IconButton(

 icon: Icon(Icons.search),

 onPressed: () {

 String keyword = _keywordFormKey.currentState?.

value ?? ";

 if (keyword.isNotEmpty) {

 widget.jobsBloc.dispatch(GetJobsEvent(keyword:

keyword));

 }

 },

),

],

);

 }

}

class JobsView extends StatelessWidget {

 JobsView({this.jobsBloc});

 final JobsBloc jobsBloc;

 @override

 Widget build(BuildContext context) {

 return BlocBuilder(

 bloc: jobsBloc,

 builder: (BuildContext context, JobsState state) {

 if (state is JobsEmpty) {

 return Center(

 child: Text('Input keyword and search'),

);

 } else if (state is JobsLoading) {

 return Center(

Chapter 10 State ManageMent

397

 child: CircularProgressIndicator(),

);

 } else if (state is JobsError) {

 return Center(

 child: Text(

 'Failed to get jobs',

 style: TextStyle(color: Colors.red),

),

);

 } else if (state is JobsLoaded) {

 return JobsList(state.jobs);

 }

 },

);

 }

}

10-7. Managing State Using Redux
 Problem
You want to use Redux as the state management solution.

 Solution
Use redux and flux_redux packages.

 Discussion
Redux (https://redux.js.org/) is a popular library to manage state in

apps. Originated for React, Redux has been ported to different languages.

The redux package is a Dart implementation of Redux. The flux_redux

Chapter 10 State ManageMent

https://redux.js.org/

398

package allows using Redux store when building Flutter widgets. If you

have used Redux before, the same concepts are used in Flutter.

Redux uses a single global object as the state. This object is the single

source of truth for the app, and it’s called the store. Actions are dispatched

to the store to update the state. Reducer functions accept the current state

and an action as the parameters and return the next state. The next state

becomes the input of the next run of the reducer function. UI widgets can

select partial data from the store to build the content.

To use flutter_redux package, you need to add flutter_redux:

^0.5.3 to the dependencies of pubspec.yaml file. We’ll use the same

example of listing jobs on GitHub to demonstrate the usage of Redux in

Flutter.

Let’s start from the state. JobsState class in Listing 10-21 represents

the global state. The state has three properties, loading represents whether

the data is still loading, error represents whether an error occurred

when loading the data, and data presents the list of data. By using the

copyWith() method, we can new JobsState objects by updating some

properties.

Listing 10-21. JobsState for Redux

class JobsState extends Equatable {

 JobsState({bool loading, bool error, List<Job> data})

 : _loading = loading,

 _error = error,

 _data = data,

 super([loading, error, data]);

 final bool _loading;

 final bool _error;

 final List<Job> _data;

 bool get loading => _loading ?? false;

 bool get error => _error ?? false;

Chapter 10 State ManageMent

399

 List<Job> get data => _data ?? [];

 bool get empty => _loading == null && _error == null && _data

== null;

 JobsState copyWith({bool loading, bool error, List<Job>

data}) {

 return JobsState(

 loading: loading ?? this._loading,

 error: error ?? this._error,

 data: data ?? this._data,

);

 }

}

Listing 10-22 shows the actions. These actions trigger state changes.

Listing 10-22. Actions for Redux

abstract class JobsAction extends Equatable {

 JobsAction([List props = const []]) : super(props);

}

class LoadJobAction extends JobsAction {

 LoadJobAction({@required this.keyword})

 : assert(keyword != null),

 super([keyword]);

 final String keyword;

}

class JobLoadedAction extends JobsAction {

 JobLoadedAction({@required this.jobs})

 : assert(jobs != null),

 super([jobs]);

Chapter 10 State ManageMent

400

 final List<Job> jobs;

}

class JobLoadErrorAction extends JobsAction {}

Listing 10-23 shows the reducer function to update state according to

the action.

Listing 10-23. Reducer function for Redux

JobsState jobsReducers(JobsState state, dynamic action) {

 if (action is LoadJobAction) {

 return state.copyWith(loading: true);

 } else if (action is JobLoadErrorAction) {

 return state.copyWith(loading: false, error: true);

 } else if (action is JobLoadedAction) {

 return state.copyWith(loading: false, data: action.jobs);

 }

 return state;

}

Actions defined in Listing 10-22 can only be used for synchronous

operations. For example, if you want to dispatch the JobLoadedAction,

you need to have the List<Job> object ready first. However, the operation

to load jobs data is asynchronous. You’ll need to use thunk functions as

the middleware of Redux store. A thunk function takes the store as the

only parameter. It uses the store to dispatch actions. A thunk action can be

dispatched to the store, just like other normal actions.

The getJobs() function in Listing 10-24 takes a GitHubJobsClient

object and a search keyword as the parameters. This function returns a

thunk function of type ThunkAction<JobsState>. ThunkAction comes

from redux_thunk package. In the thunk function, a LoadJobAction is

dispatched first. Then GitHubJobsClient object is used to get the jobs

Chapter 10 State ManageMent

401

data. Depending on the result of data loading, a JobLoadedAction or

JobLoadErrorAction is dispatched.

Listing 10-24. Thunk function for Redux

ThunkAction<JobsState> getJobs(GitHubJobsClient jobsClient,

String keyword) {

 return (Store<JobsState> store) async {

 store.dispatch(LoadJobAction(keyword: keyword));

 try {

 List<Job> jobs = await jobsClient.getJobs(keyword);

 store.dispatch(JobLoadedAction(jobs: jobs));

 } catch (e) {

 store.dispatch(JobLoadErrorAction());

 }

 };

}

Now we can use the Redux store to build the widgets. You can use two

helper widgets to access data in the store. In Listing 10-25, StoreBuilder

widget is used to provide direct access to the store. The store is available

as the second parameter of the build function. StoreBuilder widget is

usually used when you need to dispatch actions. StoreConnector widget

allows using a converter function to transform the state first. When the

search icon is pressed, the getJobs() function in Listing 10-24 is called

first to create the thunk function, then dispatches the thunk function to the

store. When using StoreConnector widget, the converter function simply

gets the current state from the store. The state object is then used in build

function.

Chapter 10 State ManageMent

402

Listing 10-25. GitHub jobs widget using Redux store

class GitHubJobs extends StatefulWidget {

 GitHubJobs({

 Key key,

 @required this.store,

 @required this.jobsClient,

 }) : assert(store != null),

 assert(jobsClient != null),

 super(key: key);

 final Store<JobsState> store;

 final GitHubJobsClient jobsClient;

 @override

 _GitHubJobsState createState() => _GitHubJobsState();

}

class _GitHubJobsState extends State<GitHubJobs> {

 @override

 Widget build(BuildContext context) {

 return StoreProvider<JobsState>(

 store: widget.store,

 child: Column(

 children: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: KeywordInput(

 jobsClient: widget.jobsClient,

),

),

 Expanded(

 child: JobsView(),

Chapter 10 State ManageMent

403

),

],

),

);

 }

}

class KeywordInput extends StatefulWidget {

 KeywordInput({this.jobsClient});

 final GitHubJobsClient jobsClient;

 @override

 _KeywordInputState createState() => _KeywordInputState();

}

class _KeywordInputState extends State<KeywordInput> {

 final GlobalKey<FormFieldState<String>> _keywordFormKey =

GlobalKey();

 @override

 Widget build(BuildContext context) {

 return Row(

 children: <Widget>[

 Expanded(

 child: TextFormField(

 key: _keywordFormKey,

),

),

 StoreBuilder<JobsState>(

 builder: (BuildContext context, Store<JobsState>

store) {

 return IconButton(

 icon: Icon(Icons.search),

Chapter 10 State ManageMent

404

 onPressed: () {

 String keyword = _keywordFormKey.currentState?.

value ?? ";

 if (keyword.isNotEmpty) {

 store.dispatch(getJobs(widget.jobsClient,

keyword));

 }

 },

);

 },

),

],

);

 }

}

class JobsView extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return StoreConnector<JobsState, JobsState>(

 converter: (Store<JobsState> store) => store.state,

 builder: (BuildContext context, JobsState state) {

 if (state.empty) {

 return Center(

 child: Text('Input keyword and search'),

);

 } else if (state.loading) {

 return Center(

 child: CircularProgressIndicator(),

);

 } else if (state.error) {

 return Center(

Chapter 10 State ManageMent

405

 child: Text(

 'Failed to get jobs',

 style: TextStyle(color: Colors.red),

),

);

 } else {

 return JobsList(state.data);

 }

 },

);

 }

}

The last step is to create the store. The store in Listing 10-26 is created

with the reducer function, the initial state, and the thunk middleware from

redux_thunk package.

Listing 10-26. Create the store

final store = new Store<JobsState>(

 jobsReducers,

 initialState: JobsState(),

 middleware: [thunkMiddleware],

);

10-8. Managing State Using Mobx
 Problem
You want to use Mobx to manage state.

Chapter 10 State ManageMent

406

 Solution
Use mobx and flutter_mobx packages.

 Discussion
Mobx (https://mobx.js.org) is a state management library which

connects reactive data with the UI. MobX originates from developing web

apps using JavaScript. It’s also ported to Dart (https://mobx.pub). In

Flutter apps, we can use mobx and flutter_mobx packages to build apps

with Mobx. Mobx for Flutter uses build_runner package to generate code

for the store. The build_runner and mobx_codegen packages need to be

added as dev_dependencies to pubspec.yaml file.

Mobx uses observables to manage the state. The whole state of an app

consists of core state and derived state. Derived state is computed from

core state. Actions mutate observables to update the state. Reactions are

observers of the state and get notified whenever an observable they track is

changed. In Flutter app, the reactions are used to update the widgets.

Comparing to Redux for Flutter, Mobx uses code generation to simplify

the usage of store. You don’t need to write boilerplate code to create

actions. Mobx provides several annotations. You just annotate the code

with these annotations. This is similar with how json_annotation and

json_serialize packages work. We’ll use the same example of showing

job listings on GitHub to demonstrate the usage of Mobx. Add this package

to your pubspec.yaml file if it is not already present.

Listing 10-27 shows the basic code of jobs_store.dart file for the

Mobx store. This file uses the generated part file jobs_store.g.dart.

_JobsStore is the abstract class of the store for jobs. It implements Store

class from Mobx. Here we defined two observables using @observable

annotation. The first observable keyword is a simple string that manages

the current search keyword. The getJobsFuture observable is an

ObservableFuture<List<Job>> object that manages the asynchronous

Chapter 10 State ManageMent

https://mobx.js.org
https://mobx.pub

407

operation to get the jobs using API. Those properties marked using @

computed annotation are derived observables to check the status of

data loading. We also define two actions using @action annotation. The

setKeyword() action sets the getJobsFuture observable to an empty

state and keyword observable to the provided value. The getJobs()

action uses GitHubJobsClient.getJobs() method to load the data. The

getJobsFuture observable is updated to an ObservableFuture object

wrapping the returned future.

Listing 10-27. Mobx store

import 'package:meta/meta.dart';

import 'package:mobx/mobx.dart';

part 'jobs_store.g.dart';

class JobsStore = _JobsStore with _$JobsStore;

abstract class _JobsStore implements Store {

 _JobsStore({@required this.jobsClient}) : assert(jobsClient

!= null);

 final GitHubJobsClient jobsClient;

 @observable

 String keyword = ";

 @observable

 ObservableFuture<List<Job>> getJobsFuture = emptyResponse;

 @computed

 bool get empty => getJobsFuture == emptyResponse;

 @computed

 bool get hasResults =>

 getJobsFuture != emptyResponse &&

 getJobsFuture.status == FutureStatus.fulfilled;

Chapter 10 State ManageMent

408

 @computed

 bool get loading =>

 getJobsFuture != emptyResponse &&

 getJobsFuture.status == FutureStatus.pending;

 @computed

 bool get hasError =>

 getJobsFuture != emptyResponse &&

 getJobsFuture.status == FutureStatus.rejected;

 static ObservableFuture<List<Job>> emptyResponse =

ObservableFuture.value([]);

 List<Job> jobs = [];

 @action

 Future<List<Job>> getJobs() async {

 jobs = [];

 final future = jobsClient.getJobs(keyword);

 getJobsFuture = ObservableFuture(future);

 return jobs = await future;

 }

 @action

 void setKeyword(String keyword) {

 getJobsFuture = emptyResponse;

 this.keyword = keyword;

 }

}

The flutter packages pub run build_runner build command is

required to generate code. JobsStore class is the store to use. Listing 10- 28

shows the widget that uses the store. In the onPressed callback of the search

button, setKeyword() method is called first to update the keyword, then

Chapter 10 State ManageMent

409

getJobs() method is called to trigger the data loading. The Observer widget

uses a build function to build the UI using computed observables and fields

in JobsStore object. Whenever these observables change, Observer widget

rebuilds to update the UI.

Listing 10-28. GitHub jobs widget using Mobx store

class GitHubJobs extends StatefulWidget {

 GitHubJobs({Key key, @required this.jobsStore})

 : assert(jobsStore != null),

 super(key: key);

 final JobsStore jobsStore;

 @override

 _GitHubJobsState createState() => _GitHubJobsState();

}

class _GitHubJobsState extends State<GitHubJobs> {

 @override

 Widget build(BuildContext context) {

 JobsStore jobsStore = widget.jobsStore;

 return Column(

 children: <Widget>[

 Padding(

 padding: const EdgeInsets.all(8.0),

 child: KeywordInput(

 jobsStore: jobsStore,

),

),

 Expanded(

 child: JobsView(

 jobsStore: jobsStore,

Chapter 10 State ManageMent

410

),

),

],

);

 }

}

class KeywordInput extends StatefulWidget {

 KeywordInput({this.jobsStore});

 final JobsStore jobsStore;

 @override

 _KeywordInputState createState() => _KeywordInputState();

}

class _KeywordInputState extends State<KeywordInput> {

 final GlobalKey<FormFieldState<String>> _keywordFormKey =

GlobalKey();

 @override

 Widget build(BuildContext context) {

 return Row(

 children: <Widget>[

 Expanded(

 child: TextFormField(

 key: _keywordFormKey,

),

),

 IconButton(

 icon: Icon(Icons.search),

 onPressed: () {

 String keyword = _keywordFormKey.currentState?.

value ?? ";

Chapter 10 State ManageMent

411

 if (keyword.isNotEmpty) {

 widget.jobsStore.setKeyword(keyword);

 widget.jobsStore.getJobs();

 }

 },

),

],

);

 }

}

class JobsView extends StatelessWidget {

 JobsView({this.jobsStore});

 final JobsStore jobsStore;

 @override

 Widget build(BuildContext context) {

 return Observer(

 builder: (BuildContext context) {

 if (jobsStore.empty) {

 return Center(

 child: Text('Input keyword and search'),

);

 } else if (jobsStore.loading) {

 return Center(

 child: CircularProgressIndicator(),

);

 } else if (jobsStore.hasError) {

 return Center(

 child: Text(

 'Failed to get jobs',

 style: TextStyle(color: Colors.red),

Chapter 10 State ManageMent

412

),

);

 } else {

 return JobsList(jobsStore.jobs);

 }

 },

);

 }

}

10-9. Summary
This chapter discusses different state management solutions for

Flutter apps. In these solutions, StatefulWidget, InheritedWidget,

InheritedModel, and InheritedNotifier widgets are provided by Flutter

framework. Scoped model, Bloc, Redux, and Mobx libraries are third-party

solutions. You are free to choose whatever solution that suits best for your

requirement. In the next chapter, we’ll discuss animations in Flutter.

Chapter 10 State ManageMent

413© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_11

CHAPTER 11

Animations
Animations play an important role in mobile apps to provide visual

feedback for end users. This chapter covers recipes related to animations

in Flutter.

11-1. Creating Simple Animations
 Problem
You want to create simple animations.

 Solution
Use AnimationController class to create simple animations.

 Discussion
Animations in Flutter have a value and a status. The value of an animation

may change over time. Animations are represented using abstract

Animation<T> class. Animation class extends from Listenable class. You

can add listeners to Animation objects to get notified for changes of value

or status.

AnimationController class is a subclass of Animation<double> class.

AnimationController class provides control over the animation it creates.

To create an AnimationController object, you can provide a lower bound,

414

an upper bound, and a duration. The value of AnimationController object

changes from the lower bound to the upper bound over the duration. A

TickerProvider object is also required. For stateful widget, you can use

TickerProviderStateMixin or SingleTickerProviderStateMixin class as

the mixin of the state class. If only one AnimationController object is used

for the state, using SingleTickerProviderStateMixin is more efficient.

Listing 11-1 shows an example of using AnimationController

in stateful widgets to animate the size of an image. The

AnimationController object is created in the body of initState()

method and disposed in dispose() method. This is a typical pattern

of using AnimationController. _GrowingImageState class has the

SingleTickerProviderStateMixin mixin, so the AnimationController

constructor uses this object as the vsync parameter. In the listener of

AnimationController object, setState() method is called to trigger the

rebuild of the widget. The forward() method starts the running of the

animation in forward direction. In the build() method, the current value

of AnimationController object is used to control the size of the SizedBox

widget. In the runtime, the size of SizedBox widget grows from 0 to 400 in

10 seconds.

Listing 11-1. Using AnimationController

class GrowingImage extends StatefulWidget {

 @override

 _GrowingImageState createState() => _GrowingImageState();

}

class _GrowingImageState extends State<GrowingImage>

 with SingleTickerProviderStateMixin {

 AnimationController controller;

 @override

 void initState() {

Chapter 11 animations

415

 super.initState();

 controller = AnimationController(

 lowerBound: 0,

 upperBound: 400,

 duration: const Duration(seconds: 10),

 vsync: this,

)

 ..addListener(() {

 setState(() {});

 })

 ..forward();

 }

 @override

 Widget build(BuildContext context) {

 return SizedBox(

 width: controller.value,

 height: controller.value,

 child: Image.network('https://picsum.photos/400'),

);

 }

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

 }

}

Table 11-1 shows methods of AnimationController to control the

progress of animation.

Chapter 11 animations

416

An animation may be in different status. AnimationStatus enum

represents different statuses for an animation. Table 11-2 shows all values

of this enum. You can use addStatusListener() method to add a listener

to get notified when the status changes.

Table 11-1. Methods to control animation

Name Description

forward() starts the running of animation in forward direction.

reverse() starts the running of animation in backward direction.

stop() stops the running of animation.

repeat() starts the running of animation and restarts when it completes.

reset() sets the value to the lower bound and stops the animation.

Table 11-2. Values of AnimationStatus

Name Description

forward the animation is running in forward direction.

reverse the animation is running in backward direction.

dismissed the animation is stopped at the beginning.

completed the animation is stopped at the end.

In Listing 11-2, a status listener is added to the AnimationController

object. When the animation is in the completed status, it starts running in

backward direction.

Listing 11-2. Status listener

var controller = AnimationController(

 lowerBound: 0,

 upperBound: 300,

Chapter 11 animations

417

 duration: const Duration(seconds: 10),

 vsync: this,

)

 ..addListener(() {

 setState(() {});

 })

 ..addStatusListener((AnimationStatus status) {

 if (status == AnimationStatus.completed) {

 controller.reverse();

 }

 })

 ..forward();

Listing 11-1 shows a typical pattern to use animations with stateful

widgets. AnimatedWidget widget makes the use of animations much easier.

AnimatedWidget constructor requires a Listenable object. Whenever the

Listenable object emits a value, the widget rebuilds itself. Listing 11-3

shows an example of using AnimatedWidget. Although AnimatedWidget

class is typically used with Animation objects, you can still use it with any

Listenable object.

Listing 11-3. Example of AnimatedWidget

class AnimatedImage extends AnimatedWidget {

 AnimatedImage({Key key, this.animation})

 : super(key: key, listenable: animation);

 final Animation<double> animation;

 @override

 Widget build(BuildContext context) {

 return SizedBox(

 width: animation.value,

 height: animation.value,

Chapter 11 animations

418

 child: Image.network('https://picsum.photos/300'),

);

 }

}

11-2. Creating Animations Using Linear
Interpolation
 Problem
You want to create animations for other data types using linear

interpolation.

 Solution
Use Tween class and its subclasses.

 Discussion
AnimationController class uses double as its value type. Double values

are useful for animations with size or position. You may still need to

animate other types of data. For example, you can animate the background

color from red to green. For these scenarios, you can use Tween class and

its subclasses.

Tween class represents linear interpolation between a beginning and

ending value. To create a Tween object, you need to provide these two

values. Tween objects can provide values for animations to use. By using

the animate() method with another Animation object, you can create a

new Animation object that is driven by the provided Animation object but

uses values from the Tween object. Subclasses of Tween need to implement

Chapter 11 animations

419

the lerp() method that takes an animation value and returns the

interpolated value.

In Listing 11-4, AnimatedColor widget uses Animation<Color>

object to update the background color. ColorTween object is created with

beginning value Colors.red and ending value Colors.green.

Listing 11-4. Example of ColorTween

class AnimatedColorTween extends StatefulWidget {

 @override

 _AnimatedColorTweenState createState() => _

AnimatedColorTweenState();

}

class _AnimatedColorTweenState extends

State<AnimatedColorTween>

 with SingleTickerProviderStateMixin {

 AnimationController controller;

 Animation<Color> animation;

 @override

 void initState() {

 super.initState();

 controller = AnimationController(

 duration: const Duration(seconds: 10),

 vsync: this,

);

 animation =

 ColorTween(begin: Colors.red, end: Colors.green).

animate(controller);

 controller.forward();

 }

Chapter 11 animations

420

 @override

 Widget build(BuildContext context) {

 return AnimatedColor(

 animation: animation,

);

 }

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

 }

}

class AnimatedColor extends AnimatedWidget {

 AnimatedColor({Key key, this.animation})

 : super(key: key, listenable: animation);

 final Animation<Color> animation;

 @override

 Widget build(BuildContext context) {

 return Container(

 width: 300,

 height: 300,

 decoration: BoxDecoration(color: animation.value),

);

 }

}

There are many other subclasses of Tween for different objects,

including AlignmentTween, BorderTween, BoxConstraintsTween,

DecorationTween, EdgeInsetsTween, SizeTween, TextStyleTween, and

more.

Chapter 11 animations

421

11-3. Creating Curved Animations
 Problem
You want to create curved animations.

 Solution
Use CurvedAnimation or CurveTween class.

 Discussion
Except from linear animations, you can also create curved animations

that use curves to adjust the rate of changes. A curve is a mapping of unit

interval to another unit interval. Curve class and its subclasses are built-

in types of curves. The transform() method of Curve class returns the

mapped value of the curve for a given point. A curve must map the input

0.0 to 0.0 and 1.0 to 1.0. Table 11-3 shows different types of curves.

Table 11-3. Different types of curves

Name Description

Cubic Cubic curve defined by two control points. Created with

four double values as x and y coordinates of these two

points.

ElasticInCurve oscillation curve that grows in magnitude while

overshooting its bounds. Created with duration of the

oscillation.

ElasticOutCurve oscillation curve that shrinks in magnitude while

overshooting its bounds. Created with duration of the

oscillation.

(continued)

Chapter 11 animations

422

You can use either constructors of Curve subclasses in Table 11-3 to

create new curves or use constants in Curves class. Constants in Curves

class are generally good enough for most cases. For a Curve object, you can

use the flipped property to get a new curve that is the inversion of this one.

With Curve objects, you can create curved animations using

CurvedAnimation class. Table 11-4 shows parameters of CurvedAnimation

constructor. If reverseCurve parameter is null, the specified curve is used

in both directions.

Table 11-4. Parameters of CurvedAnimation

Name Type Description

parent Animation<double> the animation to apply the curve.

curve Curve the curve to use in forward direction.

reverseCurve Curve the curve to use in backward direction.

Name Description

ElasticInOutCurve oscillation curve that grows then shrinks in magnitude

while overshooting its bounds. Created with duration of

the oscillation.

Interval Created with begin, end, and a curve. its value is 0.0

until begin and 1.0 after end. Values between begin and

end are defined by the curve.

SawTooth a sawtooth curve that repeats the given number of times.

Threshold a curve that is 0.0 until the threshold, then jumps to 1.0.

Table 11-3. (continued)

In Listing 11-5, AnimatedBox widget uses the animation value to

determine the left position of the box. The CurvedAnimation object is

created with Curves.easeInOut curve.

Chapter 11 animations

423

Listing 11-5. CurvedAnimation

class CurvedPosition extends StatefulWidget {

 @override

 _CurvedPositionState createState() => _CurvedPositionState();

}

class _CurvedPositionState extends State<CurvedPosition>

 with SingleTickerProviderStateMixin {

 AnimationController controller;

 Animation<double> animation;

 @override

 void initState() {

 super.initState();

 controller = AnimationController(

 duration: const Duration(seconds: 5),

 vsync: this,

)..forward();

 animation = CurvedAnimation(parent: controller, curve:

Curves.easeInOut);

 }

 @override

 Widget build(BuildContext context) {

 return AnimatedBox(

 animation: animation,

);

 }

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

Chapter 11 animations

424

 }

}

class AnimatedBox extends AnimatedWidget {

 AnimatedBox({Key key, this.animation})

 : super(key: key, listenable: animation);

 final Animation<double> animation;

 final double _width = 400;

 @override

 Widget build(BuildContext context) {

 return Container(

 width: _width,

 height: 20,

 child: Stack(

 children: <Widget>[

 Positioned(

 left: animation.value * _width,

 bottom: 0,

 child: Container(

 width: 10,

 height: 10,

 decoration: BoxDecoration(color: Colors.red),

),

)

],

),

);

 }

}

CurveTween class uses a Curve object to transform the value of the

animation. You can use CurveTween objects when you need to chain a

curve animation with another Tween object.

Chapter 11 animations

425

11-4. Chaining Tweens
 Problem
You want to chain tweens.

 Solution
Use chain() method of Animatable class or drive() method of Animation

class.

 Discussion
Animatable is the superclass of Tween, CurveTween, and TweenSequence

classes. Given an Animatable object, you can use the chain() method

with another Animatable object as the parent. For a given input value,

the parent Animatable object is evaluated first, then the result is used as

the input of the current Animatable object. You can use multiple chain()

methods to create complex animations.

In Listing 11-6, the Tween object is chained with another CurveTween

object.

Listing 11-6. Chain tweens

var animation = Tween(begin: 0.0, end: 300.0)

 .chain(CurveTween(curve: Curves.easeOut))

 .animate(controller);

You can also use the drive() method of Animation class to chain an

Animatable object.

Chapter 11 animations

426

11-5. Creating Sequences of Tweens
 Problem
You want to create a sequence of tweens for different stages.

 Solution
Use TweenSequence class.

 Discussion
By using TweenSequence class, you can use different Animatable objects

for different stages of an animation. A TweenSequence object is defined

by a list of TweenSequenceItem objects. Each TweenSequenceItem object

has an Animatable object and a weight. The weight defines the relative

percentage of this TweenSequenceItem object in the whole duration of its

parent TweenSequence object.

In Listing 11-7, the animation is created with 40% of linear tween and

60% of curved tween.

Listing 11-7. Example of TweenSequence

var animation = TweenSequence([

 TweenSequenceItem(

 tween: Tween(begin: 0.0, end: 100.0),

 weight: 40,

),

 TweenSequenceItem(

 tween: Tween(begin: 100.0, end: 300.0)

 .chain(CurveTween(curve: Curves.easeInOut)),

 weight: 60,

)

]).animate(controller);

Chapter 11 animations

427

11-6. Running Simultaneous Animations
 Problem
You want to run simultaneous animations in AnimatedWidget.

 Solution
Use evaluate() method of Animatable class.

 Discussion
AnimatedWidget constructor only supports a single Animation object. If

you want to use multiple animations in an AnimatedWidget object, you

need to create multiple Tween objects in the AnimatedWidget object and

use evaluate() method to get the values for the Animation object.

In Listing 11-8, _leftTween and _bottomTween objects determine the

left and bottom properties, respectively.

Listing 11-8. Simultaneous animations

class AnimatedBox extends AnimatedWidget {

 AnimatedBox({Key key, this.animation})

 : super(key: key, listenable: animation);

 final Animation<double> animation;

 final double _width = 400;

 final double _height = 300;

 static final _leftTween = Tween(begin: 0, end: 1.0);

 static final _bottomTween = CurveTween(curve: Curves.ease);

 @override

 Widget build(BuildContext context) {

 return Container(

Chapter 11 animations

428

 width: _width,

 height: _height,

 margin: EdgeInsets.all(10),

 decoration: BoxDecoration(border: Border.all()),

 child: Stack(

 children: <Widget>[

 Positioned(

 left: _leftTween.evaluate(animation) * _width,

 bottom: _bottomTween.evaluate(animation) * _height,

 child: Container(

 width: 10,

 height: 10,

 decoration: BoxDecoration(color: Colors.red),

),

)

],

),

);

 }

}

11-7. Creating Staggered Animations
 Problem
You want to create sequential or overlapping animations.

 Solution
Use Interval class.

Chapter 11 animations

429

 Discussion
With TweenSequence class, you can create a sequence of tweens. However,

tweens specified in TweenSequence objects cannot be overlapping. To

create overlapping animations, you can use Interval curve to specify the

begin and end time of an animation.

In Listing 11-9, three Tween objects animate in different intervals

specified in Interval objects. These Tween objects are controlled by the

same Animation object.

Listing 11-9. Staggered animations

class AnimatedContainer extends StatelessWidget {

 AnimatedContainer({Key key, this.animation})

 : width = Tween(begin: 0.0, end: 300.0).

animate(CurvedAnimation(

 parent: animation,

 curve: Interval(0.0, 0.5, curve: Curves.

easeInOut))),

 height = Tween(begin: 0.0, end: 200.0).

animate(CurvedAnimation(

 parent: animation,

 curve: Interval(0.2, 0.7, curve: Curves.

bounceInOut))),

 backgroundColor = ColorTween(begin: Colors.red, end:

Colors.green)

 .animate(CurvedAnimation(

 parent: animation,

 curve: Interval(0.3, 1.0, curve: Curves.

elasticInOut))),

 super(key: key);

Chapter 11 animations

430

 final Animation<double> animation;

 final Animation<double> width;

 final Animation<double> height;

 final Animation<Color> backgroundColor;

 Widget _build(BuildContext context, Widget child) {

 return Container(

 width: width.value,

 height: height.value,

 decoration: BoxDecoration(color: backgroundColor.value),

 child: child,

);

 }

 @override

 Widget build(BuildContext context) {

 return AnimatedBuilder(

 animation: animation,

 builder: _build,

);

 }

}

11-8. Creating Hero Animations
 Problem
You want to animate an element across two routes.

 Solution
Use Hero widget.

Chapter 11 animations

431

 Discussion
When switching from the current route to a new route, it’s better to have

some elements in the new route to indicate the navigation context. For

example, the current route displays a list of items. When the user taps one

item to navigate to the details route, the new route should have a widget to

show brief information about the selected item.

Hero widget is shared between two routes. A Hero widget is created

with a tag and a child widget. The tag is the unique identifier of a Hero

widget. If the source route and target route both have a Hero widget with

the same tag, then during route transition, the Hero widget in source route

is animated to the location in the target route. Tags of Hero widget must be

unique in the same widgets tree.

In Listing 11-10, ImageHero class wraps a Hero widget that displays an

image in a SizedBox widget. The tag is set to the image’s URL.

Listing 11-10. Hero widget

class ImageHero extends StatelessWidget {

 ImageHero({Key key, this.imageUrl, this.width, this.height})

 : super(key: key);

 final String imageUrl;

 final double width;

 final double height;

 @override

 Widget build(BuildContext context) {

 return SizedBox(

 width: width,

 height: height,

 child: Hero(

 tag: imageUrl,

Chapter 11 animations

432

 child: Image.network(imageUrl),

),

);

 }

}

Listing 11-11 shows the current route that displays a list of images.

ImageHero widget is wrapped in a GridTile widget. Tapping an image

navigates to the new route with ImageView widget.

Listing 11-11. Current route with ImageHero

class ImagesPage extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Images'),

),

 body: GridView.count(

 crossAxisCount: 2,

 children: List.generate(8, (int index) {

 String imageUrl = 'https://picsum.

photos/300?random&$index';

 return GridTile(

 child: InkWell(

 onTap: () {

 Navigator.push(

 context,

 MaterialPageRoute(builder: (BuildContext

context) {

 return ImageView(imageUrl: imageUrl);

 }),

Chapter 11 animations

433

);

 },

 child: ImageHero(

 imageUrl: imageUrl,

 width: 300,

 height: 300,

),

),

);

 }),

),

);

 }

}

Listing 11-12 shows the ImageView widget. It also has an ImageHero

widget with the same tag as the selected image. This is required to make

the animation work.

Listing 11-12. New route with ImageHero

class ImageView extends StatelessWidget {

 ImageView({Key key, this.imageUrl}) : super(key: key);

 final String imageUrl;

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Image'),

),

 body: Row(

 children: <Widget>[

Chapter 11 animations

434

 ImageHero(

 width: 50,

 height: 50,

 imageUrl: imageUrl,

),

 Expanded(

 child: Text('Image Detail'),

),

],

),

);

 }

}

11-9. Using Common Transitions
 Problem
You want to have a simple way to use different types of Tween objects for

animations.

 Solution
Use different types of transitions.

 Discussion
It’s common to use different types of Tween objects to animate different

aspects of widgets. You can use AnimatedWidget or AnimatedBuilder class

to work with Tween objects. Flutter SDK provides several transition widgets

to make certain animations easy to use.

Chapter 11 animations

435

ScaleTransition widget animates the scale of a widget. To create

a ScaleTransition object, you need to provide an Animation<double>

object as the scale. The alignment parameter specifies the alignment of

the origin of scaling coordinates relative to the box. Listing 11-13 shows an

example of ScaleTransition.

Listing 11-13. Example of ScaleTransition

class ScaleBox extends StatelessWidget {

 ScaleBox({Key key, Animation<double> animation})

 : _animation = CurveTween(curve: Curves.ease).

animate(animation),

 super(key: key);

 final Animation<double> _animation;

 @override

 Widget build(BuildContext context) {

 return ScaleTransition(

 scale: _animation,

 alignment: Alignment.centerLeft,

 child: Container(

 height: 100,

 decoration: BoxDecoration(color: Colors.red),

),

);

 }

}

Another example of transition widget is FadeTransition widget that

animates the opacity. Listing 11-14 shows an example of FadeTransition.

Chapter 11 animations

436

Listing 11-14. Example of FadeTransition

class FadeBox extends StatelessWidget {

 FadeBox({Key key, Animation<double> animation})

 : _animation = CurveTween(curve: Curves.ease).

animate(animation),

 super(key: key);

 final Animation<double> _animation;

 @override

 Widget build(BuildContext context) {

 return FadeTransition(

 opacity: _animation,

 child: Container(

 height: 100,

 decoration: BoxDecoration(color: Colors.red),

),

);

 }

}

11-10. Creating Physics Simulations
 Problem
You want to use physics simulations.

 Solution
Use simulations in physics library.

Chapter 11 animations

437

 Discussion
Animations in the animation library are either linear or curved. The

physics library provides physics simulations, including springs, friction,

and gravity. Simulation class is the base class for all simulations. A

simulation is also changing over time. For a point of time, the method x()

returns the position, the method dx() returns the velocity, and isDone()

method returns whether the simulation is done. Given a Simulation

object, you can use animateWith() method of AnimationController class

to drive the animation using this simulation.

SpringSimulation class represents the simulation for a particle

attached to a spring. To create a SpringSimulation object, yon can provide

the parameters listed in Table 11-5.

Table 11-5. Parameters of SpringSimulation

Name Type Description

spring SpringDescription the description of a spring.

start double the start distance.

end double the end distance.

velocity double the initial velocity.

tolerance Tolerance magnitudes of differences for distances,

durations, and velocity to be considered

equal.

To create SpringDescription objects, you can use the

SpringDescription() constructor with parameters to specify

mass, stiffness, and damping coefficient. The SpringDescription.

withDampingRatio() constructor uses a damping ratio instead of damping

coefficient. Listing 11-15 shows an example of creating SpringSimulation

object.

Chapter 11 animations

438

Listing 11-15. Spring simulation

SpringSimulation _springSimulation = SpringSimulation(

 SpringDescription.withDampingRatio(

 mass: 1.0,

 stiffness: 50,

 ratio: 1.0,

),

 0.0,

 1.0,

 1.0)

..tolerance = Tolerance(distance: 0.01, velocity: double.

infinity);

An easier way to use spring simulation is using the fling() method

of AnimationController class. This method drives the animation with a

critically damped spring.

GravitySimulation class represents a simulation for a particle that

follows Newton’s second law of motion. Table 11-6 shows parameters of

GravitySimulation constructor.

Table 11-6. Parameters of GravitySimulation

Name Type Description

acceleration double acceleration of the particle.

distance double initial distance.

endDistance double end distance for the simulation to be done.

velocity double initial velocity.

In Listing 11-16, SimulationController widget uses a Simulation

object to drive the animation.

Chapter 11 animations

439

Listing 11-16. Use simulation with animation

typedef BuilderFunc = Widget Function(BuildContext,

Animation<double>);

class SimulationController extends StatefulWidget {

 SimulationController({Key key, this.simulation, this.

builder})

 : super(key: key);

 final Simulation simulation;

 final BuilderFunc builder;

 @override

 _SimulationControllerState createState() =>

_SimulationControllerState();

}

class _SimulationControllerState extends

State<SimulationController>

 with SingleTickerProviderStateMixin {

 AnimationController controller;

 @override

 void initState() {

 super.initState();

 controller = AnimationController(

 vsync: this,

)..animateWith(widget.simulation);

 }

 @override

 Widget build(BuildContext context) {

 return widget.builder(context, controller.view);

 }

Chapter 11 animations

440

 @override

 void dispose() {

 controller.dispose();

 super.dispose();

 }

}

11-11. Summary
This chapter covers recipes related to animations in Flutter.

AnimationController class is used to control animations. Subclasses

of Tween class create linear animations for different types of data.

AnimatedWidget and AnimatedBuilder are useful widgets that use

animations. In the next chapter, we’ll discuss integration with native

platform in Flutter.

Chapter 11 animations

441© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_12

CHAPTER 12

Platform Integration
In mobile apps, it’s common to integrate with the native platform. You can

write platform-specific code to use native platform API. There are a large

number of plugins to perform different tasks.

12-1. Reading and Writing Files
 Problem
You want to read and write files.

 Solution
Use File API.

 Discussion
In mobile apps, you may need to save files on the device. The dart:io

library provides files API to read and write files. File class has methods to

read content, write content, and query metadata of files. Operations with

file system can be synchronous or asynchronous. Most of these operations

have a pair of methods in File class. The asynchronous method returns

a Future object, while the synchronous method uses Sync as the name

suffix and returns the actual value. For example, readAsString() and

readAsStringSync() methods are the pair for read operation that returns

a string. Table 12-1 shows asynchronous methods of File class.

442

Table 12-1. Asynchronous methods of File

Name Description

copy(String newPath) Copy this file to a new path.

create({bool recursive:

false})

Create this file. If recursive is true, all

directories will be created.

open() Open the file for random access with a

RandomAccessFile object.

readAsBytes() Read the entire file content as a list of bytes.

readAsString({Encoding

encoding: utf8})

Read the entire file content as a string using

specified encoding.

readAsLines(({Encoding

encoding: utf8})

Read the entire file content as lines of text using

specified encoding.

writeAsBytes(List<int>

bytes)

Write a list of bytes to the file.

writeAsString(String

contents)

Write a string to the file.

rename(String newPath) Rename this file to a new path.

delete({bool recursive:

false})

Delete this file.

exists() Check whether this file exists.

stat() Return a FileStat object that describes the

file.

lastAccessed() Get the last accessed time of this file.

lastModified() Get the last modified time of this file.

length() Get the length of this file.

ChapteR 12 platfORm InteGRatIOn

443

Directory class represents directories in the file system. Given a

Directory object, list() or listSync() methods can be used to list files

and sub-directories.

To create File objects, you can use the default constructor with a

path. For Flutter apps, the path may be platform-specific. There are two

common places to store files for mobile apps:

• Temporary directory to store temporary files that may

be cleared at any time

• Documents directory to store files that are private to the

app and will only be cleared when the app is deleted

To get the platform-specific paths for these two locations, you

can use the path_provider package (https://pub.dev/packages/

path_provider). This package provides getTemporaryDirectory()

function to get the path of the temporary directory and

getApplicationDocumentsDirectory() function to get the application

documents directory.

In Listing 12-1, readConfig() method reads the config.txt file from

the application documents directory, while writeConfig() method writes

a string to the same file.

Listing 12-1. Read and write files

class ConfigFile {

 Future<File> get _configFile async {

 Directory directory = await

getApplicationDocumentsDirectory();

 return File('${directory.path}/config.txt');

 }

 Future<String> readConfig() async {

 return _configFile

 .then((file) => file.readAsString())

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/packages/path_provider
https://pub.dev/packages/path_provider

444

 .catchError((error) => 'default config');

 }

 Future<File> writeConfig(String config) async {

 File file = await _configFile;

 return file.writeAsString(config);

 }

}

12-2. Storing Key-Value Pairs
 Problem
You want to store type-safe key-value pairs.

 Solution
Use shared_preferences plugin.

 Discussion
You can use files API to store any data on the device. Using generic files

API means that you need to deal with data serialization and deserialization

yourself. If the data you need to store is simple key-value pairs, using

shared_preferences plugin (https://pub.dev/packages/shared_

preferences) is a better choice. This plugin provides a map-based API to

manage type-safe key-value pairs. The type of keys is always String. Only

several types can be used as values, including String, bool, double, int,

and List<String>.

To manage key-value pairs, you need to use the static

SharedPreferences.getInstance() method to get the SharedPreferences

object. Table 12-2 shows methods of SharedPreferences class. For each

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences

445

supported data type, there is a pair of methods to get and set the value.

For example, getBool() and setBool() methods are used to get and set

bool values.

In Listing 12-2, SharedPreferences class is used to read and write a

key-value pair.

Listing 12-2. Use SharedPreferences

class AppConfig {

 Future<SharedPreferences> _getPrefs() async {

 return await SharedPreferences.getInstance();

 }

 Future<String> getName() async {

 SharedPreferences prefs = await _getPrefs();

 return prefs.getString('name') ?? ";

 }

 Future<bool> setName(String name) async {

 SharedPreferences prefs = await _getPrefs();

Table 12-2. Methods of SharedPreference

Name Description

get(String key) Read the value for the specified key.

containsKey(String key) Check whether specified key exists.

getKeys() Get a set of keys.

remove(String key) Remove the pair with the specified key.

clear() Remove all pairs.

setString(String key, String

value)

Write a String value.

getString() Read a String value.

ChapteR 12 platfORm InteGRatIOn

446

 return prefs.setString('name', name);

 }

}

12-3. Writing Platform-Specific Code
 Problem
You want to write platform-specific code.

 Solution
Use platform channels to pass messages between Flutter app and the

underlying host platform.

 Discussion
In Flutter apps, most of code is written in platform agnostic Dart code.

Features provided by Flutter SDK are limited. Sometimes you may still need

to write platform-specific code to use native platform APIs. A generated

Flutter app already has platform-specific code in android and ios

directories. Code in these two directories is required to build native bundles.

Flutter uses message passing to call platform-specific APIs and get the

result back. Messages are passed through platform channels. Flutter code

sends messages to the host over a platform channel. Host code listens on

the platform channel and receives the message. It then uses platform-

specific API to generate the response and sends it back over the same

channel to the Flutter code. Messages passed are actually asynchronous

method calls.

In Flutter code, platform channels are created using MethodChannel

class. All channel names in an app must be unique. It’s recommended to

ChapteR 12 platfORm InteGRatIOn

447

use a domain name as the prefix of channel names. To send method calls

over a channel, these method calls must be encoded into binary format

before being sent, and results received are decoded into Dart values.

Encoding and decoding are done using subclasses of MethodCodec class:

• StandardMethodCodec class uses standard binary

encoding.

• JSONMethodCodec class uses UTF-8 JSON encoding.

MethodChannel constructor has name parameter to specify the channel

name and codec parameter to specify the MethodCodec object. The default

MethodCodec object used is a StandardMethodCodec object.

Given a MethodChannel object, the invokeMethod() method invokes

a method on the channel with specified arguments. The return value is a

Future<T> object. This Future object may complete with different values:

• It completes with the result if the method call succeeds.

• It completes with a PlatformException if the method

call fails.

• It completes with a MissingPluginException if the

method has not been implemented.

The invokeListMethod() method also invokes a method

but returns a Future<List<T>> object. The invokeMapMethod()

method invokes a method and returns a Future<Map<K, V>> object.

Both invokeListMethod() and invokeMapMethod() methods use

invokeMethod() internally, but add extra type cast.

In Listing 12-3, the getNetworkOperator method is invoked over the

channel and returns the network operator.

ChapteR 12 platfORm InteGRatIOn

448

Listing 12-3. Get network operator

class NetworkOperator extends StatefulWidget {

 @override

 _NetworkOperatorState createState() =>

_NetworkOperatorState();

}

class _NetworkOperatorState extends State<NetworkOperator> {

 static const channel = const MethodChannel('flutter-recipes/

network');

 String _networkOperator = ";

 @override

 void initState() {

 super.initState();

 _getNetworkOperator();

 }

 Future<void> _getNetworkOperator() async {

 String operator;

 try {

 operator = await channel.invokeMethod('getNetworkOperator

') ?? 'unknown';

 } catch (e) {

 operator = 'Failed to get network operator: ${e.

message}';

 }

 setState(() {

 _networkOperator = operator;

 });

 }

ChapteR 12 platfORm InteGRatIOn

449

 @override

 Widget build(BuildContext context) {

 return Container(

 child: Center(

 child: Text(_networkOperator),

),

);

 }

}

The handler of getNetworkOperator method call needs to be

implemented in both Android and iOS platforms. Listing 12-4 shows

the Java implementation. The getNetworkOperator() method uses

Android API to get network operator. In the method call handler of

the channel, if the method name is getNetworkOperator, the result of

getNetworkOperator() method is sent back as success response using

Result.success() method. If you want to send back error response, you

can use Result.error() method. If the method is unknown, you should

use Result.notImplemented() to mark the method as unimplemented.

Listing 12-4. Android implementation of getNetworkOperator

public class MainActivity extends FlutterActivity {

 private static final String CHANNEL = "flutter-recipes/

network";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 GeneratedPluginRegistrant.registerWith(this);

 new MethodChannel(getFlutterView(), CHANNEL)

 .setMethodCallHandler((methodCall, result) -> {

 if ("getNetworkOperator".equals(methodCall.method)) {

ChapteR 12 platfORm InteGRatIOn

450

 result.success(getNetworkOperator());

 } else {

 result.notImplemented();

 }

 });

 }

 private String getNetworkOperator() {

 TelephonyManager telephonyManager =

 ((TelephonyManager) getSystemService(Context.TELEPHONY_

SERVICE));

 return telephonyManager.getNetworkOperatorName();

 }

}

Listing 12-5 shows the AppDelegate.swift file for iOS platform. The

receiveNetworkOperator() function uses iOS API to get the carrier name

and send back as response using FlutterResult.

Listing 12-5. Swift implementation of getNetworkOperator

import UIKit

import Flutter

import CoreTelephony

@UIApplicationMain

@objc class AppDelegate: FlutterAppDelegate {

 override func application(

 _ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

[UIApplicationLaunchOptionsKey: Any]?

) -> Bool {

 GeneratedPluginRegistrant.register(with: self)

ChapteR 12 platfORm InteGRatIOn

451

 guard let controller = window?.rootViewController as?

FlutterViewController else {

 fatalError("rootViewController is not type

FlutterViewController")

 }

 let networkChannel = FlutterMethodChannel(name: "flutter-

recipes/network", binaryMessenger: controller)

 networkChannel.setMethodCallHandler({

 [weak self] (call: FlutterMethodCall, result:

FlutterResult) -> Void in

 guard call.method == "getNetworkOperator" else {

 result(FlutterMethodNotImplemented)

 return

 }

 self?.receiveNetworkOperator(result: result)

 })

 return super.application(application,

didFinishLaunchingWithOptions: launchOptions)

 }

 private func receiveNetworkOperator(result: FlutterResult) {

 let networkInfo = CTTelephonyNetworkInfo()

 let carrier = networkInfo.subscriberCellularProvider

 result(carrier?.carrierName)

 }

}

ChapteR 12 platfORm InteGRatIOn

452

12-4. Creating Plugins
 Problem
You want to create sharable plugins that contain platform-specific code.

 Solution
Create Flutter projects using the plugin template.

 Discussion
Recipe 12-4 shows how to add platform-specific code to Flutter apps.

Code added to a Flutter app cannot be shared between different apps.

If you want to make the platform-specific code reusable, you can create

Flutter plugins. Plugins are another type of projects supported in Flutter

SDK. Plugins can be shared like other Dart packages using Dart pub tool

(https://pub.dev/).

To create a new Flutter plugin, you can use flutter create

--template=plugin command. The template=plugin parameter means

using the plugin template to create a Flutter project. You can choose to

use either Java or Kotlin for Android and Objective-C or Swift for iOS,

respectively. By default, Java is used for Android and Objective-C is used

for iOS. You can use -a parameter with values java and kotlin to specify

the language for Android and -i parameter with values objc and swift to

specify the language for iOS. The following command shows how to create

a plugin using Swift for iOS.

$ flutter create --template=plugin -i swift network

You can also use Android Studio or VS Code to create new plugins.

The newly created plugin already has skeleton code that gets the

platform version. We can use the code in Recipe 12-3 to implement the

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/

453

plugin with new method to get the network operator. In the directory of

generated plugin, there are several sub-directories:

• The lib directory contains plugin’s public Dart API.

• The android directory contains Android

implementation of the public API.

• The ios directory contains iOS implementation of the

public API.

• The example directory contains an example Flutter app

that uses this plugin.

• The test directory contains test code.

We first define the public Dart API in lib/network_plugin.dart file.

In Listing 12-6, the value of the networkOperator property is retrieved by

calling getNetworkOperator method using the method channel.

Listing 12-6. Plugin Dart API

class NetworkPlugin {

 static const MethodChannel _channel =

 const MethodChannel('network_plugin');

 static Future<String> get networkOperator async {

 return await _channel.invokeMethod('getNetworkOperator');

 }

}

The NetworkPlugin.java file in Listing 12-7 is the Android

implementation of the plugin. NetworkPlugin class implements

MethodCallHandler interface to handle method calls received from the

platform channel.

ChapteR 12 platfORm InteGRatIOn

454

Listing 12-7. Android implementation

public class NetworkPlugin implements MethodCallHandler {

 public static void registerWith(Registrar registrar) {

 final MethodChannel channel = new MethodChannel(registrar.

messenger(), "network_plugin");

 channel.setMethodCallHandler(new NetworkPlugin(registrar));

 }

 NetworkPlugin(Registrar registrar) {

 this.registrar = registrar;

 }

 private final PluginRegistry.Registrar registrar;

 @Override

 public void onMethodCall(MethodCall call, Result result) {

 if (call.method.equals("getNetworkOperator")) {

 result.success(getNetworkOperator());

 } else {

 result.notImplemented();

 }

 }

 private String getNetworkOperator() {

 Context context = registrar.context();

 TelephonyManager telephonyManager =

 ((TelephonyManager) context.getSystemService(Context.

TELEPHONY_SERVICE));

 return telephonyManager.getNetworkOperatorName();

 }

}

ChapteR 12 platfORm InteGRatIOn

455

The SwiftNetworkPlugin.swift file in Listing 12-8 is the Swift

implementation of the plugin.

Listing 12-8. Swift implementation

public class SwiftNetworkPlugin: NSObject, FlutterPlugin {

 public static func register(with registrar:

FlutterPluginRegistrar) {

 let channel = FlutterMethodChannel(name: "network_plugin",

 binaryMessenger: registrar.messenger())

 let instance = SwiftNetworkPlugin()

 registrar.addMethodCallDelegate(instance, channel: channel)

 }

 public func handle(_ call: FlutterMethodCall,

 result: @escaping FlutterResult) {

 if (call.method == "getNetworkOperator") {

 self.receiveNetworkOperator(result: result)

 } else {

 result(FlutterMethodNotImplemented)

 }

 }

 private func receiveNetworkOperator(result: FlutterResult) {

 let networkInfo = CTTelephonyNetworkInfo()

 let carrier = networkInfo.subscriberCellularProvider

 result(carrier?.carrierName)

 }

}

The example project and test code also need to be updated with

new API.

ChapteR 12 platfORm InteGRatIOn

456

12-5. Displaying Web Pages
 Problem
You want to display web pages.

 Solution
Use webview_flutter plugin.

 Discussion
If you want to display web pages inside of Flutter apps, you can use

webview_flutter plugin (https://pub.dartlang.org/packages/

webview_flutter). After adding webview_flutter: ^0.3.6 to the

dependencies of pubspec.yaml file, you can use WebView widget to show

web pages and interact with them. For iOS, you need to add the io.

flutter.embedded_views_preview key with value YES to the ios/Runner/

Info.plist file.

Table 12-3 shows parameters of WebView constructor. To control

the web view, you need to use onWebViewCreated callback to get

the WebViewController object. The value of javascriptMode can

be JavascriptMode.disabled or JavascriptMode.unrestricted.

To enable JavaScript execution in the web pages, JavascriptMode.

unrestricted should be set as the value. The navigationDelegate of

type NavigationDelegate is a function that takes a NavigationRequest

object and returns value of NavigationDecision enum. If the return

value is NavigationDecision.prevent, the navigation request is blocked.

If the return value is NavigationDecision.navigate, then navigation

ChapteR 12 platfORm InteGRatIOn

https://pub.dartlang.org/packages/webview_flutter
https://pub.dartlang.org/packages/webview_flutter

457

request can continue. You can use navigation delegate to block users from

accessing restricted pages. The onPageFinished callback receives the URL

of the loaded page.

Table 12-3. Parameters of WebView constructor

Name Description

initialUrl the initial URl to load.

onWebViewCreated Callback when the WebView is created.

javascriptMode Whether JavaScript is enabled.

javascriptChannels Channels to receive messages sent by JavaScript code

running in the web view.

navigationDelegate Determines whether a navigation request should be

handled.

onPageFinished Callback when a page loading is finished.

gestureRecognizers Gestures recognized by the web view.

After getting the WebViewController object, you can use methods

shown in Table 12-4 to interact with the web view. All these methods are

asynchronous and return Future objects. For example, the canGoBack()

method returns a Future<bool> object.

ChapteR 12 platfORm InteGRatIOn

458

Listing 12-9 shows an example of using WebView widget to interact

with Google Search page. Because the creation of WebView widget is

asynchronous, the Completer<WebViewController> object is used to

capture the WebViewController object. In the onWebViewCreated callback,

the Completer<WebViewController> object is completed with the

created WebViewController object. In the onPageFinished callback, the

evaluateJavascript() method of WebViewController object is used to

execute JavaScript code that sets value to the input and clicks the search

button. This causes the WebView widget to load the search result page.

The JavascriptChannel object is created with a channel name and a

JavascriptMessageHandler function to handle the messages sent from

JavaScript code running in the web page. The message handler in Listing

12-9 uses a SnackBar widget to show the received message. The channel

Table 12-4. Methods of WebViewController

Name Description

evaluateJavascript(String

javascriptString)

evaluate JavaScript code in the context of

current page.

loadUrl(String url,

{ Map<String, String>

headers }

load the specified URl.

reload() Reload the current URl.

goBack() Go back in the navigation history.

canGoBack() Whether it’s valid to go back in the history.

goForward() Go forward in the navigation history.

canGoForward() Whether it’s valid to go forward in history.

clearCache() Clear the cache.

currentUrl() Get the current URl.

ChapteR 12 platfORm InteGRatIOn

459

name “Messenger” becomes the global object that has a postMessage

function to be used in JavaScript code to send messages back.

Listing 12-9. Use WebView

class GoogleSearch extends StatefulWidget {

 @override

 _GoogleSearchState createState() => _GoogleSearchState();

}

class _GoogleSearchState extends State<GoogleSearch> {

 final Completer<WebViewController> _controller =

 Completer<WebViewController>();

 @override

 Widget build(BuildContext context) {

 return WebView(

 initialUrl: 'https://google.com',

 javascriptMode: JavascriptMode.unrestricted,

 javascriptChannels:

 <JavascriptChannel>[_javascriptChannel(context)].

toSet(),

 onWebViewCreated: (WebViewController webViewController) {

 _controller.complete(webViewController);

 },

 onPageFinished: (String url) {

 _controller.future.then((WebViewController

webViewController) {

 webViewController.evaluateJavascript(

 'Messenger.postMessage("Loaded in " + navigator.

userAgent);');

 webViewController.evaluateJavascript(

 'document.getElementsByName("q")[0].

value="flutter";'

ChapteR 12 platfORm InteGRatIOn

460

 'document.querySelector("button[aria-

label*=Search]").click();');

 });

 },

);

 }

 JavascriptChannel _javascriptChannel(BuildContext context) {

 return JavascriptChannel(

 name: 'Messenger',

 onMessageReceived: (JavascriptMessage message) {

 Scaffold.of(context).showSnackBar(

 SnackBar(content: Text(message.message)),

);

 });

 }

}

12-6. Playing Videos
 Problem
You want to play videos.

 Solution
Use video_player plugin.

ChapteR 12 platfORm InteGRatIOn

461

 Discussion
If you want play videos from assets, file system, or network, you can use

video_player plugin (https://pub.dev/packages?q=video_player).

To use this plugin, you need to add video_player: ^0.10.0+5 to the

dependencies of pubspec.yaml file. For iOS, you need to use a real device

instead of a simulator for development and testing. If you want to load

videos from arbitrary locations, you need to add the code in Listing 12-10

to ios/Runner/Info.plist file. Using NSAllowsArbitraryLoads reduces

the security of the app. It’s better to check Apple’s guide (https://

developer.apple.com/documentation/security/preventing_insecure_

network_connections) for network security.

Listing 12-10. iOS HTTP security config

<key>NSAppTransportSecurity</key>

<dict>

 <key>NSAllowsArbitraryLoads</key>

 <true/>

</dict>

If you need to load videos from network on Android, you need to add

code in Listing 12-11 to the android/app/src/main /AndroidManifest.

xml file.

Listing 12-11. Android

<uses-permission android:name="android.permission.INTERNET"/>

To play videos, you need to use constructors shown in Table 12-5 to

create VideoPlayerController objects.

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/packages?q=video_player
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections

462

After creating a VideoPlayerController object, you can use methods

shown in Table 12-6 to control the video playing. All these methods return

Future objects. The initialize() method must be called first to initialize

the controller. You can only call other methods after the Future object

returned by initialize() method completes successfully.

Table 12-6. Methods of VideoPlayerController

Name Description

play() play the video.

pause() pause the video.

seekTo(Duration moment) Seek to the specified position.

setLooping(bool looping) Whether to loop the video.

setVolume(double volume) Set the volume of audio.

initialize() Initialize the controller.

dispose() Dispose the controller and clean up resources.

Table 12-5. Constructors of VideoPlayerController

Name Description

VideoPlayerController.asset(String

dataSource, { String package })

play a video from assets.

VideoPlayerController.file(File file) play a video from local file

system.

VideoPlayerController.network(String

dataSource)

play a video loaded from

network.

ChapteR 12 platfORm InteGRatIOn

463

VideoPlayerController class extends from ValueNotifier<VideoPl

ayerValue> class. You can get notified when the state changes by adding

listeners to it. VideoPlayerValue class contains different properties to

access the state of the video. VideoPlayer class is the actual widget that

displays the video. It requires a VideoPlayerController object.

VideoPlayerView class in Listing 12-12 is a widget to play

video loaded from specified URL. In the initState() method,

VideoPlayerController.network() constructor is used to create

the VideoPlayerController object. FutureBuilder widget uses the

Future object returned by initialize() method to build the UI. Since

VideoPlayerController object is also a Listenable object, we can use

AnimatedBuilder with the VideoPlayerController object. AspectRatio

widget uses the aspectRatio property to make sure the proper aspect ratio

is used when playing the video. VideoProgressIndicator widget shows a

progress bar to indicate video playback progress.

Listing 12-12. Playing video

class VideoPlayerView extends StatefulWidget {

 VideoPlayerView({Key key, this.videoUrl}) : super(key: key);

 final String videoUrl;

 @override

 _VideoPlayerViewState createState() => _

VideoPlayerViewState();

}

class _VideoPlayerViewState extends State<VideoPlayerView> {

 VideoPlayerController _controller;

 Future<void> _initializedFuture;

 @override

 void initState() {

ChapteR 12 platfORm InteGRatIOn

464

 super.initState();

 _controller = VideoPlayerController.network(widget.

videoUrl);

 _initializedFuture = _controller.initialize();

 }

 @override

 Widget build(BuildContext context) {

 return FutureBuilder(

 future: _initializedFuture,

 builder: (context, snapshot) {

 if (snapshot.connectionState == ConnectionState.done) {

 return AnimatedBuilder(

 animation: _controller,

 child: VideoProgressIndicator(_controller,

allowScrubbing: true),

 builder: (context, child) {

 return Column(

 children: <Widget>[

 AspectRatio(

 aspectRatio: _controller.value.aspectRatio,

 child: VideoPlayer(_controller),

),

 Row(

 children: <Widget>[

 IconButton(

 icon: Icon(_controller.value.isPlaying

 ? Icons.pause

 : Icons.play_arrow),

 onPressed: () {

 if (_controller.value.isPlaying) {

 _controller.pause();

ChapteR 12 platfORm InteGRatIOn

465

 } else {

 _controller.play();

 }

 },

),

 Expanded(child: child),

],

),

],

);

 },

);

 } else {

 return Center(child: CircularProgressIndicator());

 }

 },

);

 }

 @override

 void dispose() {

 _controller.dispose();

 super.dispose();

 }

}

12-7. Using Cameras
 Problem
You want to use cameras to take pictures or record videos.

ChapteR 12 platfORm InteGRatIOn

466

 Solution
Use camera plugin.

 Discussion
If you want to access the cameras on the device, you can use camera plugin

(https://pub.dev/packages/camera). To install this plugin, you need to

add camera: ^0.5.0 to the dependencies of pubspec.yaml file. For iOS,

you need to add code in Listing 12-13 to the ios/Runner/Info.plist file.

These two key-value pairs describe the purpose of accessing camera and

microphone. This is required to protect user privacy.

Listing 12-13. Privacy requirements for iOS

<key>NSCameraUsageDescription</key>

<string>APPNAME requires access to your phone's camera.

</string>

<key>NSMicrophoneUsageDescription</key>

<string>APPNAME requires access to your phone's microphone.

</string>

For Android, the minimum Android SDK version needs to set to 21 in

the android/app/build.gradle file.

To access cameras, you need to create CameraController

objects. CameraController constructor requires parameters of types

CameraDescription and ResolutionPreset. CameraDescription class

describes a camera. ResolutionPreset enum describes the quality

of screen resolution. ResolutionPreset is an enum with values low,

medium, and high. To get CameraDescription objects, you can use

availableCameras() function to get a list of available cameras with type

List<CameraDescription>.

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/packages/camera

467

Table 12-7 shows methods of CameraController class. All these

methods return Future objects. A CameraController object needs

to be initialized first. Other methods should only be called after the

Future object returned by initialize() completes successfully.

CameraController class extends from ValueNotifier<CameraValue> class,

so you can add listeners to it to get notified of state changes.

Table 12-7. Methods of CameraController

Name Description

takePicture(String path) take a picture and save to a file.

prepareForVideoRecording() prepare for video recording.

startVideoRecording(String

filePath)

Start a video recording and save to a file.

stopVideoRecording() Stop the current video recording.

startImageStream() Start streaming of images.

stopImageStream() Stop the current streaming of images.

initialize() Initialize the controller.

dispose() Dispose the controller and clean up resources.

In Listing 12-14, the CameraController object is created with passed-

in CameraDescription object. FutureBuilder widget builds the actual UI

after the CameraController object is initialized. CameraPreview widget

shows live preview of the camera. When the icon is pressed, a picture is

taken and saved to the temporary directory.

Listing 12-14. Use camera

class CameraView extends StatefulWidget {

 CameraView({Key key, this.camera}) : super(key: key);

 final CameraDescription camera;

ChapteR 12 platfORm InteGRatIOn

468

 @override

 _CameraViewState createState() => _CameraViewState();

}

class _CameraViewState extends State<CameraView> {

 CameraController _controller;

 Future<void> _initializedFuture;

 @override

 void initState() {

 super.initState();

 _controller = CameraController(widget.camera,

ResolutionPreset.high);

 _initializedFuture = _controller.initialize();

 }

 @override

 Widget build(BuildContext context) {

 return FutureBuilder<void>(

 future: _initializedFuture,

 builder: (context, snapshot) {

 if (snapshot.connectionState == ConnectionState.done) {

 return Column(

 children: <Widget>[

 Expanded(child: CameraPreview(_controller)),

 IconButton(

 icon: Icon(Icons.photo_camera),

 onPressed: () async {

 String path = join((await

getTemporaryDirectory()).path,

 '${DateTime.now()}.png');

 await _controller.takePicture(path);

 Scaffold.of(context).showSnackBar(

ChapteR 12 platfORm InteGRatIOn

469

 SnackBar(content: Text('Picture saved to

$path')));

 },

),

],

);

 } else {

 return Center(child: CircularProgressIndicator());

 }

 },

);

 }

 @override

 void dispose() {

 _controller.dispose();

 super.dispose();

 }

}

In Listing 12-15, availableCameras() function gets a list of

CameraDescription objects and only the first one is used to create the

CameraView widget.

Listing 12-15. Select camera

class CameraSelector extends StatelessWidget {

 final Future<CameraDescription> _cameraFuture =

 availableCameras().then((list) => list.first);

 @override

 Widget build(BuildContext context) {

 return FutureBuilder<CameraDescription>(

 future: _cameraFuture,

ChapteR 12 platfORm InteGRatIOn

470

 builder: (context, snapshot) {

 if (snapshot.connectionState == ConnectionState.done) {

 if (snapshot.hasData) {

 return CameraView(camera: snapshot.data);

 } else {

 return Center(child: Text('No camera available!'));

 }

 } else {

 return Center(child: CircularProgressIndicator());

 }

 },

);

 }

}

12-8. Using System Share Sheet
 Problem
You want to allow user sharing items using system share sheet.

 Solution
Use share plugin.

 Discussion
If you want to allow user sharing items in the app, you can use the

share plugin (https://pub.dev/packages/share) to show the system

share sheet. To use this plugin, you need to add share: ^0.6.1 to the

dependencies of pubspec.yaml file.

ChapteR 12 platfORm InteGRatIOn

https://pub.dev/packages/share

471

The API provided by share plugin is very simple. It only has a

static share() method to share some text. You can share plain text or a

URL. Listing 12-16 shows how to use share() method to share a URL.

Listing 12-16. Share a URL

Share.share('https://flutter.dev');

12-9. Summary
Flutter apps can use platform-specific code to call native platform APIs.

There are a large number of community plugins to use different futures on

the native platform, including cameras, microphones, sensors, and more.

In the next chapter, we’ll discuss miscellaneous topics in Flutter.

ChapteR 12 platfORm InteGRatIOn

473© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_13

CHAPTER 13

Miscellaneous
This chapter covers recipes of miscellaneous topics in Flutter.

13-1. Using Assets
 Problem
You want to bundle static assets in the app.

 Solution
Use assets.

 Discussion
Flutter apps can include both code and static assets. There are two types of

assets:

• Data files including JSON, XML, and plain text files

• Binary files including images and videos

Assets are declared in the flutter/assets section of the pubspec.yaml

file. During the build process, these assets files are bundled into the app’s

binary files. These assets can be accessed in the runtime. It’s common

to put assets under the assets directory. In Listing 13-1, two files are

declared as assets in pubspec.yaml file.

474

Listing 13-1. Assets in pubspec.yaml file

flutter:

 assets:

 - assets/dog.jpg

 - assets/data.json

In the runtime, subclasses of AssetBundle class are used to load

content from the assets. The load() method retrieves the binary content,

while loadString() method retrieves the string content. You need to

provide the assets key when using these two methods. The key is the same

as asset path declared in pubspec.yaml file. The static application-level

rootBundle property refers to the AssetBundle object that contains assets

packaged with the app. You can use this property directly to load assets. It’s

recommended to use static DefaultAssetBundle.of() method to get the

AssetBundle object from build context.

In Listing 13-2, the JSON file assets/data.json is loaded as string

using loadString() method.

Listing 13-2. Load string assets

class TextAssets extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return FutureBuilder<String>(

 future: DefaultAssetBundle.of(context)

 .loadString('assets/data.json')

 .then((json) {

 return jsonDecode(json)['name'];

 }),

 builder: (context, snapshot) {

 if (snapshot.connectionState == ConnectionState.done) {

 return Center(child: Text(snapshot.data));

Chapter 13 MisCellaneous

475

 } else {

 return Center(child: CircularProgressIndicator());

 }

 },

);

 }

}

If the assets file is an image, you can use AssetImage class with Image

widget to display it. In Listing 13-3, AssetImage class is used to display the

assets/dog.jpg image.

Listing 13-3. Use AssetImage

Image(

 image: AssetImage('assets/dog.jpg'),

)

For an image asset, it’s common to have multiple variants with

different resolutions for the same file. When using AssetImage class to load

an asset image, the variant that most closely matches the current device

pixel ratio will be used.

In Listing 13-4, the assets/2.0x/dog.jpg file is the variant of assets/

dog.jpg with resolution ratio 2.0. If the device pixel ratio is 1.6, the

assets/2.0x/dog.jpg file is used.

Listing 13-4. Image assets variants

flutter:

 assets:

 - assets/dog.jpg

 - assets/2.0x/dog.jpg

 - assets/3.0x/dog.jpg

Chapter 13 MisCellaneous

476

13-2. Using Gestures
 Problem
You want to allow user using gestures to perform actions.

 Solution
Use GestureDetector widget to detect gestures.

 Discussion
Users of mobiles app are used to gestures when performing actions.

For example, when viewing pictures gallery, using swiping gesture

can easily navigate between different pictures. In Flutter, we can use

GestureDetector widget to detect gestures and invoke specified

callbacks for gestures. GestureDetector constructor has a large number

of parameters to provide callbacks for different events. A gesture may

dispatch multiple events during its lifecycle. For example, the gesture of

horizontal drag can dispatch three events. The following are the handler

parameters for these three events:

• onHorizontalDragStart callback means the pointer

may begin to move horizontally.

• onHorizontalDragUpdate callback means the pointer is

moving in the horizontal direction.

• onHorizontalDragEnd callback means the pointer is

longer in contact with the screen.

Callbacks of different events can receive details about the events. In

Listing 13-5, the GestureDetector widget wraps a Container widget. In

the onHorizontalDragEnd callback handler, the velocity property of

DragEndDetails object is the moving velocity of the pointer. We use this

property to determine the drag direction.

Chapter 13 MisCellaneous

477

Listing 13-5. Use GestureDetector

class SwipingCounter extends StatefulWidget {

 @override

 _SwipingCounterState createState() => _SwipingCounterState();

}

class _SwipingCounterState extends State<SwipingCounter> {

 int _count = 0;

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Text('$_count'),

 Expanded(

 child: GestureDetector(

 child: Container(

 decoration: BoxDecoration(color: Colors.grey.

shade200),

),

 onHorizontalDragEnd: (DragEndDetails details) {

 setState(() {

 double dx = details.velocity.

pixelsPerSecond.dx;

 _count += (dx > 0 ? 1 : (dx < 0 ? -1 : 0));

 });

 },

),

),

],

);

 }

}

Chapter 13 MisCellaneous

478

13-3. Supporting Multiple Locales
 Problem
You want the app to support multiple locales.

 Solution
Use Localizations widget and LocalizationsDelegate class.

 Discussion
Flutter has built-in support for internalization. If you want to support

multiple locales, you need to use Localizations widget. Localizations

class uses a list of LocalizationsDelegate objects to load localized

resources. LocalizationsDelegate<T> class is a factory of a set of localized

resources of type T. The set of localized resources is usually a class with

properties and methods to provide localized values.

To create a Localizations object, you need to provide the Locale

object and a list of LocalizationsDelegate objects. Most of the time,

you don’t need to explicitly create a Localizations object. WidgetsApp

widget already creates a Localizations object. WidgetsApp constructor

has parameters that are used by the Localizations object. When

you need to use localized values, you can use static Localizations.

of<T>(BuildContext context, Type type) method to get the nearest

enclosing localized resources object of the given type.

By default, Flutter only provides US English localizations. To support

other locales, you need to add Flutter’s own localizations for those locales

first. This is done by adding flutter_localizations package to the

dependencies of pubspec.yaml file; see Listing 13-6. With this package,

you can use localized values defined in MaterialLocalizations class.

Chapter 13 MisCellaneous

479

Listing 13-6. flutter_localizations

dependencies:

 flutter:

 sdk: flutter

 flutter_localizations:

 sdk: flutter

After adding the flutter_localizations package, we

need to enable those localized values. In Listing 13-7, this is

done by adding GlobalMaterialLocalizations.delegate and

GlobalWidgetsLocalizations.delegate to the localizationsDelegates

list of MaterialApp constructor. The value of localizationsDelegates

parameter is passed to the Localizations constructor. The

supportedLocales parameter specifies the supported locales.

Listing 13-7. Enable Flutter localized values

MaterialApp(

 localizationsDelegates: [

 GlobalMaterialLocalizations.delegate,

 GlobalWidgetsLocalizations.delegate,

],

 supportedLocales: [

 const Locale('en'),

 const Locale('zh', 'CN'),

],

);

In Listing 13-8, MaterialLocalizations.of() method gets

the MaterialLocalizations object from the build context.

The copyButtonLabel property is a localized value defined in

MaterialLocalizations class. In the runtime, the label of the button

depends on the device’s locale. MaterialLocalizations.of()

Chapter 13 MisCellaneous

480

method uses Localizations.of() internally to look up the

MaterialLocalizations object.

Listing 13-8. Use localized values

RaisedButton(

 child: Text(MaterialLocalizations.of(context).

copyButtonLabel),

 onPressed: () {},

);

MaterialLocalizations class only provides a limit set of localized

values. For your own apps, you need to create custom localized

resources classes. AppLocalizations class in Listing 13-9 is a custom

localized resources class. AppLocalizations class has the appName

property as an example of simple localizable strings. The greeting()

method is an example of localizable strings that require parameters.

AppLocalizationsEn and AppLocalizationsZhCn classes are

implementations of AppLocalizations class for en and zh_CN locales,

respectively.

Listing 13-9. AppLocalizations and localized subclasses

abstract class AppLocalizations {

 String get appName;

 String greeting(String name);

 static AppLocalizations of(BuildContext context) {

 return Localizations.of<AppLocalizations>(context,

AppLocalizations);

 }

}

Chapter 13 MisCellaneous

481

class AppLocalizationsEn extends AppLocalizations {

 @override

 String get appName => 'Demo App';

 @override

 String greeting(String name) {

 return 'Hello, $name';

 }

}

class AppLocalizationsZhCn extends AppLocalizations {

 @override

 String get appName => '示例应用';

 @override

 String greeting(String name) {

 return '你好, $name';

 }

}

We also need to create a custom LocalizationsDelegate class to

load AppLocalizations objects. There are three methods need to be

implemented:

• isSupported() method checks whether a locale is

supported.

• load() method loads the localized resources object for

a given locale.

• shouldReload() method checks whether the load()

method should be called to load the resource again.

In the load() method of Listing 13-10, AppLocalizationsEn or

AppLocalizationsZhCn object is returned based on the given locale.

Chapter 13 MisCellaneous

482

Listing 13-10. Custom LocalizationsDelegate

class _AppLocalizationsDelegate

 extends LocalizationsDelegate<AppLocalizations> {

 const _AppLocalizationsDelegate();

 static const List<Locale> _supportedLocales = [

 const Locale('en'),

 const Locale('zh', 'CN')

];

 @override

 bool isSupported(Locale locale) {

 return _supportedLocales.contains(locale);

 }

 @override

 Future<AppLocalizations> load(Locale locale) {

 return Future.value(locale == Locale('zh', 'CN')

 ? AppLocalizationsZhCn()

 : AppLocalizationsEn());

 }

 @override

 bool shouldReload(LocalizationsDelegate<AppLocalizations>

old) {

 return false;

 }

}

_AppLocalizationsDelegate object needs to be added to the list of

localizationsDelegates in Listing 13-7. Listing 13-11 shows an example

of using AppLocalizations class.

Chapter 13 MisCellaneous

483

Listing 13-11. Use AppLocalizations

Text(AppLocalizations.of(context).greeting('John'))

13-4. Generating Translation Files
 Problem
You want to extract localizable strings from code and integrate translated

strings.

 Solution
Use tools in intl_translation package.

 Discussion
Recipe 13-3 describes how to support multiple locales using

Localizations widget and LocalizationsDelegate class. The major

drawback of solution in Recipe 13-3 is that you need to manually create

localized resources classes for all supported locales. Because localized

strings are directly embedded in source code, it’s hard to get translators

involved. A better choice is to use tools provided by intl_translation

package to automate the process. You need to add intl_translation:

^0.17.3 to the dev_dependencies of the pubspec.yaml file.

Listing 13-12 shows the new AppLocalizations class which has the

same appName property and greeting() method as Listing 13-9. Intl.

message() method describes a localized string. Only the message string is

required. Parameters like name, desc, args, and examples are used to help

translators to understand the message string.

Chapter 13 MisCellaneous

484

Listing 13-12. AppLocalizations using Intl.message()

class AppLocalizations {

 static AppLocalizations of(BuildContext context) {

 return Localizations.of<AppLocalizations>(context,

AppLocalizations);

 }

 String get appName {

 return Intl.message(

 'Demo App',

 name: 'appName',

 desc: 'Name of the app',

);

 }

 String greeting(String name) {

 return Intl.message(

 'Hello, $name',

 name: 'greeting',

 args: [name],

 desc: 'Greeting message',

 examples: const {'name': 'John'},

);

 }

}

Now we can use the tool provided by intl_translation package to

extract localized messages from source code. The following command

extracts messages declared with Intl.message() from lib/app_intl.dart

file and saves to lib/l10n directory. After running this command, you

should see the generated intl_messages.arb file in lib/l10n directory.

Generated files are in ARB (Application Resource Bundle) format

Chapter 13 MisCellaneous

485

(https://github.com/googlei18n/app-resource-bundle) which can be

used as input of translation tools like Google Translator Toolkit. ARB files

are actually JSON files; you can simply use text editors to modify them.

$ flutter packages pub run intl_translation:extract_to_arb

--locale=en --output-dir=lib/l10n lib/app_intl.dart

Now you can duplicate the intl_messages.arb file for each supported

locale and get them translated. For example, the intl_messages_zh.arb

file is the translated version for zh locale. After translated files are ready,

you can use the following command to generate Dart files. After running

this command, you should see a messages_all.dart file and messages_*.

dart files for each locale.

$ flutter packages pub run intl_translation:generate_from_arb

--output-dir=lib/l10n --no-use-deferred-loading lib/app_intl.

dart lib/l10n/intl_*.arb

The initializeMessages() function in messages_all.dart file can be

used to initialize messages for a given locale. The static load() method in

Listing 13-13 uses initializeMessages() function to initialize messages

first, then sets the default locale.

Listing 13-13. Load messages

class AppLocalizations {

 static Future<AppLocalizations> load(Locale locale) {

 final String name =

 locale.countryCode.isEmpty ? locale.languageCode :

locale.toString();

 final String localeName = Intl.canonicalizedLocale(name);

 return initializeMessages(localeName).then((_) {

 Intl.defaultLocale = localeName;

 return AppLocalizations();

Chapter 13 MisCellaneous

https://github.com/googlei18n/app-resource-bundle

486

 });

 }

}

This static AppLocalizations.load() method can be used

by the load() method of LocalizationsDelegate class to load

AppLocalizations object.

13-5. Painting Custom Elements
 Problem
You want to paint custom elements.

 Solution
Use CustomPaint widget with CustomPainter and Canvas classes.

 Discussion
If you want to completely customize the painting of a widget, you can use

CustomPaint widget. CustomPaint widget provides a canvas on which to

draw custom elements. Table 13-1 shows the parameters of CustomPaint

constructor. During the painting process, the painter paints on the canvas

first, then the child widget is painted, and finally the foregroundPainter

paints on the canvas.

Chapter 13 MisCellaneous

487

To create CustomPainter objects, you need to create subclasses of

CustomPainter and override paint() and shouldRepaint() methods.

In paint() method, the canvas parameter can be used to draw custom

elements. Canvas class has a set of methods to draw different elements; see

Table 13-2.

Table 13-1. Parameters of CustomPaint

Name Type Description

painter CustomPainter the painter that paints before the child.

foregroundPainter CustomPainter the painter that paints after the child.

size Size the size to paint.

child Widget the child widget.

Table 13-2. Methods of Canvas

Name Description

drawArc() Draw an arc.

drawCircle() Draw a circle with specified center and radius.

drawImage() Draw an Image object.

drawLine() Draw a line between two points.

drawOval() Draw an oval.

drawParagraph() Draw text.

drawRect() Draw a rectangle with specified Rect object.

drawRRect() Draw a rounded rectangle.

Chapter 13 MisCellaneous

488

Most of the methods in Canvas class have a parameter of type Paint to

describe the style to use when drawing on the canvas. In Listing 13- 14,

Shapes class draws a rectangle and a circle on the canvas. In the

CustomShapes widget, the Text widget is painted above the Shapes painter.

Listing 13-14. Use CustomPaint

class CustomShapes extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Container(

 width: 300,

 height: 300,

 child: CustomPaint(

 painter: Shapes(),

 child: Center(child: Text('Hello World')),

),

);

 }

}

class Shapes extends CustomPainter {

 @override

 void paint(Canvas canvas, Size size) {

 Rect rect = Offset(5, 5) & (size - Offset(5, 5));

 canvas.drawRect(

 rect,

 Paint()

 ..color = Colors.red

 ..strokeWidth = 2

 ..style = PaintingStyle.stroke,

);

Chapter 13 MisCellaneous

489

 canvas.drawCircle(

 rect.center,

 (rect.shortestSide / 2) - 10,

 Paint()..color = Colors.blue,

);

 }

 @override

 bool shouldRepaint(CustomPainter oldDelegate) {

 return false;

 }

}

13-6. Customizing Themes
 Problem
You want to customize themes in Flutter apps.

 Solution
Use ThemeData class for Material Design and CupertinoThemeData class

for iOS.

 Discussion
It’s a common requirement to customize look and feel of an app.

For Flutter apps, if Material Design is used, you can use ThemeData

class to customize the theme. ThemeData class has a large number of

parameters to configure different aspects of the theme. MaterialApp

class has the theme parameter to provide the ThemeData object. For

iOS style, CupertinoThemeData class has the same purpose to specify

Chapter 13 MisCellaneous

490

the theme. CupertinoApp class also has the theme parameter of type

CupertinoThemeData to customize the theme.

If you need to access the current theme object, you can use static

Theme.of() method to get nearest enclosing ThemeData object for a build

context in Material Design. The similar CupertinoTheme.of() method can

be used for iOS style.

In Listing 13-15, the first Text widget uses the textTheme.headline

property of current Theme object as the style. The second Text widget uses

the colorScheme.error property as the color to display error text.

Listing 13-15. Use Theme

class TextTheme extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Text('Headline', style: Theme.of(context).textTheme.

headline),

 Text('Error',

 style: TextStyle(color: Theme.of(context).

colorScheme.error)),

],

);

 }

}

13-7. Summary
This chapter discusses miscellaneous topics in Flutter that are useful in

different scenarios. In the next chapter, we’ll discuss testing and debugging

in Flutter.

Chapter 13 MisCellaneous

491© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_14

CHAPTER 14

Testing and
Debugging
This chapter covers recipes related to testing and debugging Flutter apps.

14-1. Writing Unit Tests
 Problem
You want to write unit tests.

 Solution
Use API in test package.

 Discussion
Unit tests are very important in app development. To write tests in Flutter

apps, you need to add test: ^1.5.3 to the dev_dependencies section

of pubspec.yaml file. Test files are usually put in the test directory. The

MovingBox class in Listing 14-1 is the class to test. The move() method

updates the internal _offset variable.

492

Listing 14-1. Dart class to test

class MovingBox {

 MovingBox({Offset initPos = Offset.zero}) : _offset =

initPos;

 Offset _offset;

 get offset => _offset;

 void move(double dx, double dy) {

 _offset += Offset(dx, dy);

 }

}

Listing 14-2 shows the tests of MovingBox class. The group() function

creates a group to describe a set of tests. The test() function creates a test

case with the given description and body. The body is a function that uses

expect() function to declare expectations to verify. To call the expect()

function, you need to provide the actual value and a matcher to check the

value. The matcher can be simple values or functions from the matcher

package. Common matcher functions include contains(), startsWith(),

endsWith(), lessThan(), greaterThan(), and inInclusiveRange().

Listing 14-2. Test of MovingBox

void main() {

 group('MovingBox', () {

 test('position should be (0.0) by default', () {

 expect(MovingBox().offset, Offset.zero);

 });

 test('postion should be initial value', () {

 expect(MovingBox(initPos: Offset(10, 10)).offset,

Offset(10, 10));

 });

Chapter 14 testing and debugging

493

 test('postion should be moved', () {

 final box = MovingBox();

 box.move(5, 5);

 expect(box.offset, Offset(5, 5));

 box.move(-1, -1);

 expect(box.offset, Offset(4, 4));

 });

 });

}

You can use async functions as body of expect() function to write

asynchronous tests. In Listing 14-3, the first test case uses an async

function with await to get the value of a Future object. In the second

test case, completion() function waits for completion of a Future object

and verify the value. The throwsA() function verifies that a Future object

throws the given error. In the third test case, expectAsync1() function

wraps another function to verify the result and checks its invocation times.

Listing 14-3. Asynchronous tests

void main() {

 test('future with async', () async {

 var value = await Future.value(1);

 expect(value, equals(1));

 });

 test('future', () {

 expect(Future.value(1), completion(equals(1)));

 expect(Future.error('error'), throwsA(equals('error')));

 });

 test('future callback', () {

 Future.error('error').catchError(expectAsync1((error) {

 expect(error, equals('error'));

Chapter 14 testing and debugging

494

 }, count: 1));

 });

}

You can use setUp() function to add a function to run before tests.

Similarly, the tearDown() function is used to add a function to run after

tests. The setUp() function should be used to prepare the context for test

cases to run. The tearDown() function should be used to run cleanup

tasks. The setUp() and tearDown() functions usually come in pairs. In

Listing 14-4, setUp() and tearDown() functions will be called twice.

Listing 14-4. setUp() and tearDown() functions

void main() {

 setUp(() {

 print('setUp');

 });

 test('action1', () {

 print('action1');

 });

 test('action2', () {

 print('action2');

 });

 tearDown(() {

 print('tearDown');

 });

}

After running the test case in Listing 14-4, the output should look like

what’s shown in Listing 14-5.

Chapter 14 testing and debugging

495

Listing 14-5. Output with setUp() and tearDown() functions

setUp

action1

tearDown

setUp

action2

tearDown

14-2. Using Mock Objects in Tests
 Problem
You want to mock dependencies in test cases.

 Solution
Use mockito package.

 Discussion
When writing test cases, the classes to test may have dependencies that

require external resources. For example, a service class needs to access

backend API to get data. When testing these classes, you don’t want to

use the real dependencies. Depending on external resources, introduce

uncertainty to execution of test cases and make them unstable. Using live

services also makes it difficult to test all possible scenarios.

A better approach is to create mock objects to replace these

dependencies. With mock objects, you can easily emulate different

scenarios. Mock objects are alternative implementations of classes. You

can create mock objects manually or use mockito package. To use mockito

package, you need to add mockito: ^4.0.0 to the dev_dependencies

section of pubspec.yaml file.

Chapter 14 testing and debugging

496

GitHubJobsClient class in Listing 14-6 uses Client class from http

package to access GitHub Jobs API.

Listing 14-6. GitHubJobsClient class to test

class GitHubJobsClient {

 GitHubJobsClient({@required this.httpClient}) :

assert(httpClient != null);

 final http.Client httpClient;

 Future<List<Job>> getJobs(String keyword) async {

 Uri url = Uri.https(

 'jobs.github.com', '/positions.json', {'description':

keyword});

 http.Response response = await httpClient.get(url);

 if (response.statusCode != 200) {

 throw Exception('Failed to get job listings');

 }

 return (jsonDecode(response.body) as List<dynamic>)

 .map((json) => Job.fromJson(json))

 .toList();

 }

}

To test GitHubJobsClient class, we can create a mock object

for http.Client object. In Listing 14-7, MockHttpClient class is the

mock class for http.Client class. In the first test case, when the get()

method of MockHttpClient is called with the specified Uri object, a

Future<Response> object with JSON string is used as the result. We

can verify that getJobs() method of GitHubJobsClient can parse the

response and return a List object with one element. In the second test

case, the return result of get() method of MockHttpClient is set to a

Chapter 14 testing and debugging

497

Future<Response> with HTTP 500 error. We then verify an exception is

thrown by calling getJobs() method.

Listing 14-7. GitHubJobsClient test with mock

import 'package:mockito/mockito.dart';

class MockHttpClient extends Mock implements http.Client {}

void main() {

 group('getJobs', () {

 Uri url = Uri.https(

 'jobs.github.com', '/positions.json', {'description':

'flutter'});

 test('should return list of jobs', () {

 final httpClient = MockHttpClient();

 when(httpClient.get(url))

 .thenAnswer((_) async => http.Response('[{"id":

"123"}]', 200));

 final jobsClient = GitHubJobsClient(httpClient:

httpClient);

 expect(jobsClient.getJobs('flutter'),

completion(hasLength(1)));

 });

 test('should throws an exception', () {

 final httpClient = MockHttpClient();

 when(httpClient.get(url))

 .thenAnswer((_) async => http.Response('error', 500));

 final jobsClient = GitHubJobsClient(httpClient:

httpClient);

 expect(jobsClient.getJobs('flutter'), throwsException);

 });

 });

}

Chapter 14 testing and debugging

498

14-3. Writing Widget Tests
 Problem
You want to write test cases to test widgets.

 Solution
Use flutter_test package.

 Discussion
Using test and mockito packages is enough to write tests for Dart classes.

However, you need to use flutter_test package to write tests for widgets.

The flutter_test package is already included in the pubspec.yaml

file for new projects created by flutter create command. Test cases

for widgets are declared using testWidgets() function. When calling

testWidgets(), you need to provide a description and a callback to run

inside the Flutter test environment. The callback receives a WidgetTester

object to interact with widgets and the test environment. After the widget

under test is created, you can use Finder objects and matchers to verify

state of the widget.

Table 14-1 shows methods of WidgetTester class. The pumpWidget()

method is usually the entry point of a test by creating the widget to test.

When testing stateful widgets, after changing the state, you need to call

pump() method to trigger the rebuild. If the widget uses animations, you

should use pumpAndSettle() method to wait for animations to finish.

Methods like enterText() and ensureVisible() use Finder objects to

find the widgets to interact with.

Chapter 14 testing and debugging

499

ToUppercase widget in Listing 14-8 is a stateful widget to test. It has a

TextField widget to input text. When the button is pressed, the uppercase

of input text is displayed using a Text widget.

Listing 14-8. Widget to test

class ToUppercase extends StatefulWidget {

 @override

 _ToUppercaseState createState() => _ToUppercaseState();

}

Table 14-1. Methods of WidgetTester

Name Description

pumpWidget() render the specified widget.

pump() trigger a frame that causes the widget to rebuild.

pumpAndSettle() repeatedly call pump() method until there are no

frames scheduled.

enterText() enter text to a text input widget.

pageBack() dismiss the current page.

runAsync() run a callback asynchronously.

dispatchEvent() dispatch an event.

ensureVisible() Make a widget visible by scrolling its ancestor

Scrollable widget.

drag() drag the widget by given offset.

press() press the widget.

longPress() Long press the widget.

tap() tap the widget.

Chapter 14 testing and debugging

500

class _ToUppercaseState extends State<ToUppercase> {

 final _controller = TextEditingController();

 @override

 Widget build(BuildContext context) {

 return Column(

 children: <Widget>[

 Row(

 children: <Widget>[

 Expanded(child: TextField(controller:

_controller)),

 RaisedButton(

 child: Text('Uppercase'),

 onPressed: () {

 setState(() {});

 },

),

],

),

 Text((_controller.text ?? ").toUpperCase()),

],

);

 }

}

Listing 14-9 shows the test case of ToUppercase widget. The

_wrapInMaterial() function wraps the ToUppercase widget in a

MaterialApp before testing. This is because TextField widget requires

an ancestor Material widget. In the test case, the widget is rendered

using pumpWidget() first. The find object is a top-level constant of

Chapter 14 testing and debugging

501

CommonFinders class. It has convenient methods to create different kinds

of Finder objects. Here we find the widget of type TextField and uses

enterText() to input the text “abc”. Then the RaisedButton widget is

tapped and the state is changed. The pump() method is required to trigger

the rebuild. Finally, we verify that a Text widget exists with the text “ABC”.

Listing 14-9. Test ToUppercase widget

Widget _wrapInMaterial(Widget widget) {

 return MaterialApp(

 home: Scaffold(

 body: widget,

),

);

}

void main() {

 testWidgets('ToUppercase', (WidgetTester tester) async {

 await tester.pumpWidget(_wrapInMaterial(ToUppercase()));

 await tester.enterText(find.byType(TextField), 'abc');

 await tester.tap(find.byType(RaisedButton));

 await tester.pump();

 expect(find.text('ABC'), findsOneWidget);

 });

}

Chapter 14 testing and debugging

502

Finder objects are used with matchers to verify the state. There are

four matchers to work with Finder objects:

• findsOneWidget expects exactly one widget is found.

• findsNothing expects no widgets are found.

• findsNWidgets expects specified number of widgets

are found.

• findsWidgets expects at least one widget is found.

14-4. Writing Integration Tests
 Problem
You want to write integration tests running on emulators or real devices.

Table 14-2. Methods of CommonFinders

Name Description

byType() Find widgets by type.

byIcon() Find Icon widgets by icon data.

byKey() Find widgets by a particular Key object.

byTooltip() Find Tooltip widgets with the given message.

byWidget() Find widgets by the given widget instance.

text() Find Text and EditableText widgets with the given text.

widgetWithIcon() Find widgets that contain a descendant widget with

the icon.

widgetWithText() Find widgets that contain a Text descendant with the

given text.

Chapter 14 testing and debugging

503

 Solution
Use flutter_driver package.

 Discussion
Unit tests and widget tests can only test individual classes, functions, or

widgets. These tests are running on development or testing machines.

These tests cannot test integration between different components of an

app. Integration tests should be used for this scenario.

Integration testing comes in two parts. The first part is the

instrumented app deployed to an emulator or real device. The second part

is the test code to drive the app and verify state of the app. The app under

test is isolated from the test code to avoid interference.

The flutter_driver package is required to write integration tests. You

need to add flutter_driver package to the dev_dependencies section of

the pubspec.yaml file; see Listing 14-10.

Listing 14-10. Add flutter_driver package

dev_dependencies:

 flutter_driver:

 sdk: flutter

Integration test files are usually put in the test_driver directory. The

target to test is the page to search job listings on GitHub. It’s important to

provide ValueKey objects as the key parameter of the widgets that need to

be used by integration tests. This makes it easier to find those widgets in

the test case. In Listing 14-11, Key('keyword') creates a ValueKey object

with name “keyword”.

Chapter 14 testing and debugging

504

Listing 14-11. Add key to widget

TextField(

 key: Key('keyword'),

 controller: _controller,

)

The github_jobs.dart file in test_driver directory contains an

instrumented version of the page to test. Listing 14-12 shows the content

of github_jobs.dart file. The enableFlutterDriverExtension()

function from the flutter_driver package enables Flutter Driver to

connect to the app.

Listing 14-12. App to test using Flutter Driver

void main() {

 enableFlutterDriverExtension();

 runApp(SampleApp());

}

Listing 14-13 shows the content of github_jobs_test.dart file. The

file name is selected by appending _test suffix to the name of the app

file. This is the convention used by Flutter Driver to find the Dart file to

run the app under test. In the setUpAll() function, FlutterDriver.

connect() is used to connect to the app. In the test case, find is the top-

level constant of CommonFinders object that has convenient methods to

create SerializableFinder objects. The byValueKey() method finds

the TextField widget in Listing 14-11 by the specified key. The tap()

method of FlutterDriver taps at the TextField widget to make it gain

focus. Then enterText() method is used to input search keyword to the

focused TextField widget. The search button is then tapped to trigger the

loading of data. If the data is loaded successfully, the ListView widget with

jobsList key is available. The waitFor() method waits for the ListView

widget to appear.

Chapter 14 testing and debugging

505

Listing 14-13. Test using Flutter Driver

void main() {

 group('GitHub Jobs', () {

 FlutterDriver driver;

 setUpAll(() async {

 driver = await FlutterDriver.connect();

 });

 test('searches by keyword', () async {

 await driver.tap(find.byValueKey('keyword'));

 await driver.enterText('android');

 await driver.tap(find.byValueKey('search'));

 await driver.waitFor(find.byValueKey('jobsList'),

 timeout: Duration(seconds: 5));

 });

 tearDownAll(() {

 if (driver != null) {

 driver.close();

 }

 });

 });

}

Now we can use the following command to run the integration test.

Flutter Driver deploys the app to the emulator or real device and runs the

test code to verify the result.

$ flutter driver --target=test_driver/github_jobs.dart

Table 14-3 shows methods of FlutterDriver class that can be

used to interact with the app during tests. If you want to perform

custom actions, you can provide a DataHandler function when calling

Chapter 14 testing and debugging

506

enableFlutterDriverExtension() function. Messages sent using

requestData() method will be handled by the DataHandler.

Table 14-3. Methods of FlutterDriver

Name Description

enterText() enter text into the currently focused text input.

getText() get text in the Text widget.

tap() taps at the widget.

waitFor() Wait until the finder locates a widget.

waitForAbsent() Wait until the finder can no longer locate a

widget.

scroll() scroll in a widget by the given offset.

scrollIntoView() scroll the Scrollable ancestor of the widget

until it’s visible.

scrollUntilVisible(Serial

izableFinder scrollable,

SerializableFinder item)

repeatedly call scroll() in the

scrollable widget until the item is visible,

then call scrollIntoView() on the item.

traceAction() run the action and return its performance

trace.

startTracing() start recording performance traces.

stopTracingAndDownload

Timeline()

stop recording performance traces and

download the result.

forceGC() For a garbage collection to run.

getRenderTree() returns a dump of the current render tree.

requestData() sends a message to the app and receives a

response.

screenshot() take a screenshot.

Chapter 14 testing and debugging

507

Methods in FlutterDriver class use SerializableFinder objects to

locate widgets. Table 14-4 shows methods of CommonFinders class to create

SerializableFinder objects. These methods only support using String

or int values as parameters. This is because values need to be serialized

when sending to the app.

Table 14-4. Methods of CommonFinders in flutter_driver

Name Description

byType() Find widgets by class name.

byValueKey() Find widgets by key.

byTooltip() Find widgets with a tooltip with the given message.

text() Find Text and EditableText widgets with the given text.

pageBack() Find the back button.

14-5. Debugging Apps
 Problem
You want to debug issues found in the apps.

 Solution
Use IDE and utilities provided by Flutter SDK.

 Discussion
When the code doesn’t work as you expected in the runtime, you need

to debug the code to find out the cause. With the help of IDEs, it’s quite

straightforward to debug Flutter apps. You can add breakpoints in the code

and start the app in debug mode.

Chapter 14 testing and debugging

508

Another common approach to debug code is to write outputs to the

system console using print() function. These logs can be viewed using

flutter logs command. Android Studio also displays these logs in the

Console view. You can also use debugPrint() function to throttle the

output to avoid the logs being dropped by Android.

When creating your own widgets, you should override

debugFillProperties() method to add custom diagnostic properties.

These properties can be viewed in Flutter Inspector. In Listing 14-14, the

DebugWidget has name and price properties. In the debugFillProperties()

method, two DiagnosticsProperty objects are added using

DiagnosticPropertiesBuilder object.

Listing 14-14. debugFillProperties()

class DebugWidget extends StatelessWidget {

 DebugWidget({Key key, this.name, this.price}) : super(key:

key);

 final String name;

 final double price;

 @override

 Widget build(BuildContext context) {

 return Text('$name - $price');

 }

 @override

 void debugFillProperties(DiagnosticPropertiesBuilder

properties) {

 super.debugFillProperties(properties);

 properties.add(StringProperty('name', name));

 properties.add(DoubleProperty('price', price));

 }

}

Chapter 14 testing and debugging

509

There are different types of DiagnosticsProperty subclasses

to use based on the property type. Table 14-5 shows common

DiagnosticsProperty subclasses.

Table 14-5. Methods of CommonFinders

Name Description

StringProperty For String property.

DoubleProperty For double property.

PercentProperty Format double property as percentage.

IntProperty For int property.

FlagProperty Format bool property as flags.

EnumProperty For enum property.

IterableProperty For Iterable property.

14-6. Summary
This chapter covers topics related to testing and debugging Flutter apps.

Chapter 14 testing and debugging

511© Fu Cheng 2019
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6

Index

A
Align widget, 140, 143, 152, 162

heightFactor, 141
widthFactor, 141

Alignment class, 141, 142
Alignment constants, 141
AlignmentDirectional class, 142
AlignmentDirectional instance, 143
AlignmentDirectional

constants, 142
AlignmentGeometry class, 141
ancestorWidgetOfExactType()

method, 110
android directory, 453
Animations

creation, 413
AnimatedWidget, 417, 418
AnimationController class,

413–415
AnimationStatus,

values, 416
build() method, 414
forward() method, 414
initState() method, 414
methods, 416
status listener, 416, 417

curve, 421

Curves.easeInOut curve,
423, 424

parameters, 422
types, 421, 422

linear interpolation, 418
animate() method, 418
ColorTween, 419, 420

transitions, 434
FadeTransition, 436
ScaleTransition, 435

AppLocalizations.load()
method, 486

apply() method, 125
asBroadcastStream() method, 321
AspectRatio constructor, 158
AspectRatio widget, 158, 159, 453
AssetImage class, 475
asStream() method, 320, 333
async function, 493

B
BoxConstraints class, 137
BoxConstraints instance, 138
BoxFit values, 152, 153, 155
build() method, 109–111, 116, 348,

366, 368, 369, 414

https://doi.org/10.1007/978-1-4842-4982-6

512

BuildContex
methods, 109
use, 110

Business Logic Component (Bloc)
core concepts, 389
definition, 390
Equatable class, 390
events, 389
GitHubJobs class, 393
http package, 390
mapEventToState()

function, 390
byValueKey() method, 504

C
calculate() function, 317
Cameras

camera plugin, 466
CameraController, methods,

467, 468
iOS, privacy requirements, 466
selection, 469, 470

canGoBack() method, 457
catchError() methods, 313–315
Center widget, 41, 106, 111,

139, 140
chain() method, 425
Chained then() methods, 315
Child widget, 140, 145, 147, 149,

207, 248, 258, 267, 287
ChoiceChip widget, 218, 219, 221
colorScheme.error property, 490
CommonFinders, 502, 507, 509

completion() function, 493
Complicated page flows, 301–305
Config class, inherited widget, 372
ConfigWidget, 115, 373, 374
ConstrainedBox constructor, 144
Constraints class, 137
Container constructor, 162
Container widget, 163, 164
copyWith() method, 125, 372, 398
createElement() method, 106
createState() method, 112, 366
Creation, Flutter

Android studio, 20–24
command line, 19
VS code, 24, 25

CrossAxisAlignment values, 167
Cross-platform code

built-in types, 77
boolean values, 79, 80
lists and maps, 80
numbers, 78
runes, 81
strings, 78, 79
symbols, 81

cascade operator, 87, 88
constructors, 89–91
dynamic type, 83
enumerated type, 81, 82
exceptions, 101–104
extending class, 92–94
functions, 84, 85
generics, 97–99
inheritance, 94–96
interfaces, 96, 97

INDEX

513

libraries, 100, 101
override operators, 88, 89
typedefs, 86

CupertinoDialogAction,
parameters, 291, 292, 294

CupertinoIcons class, 129
CupertinoSwitch, 214
CupertinoThemeData class, 489
CupertinoTheme.of() method, 490
Customizing themes, 489, 490

D
dart:io library, 351, 354, 355, 441
Dart observatory, 29–31, 63
Dart strings, 78
DateFormat class, 357
debugFillProperties() method, 508
debugPrint() function, 508
DecoratedBox widget, 152
DefaultAssetBundle.of()

method, 474
Descendant widget, 369, 371, 372,

385, 386, 388, 502
didChangeDependencies()

method, 368, 369
Discrete set of values, 214–217
Display

icons, 128, 129
images, 126–128

Displaying web pages
methods, 458
parameters, 457
WebView, 459, 460

webview_flutter plugin, 456
dispose() method, 368, 393, 414
DragEndDetails object, 476
drive() method, 425
Dropdown list, 206–208
Dynamic route matching, 284, 285

E
EdgeInsets constructors, 157
EdgeInsetsDirectional class, 158
EdgeInsetsDirectional.fromSTEB()

constructor, 158
EditUserDetailsPage widget, 279
enableFlutterDriverExtension()

function, 504, 506
ensureVisible() method, 498, 499
enterText() method, 498, 504
evaluateJavascript() method, 458
example directory, 453
Exception handling

catch, 102–104
Error object, 102
try-catch-finally, 101

expect() function, 492, 493
expectAsync1() function, 493

F
FilterChip widget, 219–221
Finder objects, 498, 501, 502
FittedBox widget, 152
FixedPositionLayoutDelegate

class, 174

Index

514

FlatButton, 130–132
FlatButton.icon() constructors, 132
Flex Box Layout Algorithm,

165, 166
Flexible widget, 165, 168
flipped property, 422
flutter analyze, 59, 60
Flutter apps

code structure, 27
configuration, 28
run, 26

flutter attach, 64
flutter bash-completion command,

72, 73
flutter_bloc packages, 389
flutter devices command, 70
flutter drive command, 71
flutter_driver package, 503
Flutter Driver, 505, 506, 508
FlutterDriver.connect()

function, 504
Flutter Inspector

render tree, 108
widgets tree, 107

flutter logs command, 68, 508
flutter packages, 54–56
Flutter SDK

build app binaries, 51
APK file, 51, 52
iOS, 52, 53

channels, 35
clean build files, 74
configuration, 66, 67

debugging, 36–39
emulators management, 61, 62
flutter run, 46

arguments, 48, 49
build flavors, 47
output, 50

formatting source code, 68, 69
installation, 53, 54
integration tests, 70–72
listing connected devices, 70
manage cache, 74, 75
outline view, Android Studio,

39–41
package management, 54–56
projects, creation, 42

configurations, 45
enable/disable features, 45,

46
sample code, 44
types, 43

running app, 64
showing app logs, 67, 68
taking screenshots, 62, 63
tests, 56, 57

arguments, 58
coverage report, 57
debug, 58

tracing, running app, 65, 66
updation, 34–36
VS Code, debugging, 41, 42

flutter test command, 56
Font Awesome icon, 129
formatEditUpdate() method, 203

INDEX

515

Form widgets
date and time selection,

221–225
formatting text, 202, 203
form creation, 230–233
multiple values, selection,

209, 211
single values, selection, 203,

204, 206–208
text limits setting, 196–198
text selection, 198–201
using chips, 217–221
wrapping form fields, 225–230

Future objects, 313–316, 327, 351
FutureBuilder, 334

G
genhtml command, 58
GestureDetector widget, 476, 477
get() method, 351, 496
getApplicationDocuments

Directory() function, 443
getJobs() method, 400, 401, 407,

409, 496, 497
getNetworkOperator method, 447,

449, 453
getTemporaryDirectory()

function, 443
getValue() function, 317
GitHubJobsClient class, 496, 497
GridView, 244–249
group() function, 492

GrowingSizeLayoutDelegate,
178–180

gRPC services, interaction,
360–362

H
Hot reload

compilation errors, 33
console output, 33
debug mode, 32
Flutter SDK, 31

Hot restart, 31–34
HttpClient.addCredentials()

method, 353

I
Icon() constructor, 129
IconButton constructor, 132
ImageBox widget, 152, 155
Image.network() constructor,

126, 127
ImageRepeat values, 127
IndexedStack class, 170
Inflation, 106
Inherited model, 378–381
Inherited notifier, 382–384
InheritedWidget class, 113,

114, 379
inheritFromWidgetOfExactType()

method, 114, 371, 373
initializeMessages() function, 485

Index

516

Installation, Flutter
Android devices, set up, 18
Android emulators, set up,

13–15, 17
Android platform, set up, 11–13
iOS devices, set up, 9, 10
iOS platform, 7, 8
iOS simulator, set up, 9
Linux machine, 4, 5
macOS machine, 5–7
Windows, 1–3

invokeListMethod() method, 447
ios directory, 453
IOS dialogs, 290–293
isSupported() method, 481

J, K
JavascriptMessageHandler

function, 458
Job class, 357, 358
json_annotation, 338, 406
jsonDecode() function, 336,

338, 358
jsonEncode() function, 336, 338
json_serializable, 338, 339

L
layout() method, 137, 144
Layout

algorithm, 138
BoxConstraints instance, 138
Flutter, 135

multiple children, 176
RenderObject instance, 137
single child, 173, 174
widgets, 139

layoutChild() method, 177
lib directory, 453
Lifecycle methods, 368
LimitedBox constructor, 151
LimitedBox widget, 151, 168
listen() method, 320, 321, 354
ListTile, 238–244
ListView widget, 504

creation, 236
item builders, 237, 238
static children, 236

load() method, 474, 481
loadString() method, 474
LocalizationsDelegate class, 478,

481–483, 486
LoggingNavigatorObserver class,

306, 307
Login form, 231, 233
loosen() method, 143

M
main() method, 34, 47, 106
MainAxisAlignment values, 167
MethodCallHandler interface, 453
Mobx, state management, 405–407,

409, 412
MockHttpClient class, 496
mockito package, 495
move() method, 491

INDEX

517

MultiChildLayoutDelegate, 177
MultiChildRenderObjectWidget

class, 139
Multiple locales

AppLocalizations/localized
subclasses, 480, 483

Custom Localizations
Delegate, 482

flutter_localizations, 479
Localizations widget, 478
LocalizationsDelegate class, 478
MaterialLocalizations

object, 480
methods, 481

Multiple values, selection, 209–211

N
Navigator.of() method, 274, 301
NetworkPlugin.java file, 453

O
On-boarding page, 302, 303
onHorizontalDragEnd

callback, 476
onHorizontalDragStart

callback, 476
onHorizontalDragUpdate

callback, 476
OutlineButton, 130, 131
OutlineButton.icon()

constructors, 132
OverflowBox constructor, 148, 149

P
padding parameter, 157
Padding widget, 158
Page navigation

data passing between routes,
278–284

dynamic route matching,
284, 285

implementation, 273–276
iOS

action sheets, 293–296
dialogs, 290–293

material design
dialogs, 286–290
menus, 296–300

named routes, 276–278
Painting custom elements, 486

canvas methods, 487
CustomPaint widget, 486
parameters, 487
Shapes class, 488, 489

parentData property, 137
Parent widget, 148, 174, 236, 385
parse() function, 344, 349
performLayout() method, 176, 177
Physics simulations

GravitySimulation, 438
Simulation class, 437
SimulationController widget,

439, 440
SpringSimulation class,

437, 438
Placeholder() constructor, 133

Index

518

Platform-specific code
Flutter app, 446
Future object, 447
get network operator, 448, 449

android implementation,
449, 450

swift implementation,
450, 451

MethodChannel class, 446, 447
Playing videos

Android, 461
iOS HTTP security config, 461
methods, 462
video_player plugin, 460
VideoPlayerController,

constructors, 462
VideoPlayerView class, 463, 465

Plugins, creation, 452–455
PopupMenuItem constructor, 297
positionChild() method, 177
postMessage function, 459
print() function, 508
pump() method, 498, 501
pumpAndSettle() method, 498
pumpWidget() method, 498

Q
quarterTurns parameter, 156

R
Radio widgets, 204–206
RaisedButton, 130–132, 369

RaisedButton widget, 501
RaisedButton.icon()

constructors, 132
Range of continuous, 214–217
readConfig() method, 443
Reading/writing files, 441

asynchronous methods, 442
config.txt file, 443, 444
Directory class, 443
readAsString() methods, 441
readAsStringSync()

methods, 441
receiveNetworkOperator()

function, 450
Redux

actions, 399, 400
GitHub jobs widget, 402–405
jobsstate, 398, 399
reducer function, 400
thunk function, 401

Register named routes, 277
RenderBox class, 137
RenderObject class, 137
RenderObjectWidget class, 139
Render tree, 106, 108, 137, 138
request.close() method, 351
requestData() method, 506
reset() method, 231, 416
resolve() method, 143
REST services, 356–360
RichText() constructor, 121
RichText widgets, 116

name parameters, 117
RotatedBox widget, 156

INDEX

519

Route class, 274
RouteAware methods, 307
RouteSettings properties, 283
runApp() method, 106

S
save() method, 230
Scaffold

AppBar widget, 256, 257
BottomAppBar, 260
BottomNavigationBar, 260–263
BottomSheet widget, 263
drawer widget, 258–260
elements, 256
FloatingActionButton

widget, 258
iOS pages, 265, 266
material design pages, 255, 256
SnackBar widget, 264, 265
stateful widget, 264

Scoped model, 384–389
_SelectColorState.build()

method, 366
Sequential/overlapping

animations, 428–430
Service interactions

async and await, 317, 318
build a widget, 330–335
complex JSON data, 337–339
creating future objects, 318, 319
creating streams, 328, 329
future objects, 314–316
gRPC services, 360–362

HTML data handling, 349, 350
HTTP requests, 350–353
JsonKey properties, 342, 343
JsonValue, 343
properties of JsonSerializable,

340, 341
REST services, 356–360
simple JSON data, 335–337
socket servers, 355, 356
streams, working, 320
use JsonLiteral, 343
user class, 341, 342
webSocket servers, 353, 354
working with future objects, 313
XML data handling, 344

setState() method, 112, 366
setUp() function, 494
setUpAll() function, 504
share() method, 471
share plugin, 470
shared_preferences plugin, 444
shouldRelayout() methods, 176
shouldReload() method, 481
showDatePicker() function,

221, 222
showDialog() function, 287
showSnackBar() method, 264
showTimePicker() function,

221, 223
Simultaneous animations, 427–428
SingleChildRenderObjectWidget

class, 139
SizedBox widget, 144, 147, 149, 152,

162, 414

Index

520

SizedBox constructors, 145
SizedOverflowBox widget, 150
Slider widget, 215–217
Socket.connect() method, 354–356
Socket servers, 355, 356
SpringDescription.

withDampingRatio()
constructor, 437, 438

Stack constructor, 170
StackFilt.expand, 170
StackFilt.passthrough, 170
StackFit.loose, 170
Stack widget, 171

phases, 170
State.build() methods, 109, 110
StatefulWidget class, 112, 365–371
StatelessWidget.build() methods,

109, 110
StatelessWidget class, 111
State management

bloc patter, 389–397
inherited model, 378–381
inherited notifier, 382–384
inherited widgets, 371–378
mobx, 405–412
redux, 397–405
scoped model, 384–389
stateful widgets, 365–371

State of navigator, 305–309
Static assets

AssetImage class, 475
load string, 474
pubspec.yaml file, 474
types, 473

variants, 475
Stop routes from popping, 310–312
Storing key-value pairs

getBool() methods, 445
setBool() methods, 445
SharedPreference, 445, 446

StreamBuilder, 330, 332
Stream of events

subscription, 321–323
transformation, 323–328

SwiftNetworkPlugin.swift file, 455
Switch widget, 211, 212, 214
System share sheet, 470–471

T
Tab layout

iOS, 270, 271
material design, 266–270

Tabular data, 250–255
tap() method, 504
tearDown() function, 494, 495
test directory, 56, 453, 491
test() function, 492
testWidgets() function, 498
Text widget, 119

constructors, 116
name parameters, 117

TextAlign values, 118
TextDecoration class, 124
TextDecoration.combine()

constructor, 124
TextDecoration constants, 124
TextDecorationStyle, 124

INDEX

521

values, 125
TextField widget, 192, 193, 197, 212,

222, 369, 499, 504
Text fields, material design

borders, 192–194
customize the keyboard, text

input, 188–191
InputDecoration, 192, 193
prefix and suffix, 194, 195
text, 195, 196

TextField widgets, 193, 197
TextInputAction values, 190
TextInputFormatter.withFunction()

method, 202, 203
Text inputs, collection

callbacks, 186–188
CupertinoTextField widget, 182
EditableText widget, 182
material design, 181
TextEditingController, 182–184
using listener, 184–186

TextInputType constants, 189
TextOverflow values, 118
TextSpan() constructor, 119
TextSpan objects, 119

name parameters, 120
TextStyle() constructor, 122

name parameters, 123
TextStyle, update, 126
ThemeData object, 489
throwsA() function, 493
timeout() method, 316
Toggling on/off state, 211–214
toJson() function, 337

Tranform.rotate() constructor, 160
transform() method, 421
Transform constructor, 160
Transform.scale() constructor, 161
Transform.translate() constructor,

161
Translation files

Intl.message(), 484
intl_messages.arb file, 485
intl_translation package, 483
load messages, 485, 486

TweenSequence class, 425,
426, 429

U
UnconstrainedBox widget, 147
Unknown route handling, 285, 286
updateShouldNotify() method,

114, 373, 379
User details page, 279, 281

V
validate() method, 230

W
waitFor() method, 504, 506
WebSocket.connect() method, 354
WebSocket servers, 353, 354
WebViewController object,

456–458
whenComplete() method, 315, 316

Index

522

Widgets
align, 140
buttons, 130

icons, 132
types, 130, 131

center, 139
constraints, 146
flex box, 165
layout aspects, 161–163
layout constraints, 144
multiple horizontal/vertical

runs, 171, 173
overlap, 169
placeholders, 133
size, 158
test, 498
transformation, 160

Widgets tree, 33, 106, 107, 305, 368,
369, 371, 431

WidgetTester, 499

_wrapInMaterial()
function, 500

Wrapping form fields
methods, 227
named parameters, 226
TextFormField, 227–229

Wrapping LayoutId widget, 178
Wrap widget, 171, 173
writeConfig() method, 443

X, Y, Z
XML data handling, 344

parsing, 344
properties, 345
querying, 346, 347
XmlBuilder

build document, 348
methods, 347
use, 348

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Get Started
	1-1. Installing Flutter SDK on Windows
	Problem
	Solution
	Discussion

	1-2. Installing Flutter SDK on Linux
	Problem
	Solution
	Discussion

	1-3. Installing Flutter SDK on macOS
	Problem
	Solution
	Discussion

	1-4. Setting Up iOS Platform
	Problem
	Solution
	Discussion

	1-5. Setting Up iOS Simulators
	Problem
	Solution
	Discussion

	1-6. Setting Up iOS Devices
	Problem
	Solution
	Discussion

	1-7. Setting Up Android Platform
	Problem
	Solution
	Discussion

	1-8. Setting Up Android Emulators
	Problem
	Solution
	Discussion

	1-9. Setting Up Android Devices
	Problem
	Solution
	Discussion

	1-10. Creating Flutter Apps Using Command Line
	Problem
	Solution
	Discussion

	1-11. Creating Flutter Apps Using Android Studio
	Problem
	Solution
	Discussion

	1-12. Creating Flutter Apps Using VS Code
	Problem
	Solution
	Discussion

	1-13. Running Flutter Apps
	Problem
	Solution
	Discussion

	1-14. Understanding Code Structure of Flutter Apps
	Problem
	Solution
	Discussion

	1-15. Fixing Configuration Issues of Flutter SDK
	Problem
	Solution
	Discussion

	1-16. Summary

	Chapter 2: Know the Tools
	2-1. Using Dart Observatory
	Problem
	Solution
	Discussion

	2-2. Using Hot Reload and Hot Restart
	Problem
	Solution
	Discussion

	2-3. Upgrading Flutter SDK
	Problem
	Solution
	Discussion

	2-4. Debugging Flutter Apps in Android Studio
	Problem
	Solution
	Discussion

	2-5. Viewing Outline of Flutter Apps in Android Studio
	Problem
	Solution
	Discussion

	2-6. Debugging Flutter Apps in VS Code
	Problem
	Solution
	Discussion

	2-7. Creating Flutter Projects
	Problem
	Solution
	Discussion
	Type of Project
	Code Sample
	Project Configurations
	Enable or Disable Features

	2-8. Running Flutter Apps
	Problem
	Solution
	Discussion
	Different Build Flavors
	Other Options

	2-9. Building Flutter App Binaries
	Problem
	Solution
	Discussion
	Build APK Files for Android
	Build for iOS

	2-10. Installing Flutter Apps
	Problem
	Solution
	Discussion

	2-11. Managing Packages
	Problem
	Solution
	Discussion

	2-12. Running Flutter Tests
	Problem
	Solution
	Discussion
	Filter the Tests to Run
	Test Coverage
	Debug a Test
	Other Options

	2-13. Analyzing the Code
	Problem
	Solution
	Discussion

	2-14. Managing Emulators
	Problem
	Solution
	Discussion

	2-15. Taking Screenshots
	Problem
	Solution
	Discussion

	2-16. Attaching to Running Apps
	Problem
	Solution
	Discussion

	2-17. Tracing Running Flutter Apps
	Problem
	Solution
	Discussion

	2-18. Configuring Flutter SDK
	Problem
	Solution
	Discussion

	2-19. Showing App Logs
	Problem
	Solution
	Discussion

	2-20. Formatting Source Code
	Problem
	Solution
	Discussion

	2-21. Listing Connected Devices
	Problem
	Solution
	Discussion

	2-22. Running Integration Tests
	Problem
	Solution
	Discussion

	2-23. Enabling Bash Completion of Flutter SDK Commands
	Problem
	Solution
	Discussion

	2-24. Cleaning Build Files of Flutter Apps
	Problem
	Solution
	Discussion

	2-25. Managing Flutter SDK Cache
	Problem
	Solution
	Discussion

	2-26. Summary

	Chapter 3: Essential Dart
	3-1. Understanding Built-In Types
	Problem
	Solution
	Discussion
	Numbers
	Strings
	Booleans
	Lists and Maps
	Runes
	Symbols

	3-2. Using Enumerated Types
	Problem
	Solution
	Discussion

	3-3. Using Dynamic Type
	Problem
	Solution
	Discussion

	3-4. Understanding Functions
	Problem
	Solution
	Discussion

	3-5. Using Typedefs
	Problem
	Solution
	Discussion

	3-6. Using Cascade Operator
	Problem
	Solution
	Discussion

	3-7. Overriding Operators
	Problem
	Solution
	Discussion

	3-8. Using Constructors
	Problem
	Solution
	Discussion

	3-9. Extending a Class
	Problem
	Solution
	Discussion

	3-10. Adding Features to a Class
	Problem
	Solution
	Discussion

	3-11. Using Interfaces
	Problem
	Solution
	Discussion

	3-12. Using Generics
	Problem
	Solution
	Discussion

	3-13. Using Libraries
	Problem
	Solution
	Discussion

	3-14. Using Exceptions
	Problem
	Solution
	Discussion
	Report Failures
	Catch Exceptions

	3-15. Summary

	Chapter 4: Widget Basics
	4-1. Understanding Widgets
	Problem
	Solution
	Discussion

	4-2. Understanding BuildContext
	Problem
	Solution
	Discussion

	4-3. Understanding Stateless Widget
	Problem
	Solution
	Discussion

	4-4. Understanding Stateful Widget
	Problem
	Solution
	Discussion

	4-5. Understanding Inherited Widget
	Problem
	Solution
	Discussion

	4-6. Displaying Text
	Problem
	Solution
	Discussion
	Text
	TextSpan
	RichText

	4-7. Applying Styles to Text
	Problem
	Solution
	Discussion

	4-8. Displaying Images
	Problem
	Solution
	Discussion

	4-9. Displaying Icons
	Problem
	Solution
	Discussion

	4-10. Using Buttons with Text
	Problem
	Solution
	Discussion

	4-11. Using Buttons with Icons
	Problem
	Solution
	Discussion

	4-12. Adding Placeholders
	Problem
	Solution
	Discussion

	4-13. Summary

	Chapter 5: Layout Widgets
	5-1. Understanding Layout in Flutter
	Problem
	Solution
	Discussion
	RenderObject
	BoxConstraints
	Layout Algorithm
	Layout Widgets

	5-2. Placing Widgets in the Center
	Problem
	Solution
	Discussion

	5-3. Aligning Widgets
	Problem
	Solution
	Discussion

	5-4. Imposing Constraints on Widgets
	Problem
	Solution
	Discussion

	5-5. Imposing No Constraints on Widgets
	Problem
	Solution
	Discussion

	5-6. Imposing Constraints on Widgets when Ignoring Parents
	Problem
	Solution
	Discussion

	5-7. Limiting Size to Allow Child Widget to Overflow
	Problem
	Solution
	Discussion

	5-8. Limiting Widgets Size when Unbounded
	Problem
	Solution
	Discussion

	5-9. Scaling and Positioning Widgets
	Problem
	Solution
	Discussion

	5-10. Rotating Widgets
	Problem
	Solution
	Discussion

	5-11. Adding Padding when Displaying Widgets
	Problem
	Solution
	Discussion

	5-12. Sizing Widgets to Aspect Ratio
	Problem
	Solution
	Discussion

	5-13. Transforming Widgets
	Problem
	Solution
	Discussion

	5-14. Controlling Different Layout Aspects on a Widget
	Problem
	Solution
	Discussion

	5-15. Implementing Flex Box Layout
	Problem
	Solution
	Discussion
	Flex Box Layout Algorithm
	Flexible

	5-16. Displaying Overlapping Widgets
	Problem
	Solution
	Discussion

	5-17. Displaying Widgets in Multiple Runs
	Problem
	Solution
	Problem

	5-18. Creating Custom Single Child Layout
	Problem
	Solution
	Discussion

	5-19. Creating Custom Multiple Children Layout
	Problem
	Solution
	Discussion

	5-20. Summary

	Chapter 6: Form Widgets
	6-1. Collecting Text Inputs
	Problem
	Solution
	Discussion
	Using TextEditingController
	Using Listeners of TextEditingController
	Using Callbacks

	6-2. Customizing Keyboard for Text Input
	Problem
	Solution
	Discussion

	6-3. Add Decorations to Text Input in Material Design
	Problem
	Solution
	Discussion
	Borders
	Prefix and Suffix
	Text

	6-4. Setting Text Limits
	Problem
	Solution
	Discussion

	6-5. Selecting Text
	Problem
	Solution
	Discussion

	6-6. Formatting Text
	Problem
	Solution
	Discussion

	6-7. Selecting a Single Value
	Problem
	Solution
	Discussion

	6-8. Selecting a Single Value from Dropdown
	Problem
	Solution
	Discussion

	6-9. Selecting Multiple Values
	Problem
	Solution
	Discussion

	6-10. Toggling On/Off State
	Problem
	Solution
	Discussion

	6-11. Selecting from a Range of Values
	Problem
	Solution
	Discussion

	6-12. Using Chips
	Problem
	Solution
	Discussion

	6-13. Selecting Date and Time
	Problem
	Solution
	Discussion

	6-14. Wrapping Form Fields
	Problem
	Solution
	Discussion

	6-15. Creating Forms
	Problem
	Solution
	Discussion

	6-16. Summary

	Chapter 7: Common Widgets
	7-1. Displaying a List of Items
	Problem
	Solution
	Discussion
	ListView with Static Children
	ListView with Item Builders
	ListTile

	7-2. Displaying Items in a Grid
	Problem
	Solution
	Discussion

	7-3. Displaying Tabular Data
	Problem
	Solution
	Discussion

	7-4. Scaffolding Material Design Pages
	Problem
	Solution
	Discussion
	App Bar
	Floating Action Button
	Drawer
	Bottom App Bar
	Bottom Navigation Bar
	Bottom Sheet
	Scaffold State
	SnackBar

	7-5. Scaffolding iOS Pages
	Problem
	Solution
	Discussion

	7-6. Creating Tab Layout in Material Design
	Problem
	Solution
	Discussion

	7-7. Implementing Tab Layout in iOS
	Problem
	Solution
	Discussion

	7-8. Summary

	Chapter 8: Page Navigation
	8-1. Implementing Basic Page Navigation
	Problem
	Solution
	Discussion

	8-2. Using Named Routes
	Problem
	Solution
	Discussion

	8-3. Passing Data Between Routes
	Problem
	Solution
	Discussion

	8-4. Implementing Dynamic Route Matching
	Problem
	Solution
	Discussion

	8-5. Handling Unknown Routes
	Problem
	Solution
	Discussion

	8-6. Displaying Material Design Dialogs
	Problem
	Solution
	Discussion

	8-7. Displaying iOS Dialogs
	Problem
	Solution
	Discussion

	8-8. Displaying iOS Action Sheets
	Problem
	Solution
	Discussion

	8-9. Showing Material Design Menus
	Problem
	Solution
	Discussion

	8-10. Managing Complicated Page Flows Using Nested Navigators
	Problem
	Solution
	Discussion

	8-11. Observing Navigator State Changes
	Problem
	Solution
	Discussion

	8-12. Stopping Routes from Popping
	Problem
	Solution
	Discussion

	8-13. Summary

	Chapter 9: Service Interaction
	9-1. Working with Futures
	Problem
	Solution
	Discussion

	9-2. Using async and await to Work with Futures
	Problem
	Solution
	Discussion

	9-3. Creating Futures
	Problem
	Solution
	Discussion

	9-4. Working with Streams
	Problem
	Solution
	Discussion
	Stream Subscription
	Stream Transformation

	9-5. Creating Streams
	Problem
	Solution
	Discussion

	9-6. Building Widgets Based on Streams and Futures
	Problem
	Solution
	Discussion

	9-7. Handle Simple JSON Data
	Problem
	Solution
	Discussion

	9-8. Handle Complex JSON Data
	Problem
	Solution
	Discussion

	9-9. Handling XML Data
	Problem
	Solution
	Discussion
	Parse XML Documents
	Build XML Documents

	9-10. Handling HTML Data
	Problem
	Solution
	Discussion

	9-11. Sending HTTP Requests
	Problem
	Solution
	Discussion

	9-12. Connecting to WebSocket
	Problem
	Solution
	Discussion

	9-13. Connecting to Socket
	Problem
	Solution
	Discussion

	9-14. Interacting JSON-Based REST Services
	Problem
	Solution
	Discussion

	9-15. Interacting with gRPC Services
	Problem
	Solution
	Discussion

	9-16. Summary

	Chapter 10: State Management
	10-1. Managing State Using Stateful Widgets
	Problem
	Solution
	Discussion

	10-2. Managing State Using Inherited Widgets
	Problem
	Solution
	Discussion

	10-3. Managing State Using Inherited Model
	Problem
	Solution
	Discussion

	10-4. Managing State Using Inherited Notifier
	Problem
	Solution
	Discussion

	10-5. Managing State Using Scoped Model
	Problem
	Solution
	Discussion

	10-6. Managing State Using Bloc
	Problem
	Solution
	Discussion

	10-7. Managing State Using Redux
	Problem
	Solution
	Discussion

	10-8. Managing State Using Mobx
	Problem
	Solution
	Discussion

	10-9. Summary

	Chapter 11: Animations
	11-1. Creating Simple Animations
	Problem
	Solution
	Discussion

	11-2. Creating Animations Using Linear Interpolation
	Problem
	Solution
	Discussion

	11-3. Creating Curved Animations
	Problem
	Solution
	Discussion

	11-4. Chaining Tweens
	Problem
	Solution
	Discussion

	11-5. Creating Sequences of Tweens
	Problem
	Solution
	Discussion

	11-6. Running Simultaneous Animations
	Problem
	Solution
	Discussion

	11-7. Creating Staggered Animations
	Problem
	Solution
	Discussion

	11-8. Creating Hero Animations
	Problem
	Solution
	Discussion

	11-9. Using Common Transitions
	Problem
	Solution
	Discussion

	11-10. Creating Physics Simulations
	Problem
	Solution
	Discussion

	11-11. Summary

	Chapter 12: Platform Integration
	12-1. Reading and Writing Files
	Problem
	Solution
	Discussion

	12-2. Storing Key-Value Pairs
	Problem
	Solution
	Discussion

	12-3. Writing Platform-Specific Code
	Problem
	Solution
	Discussion

	12-4. Creating Plugins
	Problem
	Solution
	Discussion

	12-5. Displaying Web Pages
	Problem
	Solution
	Discussion

	12-6. Playing Videos
	Problem
	Solution
	Discussion

	12-7. Using Cameras
	Problem
	Solution
	Discussion

	12-8. Using System Share Sheet
	Problem
	Solution
	Discussion

	12-9. Summary

	Chapter 13: Miscellaneous
	13-1. Using Assets
	Problem
	Solution
	Discussion

	13-2. Using Gestures
	Problem
	Solution
	Discussion

	13-3. Supporting Multiple Locales
	Problem
	Solution
	Discussion

	13-4. Generating Translation Files
	Problem
	Solution
	Discussion

	13-5. Painting Custom Elements
	Problem
	Solution
	Discussion

	13-6. Customizing Themes
	Problem
	Solution
	Discussion

	13-7. Summary

	Chapter 14: Testing and Debugging
	14-1. Writing Unit Tests
	Problem
	Solution
	Discussion

	14-2. Using Mock Objects in Tests
	Problem
	Solution
	Discussion

	14-3. Writing Widget Tests
	Problem
	Solution
	Discussion

	14-4. Writing Integration Tests
	Problem
	Solution
	Discussion

	14-5. Debugging Apps
	Problem
	Solution
	Discussion

	14-6. Summary

	Index

