Flutter
Recipes

Mobile Development Solutions for
i0S and Android

Fu Cheng

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

Flutter Recipes

Mobile Development Solutions
for iOS and Android

Fu Cheng

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Flutter Recipes: Mobile Development Solutions for iOS and Android

Fu Cheng
Sandringham, Auckland, New Zealand

ISBN-13 (pbk): 978-1-4842-4981-9 ISBN-13 (electronic): 978-1-4842-4982-6
https://doi.org/10.1007/978-1-4842-4982-6

Copyright © 2019 by Fu Cheng

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4981-9. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-4982-6
http://www.allitebooks.org

Table of Contents

About the AUthOrccccmmismmmmsesssssss s XXXi
About the Technical REVIEWETccccssssemsmsssnsssssnsssssnsssssnsssssnnsnss XXxiii
Chapter 1: Get Startedcccccvniiimemmn s ———— 1
1-1. Installing Flutter SDK on WiNAOWS........c.ccccvrenerenmrensenerenesssesesesessesesesesenns 1
(0]] T S 1

0T 0] 111 0] OSSR 1

DT o110 o S 1

1-2. Installing Flutter SDK 0N LiNUXccveeernsenenenenssesensesesssesssesesesessssessssesenns 4
(0] T SRS 4

RS0 0] S 4

DT o110 o S 4

1-3. Installing Flutter SDK 0n macOS..........ccouevmennnnennensnesessse s sessssessssesenns 5
ProDIBM ... 5

B30 110 SRRSO 6
DISCUSSIONcviecrrreerrse e s e s 6

1-4. Setting Up i0S Platform........ccccvvveininieninnnsnsene s sesse e ssssessessesnes 7
ProbIEm ... —————— 7
SOIULION ...t 7
DISCUSSIONcviuirrriserrse s e e nr s 7

1-5. Setting Up i0S SimMUIALOrSccvevvvririere e s e se e enes 9
ProBIBM ... ————————————— 9
SOIULION ..o 9

DT 1] 0] o 9

iii

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

1-6. SEtting Up i0S DEVICESvevvvvererrerrrrerseresessssessessessessssessessessssessessessssessessesses 9
PrOBIBM ... —————— 9
SOIUTION <.t 9
DT oT 11 0] o N 10

1-7. Setting Up Android PIatformccccvvvrevnnennrsenienessensesessssessessessessssessensens 11
(o 10] 1T N 11
RST8] 11 TP 11
DT eT 11 0] o N 11

1-8. Setting Up Android EmUIAtors...........ccceveviiinininiennsneness e sessennens 13
(o (0]] T TR 13
RST8] 1] TS 13
DISCUSSION ... 13

1-9. Setting Up Android DEVICESccccvvverrerierinninrere s ssesnens 18
(o (0]] T 18
630 0] 18
DT eT 1] 0] o T 18

1-10. Creating Flutter Apps Using Command Line..........ccccoeerrnsernsenesenerensenens 19
(o (0] T 19
£ o] 11 0] 19
DT eT 1] 0] o TN 19

1-11. Creating Flutter Apps Using Android Studio.........c.ccoverernsennienenenerensenens 20
a0] T RS 20
E3 0] 10 ST 20
DISCUSSIONcveeeerreerree s e 20

1-12. Creating Flutter Apps USing VS Code.......cccccvvvernenmnenesnsesensesesesessssesenns 24
ProDIBM ... s 24
E3 0] 0] OSSR 24
DISCUSSIONcviererrcerree s e nranis 25

iv

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

1-13. RUNNINg FIULEEE APPS .ovveveeririeree s sse s ae s s 26
PrODIBM ... 26
SOIULION ..o 26
DT oT 11 0] o N 26

1-14. Understanding Code Structure of FIUtter APPS......cccverrerrrerreriereressensenens 27
Lo (0] 1T N 27
SOIULION <. 27
DT eT T 1 0] o N 27

1-15. Fixing Configuration Issues of Flutter SDK............cccrinivncninennsnicnnens 28
Lo (0]] T T 28
B30 0] TP 28
DT eT 1T 0] o TR 28

L LT 111111 S 28

Chapter 2: Know the TOOIS.......ccccusssemmmmnssssnnmmsssssnnnmssssssssssssssssssssssnnnnss 29

2-1. Using Dart ODSErVAtOryccuveemenerrnsessnesesese s sessesessssessssesenns 29
ProDIBM ... s 29
E3 0] 0] OSSO 29
DISCUSSIONcvierirrcerree s r e nranis 29

2-2. Using Hot Reload and Hot Restartcococvvrevnnnvnienesnsencene s sesenaenens 31
ProbIEm ... ———————— 31
SOIULION ..o ————— 31
DT 1] 0] o N 32

2-3. Upgrading FIutter SDK.........cccvevrinvniern s sessese s ssessessesssssssessesees 34
ProBIBM ... —————————— 34
SOIULION <. 34
DIR[0 o 35

TABLE OF CONTENTS

2-4. Debugging Flutter Apps in Android StUdio.......c.ccorvvevvrierevesrerserreresessenenees 36
PrODIBM ... 36
SOIULION <.ttt 36
DT oT 11 0] o N 36

2-5. Viewing Outline of Flutter Apps in Android Studio.........ccccvvververreresenserienne 39
(o 10] 1T N 39
RST8] 11 TP 39
DT eT 11 0] o N 40

2-6. Debugging Flutter Apps in VS Code.........ccocvcvvrerninsnnenesssessesese e 41
(o (0]] T TR 41
RST8] 1] TS 41
DISCUSSION ... 41

2-7. Creating Flutter Projects........ccovvvnvninnnnsnnne s sessennes 42
(o (0]] T 42
630 0] 42
DT eT 1] 0] o T 43

2-8. RUNNINg FIULEEr APPS ...coviiriirererin e 46
(o (0] T 46
£ o] 11 0] 46
DT eT 1] 0] o TN 46

2-9. Building Flutter App BiNariescccvvrinnnnnnniens s sessessessesessessesnes 51
a0] T RS 51
E3 0] 10 ST 51
DISCUSSIONcveeeerreerree s e 51

2-10. Installing FIULEEr APPS.....cccvierirnrninere s sessessesnes 53
ProDIBM ... s 53
E3 0] 0] OSSR 53
DISCUSSIONcviererrcerree s e nranis 53

TABLE OF CONTENTS

2-11. Managing Packagesccccvvrrerreriensennennesiesses e s ssesssesessessssssesaessenns 54
PrODIBM ... 54
SOIULION <.t s 54
DT oT 11 0] o N 54

2-12. Running FIULter TESTS....cccv i rerer et see e 56
L 10] 1T N 56
RS0 11 PSR 56
DT eT 11 0] o N 56

2-13. Analyzing the Code.........cccviririnnsne e 58
(o (0] T 58
RS0 11 TSR 59
DT eT 1T 0] o TR 59

2-14. Managing Emulators..........ccccocevevnvnininnnnnness s sessessesnes 61
(o (0] T TR 61
E3 0] 10 61
DT eT 1] 0] o T 61

2-15. TaKing SCrEENSNOLSccceveeerererereeree s 62
(o (0]] T T 62
£ o] 11 0] T 62
DT eT 1] 0] o T 62

2-16. Attaching t0 RUNNING APPS ...covveerereermrrnsesesesesese s sessesessssessssesenns 63
(0]] T RS 63
E3 0] 0] ST 63
DISCUSSIONcoviecerserrree s e 64

2-17. Tracing Running FIUter APPS.....cccvveerrnrrnenesesesssesssesesssse e ssssesenns 65
ProDIBM ... s 65
E3 0] 10 SRS 65
DISCUSSIONcvieerirrerrree s e nranis 65

vii

TABLE OF CONTENTS

2-18. Configuring FIULEEr SDK.......ccocevivrrverierenenseresessssessesse e ssssessessesssssssessesses 66
PrODIBM ... 66
SOIULION <.ttt 66
DT oT 11 0] o N 66

2-19. ShOWING APP LOGS c.evvererrerrerererssserersessessssessessessssessessessesssssssessesssssssensesses 67
(o 10] 1T N 67
RST8] 11 TP 67
DT eT 11 0] o N 68

2-20. Formatting Source Code..........coovvrrrierinnnnsne s enes 68
(o (0]] T TR 68
RST8] 1] TS 69
DISCUSSION ... 69

2-21. Listing Connected DEVICEScccvvrrrimnnnnsnese s sees 70
(o (0]] T 70
630 0] 70
DT eT 1] 0] o T 70

2-22. Running Integration TESTS.........ccovermrerrnseserenerssesesese e 70
(o (0] T 70
£ o] 11 0] 71
DT eT 1] 0] o TN 71

2-23. Enabling Bash Completion of Flutter SDK Commands..........c.ccocvrvrerenneenn 72
a0] T RS 72
E3 0] 10 ST 72
DISCUSSIONcveeeerreerree s e 72

2-24. Cleaning Build Files of FIUtter AppS......ccocvvvvrinnnnnninesssensesesesessessenees 74
ProDIBM ... s 74
E3 0] 0] OSSR 74
DISCUSSIONcviererrcerree s e nranis 74

viii

TABLE OF CONTENTS

2-25. Managing Flutter SDK CaChe..........ccveererenrerseressssensessessessssessessessessssessenses 74
PrODIBM ... 74
SOIULION <.t s 74
DT oT 11 0] o N 75

2-26. SUMMAIY .evuerrereerererersesessesessessessssessessesssssssessessssssssssessesssssssessessessssensesses 75

Chapter 3: Essential Dart.........cccccusmmnmnssssnnnmmssssssnsmsssssssessssssssssssssnsns 77

3-1. Understanding Built-In TYPES.......ccvoererrrerrrereree e 77
(10 T 77
£ 0] 11 0] 77
DT eT 1] 0] o 77

3-2. Using ENumMerated TYPESccvrererererenserenesessesesessesessssessesesessesessssesessesenns 81
(18]] T TS 81
£ 0] 111 10 TR 81
DT o1 0] o 82

3-3. USing DYNAmIC TYPE ...ccvvveerreerrreerreeressesessesesse e ssssesessesesss s sessessssesessssesenns 83
(0] 1T SRS 83
B3 0] 0] ST 83
DT eT 1T 0] o TR 83

3-4. Understanding FUNCHONS........c.cccovecnnnnncnin e 84
ProDIBM ... s 84
E3 0] 10 OSSO 84
DISCUSSIONcvieerinrcerree s nranis 84

3-5. USING TYPEAETSocerererirrirrire s s s sse e saesnes 86
ProbIEm ... ———————— 86
SOIULION .. ——————— 86
DISCUSSIONcvierirreerree s nr s 86

ix

TABLE OF CONTENTS

3-6. Using Cascade OPErator........cc.cvvvevrerseresessensessessssessessessessssessessessessssessesses 87
PrODIBM ... 87
SOIULION <.ttt 87
DT oT 11 0] o N 87

3-7. 0verriding OPEratorscccvveveveererrerseressssessessessssessessessesssssssessessessssessesses 88
(o 10] 1T N 88
RST8] 11 TP 88
DT eT 11 0] o N 88

3-8. USiNg CONSIIUCTIONScovericirerers e 89
(o (0]] T TR 89
RST8] 1] TS 89
DISCUSSION ... 90

3-9. Extending @ Classcccvvririnnnnnnine s sss s snes 92
(o (0]] T 92
630 0] 92
DT eT 1] 0] o T 92

3-10. Adding Features t0 @ ClassS.........cuourerrererensenerenernsesesesese s eses e sesesenns 94
(o (0] T 94
30 0] 94
DT eT 1] 0] o TN 94

3-11. USING INTEITACES......cccoerererrererenesere s 96
a0] T RS 96
E3 0] 10 ST 96
DISCUSSIONcveeeerreerree s e 96

3-12. USING GENEIICS. ...errrerrrrererreseressessssssessssessssessssssesssssssssssssssssssssessssssssssssssnns 97
ProDIBM ... s 97
E3 0] 0] OSSR 97
DISCUSSIONcviererrcerree s e nranis 98

TABLE OF CONTENTS

3-13. USINQG LIDrari@s.......cccvvrreereriiniennesessessssssesessessss e sessessssssessessssssssaesansnes 100
PrOBIBM ... 100
SOIUTION ...t 100
DISCUSSIONcvieiiriceriee s e 100

3-14. USIiNg EXCEPLIONSoovereecererercee s s s s s s s sn e s 101
(0]] =T 101
RST8] 11 (o] P 101
DISCUSSION ... s 101

3-15. SUMMANY ..ocueiiiiecirere e s s r e s r e e nne s 104

Chapter 4: Widget BaSiCS ...c.uueemmrmssssnnmmssssssnsmsssssnssssssssnssssssssnsnsssssnns 105

4-1. Understanding Widgetscccvvrernnrmnenesnnnmsnsesesesesssesessesessesessssesessesenns 105
0]] T TSRS 105
RS0 0] SRR 105
DISCUSSIONcoveeeerreerreserese s s e en e nne e 105

4-2. Understanding BuildConteXt............ccovrenriennnsmsnessnssesssesssesesesessssesenns 108
ProDIBM ... 108
B30 110 SRS 109
DISCUSSIONcvieirrreerresesesse e rrs s e srn e nnnne e 109

4-3. Understanding Stateless Widgetccocvvvrinvnncnnnnsnnsesnesess e 111
ProDIBM ... 111
SOIULION ...t 111
DISCUSSIONcviuetrreerreesese s sr e p e snnne e 111

4-4. Understanding Stateful Widget.......c.ccovvvrvrinnnnnninens s sessenennens 112
ProBIEM ... ———————— 112
SOIULION ..o 112
DIR[0 o 112

TABLE OF CONTENTS

4-5. Understanding Inherited Widget.........cccccvvrinininnnincnrn e 113
ProOBIBM ... 113
SOIULION ...t 113
DISCUSSION ... e 113

4-6. Displaying TEXL........cccvvrrererirrrersre s s s s sa e sre s sn e e s 116
PIODIBM ... 116
R0 1] P 116
DISCUSSION ... s 116
TEXE e e 116
)30 O 119
RICHTEXE....cvcvcecrcerriri e 121

4-7. Applying Styles t0 TEXL.......ccccrecrrrerres e e 122
(0]] T R 122
RST8] 11 (0] P 122
DISCUSSION ... s s 122

4-8. Displaying IMAQGESccceevrrrerenninenese e ssssessesnens 126
(0]] T TSR 126
RS T0] 0] R 126
DISCUSSION ... e se e 126

4-9. DiSplaying ICONScccoveerrierereernsesesese s 128
0]] T TS 128
RS0 0] 128
DISCUSSIONcovecereeereecreeee e re e e e e 128

4-10. Using Buttons With TeX........cccccrvennienresernserescsese e 130
0]] T TSRS 130
RS0 0] S 130
DISCUSSIONcvieeirreerrecrenee e ne s 130

xii

TABLE OF CONTENTS

4-11. Using Buttons wWith [CONS........cccccevirininnininnsn e 132
ProOBIBM ... 132
SOIULION ...t 132
DISCUSSION ...t s 132

4-12. Adding PlaCENOIAEIS.........ccceeeeereeeeeeesss e snsens 133
PIODIBM ... 133
RST8] 11 (o] P 133
DISCUSSION ... s 133

A-13. SUMMAIY ..oiueiriiecirerese s se s s r e s s r e e saesr e e e nnens 134

Chapter 5: Layout Widgets.......ccorumsmmmmmmsssnnnmmsssssnsnmsssssssssssssssnnssssnnns 135

5-1. Understanding Layout in FIULErcoceoreirncrneseresess e 135
0]] T TSRS 135
RS0 0] SRR 135
DISCUSSIONcoveeeerreerreserese s s e en e nne e 135
ReNAErODJECT.......cceeerrecrereere s 137
BOXCONSIFAINEScoveevecrireserese e 138
Layout AlGOrthm ... s 138
Layout WIidgetSc.ceeerecrncrerese s 139

5-2. Placing Widgets in the Center..........ccovevrenrnsesnesesesesssesese e 139
0]] T SRS 139
RS0 0] S 139
DISCUSSIONcvieerrreerresesensesesse s se s e s se s se s sr e s e e sen e snnsnnens 139

5-3. Aligning WIidgetScccvviernenmnnernsesssese s s senns 140
ProDIBM ... 140
SOIULION ... 140
DISCUSSIONevieirrreerreesrsse s r e nnnne e 140

xiii

TABLE OF CONTENTS

5-4. Imposing Constraints on WidgetS......c.ccuovvrvrivenennnsenenssensessesessssessessens 144
ProOBIBM ... 144
SOIULION ...t 144
DISCUSSION ... e 144

5-5. Imposing No Constraints on Widgets.........ccovrerievrrmnerienssensersessenessensenens 146
PIODIBM ... 146
R0 1] P 147
DISCUSSION ... s 147

5-6. Imposing Constraints on Widgets when Ignoring Parents.............cccoecnene 148
(0]] T TSR 148
RST8] 11 (o] TSR 148
DISCUSSIONcoveeeereecreecreeee e se e 148

5-7. Limiting Size to Allow Child Widget to Overflow.........cccoovenvninienninccnnens 149
0]] T TS 149
RS0 0] T 149
DISCUSSIONcoveeereeereecreree e e e 150

5-8. Limiting Widgets Size when Unboundedcoooeerenrnsennnenesenesensenens 150
(0]] T TR 150
£ Lo 11 0] 150
DISCUSSIONcoveecerreerrecrenese e s e e e s e s sen e nnnnens 151

5-9. Scaling and Positioning Widgetsccocvrurrnnrnenennnesssesesesesesesesenenns 151
0]] T TSRS 151
B30 0] TSR 151
DISCUSSIONcvruerrreerreerene s nne e 152

5-10. Rotating Widgetsc.cucvvrererismrnsmsrnessssse s s sessesenns 156
ProDIBM ... 156
RS0 10 SRR 156
DISCUSSIONcvieirrreerree s e sn s 156

Xiv

TABLE OF CONTENTS

5-11. Adding Padding when Displaying Widgetsccccevvrirnininsnnenieniennn 156
PrOBIBM ... 156
SOIUTION ...t 157
DISCUSSION ... 157

5-12. Sizing Widgets t0 ASPECt RAti0ccccevvrerrerierenenserserevessessesesesessessensens 158
PrODIBM ... 158
RST8] 11 (o] TP 158
DISCUSSIONcviuierrcerree e 158

5-13. Transforming Widgets........c.ccooevnrnrnininnnnnc s s s sessesnens 160
L 10]] T TSR 160
SOIULION <.t 160
DISCUSSION ... se e 160

5-14. Controlling Different Layout Aspects on a Widgetccccvvvienninicnnens 161
(0]] T TS 161
IS0 11 0] 161
DISCUSSION ... e 162

5-15. Implementing Flex BoX LAYOULcoccoerererencrencneresesesesese e 164
(0]] T TSR 164
£ Lo 11 o] 164
DISCUSSIONcovecerreerrecresese e s nneens 165
Flex Box Layout AlgOrithm ..o 165
FIBXIDIE ... e 168

5-16. Displaying Overlapping Widgets.........ccovrunrnnnnenennnesnsesesesesesesessesenns 169
0]] T TSRS 169
IS o] 11 0] S 169
DISCUSSIONcvreierreerreerenee e nrnne e 169

TABLE OF CONTENTS

5-17. Displaying Widgets in Multiple RUNSccccvvinninininnnienesneenenenns 171
ProOBIBM ... 171
SOIULION ...t 171
ProOBIBM ... 171

5-18. Creating Custom Single Child Layoutcccoevvrrerverievnsenserseriesessensensens 173
PrODIBM ... 173
R0 1] P 173
DISCUSSION ... s 173

5-19. Creating Custom Multiple Children Layout...........cccceevivininieniennsniennens 176
(0]] T TSR 176
SOIULION .o 176
DISCUSSIONcoveeeereecreecreeee e se e 176

5-20. SUMMAIYeeoereereeereeeserese e s se s se e ses e ssesessesesessesenas 180

Chapter 6: Form Widgets.........ccovmmmmmmmmmsssnsnmmmssssnnnmsssssssssssssssssssssnnns 181

6-1. Collecting TeXt INPULScccveerrecerncrrrese e 181
ProDIBM ... 181
RS0 0] OSSO 181
DISCUSSIONcviecerreerrese s r s sr e e e nrnne e 181
Using TextEditingController..........ccuvernsrnesesesenssesssseses s 182
Using Listeners of TextEditingController............ccovevvvenenenernsenssesesesenennes 184
USING CalIDACKScovvueerreerirerenesesre s se e s ssnnes 186

6-2. Customizing Keyboard for Text Input........ccccvervnninininnnninie s 188
ProDIBM ... e 188
SOIULION ...t 189
DISCUSSIONcvieerrrierreerine s r e r e e nn s 189

6-3. Add Decorations to Text Input in Material Design.........ccocvvvverierierenseriennens 191
ProBIEM ... ————————— 191
SOIULION ..o 192

TABLE OF CONTENTS

DISCUSSION ...t e 192
310 (0T 192
Prefix @and SUFfiX ... s 194
TEXE .ot s 195
6-4. Setting TEXE LIMITS .vcvvevrecerierereressereresessessessessesessessessessssesessesssssssensessens 196
PIODIBM ... 196
RST8] 11 (o] PO 196
DISCUSSION ... s 197
6-5. Selecting TeXcccvciirrrrrr s 198
(0]] T TSR 198
RST8] 11 (o] PP 198
DISCUSSION ... e e e 198
6-6. Formatting TeXt........ccocvirnininnrsres s 202
0]] T TS 202
RS T0] 0] TR 202
DISCUSSION ... se e 202
6-7. Selecting @ Single ValUEcoceereecrerenereereesese e 203
(0]] T TSR 203
£ 11 o] 204
DISCUSSIONcovecerreerrecrese e s s sen e nnenens 204
6-8. Selecting a Single Value from Dropdowncocueeeerenernseressesesssesensesenns 206
0]] T TSSO 206
B30 0] S 206
DISCUSSIONcoveeeereeerrecrese s sse s nenne e 207
6-9. Selecting Multiple VaIUESccvvvernenmnsserssesssesese e sessesenns 209
ProDIBM ... 209
B30 0] OSSR 209
DISCUSSIONcvieeerreerree s s se s snnne e 209

TABLE OF CONTENTS

6-10. Toggling On/Off StAte........ccveereverrieriereserrre e enens 211
ProOBIBM ... 211
SOIULION ...t 211
DISCUSSION ... e 211

6-11. Selecting from @ Range 0f VAIUES.........ccvvverierererrerserenessessessessesessensessens 214
PIODIBM ... 214
R0 1] P 214
DISCUSSION ... s 215

6-12. USING CRiPS.....covicirereresirene s e se s sne s e snens 217
(0]] T TSR 217
RST8] 11 (o] TSR 217
DISCUSSIONcoveeeereecreecreeee e se e 217

6-13. Selecting Date and TIMe.......c.ccocvcvvrinnnnnn e 221
0]] T TS 221
RS0 0] T 221
DISCUSSIONcoveeereeereecreree e e e 221

6-14. Wrapping Form Fields........c.ccoviinvnininnnn s sessessens 225
(0]] T TR 225
RS0 0] R 225
DISCUSSIONcoveecerreerrecrenese e s e e e s e s sen e nnnnens 225

6-15. Creating FOrMScccovcvvereresers s s 230
0]] T TSRS 230
B30 0] TSR 230
DISCUSSIONcvruerrreerreerene s nne e 230

6-16. SUMMAIYoeirieerrree s sr s ses e 234

xviii

TABLE OF CONTENTS

Chapter 7: Common Widgetscccusemmmmmsssnsnsmsssssnnssssssssssssssssssssssssnns 235
7-1. Displaying a List 0f [EMScccovvririnininrn e 235
PrODIBM ... 235

£ 18] 10O 235
DISCUSSION ... e 235
ListView with Static Children............ccccovrneiennnnnsesesese s 236
ListView with Hem BUIlders.........ccocorrennninreereesesese s 237
LISETHIE ..t 238
7-2. Displaying ltems in @ Grid..........ccocovvrieninnnnnine e 244
(0]] T TS 244
£S04 TP 244
DISCUSSIONcovreeereeerrecreeee e e e 244
7-3. Displaying Tabular Data..........c.ccovvvvrerinnnnnine s sessessens 250
e 10]] T TS 250

£ 0] 111 0] 250
DISCUSSION ... s n e 250
7-4. Scaffolding Material Design Pages..........ccouurrrererenerenernsesessesesesesenesenns 255
0]] T TSRS 255

£ Lo 11 0] 255
DISCUSSIONcoveecerreerreseresese s s e e s s sen e nnnnens 255
APP Bl e 256
Floating ACtion BUHION ..o 258
D] 1 TS 258
BOttom AP Bar ... e 260
Bottom Navigation Bar...........cccocrvinvnnnennsneness e ssssessesnens 260
BOHOM SNEEL.......ooeeeee e 263
Scaffold STAte........ccoeece e 264
SNACKBAY ... s 264

Xix

TABLE OF CONTENTS

7-5. Scaffolding i0S PAQESccccvrerrereererserersnsessessessessssessessesssssssessessessssessessens 265
ProOBIBM ... 265
SOIULION ...t 265
DISCUSSION ... e 265

7-6. Creating Tab Layout in Material DeSignccevveverrerveriernsensersesesessensensens 266
PrODIBM ... 266
£ 18] 0] 266
DISCUSSION ... s 267

7-7. Implementing Tab Layout in i0S ... 270
(0]] T TSR 270
SOIULION .o 270
DISCUSSIONcoveeeereecreecreeee e se e 270

s T 1111111 271

Chapter 8: Page Navigationccccccmmmsssmmmmmmssssnsnmsssssssnssssssssssssssnns 273

8-1. Implementing Basic Page Navigation...........ccccccovrerrrvnnnsennnesenssessnsenenns 273
ProDIBM ... 273
RS0 0] OSSO 273
DISCUSSIONcviecerreerrese s r s sr e e e nrnne e 273

8-2. Using Named ROULEScccerrererrnrerierenie s sessesessesessessessesaessssessessens 276
ProBIEM ... ————————— 276
SOIULION .. ————— 276
DT] 10 o N 276

8-3. Passing Data Between ROULES........ccvevvrenrerienenensensene s sessese s sessessessens 278
ProBIBM ... ————————— 278
SOIULION ..o ——— 278
D1 TH 1T 10] o 278

TABLE OF CONTENTS

8-4. Implementing Dynamic Route Matchingcccccevevinvnvnnninsnnencniennn 284
ProOBIBM ... 284
SOIULION ...t 284
DISCUSSION ...t s 284

8-5. Handling UnKnown ROULEScccerervrrinnercrsensee s see e 285
PrOBIBM ... 285
RST8] 11 (o] P 285
DISCUSSION ... s 286

8-6. Displaying Material Design Dialogs........ccccuvrrerennnnsesenesensessesessssenessens 286
(0]] T TS 286
RS0 (o] PR 287
DISCUSSION ... e se e 287

8-7. Displaying i0S Dialogs......cccurermrinnnenernninsesese s sessesse s sessesesssssssessessens 290
(0]] T TR 290
£ o] 11 0] R 291
DISCUSSION ... e e 291

8-8. Displaying i0S Action ShEets...........ccovrereresrnsernesere e 293
(0]] T SR 293
£ o] 11 o] 293
DISCUSSIONcveecerreerrecrenese s se s s s en e nnenens 293

8-9. Showing Material Design MeNUS..........ccccvrvrrnserrnesessserssesessesesssesessesenns 296
0]] T TSRS 296
B30 0] ST 296
DISCUSSIONcveeeerreerrescrene e s nennenens 296

8-10. Managing Complicated Page Flows Using Nested Navigators................. 301
ProBIBM ... 301
B30 10 SRR 301
DISCUSSIONcvieirrreerree s e srnne e 301

TABLE OF CONTENTS

8-11. Observing Navigator State Changes........ccocvvveverrrrenenesensensesesessensensens 305
ProOBIBM ... 305
SOIULION ...t 305
DISCUSSION ... e 305

8-12. Stopping Routes from POPPING.....cccvrevererreriereresserseresessessesessessssessessens 310
PrODIBM ... 310
R0 1] P 310
DISCUSSION ... s 310

8-13. SUMMAIY ..eeiicsirer e s nne s 312

Chapter 9: Service Interaction..........cccccmmrrrrsssssssssnnnnssessssssssssssnnnnns 313

9-1. Working With FUTUFESccveeeerecerresnesersse e 313
0]] T TSRS 313
RS0 0] R 313
DISCUSSIONcvrucerreerre s 313

9-2. Using async and await to Work with FULUIESccccvervininininnininiennens 317
ProDIBM ... 317
B30 0] SRS 317
DISCUSSIONcvreirrreerreesrsse e s e se s nnnne e 317

9-3. Creating FULUIEScccvveerresiree e 318
ProDIBM ... e 318
SOIULION ...t 319
DISCUSSIONcvieeirrierree s r e nn s 319

9-4. Working With SIreamscccvvvvrrininnsnsn e sessesnens 320
ProBIEM ... ———————— 320
SOIULION ..ot ——— 320
DIR[0 o 320

xxii

TABLE OF CONTENTS

9-5. Creating SIreamS......c.ccvvcvrrierenessersesesss s ssssesessesssssssessessessssessessens 328
ProOBIBM ... 328
SOIUTION ...t 328
DISCUSSION ... s 328

9-6. Building Widgets Based on Streams and FUTUIES.........ccocevvreriererensersernens 330
PIODIBM ...t 330
RST8] 11 (o] P 330
DISCUSSION ... 330

9-7. Handle Simple JSON Data..........ccoccvvrieriinnncnesn s sessesnens 335
0]] T TSRS 335
RST8] 11 (o] PO 335
DISCUSSIONcoveecerrcereecreree e se e 335

9-8. Handle Complex JSON Data...........ccerrernnnnniesennsinsesessssessessessessssessessens 337
(0]] T TS 337
RS0 0] T 338
DISCUSSIONcovecereeereecrerce e se e 338

9-9. Handling XML Data.........ccoceeererenmrensesenenersenesessesessesessesesessesessssessssesessesenns 344
0]] T SR 344
£ Lo 11 0] 344
DISCUSSIONcoviecereeerrecresese e se s se e s sen e nnenens 344

9-10. Handling HTML Data..........ccccvrvrernsmsenenesssesessesessesessssesessssessssessssesessesenns 349
0]] T TSRS 349
B30 0] S 349
DISCUSSIONcvreeerreerreseresese e nenneens 349

9-11. Sending HTTP REQUESTScccveerrrrerrnesrrsse s se s sessesenns 350
ProBIBM ... 350
B30 10 SRS 351
DISCUSSIONcviuerrreerree s e rs s se s sen e snnne e 351

TABLE OF CONTENTS

9-12. Connecting t0 WEDSOCKEL..........cccvverernnenierieresesseresesessessessessessssessessens 353
ProOBIBM ... 353
SOIULION ...t 354
DISCUSSION ... e 354

9-13. ConNEcting t0 SOCKEL........ccveererrererrerers s s s s saesessessesnens 355
PrODIBM ... 355
R0 1] P 355
DISCUSSION ... s 355

9-14. Interacting JSON-Based REST ServiCescccovrrirernsnsensesesessensennens 356
(0]] T TSR 356
SOIULION .o 356
DISCUSSIONcoveeeereecreecreeee e se e 357

9-15. Interacting with gRPC ServiCesScccoirmvririnnsninens s sessensens 360
0]] T TS 360
£ o] 111 0] 361
DISCUSSIONcoveeereeereecreree e e e 361

9-16. SUMMANY ...oeeereerieereee s s se s e e s nne e e sesssnenns 363

Chapter 10: State Management..........c.cccoussammmsssnnmsssnsssssssssssssssssnnnnss 365

10-1. Managing State Using Stateful Widgetsc.ccocvvvvrvrienninveniennsensennens 365
ProBIBM ... ———————— 365
SOIULION ..o ——— 365
DIR[0 o 365

10-2. Managing State Using Inherited Widgetsccoevvrrrienensenserienensensenenns 371
ProOBIBM ... ———— 37
SOIULION <. 371
DIR[0 o 371

XXiv

TABLE OF CONTENTS

10-3. Managing State Using Inherited Modelc.ccoovvrrrieriernnensenieneesensenenes 378
PrOBIBM ... 378
SOIUTION ...t 378
DISCUSSIONcvieiiriceriee s e 379

10-4. Managing State Using Inherited NOTIfierccoovvvvrrrievnsenrersenssesserens 382
PIODIBM ... s 382
RST8] 11 (o] P 382
DISCUSSION ... s 382

10-5. Managing State Using Scoped Model...........cccoovrrvnirieninsncniennsensenenns 384
(0]] T TSRS 384
RST8] 11 (0] TR 384
DISCUSSIONcovecereeereecreeee e e e 385

10-6. Managing State Using BIOCccccrinnvnvninnsnsnene s 389
(0]] T TS 389
IS0 11 0] R 389
DISCUSSIONcoveecerecereecreeee e se e 389

10-7. Managing State USing REdUXcccccrrreerernenerenernseseseses e 397
(0]] T TSR 397
RS0 11 o] 397
DISCUSSIONcovrecereeerrecrenese e s e nnenens 397

10-8. Managing State USing MODX..........cccuervrenmnenenisnsrnsesesesese e sessesessssessens 405
0]] T TSRS 405
B30 0] TS 406
DISCUSSIONcviucrrreerrecresese s s s e nne e 406

10-9. SUMMAIY ...ooviriciriee s ne e nra s 412

TABLE OF CONTENTS

Chapter 11: AniMations......c.ucccmrrmsssnnnmmsssssnnmsssssnsnssssssnssesssssnsssssssnns 413
11-1. Creating Simple ANIMationscccccvrvvrecrinc e 413
PrODIBM ... 413

£ 10 0] TR 413
DISCUSSION ... 413
11-2. Creating Animations Using Linear Interpolationc.ccccecovvrinvinicnnenn 418
(0]] T TS 418

£ o] 11 0] 418
DISCUSSIONcovreeereeereecreree e s e e 418
11-3. Creating Curved ANIMations..........ccccorreerennenesenesnsesese e seenes 421
e 10]] T TS 421
RS0 11 0] 421
DISCUSSION ... n e 421
11-4. Chaining TWEENS.......ccceerreerirereresese s ssenes 425
0]] T TSR 425

ST 11 0] S 425
DISCUSSIONcveeeereeerreseresere s snnne e 425
11-5. Creating Sequences 0f TWEENScovcvviereresernsesesesese s 426
0]] T SRS 426
SOIULION ...t 426
DISCUSSIONcvreeerreerreseressesesse s sse e rs e e s s snnsnnens 426
11-6. Running Simultaneous Animations..........ccueevenernennessnssessseseseseseens 427
ProDIBM ... 427

B30 10 SO S T STR 427
DISCUSSIONcvreeerreerrese s r s sr s nn s 427

XxXVi

TABLE OF CONTENTS

11-7. Creating Staggered AniMations.........c.cevevvrverievnsensersesesessessesessesessessenes 428
ProOBIBM ... 428
SOIUTION ...t 428
DISCUSSION ... e 429

11-8. Creating Hero ANIMationS.......c.ovvvvevrevevensensereresessessesesessessessesessesessees 430
PrODIBM ... 430
RST8] 11 (o] PP 430
DISCUSSION ... s 431

11-9. Using Common TranSitionscccuevrennnnnnnennnsnssse s sessesseens 434
(0]] T TS 434
SOIULION <. 434
DISCUSSIONcoveeeereeereecreecse e e e 434

11-10. Creating Physics Simulationsccccoveenrenrnsenenreserese e 436
(0]] T TR 436
RS0 11 0] 436
DISCUSSIONcovrecerecereecreece e e e 437

T1-11. SUMMAIY ..o 440

Chapter 12: Platform Integration..........ccccccmnnssemmnnnssnnnnmnssssnnnnnsnnns 441

12-1. Reading and Writing FileS.......cccuvvrrrriennnnieners s s sesessesessessessees 441
ProBIEM ... —————————— 441
SOIULION ..o 441
0 ETH T T]10] o 441

12-2. Storing Key-Value Pairs.......c.cccoevevrervererensensessessssessessessessssessessessssessessenes 444
PrOBIBM ... ———— 444
SOIULION <. 444
0 ETH T TS]10] o 444

XXVii

TABLE OF CONTENTS

12-3. Writing Platform-Specific COUEccvrvrrrrrerierrrerserere s sesessesessesessees 446
ProOBIBM ... 446
SOIULION ...t 446
DISCUSSION ... e 446

12-4. Creating PIUGINSccveveverreriereresseressessssessessesssssssessesssssssessessesssssssessenes 452
PrODIBM ... 452
R0 1] P 452
DISCUSSION ... s 452

12-5. Displaying Web Pages ..o s 456
(0]] T TSR 456
RST8] 11 (o] TSR 456
DISCUSSIONcoveeeereecreecreeee e se e 456

12-6. Playing VIdEOSccoveerereerercrerese e snens 460
0]] T TS 460
RS0 0] T 460
DISCUSSIONcoveeereeereecreree e e e 461

12-7. USING CAMEIASc.covreeerreereeeressesesssesessesessesessesesessesessssessesesssssssssssessenes 465
(0]] T TR 465
£ Lo 11 0] 466
DISCUSSIONcoveecerreerrecrenese e s e e e s e s sen e nnnnens 466

12-8. Using System Share Sheet ... 470
0]] T TSRS 470
B30 0] TSR 470
DISCUSSIONcvruerrreerreerene s nne e 470

L S 1111111 ST R 471

xxviii

TABLE OF CONTENTS

Chapter 13: MiSCEllan@OoUScuurrsssmmssessssssnsssssssnssssssssnssssssssnnnsssssnns 473
13-1. USING ASSELS ..ot s 473
PrODIBM ... 473

£ 18] 10O 473
DISCUSSION ... e 473
13-2. USING GESLUIESceverrirrcirire e st 476
(0]] T TS 476

£ o] 11 0] 476
DISCUSSIONcoveucereeereecs e e e 476
13-3. Supporting Multiple LOCAIES........ccccvcerernrnsreresis s 478
0]] T TS 478
RS0 111 0] 478
DISCUSSIONcoveierecerrecreeee e e e 478
13-4. Generating Translation Filesccccovrennnsnesrnsesreser s 483
0]] T TSRS 483

IS o] 11 0] PSS 483
DISCUSSIONcveeeerreerreserese e s e nne e 483
13-5. Painting Custom Elements..........ccccovvrnvnnnnninse s 486
0]] T OSSO 486

B30 0] SO SSR 486
DISCUSSIONcvrecerreerresesesesesse s se s s s se e sr s sr s e sre e sen e snnsnnens 486
13-6. Customizing TNEMEScceveerrrererisernsesrse e 489
ProDIBM ... 489

B30 0] SRS 489
DISCUSSIONcviecerreerree s e e e nn s 489
B T T 111 O 490

XXix

TABLE OF CONTENTS

Chapter 14: Testing and Debugging......ccocccmremssnnnnmsssssnnsssssssnsssssssnns 491
14-1. Writing Unit TESES.....ccoceviiririe s 491
PrODIBM ... 491

£ 10 0] TR 491
DISCUSSION ... 491
14-2. Using Mock Objects in TeStS........cccvrirninnninnnsnsnese s 495
(0]] T TS 495

£ o] 11 0] 495
DISCUSSIONcovreeereeereecreree e s e e 495
14-3. Writing Widget TESEScovcerecrrcerec e 498
e 10]] T TS 498
RS0 11 0] 498
DISCUSSION ... n e 498
14-4. Writing Integration TESTS........ccovrererrerrnsesneser e 502
0]] T TSR 502

ST 11 0] S 503
DISCUSSIONcveeeereeerreseresere s snnne e 503
14-5. DebUGGING APPS ..eervrrrrrreerissesesesessssesessesessesssssssssssssessssessssssessssssssssssanes 507
0]] T SRS 507
SOIULION ...t 507
DISCUSSIONcvreeerreerreseressesesse s sse e rs e e s s snnsnnens 507
14-6. SUMMAIY ...cviriirrierineserese e nr s nra s 509
1T = 511

About the Author

Fu Cheng is a full-stack software developer living in Auckland, New
Zealand, with rich experience in applying best practices in real product
development and strong problem-solving skills. He is the author of

the book Exploring Java 9: Build Modularized Applications in Java,
which covers the new features of Java SE 9 and provides a deep dive

of Java platform core features. He is also a regular contributor to IBM
developerWorks China and InfoQQ China, with more than 50 published
technical articles covering various technical topics.

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and software developer
and has helped many oil and gas companies automate and enhance

their oil field solutions through field data capture, SCADA, and machine
learning. Jason obtained his Bachelor of Science in Computer Science
from Arkansas State University, but he traces his passion for development
back many years before then, having first taught himself to program BASIC
on his family’s computer while still in middle school.

When he’s not mentoring and helping his team at work, writing, or
pursuing one of his many side projects, Jason enjoys spending time with
his wife and four children and living in the Tulsa, Oklahoma, region. More
information about Jason can be found on his web site https://jason.
whitehorn.us.

xxxiii

https://jason.whitehorn.us/
https://jason.whitehorn.us/

CHAPTER 1

Get Started

Recipes in this chapter help you set up your local development
environment to get ready for building Flutter apps. Depending on the
operating system of your machine, the steps to set up may be different. You
only need to use the recipes for your own requirement. After using recipes
in this chapter, you should be able to get the first Flutter app running on
emulators or physical devices.

1-1. Installing Flutter SDK on Windows
Problem

You have a Windows machine, and you want to start Flutter development
on this machine.

Solution

Install Flutter SDK and set up Android platform on the Windows machine.

Discussion

Flutter SDK supports Windows platform. Installing Flutter on Windows is
not a hard task as you may think. First of all, you need to make sure that your
local development environment meets the minimum requirements. You'll
need to have 64-bit Windows 7 SP1 or later and at least 400MB free disk

© Fu Cheng 2019 1
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_1

CHAPTER 1 GET STARTED

space for Flutter SDK to use. Flutter SDK also requires Windows PowerShell
5.0 or newer and Git for Windows to be available on the machine.

Windows PowerShell 5.0 is pre-installed with Windows 10. For
Windows versions older than Windows 10, you need to install PowerShell
5.0 manually by following instructions from Microsoft (https://docs.
microsoft.com/en-us/powershell/scripting/setup/installing-
windows-powershell). You may already have Git for Windows installed
since Git is a very popular tool for development. If you can run Git
commands in PowerShell, then you are good to go. Otherwise, you need
to download Git for Windows (https://git-scm.com/download/win) and
install it. When installing Git for Windows, make sure the option “Git from
the command line and also from 3rd-party software” is selected in the page
“Adjusting your PATH environment”; see Figure 1-1.

Adjusting your PATH environment __...Qf"
How would you like to use Git from the command line? v

(O Use Git from Git Bash only

This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

(®) Git from the command line and also from 3rd-party software

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools.
You will be able to use Git from Git Bash, the Command Prompt and the Windows |

(O Use Git and optional Unix tools from the Command Prompt
Both Git and the optional Unix tools will be added to your PATH.
Warning: This will override Windows tools like *find® and "sort™. Only i
use this option if you understand the implications.

< Back Next > Cancel

Figure 1-1. Git for Windows setup

https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-windows-powershell
https://git-scm.com/download/win

CHAPTER 1 GET STARTED

After these minimum requirements have been satisfied, you
can download the Flutter SDK zip bundles from the official web site
(https://flutter.dev/docs/get-started/install/windows). Extract
the downloaded zip file to the desired location on the local machine.

It's recommended to avoid using the system driver where Windows
is installed. In the extracted directory, double-click the file flutter
console.bat to start Flutter Console and run Flutter SDK commands.

To be able to run Flutter SDK commands in any Windows console, we
need to add Flutter SDK to the PATH environment variable. The full path to
bin of the installation directory should be added to the PATH. To modify the
PATH on Windows 10

1. Open the Start Search and type “env” and select
“Edit the system environment variables’.

2. Click the “Environment Variables...” button and find
the row with “Path” in the first column under the
“System Variables” section.

3. In the “Edit environment variable” dialog, click
“New” and input the path of the bin directory of
installed Flutter SDK.

4. Close all dialogs by clicking “OK".

Now you can open a new PowerShell windows and type the command
flutter --version to verify the installation; see Figure 1-2.

S C:\Users\ilex> flutter —version

lutter 1.0.0 = channel stable * https://github. com/flutter/flutter. git
amework * revision 5391447fae (3 weeks ago) = 2018-11-29 19:41:26 —0800

ngine * revision 1d19a0f414

ools * Dart 2.1.0 (build 2.1.0-dev.9.4 £9ebf21297)

S C:\Usexs\Alex>

Figure 1-2. Success installation of Flutter SDK on Windows

https://flutter.dev/docs/get-started/install/windows

CHAPTER 1 GET STARTED

Only Android platform is supported on Windows. Continue the setup
following Recipe 1-7.

1-2. Installing Flutter SDK on Linux
Problem

You have a Linux machine, and you want to start Flutter development on
this machine.

Solution

Install Flutter SDK and set up Android platform on the Linux machine.

Discussion

Flutter SDK supports Linux platform. However, given that there are many
different Linux distributions available, the actual steps to get Flutter SDK
installed may be slightly different. This recipe is based on installing Flutter
SDK on Ubuntu 18.04 LTS.

Flutter SDK requires several command-line tools to be available in the
local environment, including bash, mkdir, rm, git, curl, unzip, and which.
For most Linux distributions, the commands bash, mkdir, rm, unzip, and
which should already be included by default. The easiest way to verify that
is to open a terminal window and type these commands to see the output.
You'll see “command not found” error if a command is not installed. git
and curl are unlikely to be included by default. Most Linux distributions
provide built-in package managers to install these tools. For Ubuntu, you
can use apt-get; see the following command.

$ sudo apt-get update
$ sudo apt-get install -y curl git

CHAPTER 1 GET STARTED

After the installation finishes successfully, you can type commands
curl and git to verify.

Now you can download the Flutter SDK zip bundles from the official
web site (https://flutter.dev/docs/get-started/install/linux).
Extract the downloaded zip file to the desired location on the local
machine. Open a terminal window, navigate to the directory of extracted
Flutter SDK, and run the following command to verify the installation.

$ bin/flutter --version

It's recommended to add the bin directory of Flutter SDK to the
PATH environment variable, so the flutter command can be run in any
terminal session. For Ubuntu, you can edit the file ~/.profile.

$ nano ~/.profile
Add the following line to this file and save.
export PATH="<flutter dir>/bin:$PATH"

In the current terminal window, you need to run source ~/.profile
for the change to take effect. Or you can simply create a new terminal
window. Type flutter --version inany terminal window to verify. You'll
see the same output as Figure 1-2.

Only Android platform is supported on Linux. Continue the setup
following Recipe 1-7.

1-3. Installing Flutter SDK on mac0S
Problem

You have a macOS machine, and you want to start Flutter development on
this machine.

https://flutter.dev/docs/get-started/install/linux

CHAPTER 1 GET STARTED

Solution

Install Flutter SDK and set up Android and iOS platforms on the macOS

machine.

Discussion

For macQOS, Flutter SDK requires several command-line tools to be
available in the local environment. These tools are bash, mkdir, rm, git,
curl, unzip, and which. macOS should already have these tools as part

of the system. You can simply type these commands in the terminal

to verify. The easiest way to install missing tools is to use Homebrew
(https://brew.sh/). Homebrew is also important when setting up the iOS
development environment. Use brew install to install tools, for example,
brew install git to install Git.

After installing required tools, we can download the Flutter SDK zip
bundle from the official web site (https://flutter.dev/docs/get-
started/install/macos). Extract the downloaded zip file to the desired
location on the local machine. The flutter command is located under the
bin directory of the extracted location.

To run flutter command in any terminal session, the PATH
environment variable should be updated to include the bin directory of
the Flutter SDK. This is typically done by updating the profile of the shell.
For the default bash, this file is ~/.bash_profile. For zsh, this file is
~/ .zshrc. Modify this file to include the following line.

export PATH=<flutter install dir>/bin:$PATH

To make the current terminal window use the updated PATH, you
need to run source ~/.bash_profile. You can also start a new terminal
window which will automatically use the updated value of PATH.

https://brew.sh/
https://flutter.dev/docs/get-started/install/macos
https://flutter.dev/docs/get-started/install/macos

CHAPTER 1 GET STARTED

Run flutter --versionin any terminal window to verify the
installation. You'll see the same output as Figure 1-2.

Both Android and iOS platforms are supported on macOS. Continue
the setup following Recipes 1-4 and 1-7.

1-4. Setting Up i0S Platform
Problem

You want to develop Flutter apps for iOS platform.

Solution

Set up iOS platform for Flutter SDK on your Mac.

Discussion

To develop Flutter apps for iOS, you need to have a Mac with at least Xcode
9.0. To set up the iOS platform, you need to go through the following steps:

1. Install Xcode (https://developer.apple.com/
xcode/) from App Store.

2. Verify the path of the Xcode command-line tools.
Run the following command to show the current
path to the command-line tools. Usually you
should see output like /Applications/Xcode.app/
Contents/Developer.

$ xcode-select -p

https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

CHAPTER 1 GET STARTED

If the path shown in the output is not the one you
want, for example, you have different versions of Xcode
command-line tools installed, use xcode-select -s

to switch to a different path. If you don’t have the
command-line tools installed, use xcode-select
--install to open the installation dialog.

3. Youneed to open Xcode once to accept its license
agreement. Or you can choose to run the command
sudo xcodebuild -license to view and accept it.

4. Flutter SDK requires other tools for iOS
platform, including libimobiledevice, usbmuxd,
ideviceinstaller, ios-deploy, and CocoaPods
(https://cocoapods.org/). All these tools can be
installed using Homebrew. If you run the command
flutter doctor, it shows the commands to install
these tools using Homebrew. Simply run these
commands and use flutter doctor to check again.
When you see the green tick of “iOS toolchain,” the
iOS platform is set up successfully for Flutter SDK to
use; see Figure 1-3 for a sample output.

@ @ 7 fucheng — fucheng@Fus-MacBook-Pro — ~ — -zsh — 80x10
[fucheng@Fus-MacBook-Pro:~I= flutter doctor

Doctor summary (to see all details, run flutter doctor -v):

[/] Flutter (Channel stable, v1.0.8, on Mac 0S X 10.14.2 18C54, locale en-NZ)
[/] Android toolchain - develop for Android devices (Android SDK 28.0.3)

[/] 10S toolchain - develop for i0S devices (Xcode 10.1)

[/] Android Studio (version 3.2)

[/] VS Code (version 1.30.1)

[/] Connected device (1 available)

® No issues found!

Figure 1-3. Output of flutter doctor

https://cocoapods.org/

CHAPTER 1 GET STARTED

1-5. Setting Up i0S Simulators
Problem

You need a quick way to test Flutter apps on iOS platform.

Solution

Set up the iOS simulator.

Discussion

Xcode provides simulators for different iOS versions. You can download
additional simulators using the tab Components in Xcode » Preferences.
To open the simulator, run the following command.

$ open -a Simulator

When the simulator is opened, you can switch the combination of
different devices and iOS versions using the menu Hardware » Device.

After the simulator is started, running flutter devices should show
the simulator.

1-6. Setting Up i0S Devices
Problem

You have finished the testing of your Flutter apps on iOS simulator, and
you want to test them on real iOS devices.

Solution

Deploy Flutter apps to iOS devices.

CHAPTER 1 GET STARTED

Discussion

Before deploying Flutter apps to iOS devices, you need to run flutter
doctor to verify that iOS toolchain is set up correctly. To develop and
test Flutter apps on devices, you need to have an Apple ID. If you want
to distribute apps to App Store, you also need to enroll Apple Developer
Program.

The first time you connect a physical device for iOS development,
you need to trust the Mac to connect your device. Flutter apps need to be
signed before deploying to devices. Open the i0s/Runner.xcworkspace
file of the Flutter app in Xcode. In the General tab, select the correct team
in the Signing section. If you select the connected device as the running
target, Xcode will finish the necessary configurations for code signing. The
Bundle Identifier must be unique.

General Capabilities Resource Tags Info Build Settings Build Phases

¥ Identity

Display Name
Bundle Identifier com.flutter-academy.simpleFlutterApp
Version $(FLUTTER_BUILD_MNAME)

Build $(FLUTTER_BUILD_NUMBER)

¥ Signing

v Automatically manage signing

<

Team Fu Cheng (Personal Team)
Provisioning Profile Xcode Managed Profile (1)

Signing Certificate iPhone Developer: alexcheng1982@gmail.com (9...

Figure 1-4. App signing in Xcode

10

CHAPTER 1 GET STARTED

The Flutter app can be deployed to the device using Xcode or the
command flutter run. The first time you deploy the app, you may need
to trust the development certificate in General » Device Management of
the Settings app on the iOS device.

1-7. Setting Up Android Platform
Problem

You want to develop Flutter apps for Android platform.

Solution

Install Android Studio to set up Android platform on your local machine.

Discussion

To develop Flutter apps for Android platform, we need to set up Android
platform first. Flutter SDK requires a full installation of Android Studio for
its Android platform dependencies, so we have to install Android Studio.

Go to Android Studio download page (https://developer.android.
com/studio/) and click the “DOWNLOAD ANDROID STUDIO” button.
You need to accept the terms and conditions to download it. The
download page checks your platform and provides the most suitable
version to download. If the provided option is not what you want, click the
“DOWNLOAD OPTIONS” and select from the list of all download options;
see Figure 1-5.

11

https://developer.android.com/studio/
https://developer.android.com/studio/

CHAPTER 1 GET STARTED

Android Studio downloads

Platform Android Studio package Size SHA-256 checksum

Sndiodslolo 106 1518006288 Yintows.ca 92; 6005093391757 feBTcc5c1e497020228fcT adbcad4aBbd] c0a2892617935329

Windows Recommended
(64-bit) D _ _
Seeliold siudic-{ce:1By. S0uaas2indowe. 2 :f:’ 21aebb3a7fab4931b830ec40d836065450abb4f32ac11b52fae1 48d33599Md7c
No exe installer
'.:l:::;ows android-studio-ide-181.5056338-windows32.zip :40300 3a61a587 b15d076d0306550564ad 1400269763
B2510) o exeinstaller
o 989 . .
Mac andrmd-srumo-ude-131.5056333-mac.dmg MB b&d2h7addéaTcT76d 2bbal8b4717131d 16ebed4s0
) e T 1007 . -
Linux android-studic-ide-181.5056338-linux.zip MB b9ecOdd4f2feaafel e3fbd1 ed696bI32519 Fae;

See the Android Studio release notes.

Figure 1-5. Download options of Android Studio

Android Studio provides a GUI-based installer, so it’s very easy to get it
installed and running on the local machine. Installing Android Studio also
installs Android SDK, Android SDK platform tools, and Android SDK build
tools. Even you choose not to use Android Studio as the IDE, Android SDK
and related tools are still required for Android development.

In the Android SDK page of preferences in Android Studio, you can
also install additional Android SDK platforms and tools; see Figure 1-6.
Android Studio also prompts available updates to installed Android SDK
platforms and tools.

12

CHAPTER 1 GET STARTED

® Default Preferences

Q- A &) Syst 7 Android SDK Reset

v Appearance & Behavior
Appearance
Menus and Toolbars
¥ System Settings

Manager for the Android SDK and Toels used by Android Studia

m

Android SDK Location: [l ffi giLibrar Edit

SBEEEHEaREl <o« Tools SO Update Sites

Each Android SDK Platform package includes the Android platform and sources pertaining to an

Pesswords AP level by default. Once installed, Android Studio will automatically check for updates. Check
HTTP Proxy "show package details® to display individual SDX components.
Data Sharing Name AP Level Revision Status
s
2 Android 8.1 (Creo) 27 1 Update available
Android 8.0 (Oreo) 26 2 Installed
Netifications Andraid 7.1.1 (Nougat) 25 3 Mot installed
Quick Lists Androld 7.0 (Nougat) 24 2 Not installed
Path Variables Android 8.0 (Marshmallow) 23 3 Mot installed
Keymap Android 5.1 (Lollipop) 22 2 Mot installed
Android 5.0 (Lollipop) 21 2 Not installed
SEditee Android 4.4W (KitKat Wear) 20 2 Mot installed
Plugins Android 4.4 (KitKat) 19 4 Hot installed
» Build, Execution, Deployment Android 4.3 (Jelly Bean) 18 3 Partially installed
» Languages & Frameworks Android 4.2 (Jelly Bean) 17 3 Partially installed
. Tools Android 4.1 (Jelly Bean) 16 5 Not installed
Android 4.0.3 (lceCreamSandwich) 15 5 Not installed
Andeald Sl Android 4.0 {leeCreamSandwich) 14 4 Mot installed
Android 3.2 (Honeycomb) 13 i Mot instalied
Android 3.1 (Honeycomb) 12 3 Mot installed
Andeaid 3 0 IHanswenmbl 1 ? Nat inatallad
Show Package Details

7 cancel apply | [EIH

Figure 1-6. Manage Android SDK in Android Studio

1-8. Setting Up Android Emulators
Problem

You need a quick way to test Flutter apps for Android platform.

Solution

Set up the Android emulators.

Discussion

When developing Flutter apps, you can run them on Android emulators to
see the results of running apps. To set up Android emulators, you can go
through the following steps.

13

CHAPTER 1 GET STARTED

Open an Android project in Android Studio and select Tools »
Android » AVD Manager to open AVD Manager and click “Create Virtual
Device..”; see Figure 1-7.

LN Android Virtual Device Manager

_ Your Virtual Devices

Do]m

Virtual devices allow you to test your application without
having to own the physical devices.

=+ Create Virtual Device...

To pricritize which devices to test your application on,
visit the Android Dashboards, where you can get
up-to-date infermation on which devices are active in the
Android and Google Play ecosystem.

Figure 1-7. Android Virtual Device Manager

Choose a device definition, for example, Nexus 6P, and click Next; see
Figure 1-8.

14

Select Hardware
Android Studio

Choose a device definition

Q.

Category Namg ~ Play Siore Size
v Pixel 2 B 5.0"
Wear 05 Nexus 5 ap
Toblsk Mexus One 3.7

Mexus 6P

Mexus & 5.96"
MNexus 5X L 5.
MNexus § L3 4.95%
Mexus 4 4.

Mew Hardware Profile Import Hardware Profiles

Figure 1-8. Select Hardware

1440x2....

1080x1...

1080x1...

TEEx12...

Virtual Device Configuration

420dpi

420dpi

hdpi

SE0dpi

S&0dpi
420dpi
xxhdpi

xhdpi

]

CHAPTER 1

GET STARTED

([Nexus 6P
1440px
Size: large
Ravo: long
Density: 560dpi
s 2560px
Clone Device...
Cancel Pravious m Finish

Select a system image for the Android version you want to emulate and

click Next; see Figure 1-9.

15

CHAPTER 1 GET STARTED

® @ Virtual Device Configuration

System Image

\ Android Studio

Select a system image

RScsiimenaedl <06 images Other Images

Aelease Name AP Level = ABL Targel

Pie

Android 9.0 (Google APis)

AP Loved

oreo 7 *86 Android 8.1 (Google APIS)

oreg 26 XBE Android 8.0 (Google APis) 8

Nougat Download 25 X85 Android 7.1.1 {Google AFis) Andeoid

Nougat Download 24 x8E Android 7.0 (Google APis) 2.0

Marshmallow Download 23 X856 Google Inc.

Lollipop Download 22 x86 Sysom image
x86

‘We recommend these images because they run the
fastest and support Google APIS.

Questions on AP level?
See the AP| level distribution chart

[%]
Figure 1-9. Select a system image

Select Hardware - GLE 2.0 for Emulated Performance to enable
hardware acceleration and click Finish; see Figure 1-10.

16

CHAPTER 1 GET STARTED

e @ Virtual Device Configuration

Android Virtual Device (AVD)

\
A Android Studio

Verify Configuration

AVD Name | Nexus 6P AP 28

AVD Name
[Nexus 62 5.7 1440x2660 560dpi Change...)
The name of this AVD.
)’ pie Android 9.0 x88 Change...
Startup orientation D
Portrait Landscape
Emulated o "
Perfo - Graphics: Hardware - GLES 2.0 B

Device Frame Enable Device Frame

Show Advanced Settings

Cancel Previous Finish

Figure 1-10. Select emulated performance

A new AVD is created and listed in AVD Manager. Android Studio
official web site provides a comprehensive guide (https://developer.
android.com/studio/run/managing-avds) on how to manage AVDs, if you
want to know more details about AVD configurations.

In the AVD Manager, click the green triangle button to start the

emulator. It may take some time for the emulator to start up and show the
default Android home screen.

17

https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

CHAPTER 1 GET STARTED

1-9. Setting Up Android Devices
Problem

You have finished the testing of your Flutter apps on emulators, and you
want to test them on real Android devices.

Solution

Set up your Android device to run Flutter apps.

Discussion

To set up your Android device, you can go through the following steps:

1. Youneed to enable Developer options and USB
debugging on your device. Check the instructions on
the official Android web site (https://developer.
android.com/studio/debug/dev-options#enable).
You may also need to install Google USB driver
(https://developer.android.com/studio/run/
win-usb) on Windows machines.

2. Plugyour device into your computer with a USB
cable. The device prompts a dialog to ask for
permissions, authorizing your computer to access
your device.

3. Runthe command flutter devices to verify
Flutter SDK can recognize your device.

The Flutter app can be deployed to the device using Android Studio or
the command flutter run.

18

https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/debug/dev-options#enable
https://developer.android.com/studio/run/win-usb
https://developer.android.com/studio/run/win-usb

CHAPTER 1 GET STARTED

1-10. Creating Flutter Apps Using
Command Line

Problem

You have already set up your local environment to develop Flutter apps.
Even though using Android Studio or VS Code is a good choice for
development, you may still want to know how to do this from command line.

Solution

Use the commands from Flutter SDK to create and build Flutter apps.

Discussion

Using tools like Android Studio and VS Code can make Flutter
development much easier. However, it’s still valuable to know how to
build Flutter apps using the command-line tools. This is important for
continuous integration. It also allows you to use any other editors to
develop Flutter apps.

The command flutter create can be used to create a new Flutter
app. Actually, Android Studio and VS Code both use this command to
create new Flutter apps. The following command creates a new Flutter app
in the directory flutter_app.

$ flutter create flutter app

This command creates various files in the specified directory as the
skeleton code of the new app. Navigate to the directory flutter app and
use flutter run to run thisapp.

19

CHAPTER 1 GET STARTED

1-11. Creating Flutter Apps Using Android
Studio

Problem

You want to have a powerful IDE that meets most of the requirements
when developing Flutter apps.

Solution

Use Android Studio to create Flutter apps.

Discussion

Since we already have Android Studio installed to set up Android platform
for Flutter SDK, it’s a natural choice to use Android Studio as the IDE to
develop Flutter apps. Android Studio itself is a powerful IDE based on
Intelli] platform. If you have used other products from JetBrains, like
Intelli] IDEA or WebStorm, you may find it’s quite easy to get started with
Android Studio.

To use Android Studio for Flutter development, Flutter and Dart
plugins are required. To install these two plugins, open the Plugins page in
Preferences dialog of Android Studio and click the “Browse repositories...”
button. In the opened dialog, type in “Flutter” to search for the Flutter
plugin to install; see Figure 1-11. Click the green Install button to install it.
This will also prompt you to install the Dart plugin. Click Yes to install that
as well. Restart Android Studio.

20

CHAPTER 1 GET STARTED

Q- Flutter @ CJ category: Al ~
Sort by: name * | LANGUAGES
Flutter
- soariz Wk | Utter
rore XN
Flutter i18n
L 45,598 Wirkdk | drokdekd 809742 downloads
TOOLS INTEGRATION ne week ago " R a1 a
e : Updated 18/12(18 v31.3.1

Support for developing G applications. FIT gives
developers an easy and produclive way o build and deploy cross-
platiorm, high-performance mobile apps on both Android and i0S,

Change Notes

313

» fix NPE in sdk installation (#2955)
» fix NPE caused by internal inconsistency (#2963)

31.2

show memory profiler legend with proper line charl color or line
style

» prevent the (IntelliJ) New Project wizard from completing when
there is no SDK
® fix a race di causing P d it in attach

» added conlrol of RSS display to memory profiler
® when running the [l doctor command, use the -v flag
* make altach use selected device

311

® perf table polish and fix links to ip docs.

HTTP Proxy i repositories...

Figure 1-11. Install Flutter plugin in Android Studio

After restarting Android Studio, you should see a new option to start a
new Flutter project. The wizard for Flutter projects has different pages to

configure the new project.
The first page allows you to select type of the new Flutter project. The
description in the page shows the difference of these four different project

types. Most of the time, we are going to create a Flutter Application.

21

CHAPTER 1 GET STARTED

Create New Flutter Project

A New Flutter Project

Android Studio

%

[E— (I
< K

Flutter Application Flutter Plugin

Select an "Application™ when building for end users.
Select a "Plugin” when exposing an Android or iOS API for developers.

Flutter Package

Select a "Package” when creating a pure Dart component, like a new Widget.
Select a "Module" when creating a Flutter component to add to an Android app.

Cancel Previous m Finish
Figure 1-12. Select type of Flutter project

The second page allows you to customize basic configurations of the
new Flutter project, including project name, location, and description.

22

CHAPTER 1 GET STARTED

[] [] Create New Flutter Project

New Flutter Application

Android Studio

Configure the new Flutter application

Project name

flutter_app

Flutter SDK path
JUsers/fucheng/Downloads/flutter n ... =% Install SDK...

Project location

[Users/fucheng/git

Description

A new Flutter application.

Create project offline

Cancel Previous [[LEEL Finish
Figure 1-13. Basic project configurations

The last page allows you to customize some advanced project
configurations. The company domain is used to create unique identifier
for the project.

23

CHAPTER 1 GET STARTED

LB Create New Flutter Project

£, ., New Flutter Application

T
4 Android Studio

Set the package name

Applications and plugins need to generate platform-specific code

Company domain

flutter-academy.com

Package name

com.flutteracademy.flutterapp Edit

Platform channel language
Include Kotlin support for Android code

Include Swift support for iOS code

Cancel Previous Next m
Figure 1-14. Advanced project configurations

After finishing the wizard, a new project is created and opened in
Android Studio.

1-12. Creating Flutter Apps Using VS Code
Problem

You want to use a light-weight editor to develop Flutter apps.

Solution

Use VS Code to create Flutter apps.

24

CHAPTER 1 GET STARTED

Discussion

VS Code (https://code.visualstudio.com/) is a popular light-weight
editor in the community of front-end developers. With the extensions
for Flutter and Dart, we can also use VS Code for Flutter development.
Open the Extensions tab in VS Code and search for “flutter” to install
the Flutter extension; see Figure 1-15. Flutter extension depends on the
Dart extension, which will also be installed. After installing these two
extensions, we can open the command palette and search “flutter” for
available Flutter commands.

Flutter

Dart Cod

Details Changelog Dependencies
Introduction

This V& Code extension adds support for effectively aditing, refactoning, running, and reloading Flutier mobile apps, as
well as support for the Dart programming language.

Figure 1-15. Install Flutter extension in VS Code

To create a new Flutter in VS Code, open the command palette and run
the Flutter: New Project command. Input the name of the new project in
the opened dialog. Select the directory of the project. VS Code opens a new
window for the newly created project.

25

https://code.visualstudio.com/

CHAPTER 1 GET STARTED

1-13. Running Flutter Apps
Problem

You want to run Flutter apps on emulators or devices.

Solution

Use flutter run command or IDEs to run Flutter apps.

Discussion

Depending on your preferred approach to develop Flutter apps, there are
different ways to run Flutter apps. Before running Flutter apps, you must
have at least one running emulator or connected device:

e The command flutter run starts the current
Flutter app.

o In Android Studio, select the emulator or device from
the dropdown menu shown in Figure 1-16, then click
the Run button to start the app.

e InVS Code, select Debug » Start Without Debugging
to start the app.

i~

(J iPhone XR X % maindart v | P 1b @
iPhone XR

Open iOS Simulator

Open Android Emulator: Nexus 6P API 27

Figure 1-16. Select device in Android Studio

26

CHAPTER 1 GET STARTED

1-14. Understanding Code Structure of
Flutter Apps

Problem

You want to know the typical structure of Flutter apps.

Solution

Go through the sample app generated by Flutter SDK and understand the files.

Discussion

Before going into details of developing Flutter apps, you should know
about the code structure of Flutter apps, so you know where to add new
files. Flutter apps have a predefined directory structure for various files in
the app. When a new app is created, you can take a look of the generated
files and have a basic understanding of them. Table 1-1 shows directories
and files of the created app.

Table 1-1. Directories and files of a Flutter app

Name Description

lib Main directory of app source code. The file main.dart is
usually the entry point of the app.

test Directory that contains test files.

android Files for Android platform.

ios Files for i0S platform.

pubspec.yaml Package description for Dart pub tool.
pubspec.lock Lock file for Dart pub tool.

.metadata Flutter project description used by Flutter SDK.

27

CHAPTER 1 GET STARTED

1-15. Fixing Configuration Issues of
Flutter SDK

Problem

You want to make sure the configuration of your local development
environment is correct for Flutter development.

Solution

Use the command flutter doctor.

Discussion

After Flutter SDK is installed, it needs to be configured with other supporting
tools. The command flutter doctor is the primary tool to provide
necessary help. This command checks the local environment and reports
status of the Flutter SDK installation. For each problem it finds, it also gives
instructions on how to fix them. All you need to do is to apply the suggested
fixes and run flutter doctor again to verify the result. It’s not necessary to
fix all issues reported by flutter doctor. You can safely ignore some issues
if they are not relevant. For example, if you are not going to use VS Code as
the primary IDE, then it doesn’t matter if VS Code is installed or not.

1-16. Summary

Recipes in this chapter provide instructions on how to get your local
machine prepared for Flutter apps development. flutter doctor is a useful
tool for setup. You should be able to fix most of the configuration issues by
following instructions provided by this command. In the next chapter, we’ll
see recipes about using tools provided by Dart SDK, Flutter SDK, and IDEs.

28

CHAPTER 2

Know the Tools

Building Flutter apps cannot succeed without the help of various tools.
During the development, we may need to use tools from Dart SDK,
Flutter SDK, and IDEs. Making good use of these tools can increase your
productivity. This chapter covers usage of tools from Dart SDK, Flutter
SDK, Android Studio, and VS Code.

2-1. Using Dart Observatory
Problem

You want to know the internals of a running Flutter app.

Solution

Use Dart Observatory provided by Dart SDK.

Discussion

Dart Observatory is a tool provided by Dart SDK to profile and debug Dart
applications. Since Flutter apps are also Dart applications, Observatory

is also available for Flutter apps. Observatory is an important tool for
debugging, tracing, and profiling Flutter apps. Observatory allows you to

e View an app’s CPU profile.

e View an app’s memory allocation profile.

© Fu Cheng 2019 29
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_2

CHAPTER2 KNOW THE TOOLS

e Debug an app interactively.
¢ View snapshots of an app’s heap.
e View logs generated by an app.

When a Flutter app is started using flutter run, Observatory is
also started and waiting for connections. You can specify the port for
Observatory to listen on, or let it listen on a random port by default.
You can see the URL to access the Observatory in the command output.
Navigate to the URL in the browser and you can see the UI of Observatory.

Note For best results, Google Chrome is recommended when using
the Observatory. Other browsers may not function properly.

The top section of the Observatory Ul shows the Dart VM information;
see Figure 2-1. Click the Refresh button to update the information.

Observatory > vm@ws//127.0.0.1:51516/ws
VM
name vm@ws/127.0.0.1:51516/ws
version 2.1.0-dev.9.4 flutter-19ebf21297 (Thu Nov 8 23:00:07 2018 +0100) on "ios_x64"
embedder Flutter
started at 2018-12-25 08:25:30.843
uptime 0:35:41.587000
refreshed at 2018-12-25 09:01:12.431
pid 95819
peak memory 280.4MB
current memory 222.6MB
native zone memory 0B
native heap memory unavailable

native heap allocation count unavailable

see flags view timeline
view native memory profile

Figure 2-1. VM information in Dart Observatory

30

CHAPTER2 KNOW THE TOOLS

The bottom section shows a list of isolates; see Figure 2-2. Every Flutter

app has an initial isolate for its entry point file. For each isolate, a pie chart
shows the breakdown of activities of the VM. On the right side of the pie chart,
alist of links points to different screens of other Observatory functionalities.

Isolates (1)

Isolate 745822531 (main.dart:main.dart())

@ Ide 0.00%
@ LoadWait 0.00%
VM

@ CompileOptimized 0.00%
@® CompileUnoptim... 15.27%
@ CompileClass 8.66%
® CompileTopLevel 0.00%
® CompileScanner 0.00%
@ CompileParseFu...0.00%

@ ComnileParseRea...0.00%

idle [debug]

new heap 6.7KB of 8.0MB
old heap 39.7MB of 42.8MB

see debug

see class hierarchy
see cpu profile

see cpu profile (table)
see allocation profile
see heap snapshot
see heap map

see metrics

see persistent handles
see porls

see logging

Figure 2-2. Isolate information in Dart Observatory

The details of these Observatory screens are out of the scope of this

recipe; refer to the official documentation (https://dart-lang.github.

io/observatory/) for instructions.

2-2. Using Hot Reload and Hot Restart

Problem

When developing Flutter apps, after you made some code changes, you

want to see the result quickly.

Solution

Use hot reload and hot restart provided by Flutter SDK.

31

https://dart-lang.github.io/observatory/
https://dart-lang.github.io/observatory/

CHAPTER2 KNOW THE TOOLS

Discussion

When building mobile apps, it’s crucial to be able to view effects of

code changes efficiently, especially when building the UI. This enables

us to quickly see the actual UI and update code iteratively. It’s also

very important to keep the app’s current state when updating the

app. Otherwise, it'll be very painful to manually reset the app to the
previous state and continue testing. Suppose that the component you

are developing is only accessible to registered users, to actually test the
component, you may need to log in every time you made a code change, if
the state is not preserved between app updates.

Hot reload provided by Flutter SDK is a killer feature that can
significantly increase developers’ productivity. With hot reload, the state is
perverse between app updates, so you can see the Ul updates instantly and
continue the development and testing from the last execution point where
you made the changes.

Depending on how a Flutter app is started, there are different ways to
trigger hot reload. Only Flutter apps in debug mode can be hot reloaded:

e When the app is started by the command flutter run,
enter I in the terminal window to trigger hot reload.

e When the app is started by Android Studio, saving the
files automatically triggers hot reload. You can also click
the Flutter Hot Reload button to manually trigger it.

e When the app is started by VS Code, saving the files
automatically triggers hot reload. You can also run
the command Flutter: Hot Reload with the keyboard
shortcut Control-F5 to manually trigger it.

If the app is hot reloaded successfully, you can see output in the
console with details of the hot reload. Figure 2-3 shows the console output
when a hot reload is triggered by saving files in Android Studio.

32

CHAPTER2 KNOW THE TOOLS

Run: ' main.dart
I EConsole y (._' G More Actions ¥
» Initializing hot reload...
X Syncing files to device iPhone XR...
Reloaded 1 of 419 libraries in 2,300ms.
=
K

Figure 2-3. Hot reload output

Hotreload is so useful that you may want it to be available for all code

changes you made. Unfortunately, there are still some cases that hot reload

may not work:

Your code change introduces compilation errors. You
need to fix these compilation errors before hot reload

can continue.

Hot reload preserves the app state, and it tries to
rebuild the widgets tree using the preserved state to
reflect new changes. If your code change modifies the
state, then the change to widgets may not be able to
work with the old preserved state. Suppose that we
have a widget that is designed to display a user’s profile
information. In the previous version, the state for a
user only contains the username and name. In the new
version, the state is updated to include a new property
email, and the widget is updated to display the new
property. After hot reload, the widget still uses the old
state and doesn’t see the new property. A hot restart is
required in this case to pick up the state change.

Changes to initializers of global variables and static
fields can only be reflected after a hot restart.

33

CHAPTER2 KNOW THE TOOLS

o Changes to the app’s main() method may only be
reflected after a hot restart.

e Hotreload is not supported when an enumerated
type is changed to a regular class or a regular class is
changed to an enumerated type.

e Hotreload is not supported when changing the generic
declarations of types.

If hot reload doesn’t work, you can still use hot restart, which restarts
the app from scratch. You can be sure that hot restart will reflect all
changes you made. Depending on how a Flutter app is started, there are
different ways to trigger hot restart:

e When the app is started by flutter run, enterR in the

terminal window to trigger hot restart.

e When the app is started by Android Studio, click the
Flutter Hot Restart button to trigger hot restart.

e When the app is started by VS Code, click the Restart
button, or run the command Flutter: Hot Restart from
command palette to trigger hot restart.

2-3. Upgrading Flutter SDK
Problem

You want to keep the Flutter SDK up to date to get latest features, bug fixes,
and performance improvements.

Solution

Track different Flutter SDK channels and upgrade the SDK.

34

CHAPTER2 KNOW THE TOOLS

Discussion

From time to time, we may need to upgrade Flutter SDK to get new
features, bug fixes, and performance improvements. Flutter SDK has
different channels to get updates. Each channel is actually a Git branch in
Flutter SDK’s repository. Executing the command flutter channel shows
all available channels; see Figure 2-4. The channel marked with a star
symbol is the current channel. In Figure 2-4, the current channel is stable.

@ @) flutter-app — fucheng@Fus-MacBook-Pro — ..t/flutter-app...

‘= flutter channel |-
Flutter channels:

beta

dev

master
* stable

Figure 2-4. Output of the command flutter channel
Table 2-1 shows four channels of Flutter SDK.

Table 2-1. Flutter SDK channels

Channel Description

stable Channel for stable builds. It's the recommended channel for product
development.

beta Channel for best build of the previous month.

dev Channel for latest fully tested build. More tests are run in this channel

than master.

master Channel for active development with latest changes. If you want to try
the latest features, this is the channel to track. Code in this channel
usually works, but sometimes it may break accidentally. Use this
channel at your own risk.

35

CHAPTER2 KNOW THE TOOLS

We can use the command flutter channel [<channel-name>] to
switch to a different channel. For example, flutter channel master
changes to the master channel. To get updates of the current channel, run
the command flutter upgrade. The following command shows a typical
way to switch channels.

$ flutter channel master
$ flutter upgrade

2-4. Debugging Flutter Apps in
Android Studio

Problem

You are using Android Studio to develop Flutter apps and want to find out
why the code doesn’t work the way you expected.

Solution

Use the built-in Flutter debugging support in Android Studio.

Discussion

Debugging is an important part of developers’ daily routines. When
debugging, we can see the actual code execution path in the runtime
and inspect values of variables. If you have experiences with other
programming languages, you should already have the basic debugging
skills.

In Android Studio, you can click on the left gutter of a line in the editor
to add breakpoints to that line. Click the Debug icon or use the menu Run
» Debug to start the app in debug mode; see Figure 2-5.

36

CHAPTER2 KNOW THE TOOLS

) iPhone XR + | % maindart ¥ > }%\

)> Qmain.dart> Debug 'main.dart’ ("D)J'

Figure 2-5. Click Debug icon to start debugging

Once the code execution hits a breakpoint, the execution is paused.
You can inspect values of variables and interactively continue the
execution using the buttons in the debug toolbar. There are different
panels to see related information in debug mode.

Frames view in Figure 2-6 shows the current execution frames.

Debug: . main.dart -
@ Debugger k= | ¥ % N A ,IEE gﬁ:'-Dg{,ummsv

3 [E) Frames* = Variables +* [=] Console +*
& main.dart:main.dart()

_MyHomePageState._incrementCounter.<anonymous closure> (main.dart:56)
'@ State.setState (framework.dart:1130)
[l _MyHomePageState._incrementCounter (main.dart:50)
& _InkResponseState._handleTap (ink_well.dart:507)
@ _InkResponseState.build. <anonymous closure> (ink_well.dart:562)
(- GestureRecognizer.invokeCallback (recognizer.dart:102)
) TapGestureRecognizer._checkUp (tap.dart:242)
7 TapGestureRecognizer.acceptGesture (tap.dart:204)
&) GestureArenaManager.sweep (arena.dart:156)
[l _WidgetsFlutterBinding&BindingBase&GestureBinding.handleEvent (binding.dart:184)
) _WidgetsFlutterBinding&BindingBase&GestureBinding.dispatchEvent (binding.dart:158)
] _WidgetsFlutterBinding&BindingBase&GestureBinding._handlePointerEvent (binding.dart:138)
@) _WidgetsFlutterBinding&BindingBase&GestureBinding._flushPointerEventQueue (binding.dart:101)
) _WidgetsFlutterBinding&BindingBase&GestureBinding._handlePointerDataPacket (binding.dart:85)
@ _invoke1 (hooks.dart:168)

%7 g: Version Control Terminal @ Dart Analysis ¥ 0: Messages = ¥ B:Debug = “® TODO

®@® m

X% %M@

Figure 2-6. Frames view in Android Studio

Variables view in Figure 2-7 shows values of variables and objects. In

this view, we can also add expressions to watch for values.

37

CHAPTER2 KNOW THE TOOLS

Debug: { main.dart -
Goehuggerlgézzlg ’IE ’Tg »“-G‘é.,ummun-sv

> [EFEREES] = verisbies

*, ¥ = this = {_ MyHomePageState} _MyHomePageState#cac73

m v f _widget = {MyHomePage} MyHomePage

........ % key = null

| » % _location = {_Location} file:///Users/fucheng/git/flutter-app/lib/main.dart:23:13
@ ° “f title = "Flutter Demo Home Page"

-------- » f _debuglifecycleState = {_Statelifecycle} _Statelifecycle.ready
=] o » f _element = {StatefulElement} MyHomePage(state: _MyHomePageState#cac73)
-] f _counter =0

X %W

%7 9: Version Control Terminal @ Dart Analysis [0:Messages | 4§ 5:Debug 2 TODO

Figure 2-7. Variables view in Android Studio

38

Console view in Figure 2-8 shows messages displayed to the console.

CHAPTER2 KNOW THE TOOLS

Debug: ' main.dart
Gu Debugger b= (¥ M M A (E A G % Mo Actions v
; I Frames +* Variables »* [¥] Console +*

4 Launching lib/main.dart on iPhone XR in debug mode...
Starting Xcode build...

B J§ Xcode build done. 17.9s
oo . Syncing files to device iPhone XR...

& =

e B

=t o

& 1)

»

X

%7 9: Version Control Terminal &% Dart Analysis & 0:Messages = 4§ 5:Debug “% TODO

Figure 2-8. Console view in Android Studio

2-5. Viewing Outline of Flutter Apps
in Android Studio

Problem

You want to see outline of Flutter apps to have a clear view of how widgets
are organized.

Solution

Use Flutter Outline view in Android Studio.

39

CHAPTER2 KNOW THE TOOLS

Discussion

In Android Studio, Flutter Outline view can be opened from menu View »
Tool Windows » Flutter Outline. This view displays a tree-like hierarchy
of current open file; see Figure 2-9. Flutter Outline view is linked with

the file editor. Selecting an element in the Flutter Outline view makes the
editor to scroll and highlight the source code of this element. This link is
bidirectional; selection in the editor also causes corresponding element to
be selected in the Flutter Outline view.

Flutter Outline BT =%

eI B enl.] my \4

2 main() = void

<M MyApp
€ MyApp

m build(BuildContext context) - Widget

<™ MaterialApp title: 'Flutter Demo’, theme: ...
<M MyHomePage title: 'Flutter Demo Home Page

€ MyHomePage

m MyHomePage({Key key, this.title})

“f title > String

m createState() » _MyHomePageState
€ _MyHomePageState

f _counter = int

m _incrementCounter() = void

m build(BuildContext context) > Widget

v 4 . Scaffold

< A AppBar
% [T] Text widget title
< € Center
% © Column mainAxisAlignment: MainAxisAlignment.center

% [T] Text 'You have pushed the button this many times:'
% [T] Text '$_counter', style: Theme.of(context).textTheme.display1
¢ 'F FloatingActionButton onPressed: _incrementCounter, tooltip: 'Incremer
% [lcon lcons.add

Figure 2-9. Flutter Outline view in Android Studio

40

CHAPTER2 KNOW THE TOOLS

The toolbar in Flutter Outline view has different actions to manage
widgets. For example, Center widget button wraps the current widget with
a Center widget.

2-6. Debugging Flutter Apps in VS Code
Problem

You are using VS Code to develop Flutter apps and want to find out why
the code doesn’t work the way you expected.

Solution

Use the built-in Flutter debugging support in VS Code.

Discussion

In VS Code, you can click on the left gutter of a line in the editor to add
breakpoints to that line. Use the menu Debug » Start Debugging to start
the app in debug mode.

Figure 2-10 shows the VS Code view in debug mode. There are different
panels in this view:

e Variables - Shows values of variables.

e Watch - Manages watch expressions and views their
values.

o (Call stack - Views current call stack.
e Breakpoints - Views added breakpoints.

o Debug console - Views messages output to the console.

41

CHAPTER2 KNOW THE TOOLS

The actions bar in the top contains actions including Continue, Step
Over, Step Into, Step Out, Restart, and Stop.

e ® main,dart — Hutter-aps
Bl cceuc b fhter 2 £ B O maindant X o [e B B F o]

4 VARIABLES something has

PN “"‘“ T 52 // changed in this State, which causes it to rerun the build
4 this lomePageState
method below

rext: Statefulflement

\f" S41272000 53 // so that the display can reflect the updated values. If we =
changed :
) 54 // _counter without calling setState(), then the build
= method would not be &
= 55 // called again, and so nothing would appear to happen.
St » 56 _counter++; =)
B 57 13 H
counter: 2 58 }
59
— 4 WATEH 60 @override
_countar: B 61 Widget build{BuildContext context) {
62 // This method is rerun every time setState is called, for
instance as done
63 // by the _incrementCounter method above.
64 1
4 CALLSTACK PALSID ONBATAKP.. 65 // The Flutter framework has been optimized to make rerunning
MyHonePegeState, _incrementls huild methade
FROELEMS OUTPUT DEBUG CONSOLE TERMINAL E oA ¥

MyHomePogeState. _incrementCol Lownching lib/main.dort on iPhone XR in debug mode...
Xcode build done. 22.0s

4 BREAXPOINTS

All Exceptions

'&" 8 uncaught Exceptions
@ B main.dart 1k 56 >
Pmaster O QOO0 A0 P Flutter (futter-app] (@ dart | B main,dart LnB6 Col? Spaces? UTF-B LF Dart Flutter: 100 iPhone X& fios Emulator) @ &

Figure 2-10. Debugin VS Code

2-7. Creating Flutter Projects
Problem

You want to create different types of Flutter projects.

Solution

Use the command flutter create with different arguments.

42

CHAPTER2 KNOW THE TOOLS

Discussion

flutter create isthe command provided by Flutter SDK to create Flutter
projects. In Recipe 1-10, we use this command to create a simple Flutter
app. In Recipe 1-11, we also see the wizard provided by Android to create
new Flutter projects, which allows customizations of the created projects.
Under the hood, Android Studio also uses flutter create command.
This command supports different arguments for various scenarios. The
following code is the basic usage of flutter create. The output directory
will contain files of the new project.

$ flutter create <output directory>

Type of Project

Use the argument -t or --template to specify the type of project to create.
There are four types of projects; see Table 2-2.

Table 2-2. Flutter project types

Project type Description

app A Flutter application. This is the default type.
package A sharable Flutter project that contains modular Dart code.
plugin A sharable Flutter project that contains platform-specific code

for Android and iOS.

The following command shows how to create a Flutter package and
plugin.

$ flutter create -t package my package
$ flutter create -t plugin my plugin

43

CHAPTER2 KNOW THE TOOLS

When creating plugins, we can also use the argument -1 or --10s-
language to specify the programming language of iOS code. Possible
values are objc for Objective-C and swift for Swift. The default value
is objc. For Android code, we can use the argument -a or --android-
language to specify the programming language of Android code. Possible
values are java for Java and kotlin for Kotlin. The default value is java.
The following command shows how to create a Flutter plugin with Swift for
iOS and Kotlin for Android.

$ flutter create -t plugin -i swift -a kotlin my plugin

Code Sample

When creating a Flutter application, we can use the argument -s or
--sample to specify the sample code to use as the file 1ib/main.dart of the
new app. Given a sample id, the command tries to load the dart file with
the URL https://docs.flutter.dev/snippets/<sample _id>.dart.

Project Configurations

There are some general configurations available when creating projects;
see Table 2-3.

44

https://docs.flutter.dev/snippets/<sample_id>.dart

CHAPTER2 KNOW THE TOOLS

Table 2-3. Flutter project configurations

Argument Description Default value

--project-name Name of this new Flutter project. The Derived from the

name must be a valid dart package output directory
name. name
--org Organization name of this new Flutter ~ com.example

project. The value should be in reverse
domain notation, for example, com.
example. The value is used as the Java
package name for Android code and the
prefix in the i0S bundle identifier.

--description The description of this new Flutter A new Flutter
project. project

The following command uses the project configurations in Table 2-3.

$ flutter create --org=com.mycompany --description="E-commerce
app" my_ecommerce_app

Enable or Disable Features

There are additional flags to enable or disable some features; see Table 2-4.
Only one argument of each pair can be specified at a time. The argument
name with the prefix --no means disabling a feature, while the other one
means enabling a feature. For example, - -overwrite means enabling
overwriting, while --no-overwrite means disabling overwriting. The
default value On or Off means whether the feature is enabled or disabled
by default, respectively. For example, the default value Off for the pair
--overwrite and --no-overwrite means the --no-overwrite is used by
default.

45

CHAPTER2 KNOW THE TOOLS

Table 2-4. Features of flutter create

Arguments

Description

Default value

--overwrite/
--no-overwrite

--pub /
--no-pub

--offline/
--no-offline

--with-driver-test/
--no-with-driver-test

Whether to overwrite existing files.

Whether to run flutter packages
get after the project has been
created.

Whether to run flutter packages
get in offline mode or not. Only
applicable when - -pub is on.

Whether to add a flutter driver
dependency and generate a sample
Flutter Drive test.

Off

On

Off

Off

2-8. Running Flutter Apps

Problem

You want to run Flutter apps.

Solution

Use the command flutter runwith different arguments.

Discussion

flutter runisthe command provided by Flutter SDK to start Flutter apps.

flutter run has alot of arguments for different usage scenarios.

46

CHAPTER2 KNOW THE TOOLS

Different Build Flavors

By default, flutter run builds a debug version of the app. Debug version
is good for development and testing with hot reload support. There are
other build flavors you can use for different scenarios; see Table 2-5.

Table 2-5. Build flavors of flutter run

Argument Description

--debug A debug version. This is the default build flavor.

--profile A version specialized for performance profiling. This option does
not currently support emulator targets.

--release A release version ready for publishing to app store.

--flavor A custom app flavor defined by platform-specific build setup.
This requires using product flavors in Android Gradle scripts and
custom Xcode schemes.

Other Options

The argument -t or --target specifies the main entry point file of the app.
It must be a Dart file that contains the main() method. The default value is
lib/main.dart. The following command uses 1ib/app.dart as the entry
point file.

$ flutter run -t lib/app.dart

If your app has different routes, use the argument --route to specify
the route to load when running the app.

If you want to record the process id of the running Flutter app, use
the argument --pid-file to specify the file to write the process id. With
the process id, you can send the signal SIGUSR1 to trigger a hot reload and

47

CHAPTER2 KNOW THE TOOLS

SIGUSR2 to trigger a hot restart. In the following command, the process id
is written to the file ~/app.pid.

$ flutter run --pid-file ~/app.pid
Now we can send signals to the running Flutter app using kill.

$ kill -SIGUSR1 $(<~/app.pid)
$ kill -SIGUSR2 $(<~/app.pid)

Table 2-6 shows other arguments supported by flutter run.

Table 2-6. Extra arguments of flutter run

Arguments Description Default value

--hot / --not-hot Whether hot reload should be enabled. On

--build/--no-build Whether the app should be built if On
necessary before running it.

--pub / --no-pub Whether to run flutter packages On
get before running it.

--target-platform Specify the target platform when default
building the app for Android devices.
Possible values are default,
android-arm, and android-armé4.

--observatory-port Specify the port for Observatory 0 (a random
debugger connections. free port)
--start-paused Make the app to start in a paused mode

and wait for a debugger to connect.

--trace-startup Start tracing.

(continued)

48

CHAPTER2 KNOW THE TOOLS

Table 2-6. (continued)

Arguments Description Default value

--enable-software- Enable rendering using Skia.

rendering

--skia- Provide 100% deterministic Skia
deterministic- rendering when used with --enable-
rendering software-rendering.
--trace-skia Enable tracing of Skia code.

Figure 2-11 shows the output of running the command flutter run.
From the output, we can see the Observatory port of the running app,
which is very important for other Flutter SDK commands to work with the
running app. We can interact with the console by pressing different keys.

For example, pressing “r” triggers hot reload. After pressing “h’) flutter
run shows a help message about all commands it can accept.

49

CHAPTER2 KNOW THE TOOLS

] [] flutter-app — flutter run — flutter — dart « flutter run — 80x37
= flutter run

Launching lib/main.dart on iPhone XR in debug mode...

Starting Xcode build...

HAssembling Flutter resources... 2.1s
“Compiling, linking and signing... 4.3s
Xcode build done. 8.8s
6.3s
Syncing files to device iPhone XR... 2.5s

% To hot reload changes while running, press "r". To hot restart (and rebuild
state), press "R".

An Observatory debugger and profiler on iPhone XR is available at:
http://127.0.0.1:51384/

For a more detailed help message, press "h". To detach, press "d"; to quit,

won

press "q".

% To hot reload changes while running, press "r". To hot restart (and rebuild
state), press "R".

An Observatory debugger and profiler on iPhone XR is available at:
http://127.0.0.1:51384/

You can dump the widget hierarchy of the app (debugDumpApp) by pressing "w".

To dump the rendering tree of the app (debugDumpRenderTree), press "t".

For layers (debugDumpLayerTree), use "L"; for accessibility
(debugDumpSemantics), use "S" (for traversal order) or "U" (for inverse hit test
order).

To toggle the widget inspector (WidgetsApp.showWidgetInspectorOverride), press
",

To toggle the display of construction lines (debugPaintSizeEnabled), press "p".
To simulate different operating systems, (defaultTargetPlatform), press "o".

To display the performance overlay (WidgetsApp.showPerformanceOverlay), press
"pT,

To save a screenshot to flutter.png, press "s".

To repeat this help message, press "h". To detach, press "d"; to quit, press
Q.

Figure 2-11. Output of the command flutter run

50

CHAPTER2 KNOW THE TOOLS

2-9. Building Flutter App Binaries
Problem

You want to build app binaries for Android and iOS platforms.

Solution

Use the command flutter build.

Discussion

To deploy Flutter apps to devices and publish to app stores, we need to
build the binaries for Android and iOS platforms. The command flutter
build supports building these binaries.

Build APK Files for Android

The command flutter build apk builds the APK file for your app.
Table 2-7 shows the arguments supported by this command.

Table 2-7. Arguments of flutter build apk

Argument Description

--debug Build a debug version.

--profile Build a version specialized for performance profiling.
--release Build a release version ready for publishing to app store.
--flavor Build a custom app flavor defined by platform-specific

build setup. This requires using product flavors in
Android Gradle scripts and custom Xcode schemes.

(continued)

51

CHAPTER2 KNOW THE TOOLS

Table 2-7. (continued)

Argument Description

--pub/ --no-pub Whether to run flutter packages get before
building the app.

--build- An integer to specify an increasing internal version
number=<int> number. This value must be unique for each build. The
value is used as “versionCode”.

--build-name=<x.y.z> A string version number in the format of x.y.z. The
value is used as “versionName”.

--build-shared- Compile to a =.so file.
library

--target-platform The target platform. Possible values are android-arm
and android-armé64.

When building APK file, - -release is the default mode. The following
command builds a release version with build number 5 and version name
0.1.0.

$ flutter build apk --build-number=5 --build-name=0.1.0

Build for i0S

The command flutter build ios builds iOS application bundles. This
command has the same arguments --debug, --profile, --release,
--flavor, --pub, --no-pub, --build-number, and --build-version
as flutter build apk. The value of --build-number is used as
“CFBundleVersion’, while the value of --build-name is used as
“CFBundleShortVersionString”

It also has other arguments; see Table 2-8.

52

CHAPTER2 KNOW THE TOOLS

Table 2-8. Extra arguments of flutter build ios

Argument Description

--simulator Build a version for the i0S simulator.
--no-simulator Build a version for the i0S device.

--codesign/ Whether to sign the application bundle. Default value is
--no-codesign --codesign.

By default, flutter build ios builds the app for device, that is,

--no-simulator is used. The following command builds a debug version

for the simulator without signing the application bundle.

$ flutter build ios --debug --no-codesign --simulator

2-10. Installing Flutter Apps
Problem

You want to install Flutter apps to emulators or devices.

Solution

Use the command flutter install.

Discussion

The command flutter install installs the current Flutter app to
emulators or devices. To install the app, you need to have at least one
emulator started or one device connected. Before installing the app,
a binary file should be available for the target emulator or device. Use
flutter build to build the binary file first.

53

CHAPTER2 KNOW THE TOOLS
The following command installs the built binary.

$ flutter install

2-11. Managing Packages
Problem

You want to manage dependencies of Flutter apps.

Solution

Use the command flutter packages.

Discussion

Using packages is the Dart way to manage project dependencies. Flutter
inherits the same way for dependency management. You may have seen
similar concepts in other programming platforms. For the dependency
management to work, we need to have a way to describe sharable
components and their dependencies. We also need a tool to fetch
dependencies. Table 2-9 shows package management tools for different
platforms. Flutter SDK uses command flutter packages to manage
dependencies, which uses Dart pub tool under the hood.

54

CHAPTER2 KNOW THE TOOLS

Table 2-9. Package management tools

Platform Description file Tool
Node.js package.json npm
Yarn
Dart pubspec.yaml pub
Flutter flutter packages
Java pom.xml Maven
build.gradle Gradle
Ruby Gemfile Bundler

The command flutter packages get downloads dependent
packages in a Flutter project. The command flutter packages upgrade
upgrades packages in a Flutter project. These two commands simply
wrap around the underlying pub tool from Dart. We can also use flutter
packages pub to directly invoke Dart pub tool. The command flutter
packages cannot do much as functionalities it provides are limited. You
can always use flutter packages pub to delegate tasks to Dart pub tool.

Note You should use flutter packages get and flutter
packages upgrade to manage dependencies of Flutter apps.
Commands pub get and pub upgrade from Dart pub tool
shouldn’t be used. If you need more functionalities from Dart pub
tool, use flutter packages pub.

55

CHAPTER2 KNOW THE TOOLS

The command flutter packages testisthe same aspub run test,
but different from flutter test. The tests run by flutter packages
test are hosted in a pure Dart environment, so libraries like dart:ui are
not available. This makes the tests run faster. If you are building libraries
that don’t depend on any packages from Flutter SDK, you should use this
command to run tests.

2-12. Running Flutter Tests
Problem

You have written tests for Flutter apps, and you want to make sure these
tests passed.

Solution

Use the command flutter test.

Discussion

Tests are essential part of maintainable software projects. You should
have tests for Flutter apps. The command flutter test runs tests for

a Flutter app. When running the command, you can provide a list of
space-separated relative file paths to specify the test files to run. If no files
provided, all files in the test directory that have file name ending with
_test.dart are included. The following command runs the test file test/
mytest.dart.

$ flutter test test/mytest.dart

56

CHAPTER2 KNOW THE TOOLS

Filter the Tests to Run

The argument - -name specifies the regular expression to match the names
of tests to run. A test file may contain multiple tests. If you only need to

do simple substring matching, use --plain-name instead. The following
commands show the usage of --name and --plain-name.

$ flutter test --name="smoke\d+"
$ flutter test --plain-name=smoke

You can specify multiple matching conditions using - -name and
--plain-name. The tests to run need to match all given conditions. The
following command uses both --name and --plain-name.

$ flutter test --name="smoke.*" --plain-name=test

Test Coverage

If you want to know the coverage of your tests, use the argument
--coverage. After the testing, flutter test generates test coverage
information and saves to the file coverage/lcov.info. The output
path of the coverage information can be specified using the argument
--coverage-path. If you have base coverage data, you can put it into the
path coverage/lcov.base.info and pass the argument --merge-coverage
to flutter test, then Flutter SDK will use Icov to merge these two
coverage files.

To view the coverage report, you need to have Icov installed. On
macOS§, Icov can be installed using Homebrew.

$ brew install lcov

57

CHAPTER2 KNOW THE TOOLS

The command genhtml generates HTML files from the Icov coverage
information file. The following command generates the HTML coverage
report. Open the generated file index. html to view the report.

$ genhtml coverage/lcov.info --output-directory coverage report

Debug a Test

If you want to debug a test file, you can use the argument --start-paused.
Only a single test file is allowed in this mode. The execution is paused until
a debugger is connected. The following command debugs the file test/
simple.dart.

$ flutter test --start-paused test/simple.dart
Other Options
There are other useful arguments; see Table 2-10.

Table 2-10. Extra arguments of flutter test

Arguments Description Default value
--3, The number of concurrent tests to run. 6
--concurrency

--pub/--no-pub Whether to run flutter packages get On
before running the tests.

2-13. Analyzing the Code
Problem

Your Flutter code compiles successfully and looks good in tests. However,
you want to know if there are any potential errors or bad code practices in
your code.

58

CHAPTER2 KNOW THE TOOLS

Solution

Use the command flutter analyze.

Discussion

Even though your code compiles successfully and passes all tests, it’s still
possible for the code to have potential errors or bad smells. For example,
alocal variable is declared but never used. It’s a good practice to keep the
code as clean as possible. Dart provides the analyzer to analyze source
code to find potential errors.

The command flutter analyze accepts a list of directories to scan
Dart files. If no path is provided, flutter analyze simply analyzes current
working directory. The following command analyzes the directory
~/my_app/lib.
$ flutter analyze ~/my_app/lib

The analysis result can be written to a file with the argument - -write.
By default, the result is written to the console. You can also pass the
argument - -watch to let the analyzer watch for file system changes and

run analysis continuously.
Table 2-11 shows extra arguments of flutter analyze.

59

CHAPTER2 KNOW THE TOOLS

Table 2-11. Extra arguments of flutter analyze

Arguments Description Default value

--current-package/ Whether to analyze current project. If On
--no-current-package --no-current-package is enabled

and no directory is specified, then

nothing will be analyzed.

--pub/--no-pub Whether to run flutter packages On
get before running the analysis.

--preamble/ Whether to show the current file being ~ On

--no-preamble analyzed.

--congratulate/ Whether to show output even there are On

--no-congratulate no errors, warnings, hints, or lints.

--watch Continuously monitors for file system
changes, and runs analysis in response.

The command flutter analyze delegates the code analysis to Dart
dartanalyzer tool. We can use the file analysis_options.yaml in the
project’s root directory to customize the analysis behavior.

Figure 2-12 shows the output of flutter analyze with one issue found

in the code.
o @ flutter-app — fucheng@Fus-MacBook-Pro — ..t/flutter-app — -zsh — B0x7
+ flutter analyze a8

Analyzing flutter-app...

info ® The value of the local variable 'value' isn't used e
lib/main.dart:68:9 ® unused_local_variable

1 issue found. (ran in 2.7s)

Figure 2-12. Output of the command flutter analyze

60

CHAPTER2 KNOW THE TOOLS

2-14. Managing Emulators
Problem

You want to manage different emulators used by Flutter SDK.

Solution

Use the command flutter emulators.

Discussion

When setting up the Android and iOS platforms for Flutter SDK, we also
created emulators for Android and iOS. For Android, we can use AVD
Manager to manage emulators. For i0S, we can use Xcode to manage
simulators. It will be convenient if we can manage both Android emulators
and iOS simulators in the same way. The command flutter emulators is
the tool for managing emulators.

Running flutter emulators shows all available emulators for Flutter
SDK to use; see Figure 2-13.

[] [] flutter-app — fucheng@Fus-MacBook-Pro — ..t/flutter-app — -zsh — 80x12
> flutter emulators
2 available emulators:

Nexus_6P_API_28 ® Nexus 6P ® Google ® Nexus 6P API 28
apple_ios_simulator e i0S Simulator e Apple

To run an emulator, run 'flutter emulators --launch <emulator id>'.
To create a new emulator, run 'flutter emulators --create [--name xyz]"'.

You can find more information on managing emulators at the links below:
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/command-1ine/avdmanager

Figure 2-13. Output of the command flutter emulators

61

CHAPTER2 KNOW THE TOOLS

To start a simulator, use flutter emulators --launch <emulator
id>. The following command launches the Nexus_6P_API_28 emulator.
You only need to provide a partial ID to find the exact emulator to launch.
The partial ID must only match one emulator.

$ flutter emulators --launch Nexus

We can also create a new Android emulator using flutter emulators
--create. The following command creates a new emulator with the name
Pixel. This command can only create emulators based on Pixel devices.

$ flutter emulators --create --name Pixel

2-15. Taking Screenshots
Problem

You want to take screenshots of your running apps.

Solution

Use the command flutter screenshot.

Discussion

Android emulators and iOS simulators both provide the native
functionalities to take screenshots. For iOS simulators, this can be done
using the menu File » New Screen Shot. For Android emulators, this can
be done by clicking the Screenshot icon in the floating control bar. But
using the UI controls is not quite convenient. The screenshots taken by
emulators are saved to the desktop by default. You have to configure the
emulators to save to the desired location.

62

CHAPTER2 KNOW THE TOOLS

The command flutter screenshot is much easier to use than the
built-in features in emulators. You can use the argument -0 or --output to
specify the location to save the screenshot; see the following command.

$ flutter screenshot -o ~/myapp/screenshots/home.png

flutter screenshot can take different types of screenshots. The
argument - -type accepts values in Table 2-12.

Table 2-12. Types of screenshots

Type Description

Device Use the device’s native screenshot capabilities. The screenshot
includes the entire screen currently being displayed. This is the
default type.

Rasterizer Screenshot of the Flutter app rendered using the rasterizer.

skia Screenshot of the Flutter app rendered as a Skia picture.

For the types of rasterizer and skia, the argument --observatory-port
is required to provide the Dart Observatory port number of the running app.
This port is displayed in the output of the command flutter run.

2-16. Attaching to Running Apps
Problem

Your Flutter app is not launched using flutter run, butyou need want to

interact with it.

Solution

Use the command flutter attach.

63

CHAPTER2 KNOW THE TOOLS

Discussion

When a Flutter app is launched using flutter run, we can interact with
using the console. However, the app can also be launched in other ways.
For example, we can close the app on the device and open it again. In this
case, we lose the control of the running app. flutter attach provides a
way to attach to running apps.

If the app is already running and you know the port of its observatory,
use flutter attach --debug-port to attach to it. The following

command attaches to a running app.
$ flutter attach --debug-port 10010

If no observatory port is provided, flutter attach starts listening
and scanning for new apps that become active. When a new observatory is
detected, this command attaches to the app automatically.

$ flutter attach

In Figure 2-14, flutter attach is initially waiting for a new Flutter app
to start. Once a Flutter app is started, flutter attach connects to it and
shows the same console as flutter run.

@® ® flutter-app — flutter attach — flutter — dart « flutter attach — 80x12

= flutter attach =
Waiting for a connection from Flutter on iPhone XR...

Done.

Syncing files to device iPhone XR... 1.9s

% To hot reload changes while running, press "r". To hot restart (and rebuild
state), press "R".

An Observatory debugger and profiler on iPhone XR is available at:
http://127.0.0.1:53610/

For a more detailed help message, press "h". To detach, press "d"; to quit,
press "q".

Figure 2-14. Output of the command flutter attach

64

CHAPTER2 KNOW THE TOOLS

2-17. Tracing Running Flutter Apps
Problem

You want to trace the execution of a running app.

Solution

Use the command flutter trace.

Discussion

To start tracing, we need to know the observatory port of the running app
and provide this port to flutter trace with the argument --debug-port.
By default the tracing runs for 10 seconds and writes the result JSON file to
the current directory with names like trace _01.json, trace 02.json, and
so on. In the following command, the observatory portis 51240.

$ flutter trace --debug-port=51240

Use the argument -d or --duration to specify the duration in seconds
for the tracing to run. The following command runs the tracing for 5
seconds.

$ flutter trace --debug-port=51240 -d 5

If you prefer to manually control the tracing progress, you can use
flutter trace --start to start the tracing first, then use flutter trace
--stop to stop the tracing at a later time. It's worth noting that when calling
flutter trace --stop, the tracing needs to wait for the time specified
in --duration before it’s stopped. In the following command, after the

65

CHAPTER2 KNOW THE TOOLS

second flutter trace --stop, the tracing waits for another 10 seconds
before stopping, which is the default value of --duration.

$ flutter trace --start
$ flutter trace --stop

To stop the tracing immediately, use the following command.

$ flutter trace --stop -d 0

2-18. Configuring Flutter SDK
Problem

You want to configure different settings of Flutter SDK.

Solution

Use the command flutter config.

Discussion

The command flutter config allows configuring some Flutter SDK
settings. Table 2-13 shows arguments of flutter config.

66

CHAPTER2 KNOW THE TOOLS

Table 2-13. Arguments of flutter config

Arguments Description Default value

--analytics/ Whether to report anonymous tool usage On
--no-analytics statistics and crash reports.

--clear-ios- Clear the saved development certificate used
signing-cert to sign apps for i0S device deployment.

--gradle-dir Set the Gradle install directory.
--android-sdk Set the Android SDK directory.

--android- Set the Android Studio install directory.
studio-dir

To remove a setting, simply configure it to an empty string. The
following command disables analytics reporting.

$ flutter config --no-analytics

2-19. Showing App Logs
Problem

You want to see logs generated by Flutter apps running on emulators or
devices.

Solution

Use the command flutter logs.

67

CHAPTER2 KNOW THE TOOLS

Discussion

Even though we can debug a Flutter app’s code to find out causes of certain
problems, logs are still very valuable for error diagnosis. The easiest way to
generate logs in Flutter apps is calling the print() method. The command
flutter logs watches for logs generated on the device and prints out to
the console.

$ flutter logs

Use the argument -c or --clear if you want to clear the log history
before reading the logs.

$ flutter logs -c

Figure 2-15 shows the output of flutter logs.

® (] flutter-app — flutter logs — flutter — script « flutter logs — 80x8

[= flutter logs

Showing iPhone XR logs:
Runner: flutter: Counter is @
Runner: flutter: Counter is 1
Runner: flutter: Counter is 2
Runner: flutter: Counter is 3
Runner: flutter: Counter is 4

Figure 2-15. Output of the command flutter logs

2-20. Formatting Source Code
Problem

You want to make sure that the source code of your app follows the same
code style.

68

CHAPTER2 KNOW THE TOOLS

Solution

Use the command flutter format.

Discussion

It’s a good practice to have the same code style for your app, especially
for a development team. The consistent code style is also good for code
reviews. The command flutter format can format the source code files
to match the default code style of Dart.

To run flutter format, you need to provide a space-separated list of
paths. The following command formats the current directory.

$ flutter format .

flutter format simply delegates the formatting task to Dart dartfmt
tool. The code style is described in the official guide (https://dart.dev/
guides/language/effective-dart/style) of Dart language. Table 2-14
shows extra arguments of flutter format.

Table 2-14. Extra arguments of flutter format

Argument Description

-n, --dry-run Just show which files would be modified without
actually modifying them.

--set-exit-if-changed Return exit code 1 if there are any formatting
changes made by this command.

-m, --machine Set the output format to JSON.

69

https://dart.dev/guides/language/effective-dart/style
https://dart.dev/guides/language/effective-dart/style

CHAPTER2 KNOW THE TOOLS

2-21. Listing Connected Devices
Problem

You want to see all connected devices that can be used by Flutter SDK.

Solution

Use the command flutter devices.

Discussion

Flutter SDK requires at least one emulator or device to be ready before
running certain commands. Flutter SDK uses the term “device” to
reference Android emulators, iOS simulators, and real devices. The
command flutter devices lists all devices that can be used by Flutter
SDK. Figure 2-16 shows the output of flutter devices.

[] ® flutter-app — fucheng@Fus-MacBook-Pro — ..t/flutter-app — -zsh — B0x7

= flutter devices
2 connected devices:

Redmi Note 5 e 970c@3c ® android-armé4 e Android
8.1.0 (API 27)

iPhone XR o (B9AAFAB-335C-4EDF-ADAD-E3AD1D7C24C2 @ ios e i0S 12.1
(simulator)

Figure 2-16. Output of flutter devices

2-22. Running Integration Tests
Problem

You have written integration tests using Flutter Driver, and you want to run
these tests.

70

CHAPTER2 KNOW THE TOOLS

Solution

Use the command flutter drive.

Discussion

Flutter Driver is the tool provided by Flutter SDK to run integration tests.
When running integration tests, the app itself is running in an emulator or a
device, but the test scripts run on your local machine. During the tests, the
test script connects to the running app and sends commands to the app to
simulate different user actions. The test script can perform actions like tapping
and scrolling. It can also read widget properties and verify their correctness.
flutter driveisthe command to run integration tests. It can launch
the app itself or connect to an existing running app. When flutter
drive launches the app, it can take the same arguments as flutter
run, including --debug, --profile, --flavor, --route, --target,
--observatory-port, --pub, --no-pub, and --trace-startup. These
arguments have the same meaning as in flutter run. When connecting to
an existing app, the argument --use-existing-app needs to be specified
with the observatory URL of the existing app; see the following command.

$ flutter drive --use-existing-app=http://localhost:50124

When launching the test script, flutter drive usesa convention to
locate the test script file based on the entry point file of the app. The entry
point file is specified using the argument --target with a default value
of lib/main.dart. flutter drive tries to find the test script file in the
test_driver directory with the same name but with a suffix test.dart.
For example, if the entry point file is 1ib/main.dart, it tries to find the test
script file test_driver/main_test.dart. You can explicitly specify the test
script file using the argument - -driver; see the following command.

$ flutter drive --driver=test driver/simple.dart

71

CHAPTER2 KNOW THE TOOLS

If the app is started by flutter drive, then the app will be stopped
after test script finishes, unless the argument - -keep-app-running is
specified to keep it running. When connecting to an existing app, the app
keeps running after test script finishes, unless the argument - -no-keep-
app-running is specified to stop it. The following command keeps the app
running after the test.

$ flutter drive --keep-app-running

2-23. Enabling Bash Completion of Flutter
SDK Commands

Problem

When typing Flutter SDK commands, you want to have the completion
support for your shell.

Solution

Use the command flutter bash-completion to set up completion.

Discussion

With shell completion support, when you type some commands, the shell
tries to complete it. flutter bash-completion prints the setup script to
enable completion for bash and zsh. If no argument is provided, the setup
script is printed out to the console. If a file path is provided, the setup
script is then written to this file.

72

CHAPTER2 KNOW THE TOOLS

On macOS, we can use Homebrew to install bash-completion first.
$ brew install bash-completion

If you are using bash, you need to modify the file ~/.bash_profile to
add the following line.

[-f /usr/local/etc/bash _completion] &% . /usr/local/etc/bash_
completion

Then you can run flutter bash-completion to save the setup script
to the directory /usr/local/etc/bash_completion.d; see the following
command.

$ flutter bash-completion /usr/local/etc/bash_completion.d/
flutter

Finally, you should run source ~/.bash_profile or restart the shell to
enable the completion.

If you are using zsh, you can add the setup script to the file ~/.zshrc.
First you need to add the following line to the top of ~/.zshrc.

autoload bashcompinit
bashcompinit

Then you need to run the following command to add the setup script
to~/.zshrc.

$ flutter bash-completion >> ~/.zshrc

Finally, you should run source ~/.zshrc or restart the shell to enable
the completion.

73

CHAPTER2 KNOW THE TOOLS

2-24. Cleaning Build Files of Flutter Apps
Problem

You want to clean build files of Flutter apps.

Solution

Use the command flutter clean.

Discussion

The command flutter clean deletes files in the build directory. The disk
size of the build directory can be large even for small apps. For example,
after building the Flutter sample app, the size of the build directory is
about 200M. When learning Flutter, you may create many small apps for
testing. It’s a good idea to run flutter clean for those apps when you
think you have done with them. You'll find out that you can reclaim a large
amount of disk space.

2-25. Managing Flutter SDK Cache
Problem

You want to explicitly manage the cache of Flutter SDK.

Solution

Use the command flutter precache.

74

CHAPTER2 KNOW THE TOOLS

Discussion

Flutter SDK keeps a cache of required artifacts in the bin/cache directory.
This directory contains binary files of Dart SDK, Flutter Engine, Material
fonts, and Gradle wrapper. This cache is populated automatically if it
doesn’t exist. The command flutter precache explicitly updates the
cache. Most of Flutter commands update the cache automatically before
execution, except for commands config, precache, bash-completion,
and upgrade, so most of the time you don’t need to explicitly run this
command.

flutter precache has the argument -a or --all-platforms to specify
whether artifacts for all platforms should be downloaded. By default, only
artifacts of the current platform are downloaded.

$ flutter precache -a

2-26. Summary

This chapter is about the tools you may need to use when developing
Flutter apps. You may not need to use all of these tools. With the help of
IDEs, you can perform most of the actions inside of IDEs. Knowledge of
these tools is still valuable because you can do more with these tools. In
the next chapter, we’ll see recipes about essential parts of Dart language.

75

CHAPTER 3

Essential Dart

Flutter projects can have cross-platform code and platform-specific code.
Cross-platform code is written in Dart. Sufficient knowledge of Dart is a
prerequisite for building Flutter apps. Details of Dart language is out of the
scope of this book. You can find plenty of online resources related to Dart.
However, it’s still very helpful to cover essential part of Dart for building
Flutter apps. Recipes in this chapter cover different aspects of Dart. You
can skip this chapter if you are confident about your knowledge of Dart.

3-1. Understanding Built-In Types
Problem

You want to know the built-in types of Dart.

Solution

Dart has built-in types of numbers, strings, booleans, lists, maps, runes,
and symbols.

Discussion

Dart has several built-in types, including numbers, strings, booleans, lists,
maps, runes, and symbols.

© Fu Cheng 2019 77
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_3

CHAPTER 3 ESSENTIAL DART

Numbers

Numbers in Dart can be integer values no larger than 64 bits or 64-
bit double-precision floating-point number specified by the IEEE 754
standard. Types int and double represent these two types of numbers,
respectively. Type num is the supertype of int and double. Unlike primitive
types in Java, numbers in Dart are also objects. They have methods to work
with them.

In Listing 3-1, the type of x is int, while the type of y is double. The
method toRadixString() returns a string value by converting the value
to the specified radix. The method toStringAsFixed() makes sure that
the given number of fraction digits is kept in the string representation. The
static method tryParse() of double tries to parse a string as a double literal.

Listing 3-1. Numbers

var x = 10;

var y = 1.5;

assert(x.toRadixString(8) == '12');
assert(y.toStringAsFixed(2) == '1.50");
var z = double.tryParse('3.14");
assert(z == 3.14);

Strings

Dart strings are sequences of UTF-16 code units. Either single or double
quotes can be used to create strings. It doesn’t matter which quote is used.
The key point is to be consistent across the whole code base. Dart has
built-in support for string interpolation. Expressions can be embedded
into strings using the form ${expression}. Values of embedded
expressions are evaluated when strings are used. If the expression is an
identifier, then {} can be omitted. In Listing 3-2, name is an identifier, so we
can use $name in the string.

78

CHAPTER 3 ESSENTIAL DART
Listing 3-2. String interpolation

var name = 'Alex’';
assert('The length of $name is ${name.length}' == 'The length
of Alex is 4');

If you want to concatenate strings, you can simply place these string
literals next to each other without the + operator; see Listing 3-3.

Listing 3-3. String concatenation

var longString = 'This is a long'
‘long'
"long'
‘string’;

Another way to create a multi-line string is to use a triple quote with
either single or double quotes; see Listing 3-4.

Listing 3-4. Multi-line string

var longString2 =
This is also a long
long
long
string

ni o,
)

Booleans

Boolean values are represented using the type bool. bool type has only
two objects: true and false. It's worth noting that only bool values can
be used in if, while, and assert as conditions to check. JavaScript has
a broader concept of truthy and falsy values, while Dart follows a stricter
rule. For example, if ('abc') is valid in JavaScript, but not in Dart.

79

CHAPTER 3 ESSENTIAL DART

In Listing 3-5, name is an empty string. To use it in if, we need to invoke
the getter isEmpty. We also need explicit check for null and 0.

Listing 3-5. Booleans

var name = ";

if (name.isEmpty) {
print('name is emtpy');

}

var value;

assert(value == null);

var count = 5;

while(count-- != 0) {
print(count);

}

Lists and Maps

Lists and maps are commonly used collection types. In Dart, arrays are
List objects. Lists and maps can be created using literals or constructors.
It's recommended to use collection literals when possible. Listing 3-6
shows how to create lists and maps using literals and constructors.

Listing 3-6. Lists and maps

var list1 = [1, 2, 3];

var list2 = List<int>(3);

var mapl = {'a': ‘A", 'b': 'B'};
var map2 = Map<String, String>();

80

CHAPTER 3 ESSENTIAL DART

Runes

Runes are UTF-32 code points of a string. To express 32-bit Unicode

values in a string, we can use the form \uXXXX, where XXXX is the four-digit
hexadecimal value of the code point. If the code point cannot be expressed
as four-digit hexadecimal value, then {} is required to wrap those digits, for
example, \u{XXXXX}. In Listing 3-7, the string value contains two emojis.

Listing 3-7. Runes

var value = "\u{1F686} \u{1F6B4}";
print(value);

Symbols

A Symbol object represents an operator or identifier. Symbols can be
created using constructor Symbol(<name>) or symbol literal #<name>.
Symbols created with the same name are equal; see Listing 3-8. Symbols
should be used when you want to reference identifiers by name.

Listing 3-8. Symbols

assert(Symbol('a") == #a);

3-2. Using Enumerated Types
Problem

You want to have a type-safe way to declare a set of constant values.

Solution

Use enumerated type.

81

CHAPTER 3 ESSENTIAL DART

Discussion

Like other programming languages, Dart has enumerated types. To declare
an enumerated type, use the enum keyword. Each value in an enum has an
index getter to get the zero-based position of the value. Use values to get a
list of all values in an enum. Enums are usually used in switch statements.
In Listing 3-9, the enum type TrafficColor has three values. The index of
first value red is 0.

Listing 3-9. Enumerated type
enum TrafficColor { red, green, yellow }

void main() {
assert(TrafficColor.red.index == 0);
assert(TrafficColor.values.length == 3);

var color = TrafficColor.red;
switch (color) {
case TrafficColor.red:
print('stop');
break;
case TrafficColor.green:
print('go');
break;
case TrafficColor.yellow:
print('be careful');

82

CHAPTER 3 ESSENTIAL DART
3-3. Using Dynamic Type
Problem

You don’t know the type of an object or you don’t care about the type.

Solution

Use the dynamic type.

Discussion

Dart is a strong-typed language. Most of the time, we want an object to
have a defined type. However, sometimes we may not know or don’t care
about the actual type; we can use dynamic as the type. The dynamic type
is often confused with the Object type. Both Object and dynamic permit
all values. Object should be used if you want to state that all objects are
accepted. If the type is dynamic, we can use is operator to check whether
it's the desired type. The actual type can be retrieved using runtimeType.
In Listing 3-10, the actual type of value is int, then the type is changed to
String.

Listing 3-10. Use dynamic type

dynamic value = 1;

print(value.runtimeType);

value = 'test';

if (value is String) {
print('string');

}

83

CHAPTER 3 ESSENTIAL DART

3-4. Understanding Functions
Problem

You want to understand functions in Dart.

Solution

Functions in Dart are very powerful and flexible.

Discussion

Functions in Dart are objects and have the type Function. Functions

can be assigned to values, passed in function arguments, and used as
function return values. It’s very easy to create high-order functions in
Dart. A function may have zero or many parameters. Some parameters
are required, while some are optional. Required arguments come first in
the parameters list, followed by optional parameters. Optional positional
parameters are wrapped in [].

When a function has a long list of parameters, it’s hard to remember
the position and meaning of these parameters. It’s better to use named
parameters. Named parameters can be marked as required using the
@required annotation. Parameters can have default values specified
using =. If no default value is provided, the default value is null.

In Listing 3-11, the function sum() has an optional positional argument
initial with the default value 0. The function joinToString() has a
required named argument separator and two optional named arguments
prefix and suffix. The arrow syntax used in joinToString() isa
shorthand for function body with only one expression. The syntax => expr
is the same as { return expr; }.Usingarrow syntax makes code shorter
and easier to read.

84

CHAPTER 3 ESSENTIAL DART
Listing 3-11. Function parameters
import 'package:meta/meta.dart’;

int sum(List<int> list, [int initial = 0]) {
var total = initial;
list.forEach((v) => total += v);
return total;

}

String joinToString(List<String> list,
{@required String separator, String prefix =
suffix = "}) =>
"$prefix${list.join(separator)}$suffix’;

', String

void main() {
assert(sum([1, 2, 3]) == 6);
assert(sum([1, 2, 3], 10) == 16);

assert(joinToString(['a', 'b', 'c'], separator: ',') ==
'a,b,c');
assert(
joinToString(['a', 'b', 'c'], separator: '-', prefix:
"x', suffix: '?') ==
"*a-b-c?');

Sometimes you may not need a name for a function. These anonymous
functions are useful when providing callbacks. In Listing 3-12, an
anonymous function is passed to the method forEach().

Listing 3-12. Anonymous functions

var list = [1, 2, 3];
list.forEach((v) => print(v * 10));

85

CHAPTER 3 ESSENTIAL DART

3-5. Using Typedefs
Problem

You want to have an alias of a function type.

Solution

Use typedefs.

Discussion

In Dart, functions are objects. Functions are instances of the type
Function. But the actual type of a function is defined by the types of its
parameters and the type of its return value. What matters is the actual
function type when a function is used as a parameter or return value.
typedef in Dart allows us to create an alias of a function type. The type
alias can be used just like other types. In Listing 3-13, Processor<T> is an
alias of the function type which has a parameter of type T and a return type
of void. This type is used as the parameter type in the function process().

Listing 3-13. typedef
typedef Processor<T> = void Function(T value);

void process<T>(List<T> list, Processor<T> processor) {
list.forEach((item) {
print('processing $item');
processor(item);
print('processed $item');
D;
}

86

CHAPTER 3 ESSENTIAL DART

void main() {
process([1, 2, 3], print);

}

3-6. Using Cascade Operator
Problem

You want to make a sequence of operations on the same object.

Solution

Use the cascade operator (. .) in Dart.

Discussion

Dart has a special cascade operator (. .) which allows us to make a
sequence of operations on the same object. To chain operations on the
same object in other programming languages, we usually need to create a
fluent API in which each method returns the current object. The cascade
operator in Dart makes this requirement unnecessary. Methods can still
be chained even though they don’t return the current object. The cascade
operator also supports field access. In Listing 3-14, cascade operator is
used to access the fields and method in classes User and Address.

Listing 3-14. Using cascade operator

class User {
String name, email;
Address address;

void sayHi() => print('hi, $name');

}

87

CHAPTER 3 ESSENTIAL DART

class Address {
String street, suburb, zipCode;
void log() => print('Address: $street');

}
void main() {
User()
..name = 'Alex’
..email = 'alex@example.org'
..address = (Address()
..street = 'my street’
..suburb = 'my suburb'
..zipCode = '1000'
-+ 1og())
..sayHi();
}

3-7. Overriding Operators
Problem

You want to override operators in Dart.

Solution

Define overriding methods in class for operators.

Discussion

Dart has many operators. Only a subset of these operators can be
overridden. These overridable operators are <, +, |, [1,>, /7, [1=, <=,
~/, 8 7, >=, %, <K, ==, -, %, and >>. For some classes, using operators is

88

CHAPTER 3 ESSENTIAL DART

more concise than using methods. For example, the List class overrides
the + operator for list concatenation. The code [1] + [2] is very easy to
understand. In Listing 3-15, the class Rectangle overrides operators < and
> to compare instances by area.

Listing 3-15. Overriding operators

class Rectangle {
int width, height;
Rectangle(this.width, this.height);

get area => width * height;

bool operator <(Rectangle rect) => area < rect.area;
bool operator >(Rectangle rect) => area > rect.area;

}

void main() {
var recti

Rectangle(100, 100);
Rectangle(200, 150);
assert(rectl < rect2);
assert(rect2 > rect1);

var rect2

3-8. Using Constructors
Problem

You want to create new instances of Dart classes.

Solution

Use constructors.

89

CHAPTER 3 ESSENTIAL DART

Discussion

Like other programming languages, objects in Dart are created by
constructors. Usually, constructors are created by declaring functions
with the same name as their classes. Constructors can have arguments
to provide necessary values to initialize new objects. If no constructor is
declared for a class, a default constructor with no arguments is provided.
This default constructor simply invokes the no-argument constructor

in the superclass. However, if a constructor is declared, this default
constructor doesn’t exist.

A class may have multiple constructors. You can name these
constructors in the form ClassName.identifier to better clarify the
meanings.

In Listing 3-16, the class Rectangle has a regular constructor that takes
four arguments. It also has a named constructor Rectangle.fromPosition.

Listing 3-16. Constructors

class Rectangle {
final num top, left, width, height;

Rectangle(this.top, this.left, this.width, this.height);

Rectangle.fromPosition(this.top, this.left, num bottom, num
right)
: assert(right > left),
assert(bottom > top),
width = right - left,
height = bottom - top;

@override
String toString() {

90

CHAPTER 3 ESSENTIAL DART

return 'Rectangle{top: $top, left: $left, width: $width,
height: $height}';
}
}

void main(List<String> args) {

Rectangle(100, 100, 300, 200);
Rectangle.fromPosition(100, 100, 300, 200);
print(rect1);

var recti

var rect2

print(rect2);

It's common to use factories to create objects. Dart has a special
kind of factory constructors that implements this pattern. A factory
constructor doesn’t always return a new instance of a class. It may return
a cached instance, or an instance of a subtype. In Listing 3-17, the class
ExpensiveObject has a named constructor ExpensiveObject. create()
to actually create a new instance. The factory constructor only invokes
ExpensiveObject. create() when instanceisnull. When running the
code, you can see that the message “created” is only printed once.

Listing 3-17. Facto+ry constructor

class ExpensiveObject {
static ExpensiveObject instance;
ExpensiveObject. create() {
print('created’);

}

factory ExpensiveObject() {
if (_instance == null) {
_instance = ExpensiveObject. create();

}

91

CHAPTER 3 ESSENTIAL DART

return _instance;

}
}

void main() {
ExpensiveObject();
ExpensiveObject();

}

3-9. Extending a Class
Problem

You want to inherit behavior from an existing class.

Solution

Extend from the existing class to create a subclass.

Discussion

Dart is an object-oriented programming language. It provides support

for inheritance. A class can extend from a superclass using the keyword

extends. The superclass can be referred as super in the subclass.

Subclasses can override instance methods, getters, and setters of

superclasses. Overriding members should be annotated with the @

override annotation.

Abstract classes are defined using the abstract modifier. Abstract

classes cannot be instantiated. Abstract methods in abstract classes

don’t have implementations and must be implemented by non-abstract

subclasses.

92

CHAPTER 3 ESSENTIAL DART

In Listing 3-18, the class Shape is abstract with an abstract method
area(). Classes Rectangle and Circle both extend from Shape and
implement the abstract method area().

Listing 3-18. Inheritance
import 'dart:math' show pi;

abstract class Shape {
double area();

}

class Rectangle extends Shape {
double width, height;
Rectangle(this.width, this.height);

@override
double area() {
return width * height;
}
}

class Square extends Rectangle {
Square(double width) : super(width, width);
}

class Circle extends Shape {
double radius;
Circle(this.radius);

@override
double area() {
return pi * radius * radius;

}
}

93

CHAPTER 3 ESSENTIAL DART

void main() {
var rect = Rectangle(100, 50);
var square = Square(50);
var circle = Circle(50);

print(rect.area());
print(square.area());
print(circle.area());

3-10. Adding Features to a Class
Problem

You want to reuse a class’s code but are limited by single inheritance of
Dart.

Solution

Use mixins.

Discussion

Inheritance is a common way to reuse code. Dart only supports single
inheritance, that is, a class can have at most one superclass. If you want

to reuse code from multiple classes, mixins should be used. A class

can declare multiple mixins using the keyword with. A mixin is a class

that extends from Object and declares on constructors. A mixin can be
declared as a regular class using class or as a dedicated mixin using
mixin. In Listing 3-19, CardHolder and SystemUser are mixins. The class
Assistant extends from Student and has the mixin SystemUser, so we can
use the useSystem() method of Assistant instances.

94

CHAPTER 3
Listing 3-19. Mixins

class Person {
String name;

Person(this.name);

}

class Student extends Person with CardHolder {
Student(String name) : super('Student: $name') {
holder = this;
}
}

class Teacher extends Person with CardHolder {
Teacher(String name) : super('Teacher: $name') {
holder = this;
}
}

mixin CardHolder {
Person holder;

void swipeCard() {
print('${holder.name} swiped the card');
}
}

mixin SystemUser {
Person user;

void useSystem() {
print('${user.name} used the system.");
}
}

ESSENTIAL DART

95

CHAPTER 3 ESSENTIAL DART

class Assistant extends Student with SystemUser {
Assistant(String name) : super(name) {
user = this;
}
}

void main() {
var assistant = Assistant('Alex');
assistant.swipeCard();
assistant.useSystem();

}

3-11. Using Interfaces
Problem

You want to have a contract for classes to follow.

Solution

Use implicit interface of a class.

Discussion

You should be familiar with interfaces as the contract of classes. Unlike
other object-oriented programming languages, Dart has no concept

of interfaces. Every class has an implicit interface that contains all the
instance members of this class and the interfaces it implements. You can
use implements to declare that a class implements the API of another class.
In Listing 3-20, class CachedDataloader implements the implicit interface
of class Dataloader.

96

CHAPTER 3

Listing 3-20. Interfaces

class Dataloader {
void load() {
print('load data');
}
}

class CachedDataloader implements Dataloader {
@override
void load() {
print('load from cache');
}
}

void main() {
var loader = CachedDataloader();
loader.load();

}

3-12. Using Generics
Problem

ESSENTIAL DART

You want to have type safety when your code is designed to work with

different types.

Solution

Use generic classes and generic methods.

97

CHAPTER 3 ESSENTIAL DART

Discussion

Generics are not a strange concept to developers, especially for Java and
C# developers. With generics, we can add type parameters to classes and
methods. Generics are usually used in collections to create type-safe
collections. Listing 3-21 shows the usage of generic collections in Dart.
Dart generic types are reified, which means type information are available
at runtime. That’s why the type of names is List<String>.

Listing 3-21. Generic collections

var names = <String>['a', 'b', 'c'];

print(names is List<String>);

var values = <String, int>{'a': 1, 'b': 2, 'c': 3};
print(values.values.tolist());

We can use generics to create classes that deal with different types.
In Listing 3-22, Pair<F, S> is a generic class with two type parameters F
and S. Use extends to specify the upper bound of a generic type parameter.
The type parameter P in CardHolder has an upper bound of type Person,
so that CardHolder<Student> is valid.

Listing 3-22. Generic types

class Pair<F, S> {
F first;
S second;

Pair(this.first, this.second);

}

class Person {}

class Teacher extends Person {}

98

CHAPTER 3 ESSENTIAL DART
class Student extends Person {}

class CardHolder<P extends Person> {
P holder;
CardHolder(this.holder);

}

void main() {
var pair = Pair('a', 1);
print(pair.first);
var student = Student();
var cardHolder = CardHolder(student);
print(cardHolder is CardHolder<Student>);
print(cardHolder);

Generic methods can be added to regular classes. In Listing 3-23, the
regular class Calculator has two generic methods add and subtract.

Listing 3-23. Generic methods

class Calculator {
T add<T extends num>(T vi, T v2) => v1 + v2;
T subtract<T extends num>(T vi, T v2) => v1 - v2;

}

void main() {
var calculator = Calculator();
int r1 = calculator.add(1, 2);
double r2 = calculator.subtract(0.1, 0.2);
print(r1);
print(r2);

99

CHAPTER 3 ESSENTIAL DART

3-13. Using Libraries
Problem

You want to reuse libraries from Dart SDK or the community.

Solution

Use import to import libraries to use them in your app.

Discussion

When developing non-trivial Dart apps, it’s inevitable to use libraries.
These can be built-in libraries in Dart SDK or libraries contributed by the
community. To use these libraries, we need to import them with import
first. import has only one argument to specify the URI of the library.
Built-in libraries have the URI scheme dart:, for example, dart:html
and dart:convert. Community packages have the URI scheme package:
and are managed by the Dart pub tool. Listing 3-24 shows examples of

importing libraries.

Listing 3-24. Import libraries

import ‘'dart:html';
import 'package:meta/meta.dart’;

It’s possible that two libraries export the same identifiers. To avoid
conflicts, we can use as to provide prefixes for one of the libraries or both.
In Listing 3-25, both 1ib1.dart and 1ib2.dart export the class Counter.
After assigning different prefixes to these two libraries, we can use the
prefix to access the class Counter.

100

CHAPTER 3 ESSENTIAL DART

Listing 3-25. Rename libraries

import 'libi.dart’ as libi;
import 'lib2.dart' as lib2;

lib1.Counter counter;

You don’t need to import all members of a library. Use show to
explicitly include members. Use hide to explicitly exclude members.
In Listing 3-26, when importing the library dart :math, only Random
is imported; when importing the library dart:html, only Element is
excluded.

Listing 3-26. Show and hide members

import ‘'dart:math' show Random;
import 'dart:html' hide Element;

3-14. Using Exceptions
Problem

You want to deal with failures in Dart apps.

Solution

Report failures using throw. Handle exceptions using try-catch-finally.

Discussion

Code fails. It’s natural for code to report failures and handle them. Dart has
a similar exception mechanism as Java, except that all exceptions in Dart are
unchecked exceptions. Methods in Dart don’t declare exceptions they may

101

CHAPTER 3 ESSENTIAL DART

throw, so it’s not required to catch exceptions. However, uncaught exceptions
cause the isolate to suspend and may result in program termination. Proper
failure handing is also a key characteristic of robust apps.

Report Failures

We can use throw to throw exceptions. In fact, all non-null objects can
be thrown, not only types that implement types Error or Exception. It's
recommended to only throw objects of types Error and Exception.

An Error object represents a bug in the code that should not happen.
For example, if a list only contains three elements, trying to access the
fourth element causes a RangeError to be thrown. Unlike Exceptions,
Errors are not intended to be caught. When an error occurred, the safest
way is to terminate the program. Exrors carry clear information about why
they happen.

Comparing to Errors, Exceptions are designed to be caught and
handled programmatically. For example, sending HTTP requests may not
succeed, so we need to handle exceptions in the code to deal with failures.
Exceptions usually carry useful data about the failures. We should create
custom types that extend from Exception to encapsulate necessary data.

Catch Exceptions

When an exception is thrown, you can catch it to stop it from propagating,
unless you rethrow it. The goal to catch an exception is to handle it. You
shouldn’t catch an exception if you don’t want to handle it. Exceptions are
caught using try, catch, and on. If you don’t need to access the exception
object, using on is enough. With catch, you can access the exception object
and the stack trace. Use on to specify the type of exception to be caught.

When you catch an exception, you should handle it. However,
sometimes you may only want to partially handle it. In this case, you
should use rethrow to rethrow the exception. It’s a bad practice to catch an
exception but not handle it completely.

102

CHAPTER 3 ESSENTIAL DART

If you want some code to run whether or not an exception is thrown,
you can put the code in a finally clause. If no exception is thrown,
finally clause runs after the try block. If an exception is thrown, finally
clause runs after the matching catch clause.

In Listing 3-27, the function getNumber () throws a custom exception
type ValueToolLargeException. In the function main(), the exception is
caught and rethrown.

Listing 3-27. Use exceptions
import 'dart:math' show Random;
var random = Random();

class ValueToolLargeException implements Exception {
int value;
ValueToolLargeException(this.value);

@override
String toString() {
return 'ValueToolargeException{value: $value}';

}
}

int getNumber() {
var value = random.nextInt(10);
if (value » 5) {
throw ValueToolLargeException(value);

}

return value;

}

103

CHAPTER 3 ESSENTIAL DART

void main() {
try {
print(getNumber());
} on ValueToolargeException catch (e) {
print(e);
rethrow;
} finally {
print('in finally');
}
}

3-15. Summary

Learning a new programming language is not an easy task. Even though
Dart looks similar with other programming languages, there are still some
unique features in Dart. This chapter only provides a brief introduction of

important features in Dart.

104

CHAPTER 4

Widget Basics

When building Flutter apps, most of the time you are dealing with widgets.
This chapter provides basic background information about widgets in
Flutter. It also covers several basic widgets that display texts, images, icons,
buttons, and placeholders.

4-1. Understanding Widgets
Problem

You want to know how to use components in Flutter.

Solution

Widgets are everywhere in Flutter.

Discussion

If you have been involved in development of user interface, you should

be familiar with concepts like widgets or components. These concepts
represent reusable building blocks to create user interface. A good user
interface library should have a large number of high-quality and easy-to-use
components. Buttons, icons, images, menus, dialogs, and form inputs are
all examples of components. Components can be big or small. Complicated
components are usually composed of small components. You can create
your own components by following the component model. You can also

© Fu Cheng 2019 105
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_4

CHAPTER 4 WIDGET BASICS

choose to share your components to the community. A good eco-system of
components is a key factor for a user interface library to be successful.

Flutter uses widgets to describe reusable building blocks in the user
interface. Comparing to other libraries, widget in Flutter is a much broader
concept. Not only common components like buttons and form inputs are
widgets, layout constraints are also expressed as widgets in Flutter. For
example, if you want to place a widget in the center of a box, you simply
wrap the widget into a Center widget. Widgets are also used to retrieve
context data. For example, DefaultTextStyle widget gets the TextStyle
applies to un-styled Text widgets.

Widget in Flutter is an immutable description of a part of the user
interface. All fields of a widget class are final and set in the constructor. Widget
constructors only have named parameters. A widget can have one or many
widgets as the children. Widgets of a Flutter app creates a tree-like hierarchy.
The main() method of a Flutter app’s entry point file uses the runApp()
method to start the app. The only parameter of runApp () is a Widget object.
This Widget object is the root of the app’s widgets tree. Widgets are only static
configurations that describe how to configure a subtree in the hierarchy. To
actually run the app, we need a way to manage instantiation of widgets.

Flutter uses Element to represent an instantiation of a Widget ata
particular location in the tree. A Widget can be instantiated zero or many
times. The process to turn Widgets to Elements is called inflation. Widget
class has a createElement () method to inflate the widget to a concrete
instance of Element. Flutter framework is responsible for managing the
lifecycle of elements. The widget associated with an element may change
over time. The framework updates the element to use the new configuration.

When running the app, Flutter framework is responsible for rendering
elements to create a render tree, so the end user can actually see the user
interface. A render tree is composed of RenderObjects with the root of
a RenderView. If you are using Android Studio, you can actually see the
widgets tree and the render tree in Flutter Inspector view. Select View
» Tool Windows » Flutter Inspector to open the Flutter Inspector view.

106

CHAPTER 4 WIDGET BASICS

Figure 4-1 shows the widgets tree in Flutter Inspector. The top panel shows
the widgets tree, while the bottom panel shows the details of a widget.

B BasicWidgetsApp
M MaterialApp
w WidgetPage
s Scaffold
v ¢ Column
-7 H HelloWorld
¢ Center
Text
¢ Counter
R Row
Text
R RaisedButton
Text
¢ ConfigWidget
© Cantar
H HelloWorld
¢ Center
alignment: center
widthFactor: null ‘©
heightFactor: null ©
trenderObject: RenderPositionedBox#c1e69 relayoutBoundary=up2
v [T] Text
"Hello World!"
textAlign: null ©
textDirection: null ©
locale: null ©
softWrap: null D
overflow: null ©
textScaleFactor: null ©
maxLines: null ©
RichText

Figure 4-1. Widgets tree in Flutter Inspector
107

CHAPTER 4 WIDGET BASICS

Figure 4-2 shows the render tree in Flutter Inspector. The root is a
RenderView.

v 'R RenderView 24ale
¥ ‘'R RenderSemanticsAnnotations 38edb
v 'R RenderCustomPaint 250a2
v 'R RenderPointerListener 56e51
" 'R RenderAbsorbPointer 891117
¥ (R RenderSemanticsAnnotations 82fef
v R _RenderTheatre e2ad3
lva onstage: RenderStack 6b65b
» R child 1: RenderlgnorePointer 2c344
¥ (R child 2: RenderOffstage 93132
¥ 'R RenderSemanticsAnnotations db251
¥ R RenderRepaintBoundary ca8c9
¥ (R RenderFractionalTranslation c7e
v (R RenderFractionalTranslation 8
v 'R RenderDecoratedBox 85ce6
v (R RenderStack aba6b

Property Value
creator Center « HelloWorld « Column < MediaQuery « Layoutid-
parentData offset=0ffset(0.0, 0.0); flex=null; fit=null (can use size)
constraints BoxConstraints(0.0<=w<=414.0, 0.0<=h<=Infinity)
layer null
semantics node null
size Size(414.0, 17.0)
alignment center
textDirection Itr
widthFactor expand
heightFactor expand

Figure 4-2. Render tree in Flutter Inspector

4-2. Understanding BuildContext
Problem

You want to access information related to a widget in the widgets tree.

108

Solution

CHAPTER 4 WIDGET BASICS

WidgetBuilder functions have a BuildContext parameter to access

information related to a widget in the widgets tree. You can see
BuildContext in StatelessWidget.build() and State.build() methods.

Discussion

When building a widget, the location of the widget in the widgets tree may

determine its behavior, especially when it has an InheritedWidget as its

ancestor. BuildContext class provides methods to access information

related to the location; see Table 4-1.

Table 4-1. Methods of BuildContext

Name

Description

ancestorInheritedElement
ForWidgetOfExactType

ancestorRender
ObjectOfType
ancestorStateOfType

rootAncestorStateOfType

ancestorWidgetOfExactType
findRenderObject

Get the InheritedElement corresponding to
the nearest ancestor widget of the given type
of InheritedWidget.

Get the RenderObject of the nearest
ancestor RenderObjectWidget widget.

Get the State object of the nearest ancestor
StatefulWidget widget.

Get the State object of the furthest ancestor
StatefulWidget widget.

Get the nearest ancestor Widget.

Get the current RenderObject for the widget.

(continued)

109

CHAPTER 4 WIDGET BASICS

Table 4-1. (continued)

Name Description

inheritFromElement Register this BuildContext with the given
ancestor InheritedElement such that this
BuildContext is rebuilt when the ancestor’s

widget changes.
inheritFromWidgetOf Get the nearest InheritedWidget of the
ExactType given type and register this BuildContext
such that this BuildContext is rebuilt when
the widget changes.
visitAncestorElements Visit ancestor elements.
visitChildElements Visit children elements.

BuildContext is actually the interface of Element class. In
StatelessWidget.build() and State.build() methods, the
BuildContext object represents the location where the current widget is
inflated. In Listing 4-1, ancestorWidgetOfExactType() method is used to
get the ancestor widget of type Column.

Listing 4-1. Use BuildContext

class WithBuildContext extends StatelessWidget {
@override
Widget build(BuildContext context) {
Column column = context.ancestorWidgetOfExactType(Column);
return Text(column.children.length.toString());

}
}

110

CHAPTER 4 WIDGET BASICS

4-3. Understanding Stateless Widget
Problem

You want to create a widget that has no mutable state.

Solution

Extend from StatelessWidget class.

Discussion

When using a widget to describe a part of user interface, if the part can be
fully described using the configuration information of the widget itself and
the BuildContext in which it’s inflated, then this widget should extend from
StatelessWidget. When creating a StatelessWidget class, you need to
implement the build() method which accepts a BuildContext and returns
alWidget. In Listing 4-2, HelloWorld class extends from StatelessWidget
class and returns a Center widget in the build() method.

Listing 4-2. Example of StatelessWidget

class HelloWorld extends StatelessWidget {
const HelloWorld({Key key}) : super(key: key);

@override
Widget build(BuildContext context) {
return Center(
child: Text('Hello World!"),
);
}
}

111

CHAPTER 4 WIDGET BASICS

4-4. Understanding Stateful Widget
Problem

You want to create a widget that has mutable state.

Solution

Extend from StatefullWidget class.

Discussion

If a part of user interface may change dynamically, you need to extend

from StatefulWidget class. StatefulWidgets themselves are immutable
with states managed in State objects created by them. A StatefullWidget
subclass needs to implement the createState() method that returns a
State<StatefulWidget> object. When the state changes, the State object
should call setState() method to notify the framework to trigger the
update. In Listing 4-3, CounterState classis the State object of the Counter
widget. When the button is pressed, the value is updated in the setState()
method, which updates the CounterState widget to show the new value.

Listing 4-3. Example of StatefulWidget

class Counter extends StatefulWidget {
@override
_CounterState createState() => CounterState();

}

class CounterState extends State<Counter> {
int value = 0;

@override
Widget build(BuildContext context) {

112

CHAPTER 4 WIDGET BASICS

return Row(
children: <Widget>[
Text('$value'),
RaisedButton(
child: Text('+'),
onPressed: () {
setState(() {
value++;
};
}J
)J
1,
)5

4-5. Understanding Inherited Widget
Problem

You want to propagate data down the widgets tree.

Solution

Extend from InheritedWidget class.

Discussion

When building a subtree of widgets, you may need to propagate data down
the widgets tree. For example, your root widget of a subtree may define
some context data, for example, configuration data retrieved from the
server. Other widgets in the subtree may also need to access the context

113

CHAPTER 4 WIDGET BASICS

data. One possible way is to add the context data to a widget’s constructor,
then propagate the data as constructor parameter of children widgets. The
major drawback of this solution is that you need to add the constructor
parameter to all widgets in the subtree. Even though some widgets may
not actually need the data, they still need to have the data to pass to their
children widgets.

A better approach is to use InheritedWidget class. BuildContext
class has an inheritFromWidgetOfExactType() method to get the
nearest instance of a particular type of InheritedWidget. With
InheritedWidget, you can store the context data in an InheritedWiget
instance. If a widget needs to access the context data, you can use
inheritFromWidgetOfExactType() method to get the instance and access
the data. If an inherited widget changes state, it will cause its consumers to
rebuild.

In Listing 4-4, ConfigWidget class has the data config. The static
of() method gets the nearest ancestor Confighidget instance for the
config value. The method updateShouldNotify() determines when the
consumer widgets should be notified.

Listing 4-4. Example of InheritedWidget

class ConfigWidget extends Inheritedwidget {
const Confighidget({
Key key,
@required this.config,
@required Widget child,
}) : assert(config != null),
assert(child !'= null),
super(key: key, child: child);

final String config;

static String of(BuildContext context) {
final ConfigWidget configWidget =

114

CHAPTER 4 WIDGET BASICS

context.inheritFromWidgetOfExactType(Confighidget);
return configWidget?.config ?? ";

}

@override
bool updateShouldNotify(Confighidget oldWidget) {
return config != oldWidget.config;
}
}

In Listing 4-5, ConfigUserWidget class uses the ConfigWidget.of()
method to get the config value.

Listing 4-5. Use of ConfigWidget

class ConfigUserWidget extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Text('Data is ${Confighidget.of(context)}');
}
}

In Listing 4-6, ConfigWidget instance has a config value of “Hello!”
and a descendant ConfigUserlWidget instance.

Listing 4-6. Complete example

ConfigWidget(
config: 'Hello!’,
child: Center(
child: ConfigUserWidget(),
)
);

115

CHAPTER 4 WIDGET BASICS
4-6. Displaying Text
Problem

You want to display some text.

Solution

Use the Text and RichText widgets.

Discussion

Almost all apps need to display some text to the end users. Flutter provides
several classes related to text. Text and RichText are the two widgets to
display text. In fact, Text uses RichText internally. The build() method

of Text widget returns a RichText instance. The difference between

Text and RichText is that Text uses the style from the closest enclosing
DefaultTextStyle object, while RichText requires explicit style.

Text

Text has two constructors. The first constructor Text () accepts a String as
the text to display. Another constructor Text.rich() accepts a TextSpan
object to represent both text and style. The simplest form to create a Text
widget is Text('Hello world"), which displays text using the style from
the closest enclosing DefaultTextStyle object. Both Text() and Text.
rich() constructors have several named parameters to customize them;
see Table 4-2.

116

CHAPTER 4 WIDGET BASICS

Table 4-2. Named parameters of Text() and Text.rich()

Name Type Description

style TextStyle Style of the text.

textAlign TextAlign How text should be aligned horizontally.
textDirection TextDirection Direction of text.

locale Locale Locale to select font based on Unicode.
softWrap bool Whether to break text at soft line breaks.
overflow TextOverflow How to handle text overflow.
textScaleFactor double The factor to scale the text.

maxLines int The maximum number of lines. If the

semanticslLabel String

text exceeds the limit, it will be truncated
according to the strategy specified in
overflow.

Semantics label for the text.

TextAlign is an enum type with values shown in Table 4-3.

117

CHAPTER 4 WIDGET BASICS

Table 4-3. TextAlign values

Name Description

left Align text on the left edge of its container.

right Align text on the right edge of its container.

center Align text in the center of its container.

justify For lines of text end with soft line breaks, stretch these lines to fill the
width of the container; for lines of text end with hard line breaks, align
them toward the start edge.

start Align text on the leading edge of its container. The leading edge is the left
edge for left-to-right text, while it's the right edge for right-to-left text.

end Align text on the trailing edge of its container. The trailing edge is the

opposite of the leading edge.

It's recommended to always use TextAlign values start and

end instead of left and right to better handle bidirectional text.
TextDirection is an enum type with values 1tr and rtl. TextOverflow is

an enum type with values shown in Table 4-4.

118

Table 4-4. TextOverflow values

Name Description
clip Clip the overflowing text.
fade Fade the overflowing text to be transparent.

ellipsis Add an ellipsis after the overflowing text.

CHAPTER 4 WIDGET BASICS

DefaultTextStyleis an InheritedWidget that has properties style,
textAlign, softhrap, overflow, and maxLines which have the same
meaning as named parameters shown in Table 4-2. If a named parameter
is provided in the constructors Text () and Text.rich(), then the provided
value overrides the value in the nearest ancestor DefaultTextStyle object.
Listing 4-7 shows several examples of using Text widget.

Listing 4-7. Examples of Text
Text('Hello World")

Text(
'Bigger Bold Text',
style: TextStyle(fontWeight: FontWeight.bold),
textScaleFactor: 2.0,

)5

Text(
"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt',
maxLines: 1,
overflow: TextOverflow.ellipsis,

)5

TextSpan

The constructor Text.rich() takes a TextSpan object as the required
parameter. TextSpan represents an immutable span of text. TextSpan()
constructor has four named parameters; see Table 4-5. TextSpans are
organized in a hierarchy. A TextSpan object may have many TextSpan
objects as the children. Children TextSpans can override styles from their
parent.

119

CHAPTER 4 WIDGET BASICS

Table 4-5. Named parameters of TextSpan()

Name Type Description
style TextStyle Style of the text and children.
text String Text in the span.

children List<TextSpan> TextSpans as children of this span.

recognizer GestureRecognizer A gesture recognizer to receive events.

Listing 4-8 shows the example of using Text.rich(). This example
displays the sentence “The quick brown fox jumps over the lazy dog” using
different styles.

Listing 4-8. Example of Text.rich()

Text.rich(TextSpan(
style: TextStyle(
fontSize: 16,

)J
children: [
TextSpan(text: 'The quick brown '),
TextSpan(
text: 'fox',
style: TextStyle(
fontWeight: FontWeight.bold,
color: Colors.red,
)))
TextSpan(text: ' jumps over the lazy '),
TextSpan(
text: 'dog',

style: TextStyle(

120

CHAPTER 4 WIDGET BASICS

color: Colors.blue,

))s
1,
));

RichText

RichText always uses TextSpan objects to represent text and styles.
RichText() constructor has a required named parameter text of the
type TextSpan. It also has optional named parameters textAlign,
textDirection, softWrap, overflow, textScaleFactor, maxLines, and
locale. These optional named parameters have the same meaning as
Text() constructor shown in Table 4-2.

Text displayed in RichText requires explicit styling. You can use
DefaultTextStyle.of() to get the default style from the BuildContext
object. This is exactly what Text does internally. Text widget gets the
default style and merges with the style provided in the style parameter,
then creates a RichText with a TextSpan wrapping the text and merged
style. If you find out that you do need to use the default style as the base,
you should use Text directly instead of RichText. Listing 4-9 shows an
example of using RichText.

Listing 4-9. Example of RichText

RichText(
text: TextSpan(

text: 'Level 1',

style: TextStyle(color: Colors.black),

children: [

TextSpan(

text: 'Level 2',
style: TextStyle(fontWeight: FontWeight.bold),

121

CHAPTER 4 WIDGET BASICS

children: [
TextSpan(
text: 'Level 3',
style: TextStyle(color: Colors.red),

))
]J
)5
1,
))
)5

4-7. Applying Styles to Text
Problem

You want the displayed text to have different styles.

Solution

Use TextStyle to describe styles.

Discussion

TextStyle describes styles applied to text. TextStyle() constructor has
many named parameters to describe the style; see Table 4-6.

122

CHAPTER 4 WIDGET BASICS

Table 4-6. Named parameters of TextStyle()

Name Type Description

color Color Color of the text.

fontSize Double Size of font.

fontWeight FonthWeight Typeface thickness.

fontStyle FontStyle Typeface variant.

letterSpacing Double Space between each letter.

wordSpacing Double Space between each word.

textBaseline TextBaseline Common baseline to align this
text span and its parent span.

height Double Height of the text.

locale Locale Locale to select region-specific
glyphs.

foreground Paint Foreground for the text.

background Paint Background for the text.

shadows List<Shadow> Shadows painted underneath the
text.

decoration TextDecoration Decoration of the text.

decorationColor Color Color of text decorations.

decorationStyle TextDecorationStyle Style of text decorations.

debuglabel String Description of the style for
debugging.

fontFamily String Name of the font.

package String Use with fontFamily if the font

is defined in a package.

123

CHAPTER 4 WIDGET BASICS

FontWeight class defines values w100, w200, w300, w400, w500, w600,
w700, w800, and w900. FontWeight.w100 is the thinnest, while w900 is
the thickest. FontWeight.bold is an alias of FontWeight.w700, while
FontWeight.normal is an alias of FontWeight.w400. FontStyle is an enum
type with two values italic and normal. TextBaseline is an enum type
with values alphabetic and ideographic.

TextDecoration class defines different types of text decorations. You
can also use constructor TextDecoration.combine() to create a new
TextDecoration instance by combing a list of TextDecoration instances.
For example, TextDecoration.combine([TextDecoration.underline,
TextDecoration.overline]) instance draws lines underneath and above
text. Table 4-7 shows constants in TextDecoration.

Table 4-7. TextDecoration constants

Name Description

none No decoration.
underline Draw a line underneath text.
overline Draw a line above text.

lineThrough Draw a line through text.

TextDecorationStyle is an enum type with values shown in
Table 4-8. TextDecorationStyle defines the style of lines created by
TextDecoration.

124

CHAPTER 4 WIDGET BASICS

Table 4-8. TextDecorationStyle values

Name Description

solid Draw a solid line.
double Draw two lines.
dotted Draw a dotted line.
dashed Draw a dashed line.
wavy Draw a sinusoidal line.

Listing 4-10 shows an example of using TextDecoration and
TextDecorationStyle.

Listing 4-10. Example of using TextDecoration and
TextDecorationStyle

Text(
'Decoration’,
style: TextStyle(
fontlWeight: FontWeight.w900,
decoration: TextDecoration.lineThrough,
decorationStyle: TextDecorationStyle.dashed,

)5
)5

If you want to create a copy of a TextStyle instance with some
properties updated, use the copyWith() method. The apply() method
also creates a new TextStyle instance, but it allows updating some
properties using factor and delta. For example, the named parameters
fontSizeFactor and fontSizeDelta can update the font size. The updated
value of fontSize is calculated with "fontSize * fontSizeFactor +
fontSizeDelta". You can also update values of height, letterSpacing,
and wordSpacing using the same pattern. For fontWeight, only

125

CHAPTER 4 WIDGET BASICS

fontWeightDelta is supported. In Listing 4-11, the TextStyle applied to
the text has updated values of fontSize and decoration.

Listing 4-11. Update TextStyle

Text(
'Scale’,
style: DefaultTextStyle.of(context).style.apply(
fontSizeFactor: 2.0,
fontSizeDelta: 1,
decoration: TextDecoration.none,

)s
)5

4-8. Displaying Images
Problem

You want to display images loaded from network.

Solution

Use Image.network() with the image URL to load and display an image.

Discussion

If you have images hosted in your own servers or other places, you can
display them using the Image.network() constructor. Image.network ()
constructor only requires the URL of the image to load. An image widget
should be given specific dimension using the named parameters width
and height or placed in a context that sets tight layout constraints. This
is because the dimension of the image may change when the image is

126

CHAPTER 4 WIDGET BASICS

loaded. Without a strict size constraint, the image widget may affect layout
of other widgets. In Listing 4-12, the size of the image widget is specified
with named parameters width and height.

Listing 4-12. Example of Image.network()

Image.network(
"https://picsum.photos/400/300",
width: 400,
height: 300,

);

All downloaded images are cached regardless of HTTP headers. This
means that all HTTP cache control headers will be ignored. You can use
cache buster to force cached images to refresh. For example, you can add a
random string to the image URL.

If extra HTTP headers are required to load the image, you can specify
the headers parameter of type Map<String, String> to provide these
headers. A typical use case is to load protected images that require HTTP
headers for authentication.

If an image cannot cover the whole area of a box, you can use the
repeat parameter of type ImageRepeat to specify how images are repeated.
ImageRepeat is an enum type with values shown in Table 4-9. The default
value is noRepeat.

Table 4-9. ImageRepeat values

Name Description

Repeat Repeat in both x and y directions.
repeatX Repeat only in the x direction.
repeatY Repeat only in the y direction.

noRepeat No repeat. The uncovered area will be transparent.

127

CHAPTER 4 WIDGET BASICS

In Listing 4-13, the image is placed into a SizedBox which is larger than
the image. By using ImageRepeat.repeat, the box is filled with this image.

Listing 4-13. Repeated images

SizedBox(
width: 400,
height: 300,
child: Image.network(
"https://picsum.photos/300/200",
alignment: Alignment.topleft,
repeat: ImageRepeat.repeat,
))
);

4-9. Displaying Icons

Problem

You want to use icons.

Solution

Use Icon to show icons from Material Design or icon packs from
community.

Discussion

Icons are used extensively in mobile apps. Comparing to text, icons take
less screen estate to express the same semantics. Icons can be created from
font glyphs or images. The Icon widget is drawn with a font glyph. A font
glyph is described with IconData class. To create an IconData instance, the
Unicode code point of this icon in the font is required.

128

CHAPTER 4 WIDGET BASICS

Icons class has a number of predefined IconData constants for icons
in Material Design (https://material.io/tools/icons/). For example, Icons.
call is the IconData constant for the icon named “call” If the app uses
Material Design, then these icons can be used out of box. CupertinoIcons
class has a number of predefined IconData constants for iOS-style icons.

Icon() constructor has named parameters size and color to specify the
size and color of the icon, respectively. Icons are always square with width
and height both equal to size. The default value of size is 24. Listing 4-14
creates ared Icons.call icon of size 100.

Listing 4-14. Example of Icon()

Icon(
Icons.call,
size: 100,
color: Colors.red,

)5

To use the popular Font Awesome icons, you can use the package
font_awesome_flutter (https://pub.dartlang.org/packages/font_
awesome_flutter). After adding the package dependency to pubspec.
yaml file, you can import the file to use FontAwesomeIcons class. Similar
with Icons class, FontAwesomeIcons class has a number of IconData
constants for different icons in Font Awesome. Listing 4-15 creates a blue
FontAwesomeIcons.angry icon of size 80.

Listing 4-15. Use Font Awesome icon

Icon(
FontAwesomeIcons.angry,
size: 80,
color: Colors.blue,

)5

129

https://material.io/tools/icons/
https://pub.dartlang.org/packages/font_awesome_flutter
https://pub.dartlang.org/packages/font_awesome_flutter

CHAPTER 4 WIDGET BASICS

4-10. Using Buttons with Text
Problem

You want to use buttons with text.

Solution

Use button widgets FlatButton, RaisedButton, OutlineButton, and
CupertinoButton.

Discussion

Flutter has different types of buttons for Material Design and iOS. These
button widgets all have a required parameter onPressed to specify the
handler function when pressed. If the onPressed handler is null, the
button is disabled. The content of a button is specified with the parameter
child of type Widget. FlatButton, RaisedButton, and OutlineButton have
different styles and behaviors reacting to touches:

o AFlatButton has zero elevation and no visible borders.
It reacts to touches by filling with color specified by
highlightColor.

o ARaisedButton has elevation and is filled with
color. It reacts to touches by increasing elevation to
highlightElevation.

e AnOQutlineButton has borders, an initial elevation of
0.0, and transparent background. It reacts to touches
by making its background opaque with the color and
increasing its elevation to highlightElevation.

FlatButtons should be used on toolbars, in dialogs, in cards, or inline
with other content where there is enough space to make buttons’ presence

130

CHAPTER 4 WIDGET BASICS

obvious. RaisedButtons should be used where using space is not enough
to make the buttons stand out. OutlineButton is the cross between
RaisedButton and FlatButton. OutlineButtons can be used when neither
FlatButtons nor RaisedButtons are appropriate

If you prefer the iOS-style button, you can use the CupertinoButton
widget. CupertinoButton reacts to touches by fading out and in. Listing 4-16
shows examples of creating different types of buttons.

Listing 4-16. Different types of buttons

FlatButton(
child: Text('Flat'),
color: Colors.white,
textColor: Colors.grey,
highlightColor: Colors.red,
onPressed: () => {},

)5

RaisedButton(
child: Text('Raised'),
color: Colors.blue,
onPressed: () => {},

);
OutlineButton(

child: Text('Outline'),
onPressed: () => {},

)

CupertinoButton(
child: Text('Cupertino'),
color: Colors.green,
onPressed: () => {},

)5

131

CHAPTER 4 WIDGET BASICS

4-11. Using Buttons with Icons
Problem

You want to use buttons with icons.

Solution

Use IconButton widget, FlatButton.icon(), RaisedButton.icon(), and
OutlineButton.icon().

Discussion

There are two ways to create a button with an icon. If only the icon is
enough, use IconButton widget. If both the icon and text are required,
use constructors FlatButton.icon(), RaisedButton.icon(), or
OutlineButton.icon().

IconButton constructor requires the icon parameter to specify the
icon. FlatButton.icon(), RaisedButton.icon(), and OutlineButton.
icon() use the parameters icon and label to specify the icon and text,
respectively. Listing 4-17 shows examples of using IconButton() and
RaisedButton.icon().

Listing 4-17. Examples of IconButton() and RaisedButton.icon()

IconButton(
icon: Icon(Icons.map),
iconSize: 50,
tooltip: 'Map’,
onPressed: () => {},

)5

132

CHAPTER 4 WIDGET BASICS

RaisedButton.icon(
icon: Icon(Icons.save),
label: Text('Save'),
onPressed: () => [],

)5

4-12. Adding Placeholders
Problem

You want to add placeholders to represent widgets that will be added later.

Solution

Use Placeholder.

Discussion

Before implementing the interface of an app, you usually have a basic idea
about how the app looks like. You can start by breaking down the interface
into many widgets. You can use placeholders to represent unfinished
widgets during development, so you can test the layout of other widgets.
For example, if you need to create two widgets, one displays at the top,
while the other one displays at the bottom. If you choose to create the
bottom widget first and use a placeholder for the top widget, you can see
the bottom widget in its desired position.

The Placeholder() constructor takes named parameters color,
strokeWidth, fallbackWidth, and fallbackHeight. The placeholder
is drawn as a rectangle and two diagonals. The parameters color and
strokeWidth specify color and width of the lines, respectively. By default,
the placeholder fits its container. However, if the placeholder’s container
is unbounded, it uses the given fallbackWidth and fallbackHeight to

133

CHAPTER 4 WIDGET BASICS

determine the size. Both fallbackWidth and fallbackHeight have the
default value 400. 0. Listing 4-18 shows an example of Placeholder widget.

Listing 4-18. Example of Placeholder

Placeholder(
color: Colors.red,
strokeWidth: 1,
fallbackHeight: 200,
fallbackWidth: 200,

)5

4-13. Summary

Widgets are everywhere in Flutter apps. This chapter provides basic
introduction of widgets in Flutter, including StatelessWidget,
StatefulWidget, and InheritedWidget. This chapter also covers usage
of common basic widgets to display text, images, icons, buttons, and
placeholders. The next chapter will discuss layout in Flutter.

134

CHAPTER 5

Layout Widgets

Layout is always a challenging task when building user interface. When
it comes to mobile apps, layout is much more complicated considering
the large number of different screen resolutions for devices. This chapter
covers recipes related to layout in Flutter.

5-1. Understanding Layout in Flutter
Problem

You want to know how layout works in Flutter.

Solution

Layout in Flutter is implemented by a set of widgets. These layout widgets
wrap other widgets to apply different layout constraints.

Discussion

For mobile apps, the layout must be responsive to work with different
screen resolutions without writing a lot of hard-to-maintain code. Luckily,
with the evolution of layout techniques, it’s now easier to build responsive
layout. If you have experiences with web development with CSS, you

may have heard CSS Flexible Box Layout Module specification by W3C
(https://www.w3.0rg/TR/css-flexbox-1/). The flex layout model is

© Fu Cheng 2019 135
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_5

http://www.w3.org/TR/css-flexbox-1/

CHAPTER 5 LAYOUT WIDGETS

powerful because it allows developers to express what the layout should
be, instead of how to implement the actual layout. This declarative
approach shifts the heavy lifting work to the underlying framework. The
result layout code is easier to understand and maintain.

For example, if you want to place a box in the center of a container, the
old approach may require calculating the size of the box and container to
determine the position of the box. When using flex layout, the layout can
be simplified as CSS code in Listing 5-1.

Listing 5-1. CSS code to center an item

.container {
display: flex;
width: 400px;
height: 400px;
justify-content: center;
align-items: center;
border: 1px solid green;

}

.item {
width: 200px;
height: 200px;
border: 1px solid red;

}

The idea of flex layout has now been used not only in web design but also
in mobile apps. React Native uses flex layout (https://facebook.github.
io/react-native/docs/flexbox). Flutter also uses the idea of flex layout.

As discussed in Recipe 4-1, layout is implemented as widgets. You can see
widget classes like F1lex, Row, Column, and Flexible in Flutter, which have
names derived from flex layout concepts. The flex layout model in CSS is out
of the scope of this book. However, it’s still valuable to understand this W3C
specification, which can help you better understand flex layout in Flutter.

136

https://facebook.github.io/react-native/docs/flexbox
https://facebook.github.io/react-native/docs/flexbox

CHAPTER 5 LAYOUT WIDGETS

RenderObject

The layout algorithm in Flutter is responsible for determining the
dimension and position for each RenderObject instance in the render tree.
RenderObject class is very flexible to work with any coordinate system

or layout protocol. RenderObject class defines the basic layout protocol
with the layout () method. The layout() method has one required
positional parameter of type Constraints. Constraints class specifies the
layout constraints that children must obey. For a particular Constraints
instance, there may be multiple results that can satisfy it. The child is

free to use any of these results as long as it’s permissible. Sometimes, a
Constraints instance may only leave one valid result to the child. This
kind of Constraints instances are said to be tight. Tight constraints are
generally less flexible, but they offer better performance as widgets with
tight constraints don’t need to relayout.

The layout () method has a named parameter parentUsesSize to specify
whether the parent needs to use the layout information computed by the
child. If parentUsesSize is true, it means the layout of the parent depends on
the layout of the child. In this case, whenever the child needs to lay out, the
parent may also need to lay out. After the layout is done, each RenderObject
instance will have some fields set to include the layout information. The
actual stored information depends on the layout implementation. This piece
of layout information is stored in the parentData property.

By default, Flutter uses a 2D Cartesian coordinate system implemented
with the RenderBox class. RenderBox class implements the box layout
model with BoxConstraints class. In the box layout model, each
RenderBox instance is treated as a rectangle with the size specified as a
Size instance. Each box has its own coordinate system. The coordinate
of the upper left corner is (0,0), while the lower right corner has the
coordinate (width, height). RenderBox class uses BoxParentData as the
type of layout data. The BoxParentData.offset property specifies the
offset to paint the child in the parent’s coordinate system.

137

CHAPTER 5 LAYOUT WIDGETS

BoxConstraints

A BoxConstraints instance is specified by four named double parameters:
minWidth, maxWidth, minHeight, and maxHeight. The values of these must
satisfy the following rules. double.infinity is a valid value for constraints:

e 0.0 <=minWidth <=maxWidth <= double.infinity
e 0.0 <=minHeight <=maxHeight <= double.infinity

After the box layout, the size of a RenderBox instance must satisfy
constraints of the BoxConstraints instance applied to it:

o minWidth <=Size.width <=maxWidth
o minHeight <=Size.height <=maxHeight.

If the minimum constraint and the maximum constraint are the
same in an axis, then this axis is tightly constrained. For example, if the
values of minWidth and maxWidth are the same, then width is tight. A
BoxConstraints instance is said to be tight when both width and height
are tight. If the minimum constraint is 0.0 in an axis, then this axis is
loose. If the maximum constraint is not infinite in an axis, then this axis is
bounded; otherwise, this axis is unbounded.

Layout Algorithm

In the box layout model, layout is done in one pass with the render tree.

It first walks down the render tree by passing constraints. In this phase,
render objects are laid out using constraints passed by their parents. In the
second phase, it walks up the render tree by passing concrete results that
determine the size and offset of each render object.

138

CHAPTER 5 LAYOUT WIDGETS

Layout Widgets

Flutter provides a set of layout widgets for different layout requirements.
There are two categories of these widgets. The first category is for
widgets that contain a single child, which are descendant classes of
SingleChildRenderObjectWidget class. The second category is for
widgets that can contain multiple children, which are descendant classes
of MultiChildRenderObjectWidget class. Constructors of these widgets
have a similar pattern. The first named parameter is key of type Key. The
last named parameter of single child layout widget constructors is child
of type Widget, while the last named parameter of multiple children layout
widget constructor is children of type List<Widget>.

These layout widgets are subclasses of RenderObjectWidget class.
RenderObjectWidget class is used to configure RenderObjectElements.
RenderObjectElements wrap RenderObjects.

5-2. Placing Widgets in the Center
Problem

You want to place a widget in the center of another widget.

Solution

Wrap the widget with a Center widget.

Discussion

To place a widget in the center of another widget, you can simply wrap the
widget in a Center widget. This widget will be placed in the center of the

Center widget both horizontally and vertically. This Center widget will be
the child of the original parent widget. Center constructor has two named

139

CHAPTER 5 LAYOUT WIDGETS

parameters widthFactor and heightFactor to specify the size factor for
width and height, respectively. Listing 5-2 shows an example of using
Center widget.

Listing 5-2. Example of Center widget

Center(
widthFactor: 2.0,
heightFactor: 2.0,
child: Text("Center"),

)

Center widget is actually a subclass of Align widget with alignment set
of Alignment.center. The behavior of Center widget is the same as Align
widget discussed in Recipe 5-3.

5-3. Aligning Widgets
Problem

You want to align a widget in different position of its parent widget.

Solution

Wrap the widget with an Align widget.

Discussion

With Align widget, you can align a child widget in different position.
Align widget constructor has the named parameter alignment of type
AlignmentGeometry to specify the alignment. Center widget is actually
a special kind of Align widget with alignment always set to Alignment.

140

CHAPTER 5 LAYOUT WIDGETS

center. Align widget constructor also has the named parameters
widthFactor and heightFactor.

AlignmentGeometry class has two subclasses to be used in different
situations. Alignment class represents alignment in visual coordinates.
Alignment has two properties x and y to represent the position in the
rectangle of the 2D coordinate system. The properties x and y specify
the position in the horizontal and vertical direction, respectively.
Alignment (0.0, 0.0) means the center of the rectangle. A unit of 1.0
means the distance from the center to one side of the rectangle. A unit
of 2.0 means the length of the rectangle in a particular direction. For
example, the value 2.0 of x means the width of the rectangle. Positive
values of x mean positions to the right of the center, while negative values
of x mean positions to the left. The same rule also applies to values of y.
Align has several constants for commonly used positions; see Table 5-1.

Table 5-1. Alignment constants

Name Value Description

bottomCenter Alignment(0.0, 1.0) Center point of the bottom edge.
bottomLeft Alignment(-1.0, 1.0) Leftmost point of the bottom edge.

bottomRight Alignment(1.0, 1.0) Rightmost point of the bottom
edge.

center Alignment (0.0, 0.0) Center point both horizontally and
vertically.

centerLeft Alignment(-1.0, 0.0) Center point of the left edge.
centerRight Alignment(1.0, 0.0) Center point of the right edge.
topCenter Alignment (0,0, -1.0) Center point of the top edge.
topLeft Alignment(-1.0, -1.0) Leftmost point of the top edge.
topRight Alignment(1.0, -1.0) Rightmost point of the top edge.

141

CHAPTER 5 LAYOUT WIDGETS

If you want to consider text direction in alignment, you need
to use AlignmentDirectional class instead of Alignment class.
AlignmentDirectional class has the property start instead of x. The
start value grows in the same direction as the text direction. The value
of start has the same meaning of x in Alignment when the text direction
is left-to-right. If the text direction is right-to-left, the value of start is the
opposite of x in Alignment. AlignmentDirectional class also has several
constants for commonly used positions; see Table 5-2. These constants use
start and end instead of left and right to represent different directions.

Table 5-2. AlignmentDirectional constants

Name Value Description

bottomCenter AlignmentDirectional Center point of the bottom edge.

(0.0, 1.0)

bottomStart AlignmentDirectional Bottom corner on the start side.
(-1.0, 1.0)

bottomEnd AlignmentDirectional Bottom corner on the end side.
(1.0, 1.0)

center AlignmentDirectional Center point both horizontally and
(0.0, 0.0) vertically.

centerStart AlignmentDirectional Center point of the start edge.
(-1.0, 0.0)

centerEnd AlignmentDirectional Center point of the end edge.
(1.0, 0.0)

topCenter AlignmentDirectional Center point of the top edge.
(0,0, -1.0)

topStart AlignmentDirectional Top corner on the start side.
(-1.0, -1.0)

topEnd AlignmentDirectional Top corner on the end side.
(1.0, -1.0)

142

CHAPTER 5 LAYOUT WIDGETS

The resolve() method of AlignmentGeometry takes a parameter of
type TextDirection and returns an Alignment instance. You can use this
method to convert an AlignmentDirectional instance to an Alignment
instance.

The constrained passed to its child is the result of calling the
loosen() method on this widget'’s constraints object. This means the
child can choose a size not exceeding this widget. The size of the widget
itself depends on values of parameters widthFactor and heightFactor
and its constraints object. For the width, ifwidthFactor is not null or
constraints.maxWidthis double.infinity, then the width is the closest
value to childWidth * (widthFactory ?? 1.0) constrained by the
constraints. Otherwise, the width is determined by the constraints. The
same rule applies to the height.

Listing 5-3 shows an example of using Align widget.

Listing 5-3. Example of Align widget

Align(
alignment: Alignment.topleft,
child: SizedBox(
width: 200,
height: 200,
child: Center(
child: Text("TopLeft"),
))
)
)

143

CHAPTER 5 LAYOUT WIDGETS

5-4. Imposing Constraints on Widgets
Problem

You want to impose layout constraints on widgets.

Solution

Use ConstrainedBox or SizedBox.

Discussion

As discussed in Recipe 5-1, Constraints and BoxContraints instances
are usually used in the layout () method of RenderObject and RenderBox,
respectively. When building the widgets tree, you may also want to impose
layout constraints on widgets. In this case, you can use ConstrainedBox
widget. ConstrainedBox constructor has a required named parameter
constraints of type BoxConstraints to specify the constraints to impose on
the child.

SizedBox widget can be treated as a special kind of ConstrainedBox.
SizedBox has named parameters width and height which are used to
create a tight constraint using BoxConstraints.tightFor() method.
SizedBox(width: width, height: height, child: child) is the same
as ConstrainedBox(constraints: BoxConstraints.tightFor(width:
width, height: height), child: child). If you want to impose tight
constraints, then SizedBox is more convenient than ConstrainedBox.
SizedBox has other named constructors for other common use cases; see
Table 5-3.

144

CHAPTER 5 LAYOUT WIDGETS

Table 5-3. SizedBox constructors

Name Meaning Description
SizedBox. SizedBox(width: double. As large as its parent
expand() infinity, height: double. allows.

infinity)
SizedBox. SizedBox(width: 0.0, As small as its parent
shrink() height: 0.0) allows.

SizedBox. SizedBox(width: size.width; A box with the specified
fromSize() height: size.height) size.

The actual constraints applied to the child widget is the combination
of provided constraints parameter and the constraints provided by the
parent of ConstrainedBox or SizedBox. The combination is done by calling
providedContraints.enforce(parentContraints). The result constraints
respect the parent constraints and are as close as possible to the provided
constraints. The size of ConstrainedBox or SizedBox is the size of the child
widget after layout.

Listing 5-4 shows four examples of using ConstrainedBox and
SizedBox. The first example is a typical usage pattern of SizedBox. The
second example with SizedBox.shrink() causes the image not to be
displayed. The third example is a typical usage pattern of ConstrainedBox.
The last example shows how a ConstrainedBox instance respects
constraints from parent.

Listing 5-4. Examples of ConstrainedBox and SizedBox

SizedBox(
width: 100,
height: 100,
child: Text('SizedBox'),

)

145

CHAPTER 5 LAYOUT WIDGETS

SizedBox.shrink(
child: Image.network('https://picsum.photos/50"),

)

ConstrainedBox(
constraints: BoxConstraints(
maxWidth: 50,
minHeight: 50,

)5

child: Text('ConstrainedBox'),
)
ConstrainedBox(

constraints: BoxConstraints(
maxWidth: 200,

)

child: ConstrainedBox(
constraints: BoxConstraints(
maxHeight: 200,

)5
child: Image.network('https://picsum.photos/300"),

)

5-5. Imposing No Constraints on Widgets
Problem

You want to impose constraints on widgets to allow them to render at
natural size.

146

CHAPTER 5 LAYOUT WIDGETS

Solution

Use UnconstrainedBox.

Discussion

UnconstrainedBox is the opposite of ConstrainedBox in Recipe 5-4
UnconstrainedBox imposes no constraints on its child. The child can
render freely on the unlimited space provided by the UnconstrainedBox
instance. UnconstrainedBox will try to use the child widget’s size to
determine its own size by following the limitations of its own constraints.

If the child widget’s size is bigger than the maximum size of
UnconstrainedBox can provide, the child widget will be clipped.
Otherwise, the child widget is aligned based on the value of the parameter
alignment of type AlignmentGeometry. If the child overflows the parent,

a warning is displayed in debug mode. When using UnconstrainedBox,
it’s still possible to add constraints to one axis using the parameter
constrainedAxis of type Axis. Then the child is only allowed to render
unconstrained on the other axis.

In Listing 5-5, the UnconstrainedBox widget is placed in a SizedBox
widget with fixed width and height. The UnconstrainedBox widget is
constrained on the horizontal axis, which means the minimum and
maximum width are both 100px. The image’s width is 200px, so it’s scaled
down to 100px to meet the width constraint. This causes the image height
to scale down to 150px, which exceeds the maximum height 100px of
the parent SizedBox widget. When running in debug mode, you can see
warning messages that the top and bottom are overflowed by 25px.

Listing 5-5. Example of UnconstrainedBox

SizedBox(
width: 100,
height: 100,

147

CHAPTER 5 LAYOUT WIDGETS

child: UnconstrainedBox(
constrainedAxis: Axis.horizontal,
child: Image.network('https://picsum.photos/200/300"),

)s
)

5-6. Imposing Constraints on Widgets
when Ignoring Parents

Problem

You want to impose constraints no matter where a widget is placed.

Solution

Use OverflowBox.

Discussion

When imposing constraints on widgets, constraints from the parent widget
are generally respected. Respecting parent constraints makes a widget’s
layout flexible to adapt different use cases. Sometimes you may want a
widget to only respect explicitly provided constraints and ignore parent’s
constraints. In this case, you can use OverflowBox.

OverflowBox constructor has named parameters alignment, minWidth,
maxWidth, minHeight, and maxHeight. If any of the constraints related
parameter is null, the corresponding value from parent’s constraints
is used. If you provide non-null values to all four constraints related
parameters, the layout of OverflowBox’s child is completely irrelevant to
the current widget.

148

CHAPTER 5 LAYOUT WIDGETS

In Listing 5-6, the OverflowBox widget is created with non-null values
of all four constraints related parameters, so even though it’s placed inside
of a SizedBox widget, its size is always Size (200, 200).

Listing 5-6. Example of OverflowBox

SizedBox(

width: 100,

height: 100,

child: OverflowBox(
minWidth: 200,
minHeight: 200,
maxWidth: 200,
maxHeight: 200,
child: Image.network('https://picsum.photos/300"),

)

5-7. Limiting Size to Allow Child Widget
to Overflow

Problem

You want a widget to have a size and allow child widget to overflow.

Solution

Use SizedOverflowBox.

149

CHAPTER 5 LAYOUT WIDGETS

Discussion

SizedOverflowBox is created with a size. The widget’s actual size respects
its constraints and is as close as possible to the requested size. The child’s
layout only uses SizedOverflowBox widget’s constraints

In Listing 5-7, the SizedOverflowBox widget is placed in
a ConstrainedBox widget with constraints BoxConstraints.
loose(Size(100, 100)). The requested size of SizedOverflowBox
widget is Size(50, 50). The actual size of SizedOverflowBox is also
Size(50, 50).The child Image widget only uses the constraints of
SizedOverflowBox. The result is the image widget has a size of Size (100,
100), which overflows its parent.

Listing 5-7. Example of SizedOverflowBox

ConstrainedBox(
constraints: BoxConstraints.loose(Size(100, 100)),
child: SizedOverflowBox(
size: Size(50, 50),
child: Image.network('https://picsum.photos/400"),
)J

)
5-8. Limiting Widgets Size when Unbounded
Problem

You have a widget that normally matches its parent’s size, but you want it
to be used in other places where size constraints are required.

Solution

Use LimitedBox.

150

CHAPTER 5 LAYOUT WIDGETS

Discussion

Some widgets are normally designed to be as big as possible to match their
parents’ size. But these widgets need to be constrained in other places. For
example, when these widgets are added to a vertical list, the height need to
be limited. LimitedBox constructor has named parameters maxWidth and
maxHeight to specify the limitations. If a LimitedBox widget’s maximum
width is unbounded, then its child’s width is limited to maxWidth. If this
LimitedBox’s maximum height is unbounded, then its child’s height is
limited to maxHeigth.

In Listing 5-8, the maxHeight of a LimitedBox widget is set to 100, so
the child’s maximum height is 100px.

Listing 5-8. Example of LimitedBox

LimitedBox(
maxHeight: 100,
child: Image.network('https://picsum.photos/400"),

)

5-9. Scaling and Positioning Widgets
Problem

You want to scale and position a widget.

Solution

Use FittedBox with different fit mode and alignment.

151

CHAPTER 5 LAYOUT WIDGETS

Discussion

Align widget in Recipe 5-3 can position its child using different alignments.
FittedBox widget supports scaling and positioning of its child. The fit
mode is specified using the parameter fit of type BoxFit. BoxFit is an
enum type with values shown in Table 5-4.

Table 5-4. BoxFit values

Name Description

fill Fill the target box. Source's aspect ratio is ignored.

contain As large as possible to contain the source entirely in the target box.
cover As small as possible to cover the entire target box.

fitWidth Only make sure the full width of the source is shown.
fitHeight Only make sure the full height of the source is shown.

none Align the source within the target box and discard anything outside
the box.

scaleDown Align the source with the target box and scale down when necessary
to ensure the source fits in the box. If the source is shrunk, this is
the same as contain; otherwise, it is the same as none.

FittedBox is usually used when displaying images. Listing 5-9 shows
an example to demonstrate different values of BoxFit. ImageBox widget
uses a SizedBox widget to limit its size and places the image inside of a
FittedBox widget. The DecoratedBox widget creates a red border to show
the boundary of ImageBox widget.

152

CHAPTER 5

Listing 5-9. Different values of BoxFit

class FitPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Fit'),
)5
body: Center(
child: Wrap(
spacing: 20,
runSpacing: 20,
alignment: WrapAlignment.spaceAround,
children: <Widget>[
ImageBox(fit: BoxFit.fill),
ImageBox(fit: BoxFit.contain),
ImageBox(fit: BoxFit.cover),
ImageBox(fit: BoxFit.fitWidth),
ImageBox(fit: BoxFit.fitHeight),
ImageBox(fit: BoxFit.none),
ImageBox(fit: BoxFit.scaleDown),
]J
))
)5
);
}
}

class ImageBox extends StatelessWidget {
const ImageBox({
Key key,

LAYOUT WIDGETS

153

CHAPTER 5 LAYOUT WIDGETS

this.boxWidth = 150,
this.boxHeight = 170,
this.imageWidth = 200,
this.fit,

;s

final double boxWidth;
final double boxHeight;
final double imageWidth;
final BoxFit fit;

@override
Widget build(BuildContext context) {
return DecoratedBox(
decoration: BoxDecoration(border: Border.all(color:
Colors.red)),
child: SizedBox(
width: boxWidth,
height: boxHeight,
child: FittedBox(
fit: fit,
child: SizedBox(
width: imageWidth,
height: imageWidth,
child: Image.network('https://dummyimage.
com/${imageWidth.toInt()}"
"&text=${fit.toString().substring(7)}"),
))
)J
)5
);

154

CHAPTERS5 LAYOUT WIDGETS

Figure 5-1 shows the screenshot of code in Listing 5-9. Text in an image
shows the BoxFit value used in this ImageBox widget.

Figure 5-1. Different values of BoxFit
155

CHAPTER 5 LAYOUT WIDGETS

5-10. Rotating Widgets
Problem

You want to rotate a widget.

Solution

Use RotatedBox.

Discussion

RotatedBox widget rotates its child before layout. Rotation is specified by

an int type of clockwise quarter turns with quarterTurns parameter. The

value 1 of quarterTurns parameter means rotating 90 degrees clockwise.
In Listing 5-10, the Text widget is rotated one quarter turn.

Listing 5-10. Example of RotatedWidget

RotatedBox(
quarterTurns: 1,
child: Text(

'Hello World',
textScaleFactor: 2,

)
)

5-11. Adding Padding when Displaying
Widgets

Problem

You want to add padding around a widget.

156

CHAPTER 5 LAYOUT WIDGETS

Solution

Use Padding.

Discussion

Padding widget creates empty space around its child. The layout
constraints passed to its child are the widget’s constraints after shrinking
by the padding, which causes the child to lay out at a smaller size.

The padding is specified in the required padding parameter of type
EdgeInsetsGeometry.

Similar with AlignmentGeometry, EdgeInsetsGeometry has two
subclasses EdgeInsets and EdgeInsetsDirectional. EdgeInsets class
expresses offsets in visual coordinates. Offsets values are specified for left,
right, top, and bottom edges. Table 5-5 shows constructors of EdgeInsets
class.

Table 5-5. Edgelnsets constructors

Name Description

EdgeInsets.all() All the offsets have the given value.

EdgeInsets. Specify values of offsets for left, top, right, and bottom

fromLTRB() edges.

EdgeInsets.only() It has named parameters left, top, right, and bottom
with default value of 0.0.

EdgeInsets. It has named parameters vertical and horizontal to

symmetric() create symmetrical offsets.

157

CHAPTER 5 LAYOUT WIDGETS

To consider text direction, EdgeInsetsDirectional class should be
used instead of EdgeInsets. EdgeInsetsDirectional class uses start and
end instead of 1left and right. It has EdgeInsetsDirectional.fromSTEB()
constructor to create insets from offsets of start, top, end, and bottom. The
EdgeInsetsDirectional.only() constructor is similar with EdgeInsets.

only().
Listing 5-11 shows an example of Padding widget.

Listing 5-11. Example of Padding

Padding(
padding: EdgeInsets.all(20),
child: Image.network('https://picsum.photos/200"),

)

5-12. Sizing Widgets to Aspect Ratio
Problem

You want to size widgets to maintain a specific aspect ratio.

Solution

Use AspectRatio.

Discussion

AspectRatio constructor has the required parameter aspectRatio to

specify the aspect ratio value of width/height. For example, a 4:3 aspect
ratio uses the value of 4.0/3.0. AspectRatio widget tries to find the best
size to maintain the aspect ratio while respecting its layout constraints.

158

CHAPTER 5 LAYOUT WIDGETS

The process starts from setting the width to the maximum width of the
constraints. If the maximum width is finite, then the height is calculated by
width / aspectRatio. Otherwise, the height is set to the maximum height
of the constraints and width is set to height * aspectRatio. There may
be extra steps to make sure the result width and height meet the layout
constraints. For example, if the height is less than the minimum height
of the constraints, then height is set to this minimum value and width
is calculated based on the height and aspect ratio. The general rule is to
check width before height and maximum value before minimum value.
The final size may not meet the ratio requirement, but it must meet the
layout constraints.

In Listing 5-12, AspectRatio widget is placed in a ConstrainedBox with
aloose constraints of Size (200, 200). The aspect ratio is 4.0/3.0, so the
height is calculated based on 200 / (4.0 / 3.0) = 150.0. The result size
of ApsectRatiois Size(200.0, 150.0).

Listing 5-12. Example of AspectRatio

ConstrainedBox(
constraints: BoxConstraints.loose(Size(200, 200)),
child: AspectRatio(
aspectRatio: 4.0 / 3.0,
child: Image.network('https://picsum.photos/400/300"),
))
)

159

CHAPTER 5 LAYOUT WIDGETS

5-13. Transforming Widgets
Problem

You want to apply a transformation on a widget.

Solution

Use Transform.

Discussion

Transform widget can apply a transformation on its child before painting
it. Transformations are expressed using Matrix4 instances. Transform
constructor has named parameters shown in Table 5-6.

Table 5-6. Named parameters of Transform

Name Type Description

transform Matrix4 Matrix to transform the child.

origin Offset Origin of the coordinate system
to apply the transform.

alignment AlignmentGeometry Alignment of the origin.

transformHitTests bool Should the transform be applied

when performing hit tests.

Transform class has other constructors to create common

transformations:

o Tranform.rotate() - Transform the child by rotating
specified angle.

160

CHAPTER 5 LAYOUT WIDGETS

o Transform.scale() - Transform the child by scaling
uniformly with specified scale factor.

e Transform.translate() - Transform the child by
translating specified offset.

Listing 5-13 shows examples of using Transform’s named constructors.

Listing 5-13. Examples of Transform

Transform.rotate(
angle: pi / 4.0,
origin: Offset(10, 10),
child: Text('Hello World'),
)

Transform.translate(
offset: Offset(50, 50),
child: Text('Hello World'),

)

5-14. Controlling Different Layout Aspects
on a Widget

Problem

You want to define different layout aspects for a widget.

Solution

Use Container.

161

CHAPTER 5 LAYOUT WIDGETS

Discussion

Flutter has many widgets to control different aspects of layout. For example,
SizedBox widget controls the size, while Align widget controls the alignment.
If you want to control different layout aspects on the same widget, you can
wrap these widgets in a nested way. Actually, Flutter provides a Container
widget to make it easier to define different layout aspects.

Table 5-7 shows the named parameters of Container constructor.
You cannot provide non-null values to both color and decoration,
because color is just a shorthand to create decoration with value
BoxDecoration(color: color).Ifwidth or height is not null, their values
are used to tighten the constraints.

Table 5-7. Named parameters of Container

Name Type Description

alignment AlignmentGeometry Alignment of the child.

padding EdgeInsetsGeometry Empty space inside the decoration.
color Color Background color.

decoration Decoration Decoration to paint behind the child.
foreground Decoration Decoration to paint in front of the child.
Decoration

width double Width of the child.

height double Height of the child.

constraints BoxConstraints Additional constraints.

margin EdgeInsetsGeometry Empty space to surround the decoration.
transform Matrix4 Transformation applied to the container.

Container is a composition of different widgets based on the values of
parameters. Listing 5-14 shows the nesting structure of different widgets

162

CHAPTER 5 LAYOUT WIDGETS

used by Container and the parameters these widgets may use. If the value
of a parameter is null, then the corresponding widget may not exist.

Listing 5-14. Structure of Container

Transform (transform)
- Padding (margin)
- ConstrainedBox (constraints, width, height)
- DecoratedBox (foregroundDecoration)
- DecoratedBox (decoration, color)
- Padding (padding, decoration)
- Align (alignment)

- child

Listing 5-15 shows an example of Container widget that uses all
named parameters.

Listing 5-15. Example of Container

Container(
alignment: Alignment.bottomRight,
padding: EdgeInsets.all(16),
color: Colors.red.shade100,
foregroundDecoration: BoxDecoration(
image: DecorationImage(
image: NetworkImage('https://picsum.photos/100"),

)s

)5
width: 300,

height: 300,

constraints: BoxConstraints.loose(Size(400, 400)),
margin: EdgeInsets.all(32),

transform: Matrix4.rotationz(0.1),

child: Text(

163

CHAPTER 5 LAYOUT WIDGETS

'"Hello World',
textScaleFactor: 3,

)s

Figure 5-2 shows the structure of the Container widget in Listing 5-15.
You can see clearly how these widgets are nested.

Lv 22 Transform
{+render0bject: RenderTransform#e938a relayoutBoundary=up1
v @ Padding
l padding: Edgelnsets.all(32.0)
+renderObject: RenderPadding#8f9d4 relayoutBoundary=up2
v & ConstrainedBox
BoxConstraints(w=300.0, h=300.0)
+renderObject: RenderConstrainedBox#c8e51 relayoutBoundary=up3
v 52 DecoratedBox
+fg: BoxDecoration(image: Decorationimage(Networkimage("https://picsum.photosf100",
“+renderObject: RenderDecoratedBox#fae30
v 22 DecoratedBox
+bg: BoxDecoration(color: Color(Oxffffcdd2))
“+renderObject: RenderDecoratedBox#daed0
v @ Padding
padding: Edgelnsets.all(16.0)
“+renderObject: RenderPadding#672be
v A Align
alignment: bottomRight
+renderObject: RenderPositionedBox#d4a88
> [T] Text

Figure 5-2. Structure of Container

5-15. Implementing Flex Box Layout
Problem

You have multiple widgets to lay out, and you want them to be able to take
extra space.

Solution

Use Flex, Column, Row, Flexible, and Expanded.

164

CHAPTER 5 LAYOUT WIDGETS

Discussion

To lay out multiple widgets using the flex box model, you can use a set

of widgets provided by Flutter, including Flex, Column, Row, Flexible,
Expanded, and Spacer. In fact, only Flex and Flexible widgets are
important to understand. Flex widget is used as the layout container, while
Flexible widget is used to wrap children widgets inside the container. Flex
widget displays its children in one-dimension array. It supports layout of
children in two directions, horizontal and vertical. Row and Column are
subclasses of Flex that only places children in the horizontal and vertical
direction, respectively. Flexible widget of a Flex container can control how
a child flexes to take extra space. Children of Flex widget can be flexible or
not. If you want a child to be flexible, you can simply wrap it in a Flexible
widget.

Same as CSS flex box layout, Flex widget uses two axes for layout. The
axis where children are placed along is the main axis. The other axis is the
cross axis. The main axis is configured using the direction parameter of
type Axis. If the value is Axis.horizontal, then the main axis is horizontal
axis, while the cross axis is vertical axis. If the value is Axis.vertical, then the
main axis is vertical axis, while the cross axis is horizontal axis. Row widget
always uses horizontal axis as the main axis, and Column widget always
uses vertical axis as the main axis. If the main axis is known, then Row or
Column widget should be used instead of Flex widget.

Flex Box Layout Algorithm

Layout of Flex children is complicated and done in multiple steps. The first
step is to lay out each child with a null or zero flex factor. These are non-
flexible children. The constraints used to lay out these children depend

on the value of crossAxisAlignment. If the value of crossAxisAlignment

is CrossAxisAlignment.stretch, then the constraints will be tight cross-

axis constraints of the maximum size on the cross axis. Otherwise,

165

CHAPTER 5 LAYOUT WIDGETS

the constraints only set the maximum value for the cross axis. For
example, if the direction is Axis.horizontal and crossAxisAlignment is
CrossAxisAlignment.stretch, then the constraints for these non-flexible
children set both minHeight and maxHeight to maxHeight of the Flex’s
constraints. This makes these children take all space on the cross axis.
During the first step, the total allocated size for these children and the
maximum value of cross-axis size are recorded.

The second step is to lay out each child with a flex factor. These are
flexible children. From the first step, the allocated size of main axis is
known. The free space can be calculated based on the max size and
allocated size of main axis. The free space is distributed among all flexible
children based on the flex factor. A child with a flex factor of 2.0 will receive
twice the amount of free space as a child with a flex factor of 1.0. Suppose
there are three children with flex factors 1.0, 2.0, and 3.0, if the free space
is 120px, then these children will receive space of 20px, 40px, and 60px,
respectively. The calculated value based on flex factor for each child will
be the maximum constraints on the main axis. The minimum constraints
on the main axis depends on the value of FlexFit for the child. If fit value
is FlexFit.tight, then the minimum value is the same as the maximum,
which creates tight constraints on the main axis. If fit value is FlexFit.loose,
then the minimum value is 0.0, which creates loose constraints on the
main axis. The constraints on the cross axis are the same as Flex widget’s
constraints. The final constraints are used to lay out these flex children.

The third step is to determine the extent of main and cross axis. If the
value of mainAxisSize is MainAxisSize.max, then the main-axis extent is
the maximum constraints of current Flex widget. Otherwise, the main-axis
extent is the allocated size for all children. The extent of cross axis is the
maximum value of cross-axis constraints of all children.

The last step is to determine the position of each child based on the
value of mainAxisAlignment and crossAxisAlignment.

Table 5-8 shows values of the enum MainAxisAlignment.

166

CHAPTER 5 LAYOUT WIDGETS

Table 5-8. MainAxisAlignment values

Name Description

start Place the children close to the start of the main axis. The start
position is determined by TextDirection for horizontal direction
and VerticalDirection for vertical direction.

end Place the children close to the end of the main axis. The end
position is determined using the same way as start.

center Place the children close to the middle.

spaceBetween Distribute the free space evenly between the children.

spaceAround Distribute the free space evenly between the children with half

of the space before and after the first and last child.

spaceEvenly Distribute the free space evenly between the children including

before and after the first and last child.

Table 5-9 shows values of the enum CrossAxisAlignment.

Table 5-9. CrossAxisAlignment values

Name Description

start Place the children with start edge aligned with the start side of
the cross axis. The start position is determined by TextDirection for
horizontal direction and VerticalDirection for vertical direction.

end Place the children with end edge aligned with the end side of the cross
axis. The end position is determined using the same way as start.

center Place the children with center aligned with the middle of the cross
axis.

stretch Require the children to fill the cross axis.

baseline Match baselines of children on the cross axis.

167

CHAPTER 5 LAYOUT WIDGETS

Flexible

Flexible has the flex parameter to specify the flex factor and fit parameter
to specify the BoxFit value. The default value of flex parameter is 1, while
the default value of fit is BoxFit.loose. Expanded is a subclass of Flexible
with fit parameter set to BoxFit.tight.

In Listing 5-16, Column widget is placed in a LimitedBox widget to
limit its height. All children of Column widget are non-flexible.

Listing 5-16. Flex widget with non-flexible children

LimitedBox(
maxHeight: 320,
child: Column(
crossAxisAlignment: CrossAxisAlignment.end,
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[
Image.network("https://picsum.photos/50"),
Image.network("https://picsum.photos/70"),
Image.network("https://picsum.photos/90"),

1,
)

In Listing 5-17, Column widget has both flexible and non-flexible
children. Flexible widgets can be created by wrapping with Flexible or
Expanded widgets.

Listing 5-17. Flex widget with flexible and non-flexible children

LimitedBox(
maxHeight: 300,
child: Column(
mainAxisAlignment: MainAxisAlignment.spaceBetween,

168

CHAPTER 5 LAYOUT WIDGETS

children: <Widget>[
Flexible(
child: Image.network('https://picsum.photos/50"),

)
Image.network("https://picsum.photos/40"),

Expanded(
child: Image.network('https://picsum.photos/50"),

)5
Expanded(

flex: 2,
child: Image.network('https://picsum.photos/50"),

)s
)

5-16. Displaying Overlapping Widgets
Problem

You want to lay out widgets that may overlap with each other.

Solution

Use Stack or IndexedStack.

Discussion

Children of Stack widget can be positioned or non-positioned. Positioned
children are wrapped in a Positioned widget with at least one non-null
property. Size of a Stack widget is determined by all the non-positioned
children. The layout process has two phases.

169

CHAPTER 5 LAYOUT WIDGETS

The first phase is to lay out all non-positioned children. The
constraints used for non-positioned children depend on the value of fit
property of type StackFit:

o StackFit.loose - Loose constraints created by
constraints.loosen()

o StackFilt.expand - Tight constraints created by
BoxConstraints.tight(constraints.biggest)

o StackFilt.passthrough - The same constraints as Stack
widget

Size of the Stack widget is determined by the maximum size of all non-
positioned children.

In the second phase, all non-positioned children are positioned
according to the alignment property. The constraints used for positioned
children are determined by the size of Stack widget and their properties.
Positioned widget has six properties: left, top, right, bottom, width, and
height. Properties left, right, and width are used to determine the tight
width constraint. Properties top, bottom, and height are used to determine
the tight height constraint. For example, if both left and right values are not
null, the tight width constraint is widthOfStack - right - left. The positioned
child is then positioned based on the left, right, top, and bottom values in
two axes. If all these values are null, it’s positioned based on the alignment.

Children of Stack are painted in the order with the first child being
at the bottom. The order in the children array determines how children
overlap with each other.

IndexedStack class is a subclass of Stack. An IndexedStack instance
only shows a single child from a list of children. IndexedStack constructor
not only has the same parameters as Stack constructor but also includes
a parameter index of type int to specify the index of child to display. If
the value of parameter index is null, then nothing will be displayed. The
layout of IndexedStack is the same as Stack. IndexedStack class simply has

170

CHAPTER 5 LAYOUT WIDGETS

a different way to paint itself. This means even though only one child is
displayed, all the children still need to lay out the same way as Stack.
Listing 5-18 shows an example of Stack widget with positioned child.

Listing 5-18. Example of Stack

Stack(
children: <Widget>[
Image.network("https://picsum.photos/200"),
Image.network("https://picsum.photos/100"),
Positioned(
right: o,
bottom: 0,
child: Image.network('https://picsum.photos/150"),
)5
]J
)

5-17. Displaying Widgets in Multiple Runs
Problem

You want to display widgets in multiple horizontal or vertical runs.

Solution

Use Wrap.

Problem

Flex widget doesn’t allow size of children to exceed the size of the main
axis. Wrap widget creates new runs; there is no enough space to fit the
children. Table 5-10 shows named parameters of Wrap constructor.

171

LAYOUT WIDGETS

CHAPTER 5

“usJpiiyg I <393pIM>3ST USIpPTTYd

"[[eo1UaA uaJp|Iyd 1o Ae| 0] J8pJQ UMOP'UOROAIIQ[RIIUSA UOTIDSITQTEITIISA UOTIISITQTEITIISIA

‘A|[e1uoziioy uaJp|iyo 1no Aej 01 JapliQ UOTJ}I3ITOIX3L UOT1D9IT(OIX1

"SIXe $S0.9 yels

8y} Ul UnJ & UIyUM uaJp[iya jo Juswublly uswubiyssoigdesyy JuswudtTyssoxdderim JUSWUSTTYSIXYSSOID

"SIXe $S019 8U} Ul SunJ usamiaq aoeds 00 a1qgnoq dutoedsuni

"SIXe $S049 9} Ul sunJ jo Juswubiy pelsuawubiydespm juswudtTydey JuBwudTTYUNI
"SIXB

UIBW U] Ul UNJ B Ul UBJP|IY2 usamiaq aoedg 00 319noq dutoeds
"SIXe Ulew

U} Ul UnJ B UIy}IM uaJpiyo jo Juawubily peisuawubiydelp juswudtTydeiy juswudtte

"SIXe UIBW U} Jo uonaaliqg [BJUOZLIOY SIXY STXY UOT3D9ITp

uonduasag anjena Jnejaq anjep awep

dvip Jo sia10uuvivd pawvN QI-S 319V,

172

CHAPTER 5 LAYOUT WIDGETS

WrapAlignment enum has the same values as MainAxisAlignment.
WrapCrossAlignment enum only has values start, end, and center.

Listing 5-19 shows an example of Wrap widget by wrapping ten Image
widgets.

Listing 5-19. Example of Wrap

Wrap(
spacing: 10,
runSpacing: 5,
crossAxisAlignment: WrapCrossAlignment.center,
children: List.generate(
10,
(index) => Image.network('https://picsum.photos/${50 +
index * 10}"),
))
)

5-18. Creating Custom Single Child Layout
Problem

You want to create a custom layout for a single child.

Solution

Use CustomSingleChildLayout.

Discussion

If those built-in layout widgets for a single child cannot meet
your requirement, you can create a custom layout using
CustomSingleChildLayout. CustomSingleChildLayout widget simply

173

CHAPTER 5 LAYOUT WIDGETS

delegates the layout to a SingleChildLayoutDelegate instance. You need
to create your own subclass of SingleChildLayoutDelegate to implement
methods shown in Table 5-11.

Table 5-11. Methods of SingleChildLayoutDelegate

Name Description
getConstraintsForChild Get the constraints for the child.
(BoxConstraints constraints)

getPositionForChild(Size Get the position of the child based on the
size, Size childSize) size of this widget and child.
getSize(BoxConstraints Get the size of this widget.
constraints)

shouldRelayout() Should relayout.

The size of this widget is the result of the size returned by delegate’s
getSize() method after applying the constraints. Layout of child is done
using the constraints returned by delegate’s getConstraintsForChild()
method. Finally the position of child is updated with the value returned by
delegate’s getPositionForChild() method.

In Listing 5-20, FixedPositionLayoutDelegate class overrides getSize()
method to provide the size of the parent widget. It also overrides
getPositionForChild() methods to provide the position of the child. The
getConstraintsForChild() method is also overridden to return tighten
constraints.

Listing 5-20. Custom single child layout delegate

class FixedPositionLayoutDelegate extends SingleChildLayout
Delegate {
@override

174

CHAPTER 5 LAYOUT WIDGETS

bool shouldRelayout(SingleChildLayoutDelegate oldDelegate) {
return false;

}

@override
Size getSize(BoxConstraints constraints) {
return constraints.constrain(Size(300, 300));

}

@override
BoxConstraints getConstraintsForChild(BoxConstraints
constraints) {

return constraints.tighten(width: 300, height: 300);

}

@override
Offset getPositionForChild(Size size, Size childSize) {
return Offset(50, 50);

}
}

Listing 5-21 shows how to use FixedPositionLayoutDelegate.

Listing 5-21. Example of FixedPositionLayoutDelegate

CustomSingleChildLayout(
delegate: FixedPositionlLayoutDelegate(),
child: Image.network('https://picsum.photos/100"),

)

175

CHAPTER 5 LAYOUT WIDGETS

5-19. Creating Custom Multiple Children
Layout

Problem

You want to create a custom layout for multiple children.

Solution

Use CustomMultiChildLayout and MultiChildLayoutDelegate.

Discussion

If those built-in widgets for multiple children cannot meet

your requirement, you can create a custom layout using
CustomMultiChildLayout. Similar to CustomSingleChildLayout,
CustomMultiChildLayout delegates the layout logic to

a MultiChildLayoutDelegate instance. All children of
CustomMultiChildLayout must be wrapped in a Layoutld widget to
provide unique ids for them. Of all the methods shown in Table 5-12,
performLayout() and shouldRelayout() methods must be implemented.
All other methods have default implementation. In the implementation of
performLayout() method, the layoutChild() method must be called exactly
once for each child.

176

CHAPTER 5 LAYOUT WIDGETS

Table 5-12. Methods of MultiChildLayoutDelegate

Name Description

hasChild(Object childId) Check if a child with the given id exists.

layoutChild(Object childId, Layout the child with the provided
BoxConstraints constraints) constraints.

positionChild(Object childId, Position the child with the given offset.
Offset offset)

getSize(BoxConstraints Get the size of this widget.
constraints)

performLayout(Size size) The actual layout logic.
shouldRelayout() Should relayout.

Listing 5-22 shows a custom multiple children layout delegate. This
delegate uses increasing int values as the layout id. Layout ids of children
must start from 0. In the performLayout() method, layoutChild() method
is called on each child, starting with the first child with loose constraints,
which allows the first child to take the natural size. The actual size of the
first child is recorded. Then positionChild() method is called with Offset.
zero to place the first child at the top left corner. After the first child,
layoutChild() and positionChild() methods are called on all the other
children with increasing size and position offsets, respectively.

Listing 5-22. Custom multiple children layout delegate

class GrowingSizelayoutDelegate extends MultiChildLayout
Delegate {
@override
void performLayout(Size size) {
int index = 0;

177

CHAPTER 5 LAYOUT WIDGETS

Size childSize = layoutChild(index, BoxConstraints.
loose(size));

Offset offset = Offset.zero;

positionChild(index, offset);

index++;

while (hasChild(index)) {
double sizeFactor = 1.0 + index * 0.1;
double offsetFactor = index * 10.0;
childSize = layoutChild(
index,
BoxConstraints.tight(Size(
childSize.width * sizeFactor, childSize.height *
sizeFactor)));
offset = offset.translate(offsetFactor, offsetFactor);
positionChild(index, offset);
index++;
}
}

@override
bool shouldRelayout(MultiChildLayoutDelegate oldDelegate) {
return false;

}

@override
Size getSize(BoxConstraints constraints) =>
constraints.constrain(Size(400, 400));

Listing 5-23 shows the usage of GrowingSizeLayoutDelegate. The
children of CustomMultiChildLayout are six images nested in SizedBox.
The wrapping Layoutld widget is required to pass the layout id to the
delegate.

178

CHAPTER 5 LAYOUT WIDGETS

Listing 5-23. Example of GrowingSizeLayoutDelegate

CustomMultiChildLayout(
delegate: GrowingSizelayoutDelegate(),
children: List.generate(
6,
(index) => LayoutId(
id: index,
child: DecoratedBox(
decoration:
BoxDecoration(border: Border.all(color: Colors.
red)),
child: SizedBox(
width: 70,
height: 70,
child: Image.network(
"https://dummyimage.com/${50 + index * 10}'),
))
))
))
)J
)

Figure 5-3 shows the result of using GrowingSizeLayoutDelegate.

179

CHAPTER 5 LAYOUT WIDGETS

B |?t|x7n

50 x 80

Q0= 90

100 x 100

Figure 5-3. Result of using GrowingSizeLayoutDelegate

5-20. Summary

With the layout widgets in Flutter, it’s easy to satisfy common layout
requirements in build Flutter apps. This chapter covers many layout
widgets for single child and multiple children. In the next chapter, we'll
discuss form widgets.

180

CHAPTER 6

Form Widgets

Form controls are important in mobile apps to interact with the user. Flutter
provides a set of form widgets for Material Design and iOS style. These form
widgets generally have no internal state. Their appearance and behavior
are purely defined by constructor parameters. With state maintained in
ancestor widgets, form widgets are re-rendered to reflect to state changes.
This chapter covers recipes related to basic usage of form widgets.

6-1. Collecting Text Inputs
Problem

You want to collect text inputs.

Solution

Use TextField for Material Design and CupertinoTextField for iOS style.

Discussion

To collect user inputs in Flutter apps, you can use TextField widget for
Material Design or CupertinoTextField widget for iOS style. Both widgets
have similar usage pattern and behavior. In fact, both widgets wrap the
same EditableText which provides the basic text input capability with
support for scrolling, selection, and cursor movement. EditableText is a

© Fu Cheng 2019 181
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_6

CHAPTER6 FORM WIDGETS

highly customizable widget with many named parameters. This recipe
focuses on how to set the initial value of a TextField or CupertinoTextField
widget and get the text from it.

The text of an EditableText widget is controlled by a
TextEditingController instance. You can use the controller parameter to
set a TextEditingController instance when creating a new EditableText
widget. The controller maintains a bidirectional data binding with the
corresponding EditableText widget. The controller has a text property
to track the current editing text and a selection property of type
TextSelection to track the currently selected text. Whenever the text
in a EditableText widget is modified or selected by user, the text and
selection properties of the associated TextEditingController instance
will be updated. If you modify the text or selection properties of the
TextEditingController instance, the EditableText widget will update itself.
TextEditingController class is a subclass of ValueNotifier<TextEditingVa
lue>, so you can add listeners to the controller to get notifications when
the text or selection changes. When creating a new TextEditingController
instance, you can pass some text with the text parameter, which becomes
the initial text of the corresponding EditableText widget.

Let’s see three different ways to get the text from EditableText widgets.

Using TextEditingController

The first way is using TextEditingController. The ReverseText widget in
Listing 6-1 is used to reverse an input string. The TextEditingController
instance is created with initial text “<input>". When the button is pressed,
the _value is updated to the text retrieved from the controller. The reversed
string is displayed.

182

CHAPTER6 FORM WIDGETS

Listing 6-1. Use TextEditingController to get text

class ReverseText extends StatefulWidget {
@override
_ReverseTextState createState() => ReverseTextState();

}

class ReverseTextState extends State<ReverseText> {
final TextEditingController _controller =
TextEditingController(
text: "<input>",
)5

String _value;

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Row (
children: <Widget>[
Expanded (
child: TextField(
controller: controller,
)J

)5
RaisedButton(

child: Text('Go"),
onPressed: () {
this.setState(() {
_value = controller.text;
1;
})

183

CHAPTER6 FORM WIDGETS

)J
])
)J
Text((_value ?? "). split(").reversed.join()),
1,
)5
}
}

Figure 6-1 shows the screenshot of code in Listing 6-1.

Hello World Go

dirow olleH
Figure 6-1. Use TextEditingController

Using Listeners of TextEditingController

A TextEditingController instance is also an instance of ValueNotifier<Te
xtEditingValue>, so you can add listeners to it and react to notifications.
In Listing 6-2, the listener function _handleTextChanged calls setState()
function to update the state when receiving change notifications. The
listener is added in the initState() function and removed in the dispose()
function, which makes sure resource is properly cleaned up.

Listing 6-2. Use TextEditingController listener

class ReverseTextWithListener extends StatefulWidget {
@override
_ReverseTextWithListenerState createState() =>
_ReverseTextWithListenerState();

184

CHAPTER6 FORM WIDGETS

class ReverseTextWithlListenerState extends
State<ReverseTextWithListener> {
TextEditingController controller;
String _value;

@override
void initState() {
super.initState();
_controller = TextEditingController(
text: "<input>",
)5
_controller.addListener(_handleTextChanged);

}

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[

TextField(
controller: controller,
))
Text((_value ?? "). split(").reversed.join()),
]’
)5
}
@override

void dispose() {
_controller.removelistener(_handleTextChanged);
super.dispose();

}

185

CHAPTER6 FORM WIDGETS

void _handleTextChanged() {
this.setState(() {
this. value = controller.text;
1;
}
}

Figure 6-2 shows the screenshot of code in Listing 6-2.

Hello World

diroW olleH

Figure 6-2. Use TextEditingController listener

Using Callbacks

The last way to get text from EditableText widgets is using the callbacks.
There are three types of callbacks related to text editing; see Table 6-1.

Table 6-1. EditableText callbacks

Name Type Description

onChanged ValueChanged<String> Called when text changed.

onkEditingComplete VoidCallback Called when user submits
the text.

onSubmitted ValueChanged<String> Called when user finishes
editing the text.

If you want to actively watch for text changes, you should use
onChanged callback. When user finishes editing the text, both
onEditingComplete and onSubmitted callbacks will be invoked.

186

CHAPTER6 FORM WIDGETS

The difference is that onEditingComplete callback doesn’t provide
access to the submitted text.

In Listing 6-3, different messages are logged in different callbacks. All
the log messages are displayed in a RichText widget.

Listing 6-3. EditableText callbacks

class TextFieldCallbacks extends StatefulWidget {
@override
_TextFieldCallbacksState createState() =>
_TextFieldCallbacksState();

}

class TextFieldCallbacksState extends
State<TextFieldCallbacks> {
List<String> logs = List();

void log(String value) {
this.setState(() {
this. logs.add(value);
D;
}

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
TextField(
onChanged: (text) => log('changed: $text'),
onEditingComplete: () => log('completed'),
onSubmitted: (text) => log('submitted: $text'),
))

187

CHAPTER6 FORM WIDGETS

Text.rich(TextSpan(
children: this. logs.map((log) => TextSpan(text:
"$log\n")).tolList(),

))s

1,
)5
}
}

Figure 6-3 shows the screenshot of code in Listing 6-3.

Hello

changed: H
changed: He
changed: Hel
changed: Hell
changed: Hello
completed
submitted: Hello

Figure 6-3. EditableText callbacks

Although examples in Listings 6-1, 6-2, and 6-3 use TextField, the same
pattern can also be applied to CupertinoTextField.

6-2. Customizing Keyboard for Text Input
Problem

You want to customize the keyboard used to edit the text.

188

CHAPTER6 FORM WIDGETS

Solution

Use keyboardType, textinputAction, and keyboardAppearance parameters.

Discussion

EditableText widget allows customization of the keyboard used for editing
the text. You can use keyboardType parameter of type TextInputType class
to set a keyboard type suitable for the text. For example, if the EditableText
widget is used to edit phone numbers, then TextInputType.phone is a
better choice for the keyboardType parameter. Table 6-2 shows constants
in TextInputType. TextInputType.number constant is used for unsigned
numbers without a decimal point. For other types of numbers, you can
use TextInputType.numberWithOptions({bool signed: false, bool decimal:
false }) constructor to set whether the numbers should be signed or a
decimal point should be included.

Table 6-2. TextInputType constants

Name Description

text Plain text.

multiline Multi-line text.

number Unsigned number without a decimal point.
phone Phone numbers.

datetime Date and time.

emailAddress Email addresses.

url URLs.

189

CHAPTER6 FORM WIDGETS

The textInputAction parameter of type TextInputAction enum sets the
logic action to perform when user is submitting the text. For example, if the
text field is for use to input search queries, then the TextInputAction.search
value makes the keyboard to display the text “Search”. The user can expect
a search action to perform after tapping the action button. TextInputAction
enum defined a set of actions. The buttons for these actions may have
different appearances on different platforms or different versions of the
same platform. Most of these actions are supported by both Android
and iOS. They are mapped to IME input types on Android and keyboard
return types on iOS. Table 6-3 shows values of TextInputAction and their
mappings on Android and iOS. Some actions may only be supported on
Android or iOS. Using an unsupported action will cause an error to be
thrown in the debug mode. However, in the release mode, an unsupported
action will be mapped to IME_ACTION_UNSPECIFIED on Android and
UlIReturnKeyDefault on iOS, respectively.

Table 6-3. TextInputAction values

Name Android IME input type i0S keyboard return type
none IME_ACTION_NONE N/A

unspecified IME_ACTION_UNSPECIFIED UIReturnKeyDefault

done IME_ACTION_DONE UIReturnKeyDone

search IME_ACTION_SEARCH UIReturnKeySearch

send IME_ACTION_SEND UIReturnKeySend

next IME_ACTION_NEXT UIReturnKeyNext
previous IME_ACTION_PREVIOUS N/A

continueAction N/A UIReturnKeyContinue
join N/A UIReturnKeyJoin

route N/A UIReturnKeyRoute
emergencyCall N/A UIReturnKeyEmergencyCall
newline IME_ACTION_NONE UIReturnKeyDefault

190

CHAPTER6 FORM WIDGETS

The last keyboardAppearance parameter of type Brightness sets the
appearance of the keyboard. Brightness enum has two values, dark and
light. The parameter is only used for iOS.

Listing 6-4 shows the usage of textInputAction and last
keyboardAppearance parameters.

Listing 6-4. keyboardType and keyboardAppearance parameters

TextField(
keyboardType: TextInputType.phone,

)

TextField(
keyboardType: TextInputType.numberWithOptions(
signed: true,
decimal: true,

)
)

TextField(
textInputAction: TextInputAction.search,
keyboardAppearance: Brightness.dark,

)

6-3. Add Decorations to Text Input
in Material Design

Problem

You want to add decorations like prefix and suffix to text fields in Material
Design.

191

CHAPTER6 FORM WIDGETS

Solution

Use the decoration parameter of type InputDecoration.

Discussion

TextField widget supports adding different decorations to present various
information to user. For example, if the value of text input is invalid, you
can add a red border and some text below the text input to indicate that.
You can also add text or icons as the prefix or suffix. If the TextField widget
is for editing currency value, you can add a currency symbol as the prefix.
The decoration parameter of type InputDecoration of TextField is used to
add this information. InputDecoration class has many named parameters,
which we will review next.

Borders

Let’s start from adding borders to text input widgets. InputDecoration
constructor has several parameters of type InputBorder that are related
to borders, including errorBorder, disabledBorder, focusedBorder,
focusedErrorBorder, and enabledBorder. The names of these parameters
indicate when these borders will be displayed based on the state. There
is also a border parameter, but this parameter is only used to provide the
shape of the border.

InputBorder class is abstract, so one of its subclasses UnderlineInputBorder
or OutlineInputBorder should be used. UnderlineInputBorder class only
has a border at the bottom side. UnderlineInputBorder constructor has
parameters borderSide of type BorderSide and borderRadius of type
BorderRadius. BorderSide class defines color, width, and style of one side of
aborder. A border’s style is defined by BorderStyle enum which has values
none and solid. A BorderSide with style BorderStyle.none won'’t be rendered.
BorderRadius class defines a set of radii for each corner of a rectangle.

192

CHAPTER6 FORM WIDGETS

The radius for a corner is created using Radius class. The shape of a radius
can be circular or elliptical. Circular or elliptical radii can be created using
constructors Radius.circular(double radius) and Radius.elliptical(double x,
double y), respectively. BorderRadius has topLeft, topRight, bottomLeft, and
bottomRight properties of type Radius to represent radii of these four corners.
You can use BorderRadius.only() to specify different Radius instances for each
corner or use BorderRadius.all() to use a single Radius instance for all corners.

OutlinelnputBorder class draws a rectangle around the widget.
OutlineInputBorder constructor also has parameters borderSide and
borderRadius. It also has the gapPadding parameter to specify the
horizontal padding for the label text displayed in a gap of the border.

In Listing 6-5, both TextField widgets declare borders that are rendered
when they gain focus using focusedBorder parameter.

Listing 6-5. Examples of InputDecoration

TextField(
decoration: InputDecoration(
enabledBorder: UnderlineInputBorder(
borderSide: BorderSide(color: Colors.red),
borderRadius: BorderRadius.all(Radius.elliptical(5s, 10)),
)J
))
)

TextField(
decoration: InputDecoration(
labelText: 'Username’,
focusedBorder: OutlineInputBorder(
borderSide: BorderSide(color: Colors.blue),
borderRadius: BorderRadius.circular(10),

193

CHAPTER6 FORM WIDGETS

gapPadding: 2,
)
))
)

Figure 6-4 shows the screenshot of code in Listing 6-5. The second
TextField is focused, so the focused border is displayed.

username

Figure 6-4. Borders

Prefix and Suffix

Prefix and suffix in a text input can provide information and actions

that are useful when editing text. Prefix and suffix can both be plain

text or widgets. When using text, you can customize the style of the text.
InputDecoration constructor has parameters prefix, prefixIcon, prefixText,
and prefixStyle to customize the prefix. It also has parameters suffix,
suffixIcon, suffixText, and suffixStyle to customize the suffix. You cannot
specify non-null values to both prefix and prefixText. This restriction also
applies to suffix and suffixText. You can only provide a widget or text, but
not both at the same time.

Listing 6-6. Example of prefix and suffix

TextField(
decoration: InputDecoration(
prefixIcon: Icon(Icons.monetization on),

194

CHAPTER6 FORM WIDGETS

prefixText: 'Pay ',
prefixStyle: TextStyle(fontStyle: FontStyle.italic),
suffixText: '.00',
)J
)

Figure 6-5 shows the screenshot of Listing 6-6.

© Pay 150 00

Figure 6-5. Prefix and suffix

Text

You can add different types of text as the decorations and customize their
styles. There are five types of text shown in Table 6-4.

Table 6-4. Different types of text

Type Text Style Description

Label labelText labelStyle Labels are displayed above the input field.

Helper helperText helperStyle Helper text are displayed below the input
field.

Hint hintText hintStyle Hints are displayed in the input field when
it’'s empty.

Error errorText errorStyle Errors are displayed below the input field.

Counter counterText counterStyle Counters are displayed below the input
field but aligned to the right.

If errorText value is not null, the input field is set to the error state.

195

CHAPTER6 FORM WIDGETS

Listing 6-7. Example of text

TextField(

keyboardType: TextInputType.emailAddress,

decoration: InputDecoration(
labelText: 'Email’,
labelStyle: TextStyle(fontWeight: FontWeight.bold),
hintText: 'Email address for validation',
helperText: 'For receiving validation emails',
counterText: '10',

)

Figure 6-6 shows the screenshot of code in Listing 6-7.

Email
Email address for validation

For receiving validation emails

Figure 6-6. Text of TextField

6-4. Setting Text Limits
Problem

You want to control the length of text.

Solution

Use maxLength parameter.

196

CHAPTER6 FORM WIDGETS

Discussion

To set the maximum length of text in TextField and CupertinoTextField,
you can use the maxLength parameter. The default value of maxLength
parameter is null, which means there is no restriction on the number
of characters. If maxLength parameter is set, a character counter is
displayed below the text input, which shows the number of characters
entered and the number of allowed characters. If maxLength parameter
is set to TextField.noMaxLength, then only the number of characters
entered is displayed. When maxLength is set, if the characters reach
the limit, the behavior depends on the value of maxLengthEnforced
parameter. If maxLengthEnforced is true, which is the default value,

no more characters can be entered. If maxLengthEnforced is false,
additional characters can be entered, but the widget switches to the
error style.

Listing 6-8. Examples of maxLength

TextField(
maxLength: TextField.noMaxLength,

)

TextField(
maxLength: 10,
maxLengthEnforced: false,

)
CupertinoTextField(
maxLength: 10,

)

Figure 6-7 shows the screenshot of two TextField widgets in Listing 6-8.

197

CHAPTER6 FORM WIDGETS

Hello World|

Hello World

11/10

Figure 6-7. Text limits

6-5. Selecting Text
Problem

You want to select some text in the text input.

Solution

Use selection property of TextEditingController.

Discussion

In Recipe 6-1, you have seen the example of using TextEditingController
to get and set the text of widgets using EditableText. TextEditingController
can also be used to get the text selection by user and select text. This

is done by getting or setting the value of selection property of type
TextSelection.

TextSelection is a subclass of TextRange. You can use TextRange.
textInside() to get the selected text. TextSelection class uses baseOffset
and extentOffset properties to represent the position which the selection
originates and terminates, respectively. The value of baseOffset may be
larger than, smaller than, or equal to extentOffset. If baseOffset equals to

198

CHAPTER6 FORM WIDGETS

extentOffset, the selection is collapsed. Collapsed text selection contains
zero characters, but they are used to represent text insertion points.
TextSelection.collapsed() constructor can create a collapsed selection at
specified offset.

In Listing 6-9, when text selection changes, the selected text is
displayed. The first button selected the text in the range [0, 5], while thp7;e
second button moves the cursor to offset 1.

Listing 6-9. Text selection

class TextSelectionExample extends StatefulWidget {
@override
_TextSelectionExampleState createState() =>
_TextSelectionExampleState();

}

class TextSelectionExampleState extends

State<TextSelectionExample> {
TextEditingController _controller;
String _selection;

@override

void initState() {
super.initState();
_controller = new TextEditingController();
_controller.addListener(_handleTextSelection);

}

@override

void dispose() {
_controller.removelistener(_handleTextSelection);
super.dispose();

}

199

CHAPTER6 FORM WIDGETS

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
TextField(
controller: _controller,
)J
Row(
children: <Widget>[
RaisedButton(
child: Text('Select text [0, 5]'),
onPressed: () {
setState(() {
_controller.selection =
TextSelection(baseOffset: 0,
extentOffset: 5);

1
b

)5
RaisedButton(

child: Text('Move cursor to offset 1'),
onPressed: () {
setState(() {
_controller.selection = TextSelection.
collapsed(offset: 1);
1
}J
)J
]J
))

200

CHAPTER6 FORM WIDGETS

Text.rich(TextSpan(
children: [
TextSpan(
text: 'Selected:’,
style: TextStyle(fontWeight: FontWeight.bold),
)J
TextSpan(text: selection ?? "),
])
))s
]’
)s
}

_handleTextSelection() {
TextSelection selection = controller.selection;
if (selection != null) {
setState(() {
_selection = selection.textInside(controller.text);
D;
}
}
}

Figure 6-8 shows the screenshot of code in Listing 6-9.

Hello World

Select text [0, 5] Move cursor to offset 1

Selected:Hello

Figure 6-8. Text selection

201

CHAPTER6 FORM WIDGETS

6-6. Formatting Text
Problem

You want to format the text.

Solution

Use TextInputFormatter with EditableText.

Discussion

When the user is typing in a text input, you may want to validate and
format the entered text. A common requirement is to remove characters in
a blacklist. This is done by providing a list of TextInputFormatter instances
as the inputFormatters parameter of TextField and CupertinoTextField.

TextInputFormatter is an abstract class with only formatEditUpdate
(TextEditingValue oldValue, TextEditingValue newValue) to implement.
The oldValue and newValue parameters represent the previous text and
new text, respectively. The return value is another TextEditingValue
instance representing the formatted text. TextInputFormatter instances
can be chained. When chained, the value of oldValue to invoke
formatEditUpdate method is always the previous text, but the value of
newValue is the return value of invoking the formatEditUpdate method of
previous TextInputFormatter instance in the chain.

There are already three built-in implementation classes of
TextInputFormatter shown in Table 6-5. These classes are used in
implementation of TextField and CupertinoTextField. For example, when
the value of maxLines parameter is 1, BlacklistingTextInputFormatter.
singleLineFormatter is added to the list of TextInputFormatter instances to
filter out the “\n” character.

202

CHAPTER6 FORM WIDGETS

Table 6-5. Implementations of TextInputFormatter

Name Description

LengthLimitingText Limit the number of characters can be entered.
InputFormatter

BlacklistingText Replace characters matching regular expression pattern
InputFormatter with given string.

WhitelistingText Allow only characters matching given regular expression
InputFormatter pattern.

Instead of declaring new subclasses of TextInputFormatter, an easier
way is to use TextInputFormatter.withFunction() method with a function
matching the type of formatEditUpdate() method.

In Listing 6-10, the input text is formatted to use uppercase.

Listing 6-10. Format text

TextField(
inputFormatters: [
TextInputFormatter.withFunction((oldvalue, newValue) {
return newValue.copyWith(text: newValue.text?.
toUpperCase());

1>
1,
)

6-7. Selecting a Single Value
Problem

You want to select a single value from a list of values.

203

CHAPTER6 FORM WIDGETS

Solution

Use a group of Radio widgets.

Discussion

Radio buttons are commonly used for scenarios requiring single selections.
Only one radio button in a group can be selected. Radio class has a type
parameter T representing the type of values. When creating Radio instances,
you need to provide required parameters including value, groupValue, and
onChanged. A Radio widget doesn’t maintain any state. Its appearance is
purely determined by value and groupValue parameters. When the selection
of a radio group is changed, onChanged listener is invoked with the selected
value. Table 6-6 shows the named parameters of Radio constructor.

Table 6-6. Named parameters of Radio

Name Type Description
value T Value of this radio button.
groupValue T Selected value of this group of radio

buttons. The radio button with groupValue is
in selected state.

onChanged ValueChanged<T> Listener function when selection changed.

activeColor Color Color when this radio button is selected.

In Listing 6-11, Fruit.allFruits variable is a list of all Fruit instances. _
selectedFruit is the currently selected Fruit instance. For each Fruit instance,
a Radio<Fruit> widget is created with the groupValue set to _selectedFruit.

204

CHAPTER6 FORM WIDGETS
Listing 6-11. Example of using Radio

class FruitChooser extends StatefulWidget {
@override

_FruitChooserState createState() => FruitChooserState();
}

class _FruitChooserState extends State<FruitChooser> {
Fruit selectedFruit;

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Column(
children: Fruit.allFruits.map((fruit) {
return Row(
children: <Widget>[

Radio<Fruity(
value: fruit,
groupValue: selectedFruit,
onChanged: (value) {

setState(() {
_selectedFruit = value;
D;

}’

)5

Expanded(
child: Text(fruit.name),

)5

])
);
}).tolist(),

205

CHAPTER6 FORM WIDGETS

)

Text(_selectedFruit != null ? selectedFruit.name :

1,
)5
}
}

Figure 6-9 shows the screenshot of the example in Listing 6-11.

Choose a fruit

O Apple
® Orange

(O Banana

(O strawberry

Orange

Figure 6-9. Radio widgets

6-8. Selecting a Single Value
from Dropdown

Problem

You want to select a single value from a dropdown list.

Solution

Use DropdownButton.

206

CHAPTER6 FORM WIDGETS

Discussion

A DropdownButton widget shows a list of items when tapped.
DropdownButton class is generic with the type parameter representing
the type of values. The list of items is specified using the items parameter
of type List< DropdownMenultem<T>>. DropdownMenultem widget is
a simple wrapper with the value and a child widget. When the selection
is changed, the onChanged callback will be invoked with the value of
selected item. Value of the selected item is passed as value parameter.
If value is null, the hint widget is displayed instead.

In Listing 6-12, each Fruit instance is mapped to a
DropdownMenultem widget.

Listing 6-12. Example of DropdownButton

class FruitChooser extends StatefulWidget {

@override

_FruitChooserState createState() => FruitChooserState();
}

class _FruitChooserState extends State<FruitChooser> {
Fruit _selectedFruit;

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
DropdownButton(
value: _selectedFruit,
items: Fruit.allFruits.map((fruit) {
return DropdownMenuItem(
value: fruit,
child: Text(fruit.name),

207

CHAPTER6 FORM WIDGETS

);
}).tolList(),
onChanged: (fruit) {
setState(() {
_selectedFruit = fruit;

D;
b
hint: Text('Select a fruit'),

)J
]’
)5
}
}

Figure 6-10 shows the screenshot of an expanded DropdownButton.

Apple
Orange
Banana

Strawberry

Figure 6-10. Expanded DropdownButton

208

CHAPTER6 FORM WIDGETS

6-9. Selecting Multiple Values
Problem

You want to select multiple values.

Solution

Use Checkbox widget.

Discussion

Checkboxes are commonly used to allow multiple selections. A checkbox
can display three values, true, false, and null, if this checkbox is created
with parameter tristate set to true. Otherwise, only values true and false
are allowed. If the value is null, a dash is displayed. A checkbox itself
doesn’t maintain any state. Its appearance is purely determined by the
value parameter. When the value of a checkbox is changed, the onChanged
callback is invoked with the value of the new state.

In Listing 6-13, selected fruits are maintained in a List<Fruit> instance.
Each Fruit instance is mapped to a Checkbox widget. The value of a Checkbox
depends on whether corresponding Fruit instance is in the _selectedFruits list.

Listing 6-13. Example of Checkbox

class FruitSelector extends StatefulWidget {
@override
_FruitSelectorState createState() => FruitSelectorState();

}

class FruitSelectorState extends State<FruitSelector> {
List<Fruit> _selectedFruits = List();

@override
Widget build(BuildContext context) {

209

CHAPTER6 FORM WIDGETS

return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Column(
children: Fruit.allFruits.map((fruit) {
return Row(
children: <Widget>[
Checkbox(
value: selectedFruits.contains(fruit),
onChanged: (selected) {
setState(() {
if (selected) {
_selectedFruits.add(fruit);
} else {
_selectedFruits.remove(fruit);

}
D;
b
))
Expanded (
child: Text(fruit.name),
)
])
);
}).tolist(),
)’
Text(_selectedFruits.join(", ")),
1,
);
}
}

210

CHAPTER6 FORM WIDGETS

Figure 6-10 shows the screenshot of the example in Listing 6-13.

Select what you like

Apple
Orange
Banana

[] strawberry

Apple, Orange, Banana

Figure 6-11. Checkbox

6-10. Toggling On/Off State
Problem

You want to toggle the on/off state.

Solution

Use Switch for Material Design and CupertinoSwitch for iOS style.

Discussion

Switch is a commonly used Ul control to toggle the on/off state of a setting.
Switch widget is used for Material Design. A Switch widget can be in two
states, active and inactive. A Switch widget itself doesn’t maintain any
state. Its behavior and appearance are purely determined by values of
constructor parameters. If the value parameter is true, then Switch widget
is in active state; otherwise, it’s in inactive state. When the on/off state of

211

CHAPTER6 FORM WIDGETS

a Switch widget is changed, the onChanged callback is invoked with the
new state to be. You can customize the appearance of a Switch widget
in different states using parameters activeColor, activeThumbImage,
activeTrackColor, inactiveThumbColor, inactiveThumbImage, and
inactiveTrackColor.

In Listing 6-14, the Switch widget is used to control the state of another
TextField widget.

Listing 6-14. Example of Switch

class NameInput extends StatefulWidget {
@override
_NameInputState createState() => _NameInputState();

}

class NameInputState extends State<NameInput> {
bool useCustomName = false;

_buildNameInput() {
return TextField(
decoration: InputDecoration(labelText: 'Name'),
);
}

_buildToggle() {
return Row(
children: <Widget>[
Switch(
value: _useCustomName,
onChanged: (value) {
setState(() {
_useCustomName = value;
D;
})

212

CHAPTER 6

activeColor: Colors.green,
inactiveThumbColor: Colors.grey.shade200,
)5
Expanded(
child: Text('Use custom name'),

)5
]’
)5
}

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: _useCustomName
? [buildToggle(), _buildNameInput()]
: [_buildToggle()],

)s

FORM WIDGETS

Figure 6-12 shows the screenshot of example in Listing 6-14.

@ Use custom name

Name

Figure 6-12. Switch

213

CHAPTER6 FORM WIDGETS

CupertinoSwitch widget creates an i0S-style switch and it works the
same way as Switch, but it only supports customization of the active color.
Switch widget has the constructor Switch.adaptive() to create either a
Switch widget or CupertinoSwitch widget depends on the target platform.
When a CupertinoSwitch widget is created using Switch.adaptive(), only
constructor parameters accepted by CupertinoSwitch() are used; other
parameters are ignored.

Listing 6-15 shows examples of using CupertinoSwitch and Switch.
adaptive().

Listing 6-15. Example of CupertinoSwitch

CupertinoSwitch(
value: true,
onChanged: (value) => {},
activeColor: Colors.red.shade300,

)

Switch.adaptive(
value: true,
onChanged: (value) => {},

)

6-11. Selecting from a Range of Values
Problem

You want to select from a range of continuous or a discrete set of values.

Solution

Use Slider for Material Design or CupertinoSlider for iOS style.

214

CHAPTER6 FORM WIDGETS

Discussion

A slider is commonly used to select from a range of continuous or a
discrete set of values. You can use Slider widget for Material Design or
CupertinoSlider for iOS style. These two widgets have the same behavior
but different visual appearance. When creating sliders, you need to provide
avalid range of the values using min and max parameters. If non-null value
is used for divisions parameter, a set of discrete values will be the selections.
Otherwise, a continuous range of values will be the selections. For example,
if value in min is 0.0 and max is 10.0, with the divisions set to 5, then values
of selections are 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0. A slider widget doesn’t
maintain any state. Its behavior and appearance are purely determined
by constructor parameters. When the value of a slider is changed, the
onChanged callback is invoked with the selected value. You can also use
onChangeStart and onChangeEnd callbacks to get notifications when the
value starts to change and it’s done changing, respectively. You can further
customize a slider’s appearance using label, activeColor, and inactiveColor.
Only activeColor parameter is supported by CupertinoSlider. The slider
widget will be disabled if onChanged is null or if the range is empty.

In Listing 6-16, a Slider widget is created with the given value of
divisions parameter and shows the current value.

Listing 6-16. Example of Slider

class SliderValue extends StatefulWidget {
SliderValue({Key key, this.divisions}) : super(key: key);
final int divisions;
@override

_SliderValueState createState() =>
_SliderValueState(divisions);

}

215

CHAPTER6 FORM WIDGETS

class SliderValueState extends State<SliderValue> {
_SliderValueState(this.divisions);

final int divisions;
double value = 0.0;

@override
Widget build(BuildContext context) {
return Row(
children: <Widget>[
Expanded(
child: Slider(
value: value,
min: 0.0,
max: 10.0,
divisions: divisions,
onChanged: (value) {
setState(() {
_value = value;
¥
}J
))
)J
Text(_value.toStringAsFixed(2)),
1,
)5
}
}

The usage of CupertinoSlider is similar with Slider. You can simply
replace Slider with CupertinoSlider in Listing 6-16. Figure 6-13 shows
screenshot of Slider and CupertinoSlider.

216

CHAPTER6 FORM WIDGETS

& 5.81

- @ 2.00

4.32

8.00

Figure 6-13. Slider and CupertinoSlider

6-12. Using Chips
Problem

You want to have compact alternatives to represent different types of entities.

Solution

Use different types of Chips.

Discussion

When space is limited, traditional widget like buttons, radio buttons, and
checkboxes may not be suitable. Chips in Material Design can be used in
this case to represent the same semantic but use less space.

Chip widget is the generic chip implementation that has a required
label and an optional avatar. It can also include a delete button when
setting a non-null onDeleted callback.

InputChip widget is more powerful than Chip widget. An InputChip
widget can be selectable by setting the onSelected callback and pressable
by setting the onPressed callback. However, you cannot set non-null values

217

CHAPTER6 FORM WIDGETS

to both onSelected and onPressed callbacks. When using onSelected,
an InputChip widget behaves like a checkbox. You can use the selected
parameter to set the state. When using onPressed, an InputChip widget
behaves like a button.

A ChoiceChip widget behaves like a radio button with selected
parameter to set its state and onSelected callback to notify state changes.
However, ChoiceChip widget doesn’t have a parameter similar with
groupValue in Radio widget, so you have to set the selected state manually.

A FilterChip widget behaves like a checkbox. FilterChip constructor
has the same parameters as ChoiceChip constructor.

An ActionChip widget behaves like a button with the onPressed
parameter. The difference between action chips and buttons is that action
chips cannot be disabled by setting onPressed parameter to null. Action
chips should be removed if their actions are not applicable. This behavior
is consistent with the goal to using chips for reducing space.

In fact, all these chip widgets wrap RawChip widgets by using only a
subset of parameters supported by RawChip constructor.

In Listing 6-17, ChoiceChip widget is used to implement single
selection.

Listing 6-17. Example of ChoiceChip

class FruitChooser extends StatefulWidget {
@override
_FruitChooserState createState() => _FruitChooserState();

}

class FruitChooserState extends State<FruitChooser> {
Fruit selectedFruit;

@override
Widget build(BuildContext context) {

218

CHAPTER 6

return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Wrap(
spacing: 5,
children: Fruit.allFruits.map((fruit) {
return ChoiceChip(
label: Text(fruit.name),
selected: selectedFruit == fruit,
onSelected: (selected) {
setState(() {

_selectedFruit = selected ? fruit :

1)
b
selectedColor: Colors.red.shade200,
)5
}).tolList(),
)5

FORM WIDGETS

null;

Text(_selectedFruit != null ? selectedFruit.name : ")

1,
)5

In Listing 6-18, FilterChip widget is used to implement multiple

selections.

Listing 6-18. Example of FilterChip

class FruitSelector extends StatefulWidget {

@override

_FruitSelectorState createState() => FruitSelectorState();

219

CHAPTER6 FORM WIDGETS

class FruitSelectorState extends State<FruitSelector> {
List<Fruit> selectedFruits = List();

@override
Widget build(BuildContext context) {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Wrap(
spacing: 5,
children: Fruit.allFruits.map((fruit) {
return FilterChip(
label: Text(fruit.name),
selected: selectedFruits.contains(fruit),
onSelected: (selected) {
setState(() {
if (selected) {
_selectedFruits.add(fruit);

} else {
_selectedFruits.remove(fruit);
}
};
1
selectedColor: Colors.blue.shade200,
)5
}).tolist(),
)>
Text(_selectedFruits.join(", ")),
1,

)5
}
}

220

CHAPTER6 FORM WIDGETS

Figure 6-14 shows the screenshot of examples in Listings 6-17 and 6-18.

Apple Orange Banana Strawberry
Banana
Apple « Orange « Banana + Strawberry

Banana, Orange, Strawberry

Figure 6-14. ChoiceChip and FilterChip

6-13. Selecting Date and Time
Problem

You want to select date and time.

Solution

Use showDatePicker() and showTimePicker() functions for Material
Design or CupertinoDatePicker and CupertinoTimerPicker for iOS style.

Discussion

For Material Design, you can use widgets like YearPicker, MonthPicker, and
DayPicker or showDatePicker() function to allow user to pick dates. The
showTimePicker() function is used to pick times. Widgets are rarely used
to pick dates. Most of the time, showDatePicker() and showTimePicker()
functions are used to show dialogs.

YearPicker widget shows a list of years to pick. When creating
YearPicker widgets, you need to provide DateTime instances for selected
date, earliest date, and latest date using selectedDate, firstDate, and

221

CHAPTER6 FORM WIDGETS

lastDate parameters, respectively. When the selection is changed, the
onChanged callback is invoked with the selected DateTime instance.

MonthPicker widget shows a list of months to pick. MonthPicker
constructor has the same parameters selectedDate, firstDate, lastDate,
and onChanged as YearPicker. It also has a predicate function
selectableDayPredicate to customize which days are selectable.

DayPicker widget shows the days of a given month to pick.
DayPicker constructor has all the parameters of MonthPicker and the
displayedMonth parameter to set the month to pick for days.

If you want to show a dialog for user to select dates, showDatePicker()
function is easier to use than creating your own dialogs. You need to
pass DateTime instances for parameters initialDate, firstDate, and
lastDate. The context parameter of type BuildContext is also required.
This function can work in two modes defined in the DatePickerMode
enum. DatePickerMode.day means choosing a month a day, while
DatePickerMode.year means choosing a year. The return value of
showDatePicker() function is a Future<DateTime> representing the
selected date.

In Listing 6-19, the TextField widget has an IconButton as the suffix.
When the button is pressed, showDatePicker() function is invoked to
show the date picker dialog. The selected date is displayed in the TextField
widget.

Listing 6-19. Pick date

class PickDate extends StatefulWidget {
@override
_PickDateState createState() => _PickDateState();

}

class _PickDateState extends State<PickDate> {
DateTime selectedDate = DateTime.now();
TextEditingController controller = TextEditingController();

222

CHAPTER6 FORM WIDGETS

@override
Widget build(BuildContext context) {
return TextField(
controller: _controller,
decoration: InputDecoration(
labelText: 'Date’,
suffix: IconButton(
icon: Icon(Icons.date range),
onPressed: () {
showDatePicker(

context: context,

initialDate: selectedDate,

firstDate: DateTime.now().subtract(Duration(days:

30)),

lastDate: DateTime.now().add(Duration(days: 30)),)

.then((selectedDate) {

if (selectedDate != null) {
_selectedDate = selectedDate;
controller.text = DateFormat.yMd().format(
selectedDate);

}

1
}J
)J
)s
)s
}
}

The showTimePicker() function shows a dialog to pick times. You need
to pass the initial Time parameter of type TimeOfDay as the initial time to
show. The return value is a Future<TimeOfDay> instance representing the

223

CHAPTER6 FORM WIDGETS

selected time. The code in Listing 6-20 uses the similar pattern as Listing
6-19 to show the time picker dialog.

Listing 6-20. Pick time

class PickTime extends StatefulWidget {
@override
_PickTimeState createState() => PickTimeState();

}

class PickTimeState extends State<PickTime> {
TimeOfDay selectedTime = TimeOfDay.now();
TextEditingController controller = TextEditingController();

@override
Widget build(BuildContext context) {
return TextField(
controller: _controller,
decoration: InputDecoration(
labelText: 'Time',
suffix: IconButton(
icon: Icon(Icons.access time),
onPressed: () {
showTimePicker (
context: context,
initialTime: selectedTime,
).then((selectedTime) {
if (selectedTime != null) {
_selectedTime = selectedTime;
_controller.text = selectedTime.
format(context);

}
};

224

CHAPTER6 FORM WIDGETS

b
))s
);

For i0S style, you can use CupertinoDatePicker and
CupertinoTimerPicker widgets to pick date and time, respectively. A
CupertinoDatePicker can have different modes based on the mode
parameter of enum CupertinoDatePickerMode, including date, time, and
dateAndTime. Similar to widgets in Material Design, CupertinoDatePicker
constructor has parameters initialDateTime, minimumDate, maximumDate,
and onDateTimeChanged. A CupertinoTimerPicker can also have different
modes based on the mode parameter of enum CupertinoTimerPickerMode,
including hm, ms, and hms. The difference is that CupertinoTimerPicker
uses Duration instances to set the initial value and as the value in
onTimerDurationChanged callback.

6-14. Wrapping Form Fields
Problem

You want to wrap form widgets as form fields.

Solution

Use FormField or TextFormField.

Discussion

Form widgets can be used as normal widgets. However, these form widgets
don’t maintain any state; you always need to wrap them in stateful widgets
to keep the state. A typical usage pattern is to use the onChanged callback

225

CHAPTER6 FORM WIDGETS

to update the state and trigger the rebuild of the form widget. Since this
is a typical pattern of using form widgets, Flutter has a built-in FormField
widget to maintain the current state of a form widget. It handles the
updates and validation errors.

FormField class is generic with type parameter T representing the type
of value. A FormField can be used as a standalone widget or be part of a
Form widget. This recipe only discusses the standalone usage. Table 6-7
shows the named parameters of FormField constructor.

Table 6-7. Named parameters of FormField

Name Type Description

builder FormFieldBuilder<T> Build the widget representing this
form field.

onSaved FormFieldSetter<T> Callback when the form is saved.

validator FormFieldValidator<T> Validator of the form field.

initialValue T Initial value.

autovalidate boolean Whether to validate automatically
after every change.

enabled boolean Whether this form field is enabled.

FormFieldBuilder<T> type is a typedef in the form of Widget
(FormFieldState<T> field). FormFieldState<T> class extends from State
class and represents the current state of the form field. FormFieldBuilder
is responsible for building the widget based on the state. From
FormFieldState, you can get the current value and error text of the
form field. You can also use methods of FormFieldState in Table 6-8.
FormFieldValidator<T> is also a typedef in the form of String(T value).

It takes the current value as the input and returns a non-null string as the
error message if the validation fails. FormFieldSetter<T> type is a typedef
in the form of void(T newValue).

226

CHAPTER6 FORM WIDGETS

Table 6-8. Methods in FormFieldState

Name Description

save() Call the onSaved() method with the current value.
validate() Call the validator and set the errorText if validation fails.
didChange(T Update the field’s state to the new value.

value)

reset() Reset the field to its initial value.

When wrapping TextFields inside of FormFields, it’s better to use the
built-in TextFormField. TextFormField widget already handles setting
text using TextEditingController and using the error text returned by
FormFieldValidator to update the input decoration. TextFormField
constructor supports parameters from TextField and FormField constructors.
TextFormField in Listing 6-21 has a validator to validate text length.

Listing 6-21. TextFormField

class NameInput extends StatelessWidget {
@override
Widget build(BuildContext context) {
return TextFormField(
decoration: InputDecoration(
labelText: 'Name',
)s
validator: (value) {
if (value == null || value.isEmpty) {
return 'Name is required.';
} else if (value.length < 6) {
return 'Minimum length is 6.°';

227

CHAPTER6 FORM WIDGETS

} else {
return null;
}
}’
autovalidate: true,

);
}
}

Figure 6-15 shows the screenshot of code in Listing 6-21.

Name

Hello|

Minimum length is 6.

Figure 6-15. TextFormField

FormFieldState instances are only accessible in the builder function of
FormField. If you need to access the state from other places, you can pass
a GlobalKey as the key parameter of FormField, then use the currentState
property to access the current state.

In Listing 6-22, the state of FormField is a List<PizzaTopping> instance.
With the GlobalKey, the current value can be retrieved when the button is
pressed.

Listing 6-22. FormField

class PizzaToppingsSelector extends StatelessWidget {

final GlobalKey<FormFieldState<List<PizzaTopping>>>
_formFieldKey =
GlobalKey();

228

CHAPTER6 FORM WIDGETS

@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
FormField<List<PizzaTopping>>(
key: formFieldKey,
initialvalue: List(),
builder: (state) {
return Wrap(
spacing: 5,
children: PizzaTopping.allPizzaToppings.
map((topping) {
return ChoiceChip(
label: Text(topping.name),
selected: state.value.contains(topping),
onSelected: state.value.length < 2 ||
state.value.contains(topping)
? (selected) {
List<PizzaTopping> newValue = List.
of(state.value);
if (selected) {
newValue.add(topping);

} else {
newValue.remove(topping);
}
state.didChange(newValue);
}
: null,
)s
}).tolList(),

)s

229

CHAPTER6 FORM WIDGETS

b

)5
RaisedButton(

child: Text('Get toppings'),

onPressed: () => print(_formFieldKey.currentState?.
value),

)’
1
)5
}
}

6-15. Creating Forms
Problem

You want to create a form with multiple form fields.

Solution

Use Form.

Discussion

When using form fields, generally you're trying to build a form with
multiple form fields. Managing form fields separately is a tedious task
when dealing with multiple form fields. Form is a convenient wrapper for
multiple form fields. You need to wrap all form fields in FormField widgets
and use a Form widget as the common ancestor of all these FormField
widgets. Form widget is a stateful widget with state managed by associated
FormState instance. FormState class has methods save(), validate(), and

230

CHAPTER6 FORM WIDGETS

reset(). These methods call corresponding functions on all FormFieldState
instances of descendant FormField widgets.

There are two ways to get the FormState instance depends on the
location of the widget wants to use FormState. If the widget is a descendant
of the Form widget, using Form.of(BuildContext context) is an easy way
to get the closest FormState instance. The second way is to use GlobalKey
instance when creating the Form widget, then use GlobalKey.currentState
to get the FormState.

Listing 6-23 shows the code of a login form. Two TextFormField
widgets are created with GlobalKey instances.

Listing 6-23. Login form

class LoginForm extends StatefulWidget {
@override
_LoginFormState createState() => _LoginFormState();

}

class _LoginFormState extends State<LoginForm> {
final GlobalKey<FormFieldState<String>> _usernameFormFieldKey
= GlobalKey();
final GlobalKey<FormFieldState<String>> passwordFormFieldKey
= GlobalKey();

_notEmpty(String value) => value != null && value.isNotEmpty;

get value => ({
'username': _usernameFormFieldKey.currentState?.value,
"password': _passwordFormFieldKey.currentState?.value

};

@override
Widget build(BuildContext context) {
return Form(

231

CHAPTER6 FORM WIDGETS

child: Column(
children: <Widget>[
TextFormField(
key: _usernameFormFieldKey,
decoration: InputDecoration(
labelText: 'Username’,
)J
validator: (value) =>
| notEmpty(value) ? 'Username is required' :
null,
)J
TextFormField(
key: _passwordFormFieldKey,
obscureText: true,
decoration: InputDecoration(
labelText: 'Password’,
)J
validator: (value) =>
! notEmpty(value) ? 'Password is required' :
null,
))
Builder(builder: (context) {
return Row(
mainAxisAlignment: MainAxisAlignment.end,
children: <Widget>[
RaisedButton(
child: Text('Log In'),
onPressed: () {
if (Form.of(context).validate()) {
print(_value);

}

232

CHAPTER6 FORM WIDGETS

I8
)5
FlatButton(
child: Text('Reset'),
onPressed: () => Form.of(context).reset(),
)
]J
)5
1)
])
)5
)5

}
}

Figure 6-16 shows the screenshot of the login form.

Username

Username is required

Password

Password is required

Log In Reset

Figure 6-16. Login form

233

CHAPTER6 FORM WIDGETS

6-16. Summary

Form widgets are important to interact with user. This chapter covers
form widgets for Material Design and iOS style, including text input, radio
button, checkbox, dropdown, switch, chip, and slider. In the next chapter,

we'll discuss widgets for application scaffolding.

234

CHAPTER 7

Common Widgets

In Flutter apps, some widgets are widely used for different purposes. This
chapter discusses some common widgets.

7-1. Displaying a List of ltems
Problem

You want to display a scrollable list of items.

Solution

Use ListView widget as the container of items.

Discussion

Flutter layout widgets like Flex, Row, and Column don’t support scrolling,
and these widgets are not designed to be used to display items when
scrolling is required. If you want to display a large number of items, you
should use ListView widget. You can think ListView as the scrollable
counterpart of Flex widget.

© Fu Cheng 2019 235
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_7

CHAPTER7 COMMON WIDGETS

There are three different ways to create ListView widgets using
different constructors:

o Create from a static list of children widgets.

o Create by building children on demand based on the
scrolling position.

o C(Create a custom implementation.

o Thisrecipe focuses on the first two ways.

ListView with Static Children

If you have a static list of children that may exceed the size of their parent
widget, you can wrap them in a ListView widget to enable scrolling. This is
done by invoking the ListView() constructor with the children parameter of
type Widget([]. The scrolling direction is determined by the scrollDirection
parameter of type Axis. The default scroll direction is Axis.vertical. If you
want to display the children in a reverse order, you can set the reverse
parameter to true. Listing 7-1 shows a ListView widget with three children.

Listing 7-1. ListView with static children

ListView(
children: <Widget>[
ExampleWidget(name: 'Box 1'),
ExampleWidget(name: 'Box 2'),
ExampleWidget(name: 'Box 3'),

1,

The default ListView() constructor should only be used when you have
a small number of children. All children will be created, even though some
of them are not visible in the viewport. This is likely to have performance
impact.

236

CHAPTER 7 COMMON WIDGETS

ListView with Iltem Builders

If you have a large number of items or items need to be dynamically
created, you can use ListView.builder() and ListView.separated()
constructors. Instead of a static list of widgets, you need to provide builder
functions of type IndexedWidgetBuilder to build items on demand.
IndexedWidgetBuilder is typedef of Widget (BuildContext context, int
index). The index parameter is the index of the item to build. ListView
widget determines the indices of items in the viewport and invokes the
builder function to build the items to render. If the total number of items
is known, you should pass this number as the itemCount parameter. If
itemCount is non-null, the builder function will only be invoked with
indices greater than or equal to zero and less than itemCount. If itemCount
is null, the builder function needs to return null to indicate that no more
items are available.

When using ListView.builder() constructor, you only need to
provide the itemBuilder parameter of type IndexedWidgetBuilder. For
ListView.separated() constructor, apart from the itemBuilder parameter,
you also need to provide the separatorBuilder parameter of type
IndexedWidgetBuilder to build the separators between items. When using
ListView.separated(), the itemCount parameter is required. Listing 7-2
shows examples of using ListView.builder() and ListView.separated().

Listing 7-2. ListView with item builders

ListView.builder(
itemCount: 20,
itemBuilder: (context, index) {
return ExampleWidget(name: 'Dynamic Box ${index + 1}');
}J
);

237

CHAPTER7 COMMON WIDGETS

ListView.separated(
itemBuilder: (context, index) {
return ExampleWidget(name: 'Separated Box ${index + 1}');
})
separatorBuilder: (context, index) {
return Divider(
height: 8,
)5
})
itemCount: 20,

)5

If the extent of an item in the scroll direction is known, you should
pass this value as the itemExtent parameter. Non-null values of itemExtent

parameter make the scrolling more efficient.

ListTile

You can use any widget as child of ListView. If you the item to include
text, icon, and other control, you can use ListTile and its subclasses.
A list tile contains one to three lines of text and leading and trailing
widgets surrounding the text. Table 7-1 shows

238

Table 7-1. Parameters of ListTile

CHAPTER 7 COMMON WIDGETS

Name Type Description
title Widget Title of the list tile.
subtitle Widget Optional content displayed below the

isThreeLine bool

leading Widget

trailing Widget

enabled bool

selected bool

onTap GestureTapCallback
onLongPress GestureLongPressCallback
dense bool

contentPadding EdgelnsetsGeometry

title.

Whether the list tile may have three
lines of text.

Widget displayed before the title.
Widget displayed after the title.
Whether the list tile is enabled.

Whether the list tile is selected. When
selected, icons and text are rendered
with the same color.

Callback when the title is tapped.
Callback when the title is long pressed.

When true, the size of the tile is
reduced.

Padding inside of the tile.

Listing 7-3 shows an example of using ListTile.

Listing 7-3. Example of ListTile

ListTile(
title: Text('Title'),

subtitle: Text('Description'),

leading: Icon(Icons.shop),

trailing: Icon(Icons.arrow_right),

239

CHAPTER7 COMMON WIDGETS

If you want to have a checkbox in a list tile, you can use
CheckboxListTile widget which combines ListTile and Checkbox.
CheckboxListTile constructor has the same parameters title, subtitle,
isThreeLine, selected, and dense as ListTile constructor. It also has
parameters value, onChanged, and activeColor used for Checkbox
constructor.

Table 7-2. Parameters of CheckboxListTile

Name Type Description
secondary Widget Widget displayed on the opposite side of
the tile.

controlAffinity ListTileControlAffinity ~ Where to place the control in the tile.

ListTileControlAffinity enum defines the position of control in the list
tile. It has three values, leading, trailing, and platform. When the position
of control is specified, the secondary widget is always placed on the
opposite side.

Listing 7-4. Example of CheckboxListTile

class CheckboxInListTile extends StatefulWidget {
@override
_CheckboxInListTileState createState() => _
CheckboxInListTileState();

}

class CheckboxInListTileState extends
State<CheckboxInListTile> {
bool value = false;

@override
Widget build(BuildContext context) {
return CheckboxListTile(

240

CHAPTER 7 COMMON WIDGETS

title: Text('Checkbox'),
subtitle: Text('Description'),
value: value,
onChanged: (value) {

setState(() {

_value = value;

D;

b

secondary: Icon(value ? Icons.monetization on : Icons.
money off),

)5

If you want to add a radio button in a list tile, you can use
RadioListTile<T> widget. For the parameters of RadioListTile constructor,
value, groupValue, onChanged, and activeColor have the same
meaning as in Radio constructor; title, subtitle, isThreeLine, dense,
secondary, selected, and controlAffinity have the same meaning as in
CheckboxListTile constructor. Listing 7-5 shows an example of using
RadioListTile.

Listing 7-5. Example of RadioListTile
enum CustomColor { red, green, blue }

class RadioInlListTile extends StatefulWidget {
@override
_RadioInlListTileState createState() => _
RadioInListTileState();

}

241

CHAPTER7 COMMON WIDGETS

class RadioInListTileState extends State<RadioInListTile> {
CustomColor selectedColor;

@override
Widget build(BuildContext context) {
return Column(
children: CustomColor.values.map((color) {
return RadiolistTile<CustomColor>(
title: Text(color.toString()),
value: color,
groupValue: selectedColor,
onChanged: (value) {
setState(() {
_selectedColor = value;
IOk
}J
);
}).tolList(),
)5
}
}

If you want to add switch to a list tile, you can use SwitchListTile. Some
parameters of SwitchListTile constructor come from Switch constructor,
while other parameters come from ListTile constructor. Listing 7-6 shows
an example of using SwitchListTile.

Listing 7-6. Example of SwitchListTile

class SwitchInListTile extends StatefulWidget {
@override
_SwitchInListTileState createState() => _
SwitchInListTileState();

}

242

CHAPTER 7 COMMON WIDGETS

class SwitchInListTileState extends State<SwitchInListTile> {
bool value = false;

@override
Widget build(BuildContext context) {
return SwitchListTile(
title: Text('Switch'),
subtitle: Text('Description'),
value: _value,
onChanged: (value) {
setState(() {
_value = value;
IOF
b
)5
}
}

Figure 7-1 shows the screenshot of different ListTiles.

243

CHAPTER7 COMMON WIDGETS

i3 Title ,
Description
(S) Checkbox

Description
O CustomColor.red
@® CustomColor.green

O CustomColor.blue

Switch .

Description

Figure 7-1. ListTiles
7-2. Displaying Items in a Grid
Problem

You want to display items in a grid.

Solution

Use GridView.

Discussion

ListView widget displays items in a linear array. To display widgets
in a two-dimensional array, you can use GridView. The actual

layout of children of GridView is delegated to an implementation of
SliverGridDelegate. Flutter provides two built-in implementations of

244

CHAPTER 7 COMMON WIDGETS

SliverGridDelegate, SliverGridDelegateWithFixedCrossAxisCount and
SliverGridDelegateWithMaxCrossAxisExtent. You can also create your own
implementations of SliverGridDelegate.

There are three ways to provide the children of the GridView.
You can provide a static list of widgets, or use builder function
of type IndexedWidgetBuilder, or provide an implementation of
SliverChildDelegate.

Depending on the choice of SliverGridDelegate and providing
children, you can use different GridView constructors. Table 7-3 shows the
usage of different constructors.

Table 7-3. GridView constructors

Name Delegate Children
GridView() SliverGridDelegate Widget[]
GridView.builder() SliverGridDelegate IndexedWidgetBuilder
GridView.count() SliverGridDelegateWithFixedCross ~ Widget[]

AxisCount
GridView.extent() SliverGridDelegateWithMaxCross Widget([]

AxisExtent
GridView.custom() SliverGridDelegate SliverChildDelegate

SliverGridDelegateWithFixed CrossAxisCount class uses the
crossAxisCount parameter to specify the fixed number of tiles in the
cross axis. For example, if the scroll direction of GridView is vertical, the
crossAxisCount parameter specifies the number of columns. Listing 7-7
shows an example of using GridView.count() to create a grid with three

columns.

245

CHAPTER7 COMMON WIDGETS

Listing 7-7. Example of using Gridview.count()

GridView.count(
crossAxisCount: 3,
children: List.generate(10, (index) {
return ExampleWidget(
name: 'Fixed Count ${index + 1}',
)5
¥
);

SliverGridDelegateWithMaxCrossAxisExtent class uses the
maxCrossAxisExtent parameter to specify the maximum extent in the
cross axis. The actual cross-axis extent for tiles will be as large as possible
to evenly divide the cross-axis extent of the GridView and won'’t exceed
the specified maximum value. For example, if the cross-axis extent of the
GridView is 400 and the value of maxCrossAxisExtent is 120, then the
cross-axis extent for tiles is 100. If the GridView’s scroll direction is vertical,
it will have four columns. Listing 7-8 shows an example of using GridView.
extent().

Listing 7-8. Example of using GridView.extent()

GridView.extent(
maxCrossAxisExtent: 250,
children: List.generate(10, (index) {
return ExampleWidget(
name: 'Max Extent ${index + 1}',
)5
}))
);

To use a builder function to create children, you need to use GridView.
builder() constructor with a SliverGridDelegate implementation.

246

CHAPTER 7 COMMON WIDGETS

Listing 7-9 shows an example of using GridView.builder() with
SliverGridDelegateWithFixed CrossAxisCount.

Listing 7-9. Example of using GridView.builder()

GridView.builder(
itemCount: 32,
gridDelegate:
SliverGridDelegateWithFixedCrossAxisCount
(crossAxisCount: 3),
itemBuilder: (context, index) {
return ExampleWidget(
name: 'Builder ${index + 1},
)s
})
)

Both SliverGridDelegateWithFixedCrossAxisCount and
SliverGridDelegateWithMaxCrossAxisExtent classes have other named
parameters to configure the layout; see Table 7-4.

Table 7-4. Parameters of built-in SliverGridDelegate
implementations

Name Type Description

mainAxisSpacing double Spacing of tiles along the main axis.
crossAxisSpacing double Spacing of tiles along the cross axis.

childAspectRatio double Ratio of cross-axis to main-axis extent for the tiles.

When using these two SliverGridDelegate implementations, the
cross-axis extent of each tile is determined first, then the main-axis extent
is determined by the childAspectRatio parameter. If GridView is used

247

CHAPTER7 COMMON WIDGETS

to display images with desired aspect ratio, you can use the same ratio

as the value of childAspectRatio parameter. Both GridView.count() and
GridView.extent() constructors have the same named parameters in

Table 7-4 to pass these parameters to the underlying SliverGridDelegate
implementations. Listing 7-10 shows an example of using childAspectRatio
parameter when displaying images.

Listing 7-10. Using childAspectRatio parameter

GridView.count(
crossAxisCount: 3,
childAspectRatio: 4 / 3,
children: List.generate(10, (index) {
return Image.network('https://picsum.photos/400/300");

1,
)5

Just like using ListTiles in ListView, you can also use GridTiles in
GridView. A grid tile has a required child widget and optional header
and footer widgets. For header and footer of grid tiles, it’s typical to use
the GridTileBar widget. GridTileBar is similar with ListTile. GridTileBar
constructor has parameters title, subtitle, leading, trailing, and
backgroundColor.

Listing 7-11. Example of GridTile and GridTileBar

GridView.count(
crossAxisCount: 2,
children: <Widget>[
GridTile(
child: ExampleWidget(name: 'Simple'),
)s
GridTile(

248

CHAPTER 7 COMMON WIDGETS

child: ExampleWidget(name: 'Header & Footer'),

header: GridTileBar(
title: Text('Header'),
backgroundColor: Colors.red,

)s

footer: GridTileBar(
title: Text('Footer'),
subtitle: Text('Description'),
backgroundColor: Colors.blue,

)5
)
])
)5

Figure 7-2 shows the screenshot of code in Listing 7-11.

Simple

Figure 7-2. GridTile and GridTileBar

Header & Footer

249

CHAPTER7 COMMON WIDGETS

7-3. Displaying Tabular Data
Problem

You want to display tabular data or use table layout for children.

Solution

Use Table widget.

Discussion

If you want to display tabular data, using data tables is a natural choice.
Tables can also be used for layout purpose to organize children. For these
two usage scenarios, you can use the Table widget.

A Table widget may have multiple rows. A table row is represented with
TableRow widget. Table widget constructor has the children parameter of
type List<TableRow> to provide the list of rows. TableRow constructor also
has the children parameter of type List<Widget> to provide the list of cells
in this row. Every row in a table must have the same number of children.

The border of a table is defined using TableBorder class. TableBorder is
similar with Border, but TableBorder has two extra sides:

e horizontallnside - The inner horizontal borders
between rows

o verticallnside - The inner vertical borders between

columns

Listing 7-12 shows an example of a simple table with three rows and
four columns.

250

CHAPTER 7 COMMON WIDGETS

Listing 7-12. Simple table

Table(

border: TableBorder.all(color: Colors.red.shade200),

children: [
TableRow(children: [Text('A"), Text('B"), Text('C'),
Text('D")1),
TableRow(children: [Text('E"'), Text('F'), Text('G"),
Text("H")]),
TableRow(children: [Text('I'), Text('J"), Text('K"),
Text('L")1),

1,
)5

Width of columns in a table is configured by TableColumnWidth
implementations. The columnWidths parameter of type Map<int,
TableColumnWidth> defines the mapping between column index
and its TableColumnWidth implementation. Table 7-5 shows built-
in TableColumnWidth implementations. MinColumnWidth and
MaxColumnWidth classes combine other TableColumnWidth
implementations. If no TableColumnWidth implementation is found
for a column, the defaultColumnWidth parameter is used to get the
default TableColumnWidth implementation. The default value of
defaultColumnWidth is FlexColumnWidth(1.0), which means all columns
share the same width.

251

CHAPTER7 COMMON WIDGETS

Table 7-5. TableColumnWidth implementations

Name Performance Description

FixedColumnWidth ~ High

FlexColumnWidth Medium

FractionColumnWidth Medium

IntrinsicColumnWidth Low

MinColumnWidth
MaxColumnWidth

Use fixed number of pixels as the column
width.

Use flex factor to divide remaining space
once all the other non-flexible columns have
been sized.

Use a fraction of the table’s max width as the
column width.

Use the intrinsic dimensions of all cells in a
column to determine the column width.

Minimum of two TableColumnWidth objects.

Maximum of two TableColumnWidth objects.

Listing 7-13 shows an example of a table with different column width.

Listing 7-13. Table with different column width

Table(

border: TableBorder.all(color: Colors.blue.shade200),

columnWidths: {

0: FixedColumnWidth(100),

1: FlexColumnWidth(1),
2: FlexColumnWidth(2),
3:

FractionColumnWidth(o0.2),

1

children: [

TableRow(children: [Text('A"), Text('B'), Text('C"),

Text('D")]),

252

CHAPTER 7 COMMON WIDGETS

TableRow(children: [Text('E"'), Text('F'), Text('G"),
Text('H")]),
TableRow(children: [Text('I"), Text('J"), Text('K"),
Text('L")]),
])
)5

The vertical alignment of cells is configured with values of
TableCellVerticalAlignment enum. TableCellVerticalAlignment
enum has values top, middle, bottom, baseline, and fill. The
defaultVerticalAlignment parameter of Table constructor specifies the
default TableCellVerticalAlignment value. If you want to customize vertical
alignment of a single cell, you can wrap the cell widget inside of TableCell
widget and specify the verticalAlignment parameter. Listing 7-14 shows an
example of specifying vertical alignment for cells.

Listing 7-14. Vertical alignment of table cells

class VerticalAlignmentTable extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Table(
border: TableBorder.all(color: Colors.green.shade200),
defaultVerticalAlignment: TableCellVerticalAlignment.
bottom,
children: [
TableRow(children: [
TextCell('A"),
TableCell(
verticalAlignment: TableCellVerticalAlignment.
middle,
child: Text('B'),
))

253

CHAPTER7 COMMON WIDGETS

Text('C"),

Text('D"),
D,
TableRow(children: [Text('E"), Text('F'), Text('G"),
Text('H")]),
TableRow(children: [Text('I"), Text('J"), Text('K"),
Text('L")]),

);

class TextCell extends StatelessWidget {
TextCell(this.text, {this.height = 50});

final String text;
final double height;

@override
Widget build(BuildContext context) {
return ConstrainedBox(
constraints: BoxConstraints(
minHeight: height,
)5
child: Text(text),
)5
}
}

Figure 7-3 shows the screenshot of different tables.

254

CHAPTER 7 COMMON WIDGETS

A B C D
E F G H
I J K L
A B C D
E F G H
I J K L
A
B
C D
E F G H
I J K L

Figure 7-3. Tables

7-4. Scaffolding Material Design Pages
Problem

You want to scaffold Material Design pages.

Solution

Use Scaffold and other related widgets.

Discussion

Material Design apps have common layout structures. Scaffold widget

puts together other common widgets to create the basic page structures.
Table 7-6 shows the elements that can be included in a Scaffold widget.
Widgets specified as drawer and endDrawer are initially hidden and can be
revealed by swiping. The swiping direction depends on the text direction.
The drawer widget uses the same direction as the text direction, while the

255

CHAPTER7 COMMON WIDGETS

endDrawer widget uses the opposite direction. For example, if the text
direction is left-to-right, drawer widget is opened by swiping from left to
right, and endDrawer widget is opened by swiping from right to left.

The second column in Table 7-6 only lists preferred widget types for
these elements. Scaffold constructor actually accepts any type of widgets.
For example, you can use ListView widget as the drawer. However, these
preferred widgets are more suitable.

Table 7-6. Scaffold elements

Parameter Widget Description

appBar AppBar An app bar to display at the top.

floatingActionButton FloatingActionButton A button to float above the body in
the bottom right corner.

drawer Drawer A hidden panel to display to the side
of the body.

endDrawer Drawer A hidden panel to display to the side
of the body.

bottomNavigationBar ~ BottomAppBar Navigation bar to display at the

BottomNavigationBar bottom.

bottomSheet BottomSheet Persistent bottom sheet.

persistentFooterButtons List<Widget> A set of buttons to display at the
bottom.

body Widget Primary content.

App Bar

AppBar widget displays basic information of the current screen. It consists
of a toolbar and other widgets. Table 7-7 shows the elements of an AppBar
widget. These elements are also named parameters of AppBar constructor.

256

CHAPTER 7 COMMON WIDGETS

Table 7-7. Parameters of AppBar

Name Description

title Primary widget in the toolbar.

leading Widget to display before the title.
actions List of widgets to display after the title.
bottom Widget to display at the bottom.

flexibleSpace ~ Widget to stack behind the toolbar and the bottom.

If the leading widget is null and automaticallylmplyLeading parameter
is true, the actual leading widget is deduced from the state. If the Scaffold
has a drawer, the leading widget is a button to open the drawer. If the
nearest Navigator has previous routes, the leading widget is a BackButton
to go back to previous route.

Widgets in the list of actions are usually IconButtons. If there is no
enough space for these IconButtons, you can use a PopupMenuButton as
the last action and put other actions in the popup menu. TabBar widget is
usually used as the bottom widget. Listing 7-15 shows an example of using
AppBar.

Listing 7-15. Example of AppBar

AppBax (
title: Text('Scaffold'),
actions: <Widget>
IconButton(
icon: Icon(Icons.search),
onPressed: () {},
))
])
)5

257

CHAPTER7 COMMON WIDGETS

Floating Action Button

FloatingActionButton widget is a special kind of buttons to provide quick
access to primary action. A floating action button is a circular icon that
usually displays at the bottom right corner of the screen. In the Gmail app,
the email list screen has a floating action button to compose new emails.
There are two types of FloatingActionButtons. When using
FloatingActionButton() constructor, you only need to provide the child
widget and onPressed callback. When using FloatingActionButton.
extend() constructor, you need to provide icon and label widgets
and onPressed callback. For both constructors, foregroundColor and
backgroundColor parameters can customize the colors. Listing 7-16 shows
an example of using FloatingActionButton.

Listing 7-16. Example of FloatingActionButton

FloatingActionButton(
child: Icon(Icons.create),
onPressed: () {},

)5

Drawer

Drawer widget is a convenient wrapper for the panel that displays at the
edge of a Scaffold widget when sliding. Although you can use Drawer to
wrap any widget, it's common to show app logo, information of current
user, and links to app pages in the drawer. ListView widget is usually used
as the child of Drawer widget to enable scrolling in the drawer.

To show app logo and information of current user, you
can use the provided DrawerHeader widget and its subclass
UserAccountsDrawerHeader. DrawerHeader widget wraps a child widget
and has a predefined style. UserAccountsDrawerHeader is a specific

258

CHAPTER 7 COMMON WIDGETS

widget to show user details. Table 7-8 shows sections that can be added in
a UserAccountsDrawerHeader widget. You can also use onDetailsPressed
parameter to add a callback when the area with account name and email is
tapped.

Table 7-8. Sections in UserAccountsDrawerHeader

Name Description

currentAccountPicture Picture of the current user’s account.

otherAccountsPictures List of pictures of the current user’s other accounts.
You can only have up to three of these pictures.

accountName Name of the current user’s account.

accountEmail Email of the current user’s account.

Listing 7-17 shows an example of using Drawer with
UserAccountsDrawerHeader.

Listing 7-17. Example of Drawer

Drawer (
child: ListView(
children: <Widget>[

UserAccountsDrawerHeader (

currentAccountPicture: CircleAvatar(
child: Text('JD"),

)J
accountName: Text('John Doe'),
accountEmail: Text('john.doe@example.com'),

)5

ListTile(
leading: Icon(Icons.search),
title: Text('Search'),

259

CHAPTER7 COMMON WIDGETS

)5

ListTile(
leading: Icon(Icons.history),
title: Text('History'),

)5

])
))
)5

Bottom App Bar

BottomAppBar widget is a simplified version of AppBar that displays at the
bottom of a Scaffold. It's common to only add icon buttons in the bottom
app bar. If the scaffold also has a floating action button, the bottom app
bar also creates the notch for the button to dock. Listing 7-18 shows an

example of using BottomAppBar.

Listing 7-18. Example of BottomAppBar

BottomAppBar (
child: Text('Bottom'),
color: Colors.red,

)5

Bottom Navigation Bar

BottomNavigationBar widget provides extra links to navigate between
different views. Table 7-9 shows the parameters of BottomNavigationBar

constructor.

260

CHAPTER 7 COMMON WIDGETS

Table 7-9. Parameters of BottomNavigationBar

Name Type Description

items List List of items.
< BottomNavigationBarltem>

currentindex int Index of the selected item.

onTap ValueChanged<int> Callback when selected item changed.
type BottomNavigationBarType Type of the navigation bar.

fixedColor Color Color of selected item when type if

BottomNavigationBarType.fixed.

iconSize double Size of icons.

When an item is tapped, the onTap callback is invoked with index
of the tapped item. Depending on the number of items, there can be
different ways to show these items. The layout of items is defined by
values of BottomNavigationBarType enum. If the value is fixed, these
items have fixed width and always display text labels. If the value is
shifting, location of items may change according to the selected item
and only text label of selected item is displayed. BottomNavigationBar
has a default strategy to select the type. When there are less than
four items, BottomNavigationBarType.fixed is used; otherwise,
BottomNavigationBarType.shifting is used. You can use the type parameter
to override the default behavior.

Table 7-10 shows parameters of BottomNavigationBarItem
constructor. Both icon and title parameters are required. If the type of
BottomNavigationBar is BottomNavigationBarType.shifting, then the
background of navigation bar is determined by the background color
of selected item. You should specify the backgroundColor parameter to
differentiate items.

261

CHAPTER7 COMMON WIDGETS

Table 7-10. Parameters of BottomNavigationBarltem

Name Type Description

icon Widget ltem’s icon.

title Widget [tem’s title.

activelcon Widget Icon to display when the item is selected.
backgroundColor Color [tem's background color.

Listing 7-19 shows an example of using BottomNavigationBar and
BottomNavigationBarItem.

Listing 7-19. Example of BottomNavigationBar

BottomNavigationBar(
currentIndex: 1,
type: BottomNavigationBarType.shifting,
items: [
BottomNavigationBarItem(
icon: Icon(Icons.cake),
title: Text('Cake'),
backgroundColor: Colors.red.shade100,
))
BottomNavigationBarItem(
icon: Icon(Icons.map),
title: Text('Map'),
backgroundColor: Colors.green.shade100,
)
BottomNavigationBarItem(
icon: Icon(Icons.alarm),
title: Text('Alarm'),

262

CHAPTER 7 COMMON WIDGETS

backgroundColor: Colors.blue.shade100,
)
])
)

Bottom Sheet

BottomSheet widget displays at the bottom of the app to provide additional
information. The system sharing sheet is a typical example of bottom
sheet. There are two types of bottom sheets:

o Persistent bottom sheets are always visible. Persistent
bottom sheets can be created using ScaffoldState.
showBottomSheet function and bottomSheet
parameter of Scaffold constructor.

e Modal bottom sheets behave like modal dialogs.
Modal bottom sheets can be created using
showModalBottomSheet function.

BottomSheet constructor uses a WidgetBuilder function to create
the actual content. You also need to provide an onClosing callback that’s
invoked when the bottom sheet begins to close. Listing 7-20 shows an
example of using BottomSheet.

Listing 7-20. Example of BottomSheet

BottomSheet(
onClosing: () {},
builder: (context) {
return Text('Bottom');
})
);

263

CHAPTER7 COMMON WIDGETS

Scaffold State

Scaffold is a stateful widget. You can use Scaffold.of() method to get the
ScaffoldState object of nearest Scaffold widget from the build context.
ScaffoldState has different methods to interact with other components; see
Table 7-11.

Table 7-11. Methods of ScaffoldState

Name Description
openDrawer() Open the drawer.
openEndDrawer() Open the drawer on the end side.

showSnackBar(SnackBar snackbar) Show the SnackBar.

hideCurrentSnackBar() Hide the current SnackBar.
removeCurrentSnackBar() Remove the current SnackBar.
showBottomSheet() Show a persistent bottom sheet.
SnackBar

SnackBar widget shows a message with an optional action at the bottom
of the screen. To create a SnackBar widget, the constructor requires the
content parameter to specify the content. The duration parameter controls
how long the snack bar is displayed. To add an action to the snack bar,

you can use action parameter of type SnackBarAction. When an action is
provided, the snack bar is dismissed when the action is pressed.

To create a SnackBarAction instance, you need to provide the label and
onPressed callback. You can customize the button label color using textColor
parameter. The button of a snack bar action can only be pressed once.

The showSnackBar() method of ScaffoldState shows a SnackBar
widget. There can be at most one snack bar displayed at a time. If
ScaffoldState() method is invoked when another snack bar is still visible,

264

CHAPTER 7 COMMON WIDGETS

the given snack bar is added to a queue and will be displayed after other
snack bars are dismissed. The return type of showSnackBar() method
is ScaffoldFeatureController<SnackBar, SnackBarClosedReason>.
SnackBarClosedReason is an enum that defines the reasons a snack bar
may be closed.

Listing 7-21 shows an example of opening snack bar.

Listing 7-21. Example of SnackBar

Scaffold.of(context).showSnackBar(SnackBar(
content: Text('This is a message.'),
action: SnackBarAction(label: 'OK', onPressed: () {}),

));

7-5. Scaffolding i10S Pages
Problem

You want to scaffold iOS pages.

Solution

Use CupertinoPageScaffold.

Discussion

For iOS apps, you can use CupertinoPageScaffold widget to create

the basic layout of pages. Comparing to Scaffold in Material Design,

customizations provided by CupertinoPageScaffold are limited. You can

only specify navigation bar, child, and background color.
CupertinoNavigationBar widget is similar with AppBar in Material

Design, but CupertinoNavigationBar can only have leading, middle, and

trailing widgets. The middle widget is centered between leading and

265

CHAPTER7 COMMON WIDGETS

trailing widgets. The leading widget can be automatically implied based
on the navigation state when automaticallylmplyLeading parameter
is true. The middle widget can also be automatically implied when
automaticallylmplyMiddle parameter is true.

Listing 7-22 shows an example of using CupertinoPageScaffold and
CupertinoNavigationBar.

Listing 7-22. Example of CupertinoPageScaffold

CupertinoPageScaffold(
navigationBar: CupertinoNavigationBar(
middle: Text('App'),
trailing: CupertinoButton(
child: Icon(CupertinoIcons.search),
onPressed: () {},

)s

)>
child: Container(),

)5

7-6. Creating Tab Layout in Material Design
Problem

You want to create tab bars and tabs.

Solution

Use TabBar, Tab, and TabController.

266

CHAPTER 7 COMMON WIDGETS

Discussion

Tab layout is widely used in mobile apps to organize multiple sections
in one page. To implement tab layout in Material Design, you need to
work with several widgets. TabBar widget is the container of Tab widgets.
TabController widget is responsible for coordinating TabBar and TabView.
A Tab widget must have at least some text, an icon, or a child widget,
but it cannot have both text and child widget. To create a TabBar, you
need to provide a list of tabs. You can choose to use an explicitly created
TabController instance or use the shared DefaultTabController instance.
DefaultTabController is an inherited widget. TabBar will try to look up an
ancestor DefaultTabController instance if no TabController is provided.
You can choose to provide a TabController instance or use the
inherited DefaultTabController. To create a TabController, you need to
provide the number of tabs and a TickerProvider instance.
In Listing 7-23, the mixin SingleTickerProviderStateMixin
of _TabPageState is an implementation of TickerProvider, so the
current instance of _TabPageState is passed as the vsync parameter of
TabController constructor. The TabController instance is shared by TabBar
and TabBarView.

Listing 7-23. TabBar with provided TabController

class TabPage extends StatefulWidget {
@override
_TabPageState createState() => TabPageState();

}

class _TabPageState extends State<TabPage> with
SingleTickerProviderStateMixin {
final List<Tab> tabs = [
Tab(text: 'List', icon: Icon(Icons.list)),
Tab(text: 'Map', icon: Icon(Icons.map)),

267

CHAPTER7 COMMON WIDGETS

I
TabController tabController;

@override
void initState() {
super.initState();

_tabController = TabController(length: _tabs.length, vsync:

this);
}

@override

void dispose() {
_tabController.dispose();
super.dispose();

}

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Tab'),
bottom: TabBar(
tabs: tabs,
controller: tabController,

)5
)s

body: TabBarView(
children: tabs.map((tab) {
return Center(
child: Text(tab.text),
);
}).tolist(),
controller: tabController,

268

CHAPTER 7 COMMON WIDGETS

)s
)5

If you don’t need to interact with TabController, using
DefaultTabController is a better choice. Code in Listing 7-24 uses
DefaultTabController to implement the same functionality as code in
Listing 7-23.

Listing 7-24. DefaultTabController

class DefaultTabControllerPage extends StatelessWidget {
final List<Tab> _tabs = [
Tab(text: 'List', icon: Icon(Icons.list)),
Tab(text: 'Map', icon: Icon(Icons.map))

15

@override
Widget build(BuildContext context) {
return DefaultTabController(
length: tabs.length,
child: Scaffold(
appBar: AppBar(
bottom: TabBar(tabs: _tabs),
)J
body: TabBarView(
children: tabs.map((tab) {
return Center(
child: Text(tab.text),
);
}).tolList(),

)

269

CHAPTER7 COMMON WIDGETS

)5
);
}
}

7-7. Implementing Tab Layout in i0OS
Problem

You want to implement tab layout in iOS apps.

Solution

Use CupertinoTabScaffold, CupertinoTabBar, and CupertinoTabView.

Discussion

Tab layout can also be implemented for iOS apps with widgets
CupertinoTabScaffold, CupertinoTabBar, and CupertinoTabView. When
creating CupertinoTabScaffold, you should use CupertinoTabBar as the
value of tabBar parameter. Tabs in CupertinoTabBar are represented as
BottomNavigationBarltem widgets. The tabBuilder parameter specifies
the builder function to build the view for each tab. Listing 7-25 shows an
example of implementing tab layout.

Listing 7-25. Tab layout for iOS style

class CupertinoTabPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return CupertinoTabScaffold(
tabBar: CupertinoTabBar(items: [

270

CHAPTER 7 COMMON WIDGETS

BottomNavigationBarItem(icon: Icon(CupertinoIcons.
settings)),
BottomNavigationBarItem(icon: Icon(CupertinoIcons.
info)),
D,
tabBuilder: (context, index) {
return CupertinoTabView(
builder: (context) {
return Center(
child: Text('Tab $index'),
);
}J
)5
b
);

7-8. Summary

This chapter discusses common widgets in Flutter, including list view, grid
view, table layout, page scaffolding, and tab layout. These widgets create
the basic structure of pages in Flutter. In the next chapter, we’ll discuss
page navigation in Flutter apps.

271

CHAPTER 8

Page Navigation

Flutter apps may have multiple screens or pages. Pages are groups of
functionalities. The user navigates between different pages to use different
functionalities. Concepts like pages are called routes in Flutter. Routes not
only include full-screen pages but also modal dialogs and popups. Routes
are managed by Navigator widget. This chapter discusses recipes related
to page navigation in Flutter.

8-1. Implementing Basic Page Navigation
Problem

You want to have basic page navigation support.

Solution

Use Navigator.push() to navigate to a new route and Navigator.pop() to
navigate to the previous route.

Discussion

Routes are managed by Navigator widget. The navigator manages a
stack of routes. Routes can be pushed on the stack using push() method
and popped off the stack using pop () method. The top element in the
stack is the currently active route. Navigator is a stateful widget with

© Fu Cheng 2019 273
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_8

CHAPTER 8 PAGE NAVIGATION

NavigatorState as its state. To interact with the navigator, you can use
the static methods of Navigator or get an instance of NavigatorState.
By using Navigator.of() method, you can get the nearest enclosing
NavigatorState instance of the given build context. You can explicitly
create Navigator widgets, but most of the time you’'ll use the Navigator
widget created by WidgetsApp, MaterialApp, or CupertinoApp widget.

Routes are represented using implementations of abstract Route
class. For example, PageRoute represents full-screen modal route, and
PopupRoute represents modal routes that overlay a widget over the
current route. Both PageRoute and PopupRoute classes are subclasses of
ModalRoute class. For Material Design apps, the easiest way to create a full-
screen page is using MaterialPageRoute class. MaterialPageRoute uses a
WidgetBuilder function to build the content of the route.

In Listing 8-1, Navigator.of(context) gets the NavigatorState
instance to work with. The new route pushed to the navigator is a
MaterialPageRoute instance. The new route has a button that uses
NavigatorState.pop() method to pop the current route off the navigator.
In fact, when using Scaffold widget, a back button is added automatically
in the app bar, so there is no need to use an explicit back button.

Listing 8-1. Page navigation using Navigator

class SimpleNavigationPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Simple Navigation'),
)5
body: Center(
child: RaisedButton(
child: Text('Show page'),

274

CHAPTER 8 PAGE NAVIGATION

onPressed: () {
Navigator.of(context).
push(MaterialPageRoute(builder: (context) {
return Scaffold(
appBar: AppBar(
title: Text('New Page'),
)5
body: Center(
child: Column(
crossAxisAlignment: CrossAxisAlignment.
center,
children: <Widget>[
Text('A new page'),
RaisedButton(
child: Text('Go back"),
onPressed: () {
Navigator.of(context).pop();

}J
))
])
)s
))
)s
);
}J
)’
)s
)5

275

CHAPTER 8 PAGE NAVIGATION

Navigator class has static methods like push() and pop() which do
the same thing as the same method in NavigatorState class, but these
static methods require an extra BuildContext parameter. Navigator.
push(context) is actually the same as Navigator.of(context).push().
You can choose to use either method.

8-2. Using Named Routes
Problem

You want to navigate to the same route from different places.

Solution

Use named routes with Navigator.pushNamed() method.

Discussion

When using Navigator.push() method to push new routes to the
navigator, new routes are built on demand using builder functions. This
approach doesn’t work well when routes can be navigated from different
places, because we don’t want to duplicate the code of building the routes.
In this case, using named routes is a better choice. A named route has a
unique name. Navigator.pushNamed() method uses the name to specify
the route to push to the navigator.

Named routes need to be registered before they can be navigated to.
The easiest way to register named routes is using the routes parameter
of WidgetsApp, MaterialApp, or CupertinoApp constructor. The routes
parameter is a Map<String, WidgetBuilder> object with keys as the route
names. Route names are usually in path-like format starting with “/”. This
is similar to how web apps organize the pages. For example, you can have
route names like /log in, /orders, and /orders/1234.

276

CHAPTER 8 PAGE NAVIGATION

In Listing 8-2, pressing the “Sign Up” button pushes the named route /
sign_up to the navigator.

Listing 8-2. Use named route

class LogInPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Log In'),
)5
body: Center(
child: RaisedButton(
child: Text('Sign Up'),
onPressed: () {
Navigator.pushNamed(context, '/sign up');
})
)J
)5
);
}
}

In Listing 8-3, two named routes are registered in routes parameter.

Listing 8-3. Register named routes

class PageNavigationApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Page Navigation',

277

CHAPTER 8 PAGE NAVIGATION

home: IndexPage(),

routes: {
"/sign up': (context) => SignUpPage(),
"/log in': (context) => LogInPage(),

1

);
}
}

8-3. Passing Data Between Routes
Problem

You want to pass data between different routes.

Solution

Pass data to routes using constructor parameters or RouteSettings objects
and pass data from routes using result parameter of Navigator.pop()
method.

Discussion

A route may require additional data when building its content. A route
may also return some data when popped off. For example, a route to edit
user details may need the current details as the input and return updated
details as the output. Depending on how routes are navigated to, there are
different ways to pass data between routes.

When using Navigator.push() method to push new routes, the easiest
way is to pass the data as constructor parameters of the widget returned
by WidgetBuilder function. When using Navigator.pop() method, you

278

CHAPTER 8 PAGE NAVIGATION

can use the optional result parameter to pass return value to the previous
route. The return value of Navigator.push() method is a Future<T>
object. This Future object will be resolved when the newly pushed route
is popped off. The resolved value is the return value passed when invoking
Navigator.pop() method. If the route is popped off using the back button,
then the resolved value is null.

In Listing 8-4, UserDetails class contains first name and last name of
a user. UserDetailsPage displays the user’s details. When the edit button
is pressed, a new route is pushed to the navigator. Content of the new
route is an EditUserDetailsPage widget with the UserDetails object
as the constructor parameter. The return value of the new route is also a
UserDetails object, which is used to update the state of UserDetailsPage.

Listing 8-4. User details page

class UserDetails {
UserDetails(this.firstName, this.lastName);

final String firstName;
final String lastName;

}

class UserDetailsPage extends StatefulWidget {
@override
_UserDetailsPageState createState() =>
_UserDetailsPageState();

}

class UserDetailsPageState extends State<UserDetailsPage> {
UserDetails userDetails = UserDetails('John', 'Doe');

@override
Widget build(BuildContext context) {
return Scaffold(

279

CHAPTER 8 PAGE NAVIGATION

appBar: AppBar(
title: Text('User Details'),
)5
body: Column(
children: <Widget>[
Text('First name: ${ userDetails.firstName}'),
Text('Last name: ${ userDetails.lastName}'),
RaisedButton.icon(
label: Text('Edit (route builder)'),
icon: Icon(Icons.edit),
onPressed: () async {

UserDetails result = await Navigator.push(
context,
MaterialPageRoute<UserDetails>(

builder: (BuildContext context) {
return EditUserDetailsPage(userDetails);
1
)

);

if (result != null) {
setState(() {

_userDetails = result;
D;
}
})
)J
]J
)5
);
}
}

280

CHAPTER 8 PAGE NAVIGATION

In Listing 8-5, EditUserDetailsPage uses two TextFormField
widgets to edit user details. When the save button is pressed, the updated
UserDetails object is returned using Navigator.pop() method.

Listing 8-5. Edit user details page

class EditUserDetailsPage extends StatefulWidget {
EditUserDetailsPage(this.userDetails);
final UserDetails userDetails;

@override
_EditUserDetailsPageState createState() =>
_EditUserDetailsPageState(userDetails);

}

class EditUserDetailsPageState extends
State<EditUserDetailsPage> {
_EditUserDetailsPageState(this. userDetails);

UserDetails _userDetails;

final GlobalKey<FormFieldState<String>> firstNameKey =
GlobalKey();

final GlobalKey<FormFieldState<String>> lastNameKey =
GlobalKey();

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Edit User Details'),
)5
body: Column(
children: <Widget>[
TextFormField(

281

CHAPTER 8 PAGE NAVIGATION

key: firstNameKey,
decoration: InputDecoration(
labelText: 'First name',

)

initialValue: _userDetails.firstName,
))
TextFormField(
key: lastNameKey,
decoration: InputDecoration(
labelText: 'Last name',

)

initialValue: _userDetails.lastName,
)J
RaisedButton(
child: Text('Save'),
onPressed: () {
Navigator.pop(
context,
UserDetails(firstNameKey.currentState?.
value,
_lastNameKey.currentState?.value));

1

)s
)5

If named routes are used, data can be passed to the route using the
arguments parameter of Navigator.pushNamed() method. In Listing 8-6,
pushNamed () method is used to navigate to the /edit_user route with
current UserDetails object.

282

CHAPTER 8 PAGE NAVIGATION
Listing 8-6. Pass data to named route

UserDetails result = await Navigator.pushNamed(
context,
"/edit_user’,
arguments: userDetails,

)5

The named route /edit_user is registered in MaterialApp. The route
parameters cannot be used, because you cannot access the data passed
to the route in the builder function. The onGenerateRoute parameter of
WidgetsApp, MaterialApp, or CupertinoApp should be used instead. The
type of onGenerateRoute parameter is RouteFactory, which is a typedef
of function type Route (RouteSettings settings).RouteSettings
class contains data that may be required when creating the Route object.
Table 8-1 shows properties of RouteSettings class.

Table 8-1. Properties of RouteSettings

Name Type Description

name String Name of the route.

arguments Object Data passed to the route.

isInitialRoute bool Whether this route is the first route pushed to

the navigator.

When implementing the onGenerateRoute function, you need to
return routes based on the provided RouteSettings object. In Listing 8-7,
the name property is checked first, then a MeterialPageRoute is returned
with EditUserDetailsPage as the content. The arguments property of
RouteSettings is used in EditUserDetailsPage constructor. The value of
arguments property is the UserDetails object passed in Listing 8-6.

283

CHAPTER 8 PAGE NAVIGATION

Listing 8-7. Use onGenerateRoute

MaterialApp(
onGenerateRoute: (RouteSettings settings) {
if (settings.name == '/edit user') {

return MaterialPageRoute<UserDetails>(
settings: settings,
builder: (context) {
return EditUserDetailsPage(settings.arguments);

}’
)5
}
})
)5

8-4. Implementing Dynamic Route
Matching

Problem

You want to use complicated logic to match route names.

Solution

Use onGenerateRoute parameter.

Discussion

When named routes are registered using the routes parameter of WidgetsApp,
only the whole route name can be used to match the Route objects. If you want
to use complicated logic to match Route objects with route names, you can

284

CHAPTER 8 PAGE NAVIGATION

use onGenerateRoute parameter and RouteSettings object. For example, you
can match all route names start with /order to a single Route object.
In Listing 8-8, all route names starting with /order will navigate to a

route using OrderPage.

Listing 8-8. Route matching

MaterialApp(
onGenerateRoute: (RouteSettings settings) {
if (settings.name.startsWith('/order')) {
return MaterialPageRoute(
settings: settings,
builder: (context) {
return OrderPage();
})
)5
}
}J
);

8-5. Handling Unknown Routes
Problem

You want to handle the case of navigating to an unknown route.

Solution

Use onUnknownRoute parameter of Navigator, WidgetsApp, MaterialApp,
and CupertinoApp.

285

CHAPTER 8 PAGE NAVIGATION

Discussion

It’s possible that the navigator may be asked to navigate to an unknown
route. This can be caused by programming errors in the app or external
requests for route navigation. If onGenerateRoute function returns null
for the given RouteSettings object, the onUnknownRoute function is
invoked to provide a fallback route. This onUnknownRoute function is
usually used for error handling, just like 404 pages in web apps. The type of
onUnknownRoute is also RouteFactory.

In Listing 8-9, onUnknownRoute function returns the route that shows
the NotFoundPage widget.

Listing 8-9. Use onUnknownRoute

MaterialApp(
onUnknownRoute: (RouteSettings settings) {
return MaterialPageRoute(
settings: settings,
builder: (BuildContext context) {
return NotFoundPage(settings.name);
b
)5
}J
)

8-6. Displaying Material Design Dialogs

Problem

You want to show Material Design dialogs.

286

CHAPTER 8 PAGE NAVIGATION

Solution

Use showDialog() function and Dialog, SimpleDialog, and AlertDialog
widgets.

Discussion

To use Material Design dialogs, you need to create dialog widgets
and show them. Dialog class and its subclasses SimpleDialog and
AlertDialog can be used to create dialogs.

SimpleDialog widget presents several options to the user. Options
are represented using SimpleDialogOption class. A SimpleDialogOption
widget can have a child widget and an onPressed callback. When creating
SimpleDialog, you can provide a list of children and an optional title.
AlertDialog widget presents content and a list of actions to the user.
AlertDialog is used to acknowledge user or ask for confirmation.

To show dialogs, you should use showDialog() function. Invoking
this function pushes dialog route to the navigator. Dialogs are closed
using Navigator.pop() method. The showDialog() function uses a
WidgetBuilder function to build the dialog content. The return value of
showDialog() function is a Future<T> object which is actually the return
value of Navigator.push() method.

In Listing 8-10, pressing the button shows a simple dialog with two
options.

Listing 8-10. Show simple dialogs

RaisedButton(
child: Text('Show SimpleDialog'),
onPressed: () async {
String result = await showDialog<String>(
context: context,

287

CHAPTER 8 PAGE NAVIGATION

builder: (BuildContext context) {
return SimpleDialog(
title: Text('Choose Color'),
children: <Widget>[
SimpleDialogOption(
child: Text('Red'),
onPressed: () {
Navigator.pop(context, 'Red"');
}J
))
SimpleDialogOption(
child: Text('Green'),
onPressed: () {
Navigator.pop(context, 'Green');
1
))
]J
)
D;
print(result);
})
)

Figure 8-1 shows the screenshot of code in Listing 8-10.

288

CHAPTER 8 PAGE NAVIGATION

Choose Color

Red

Green

Figure 8-1. Material Design simple dialog

In Listing 8-11, pressing the button shows an alert dialog with two
actions.

Listing 8-11. Show alert dialog

RaisedButton(
child: Text('Show AlertDialog"'),
onPressed: () async {
bool result = await showDialog<bool>(
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: Text('Delete'),
content: Text('Delete this item?'),
actions: <Widget>[
FlatButton(
child: Text('Yes'),
onPressed: () {
Navigator.pop(context, true);
}J
)J

289

CHAPTER 8 PAGE NAVIGATION

FlatButton(
child: Text('No'),
onPressed: () {
Navigator.pop(context, false);
}J
)J
]J
);
1
);
print(result);
})
);

Figure 8-2 shows the screenshot of code in Listing 8-11.

Delete

Delete this item?

Figure 8-2. Material Design alert dialog

8-7. Displaying iOS Dialogs
Problem

You want to display iOS dialogs.

290

CHAPTER 8 PAGE NAVIGATION

Solution

Use showCupertinoDialog() function and CupertinoAlertDialog and
CupertinoPopupSurface widgets.

Discussion

For iOS apps, you can use showCupertinoDialog() function and widgets
like CupertinoAlertDialog and CupertinoPopupSurface to show dialogs.
The showCupertinoDialog() function is similar with showDialog()
function for Material Design. This function also uses Navigator.push()
method to push dialog route to the navigator. CupertinoAlertDialog

is a built-in dialog implementation to acknowledge user or require for
confirmation. A CupertinoAlertDialog may have title, content, and a list
of actions. Actions are represented using CupertinoDialogAction widget.
Table 8-2 shows parameters of CupertinoDialogAction constructor.

Table 8-2. Parameters of CupertinoDialogAction

Name Type Description

child Widget Content of the action.

onPressed VoidCallback Action pressed callback.
isDefaultAction bool Whether this action is the default action.
isDestructiveAction ~ bool Whether this action is destructive.

Destructive actions have a different style.

textStyle TextStyle Text style applied to the action.

In Listing 8-12, pressing the button shows an iOS-style alert dialog.

291

CHAPTER 8 PAGE NAVIGATION

Listing 8-12. Show iOS alert dialog

CupertinoButton(
child: Text('Show Alert Dialog'),
onPressed: () async {
bool result = await showCupertinoDialog<bool>(
context: context,
builder: (BuildContext context) {
return CupertinoAlertDialog(
title: Text('Delete'),
content: Text('Delete this item?'),
actions: <Widget>[
CupertinoDialogAction(
child: Text('Delete'),
onPressed: () {
Navigator.pop(context, true);

1

isDestructiveAction: true,
)J
CupertinoDialogAction(
child: Text('Cancel'),
onPressed: () {
Navigator.pop(context, false);
})
)J
]J
);
1
);
print(result);
}J
);

292

CHAPTER 8 PAGE NAVIGATION

Figure 8-3 shows the screenshot of code in Listing 8-12.

Delete
Delete this item?

Delete Cancel

Figure 8-3. iOS alert dialog

If you want to create a custom dialog, you can use
CupertinoPopupSurface widget which creates rounded rectangle surface.

8-8. Displaying i0S Action Sheets
Problem

You want to present a set of actions for the user to choose in i0S apps.

Solution

Use showCupertinoModalPopup() function and CupertinoActionSheet
widget.

Discussion

If you want to present a set of actions for the user to choose in i0S

apps, you can use showCupertinoModalPopup() function to display
CupertinoActionSheet widgets. A CupertinoActionSheet can have a title,
a message, a cancel button, and a list of actions. Actions are represented

293

CHAPTER 8 PAGE NAVIGATION

as CupertinoActionSheetAction widgets. CupertinoActionSheetAction
constructor has parameters child, onPressed, isDefaultAction,
and isDestructiveAction, which have the same meaning as in
CupertinoDialogAction constructor shown in Table 8-2.

In Listing 8-13, pressing the button shows an action sheet with three
actions and a cancel button.

Listing 8-13. Show iOS action sheet

CupertinoButton(
child: Text('Show Action Sheet'),
onPressed: () async {
String result = await showCupertinoModalPopup<String>(
context: context,
builder: (BuildContext context) {
return CupertinoActionSheet(
title: Text('What to do'),
message: Text('Please select an action'),
actions: <Widget>[
CupertinoActionSheetAction(
child: Text('Duplicate'),
isDefaultAction: true,
onPressed: () {
Navigator.pop(context, 'duplicate');

1
)

CupertinoActionSheetAction(
child: Text('Move'),
onPressed: () {
Navigator.pop(context, 'move');
})
)J

294

CHAPTER 8 PAGE NAVIGATION

CupertinoActionSheetAction(
isDestructiveAction: true,
child: Text('Delete'),
onPressed: () {

Navigator.pop(context, 'delete');

})

)J

])

cancelButton: CupertinoActionSheetAction(
child: Text('Cancel'),
onPressed: () {
Navigator.pop(context);

}J
)J
);
}’
)5
print(result);
})
);

Figure 8-4 shows the screenshot of code in Listing 8-13.

295

CHAPTER 8 PAGE NAVIGATION

What to do

Please select an action

Duplicate

Move

Delete

Cancel

Figure 8-4. iOS action sheet

8-9. Showing Material Design Menus
Problem

You want to show menus in Material Design apps.

Solution

Use showMenu() function and implementations of PopupMenuEntry class.

Discussion

To use showMenu() function, you need to have a list of PopupMenuEntry
objects. There are different types of PopupMenuEntry implementations:

o PopupMenuItem- Menu item for a single value

o CheckedPopupMenuItem - Menu item with a checkmark
296

CHAPTER 8 PAGE NAVIGATION

o PopupMenuDivider - Horizontal divider between menu
items

PopupMenuItemis a generic with the type of its value. Table 8-3 shows
parameters of PopupMenuItem constructor. CheckedPopupMenuItemis
a subclass of PopupMenuItem. CheckedPopupMenuItem has the checked
property to specify whether to display a checkmark.

Table 8-3. Parameters of PopupMenultem constructor

Name Type Description

child Widget Content of the menu item.

value T Value for the menu item.

enabled bool Whether this menu item can be selected.
height double Height of the menu item. Default to 48.

The showMenu() function returns a Future<T> object which resolves
to the value of selected menu item. This function also uses Navigator.
push() method to show the menu. Table 8-4 shows major parameters of
showMenu() function. When initialValue is specified, the first item with a
matching value is highlighted.

Table 8-4. Parameters of showMenu()

Name Type Description

items List<PopupMenuEntry<T>> Alist of menu items.

initialValue T Initial value to highlight menu
item.

position RelativeRect Position to show the menu.

297

CHAPTER 8 PAGE NAVIGATION

The menu in Listing 8-14 contains a PopupMenuItenm, a
PopupMenuDivider, and a CheckedPopupMenuItem.

Listing 8-14. Show menu

RaisedButton(
child: Text('Show Menu'),
onPressed: () async {

String result = await showMenu<String>(
context: context,
position: RelativeRect.fromLTRB(0, 0, 0, 0),
items: [

PopupMenuItem(
value: 'red',
child: Text('Red"),
)’
PopupMenuDivider(),
CheckedPopupMenuItem(
value: 'green’,
checked: true,
child: Text('Green'),
)
]’
initialValue: 'green’,
)5
print(result);
})
);

The main difficulty of using showMenu() function is to provide proper
value for the position parameter. If the menu is triggered by pressing
a button, using PopupMenuButton is a better choice, because the menu
position is calculated automatically based on the button’s position.

298

CHAPTER 8 PAGE NAVIGATION

Table 8-5 shows major parameters of PopupMenuButton constructor.
PopupMenuItemBuilder function takes a BuildContext object as the
argument and returns a List<PopupMenuEntry<T>> object.

Table 8-5. Parameters of PopupMenuButton

Name Type Description

itemBuilder PopupMenu Builder function to create menu
ItemBuilder<T> items.

initialvalue T Initial value.

onSelected PopupMenu Callback when a menu item is

ItemSelected<T> selected.

onCanceled PopupMenuCanceled Callback when the menu is dismissed
without selection.

tooltip String Tooltip of the button.

child Widget Content of the button.

icon Icon Icon of the button

Listing 8-15 shows how to use PopupMenuButton to implement the
same menu as in Listing 8-14.

Listing 8-15. Use PopupMenuButton

PopupMenuButton(
itemBuilder: (BuildContext context) {
return <PopupMenuEntry<String>>[
PopupMenuItem(
value: 'red',
child: Text('Red"),

)

299

CHAPTER 8 PAGE NAVIGATION

PopupMenuDivider(),
CheckedPopupMenuItem(
value: 'green’,
checked: true,
child: Text('Green'),
)
15
})
initialvalue: ‘'green’,
child: Text('Select color'),
onSelected: (String value) {
print(value);
})
onCanceled: () {
print('no selections');
})
);

Figure 8-5 shows the screenshot of the menu created in Listings 8-14
and 8-15.

Red

v Green

Figure 8-5. Material Design menu

300

CHAPTER 8 PAGE NAVIGATION

8-10. Managing Complicated Page Flows
Using Nested Navigators

Problem

You want to have complicated page flows.

Solution

Use nested Navigator instances.

Discussion

A Navigator instance manages its own stack of routes. For simple apps,
one Navigator instance is generally enough, and you can simply use the
Navigator instance created by WidgetsApp, MaterialApp, or CupertinoApp.
If your app has complicated page flows, you may need to use nested
navigators. Since Navigator itself is also a widget, Navigator instances

can be created like normal widgets. The Navigator instance created by
WidgetsApp, MaterialApp, or CupertinoApp becomes the root navigator.
All navigators are organized in a hierarchy. To get the root navigator, you
can set rootNavigator parameter to true when invoking Navigator.of()
method. Table 8-6 shows parameters of Navigator constructor.

Table 8-6. Parameters of Navigator

Name Type Description

onGenerateRoute RouteFactory Generate a route for a given
RouteSettings object.

onUnknownRoute RouteFactory Handle unknown routes.

initialRoute String Name of the first route.
observers List<Navigator Observers of state changes in the
Observer> navigator.

301

CHAPTER 8 PAGE NAVIGATION

Let’s use a concrete example to explain how nested navigators can be
used. Suppose that you are building a social news reading app, after a new
user is signed up, you want to show the user an optional on-boarding page.
This on-boarding page has several steps for the user to complete. The user
can go back and forth to only complete interested steps. The user can also
skip this page and return to app’s home page. The on-boarding page has its
own navigator to handle navigation of steps.

In Listing 8-16, the navigator has two named routes. The initial route is
set to on_boarding/topic, so UserOnBoardingTopicPage is displayed first.

Listing 8-16. User on-boarding page

class UserOnBoardingPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Get Started'),
)
body: Navigator(
initialRoute: 'on_boarding/topic’,
onGenerateRoute: (RouteSettings settings) {
WidgetBuilder builder;
switch (settings.name) {
case 'on_boarding/topic':
builder = (BuildContext context) {
return UserOnBoardingTopicPage();
};
break;
case 'on_boarding/follower":
builder = (BuildContext context) {
return UserOnBoardingFollowPage();

};

302

CHAPTER 8 PAGE NAVIGATION

break;

}

return MaterialPageRoute(
builder: builder,
settings: settings,

);

}’
)
);

In Listing 8-17, pressing the “Next” button navigates to the next step
with route name on_boarding/follower. Pressing the “Done” button uses
the root navigator to pop off the on-boarding page.

Listing 8-17. Step to select topics

class UserOnBoardingTopicPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
Text('Select interested topics'),
RaisedButton.icon(
icon: Icon(Icons.arrow forward),
label: Text('Next'),
onPressed: () {
Navigator.pushNamed(context, 'on_boarding/
follower');

b
)

303

CHAPTER 8 PAGE NAVIGATION

RaisedButton.icon(
icon: Icon(Icons.check),
label: Text('Done'),
onPressed: () {
Navigator.of(context, rootNavigator: true).pop();

}J
)
1
)5
}
}

Figure 8-6 shows the screenshot of code in Listing 8-17.

< Get Started
Select interested topics

- Next

+/ Done

Figure 8-6. Step to select topics

CupertinoTabView has its own navigator instance. When creating
CupertinoTabView, you can provide routes, onGenerateRoute,
onUnknownRoute, and navigatorObservers parameters. These
parameters are used to configure the Navigator instance. When using
CupertinoTabScaffold to create tab layout, each tab view has its own
navigation state and history.

When using nested navigators, it’s important to make sure that the
correct navigator instance is used. If you want to show and close full-
screen pages or modal dialogs, you should use the root navigator obtained

304

CHAPTER 8 PAGE NAVIGATION

by Navigator.of(context, rootNavigator: true).InvokingNavigator.
of(context) can only get the nearest enclosing Navigator instance. There
is no way to get intermediate Navigator instances in the hierarchy. You
need to use the BuildContext object at the correct location of the widgets
tree. Functions like showDialog() and showMenu() always use Navigator.
of (context) internally. You can only use the passed-in BuildContext
object to control which Navigator instance is used by these functions.

8-11. Observing Navigator State Changes
Problem

You want to get notified when state of navigator is changed.

Solution

Use NavigatorObserver.

Discussion

Sometimes, you may want to get notified when the state of navigator is
changed. For example, you want to analyze the page flows of users using
the app to improve user experiences. When creating Navigator instances,
you can provide a list of NavigatorObserver objects as the observers of
navigator state changes. Table 8-7 shows methods of NavigatorObserver
interface.

305

CHAPTER 8 PAGE NAVIGATION

Table 8-7. Methods of NavigatorObserver

Name

Description

didPop(Route route, Route
previousRoute)

didPush(Route route, Route
previousRoute)

didRemove(Route route,
Route previousRoute)

didReplace(Route newRoute,
Route oldRoute)

didStartUserGesture(Route
route, Route previousRoute)

didStopUserGesture()

The route is popped and previousRoute
is the newly active route.

The route is pushed and previousRoute
is the previously active route.

The route is removed and previousRoute
is the route immediately below the removed
route.

The oldRoute is replaced with newRoute

User starts moving the route using gesture.
The route immediately below route is
previousRoute

User stops moving route using gesture.

In Listing 8-18, LoggingNavigatorObserver class logs messages when

routes are pushed and popped.

Listing 8-18. Logging navigator observer

class LoggingNavigatorObserver extends NavigatorObserver {

@override

void didPush(Route<dynamic> route, Route<dynamic>

previousRoute) {

print('push: ${ routeName(previousRoute)} ->

${_ routeName(route)}');
}

306

CHAPTER 8 PAGE NAVIGATION

@override
void didPop(Route<dynamic> route, Route<dynamic>
previousRoute) {
print(' pop: ${_ routeName(route)} -> ${_
routeName(previousRoute)}');

}

String _routeName(Route<dynamic> route) {
return route != null
? (route.settings?.name ?? route.runtimeType.
toString())
: 'null’;

NavigatorObserver interface is useful when you want to have a global
handler for all state changes in a navigator. If you are only interested in
state changes related to a particular route, then using RouteObserver
class is a better choice. RouteObserver class is also an implementation of
NavigatorObserver interface.

To get notified of state changes related to a Route object, your class
needs to implement RouteAware interface. Table 8-8 shows methods of
RouteAware interface.

Table 8-8. Methods of RouteAware

Name Description

didPop() Callback when the current route is popped off.

didPopNext() Called when the current route becomes active after the top
route is popped off.

didPush() Called when the current route is pushed.

didPushNext() Called when the current route is no longer active after a new
route is pushed.

307

CHAPTER 8 PAGE NAVIGATION

To actually get notified for a Route object, you need to use subscribe()
method of RouteObserver to subscribe a RouteAware object to a Route
object. When the subscription is no longer required, you should use
unsubscribe() to unsubscribe the RouteAware object.

In Listing 8-19, ObservedPageState class implements RouteAware
interface and overrides didPush() and didPop() methods to print
out some messages. ModalRoute.of(context) gets the nearest
enclosing ModalRoute object from build context, which is the route that
ObservedPage is in. By using ModalRoute.of(context), there is no need
for explicitly passing Route objects. The current ObservedPageState
object subscribes to state changes in current route using the subscribe()
method of the passed-in RouteObserver object. The subscription is
removed when the ObservedPageState object is disposed.

Listing 8-19. Use RouteObserver

class ObservedPage extends StatefulWidget {
ObservedPage(this.routeObserver);
final RouteObserver<PageRoute<dynamic>> routeObserver;

@override
_ObservedPageState createState() => ObservedPageState(routeO
bserver);

}

class ObservedPageState extends State<ObservedPage> with
RouteAware {

_ObservedPageState(this. routeObserver);

final RouteObserver<PageRoute<dynamic>> _routeObserver;

@override
void didChangeDependencies() {
super.didChangeDependencies();

308

CHAPTER 8 PAGE NAVIGATION

_routeObserver.subscribe(this, ModalRoute.of(context));

}

@override

void dispose() {
_routeObserver.unsubscribe(this);
super.dispose();

}

@override

void didPush() {
print('pushed’);

}

@override

void didPop() {
print('popped");

}

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Observed (Stateful)'),
)5
)5
}

309

CHAPTER 8 PAGE NAVIGATION

8-12. Stopping Routes from Popping
Problem

You want to stop routes from popping off the navigator.

Solution

Use WillPopCallback with ModalRoute objects.

Discussion

When a route is pushed to a navigator, the route can be popped off using
the back button in the Scaffold or system’s back button in Android.
Sometimes you may want to stop the route from being popped off. For
example, if there are unsaved changes in the page, you may want to show
an alert dialog first to ask for confirmation. When Navigator.maybePop()
method is used instead of Navigator.pop() method, you have a chance to
decide whether the request to pop off a route should proceed.

ModalRoute class has addScopedWillPopCallback() method to add
WillPopCallback that decides whether the route should be popped off.
WillPopCallback is a typedef of function type Future<bool> (). If the
returned Future<bool> object resolves to true, then the route can be
popped off. Otherwise, the route cannot be popped off. You can add
multiple WillPopCallback functions to a ModalRoute object. If any of
the WillPopCallback function vetoes the request, the route won’t be
popped off.

In Listing 8-20, a WillPopCallback function is added to the current
route. The return value of WillPopCallback function is the Future<bool>
object returned by showDialog().

310

CHAPTER 8 PAGE NAVIGATION

Listing 8-20. Veto route popping request

class VetoPopPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
ModalRoute.of(context).addScopedWillPopCallback(() {
return showDialog<bool>(
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: Text('Exit?'),
actions: <Widget>[
FlatButton(
child: Text('Yes'),
onPressed: () {
Navigator.pop(context, true);

1

)5
FlatButton(

child: Text('No"),
onPressed: () {
Navigator.pop(context, false);

})
))
]J
);
}J

);
D;
return Scaffold(

appBar: AppBar(

311

CHAPTER 8 PAGE NAVIGATION

title: Text('Veto Pop'),

)5
body: Container(),
)5
}
}

8-13. Summary

It's common to have multiple pages in Flutter apps. This chapter discusses
basic concepts of implementing page navigation in Flutter. This chapter
also covers dialogs, menus, and action sheets. In the next chapter, we’ll
discuss backend service interaction in Flutter.

312

CHAPTER 9

Service Interaction

Many non-trivial mobile apps require interaction with backend services.
This chapter covers essential concepts related to service interactions in
Flutter.

9-1. Working with Futures
Problem

You want to work with Future objects.

Solution

Use then() and catchError () methods to handle results of Future
objects.

Discussion

When using code from Flutter and Dart libraries, you may encounter
functions that return Future objects. Future<T> class from dart:async
library is a representation of delayed computations. A Future object
represents a potential value or error that will be available in the future.
When given a Future object, you can register callbacks to handle the value
or error once it is available. Future class is one of the basic building blocks
of asynchronous programming in Dart.

© Fu Cheng 2019 313
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_9

CHAPTER9 SERVICE INTERACTION

Given a Future object, there are three different cases regarding its
result:

e The computation never completes. No callbacks will be
invoked.

¢ The computation completes with a value. Value
callbacks are invoked with the value.

e The computation completes with an error. Error
callbacks are invoked with the error.

To register callbacks to a Future object, you can use then() method
to register a value callback and an optional error callback or use
catchError () method to register an error callback only. It's recommended
to use then() method to only register a value callback. This is because if
an error callback is registered using onError parameter of then() method,
this error callback cannot handle the error thrown in the value callback.
Most of the time, you want the error callback to handle all possible errors.
If an error of a Future object is not handled by its error callbacks, this error
will be handled by the global handler.

In Listing 9-1, the Future object may complete with value 1 or an Exror
object. Both value and error callbacks are registered to handle the result.

Listing 9-1. Use then() and catchError() methods to handle result

Future.delayed(
Duration(seconds: 1),
0O A
if (Random().nextBool()) {
return 1;
} else {
throw Error();
}
})

314

CHAPTER9 SERVICE INTERACTION

).then((value) {
print(value);

}).catchError((error) {
print('error: $error');

1

Return values of then() and catchError() methods are also Future
objects. Given a Future object A, the result of invoking A. then(func) is
another Future object B. If the func callback runs successfully, the Future
B will complete with the return value of invoking func function. Otherwise,
Future B will complete with the error thrown when invoking func
function. Invoking B. catchError (errorHandler) returns a new Future
object C. The error handler can handle errors thrown in Future B, which
may be thrown in Future A itself or in its value handler. By using then()
and catchError () methods, Future objects form a chain of handling
asynchronous computations.

In Listing 9-2, multiple then() methods are chained together to
process the result in sequence.

Listing 9-2. Chained then() methods

Future.value(1)
.then((value) => value + 1)
.then((value) => value * 10)
.then((value) => value + 2)
.then((value) => print(value));

If you want to call functions when a future completes, you can use
whenComplete() method. Functions added using whenComplete() are
called when this future completes, no matter it completes with a value or
an error. The whenComplete() method is equivalent of a finally block
in other programming languages. The chain of then().catchError().
whenComplete() is equivalent of “try-catch-finally”.

315

CHAPTER9 SERVICE INTERACTION

Listing 9-3 shows an example of using whenComplete() method.

Listing 9-3. Using whenComplete()

Future.value(1).then((value) {
print(value);

}) .whenComplete(() {
print('complete');

D;

It’s possible for the computation of Future object to take a long time
to complete. You can use timeout () method to set the time limit on the
computation. When invoking timeout () method, you need to provide a
Duration object as the time limit and an optional onTimeout function to
provide the value when a timeout happens. The return value of timeout ()
method is a new Future object. If the current Future object doesn’t
complete before the time limit, the result of calling onTimeout function is
the result of the new Future object. If no onTimeout function is provided,
the new Future object will complete with a TimeoutException when
current future is timed out.

In Listing 9-4, the Future object will complete in 5 seconds with value
1, but the time limit is set to 2 seconds. The value 10 returned by onTimeout
function will be used instead.

Listing 9-4. Use timeout() method

Future.delayed(Duration(seconds: 5), () => 1)
.timeout(
Duration(seconds: 2),
onTimeout: () => 10,

)

.then((value) => print(value));

316

CHAPTER9 SERVICE INTERACTION

9-2. Using async and await to Work
with Futures

Problem

You want to work with Future objects like they are synchronous.

Solution

Use async and await.

Discussion

Future objects represent asynchronous computations. The usual way to
work with Future objects is registering callbacks to handle results. This
callback-based style may create a barrier for developers that are used to
synchronous operations. Using async and await is a syntax sugar in Dart to
make working with Future objects like normal synchronous operations.

Given a Future object, await can wait for its completion and return
its value. The code after the await can use the returned value directly, just
like it is the result of a synchronous call. When await is used, its enclosing
function must be marked as async. This means the function returns a
Future object.

In Listing 9-5, the return value of getValue() function is a Future
object. In calculate() function, await is used to get the return value of
getValue() function and assign to value variable. Since await is used,
calculate() function is marked as async.

Listing 9-5. Use async/await

Future<int> getValue() {
return Future.value(1);

}

317

CHAPTER9 SERVICE INTERACTION

Future<int> calculate() async {
int value = await getValue();
return value * 10;

}

When await is used to handle Future objects, you can use try-catch-
finally to handle errors thrown in Future objects. This allows Future
objects to be used just like normal synchronous operations. Listing 9-6
shows an example of using try-catch-finally and await/async together.

Listing 9-6. Use try-catch-finally and await/async

Future<int> getErrorValue() {
return Future.error('invalid value');

}

Future<int> calculateWithError() async {

try {
return await getErrorValue();

} catch (e) {
print(e);
return 1;

} finally {
print('done');

}

}

9-3. Creating Futures
Problem

You want to create Future objects.

318

CHAPTER9 SERVICE INTERACTION

Solution

Use Future constructors Future(), Future.delayed(), Future.sync(),
Future.value(), and Future.error() to create Future objects.

Discussion

If you need to create Future objects, you can use its constructors,
Future(), Future.delayed(), Future.sync(), Future.value(), and
Future.error():

o Future() constructor creates a Future object that runs
the computation asynchronously.

o Future.delayed() constructor creates a Future object
that runs the computation after a delay specified using
aDuration object.

o Future.sync() constructor creates a Future object that
runs the computation immediately.

o Future.value() constructor creates a Future object
that completes with the given value.

o Future.error() constructor creates a Future object
that completes with the given error and optional stack

trace.

Listing 9-7 shows examples of using different Future constructors.

Listing 9-7. Create Future objects

Future(() => 1).then(print);
Future.delayed(Duration(seconds: 3), () => 1).then(print);
Future.sync(() => 1).then(print);
Future.value(1).then(print);
Future.error(Error()).catchError(print);

319

CHAPTER9 SERVICE INTERACTION

9-4. Working with Streams
Problem

You want to work with a stream of events.

Solution

Use Stream<T> class and its subclasses.

Discussion

With Future class, we can represent a single value which may be available
in the future. However, we may also need to work with a sequence of events.
Stream<T> class in dart:async library represents a source of asynchronous
events. To help with this, the Future class has asStream() method to create
a Stream containing the result of the current Future object.

If you have experiences with Reactive Streams (www.reactive-
streams.org/), you may find Stream in Dart is a similar concept. There
can be three types of events in a stream:

o Data event represents actual data in the stream. These
events are also called elements in the stream.

e Error event represents errors occurred.

o Done event represents that the end of stream has
reached. No more events will be emitted.

To receive events from a stream, you can use the listen()
method to set up listeners. The return value of listen() method is
a StreamSubscription object representing the active subscription.
Depending on the number of subscriptions allowed on the stream, there
are two types of streams:

320

http://www.reactive-streams.org/
http://www.reactive-streams.org/

CHAPTER9 SERVICE INTERACTION

o Asingle-subscription stream allows only a single
listener during the whole lifecycle of the stream. It only
starts emitting events when a listener is set up, and it
stops emitting events when the listener unsubscribes.

e Abroadcast stream allows any number of listeners.
Events are emitted when they are ready, even though
there are no subscribed listener.

Given a Stream object, the property isBroadcast can be used to check
whether it is a broadcast stream. You can use the asBroadcastStream()
method to create a broadcast stream from a single-subscription stream.

Stream Subscription

Table 9-1 shows parameters of 1isten() method. You can provide any
number of handlers for different events and ignore those uninterested
events.

Table 9-1. Parameters of listen() method

Name Type Description

onData void (T event) Handler of data events.

onError Function Handler of error events.

onDone void () Handler of done event.

cancelOnError bool Whether to cancel the subscription when

the first error event is emitted.

In Listing 9-8, handlers for three types of events are provided.

321

CHAPTER9 SERVICE INTERACTION

Listing 9-8. Use listen() method

Stream.fromIterable([1, 2, 3]).listen(
(value) => print(value),
onError: (error) => print('error: $error'),
onDone: () => print('done'),
cancelOnError: true,

)5

With the StreamSubscription object returned by listen()
method, you can manage the subscription. Table 9-2 show methods of
StreamSubscription class.

Table 9-2. Methods of StreamSubscription

Name Description

cancel() Cancels this subscription.

pause([Future Requests the stream to pause events emitting. If
resumeSignal]) resumeSignal is provided, the stream will resume when the
future completes.

resume() Resumes the stream after a pause.

onData() Replaces the data event handler.

onError() Replaces the error event handler.

onDone() Replaces the done event handler.

asFuture([E Returns a future that handles the completion of stream.
futurevalue])

The asFuture() method is useful when you want to handle the
completion of a stream. Since a stream can complete normally or with an
error, using this method overwrites existing onDone and onError callbacks.
In the case of an error event, the subscription is cancelled, and the

322

CHAPTER9 SERVICE INTERACTION

returned Future object is completed with the error. In the case of a done

event, the Future object completes with the given futureValue.

Stream Transformation

The power of stream is to apply various transformations on the stream to

get another stream or a value. Table 9-3 shows methods in Stream class

that return another Stream object.

Table 9-3. Stream transformations

Name

Description

asyncExpand<E>(Stream<E>
convert(T event))

asyncMap<E> (FutureOr<E>
convert(T event))

distinct([bool equals
(T previous, T next)])

expand<S> (Iterable<S>
convert(T element))

handleError(Function onError,
{ bool test(dynamic error) })

map<S>(S convert(T event))

skip(int count)

skipWhile(bool test
(T element))

Transforms each element into a stream
and concatenates elements in these
streams as the new stream.

Transforms each element into a new
event.

Skips duplicate elements.

Transforms each element into a
sequence of elements.

Handles errors in the stream.

Transforms each element into a new
event.

Skips elements in the stream.

Skips elements while they match the
predicate.

(continued)

323

CHAPTER9 SERVICE INTERACTION

Table 9-3. (continued)

Name Description

take(int count) Takes only the first count elements from
the stream.

takeWhile(bool test Takes elements while they match the

(T element)) predicate.

timeout(Duration timeLimit, { Handles error when the time between

void onTimeout(EventSink<T> two events exceeds the time limit.

sink) })

transform<S>(StreamTransformer Transforms the stream.
<T, S> streamTransformer)

where(bool test(T event)) Filters elements in the stream.

Listing 9-9 shows examples of using stream transformations. Code
below each statement shows the result of the execution.

Listing 9-9. Stream transformations

Stream.fromIterable([1, 2, 3]).asyncExpand((int value) {
return Stream.fromIterable([value * 5, value * 10]);

}).listen(print);

// -> 5, 10, 10, 20, 15, 30

Stream.fromIterable([1, 2, 3]).expand((int value) {
return [value * 5, value * 10];

}).listen(print);

// -> 5, 10, 10, 20, 15, 30

Stream.fromIterable([1, 2, 3]).asyncMap((int value) {
return Future.delayed(Duration(seconds: 1), () => value * 10);

324

CHAPTER9 SERVICE INTERACTION

}).listen(print);
// -> 10, 20, 30

Stream.fromIterable([1, 2, 3]).map((value) => value * 10).
listen(print);
// -> 10, 20, 30

Stream.fromIterable([1, 1, 2]).distinct().listen(print);
//-> 1, 2

Stream.fromIterable([1, 2, 3]).skip(1).listen(print);
/1 -> 2,3

Stream.fromIterable([1, 2, 3])
.skipWhile((value) => value % 2 == 1)
.listen(print);

// -> 2,3

Stream.fromIterable([1, 2, 3]).take(1).listen(print);
/1 -> 1

Stream.fromIterable([1, 2, 3])
.takeWhile((value) => value % 2 == 1)
.listen(print);

/1l -> 1

Stream.fromIterable([1, 2, 3]).where((value) => value % 2 ==
1).listen(print);
/1l ->1, 3

There are other methods in Stream class that return a Future object;
see Table 9-4. These operations return a single value instead of a stream.

325

CHAPTER9 SERVICE INTERACTION

Table 9-4. Methods for single values

Name

Description

any(bool test(T element))

every(bool test(T element))

contains(Object needle)

drain<E>([E futureValue])
elementAt(int index)

firstWhere(bool test(T
element), { T orElse() })

lastWhere(bool test(T
element), { T orElse() })

singleWhere(bool test(T
element), { T orElse() })

f0ld<S>(S initialvalue,
S combine(S previous,
T element))

forEach(void action(T
element))

join([String separator = ""])

pipe(StreamConsumer<T>
streamConsumer)

Checks whether any element in the
stream matches the predicate.

Checks whether all elements in the
stream match the predicate.

Checks whether the stream contains the
given element.

Discards all elements in the stream.
Gets the element at the given index.

Finds the first element matching the
predicate.

Finds the last element matching the
predicate.

Finds the single element matching the
predicate.

Combines elements in the stream into a
single value.

Runs an action on each element of the
stream.

Combines the elements into a single
string.

Pipes the events into a StreamConsumer.

326

(continued)

CHAPTER9 SERVICE INTERACTION

Table 9-4. (continued)

Name Description

reduce(T combine(T previous, Combines elements in the stream into a

T element)) single value.
tolList() Collects the elements into a list.
toSet() Collects the elements into a set.

Listing 9-10 shows examples of using methods in Table 9-4. Code
below each statement shows the result of the execution.

Listing 9-10. Methods return Future objects

Stream.fromIterable([1, 2, 3]).forEach(print);
//-> 1, 2, 3

Stream.fromIterable([1, 2, 3]).contains(1).then(print);
// -> true

Stream.fromIterable([1, 2, 3]).any((value) => value % 2
0).then(print);
// -> true

N
1
]

Stream.fromIterable([1, 2, 3]).every((value) => value %
0).then(print);
// -> false

Stream.fromIterable([1, 2, 3]).fold(0, (vi, v2) => v1 + v2).
then(print);
!/l -> 6

Stream.fromIterable([1, 2, 3]).reduce((vi, v2) => v1 * v2).
then(print);
!/l -> 6

327

CHAPTER9 SERVICE INTERACTION

Stream.fromIterable([1, 2, 3])
.firstWhere((value) => value % 2 == 1)
.then(print);

/1 ->1

Stream.fromIterable([1, 2, 3])
.lastWhere((value) => value % 2 == 1)
.then(print);

/1 ->3

Stream.fromIterable([1, 2, 3])
.singleWhere((value) => value % 2 == 1)
.then(print);

// -> Unhandled exception: Bad state: Too many elements

9-5. Creating Streams
Problem

You want to create Stream objects.

Solution

Use different Stream constructors.

Discussion

There are different Stream constructors to create Stream objects:

o Stream.empty() constructor creates an empty
broadcast stream.

o Stream.fromFuture() constructor creates a single-
subscription stream from a Future object.

328

CHAPTER9 SERVICE INTERACTION

o Stream.fromFutures() constructor creates a stream
from a list of Future objects.

o Stream.fromInterable() constructor creates a single-
subscription stream from elements of an Iterable
object.

o Stream.periodic() constructor creates a stream that
periodically emits data events at the given intervals.

Listing 9-11 shows examples of different Stream constructors.

Listing 9-11. Use Stream constructors

Stream.fromIterable([1, 2, 3]).listen(print);
Stream.fromFuture(Future.value(1)).listen(print);
Stream.fromFutures([Future.value(1), Future.error('error'),
Future.value(2)])
.listen(print);
Stream.periodic(Duration(seconds: 1), (int count) => count * 2)
.take(5)
.listen(print);

Another way to create streams is using StreamController class.
A StreamController object can send different events to the stream it
controls. The default StreamController() constructor creates a single-
subscription stream, while StreamController.broadcast() constructor
creates a broadcast stream. With StreamController, you can generate
elements in stream programmatically.

In Listing 9-12, different events are sent to the stream controlled by the
StreamController object.

329

CHAPTER9 SERVICE INTERACTION

Listing 9-12. Use StreamController

StreamController<int> controller = StreamController();
controller.add(1);

controller.add(2);

controller.stream.listen(print, onError: print, onDone: () =>
print('done'));

controller.addError('error');

controller.add(3);

controller.close();

9-6. Building Widgets Based on Streams
and Futures

Problem

You want to build a widget that updates its content based on the data in a

stream or a future.

Solution

Use StreamBuilder<T> or FutureBuilder<T> widget.

Discussion

Given a Steam or Future object, you may want to build a widget that
updates its content based on the data in it. You can use StreamBuilder<T>
widget to work with Stream objects and FutureBuilder<T> widget to work
with Future objects. Table 9-5 shows parameters of StreamBuilder<T>
constructor.

330

CHAPTER9 SERVICE INTERACTION

Table 9-5. Parameters of StreamBuilder<T>

Name Type Description

stream Stream<T> The stream for the builder.
builder AsyncWidgetBuilder<T> Builder function for the widget.
initialData T Initial data to build the widget.

AsyncWidgetBuilder is a typedef of function type Widget
(BuildContext context, AsyncSnapshot<T> snapshot).AsyncSnapshot
class represents the snapshot of interaction with an asynchronous
computation. Table 9-6 shows properties of AsyncSnapshot<T> class.

Table 9-6. Properties of AsyncSnapshot<T>

Name Type Description

connectionState ConnectionState State of connection to the
asynchronous computation.

data T The latest data received by the
asynchronous computation.

error Object The latest error object received by the
asynchronous computation.

hasData bool Whether data property is not null.

hasError bool Whether error property is not null.

You can determine the connection state using the value of
connectionState. Table 9-7 shows values of ConnectionState enum.

331

CHAPTER9 SERVICE INTERACTION

Table 9-7. Values of ConnectionState

Name Description

none Not connected to the asynchronous computation.

waiting Connected to the asynchronous computation and waiting for
interaction.

active Connected to an active asynchronous computation.

done Connected to a terminated asynchronous computation.

When using StreamBuilder widget to build the UI, the typical way is to
return different widgets according to the connection state. For example, if
the connection state is waiting, then a process indicator may be returned.

In Listing 9-13, the stream has five elements that are generated
every second. If the connection state is none or waiting, a
CircularProgressIndicator widget is returned. If the state is active or
done, a Text widget is returned according to the value of data and error
properties.

Listing 9-13. Use StreamBuilder

class StreamBuilderPage extends StatelessWidget {
final Stream<int> stream =
Stream.periodic(Duration(seconds: 1), (int value) =>
value * 10).take(5);

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Stream Builder'),
)5

332

CHAPTER9 SERVICE INTERACTION

body: Center(
child: StreamBuilder(
stream: _stream,
initialData: 0,
builder: (BuildContext context, AsyncSnapshot<int>
snapshot) {
switch (snapshot.connectionState) {
case ConnectionState.none:
case ConnectionState.waiting:
return CircularProgressIndicator();
case ConnectionState.active:
case ConnectionState.done:
if (snapshot.hasData) {
return Text('${snapshot.data ?? "}');
} else if (snapshot.hasError) {
return Text(
"${snapshot.error}’,
style: TextStyle(color: Colors.red),
)5
}
}
return null;
}J
)J
)5

The usage of FutureBuilder widget is similar with StreamBuilder
widget. When using a FutureBuilder with a Future object, you can
convert the Future object to a Stream object using asStream() method
first, then use StreamBuilder with the converted Stream object.

333

CHAPTER9 SERVICE INTERACTION

In Listing 9-14, we use a different way to build the UI. Instead of
checking the connection state, hasData and hasError properties are used
to check the status.

Listing 9-14. Use FutureBuilder

class FutureBuilderPage extends StatelessWidget {
final Future<int> future = Future.delayed(Duration(seconds: 1),
0 A
if (Random().nextBool()) {
return 1;
} else {
throw 'invalid value';

}
};

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Future Builder'),
)5
body: Center(
child: FutureBuilder(
future: future,
builder: (BuildContext context, AsyncSnapshot<int>
snapshot) {
if (snapshot.hasData) {
return Text('${snapshot.data}");
} else if (snapshot.hasError) {
return Text(
'${snapshot.error}’,
style: TextStyle(color: Colors.red),

334

CHAPTER9 SERVICE INTERACTION

);
} else {
return CircularProgressIndicator();

}
})
)J
)5
)5
}
}

9-7. Handle Simple JSON Data
Problem

You want to have a simple way to handle JSON data.

Solution

Use jsonEncode() and jsonDecode() functions from dart:convert
library.

Discussion

JSON is a popular data format for web services. To interact with backend
services, you may need to handle JSON data in two scenarios:

e JSON data serialization converts objects in Dart to
JSON strings.

e JSON data deserialization converts JSON strings to
objects in Dart.

335

CHAPTER9 SERVICE INTERACTION

For both scenarios, if you only need to handle simple JSON data
occasionally, then using jsonEncode() and jsonDecode() functions
from dart:convert library is a good choice. The jsonEncode() function
converts Dart objects to strings, while jsonDecode () function converts
strings to Dart objects. In Listing 9-15, data object is serialized to JSON
string first, then the JSON string is deserialized to Dart object again.

Listing 9-15. Handle JSON data

var data = {
"name': 'Test',
"count': 100,
'valid': true,
"list': [
1,
2,
{
'nested': 'a',
'value': 123,
})
])
b
String str = jsonEncode(data);
print(str);
Object obj = jsonDecode(str);
print(obj);

The JSON encoder in dart:convert library only supports a limited
number of data types, including numbers, strings, booleans, null, lists,
and maps with string keys. To encode other types of objects, you need to
use the toEncodable parameter to provide a function which converts the
object to an encodable value first. The default toEncodable function calls

336

CHAPTER9 SERVICE INTERACTION

toJson() method on the object. It's a common practice to add toJson()
method to custom classes that need to be serialized as JSON strings.

In Listing 9-16, toJson() method of ToEncode class returns a list which
will be used as the input of JSON serialization.

Listing 9-16. Use toJson() function

class ToEncode {
ToEncode(this.v1, this.v2);

final String vi;
final String v2;

Object toJson() {
return [v1, v2];

}
}

print(jsonEncode(ToEncode('v1', 'v2')));

If you want to have indent in the serialized JSON strings, you need to
use JsonEncoder class directly. In Listing 9-17, two spaces are used as the
indent.

Listing 9-17. Add indent

String indentString = JsonEncoder.withIndent(' ‘).
convert(data);
print(indentString);

9-8. Handle Complex JSON Data
Problem

You want to have a type-safe way to handle JSON data.

337

CHAPTER9 SERVICE INTERACTION

Solution

Use json_annotation and json_serializable libraries.

Discussion

Using jsonEncode() and jsonDecode() functions from dart:convert
library can easily work with simple JSON data. When the JSON data has a
complicated structure, using these two functions is not quite convenient.
When deserializing JSON strings, the results are usually lists or maps. If the
JSON data has a nested structure, it’s not easy to extract the values from
lists or maps. When serializing objects, you need to add toJson() methods
to these classes to build the lists or maps. These tasks can be simplified
using code generation with json_annotation and json_serializable
libraries.

The json_annotation library provides annotations to customize JSON
serialization and deserialization behavior. The json_serializable library
provides the build process to generate code that handles JSON data. To
use these two libraries, you need to add them into pubspec.yaml file. In
Listing 9-18, json_serializable libraryis added to dependencies, while
json_serializablelibrary is added to dev_dependencies.

Listing 9-18. Add json_annotation and json_serializable

dependencies:
json_annotation: "2.0.0

dev_dependencies:
build runner: *1.0.0
json serializable: "2.0.0

In Listing 9-19, Person class is in the json_serialize.dart file. The
annotation @ sonSerializable() means generating code for Person

338

CHAPTER9 SERVICE INTERACTION

class. The generated code is in the json_serialize.g.dart file. Functions
_$PersonFromJson() and $PersonToJson() used in Listing 9-19 come
from the generated file. The $PersonFromJson() function is used in the
Person.fromJson() constructor, while $PersonToJson() function is used
in the toJson() method.

Listing 9-19. Use json_serializable
import 'package:json_annotation/json_annotation.dart’;
part 'json serialize.g.dart';

@JsonSerializable()
class Person {
Person({this.firstName, this.lastName, this.email});

final String firstName;
final String lastName;
final String email;

factory Person.fromJson(Map<String, dynamic> json) =>
_$PersonFromJson(json);

Map<String, dynamic> toJson() => $PersonToJson(this);

}

To generate the code, you need to run flutter packages pub run
build runner build command. Listing 9-20 shows the generated file.

Listing 9-20. Generated code to handle JSON data
part of 'json serialize.dart’;

Person _$PersonFromJson(Map<String, dynamic> json) {
return Person(
firstName: json['firstName'] as String,

339

CHAPTER9 SERVICE INTERACTION

lastName: json['lastName'] as String,
email: json['email'] as String);

Map<String, dynamic> _$PersonToJson(Person instance) =>
<String, dynamic>{

"firstName': instance.firstName,

"lastName': instance.lastName,

'email': instance.email

};

JsonSerializable annotation has different properties to customize
the behavior; see Table 9-8.

Table 9-8. Properties of JsonSerializable

Name Default value Description

anyMap false When true, use Map as the map type;
otherwise, Map<String, dynamic> is
used.

checked false Whether to add extra checks to validate
data types.

createFactory true Whether to generate the function that
converts maps to objects.

createTolson true Whether to generate the function that can
be used as toJson() function.

disallow false When true, unrecognized keys are treated

UnrecognizedKeys as an error; otherwise, they are ignored.

explicitToJson false When true, generated toJson() function

uses todson on nested objects.

(continued)

340

Table 9-8. (continued)

CHAPTER9 SERVICE INTERACTION

Name Default value Description

fieldRename FieldRename. Strategy to convert names of class fields
none to JSON map keys.

generateTo true When true, generate top-level function;

JsonFunction otherwise, generate a mixin class with

includeIfNull true
nullable true

uselWrappers false

todson() function.
Whether to include fields with null values.
Whether to handle null values gracefully.

Whether to use wrapper classes to
minimize the usage of Map and List
instances during serialization.

The generateToJsonFunction property determines how toJson()

functions are generated. When the value is true, top-level functions
like $PersonToJson() in Listing 9-20 will be generated. In Listing 9-21,
generateToJsonFunction property is set to false for User class.

Listing 9-21. User class

@JsonSerializable(

generateToJsonFunction: false,

)

class User extends Object with _$UserSerializerMixin {

User(this.name);

final String name;

}

341

CHAPTER9 SERVICE INTERACTION

In Listing 9-22, instead of a function, the $UserSerializerMixin class
is generated with toJson() method. User class in Listing 9-21 only needs
to use this mixin class.

Listing 9-22. Generated code for User class

User _$UserFromJson(Map<String, dynamic> json) {
return User(json['name'] as String);

}

abstract class $UserSerializerMixin {
String get name;
Map<String, dynamic> toJson() => <String, dynamic>{'name':
name};

}

JsonKey annotation specifies how a field is serialized. Table 9-9 shows
properties of JsonKey.

Table 9-9. Properties of JsonKey

Name Description

name JSON map key. If null, the field name is used.
nullable Whether to handle null values gracefully.
includeIfNull Whether to include this field if the value is null.
ignore Whether to ignore this field.

fromJson A function to deserialize this field.

toJson A function to serialize this field.
defaultValue The value to use as the default value.
required Whether this field is required in the JSON map.
disallowNullValue Whether to disallow null values.

342

CHAPTER9 SERVICE INTERACTION

Listing 9-23 shows an example of using JsonKey.

Listing 9-23. Use JsonKey

@JsonKey (
name: 'first name',
required: true,
includeIfNull: true,

)

final String firstName;

JsonValue annotation specifies the enum value used for serialization.
In Listing 9-24, JsonValue annotation is added to all enum values of Color.

Listing 9-24. Use JsonValue

enum Color {
@JsonValue('R")
Red,
@JsonValue('G")
Green,
@JsonValue('B")
Blue

JsonLiteral annotation reads JSON data from a file and converts the
content into an object. It allows easy access to content of static JSON data
files. In Listing 9-25, JsonLiteral annotation is added to the data getter.
_$datalsonlLiteral is the generated variable of the data in the JSON file.

Listing 9-25. Use JsonlLiteral

@JsonLiteral('data.json', asConst: true)
Map get data => _$datalsonliteral;

343

CHAPTER9 SERVICE INTERACTION

9-9. Handling XML Data
Problem

You want to handle XML data in Flutter apps.

Solution

Use xml library.

Discussion

XML is a popular data exchange format. You can use xml library to handle
XML data in Flutter apps. You need to add xml: "3.3.1to dependencies
of pubspec.yaml file first. Similar with JSON data, there are two usage
scenarios of XML data:

o Parse XML documents and query data.

¢ Build XML documents.

Parse XML Documents

To parse XML documents, you need to use parse() function which takes a
XML string as the input and returns parsed XmlDocument object. With the
XmlDocument object, you can query and traverse the XML document tree to
extract data from it.

To query the document tree, you can use findElements() and
findAllElements() methods. These two methods accept a tag
name and an optional namespace as the parameters and return an
Iterable<XmlElement> object. The difference is that findElements()
method only searches direct children, while findA11Elements() method
searches all descendant children. To traverse the document tree, you can
use properties shown in Table 9-10.

344

CHAPTER9 SERVICE INTERACTION

Table 9-10. Properties of XmlParent

Name Type Description
children XmlNodelList<XmlNode> Direct children of this node.
ancestors Iterable<XmlNode> Ancestors of this node in

reverse document order.

descendants Iterable<XmlNode> Descendants of this node in
document order.

attributes List<XmlAttribute> Attribute nodes of this node in
document order.

preceding Iterable<XmlNode> Nodes preceding the opening
tag of this node in document
order.

following Iterable<XmlNode> Nodes following the closing
tag of this node in document
order.

parent XmlNode Parent of this node, can be
null.

firstChild Xm1lNode First child of this node, can be
null.

lastChild Xm1lNode Last child of this node, can be
null.

nextSibling XmlNode Next sibling of this node, can
be null.

previousSibling XmlNode Previous sibling of this node,
can be null.

root XmlNode Root of the tree.

345

CHAPTER9 SERVICE INTERACTION

In Listing 9-26, the input XML string (excerpt from https://msdn.
microsoft.com/en-us/windows/desktop/ms762271) is parsed and queried
for the first book element. Then text of the title element and value of the
id attribute are extracted.

Listing 9-26. XML document parsing and querying

String xmlStr =
<?xml version="1.0"?>
<catalog>
<book id="bk101">
<Author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>An in-depth look at creating applications
with XML.</description>
</book>
<book id="bk102">
<Author>Ralls, Kim</author>
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish_date>2000-12-16</publish_date>
<description>A former architect battles corporate
zombies, an evil sorceress, and her own childhood to
become queen of the world.</description>
</book>
</catalog>

wi o,
)

346

https://msdn.microsoft.com/en-us/windows/desktop/ms762271
https://msdn.microsoft.com/en-us/windows/desktop/ms762271

CHAPTER9 SERVICE INTERACTION

XmlDocument document = parse(xmlStr);

XmlElement firstBook = document.rootElement.
findElements('book").first;
String title = firstBook.findElements('title').single.text;
String id = firstBook.attributes
.firstWhere((XmlAttribute attr) => attr.name.local == 'id")
.value;
print('$id => $title');

Build XML Documents

To build XML documents, you can use XmlBuilder class. XmlBuilder class
provides methods to build different components of XML documents; see
Table 9-11. With these methods, we can build XML documents in a top-
down fashion, which starts from the root element and build nested content
layer by layer.

Table 9-11. Methods of XmlBuilder

Name Description

element() Creates a XmLElement node with specified tag name,
namespaces, attributes, and nested content.

attribute() Creates a XmlAttribute node with specified name, value,
namespace, and type.

text() Creates a Xm1Text node with specified text.
namespace() Binds namespace prefix to the uri.

cdata() Creates a XmLCDATA node with specified text.
comment () Creates a XmLComment node with specified text.

processing() Creates a XmlProcessing node with specified target and
text.

347

CHAPTER9 SERVICE INTERACTION

After finishing the building, the build() method of Xm1Builder can be
used to build the Xm1Node as the result. In Listing 9-27, the root element
is a note element with id attribute. Value of nest parameter is a function
which uses builder methods to build the content of the node element.

Listing 9-27. Use XmlBuilder

XmlBuilder builder = XmlBuilder();
builder.processing('xml', 'version="1.0"");
builder.element(
"note’,
attributes: {
'id': 'oo1',
})
nest: () {
builder.element('from', nest: () {
builder.text('John");
1
builder.element('to", nest: () {
builder.text('Jane');
1
builder.element('message’, nest: () {
builder
..text('Hello!")
..comment('message to send');
1)
})
)5
XmlNode xmlNode = builder.build();
print(xmlNode.toXmlString(pretty: true));

Listing 9-28 shows the built XML document by code in Listing 9-27.

348

CHAPTER 9

Listing 9-28. Built XML document

<?xml version="1.0"?>

<note id="001">
<from>John</from>
<to>Jane</to>
<message>Hello!

<!--message to send-->

</message>

</note>

9-10. Handling HTML Data
Problem

You want to parse HTML document in Flutter apps.

Solution

Use html library.

Discussion

SERVICE INTERACTION

Even though JSON and XML data format are popular in Flutter apps, you

may still need to parse HTML document to extract data. This process is

called screen scraping. You can use html library to parse HTML document.
To use this library, you need to add html: ~0.13.4+1 to the dependencies

of pubspec.yaml file

The parse() function parses HTML strings into Document objects. These

Document objects can be queried and manipulated using W3C DOM API.
In Listing 9-29, HTML string is parsed first, then getElementsByTagName()

349

CHAPTER9 SERVICE INTERACTION

method is used to get the 11 elements, and finally id attribute and text are
extracted from 1i elements.

Listing 9-29. Parse HTML document

import 'package:html/dom.dart’;
import 'package:html/parser.dart’ show parse;

void main() {
String htmlStr = "'

<li id="001">John</1i>
<li id="002">Jane</1i>
<li id="003">Mary</1i>

nwr o,
)

Document document = parse(htmlStr);
var users = document.getElementsByTagName('1li").map((Element
element) {
return {
'id': element.attributes['id'],
"name': element.text,
};
};

print(users);

}

9-11. Sending HTTP Requests
Problem

You want to send HTTP requests to backend services.

350

CHAPTER9 SERVICE INTERACTION

Solution

Use HttpClient from dart:io library.

Discussion

HTTP protocol is a popular choice to expose web services. The
representation can be JSON or XML. By using HttpClient class from
dart:iolibrary, you can easily interact with backend services over HTTP.

To use HttpClient class, you need to choose a HTTP method first,
then prepare the HttpClientRequest object for the request, and process
the HttpClientResponse object for the response. HttpClient class has
different pairs of methods corresponding to different HTTP methods. For
example, get() and getUrl() methods are both used to send HTTP GET
requests. The difference is that get () method accepts host, port, and path
parameters, while getUr1() method accepts url parameter of type Uri.
You can see other pairs like post () and postUrl(), put() and putUrl(),
patch() and patchUrl(), delete() and deleteUrl(), and head() and
headUr1().

These methods return Future<HttpClientRequest> objects. You
need to chain the returned Future objects with then() method to
prepare HttpClientRequest object. For example, you can modify HTTP
request headers or write request body. The then() method needs to
return the value of HttpClientRequest.close() method, which is a
Future<HttpClientResponse> object. In the then() method of the
Future<HttpClientResponse> object, you can use this object to get
response body, headers, cookies, and other information.

In Listing 9-30, request.close() method is called directly in the
first then() method, because we don’t need to do anything to the
HttpClientRequest object. The handleResponse() function decodes

351

CHAPTER9 SERVICE INTERACTION

HTTP response as UTF-8 strings and prints them out. HttpClientResponse
class implements Stream<List<int>>, so the response body can be read as
streams.

Listing 9-30. Send HTTP GET request

void _handleResponse(HttpClientResponse response) {
response.transform(utf8.decoder).listen(print);

}

HttpClient httpClient = HttpClient();

httpClient
.getUrl(Uri.parse('https://httpbin.org/get"))
.then((HttpClientRequest request) => request.close())
.then(_handleResponse);

If you need to send HTTP POST, PUT, and PATCH requests with body,
you can use HttpClientRequest.write() method to write the body; see
Listing 9-31.

Listing 9-31. Write HTTP request body

httpClient
.postUrl(Uri.parse(https://httpbin.org/post"))
.then((HttpClientRequest request) {
request.write('hello');
return request.close();
}).then(_handleResponse);

If you need to modify HTTP request headers, you can use the
HttpClientRequest.headers property to modify the HttpHeaders object;
see Listing 9-32.

352

CHAPTER9 SERVICE INTERACTION

Listing 9-32. Modify HTTP request headers

httpClient
.getUrl(Uri.parse('https://httpbin.org/headers"))
.then((HttpClientRequest request) {
request.headers.set(HttpHeaders.userAgentHeader, 'my-agent');
return request.close();
}).then(_handleResponse);

If you need to support HTTP basic authentication, you
can use HttpClient.addCredentials() method to add
HttpClientBasicCredentials objects; see Listing 9-33.

Listing 9-33. Basic authentication

String username = 'username', password = 'password’;
Uri uri = Uri.parse('https://httpbin.org/basic-
auth/$username/$password');
httpClient.addCredentials(
uri, null, HttpClientBasicCredentials(username, password));
httpClient
.getUrl(uri)
.then((HttpClientRequest request) => request.close())
.then(_handleResponse);

9-12. Connecting to WebSocket
Problem

You want to connect to WebSocket servers in Flutter apps.

353

CHAPTER9 SERVICE INTERACTION

Solution

Use WebSocket class in dart:io library.

Discussion

WebSockets are widely used in web apps to provide bidirectional
communications between browser and server. They can also provide
real-time updates of data in the backend. If you already have a WebSocket
server that interacts with the web app running in the browser, you may
also want the same feature to be available in Flutter apps. WebSocket class
in dart:io library can be used to implement the WebSocket connections.

The static WebSocket . connect() method connects to a WebSocket
server. You need to provide the server URL with scheme ws or wss. You can
optionally provide a list of subprotocols and a map of headers. The return
value of connect () method is a Future<WebSocket> object. WebSocket
class implements Stream class, so you can read data sent from server as
streams. To send data to the server, you can use add() and addStream()
methods.

In Listing 9-34, the WebSocket connects to the demo echo server.
By using listen() method to subscribe to the WebSocket object, we can
process data sent from the server. The two add() method calls send two
messages to the server.

Listing 9-34. Connect to WebSocket

WebSocket.connect('ws://demos.kaazing.com/echo").
then((WebSocket webSocket) {
webSocket.listen(print, onError: print);
webSocket.add("hello");
webSocket.add('world");
webSocket.close();
}).catchError(print);

354

CHAPTER9 SERVICE INTERACTION

9-13. Connecting to Socket
Problem

You want to connect to socket servers.

Solution

Use Socket class in dart:io library.

Discussion

If you want to connect to socket servers in Flutter apps, you can use Socket
class from dart:io library. The static Socket.connect() method connects
to a socket server at specified host and port and returns a Future<Socket>
object. Socket class implements Stream<List<int>>, so you can read data
from server by subscribing to the stream. To send data to the server, you
can use add() and addStream() methods.
In Listing 9-35, a socket server is started on port 10080. This server

converts the received strings into uppercase and sends back the results.

Listing 9-35. Simple socket server

import ‘'dart:io’;
import ‘'dart:convert’;

void main() {
ServerSocket.bind('127.0.0.1", 10080).then((serverSocket) {
serverSocket.listen((socket) {
socket.addStream(socket
.transform(utf8.decoder)
.map((str) => str.toUpperCase())
.transform(utf8.encoder));

355

CHAPTER9 SERVICE INTERACTION

};
};
}

In Listing 9-36, Socket . connect () method is used to connect to the
socket server shown in Listing 9-35. Data received from the server is
printed out. Two strings are sent to the server.

Listing 9-36. Connect to socket server

void main() {

Socket.connect('127.0.0.1", 10080).then((socket) {
socket.transform(utf8.decoder).listen(print);
socket.write('hello");
socket.write('world");
socket.close();

};
}

9-14. Interacting JSON-Based REST
Services

Problem

You want to use JSON-based REST services.

Solution

Use HttpClient, json serialize library, and FutureBuilder widget.

356

CHAPTER9 SERVICE INTERACTION

Discussion

It’s a popular choice for mobile apps backend to expose services over
HTTP protocol with JSON as the representation. By using HttpClient,
json_serialize library, and FutureBuilder widget, you can build the UI
to work with these REST services. This recipe provides a concrete example
which combines content in Listings 9-6, 9-8, and 9-11.

This example uses GitHub Jobs API (https://jobs.github.com/api)
to get job listings on GitHub web site. In Listing 9-37, Job class represents
ajob listing. In the JsonSerializable annotation, createToJson property
is set to false, because we only need to parse JSON response from the
API The parseDate function parses the string in created_at field of the
JSON obiject. You need to add intl library to use DateFormat class.

Listing 9-37. Job class
part 'github_jobs.g.dart';

DateFormat dateFormat = DateFormat('EEE MMM dd HH:mm:ss

yyyy')s
DateTime parseDate(String str) =>

_dateFormat.parse(str.replaceFirst(' UTC', "), true);

@JsonSerializable(
createToJson: false,
)
class Job {
Job();
String id;

String type;

String url;

@JsonKey(name: 'created at', fromJson: parseDate)
DateTime createdAt;

357

https://jobs.github.com/api

CHAPTER9 SERVICE INTERACTION

String company;

@JsonKey(name: 'company url')
String companyUrl;
@JsonKey(name: 'company logo")
String companylogo;

String location;

String title;

String description;
@JsonKey(name: "how-to-apply")
String howToApply;

factory Job.fromJson(Map<String, dynamic> json) =>
_$JobFromJson(json);

}

In Listing 9-38, a HttpClient object is used to send a HTTP
GET request to GitHub Jobs API and parse the JSON response using
jsonDecode () function. The Future object of type Future<List<Job>> is
used by FutureBuilder widget to build the UL JobsList widget takes a
List<Job> object and displays the list using ListView widget.

Listing 9-38. Widget to show jobs

class GitHubJobsPage extends StatelessWidget {
final Future<List<Job>> jobs = HttpClient()
.getUrl(Uri.parse('https://jobs.github.com/positions.
json'

"?description=java&location=new+york"'))
.then((HttpClientRequest request) => request.close())
.then((HttpClientResponse response) {

return response.transform(utf8.decoder).join(").
then((String content) {
return (jsonDecode(content) as List<dynamic>)

358

CHAPTER 9

.map((json) => Job.fromJson(json))

.tolist();
1
};
@override

Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('GitHub Jobs'),
)5
body: FutureBuilder<List<Job>>(
future: jobs,
builder: (BuildContext context,
AsyncSnapshot<List<Job>> snapshot) {
if (snapshot.hasData) {
return JobsList(snapshot.data);
} else if (snapshot.hasError) {
return Center(
child: Text(
"${snapshot.error}’,

SERVICE INTERACTION

style: TextStyle(color: Colors.red),

)5
)5
} else {
return Center(

child: CircularProgressIndicator(),

)5
}
})
)s
)5

359

CHAPTER9 SERVICE INTERACTION

}
}

class JobsList extends StatelessWidget {
JobsList(this.jobs);
final List<Job> jobs;

@override
Widget build(BuildContext context) {
return ListView.separated(
itemBuilder: (BuildContext context, int index) {
Job job = jobs[index];
return ListTile(
title: Text(job.title),
subtitle: Text(job.company),
);
}’
separatorBuilder: (BuildContext context, int index) {
return Divider();
1
itemCount: jobs.length,
);
}
}

9-15. Interacting with gRPC Services
Problem

You want to interact with gRPC services.

360

CHAPTER9 SERVICE INTERACTION

Solution

Use grpc library.

Discussion

gRPC (https://grpc.io/)is a high-performance, open-source universal
RPC framework. This recipe shows how to interact with gRPC services. The
gRPC service to interact is the greeter service from gRPC official examples
(https://github.com/grpc/grpc/tree/master/examples/node). You
need to start the gRPC server first.

To use this gRPC service in Flutter apps, you need to install Protocol
Buffers compiler (https://github.com/protocolbuffers/protobuf)
first. After downloading the release file for your platform and extracting
its content, you need to add the extracted bin directory to the PATH
environment variable. You can run protoc --version command to verify
the installation. The version used in this recipe is 3.7.1.

You also need to install Dart protoc plugin (https://github.com/
dart-lang/protobuf/tree/master/protoc_plugin). The easiest way to
install is to run the following command.

$ flutter packages pub global activate protoc_plugin

Because we use flutter packages to run the installation, the binary
file is put under the . pub-cache/bin directory of the Flutter SDK. You need
to add this path to PATH environment variable. The plugin requires dart
command to be available, so you also need to add bin/cache/dart-sdk/
bin directory of Flutter SDK to PATH environment variable. Now we can
use protoc to generate Dart files for interactions with the greeter service.
In the following command, 1ib/grpc/generated is the output path of
generated files. proto_file path is the path of proto files. helloworld.
proto file contains the definition for greeter service. Libraries protobuf
and grpc also need to be added to the dependencies of pubspec.yaml file.

361

https://grpc.io/
https://github.com/grpc/grpc/tree/master/examples/node
https://github.com/protocolbuffers/protobuf
https://github.com/dart-lang/protobuf/tree/master/protoc_plugin
https://github.com/dart-lang/protobuf/tree/master/protoc_plugin

CHAPTER9 SERVICE INTERACTION

$ protoc --dart_out=grpc:lib/grpc/generated --proto_
path=<proto_file path> <proto_file path>/helloworld.proto

The generated helloworld.pbgrpc.dart file provides GreeterClient
class to interact with the service. In Listing 9-39, a ClientChannel is
created to connect to the gRPC server. The channel is required when
creating a GreeterClient object. The sayHello() method sends requests
to the server and receives responses.

Listing 9-39. Interact with gRPC service
import 'package:grpc/grpc.dart’;
import 'generated/helloworld.pbgrpc.dart’;

void main() async {
final channel = new ClientChannel('localhost’,
port: 50051,
options: const ChannelOptions(
credentials: const ChannelCredentials.insecure()));
final stub = new GreeterClient(channel);

try {
var response = await stub.sayHello(new HelloRequest()..name

"John');

print('Received: ${response.message}');
} catch (e) {

print('Caught error: $e');
}

await channel.shutdown();

362

CHAPTER9 SERVICE INTERACTION

9-16. Summary

This chapter focuses on different ways to interact with backend services,
including HTTP, WebSocket, Socket, and gRPC. Futures and Streams

play an important role in asynchronous computations. This chapter also
discusses how to handle JSON, XML, and HTML data. In the next chapter,
we'll discuss state management in Flutter apps.

363

CHAPTER 10

State Management

When building Flutter apps, you need to manage the state when the apps
are running. The state may change due to user interactions or background
tasks. This chapter covers recipes that use different solutions for state
management in Flutter.

10-1. Managing State Using Stateful
Widgets

Problem

You want to have a simple way to manage state in the UL

Solution

Create your own subclasses of StatefullWidget.

Discussion

StatefullWidget class is the fundamental way in Flutter to manage state.
A stateful widget rebuilds itself when its state changes. If the state to
manage is simple, using stateful widgets is generally good enough. You
don’t need to use third-party libraries discussed in other recipes.

© Fu Cheng 2019 365
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_10

CHAPTER 10 STATE MANAGEMENT

Stateful widgets use State objects to store the state. When creating
your own subclasses of StatefulWidget, you need to override
createState() method to return a State object. For each subclass
StatefullWidget, there will be a corresponding subclass of State class
to manage the state. The createState() method returns an object of the
corresponding subclass of State. The actual state is usually kept as private
variables of the subclass of State.

In the subclass of State, you need to implement build() method to
return a Widget object. When the state changes, the build() method will
be called to get the new widget to update the UI. To trigger the rebuild
of the UI, you need to call setState() method explicitly to notify the
framework. The parameter of setState() method is a VoidCallback
function that contains the logic to update the internal state. When
rebuilding, the build() method uses the latest state to create widget
configurations. Widgets are not updated but replaced when necessary.

SelectColor widget in Listing 10-1 is a typical example of stateful
widget. SelectColorState class is the State implementation for
SelectColor widget. selectedColor is the internal variable that
maintains the current selected color. The value of selectedColor is used
by the DropdownButton widget to determine the selected option to render
and the Text widget to determine the text to display. In the onChanged
handler of DropdownButton, setState() method is called to update the
value of _selectedColor variable, which notifies the framework to run _
SelectColorState.build() method again to get the new widget configuration
to update the UL

Listing 10-1. Example of stateful widget

class SelectColor extends StatefulWidget {
@override
_SelectColorState createState() => SelectColorState();

}

366

CHAPTER 10 STATE MANAGEMENT

class SelectColorState extends State<SelectColor> {
final List<String> colors = ['Red', 'Green', 'Blue'];
String selectedColor;

@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
DropdownButton(
value: selectedColor,
items: colors.map((String color) {
return DropdownMenuItem(
value: color,
child: Text(color),
);
}).tolList(),
onChanged: (value) {
setState(() {
_selectedColor = value;
;s
})
))
Text('Selected: ${ selectedColor ?? "}'),
1,
);
}
}

State objects have their own lifecycle. You can override different
lifecycle methods in subclasses of State to perform actions on different
stages. Table 10-1 shows these lifecycle methods.

367

CHAPTER 10 STATE MANAGEMENT

Table 10-1. Lifecycle methods of State

Name Description

initState() Called when this object is inserted into the
widgets tree. Should be used to perform
initialization of state.

didChangeDependencies() Called when a dependency of this object changes.

didUpdatelidget Called when the widget of this object changes. Old

(T oldwidget) widget is passed as a parameter.

reassemble() Called when the app is reassembled during
debugging. This method is only called during
development.

build(BuildContext Called when the state changes.

context)

deactivate() Called when this object is removed from the
widgets tree.

dispose() Called when this object is removed from the
widgets tree permanently. This method is called
after deactivate().

Of the methods listed in Table 10-1, initState() and dispose()
methods are easy to understand. These two methods will only be called
once during the lifecycle. However, other methods may be invoked
multiple times.

The didChangeDependencies () method is typically used when
the state object uses inherited widgets. This method is called when an
inherited widget changes. Most of the time, you don’t need to override
this method, because the framework calls build() method automatically
after a dependency changes. Sometimes you may need to perform some
expensive tasks after a dependency changes. In this case, you should put

368

CHAPTER 10 STATE MANAGEMENT

the logic into didChangeDependencies() method instead of performing
the task in build() method.

The reassemble() method is only used during development, for
example, during hot reload. This method is not called in release builds.
Most of the time, you don’t need to override this method.

The didUpdateWidget () method is called when the state’s widget
changes. You should override this method if you need to perform
cleanup tasks on the old widget or reuse some state from the old widget.
For example, TextFieldState class for TextField widget overrides
didUpdateWidget () method to initialize TextEditingController object
based on the value of the old widget.

The deactivate() method is called when the state object is removed
from the widgets tree. This state object may be inserted back to the widgets
tree at a different location. You should override this method if the build
logic depends on the widget’s location. For example, FormFieldState class
for FormField widget overrides deactivate() method to unregister the
current form field from the enclosing form.

In Listing 10-1, the whole content of the widget is built in the build()
method, so you can simply call setState() method in the onPressed
callback of DropdownButton. If the widget has a complex structure, you
can pass down a function that updates the state to the children widgets.

In Listing 10-2, the onPressed callback of RaisedButton is set by the
constructor parameter of CounterButton. When the CounterButton is
used in Counter widget, the provided handler function uses setState() to
update the state.

Listing 10-2. Pass state change function to descendant widget

class Counter extends StatefulWidget {
@override
_CounterState createState() => CounterState();

}

369

CHAPTER 10 STATE MANAGEMENT

class CounterState extends State<Counter> {

int count = 0;

@override

Widget build(BuildContext context) {

return Column(
children: <Widget>[
CounterButton(() {
setState(() {
count++;

IOk
¥
CounterText(count),
]’
);
}
}

class CounterText extends StatelessWidget {
CounterText(this.count);
final int count;

@override
Widget build(BuildContext context) {
return Text('Value: ${count ?? "}');
}
}

class CounterButton extends StatelessWidget {
CounterButton(this.onPressed);
final VoidCallback onPressed;

@override
Widget build(BuildContext context) {

370

CHAPTER 10 STATE MANAGEMENT

return RaisedButton(
child: Text('+"),
onPressed: onPressed,
)5
}
}

10-2. Managing State Using Inherited
Widgets

Problem

You want to propagate state down the widgets tree.

Solution

Create your own subclasses of InheritedWidget.

Discussion

When using stateful widgets to manage state, the state is stored in State
objects. If a descendant widget needs to access the state, the state needs
to be passed down to it from the root of subtree, just like how count state
is passed in Listing 10-2. When the widget has a relatively deep subtree
structure, it’s inconvenient to add constructor parameters for passing the
state down. In this case, using InheritedWidget is a better choice.

When InheritedWidget is used, the method BuildContext.
inheritFromWidgetOfExactType() can get the nearest instance of a
particular type of inherited widget from the build context. Descendant
widgets can easily access state data stored in an inherited widget. When
inheritFromWidgetOfExactType() method is called, the build context

371

CHAPTER 10 STATE MANAGEMENT

registers itself to the inherited widget. When the inherited widget changes,
the build context is rebuilt automatically to get the new values from

the inherited widget. This means no manual updates are required for
descendant widgets that use state from the inherited widget.

The Config class in Listing 10-3 represents the state. It has color and
fontSize properties. Config class overrides == operator and hashCode
property to implement correct equality check. The copyWith() method
can be used to create new instances of Config class by updating a partial
set of properties. The Config.fallback() constructor creates a Config
object with default values.

Listing 10-3. Config class for inherited widget

class Config {
const Config({this.color, this.fontSize});

const Config.fallback()
: color = Colors.red,
fontSize = 12.0;

final Color color;
final double fontSize;

Config copyWith({Color color, double fontSize}) {
return Config(
color: color ?? this.color,
fontSize: fontSize ?? this.fontSize,
)5
}

@override

bool operator ==(other) {
if (other.runtimeType != runtimeType) return false;
final Config typedOther = other;

372

CHAPTER 10 STATE MANAGEMENT

return color == typedOther.color &% fontSize == typedOther.
fontSize;

}

@override
int get hashCode => hashValues(color, fontSize);

}

The ConfigWidget in Listing 10-4 is an inherited widget. It keeps a
Config object as its internal state. The updateShouldNotify() method is
called to check whether registered build contexts should be notified after
the inherited widget changes. This is a performance optimization to avoid
unnecessary updates. The static of () method is a common practice to get
the inherited widget or the state associated with the inherited widget. The
of () method of ConfigWidget uses inheritFromWidgetOfExactType() to
get the nearest enclosing Confighidget instance from build context and
gets config property from the widget. If no ConfigWidget object is found,
the default Config instance is returned.

Listing 10-4. ConfigWidget as inherited widget

class ConfigWidget extends Inheritedwidget {
const Confighidget({
Key key,
@required this.config,
@required Widget child,
}) : super(key: key, child: child);

final Config config;

static Config of(BuildContext context) {
final ConfigWidget configWidget =
context.inheritFromWidgetOfExactType(Confighidget);
return configWidget?.config ?? const Config.fallback();

}

373

CHAPTER 10 STATE MANAGEMENT

@override
bool updateShouldNotify(Confighidget oldWidget) {
return config != oldWidget.config;

}
}

In Listing 10-5, both ConfiguredText and ConfiguredBox widgets use
Confighidget.of(context) to get the Config object and use its properties
when building the UL

Listing 10-5. Use ConfigWidget to get the Config object

class ConfiguredText extends StatelessWidget {
@override
Widget build(BuildContext context) {
Config config = ConfigWidget.of(context);
return Text(
'Font size: ${config.fontSize}',
style: TextStyle(
color: config.color,
fontSize: config.fontSize,
)
)
}
}

class ConfiguredBox extends StatelessWidget {
@override
Widget build(BuildContext context) {
Config config = Confighidget.of(context);
return Container(
decoration: BoxDecoration(color: config.color),
child: Text('Background color: ${config.color}'),

374

CHAPTER 10 STATE MANAGEMENT

)5

ConfigUpdater widget in Listing 10-6 is used to update the Config
object. It also uses ConfigWidget.of(context) to get the Config object
to update. The onColorChanged and onFontSizeIncreased callbacks are
used to trigger update of Config object.

Listing 10-6. ConfigUpdater to update Config object
typedef SetColorCallback = void Function(Color color);

class ConfigUpdater extends StatelessWidget {
const ConfigUpdater({this.onColorChanged, this.
onFontSizeIncreased});

static const List<Color> colors = [Colors.red, Colors.green,
Colors.blue];

final SetColorCallback onColorChanged;

final VoidCallback onFontSizeIncreased;

@override
Widget build(BuildContext context) {
Config config = ConfigWidget.of(context);
return Column(
children: <Widget>[
DropdownButton(
value: config.color,
items: colors.map((Color color) {
return DropdownMenuItem(
value: color,
child: Text(color.toString()),

)5

375

CHAPTER 10 STATE MANAGEMENT

}).toList(),
onChanged: onColorChanged,

)J

RaisedButton(
child: Text('Increase font size'),
onPressed: onFontSizeIncreased,

)

1,
)5
}
}

Now we can put these widgets together to build the whole UI In
Listing 10-7, ConfiguredPage is a stateful widget with a Config object as
its state. ConfigUpdater widget is a child of ConfiguredPage to update
the Config object. ConfiguredPage constructor also has child parameter
to provide child widget that uses ConfigWidget.of(context) to get the
correct Config object. For the onColorChanged and onFontSizeIncreased
callbacks of Confighidget, setState() method is used to update the
state of ConfiguredPage widget and triggers update of Configlidget. The
framework notifies ConfigUpdater and other widgets to update with latest
value of Config object.

Listing 10-7. ConfiguredPage to use ConfigWidget

class ConfiguredPage extends StatefulWidget {
ConfiguredPage({Key key, this.child}) : super(key: key);
final Widget child;

@override
_ConfiguredPageState createState() => _ConfiguredPageState();

}

376

CHAPTER 10 STATE MANAGEMENT

class ConfiguredPageState extends State<ConfiguredPage> {
Config config = Config(color: Colors.green, fontSize: 16);

@override
Widget build(BuildContext context) {
return ConfigWidget(
config: _config,
child: Column(
children: <Widget>[
ConfigUpdater(
onColorChanged: (Color color) {
setState(() {
_config = config.copyWith(color: color);
D;
}J

onFontSizeIncreased: () {
setState(() {
_config = config.copyWith(fontSize: config.
fontSize + 1.0);

};
b
)5

Container(
decoration: BoxDecoration(border: Border.all()),
padding: EdgeInsets.all(8),
child: widget.child,

)J

]’
)5
)5
}
}

377

CHAPTER 10 STATE MANAGEMENT

In Listing 10-8, ConfigWidgetPage widget uses ConfiguredPage widget
to wrap ConfiguredText and ConfiguredBox widgets.

Listing 10-8. ConfigWidgetPage to build the UI

class ConfigWidgetPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Inherited Widget'),
)5
body: ConfiguredPage(
child: Column(
children: <Widget>[
ConfiguredText(),
ConfiguredBox(),
])
)’
)5
);

10-3. Managing State Using Inherited Model
Problem

You want to get notified and rebuild UI based on aspects of changes.

Solution

Create your own subclasses of InheritedModel.

378

CHAPTER 10 STATE MANAGEMENT

Discussion

If we take a closer look at the ConfiguredText and ConfiguredBox widgets
in Listing 10-5 of Recipe 10-2, we can see that ConfiguredBox widget

only depends on the color property of the Config object. If the fontSize
property changes, there is no need for ConfiguredBox widget to rebuild.
These unnecessary rebuilds may cause performance issues, especially if
the widget is complex.

InheritedModel widget allows you to divide a state into multiple
aspects. A build context can register to get notified only for a particular
aspect. When state changes in InheritedModel widget, only dependent
build contexts registered to matching aspects will be notified.

InheritedModel class extends from InheritedWidget class. It has
a type parameter to specify the type of aspect. ConfigModel class in
Listing 10-9 is the InheritedModel subclass for Config object. The type
of aspect is String. When implementing InheritedModel class, you still
need to override updateShouldNotify() method to determine whether
dependents should be notified. The updateShouldNotifyDependent()
method determines whether a dependent should be notified based on
the set of aspects it depends on. The updateShouldNotifyDependent ()
method is only called when updateShouldNotify() method returns true.
For the ConfigModel, only “color” and “fontSize” aspects are defined. If the
dependent depends on the “color” aspect, then it’s notified only when the
color property of Config object changes. This is also applied to “fontSize”
aspect for fontSize property.

The static of () method has an extra aspect parameter to specify
the aspect the build context depends on. The static InheritedModel.
inheritFrom() method is used to make the build context depend on
specified aspect. When aspect is null, this method is the same as using
BuildContext.inheritFromWidgetOfExactType() method.

379

CHAPTER 10 STATE MANAGEMENT

Listing 10-9. ConfigModel as InheritedModel

class ConfigModel extends InheritedModel<String> {
const ConfigModel({
Key key,
@required this.config,
@required Widget child,
}) : super(key: key, child: child);

final Config config;

static Config of(BuildContext context, String aspect) {
ConfigModel configModel =
InheritedModel.inheritFrom(context, aspect: aspect);
return configModel?.config ?? Config.fallback();

}

@override
bool updateShouldNotify(ConfigModel oldWidget) {
return config != oldWidget.config;

}

@override
bool updateShouldNotifyDependent(

ConfigModel oldWidget, Set<String> dependencies) {
return (config.color != oldWidget.config.color &&
dependencies.contains('color')) ||
(config.fontSize != oldWidget.config.fontSize &8&

dependencies.contains('fontSize"));

In Listing 10-10, ConfiguredModelText widget uses null as the
aspect, because it depends on both “color” and “fontSize” aspects.

380

CHAPTER 10 STATE MANAGEMENT

ConfiguredModelBox widget uses color as the aspect. If font size is
updated, only ConfiguredModelText widget is rebuilt.

Listing 10-10. Use ConfigModel to get Config object

class ConfiguredModelText extends StatelessWidget {
@override
Widget build(BuildContext context) {
Config config = ConfigModel.of(context, null);
return Text(
'Font size: ${config.fontSize}',
style: TextStyle(
color: config.color,
fontSize: config.fontSize,

)5
)5
}
}

class ConfiguredModelBox extends StatelessWidget {
@override
Widget build(BuildContext context) {
Config config = ConfigModel.of(context, 'color');
return Container(
decoration: BoxDecoration(color: config.color),
child: Text('Background color: ${config.color}'),
)5
}
}

381

CHAPTER 10 STATE MANAGEMENT

10-4. Managing State Using Inherited
Notifier

Problem

You want dependent widgets to rebuild based on notifications from
Listenable objects.

Solution

Create your own subclasses of InheritedNotifier widget.

Discussion

Listenable class is typically used to manage listeners and notify clients
for updates. You can use the same pattern to notify dependents to rebuild
with InheritedNotifier. InheritedNotifier widget also extends from
InheritedWidget class. When creating InheritedNotifier widgets, you
need to provide Listenable objects. When the Listenable object sends
notifications, dependents of this InheritedNotifier widget are notified
for rebuilding.

In Listing 10-11, ConfigNotifier uses ValueNotifier<Config> as the
type of Listenable. The static of () method gets the Config object from
ConfigNotifier object.

Listing 10-11. ConfigNotifier as InheritedNotifier

class ConfigNotifier extends InheritedNotifier<ValueNotifier
<Config>> {
ConfigNotifier({
Key key,
@required notifier,

382

CHAPTER 10 STATE MANAGEMENT

@required Widget child,
}) : super(key: key, notifier: notifier, child: child);

static Config of(BuildContext context) {
final ConfigNotifier configNotifier =
context.inheritFromWidgetOfExactType(ConfigNotifier);
return configNotifier?.notifier?.value ?? Config.
fallback();

}
}

To use ConfigNotifier widget, you need to create a new instance of
ValueNotifier<Config>. To update the Config object, you can simply
set the value property to a new value. ValueNotifier object will send
notifications, which notify dependent widgets to rebuild.

Listing 10-12. ConfiguredNotifierPage to use ConfigNotifier

class ConfiguredNotifierPage extends StatelessWidget {
ConfiguredNotifierPage({Key key, this.child}) : super(key:
key);
final Widget child;
final ValueNotifier<Config> notifier =
ValueNotifier(Config(color: Colors.green, fontSize: 16));

@override
Widget build(BuildContext context) {
return ConfigNotifier(
notifier: notifier,
child: Column(
children: <Widget>[
ConfigUpdater(
onColorChanged: (Color color) {

383

CHAPTER 10 STATE MANAGEMENT

_notifier.value = notifier.value.copyWith(color:
color);
}J
onFontSizeIncreased: () {
Config oldConfig = notifier.value;
_notifier.value =
oldConfig.copyWith(fontSize: oldConfig.
fontSize + 1.0);

b
)5

Container(
decoration: BoxDecoration(border: Border.all()),
padding: EdgeInsets.all(8),
child: child,

))

]’
)5
);
}
}

10-5. Managing State Using Scoped Model
Problem

You want to have a simple solution to handle model changes.

Solution

Use scoped_model package.

384

CHAPTER 10 STATE MANAGEMENT

Discussion

In Recipes 10-1, 10-2, 10-3, and 10-4, you have seen the usage

of StatefulWidget, InheritedWidget, InheritedModel, and
InheritedNotifier widgets to manage state. These widgets are provided
by Flutter framework. These widgets are low-level APIs, so they are
inconvenient to use in complex apps. The scoped_model package
(https://pub.dev/packages/scoped model) is a library to allow easily
passing a data model from a parent widget down to its descendants. It’s
built on top of InheritedWidget, but with an easy-to-use API. To use this
package, you need to add scoped model: *1.0.1 to the dependencies
of pubspec.yaml file. We'll use the same example as in Recipe 10-2 to
demonstrate the usage of scoped_model package.

Listing 10-13 shows the Config model using scoped_model package.
The Config class extends from Model class. It has private fields to store
the state. The setColor() and increaseFontSize() methods update
_color and fontSize fields, respectively. These two methods use
notifylListeners() internally to notify descendant widgets to rebuild.

Listing 10-13. Config model as scoped model
import 'package:scoped model/scoped model.dart';

class Config extends Model {
Color color = Colors.red;
double fontSize = 16.0;

Color get color => color;
double get fontSize => fontSize;

void setColor(Color color) {
_color = color;
notifyListeners();

}

385

https://pub.dev/packages/scoped_model

CHAPTER 10 STATE MANAGEMENT

void increaseFontSize() {
_fontSize += 1;
notifylListeners();
}
}

In Listing 10-14, ScopedModelText widget shows how to use the model
in descendant widgets. ScopedModelDescendant widget is used to get the
nearest enclosing model object. The type parameter determines the model
object to get. The builder parameter specified the build function to build
the widget. The build function has three parameters. The first parameter
of type BuildContext is common for build functions. The last parameter
is the model object. If a portion of the widget UI doesn’t rely on the model
and should not be rebuilt when model changes, you can specify it as the
child parameter of ScopedModelDescendant widget and access it in the
second parameter of the build function.

Listing 10-14. ScopedModelText uses ScopedModelDescendant

class ScopedModelText extends StatelessWidget {
@override
Widget build(BuildContext context) {
return ScopedModelDescendant<Config>(
builder: (BuildContext context, Widget child, Config
config) {
return Text(
'Font size: ${config.fontSize}',
style: TextStyle(
color: config.color,
fontSize: config.fontSize,

)5
)5
IR

386

CHAPTER 10 STATE MANAGEMENT

)5

In Listing 10-15, ScopedModelUpdater widget simply uses setColor ()
and increaseFontSize() methods to update the state.

Listing 10-15. ScopedModelUpdater to update Config object

class ScopedModelUpdater extends StatelessWidget {
static const List<Color> colors = [Colors.red, Colors.green,
Colors.blue];

@override
Widget build(BuildContext context) {
return ScopedModelDescendant<Config>(
builder: (BuildContext context, Widget child, Config
config) {
return Column(
children: <Widget>[
DropdownButton(
value: config.color,
items: colors.map((Color color) {
return DropdownMenuItem(
value: color,
child: Text(color.toString()),
);
}).tolList(),
onChanged: (Color color) {
config.setColor(color);

1

)5
RaisedButton(

387

CHAPTER 10 STATE MANAGEMENT

child: Text('Increase font size'),
onPressed: () {
config.increaseFontSize();
})
)
])
)5
I
)5
}
}

ScopedModel widget in Listing 10-16 is the last piece to put
Model and ScopedModelDescendant together. The model parameter
specifies the model object managed by the ScopedModel object. All the
ScopedModelDescendant widgets under the ScopedModel object get the
same model object.

Listing 10-16. ScopedModelPage uses ScopedModel

class ScopedModelPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Scoped Model'),
)
body: ScopedModel(
model: Config(),
child: Column(
children: <Widget>[
ScopedModelUpdater(),
ScopedModelText ()

388

CHAPTER 10 STATE MANAGEMENT

]J
))
)5
)5

You can also use static ScopedModel.of () method to get the
ScopedModel object, then use its model property to get the model object.

10-6. Managing State Using Bloc
Problem

You want to use Bloc pattern to manage state.

Solution

Use bloc and flutter bloc packages.

Discussion

Bloc (Business Logic Component) is an architecture pattern to separate
presentation from business logic. Bloc was designed to be simple,
powerful, and testable. Let’s start from core concepts in Bloc.

States represent a part of the application’s state. When state changes,
UI widgets are notified to rebuild based on the latest state. Each
application has its own way to define states. Typically, you'll use Dart
classes to describe states.

Events are sources of changes to states. Events can be generated by
user interactions or background tasks. For example, pressing a button may
generate an event that describes the intended action. When the response

389

CHAPTER 10 STATE MANAGEMENT

of a HTTP request is ready, an event can also be generated to include the
response body. Events are typically described as Dart classes. Events may
also have payload carried with them.

When events are dispatched, handling these events may cause the
current state transits to a new state. Ul widgets are then notified to rebuild
using the new state. An event transition consists of the current state, the
event, and the next state. If all state transitions are recorded, we can easily
track all user interactions and state changes. We can also implement time-
travelling debugging.

Now we can have a definition of Bloc. A Bloc component transforms
a stream of events into a stream of states. A Bloc has an initial state as
the state before any events are received. For each event, a Bloc has a
mapEventToState() function that takes a received event and returns a
stream of states to be consumed by the presentation layer. A Bloc also has
the dispatch() method to dispatch events to it.

In this recipe, we'll use the GitHub Jobs API (https://jobs.github.
com/api) to get job listings on GitHub. The user can input a keyword for
search and see the results. To consume this, we will be using the http
package (https://pub.dev/packages/http). Add this package to your
pubspec.yaml file.

Let’s start from the states. Listing 10-17 shows classes for different
states. JobsState is the abstract base class for all state classes. JobsState
class extends from Equatable class in the equatable package. Equatable
class is used to provide implantations for == operator and hashCode
property. JobsEmpty is the initial state. JobsLoading means the job listing
data is still loading. JobsLoaded means job listing data is loaded. The
payload type of JobsLoaded event is List<Job>. JobsError means an error
occurred when fetching the data.

390

https://jobs.github.com/api
https://jobs.github.com/api
https://pub.dev/packages/http

CHAPTER 10 STATE MANAGEMENT
Listing 10-17. Bloc states
import 'package:http/http.dart’ as http;

abstract class JobsState extends Equatable {
JobsState([List props = const []]) : super(props);

}

class JobsEmpty extends JobsState {}

class GetJobsEvent extends JobsEvent {
GetJobsEvent({@required this.keyword})
: assert(keyword != null),
super ([keyword]);

final String keyword;
}

class GitHubJobsClient {
Future<List<Job>> getJobs(keyword) async {
final response = await http.get('https://jobs.github.com/
positions.json?description=${keyword}");
if (response.statusCode != 200) {
throw new Exception("Unable to fetch data");
telse{
var result = new List<Job>();
final rawResult = json.decode(response.body);
for(final jsonJob in rawResult){
result.add(Job.fromJson(jsonJob));
}
}
}
}

391

CHAPTER 10 STATE MANAGEMENT

class JobslLoading extends JobsState {}

class JobslLoaded extends JobsState {
JobsLoaded({@required this.jobs})
: assert(jobs != null),
super([jobs]);

final List<Job> jobs;
}

class JobsError extends JobsState {}

Listing 10-18 shows the events. JobsEvent is the abstract base class for
event classes. GetJobsEvent class represents the event to get jobs data.

Listing 10-18. Bloc events

abstract class JobsEvent extends Equatable {
JobsEvent([List props = const []]) : super(props);

}

class GetJobsEvent extends JobsEvent {
GetJobsEvent({@required this.keyword})
: assert(keyword != null),
super ([keyword]);

final String keyword;
}

Listing 10-19 shows the Bloc. JobsBloc class extends from
Bloc<JobsEvent, JobsState> class. Type parameters of Bloc are event
and state classes. JobsEmpty is the initial state. In the mapEventToState()
method, if the event is GetJobsEvent, a JobsLoading state is emitted first
to the stream. Then GitHubJobsClient object is used to fetch the data.

If the data is fetched successfully, a JobsLoaded state is emitted with the
loaded data. Otherwise, a JobsExrror state is emitted instead.

392

CHAPTER 10 STATE MANAGEMENT

Listing 10-19. Bloc

class JobsBloc extends Bloc<JobsEvent, JobsState> {
JobsBloc({@required this.jobsClient}) : assert(jobsClient !=
null);

final GitHubJobsClient jobsClient;

@override
JobsState get initialState => JobsEmpty();

@override
Stream<JobsState> mapEventToState(JobsEvent event) async* {
if (event is GetJobsEvent) {
yield JobsLoading();
try {
List<Job> jobs = await jobsClient.getJobs(event.
keyword) ;
yield JobsLoaded(jobs: jobs);
} catch (e) {
yield JobsError();
}
}
}
}

GitHubJobs class in Listing 10-20 is the widget to use the JobsBloc
class in Listing 10-19. The JobsBloc object is created in initState()
method and disposed in dispose() method. In the KeywordInput widget,
when user inputs the keyword in the text field and presses the search
button, a GetJobsEvent is dispatched to the JobsBloc object. In the
JobsView widget, BlocBuilder widget is used to build UI based on the
state in the Bloc. Here we check the actual type of JobsState and return
different widgets.

393

CHAPTER 10 STATE MANAGEMENT

Listing 10-20. GitHub jobs widget using Bloc

class GitHubJobs extends StatefulWidget {
GitHubJobs({Key key, @required this.jobsClient})
: assert(jobsClient != null),
super (key: key);

final GitHubJobsClient jobsClient;

@override
_GitHubJobsState createState() => GitHubJobsState();

}

class GitHubJobsState extends State<GitHubJobs> {
JobsBloc _jobsBloc;

@override
void initState() {
super.initState();
_jobsBloc = JobsBloc(jobsClient: widget.jobsClient);

}

@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
Padding(
padding: const EdgelInsets.all(8.0),
child: KeywordInput(
jobsBloc: _jobsBloc,

)

)5
Expanded(

child: JobsView(

394

CHAPTER 10 STATE MANAGEMENT

jobsBloc: _jobsBloc,

))
)J
]’
)5
}

@override
void dispose() {
_jobsBloc.dispose();
super.dispose();
}
}

class KeywordInput extends StatefulWidget {
KeywordInput({this.jobsBloc});

final JobsBloc jobsBloc;

@override
_KeywordInputState createState() => KeywordInputState();

}

class KeywordInputState extends State<KeywordInput> {
final GlobalKey<FormFieldState<String>> _keywordFormKey =

GlobalKey();

@override
Widget build(BuildContext context) {
return Row(
children: <Widget>[
Expanded(
child: TextFormField(
key: _keywordFormKey,

)5

395

CHAPTER 10 STATE MANAGEMENT

)5
IconButton(

icon: Icon(Icons.search),
onPressed: () {
String keyword = _keywordFormKey.currentState?.
value ?2? ";
if (keyword.isNotEmpty) {
widget.jobsBloc.dispatch(GetJobsEvent(keyword:
keyword));

}
}J
))
]’
)5
}
}

class JobsView extends StatelessWidget {
JobsView({this.jobsBloc});

final JobsBloc jobsBloc;

@override
Widget build(BuildContext context) {
return BlocBuilder(
bloc: jobsBloc,
builder: (BuildContext context, JobsState state) {
if (state is JobsEmpty) {
return Center(
child: Text('Input keyword and search'),
);
} else if (state is JobsLoading) {
return Center(

396

CHAPTER 10 STATE MANAGEMENT

child: CircularProgressIndicator(),
);
} else if (state is JobsError) {
return Center(
child: Text(
'Failed to get jobs',
style: TextStyle(color: Colors.red),
))
)5
} else if (state is JobslLoaded) {
return JobsList(state.jobs);

}
}s
)5

10-7. Managing State Using Redux
Problem

You want to use Redux as the state management solution.

Solution

Use redux and flux_redux packages.

Discussion

Redux (https://redux.js.org/)is a popular library to manage state in
apps. Originated for React, Redux has been ported to different languages.
The redux package is a Dart implementation of Redux. The flux_redux

397

https://redux.js.org/

CHAPTER 10 STATE MANAGEMENT

package allows using Redux store when building Flutter widgets. If you
have used Redux before, the same concepts are used in Flutter.

Redux uses a single global object as the state. This object is the single
source of truth for the app, and it’s called the store. Actions are dispatched
to the store to update the state. Reducer functions accept the current state
and an action as the parameters and return the next state. The next state
becomes the input of the next run of the reducer function. Ul widgets can
select partial data from the store to build the content.

To use flutter redux package, you need to add flutter redux:
70.5.3 to the dependencies of pubspec.yaml file. We'll use the same
example of listing jobs on GitHub to demonstrate the usage of Redux in
Flutter.

Let’s start from the state. JobsState class in Listing 10-21 represents
the global state. The state has three properties, loading represents whether
the data is still loading, error represents whether an error occurred
when loading the data, and data presents the list of data. By using the
copyWith() method, we can new JobsState objects by updating some
properties.

Listing 10-21. JobsState for Redux

class JobsState extends Equatable {
JobsState({bool loading, bool error, List<Job> data})
: _loading = loading,
_error = error,
_data = data,
super([loading, error, data]);

final bool loading;
final bool error;
final List<Job> _data;

bool get loading => loading ?? false;
bool get error => _error ?? false;

398

CHAPTER 10 STATE MANAGEMENT

List<Job> get data => data ?? [];
bool get empty => loading == null 8% _error == null && _data
== null;

JobsState copyWith({bool loading, bool error, List<Job>
data}) {
return JobsState(
loading: loading ?? this. loading,
error: error ?? this. error,
data: data ?? this. data,
);
}
}

Listing 10-22 shows the actions. These actions trigger state changes.

Listing 10-22. Actions for Redux

abstract class JobsAction extends Equatable {
JobsAction([List props = const []]) : super(props);
}

class LoadJobAction extends JobsAction {
LoadJobAction({@required this.keyword})
: assert(keyword != null),
super ([keyword]);

final String keyword;
}

class JobLoadedAction extends JobsAction {
JobLoadedAction({@required this.jobs})
: assert(jobs != null),
super([jobs]);

399

CHAPTER 10 STATE MANAGEMENT

final List<Job> jobs;
}

class JobLoadErrorAction extends JobsAction {}

Listing 10-23 shows the reducer function to update state according to
the action.

Listing 10-23. Reducer function for Redux

JobsState jobsReducers(JobsState state, dynamic action) {
if (action is LoadJobAction) {
return state.copyWith(loading: true);
} else if (action is JoblLoadErrorAction) {
return state.copyWith(loading: false, error: true);
} else if (action is JoblLoadedAction) {
return state.copyWith(loading: false, data: action.jobs);

}

return state;

}

Actions defined in Listing 10-22 can only be used for synchronous
operations. For example, if you want to dispatch the JobLoadedAction,
you need to have the List<Job> object ready first. However, the operation
to load jobs data is asynchronous. You'll need to use thunk functions as
the middleware of Redux store. A thunk function takes the store as the
only parameter. It uses the store to dispatch actions. A thunk action can be
dispatched to the store, just like other normal actions.

The getJobs() function in Listing 10-24 takes a GitHubJobsClient
object and a search keyword as the parameters. This function returns a
thunk function of type ThunkAction<JobsState>. ThunkAction comes
from redux_thunk package. In the thunk function, a LoadJobAction is
dispatched first. Then GitHubJobsClient object is used to get the jobs

400

CHAPTER 10 STATE MANAGEMENT

data. Depending on the result of data loading, a JobLoadedAction or
JoblLoadErrorAction is dispatched.

Listing 10-24. Thunk function for Redux

ThunkAction<JobsState> getJobs(GitHubJobsClient jobsClient,
String keyword) {
return (Store<JobsState> store) async {
store.dispatch(LoadJobAction(keyword: keyword));
try {
List<Job> jobs = await jobsClient.getJobs(keyword);
store.dispatch(JobLoadedAction(jobs: jobs));
} catch (e) {
store.dispatch(JobLoadErrorAction());
}
};
}

Now we can use the Redux store to build the widgets. You can use two
helper widgets to access data in the store. In Listing 10-25, StoreBuilder
widget is used to provide direct access to the store. The store is available
as the second parameter of the build function. StoreBuilder widget is
usually used when you need to dispatch actions. StoreConnector widget
allows using a converter function to transform the state first. When the
search icon is pressed, the getJobs () function in Listing 10-24 is called
first to create the thunk function, then dispatches the thunk function to the
store. When using StoreConnector widget, the converter function simply
gets the current state from the store. The state object is then used in build
function.

401

CHAPTER 10 STATE MANAGEMENT
Listing 10-25. GitHub jobs widget using Redux store

class GitHubJobs extends StatefulWidget {
GitHubJobs({
Key key,
@required this.store,
@required this.jobsClient,
}) : assert(store != null),
assert(jobsClient != null),
super(key: key);

final Store<JobsState> store;
final GitHubJobsClient jobsClient;

@override
_GitHubJobsState createState() => GitHubJobsState();

}

class GitHubJobsState extends State<GitHubJobs> {
@override
Widget build(BuildContext context) {
return StoreProvider<JobsState>(
store: widget.store,
child: Column(
children: <Widget>[
Padding(
padding: const EdgeInsets.all(8.0),
child: KeywordInput(
jobsClient: widget.jobsClient,
))

)5
Expanded(

child: JobsView(),

402

CHAPTER 10 STATE MANAGEMENT

)J
])
)5
)5
}
}

class KeywordInput extends StatefulWidget {
KeywordInput({this.jobsClient});

final GitHubJobsClient jobsClient;

@override
_KeywordInputState createState() => KeywordInputState();

}

class _KeywordInputState extends State<KeywordInput> {
final GlobalKey<FormFieldState<String>> _keywordFormKey =
GlobalKey();

@override
Widget build(BuildContext context) {
return Row(
children: <Widget>[
Expanded (
child: TextFormField(
key: _keywordFormKey,

)

)5
StoreBuilder<JobsState>(

builder: (BuildContext context, Store<JobsState>
store) {
return IconButton(
icon: Icon(Icons.search),

403

CHAPTER 10 STATE MANAGEMENT

onPressed: () {
String keyword = _keywordFormKey.currentState?.
value ?? ";
if (keyword.isNotEmpty) {
store.dispatch(getJobs(widget.jobsClient,
keyword));

}
})
)5
}J
)J
1,
)5
}
}

class JobsView extends StatelessWidget {
@override
Widget build(BuildContext context) {
return StoreConnector<JobsState, JobsState>(
converter: (Store<JobsState> store) => store.state,
builder: (BuildContext context, JobsState state) {
if (state.empty) {
return Center(
child: Text('Input keyword and search'),
);
} else if (state.loading) {
return Center(
child: CircularProgressIndicator(),
);
} else if (state.error) {
return Center(

404

CHAPTER 10 STATE MANAGEMENT

child: Text(
'Failed to get jobs',
style: TextStyle(color: Colors.red),
)J
);
} else {
return JobslList(state.data);
}
1
);
}
}

The last step is to create the store. The store in Listing 10-26 is created
with the reducer function, the initial state, and the thunk middleware from

redux_thunk package.

Listing 10-26. Create the store

final store = new Store<JobsState>(
jobsReducers,
initialState: JobsState(),
middleware: [thunkMiddleware],

)5

10-8. Managing State Using Mobx
Problem

You want to use Mobx to manage state.

405

CHAPTER 10 STATE MANAGEMENT

Solution

Use mobx and flutter mobx packages.

Discussion

Mobx (https://mobx. js.org) is a state management library which
connects reactive data with the UI. MobX originates from developing web
apps using JavaScript. It’s also ported to Dart (https://mobx.pub). In
Flutter apps, we can use mobx and flutter mobx packages to build apps
with Mobx. Mobx for Flutter uses build runner package to generate code
for the store. The build runner and mobx_codegen packages need to be
added as dev_dependencies to pubspec.yaml file.

Mobx uses observables to manage the state. The whole state of an app
consists of core state and derived state. Derived state is computed from
core state. Actions mutate observables to update the state. Reactions are
observers of the state and get notified whenever an observable they track is
changed. In Flutter app, the reactions are used to update the widgets.

Comparing to Redux for Flutter, Mobx uses code generation to simplify
the usage of store. You don’t need to write boilerplate code to create
actions. Mobx provides several annotations. You just annotate the code
with these annotations. This is similar with how json_annotation and
json_serialize packages work. We'll use the same example of showing
job listings on GitHub to demonstrate the usage of Mobx. Add this package
to your pubspec.yaml file if it is not already present.

Listing 10-27 shows the basic code of jobs_store.dart file for the
Mobx store. This file uses the generated part file jobs_store.g.dart.
_JobsStore is the abstract class of the store for jobs. It implements Store
class from Mobx. Here we defined two observables using @observable
annotation. The first observable keyword is a simple string that manages
the current search keyword. The getJobsFuture observable is an
ObservableFuture<List<Job>> object that manages the asynchronous

406

https://mobx.js.org
https://mobx.pub

CHAPTER 10 STATE MANAGEMENT

operation to get the jobs using API. Those properties marked using @
computed annotation are derived observables to check the status of
data loading. We also define two actions using @action annotation. The
setKeyword() action sets the getJobsFuture observable to an empty
state and keyword observable to the provided value. The getJobs ()
action uses GitHubJobsClient.getJobs() method to load the data. The
getJobsFuture observable is updated to an ObservableFuture object
wrapping the returned future.

Listing 10-27. Mobx store

import 'package:meta/meta.dart’;
import 'package:mobx/mobx.dart’;

part 'jobs store.g.dart’';
class JobsStore = JobsStore with _$JobsStore;

abstract class JobsStore implements Store {
_JobsStore({@required this.jobsClient}) : assert(jobsClient
1= null);

final GitHubJobsClient jobsClient;

@observable
String keyword = ";

@observable
ObservableFuture<List<Job>> getJobsFuture = emptyResponse;

@computed
bool get empty => getJobsFuture == emptyResponse;

@computed

bool get hasResults =>
getJobsFuture != emptyResponse &&
getJobsFuture.status == FutureStatus.fulfilled;

407

CHAPTER 10 STATE MANAGEMENT

@computed

bool get loading =>
getJobsFuture != emptyResponse &&
getJobsFuture.status == FutureStatus.pending;

@computed

bool get haskError =>
getJobsFuture != emptyResponse &&
getJobsFuture.status == FutureStatus.rejected;

static ObservableFuture<List<Job>> emptyResponse =
ObservableFuture.value([]);

List<Job> jobs = [];

@action
Future<List<Job>> getJobs() async {
jobs = [1;

final future = jobsClient.getJobs(keyword);
getJobsFuture = ObservableFuture(future);

return jobs = await future;

}

@action

void setKeyword(String keyword) {
getJobsFuture = emptyResponse;
this.keyword = keyword;

}
}

The flutter packages pub run build runner build command is
required to generate code. JobsStore class is the store to use. Listing 10-28
shows the widget that uses the store. In the onPressed callback of the search
button, setKeyword() method is called first to update the keyword, then

408

CHAPTER 10 STATE MANAGEMENT

getJobs () method is called to trigger the data loading. The Observer widget
uses a build function to build the UI using computed observables and fields
in JobsStore object. Whenever these observables change, Observer widget
rebuilds to update the UI.

Listing 10-28. GitHub jobs widget using Mobx store

class GitHubJobs extends StatefulWidget {
GitHubJobs({Key key, @required this.jobsStore})
: assert(jobsStore != null),
super (key: key);

final JobsStore jobsStore;

@override
_GitHubJobsState createState() => GitHubJobsState();

}

class GitHubJobsState extends State<GitHubJobs> {
@override
Widget build(BuildContext context) {
JobsStore jobsStore = widget.jobsStore;
return Column(
children: <Widget>[
Padding(
padding: const EdgeInsets.all(8.0),
child: KeywordInput(
jobsStore: jobsStore,

)5

)5
Expanded (

child: JobsView(
jobsStore: jobsStore,

409

CHAPTER 10 STATE MANAGEMENT

)J
))
1,
)5
}
}

class KeywordInput extends StatefulWidget {
KeywordInput({this.jobsStore});

final JobsStore jobsStore;

@override
_KeywordInputState createState() => KeywordInputState();

}

class _KeywordInputState extends State<KeywordInput> {
final GlobalKey<FormFieldState<String>> _keywordFormKey =
GlobalKey();

@override
Widget build(BuildContext context) {
return Row(
children: <Widget>[
Expanded (
child: TextFormField(
key: _keywordFormKey,
))

)5
IconButton(

icon: Icon(Icons.search),

onPressed: () {
String keyword = _keywordFormKey.currentState?.
value ?? ";

410

CHAPTER 10 STATE MANAGEMENT

if (keyword.isNotEmpty) {
widget.jobsStore.setKeyword(keyword);
widget.jobsStore.getJobs();

}

})
)J
]’
)5
}
}

class JobsView extends StatelessWidget {
JobsView({this.jobsStore});

final JobsStore jobsStore;

@override
Widget build(BuildContext context) {
return Observer(
builder: (BuildContext context) {
if (jobsStore.empty) {
return Center(
child: Text('Input keyword and search'),
)5
} else if (jobsStore.loading) {
return Center(
child: CircularProgressIndicator(),
)5
} else if (jobsStore.hasError) {
return Center(
child: Text(
'Failed to get jobs',
style: TextStyle(color: Colors.red),

411

CHAPTER 10 STATE MANAGEMENT

)J

);

} else {
return JobsList(jobsStore.jobs);

}

b
)5
}
}

10-9. Summary

This chapter discusses different state management solutions for

Flutter apps. In these solutions, StatefulWidget, InheritedWidget,
InheritedModel, and InheritedNotifier widgets are provided by Flutter
framework. Scoped model, Bloc, Redux, and Mobx libraries are third-party
solutions. You are free to choose whatever solution that suits best for your
requirement. In the next chapter, we’ll discuss animations in Flutter.

412

CHAPTER 11

Animations

Animations play an important role in mobile apps to provide visual
feedback for end users. This chapter covers recipes related to animations
in Flutter.

11-1. Creating Simple Animations
Problem

You want to create simple animations.

Solution

Use AnimationController class to create simple animations.

Discussion

Animations in Flutter have a value and a status. The value of an animation
may change over time. Animations are represented using abstract
Animation<T> class. Animation class extends from Listenable class. You
can add listeners to Animation objects to get notified for changes of value
or status.

AnimationController class is a subclass of Animation<double> class.
AnimationController class provides control over the animation it creates.
To create an AnimationController object, you can provide a lower bound,

© Fu Cheng 2019 413
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_11

CHAPTER 11 ANIMATIONS

an upper bound, and a duration. The value of AnimationController object
changes from the lower bound to the upper bound over the duration. A
TickerProvider object is also required. For stateful widget, you can use
TickerProviderStateMixin or SingleTickerProviderStateMixin class as
the mixin of the state class. If only one AnimationController object is used
for the state, using SingleTickerProviderStateMixin is more efficient.
Listing 11-1 shows an example of using AnimationController
in stateful widgets to animate the size of an image. The
AnimationController object is created in the body of initState()
method and disposed in dispose() method. This is a typical pattern
of using AnimationController. GrowingImageState class has the
SingleTickerProviderStateMixin mixin, so the AnimationController
constructor uses this object as the vsync parameter. In the listener of
AnimationController object, setState() method is called to trigger the
rebuild of the widget. The forward() method starts the running of the
animation in forward direction. In the build() method, the current value
of AnimationController objectis used to control the size of the SizedBox
widget. In the runtime, the size of SizedBox widget grows from 0 to 400 in
10 seconds.

Listing 11-1. Using AnimationController

class GrowingImage extends StatefulWidget {
@override
_GrowingImageState createState() => GrowingImageState();

}

class _GrowingImageState extends State<GrowingImage>
with SingleTickerProviderStateMixin {
AnimationController controller;

@override
void initState() {

414

CHAPTER 11

super.initState();
controller = AnimationController(
lowerBound: 0,
upperBound: 400,
duration: const Duration(seconds: 10),
vsync: this,
)
..addListener(() {
setState(() {});
b

. .forward();

}

@override
Widget build(BuildContext context) {
return SizedBox(
width: controller.value,
height: controller.value,

ANIMATIONS

child: Image.network('https://picsum.photos/400"),

)5
}

@override
void dispose() {
controller.dispose();
super.dispose();
}
}

Table 11-1 shows methods of AnimationController to control the

progress of animation.

415

CHAPTER 11 ANIMATIONS

Table 11-1. Methods to control animation

Name Description

forward() Starts the running of animation in forward direction.
reverse() Starts the running of animation in backward direction.

stop() Stops the running of animation.

repeat() Starts the running of animation and restarts when it completes.
reset() Sets the value to the lower bound and stops the animation.

An animation may be in different status. AnimationStatus enum
represents different statuses for an animation. Table 11-2 shows all values
of this enum. You can use addStatusListener() method to add a listener
to get notified when the status changes.

Table 11-2. Values of AnimationStatus

Name Description

forward The animation is running in forward direction.
reverse The animation is running in backward direction.
dismissed The animation is stopped at the beginning.
completed The animation is stopped at the end.

In Listing 11-2, a status listener is added to the AnimationController
object. When the animation is in the completed status, it starts running in
backward direction.

Listing 11-2. Status listener

var controller = AnimationController(
lowerBound: 0,
upperBound: 300,

416

CHAPTER 11 ANIMATIONS

duration: const Duration(seconds: 10),
vsync: this,
)

..addListener(() {
setState(() {});

9

..addStatusListener((AnimationStatus status) {
if (status == AnimationStatus.completed) {

controller.reverse();

}

9

. .forward();

Listing 11-1 shows a typical pattern to use animations with stateful
widgets. AnimatedWidget widget makes the use of animations much easier.
AnimatedWidget constructor requires a Listenable object. Whenever the
Listenable object emits a value, the widget rebuilds itself. Listing 11-3
shows an example of using AnimatedWidget. Although AnimatedWidget
class is typically used with Animation objects, you can still use it with any
Listenable object.

Listing 11-3. Example of AnimatedWidget

class AnimatedImage extends Animatedwidget {
AnimatedImage({Key key, this.animation})
: super(key: key, listenable: animation);
final Animation<double> animation;
@override
Widget build(BuildContext context) {
return SizedBox(

width: animation.value,
height: animation.value,

417

CHAPTER 11 ANIMATIONS

child: Image.network('https://picsum.photos/300"),
);
}
}

11-2. Creating Animations Using Linear
Interpolation

Problem

You want to create animations for other data types using linear
interpolation.

Solution

Use Tween class and its subclasses.

Discussion

AnimationController class uses double as its value type. Double values
are useful for animations with size or position. You may still need to
animate other types of data. For example, you can animate the background
color from red to green. For these scenarios, you can use Tween class and
its subclasses.

Tween class represents linear interpolation between a beginning and
ending value. To create a Tween object, you need to provide these two
values. Tween objects can provide values for animations to use. By using
the animate() method with another Animation object, you can create a
new Animation object that is driven by the provided Animation object but
uses values from the Tween object. Subclasses of Tween need to implement

418

CHAPTER 11 ANIMATIONS

the lerp() method that takes an animation value and returns the
interpolated value.

In Listing 11-4, AnimatedColor widget uses Animation<Color>
object to update the background color. ColorTween object is created with
beginning value Colors.red and ending value Colors.green.

Listing 11-4. Example of ColorTween

class AnimatedColorTween extends StatefulWidget {
@override
_AnimatedColorTweenState createState() => _
AnimatedColorTweenState();

}

class _AnimatedColorTweenState extends
State<AnimatedColorTween>
with SingleTickerProviderStateMixin {
AnimationController controller;
Animation<Color> animation;

@override
void initState() {
super.initState();
controller = AnimationController(
duration: const Duration(seconds: 10),
vsync: this,
)5
animation =
ColorTween(begin: Colors.red, end: Colors.green).
animate(controller);
controller.forward();

419

CHAPTER 11 ANIMATIONS

@override
Widget build(BuildContext context) {
return AnimatedColor(
animation: animation,
)5
}

@override
void dispose() {
controller.dispose();
super.dispose();
}
}

class AnimatedColor extends Animatedwidget {
AnimatedColor({Key key, this.animation})
: super(key: key, listenable: animation);

final Animation<Color> animation;

@override
Widget build(BuildContext context) {
return Container(
width: 300,
height: 300,
decoration: BoxDecoration(color: animation.value),
)5
}
}

There are many other subclasses of Tween for different objects,
including AlignmentTween, BorderTween, BoxConstraintsTween,
DecorationTween, EdgeInsetsTween, SizeTween, TextStyleTween, and

more.

420

CHAPTER 11 ANIMATIONS

11-3. Creating Curved Animations
Problem

You want to create curved animations.

Solution

Use CurvedAnimation or CurveTween class.

Discussion

Except from linear animations, you can also create curved animations
that use curves to adjust the rate of changes. A curve is a mapping of unit
interval to another unit interval. Curve class and its subclasses are built-
in types of curves. The transform() method of Curve class returns the
mapped value of the curve for a given point. A curve must map the input
0.0to0.0and 1.0to 1.0. Table 11-3 shows different types of curves.

Table 11-3. Different types of curves

Name Description

Cubic Cubic curve defined by two control points. Created with
four double values as x and y coordinates of these two
points.

ElasticInCurve Oscillation curve that grows in magnitude while
overshooting its bounds. Created with duration of the
oscillation.

ElasticOutCurve Oscillation curve that shrinks in magnitude while
overshooting its bounds. Created with duration of the
oscillation.

(continued)

421

CHAPTER 11 ANIMATIONS

Table 11-3. (continued)

Name Description

ElasticInOutCurve Oscillation curve that grows then shrinks in magnitude
while overshooting its bounds. Created with duration of
the oscillation.

Interval Created with begin, end, and a curve. Its value is 0.0
until begin and 1.0 after end. Values between begin and
end are defined by the curve.

SawTooth A sawtooth curve that repeats the given number of times.
Threshold A curve that is 0.0 until the threshold, then jumps to 1.0.

You can use either constructors of Curve subclasses in Table 11-3 to
create new curves or use constants in Curves class. Constants in Curves
class are generally good enough for most cases. For a Curve object, you can
use the flipped property to get a new curve that is the inversion of this one.

With Curve objects, you can create curved animations using
CurvedAnimation class. Table 11-4 shows parameters of CurvedAnimation
constructor. If reverseCurve parameter is null, the specified curve is used
in both directions.

Table 11-4. Parameters of CurvedAnimation

Name Type Description

parent Animation<double> The animation to apply the curve.
curve Curve The curve to use in forward direction.
reverseCurve Curve The curve to use in backward direction.

In Listing 11-5, AnimatedBox widget uses the animation value to
determine the left position of the box. The CurvedAnimation object is
created with Curves.easeInOut curve.

422

CHAPTER 11 ANIMATIONS
Listing 11-5. CurvedAnimation

class CurvedPosition extends StatefulWidget {
@override
_CurvedPositionState createState() => CurvedPositionState();

}

class _CurvedPositionState extends State<CurvedPosition>
with SingleTickerProviderStateMixin {
AnimationController controller;
Animation<double> animation;

@override
void initState() {
super.initState();
controller = AnimationController(
duration: const Duration(seconds: 5),
vsync: this,
)..forward();
animation = CurvedAnimation(parent: controller, curve:
Curves.easeInOut);

}

@override
Widget build(BuildContext context) {
return AnimatedBox(
animation: animation,
)5
}

@override

void dispose() {
controller.dispose();
super.dispose();

423

CHAPTER 11 ANIMATIONS

}
}

class AnimatedBox extends Animatedwidget {
AnimatedBox({Key key, this.animation})
: super(key: key, listenable: animation);

final Animation<double> animation;
final double width = 400;

@override
Widget build(BuildContext context) {
return Container(
width: width,
height: 20,
child: Stack(
children: <Widget>[
Positioned(
left: animation.value * width,
bottom: 0,
child: Container(
width: 10,
height: 10,
decoration: BoxDecoration(color: Colors.red),
))
)
]’
)
);
}
}

CurveTween class uses a Curve object to transform the value of the
animation. You can use CurveTween objects when you need to chain a
curve animation with another Tween object.

424

CHAPTER 11 ANIMATIONS

11-4. Chaining Tweens
Problem

You want to chain tweens.

Solution

Use chain() method of Animatable class or drive() method of Animation
class.

Discussion

Animatable is the superclass of Tween, CurveTween, and TweenSequence
classes. Given an Animatable object, you can use the chain() method
with another Animatable object as the parent. For a given input value,
the parent Animatable object is evaluated first, then the result is used as
the input of the current Animatable object. You can use multiple chain()
methods to create complex animations.

In Listing 11-6, the Tween object is chained with another CurveTween
object.

Listing 11-6. Chain tweens

var animation = Tween(begin: 0.0, end: 300.0)
.chain(CurveTween(curve: Curves.easeOut))
.animate(controller);

You can also use the drive() method of Animation class to chain an
Animatable object.

425

CHAPTER 11 ANIMATIONS

11-5. Creating Sequences of Tweens
Problem

You want to create a sequence of tweens for different stages.

Solution

Use TweenSequence class.

Discussion

By using TweenSequence class, you can use different Animatable objects
for different stages of an animation. A TweenSequence object is defined
by a list of TweenSequenceItem objects. Each TweenSequenceItem object
has an Animatable object and a weight. The weight defines the relative
percentage of this TweenSequenceItem object in the whole duration of its
parent TweenSequence object.

In Listing 11-7, the animation is created with 40% of linear tween and
60% of curved tween.

Listing 11-7. Example of TweenSequence

var animation = TweenSequence([

TweenSequenceItem(
tween: Tween(begin: 0.0, end: 100.0),
weight: 40,

))

TweenSequenceItem(
tween: Tween(begin: 100.0, end: 300.0)

.chain(CurveTween(curve: Curves.easeInOut)),

weight: 60,

)

]1).animate(controller);

426

CHAPTER 11 ANIMATIONS

11-6. Running Simultaneous Animations
Problem

You want to run simultaneous animations in AnimatediWidget

Solution

Use evaluate() method of Animatable class.

Discussion

AnimatedWidget constructor only supports a single Animation object. If
you want to use multiple animations in an AnimatedWidget object, you
need to create multiple Tween objects in the AnimatedWidget object and
use evaluate() method to get the values for the Animation object.

In Listing 11-8, leftTween and bottomTween objects determine the
left and bottom properties, respectively.

Listing 11-8. Simultaneous animations

class AnimatedBox extends Animatedwidget {
AnimatedBox({Key key, this.animation})
: super(key: key, listenable: animation);

final Animation<double> animation;

final double width = 400;

final double _height = 300;

static final leftTween = Tween(begin: 0, end: 1.0);

static final bottomTween = CurveTween(curve: Curves.ease);

@override
Widget build(BuildContext context) {
return Container(

427

CHAPTER 11 ANIMATIONS

width: width,
height: _height,
margin: EdgelInsets.all(10),
decoration: BoxDecoration(border: Border.all()),
child: Stack(
children: <Widget>[
Positioned(
left: leftTween.evaluate(animation) * width,
bottom: bottomTween.evaluate(animation) * height,
child: Container(
width: 10,
height: 10,
decoration: BoxDecoration(color: Colors.red),
))
)
]’
)
)
}
}

11-7. Creating Staggered Animations
Problem

You want to create sequential or overlapping animations.

Solution

Use Interval class

428

CHAPTER 11 ANIMATIONS

Discussion

With TweenSequence class, you can create a sequence of tweens. However,
tweens specified in TweenSequence objects cannot be overlapping. To
create overlapping animations, you can use Interval curve to specify the
begin and end time of an animation.

In Listing 11-9, three Tween objects animate in different intervals
specified in Interval objects. These Tween objects are controlled by the
same Animation object.

Listing 11-9. Staggered animations

class AnimatedContainer extends StatelessWidget {
AnimatedContainer({Key key, this.animation})
: width = Tween(begin: 0.0, end: 300.0).
animate(CurvedAnimation(
parent: animation,
curve: Interval(0.0, 0.5, curve: Curves.
easelInOut))),
height = Tween(begin: 0.0, end: 200.0).
animate(CurvedAnimation(
parent: animation,
curve: Interval(0.2, 0.7, curve: Curves.

bounceInOut))),
backgroundColor = ColorTween(begin: Colors.red, end:
Colors.green)

.animate(CurvedAnimation(
parent: animation,
curve: Interval(0.3, 1.0, curve: Curves.
elasticInOut))),
super (key: key);

429

CHAPTER 11 ANIMATIONS

final Animation<double> animation;
final Animation<double> width;

final Animation<double> height;

final Animation<Color> backgroundColor;

Widget build(BuildContext context, Widget child) {
return Container(
width: width.value,
height: height.value,
decoration: BoxDecoration(color: backgroundColor.value),
child: child,
);
}

@override
Widget build(BuildContext context) {
return AnimatedBuilder(
animation: animation,
builder: build,
)5
}
}

11-8. Creating Hero Animations
Problem

You want to animate an element across two routes.

Solution

Use Hero widget.

430

CHAPTER 11 ANIMATIONS

Discussion

When switching from the current route to a new route, it’s better to have
some elements in the new route to indicate the navigation context. For
example, the current route displays a list of items. When the user taps one
item to navigate to the details route, the new route should have a widget to
show brief information about the selected item.

Hero widget is shared between two routes. A Hero widget is created
with a tag and a child widget. The tag is the unique identifier of a Hero
widget. If the source route and target route both have a Hero widget with
the same tag, then during route transition, the Hero widget in source route
is animated to the location in the target route. Tags of Hero widget must be
unique in the same widgets tree.

In Listing 11-10, ImageHero class wraps a Hero widget that displays an
image in a SizedBox widget. The tag is set to the image’s URL.

Listing 11-10. Hero widget

class ImageHero extends StatelessWidget {
ImageHero({Key key, this.imageUrl, this.width, this.height})
: super(key: key);

final String imageUrl;
final double width;
final double height;

@override
Widget build(BuildContext context) {
return SizedBox(
width: width,
height: height,
child: Hero(
tag: imageUrl,

431

CHAPTER 11 ANIMATIONS

child: Image.network(imageUrl),
)
)5
}
}

Listing 11-11 shows the current route that displays a list of images.
ImageHero widget is wrapped in a GridTile widget. Tapping an image
navigates to the new route with ImageView widget.

Listing 11-11. Current route with ImageHero

class ImagesPage extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Images'),
)
body: GridView.count(
crossAxisCount: 2,
children: List.generate(8, (int index) {
String imageUrl = "https://picsum.
photos/300?random&%index";
return GridTile(
child: InkWell(
onTap: () {
Navigator.push(
context,
MaterialPageRoute(builder: (BuildContext
context) {
return ImageView(imageUrl: imageUrl);

1>

432

CHAPTER 11 ANIMATIONS

)s
}J
child: ImageHero(
imageUrl: imageUrl,
width: 300,
height: 300,
))
))
);
1>
)
)5

Listing 11-12 shows the ImageView widget. It also has an ImageHero
widget with the same tag as the selected image. This is required to make

the animation work.

Listing 11-12. New route with ImageHero

class ImageView extends StatelessWidget {
ImageView({Key key, this.imageUrl}) : super(key: key);
final String imageUrl;

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Image'),
)5
body: Row(
children: <Widget>[

433

CHAPTER 11 ANIMATIONS

ImageHero(
width: 50,
height: 50,
imageUrl: imageUrl,

)5
Expanded(
child: Text('Image Detail'),

)

)s
)5

11-9. Using Common Transitions
Problem

You want to have a simple way to use different types of Tween objects for
animations.

Solution

Use different types of transitions.

Discussion

It’'s common to use different types of Tween objects to animate different
aspects of widgets. You can use AnimatedWidget or AnimatedBuilder class
to work with Tween objects. Flutter SDK provides several transition widgets
to make certain animations easy to use.

434

CHAPTER 11 ANIMATIONS

ScaleTransition widget animates the scale of a widget. To create
a ScaleTransition object, you need to provide an Animation<double>
object as the scale. The alignment parameter specifies the alignment of
the origin of scaling coordinates relative to the box. Listing 11-13 shows an
example of ScaleTransition.

Listing 11-13. Example of ScaleTransition

class ScaleBox extends StatelessWidget {
ScaleBox({Key key, Animation<double> animation})
: _animation = CurveTween(curve: Curves.ease).
animate(animation),
super(key: key);

final Animation<double> _animation;

@override
Widget build(BuildContext context) {
return ScaleTransition(
scale: _animation,
alignment: Alignment.centerleft,
child: Container(
height: 100,
decoration: BoxDecoration(color: Colors.red),
)5
)s

Another example of transition widget is FadeTransition widget that
animates the opacity. Listing 11-14 shows an example of FadeTransition.

435

CHAPTER 11 ANIMATIONS
Listing 11-14. Example of FadeTransition

class FadeBox extends StatelessWidget {
FadeBox({Key key, Animation<double> animation})
: _animation = CurveTween(curve: Curves.ease).
animate(animation),
super(key: key);

final Animation<double> _animation;

@override
Widget build(BuildContext context) {
return FadeTransition(
opacity: _animation,
child: Container(
height: 100,
decoration: BoxDecoration(color: Colors.red),
)5
)5
}
}

11-10. Creating Physics Simulations
Problem

You want to use physics simulations.

Solution

Use simulations in physics library.

436

CHAPTER 11 ANIMATIONS

Discussion

Animations in the animation library are either linear or curved. The
physics library provides physics simulations, including springs, friction,
and gravity. Simulation class is the base class for all simulations. A
simulation is also changing over time. For a point of time, the method x()
returns the position, the method dx() returns the velocity, and isDone()
method returns whether the simulation is done. Given a Simulation
object, you can use animateWith() method of AnimationController class
to drive the animation using this simulation.

SpringSimulation class represents the simulation for a particle
attached to a spring. To create a SpringSimulation object, yon can provide
the parameters listed in Table 11-5.

Table 11-5. Parameters of SpringSimulation

Name Type Description

spring SpringDescription The description of a spring.

start double The start distance.

end double The end distance.

velocity double The initial velocity.

tolerance Tolerance Magnitudes of differences for distances,
durations, and velocity to be considered
equal.

To create SpringDescription objects, you can use the
SpringDescription() constructor with parameters to specify
mass, stiffness, and damping coefficient. The SpringDescription.
withDampingRatio() constructor uses a damping ratio instead of damping
coefficient. Listing 11-15 shows an example of creating SpringSimulation
object.

437

CHAPTER 11 ANIMATIONS

Listing 11-15. Spring simulation

SpringSimulation _springSimulation = SpringSimulation(

SpringDescription.withDampingRatio(

mass: 1.0,
stiffness: 50,
ratio: 1.0,

))

0.0,

1.0,

1.0)

.tolerance = Tolerance(distance: 0.01, velocity: double.

infinity);

An easier way to use spring simulation is using the fling() method

of AnimationController class. This method drives the animation with a

critically damped spring.

GravitySimulation class represents a simulation for a particle that

follows Newton'’s second law of motion. Table 11-6 shows parameters of

GravitySimulation constructor.

Table 11-6. Parameters of GravitySimulation

Name Type

Description

acceleration double

distance double
endDistance double
velocity double

Acceleration of the particle.
Initial distance.
End distance for the simulation to be done.

Initial velocity.

In Listing 11-16, SimulationController widget uses a Simulation

object to drive the animation.

438

CHAPTER 11 ANIMATIONS

Listing 11-16. Use simulation with animation

typedef BuilderFunc = Widget Function(BuildContext,
Animation<double>);

class SimulationController extends StatefulWidget {
SimulationController({Key key, this.simulation, this.
builder})
: super(key: key);
final Simulation simulation;
final BuilderFunc builder;

@override
_SimulationControllerState createState() =>
_SimulationControllerState();

}

class SimulationControllerState extends
State<SimulationController>
with SingleTickerProviderStateMixin {
AnimationController controller;

@override
void initState() {
super.initState();
controller = AnimationController(
vsync: this,
)..animateWith(widget.simulation);

}

@override
Widget build(BuildContext context) {
return widget.builder(context, controller.view);

}

439

CHAPTER 11 ANIMATIONS

@override
void dispose() {
controller.dispose();
super.dispose();
}
}

11-11. Summary

This chapter covers recipes related to animations in Flutter.
AnimationController class is used to control animations. Subclasses
of Tween class create linear animations for different types of data.
AnimatedWidget and AnimatedBuilder are useful widgets that use
animations. In the next chapter, we’ll discuss integration with native
platform in Flutter.

440

CHAPTER 12

Platform Integration

In mobile apps, it's common to integrate with the native platform. You can
write platform-specific code to use native platform API. There are a large
number of plugins to perform different tasks.

12-1. Reading and Writing Files
Problem

You want to read and write files.

Solution

Use File API.

Discussion

In mobile apps, you may need to save files on the device. The dart:io
library provides files API to read and write files. File class has methods to
read content, write content, and query metadata of files. Operations with
file system can be synchronous or asynchronous. Most of these operations
have a pair of methods in File class. The asynchronous method returns

a Future object, while the synchronous method uses Sync as the name
suffix and returns the actual value. For example, readAsString() and
readAsStringSync() methods are the pair for read operation that returns
a string. Table 12-1 shows asynchronous methods of File class.

© Fu Cheng 2019 441
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_12

CHAPTER 12

PLATFORM INTEGRATION

Table 12-1. Asynchronous methods of File

Name

Description

copy(String newPath)

create({bool recursive:

false})
open()

readAsBytes()

readAsString({Encoding
encoding: utf8})

readAsLines(({Encoding
encoding: utf8})

writeAsBytes(List<int>
bytes)

writeAsString(String
contents)

rename(String newPath)

delete({bool recursive:

false})
exists()

stat()

lastAccessed()
lastModified()
length()

Copy this file to a new path.

Create this file. If recursive is true, all
directories will be created.

Open the file for random access with a
RandomAccessFile object.

Read the entire file content as a list of bytes.

Read the entire file content as a string using
specified encoding.

Read the entire file content as lines of text using
specified encoding.

Write a list of bytes to the file.

Write a string to the file.

Rename this file to a new path.
Delete this file.

Check whether this file exists.

Return a FileStat object that describes the
file.

Get the last accessed time of this file.
Get the last modified time of this file.

Get the length of this file.

442

CHAPTER 12 PLATFORM INTEGRATION

Directory class represents directories in the file system. Given a
Directory object, 1list() or listSync() methods can be used to list files
and sub-directories.

To create File objects, you can use the default constructor with a
path. For Flutter apps, the path may be platform-specific. There are two
common places to store files for mobile apps:

o Temporary directory to store temporary files that may
be cleared at any time

o Documents directory to store files that are private to the
app and will only be cleared when the app is deleted

To get the platform-specific paths for these two locations, you
can use the path_provider package (https://pub.dev/packages/
path_provider). This package provides getTemporaryDirectory()
function to get the path of the temporary directory and
getApplicationDocumentsDirectory() function to get the application
documents directory.

In Listing 12-1, readConfig() method reads the config. txt file from
the application documents directory, while writeConfig() method writes
a string to the same file.

Listing 12-1. Read and wrrite files

class ConfigFile {

Future<File> get configFile async {
Directory directory = await
getApplicationDocumentsDirectory();
return File('${directory.path}/config.txt");

}

Future<String> readConfig() async {
return _configFile
.then((file) => file.readAsString())

443

https://pub.dev/packages/path_provider
https://pub.dev/packages/path_provider

CHAPTER 12 PLATFORM INTEGRATION

.catchError((error) => 'default config');

}

Future<File> writeConfig(String config) async {
File file = await configFile;
return file.writeAsString(config);
}
}

12-2. Storing Key-Value Pairs
Problem

You want to store type-safe key-value pairs.

Solution

Use shared_preferences plugin.

Discussion

You can use files API to store any data on the device. Using generic files
API means that you need to deal with data serialization and deserialization
yourself. If the data you need to store is simple key-value pairs, using
shared_preferences plugin (https://pub.dev/packages/shared
preferences) is a better choice. This plugin provides a map-based API to
manage type-safe key-value pairs. The type of keys is always String. Only
several types can be used as values, including String, bool, double, int,
and List<String>.

To manage key-value pairs, you need to use the static
SharedPreferences.getInstance() method to get the SharedPreferences
object. Table 12-2 shows methods of SharedPreferences class. For each

444

https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences

CHAPTER 12 PLATFORM INTEGRATION

supported data type, there is a pair of methods to get and set the value.
For example, getBool() and setBool() methods are used to get and set
bool values.

Table 12-2. Methods of SharedPreference

Name Description

get(String key) Read the value for the specified key.
containsKey(String key) Check whether specified key exists.
getKeys() Get a set of keys.

remove(String key) Remove the pair with the specified key.
clear() Remove all pairs.
setString(String key, String Write a String value.

value)

getString() Read a String value.

In Listing 12-2, SharedPreferences class is used to read and write a
key-value pair.

Listing 12-2. Use SharedPreferences

class AppConfig {
Future<SharedPreferences> getPrefs() async {
return await SharedPreferences.getInstance();

}

Future<String> getName() async {
SharedPreferences prefs = await getPrefs();
return prefs.getString('name') ?? ";

}

Future<bool> setName(String name) async {
SharedPreferences prefs = await getPrefs();

445

CHAPTER 12 PLATFORM INTEGRATION

return prefs.setString('name', name);

}
}

12-3. Writing Platform-Specific Code
Problem

You want to write platform-specific code.

Solution

Use platform channels to pass messages between Flutter app and the
underlying host platform.

Discussion

In Flutter apps, most of code is written in platform agnostic Dart code.
Features provided by Flutter SDK are limited. Sometimes you may still need
to write platform-specific code to use native platform APIs. A generated
Flutter app already has platform-specific code in android and ios
directories. Code in these two directories is required to build native bundles.

Flutter uses message passing to call platform-specific APIs and get the
result back. Messages are passed through platform channels. Flutter code
sends messages to the host over a platform channel. Host code listens on
the platform channel and receives the message. It then uses platform-
specific API to generate the response and sends it back over the same
channel to the Flutter code. Messages passed are actually asynchronous
method calls.

In Flutter code, platform channels are created using MethodChannel
class. All channel names in an app must be unique. It's recommended to

446

CHAPTER 12 PLATFORM INTEGRATION

use a domain name as the prefix of channel names. To send method calls
over a channel, these method calls must be encoded into binary format
before being sent, and results received are decoded into Dart values.
Encoding and decoding are done using subclasses of MethodCodec class:

o StandardMethodCodec class uses standard binary
encoding.

o JSONMethodCodec class uses UTF-8 JSON encoding.

MethodChannel constructor has name parameter to specify the channel
name and codec parameter to specify the MethodCodec object. The default
MethodCodec object used is a StandardMethodCodec object.

Given a MethodChannel object, the invokeMethod() method invokes
a method on the channel with specified arguments. The return value is a
Future<T> object. This Future object may complete with different values:

o It completes with the result if the method call succeeds.

e It completes with a PlatformException if the method
call fails.

o Itcompletes with aMissingPluginException if the
method has not been implemented.

The invokelistMethod() method also invokes a method
but returns a Future<List<T>> object. The invokeMapMethod ()
method invokes a method and returns a Future<Map<K, V>> object.
Both invokelListMethod() and invokeMapMethod() methods use
invokeMethod() internally, but add extra type cast.

In Listing 12-3, the getNetworkOperator method is invoked over the
channel and returns the network operator.

447

CHAPTER 12 PLATFORM INTEGRATION

Listing 12-3. Get network operator

class NetworkOperator extends StatefulWidget {
@override
_NetworkOperatorState createState() =>
_NetworkOperatorState();

}

class NetworkOperatorState extends State<NetworkOperator> {
static const channel = const MethodChannel('flutter-recipes/
network');

String networkOperator = ";

@override

void initState() {
super.initState();
_getNetworkOperator();

}

Future<void> getNetworkOperator() async {

String operator;

try {
operator = await channel.invokeMethod('getNetworkOperator
") 2?2 "unknown';

} catch (e) {
operator = 'Failed to get network operator: ${e.
message}';

}

setState(() {
_networkOperator = operator;

};

448

CHAPTER 12 PLATFORM INTEGRATION

@override
Widget build(BuildContext context) {
return Container(
child: Center(
child: Text(_networkOperator),
)5
);
}

The handler of getNetworkOperator method call needs to be
implemented in both Android and iOS platforms. Listing 12-4 shows
the Java implementation. The getNetworkOperator () method uses
Android API to get network operator. In the method call handler of
the channel, if the method name is getNetworkOperator, the result of
getNetworkOperator () method is sent back as success response using
Result.success() method. If you want to send back error response, you
can use Result.error() method. If the method is unknown, you should
use Result.notImplemented() to mark the method as unimplemented.

Listing 12-4. Android implementation of getNetworkOperator

public class MainActivity extends FlutterActivity {
private static final String CHANNEL = "flutter-recipes/
network";

@verride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
GeneratedPluginRegistrant.registerWith(this);

new MethodChannel(getFlutterView(), CHANNEL)
.setMethodCallHandler ((methodCall, result) -> {
if ("getNetworkOperator".equals(methodCall.method)) {

449

CHAPTER 12 PLATFORM INTEGRATION

result.success(getNetworkOperator());
} else {
result.notImplemented();
}
D;

}
private String getNetworkOperator() {

TelephonyManager telephonyManager =
((TelephonyManager) getSystemService(Context.TELEPHONY
SERVICE));

return telephonyManager.getNetworkOperatorName();

}
}

Listing 12-5 shows the AppDelegate. swift file for iOS platform. The
receiveNetworkOperator () function uses iOS API to get the carrier name
and send back as response using FlutterResult.

Listing 12-5. Swift implementation of getNetworkOperator

import UIKit
import Flutter
import CoreTelephony

@UIApplicationMain
@objc class AppDelegate: FlutterAppDelegate {
override func application(
_application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplicationLaunchOptionsKey: Any]?
) -> Bool {
GeneratedPluginRegistrant.register(with: self)

450

CHAPTER 12 PLATFORM INTEGRATION

guard let controller = window?.rootViewController as?
FlutterViewController else {
fatalError("rootViewController is not type
FlutterViewController")
}
let networkChannel = FlutterMethodChannel(name: "flutter-
recipes/network"”, binaryMessenger: controller)
networkChannel.setMethodCallHandler ({
[weak self] (call: FlutterMethodCall, result:
FlutterResult) -> Void in
guard call.method == "getNetworkOperator" else {
result(FlutterMethodNotImplemented)
return

}

self?.receiveNetworkOperator(result: result)

1)

return super.application(application,
didFinishLaunchingWithOptions: launchOptions)

private func receiveNetworkOperator(result: FlutterResult) {
let networkInfo = CTTelephonyNetworkInfo()

let carrier = networkInfo.subscriberCellularProvider
result(carrier?.carrierName)

451

CHAPTER 12 PLATFORM INTEGRATION

12-4. Creating Plugins
Problem

You want to create sharable plugins that contain platform-specific code.

Solution

Create Flutter projects using the plugin template.

Discussion

Recipe 12-4 shows how to add platform-specific code to Flutter apps.
Code added to a Flutter app cannot be shared between different apps.

If you want to make the platform-specific code reusable, you can create
Flutter plugins. Plugins are another type of projects supported in Flutter
SDK. Plugins can be shared like other Dart packages using Dart pub tool
(https://pub.dev/).

To create a new Flutter plugin, you can use flutter create
--template=plugin command. The template=plugin parameter means
using the plugin template to create a Flutter project. You can choose to
use either Java or Kotlin for Android and Objective-C or Swift for iOS,
respectively. By default, Java is used for Android and Objective-C is used
for iOS. You can use -a parameter with values java and kotlin to specify
the language for Android and - i parameter with values objc and swift to
specify the language for iOS. The following command shows how to create
a plugin using Swift for iOS.

$ flutter create --template=plugin -i swift network

You can also use Android Studio or VS Code to create new plugins.
The newly created plugin already has skeleton code that gets the
platform version. We can use the code in Recipe 12-3 to implement the

452

https://pub.dev/

CHAPTER 12 PLATFORM INTEGRATION

plugin with new method to get the network operator. In the directory of
generated plugin, there are several sub-directories:

e The lib directory contains plugin’s public Dart API.

e The android directory contains Android
implementation of the public API.

o The ios directory contains iOS implementation of the
public APL

e The example directory contains an example Flutter app
that uses this plugin.

e The test directory contains test code.

We first define the public Dart APl in 1ib/network plugin.dart file.
In Listing 12-6, the value of the networkOperator property is retrieved by
calling getNetworkOperator method using the method channel.

Listing 12-6. Plugin Dart API

class NetworkPlugin {
static const MethodChannel channel =
const MethodChannel('network plugin');

static Future<String> get networkOperator async {
return await _channel.invokeMethod('getNetworkOperator');
}
}

The NetworkPlugin. java file in Listing 12-7 is the Android
implementation of the plugin. NetworkPlugin class implements
MethodCallHandler interface to handle method calls received from the
platform channel.

453

CHAPTER 12 PLATFORM INTEGRATION

Listing 12-7. Android implementation
public class NetworkPlugin implements MethodCallHandler {

public static void registerWith(Registrar registrar) {
final MethodChannel channel = new MethodChannel(registrar.
messenger(), "network plugin");
channel.setMethodCallHandler(new NetworkPlugin(registrar));

}

NetworkPlugin(Registrar registrar) {
this.registrar = registrar;

}

private final PluginRegistry.Registrar registrar;

@0verride
public void onMethodCall(MethodCall call, Result result) {
if (call.method.equals("getNetworkOperator")) {
result.success(getNetworkOperator());
} else {
result.notImplemented();
}
}

private String getNetworkOperator() {
Context context = registrar.context();
TelephonyManager telephonyManager =
((TelephonyManager) context.getSystemService(Context.
TELEPHONY SERVICE));
return telephonyManager.getNetworkOperatorName();

}
}

454

CHAPTER 12 PLATFORM INTEGRATION

The SwiftNetworkPlugin.swift file in Listing 12-8 is the Swift
implementation of the plugin.

Listing 12-8. Swift implementation

public class SwiftNetworkPlugin: NSObject, FlutterPlugin {
public static func register(with registrar:
FlutterPluginRegistrar) {
let channel = FlutterMethodChannel(name: "network plugin",
binaryMessenger: registrar.messenger())
let instance = SwiftNetworkPlugin()
registrar.addMethodCallDelegate(instance, channel: channel)

}

public func handle(call: FlutterMethodCall,
result: @escaping FlutterResult) {
if (call.method == "getNetworkOperator") {
self.receiveNetworkOperator(result: result)
} else {
result(FlutterMethodNotImplemented)
}
}

private func receiveNetworkOperator(result: FlutterResult) {
let networkInfo = CTTelephonyNetworkInfo()
let carrier = networkInfo.subscriberCellularProvider
result(carrier?.carrierName)
}
}

The example project and test code also need to be updated with
new API.

455

CHAPTER 12 PLATFORM INTEGRATION
12-5. Displaying Web Pages
Problem

You want to display web pages.

Solution

Use webview_flutter plugin.

Discussion

If you want to display web pages inside of Flutter apps, you can use
webview flutter plugin (https://pub.dartlang.org/packages/
webview flutter). After addingwebview flutter: "0.3.6 to the
dependencies of pubspec.yaml file, you can use WebView widget to show
web pages and interact with them. For iOS, you need to add the io.
flutter.embedded views preview key with value YES to the ios/Runner/
Info.plist file.

Table 12-3 shows parameters of WebView constructor. To control
the web view, you need to use onWebViewCreated callback to get
the WebViewController object. The value of javascriptMode can
be JavascriptMode.disabled or JavascriptMode.unrestricted.
To enable JavaScript execution in the web pages, JavascriptMode.
unrestricted should be set as the value. The navigationDelegate of
type NavigationDelegate is a function that takes a NavigationRequest
object and returns value of NavigationDecision enum. If the return
value is NavigationDecision.prevent, the navigation request is blocked.
If the return value is NavigationDecision.navigate, then navigation

456

https://pub.dartlang.org/packages/webview_flutter
https://pub.dartlang.org/packages/webview_flutter

CHAPTER 12 PLATFORM INTEGRATION

request can continue. You can use navigation delegate to block users from
accessing restricted pages. The onPageFinished callback receives the URL
of the loaded page.

Table 12-3. Parameters of WebView constructor

Name Description

initialUrl The initial URL to load.
onWebViewCreated Callback when the WebView is created.
javascriptMode Whether JavaScript is enabled.

javascriptChannels Channels to receive messages sent by JavaScript code
running in the web view.

navigationDelegate Determines whether a navigation request should be
handled.

onPageFinished Callback when a page loading is finished.

gestureRecognizers Gestures recognized by the web view.

After getting the WebViewController object, you can use methods
shown in Table 12-4 to interact with the web view. All these methods are
asynchronous and return Future objects. For example, the canGoBack()
method returns a Future<bool> object.

457

CHAPTER 12 PLATFORM INTEGRATION

Table 12-4. Methods of WebViewController

Name Description

evaluateJavascript(String Evaluate JavaScript code in the context of

javascriptString) current page.

loadUrl(String url, Load the specified URL.

{ Map<String, String>

headers }

reload() Reload the current URL.

goBack() Go back in the navigation history.
canGoBack() Whether it’s valid to go back in the history.
goForward() Go forward in the navigation history.
canGoForward() Whether it’s valid to go forward in history.
clearCache() Clear the cache.

currentUrl() Get the current URL.

Listing 12-9 shows an example of using WebView widget to interact
with Google Search page. Because the creation of WebView widget is
asynchronous, the Completer<WebViewController> objectis used to
capture the WebViewController object. In the onWebViewCreated callback,
the Completer<WebViewController> objectis completed with the
created WebViewController object. In the onPageFinished callback, the
evaluateJavascript() method of WebViewController object is used to
execute JavaScript code that sets value to the input and clicks the search
button. This causes the WebView widget to load the search result page.

The JavascriptChannel object is created with a channel name and a
JavascriptMessageHandler function to handle the messages sent from
JavaScript code running in the web page. The message handler in Listing
12-9 uses a SnackBar widget to show the received message. The channel

458

CHAPTER 12 PLATFORM INTEGRATION

name “Messenger” becomes the global object that has a postMessage
function to be used in JavaScript code to send messages back.

Listing 12-9. Use WebView

class GoogleSearch extends StatefulWidget {
@override
_GoogleSearchState createState() => GoogleSearchState();

}

class _GoogleSearchState extends State<GoogleSearch> {
final Completer<WebViewController> _controller =
Completer<hWebViewController>();

@override
Widget build(BuildContext context) {
return WebView(
initialUrl: "https://google.com’,
javascriptMode: JavascriptMode.unrestricted,
javascriptChannels:
<JavascriptChannel>[javascriptChannel(context)].
toSet(),
onWebViewCreated: (WebViewController webViewController) {
_controller.complete(webViewController);
}s
onPageFinished: (String url) {
_controller. future.then((WebViewController
webViewController) {
webViewController.evaluateJavascript(
'Messenger.postMessage("Loaded in " + navigator.
userAgent);"');
webViewController.evaluateJavascript(
"document.getElementsByName("q")[0].
value="flutter";'

459

CHAPTER 12 PLATFORM INTEGRATION

"document.querySelector("button[aria-
label*=Search]").click();");
D;
}’
);
}

JavascriptChannel javascriptChannel(BuildContext context) {
return JavascriptChannel(
name: ‘Messenger',
onMessageReceived: (JavascriptMessage message) {
Scaffold.of(context).showSnackBar(
SnackBar(content: Text(message.message)),

)5
};

12-6. Playing Videos
Problem

You want to play videos.

Solution

Use video_player plugin.

460

CHAPTER 12 PLATFORM INTEGRATION

Discussion

If you want play videos from assets, file system, or network, you can use
video_ player plugin (https://pub.dev/packages?q=video player).

To use this plugin, you need to add video_player: "0.10.0+5 to the
dependencies of pubspec.yanl file. For iOS, you need to use a real device
instead of a simulator for development and testing. If you want to load
videos from arbitrary locations, you need to add the code in Listing 12-10
to 10s/Runner/Info.plist file. Using NSAllowsArbitraryLoads reduces
the security of the app. It’s better to check Apple’s guide (https://
developer.apple.com/documentation/security/preventing insecure_
network connections) for network security.

Listing 12-10. iOS HTTP security config

<key>NSAppTransportSecurity</key>

<dict>
<key>NSAllowsArbitraryloads</key>
<true/>

</dict>

If you need to load videos from network on Android, you need to add
code in Listing 12-11 to the android/app/src/main /AndroidManifest.
xml file.

Listing 12-11. Android
<uses-permission android:name="android.permission.INTERNET"/>

To play videos, you need to use constructors shown in Table 12-5 to
create VideoPlayerController objects.

461

https://pub.dev/packages?q=video_player
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections

CHAPTER 12 PLATFORM INTEGRATION

Table 12-5. Constructors of VideoPlayerController

Name Description

VideoPlayerController.asset(String Play a video from assets.
dataSource, { String package })

VideoPlayerController.file(File file) Play a video from local file

system.
VideoPlayerController.network(String Play a video loaded from
dataSource) network.

After creating a VideoPlayerController object, you can use methods
shown in Table 12-6 to control the video playing. All these methods return
Future objects. The initialize() method must be called first to initialize
the controller. You can only call other methods after the Future object
returned by initialize() method completes successfully.

Table 12-6. Methods of VideoPlayerController

Name Description

play() Play the video.

pause() Pause the video.
seekTo(Duration moment) Seek to the specified position.

setLooping(bool looping) Whether to loop the video.
setVolume(double volume) Set the volume of audio.
initialize() Initialize the controller.

dispose() Dispose the controller and clean up resources.

462

CHAPTER 12 PLATFORM INTEGRATION

VideoPlayerController class extends from ValueNotifier<VideoPl
ayerValue> class. You can get notified when the state changes by adding
listeners to it. VideoPlayerValue class contains different properties to
access the state of the video. VideoPlayer class is the actual widget that
displays the video. It requires a VideoPlayerController object.

VideoPlayerView class in Listing 12-12 is a widget to play
video loaded from specified URL. In the initState() method,
VideoPlayerController.network() constructor is used to create
the VideoPlayerController object. FutureBuilder widget uses the
Future object returned by initialize() method to build the UL Since
VideoPlayerController objectis also a Listenable object, we can use
AnimatedBuilder with the VideoPlayerController object. AspectRatio
widget uses the aspectRatio property to make sure the proper aspect ratio
is used when playing the video. VideoProgressIndicator widget shows a
progress bar to indicate video playback progress.

Listing 12-12. Playing video

class VideoPlayerView extends StatefulWidget {
VideoPlayerView({Key key, this.videoUrl}) : super(key: key);

final String videoUrl;

@override
_VideoPlayerViewState createState() => _
VideoPlayerViewState();

}

class VideoPlayerViewState extends State<VideoPlayerView> {
VideoPlayerController controller;
Future<void> _initializedFuture;

@override
void initState() {

463

CHAPTER 12 PLATFORM INTEGRATION

super.initState();

_controller = VideoPlayerController.network(widget.
videoUrl);

_initializedFuture = _controller.initialize();

}

@override
Widget build(BuildContext context) {
return FutureBuilder(
future: initializedFuture,
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.done) {
return AnimatedBuilder(
animation: _controller,
child: VideoProgressIndicator(_controller,
allowScrubbing: true),
builder: (context, child) {
return Column(
children: <Widget>[
AspectRatio(
aspectRatio: controller.value.aspectRatio,
child: VideoPlayer(_controller),
)s
Row(
children: <Widget>[
IconButton(
icon: Icon(_controller.value.isPlaying
? Icons.pause
: Icons.play arrow),
onPressed: () {
if (_controller.value.isPlaying) {
_controller.pause();

464

CHAPTER 12 PLATFORM INTEGRATION

} else {
_controller.play();
}
}J
))
Expanded(child: child),
]’
)5
]J
);
})
);
} else {
return Center(child: CircularProgressIndicator());
}
}’
);
}
@override

void dispose() {
_controller.dispose();
super.dispose();

}

12-7. Using Cameras

Problem

You want to use cameras to take pictures or record videos.

465

CHAPTER 12 PLATFORM INTEGRATION

Solution

Use camera plugin.

Discussion

If you want to access the cameras on the device, you can use camera plugin
(https://pub.dev/packages/camera). To install this plugin, you need to
add camera: "0.5.0 to the dependencies of pubspec.yaml file. For iOS,
you need to add code in Listing 12-13 to the 10s/Runner/Info.plist file.
These two key-value pairs describe the purpose of accessing camera and
microphone. This is required to protect user privacy.

Listing 12-13. Privacy requirements for iOS

<key>NSCameraUsageDescription</key>

<string>APPNAME requires access to your phone's camera.
</string>

<key>NSMicrophoneUsageDescription</key>

<string>APPNAME requires access to your phone's microphone.
</string>

For Android, the minimum Android SDK version needs to set to 21 in
the android/app/build.gradle file

To access cameras, you need to create CameraController
objects. CameraController constructor requires parameters of types
CameraDescription and ResolutionPreset. CameraDescription class
describes a camera. ResolutionPreset enum describes the quality
of screen resolution. ResolutionPreset is an enum with values low,
medium, and high. To get CameraDescription objects, you can use
availableCameras() function to get a list of available cameras with type
List<CameraDescription>.

466

https://pub.dev/packages/camera

CHAPTER 12 PLATFORM INTEGRATION

Table 12-7 shows methods of CameraController class. All these
methods return Future objects. A CameraController object needs
to be initialized first. Other methods should only be called after the
Future object returned by initialize() completes successfully.
CameraController class extends from ValueNotifier<CameraValue> class,
so you can add listeners to it to get notified of state changes.

Table 12-7. Methods of CameraController

Name Description

takePicture(String path) Take a picture and save to a file.
prepareForVideoRecording() Prepare for video recording.

startVideoRecording(String Start a video recording and save to a file.
filePath)

stopVideoRecording() Stop the current video recording.
startImageStream() Start streaming of images.
stopImageStream() Stop the current streaming of images.
initialize() Initialize the controller.

dispose() Dispose the controller and clean up resources.

In Listing 12-14, the CameraController object is created with passed-
in CameraDescription object. FutureBuilder widget builds the actual Ul
after the CameraController object is initialized. CameraPreview widget
shows live preview of the camera. When the icon is pressed, a picture is
taken and saved to the temporary directory.

Listing 12-14. Use camera

class CameraView extends StatefulWidget {
CameraView({Key key, this.camera}) : super(key: key);
final CameraDescription camera;

467

CHAPTER 12 PLATFORM INTEGRATION

@override
_CameraViewState createState() => CameraViewState();

}

class _CameraViewState extends State<CameraView> {
CameraController _controller;
Future<void> _initializedFuture;

@override
void initState() {
super.initState();
_controller = CameraController(widget.camera,
ResolutionPreset.high);
_initializedFuture = _controller.initialize();

}

@override
Widget build(BuildContext context) {
return FutureBuilder<voidy(
future: _initializedFuture,
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.done) {
return Column(
children: <Widget>[
Expanded(child: CameraPreview(_ controller)),
IconButton(
icon: Icon(Icons.photo camera),
onPressed: () async {
String path = join((await
getTemporaryDirectory()).path,
"${DateTime.now()}.png");
await controller.takePicture(path);
Scaffold.of(context).showSnackBar (

468

CHAPTER 12 PLATFORM INTEGRATION

SnackBar(content: Text('Picture saved to

$path’)));
})
))
])
);
} else {
return Center(child: CircularProgressIndicator());
}
}’
);
}
@override

void dispose() {
_controller.dispose();
super.dispose();

}

In Listing 12-15, availableCameras () function gets a list of
CameraDescription objects and only the first one is used to create the

CameraView widget.

Listing 12-15. Select camera

class CameraSelector extends StatelessWidget {
final Future<CameraDescription> _cameraFuture =
availableCameras().then((list) => list.first);

@override
Widget build(BuildContext context) {
return FutureBuilder<CameraDescription(
future: cameraFuture,

469

CHAPTER 12 PLATFORM INTEGRATION

builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.done) {
if (snapshot.hasData) {
return CameraView(camera: snapshot.data);

} else {
return Center(child: Text('No camera available!'));
}
} else {
return Center(child: CircularProgressIndicator());
}
b

)5
}
}

12-8. Using System Share Sheet
Problem

You want to allow user sharing items using system share sheet.

Solution

Use share plugin.

Discussion

If you want to allow user sharing items in the app, you can use the
share plugin (https://pub.dev/packages/share) to show the system
share sheet. To use this plugin, you need to add share: "0.6.1 to the
dependencies of pubspec.yaml file.

470

https://pub.dev/packages/share

CHAPTER 12 PLATFORM INTEGRATION

The API provided by share plugin is very simple. It only has a
static share() method to share some text. You can share plain text or a
URL. Listing 12-16 shows how to use share() method to share a URL.

Listing 12-16. Share a URL

Share.share('https://flutter.dev');

12-9. Summary

Flutter apps can use platform-specific code to call native platform APIs.
There are a large number of community plugins to use different futures on
the native platform, including cameras, microphones, sensors, and more.
In the next chapter, we'll discuss miscellaneous topics in Flutter.

471

CHAPTER 13

Miscellaneous

This chapter covers recipes of miscellaneous topics in Flutter.

13-1. Using Assets
Problem

You want to bundle static assets in the app.

Solution

Use assets.

Discussion

Flutter apps can include both code and static assets. There are two types of
assets:

e Data files including JSON, XML, and plain text files
e Binary files including images and videos

Assets are declared in the flutter/assets section of the pubspec.yaml
file. During the build process, these assets files are bundled into the app’s
binary files. These assets can be accessed in the runtime. It's common
to put assets under the assets directory. In Listing 13-1, two files are
declared as assets in pubspec.yaml file.

© Fu Cheng 2019 473
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_13

CHAPTER 13 MISCELLANEOUS
Listing 13-1. Assets in pubspec.yaml file

flutter:
assets:
- assets/dog.jpg
- assets/data.json

In the runtime, subclasses of AssetBundle class are used to load
content from the assets. The 1load() method retrieves the binary content,
while loadString() method retrieves the string content. You need to
provide the assets key when using these two methods. The key is the same
as asset path declared in pubspec.yaml file. The static application-level
rootBundle property refers to the AssetBundle object that contains assets
packaged with the app. You can use this property directly to load assets. It’s
recommended to use static DefaultAssetBundle.of() method to get the
AssetBundle object from build context.

In Listing 13-2, the JSON file assets/data. json is loaded as string
using loadString() method.

Listing 13-2. Load string assets

class TextAssets extends StatelessWidget {
@override
Widget build(BuildContext context) {
return FutureBuilder<String>(
future: DefaultAssetBundle.of(context)
.loadString('assets/data.json")
.then((json) {
return jsonDecode(json)['name'];
})’
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.done) {
return Center(child: Text(snapshot.data));

474

CHAPTER 13 MISCELLANEOUS

} else {
return Center(child: CircularProgressIndicator());
}
}’
)5
}
}

If the assets file is an image, you can use AssetImage class with Image
widget to display it. In Listing 13-3, AssetImage class is used to display the
assets/dog. jpg image.

Listing 13-3. Use Assetlmage

Image(
image: AssetImage('assets/dog.jpg'),

)

For an image asset, it's common to have multiple variants with
different resolutions for the same file. When using AssetImage class to load
an asset image, the variant that most closely matches the current device
pixel ratio will be used.

In Listing 13-4, the assets/2.0x/dog. jpg file is the variant of assets/
dog. jpg with resolution ratio 2. 0. If the device pixel ratio is 1.6, the
assets/2.0x/dog.jpg file is used.

Listing 13-4. Image assets variants

flutter:
assets:
- assets/dog.jpg
- assets/2.0x/dog.jpg
- assets/3.0x/dog.jpg

475

CHAPTER 13 MISCELLANEOUS

13-2. Using Gestures
Problem

You want to allow user using gestures to perform actions.

Solution

Use GestureDetector widget to detect gestures.

Discussion

Users of mobiles app are used to gestures when performing actions.

For example, when viewing pictures gallery, using swiping gesture

can easily navigate between different pictures. In Flutter, we can use
GestureDetector widget to detect gestures and invoke specified
callbacks for gestures. GestureDetector constructor has a large number
of parameters to provide callbacks for different events. A gesture may
dispatch multiple events during its lifecycle. For example, the gesture of
horizontal drag can dispatch three events. The following are the handler
parameters for these three events:

o onHorizontalDragStart callback means the pointer
may begin to move horizontally.

o onHorizontalDragUpdate callback means the pointer is
moving in the horizontal direction.

o onHorizontalDragEnd callback means the pointer is
longer in contact with the screen.

Callbacks of different events can receive details about the events. In
Listing 13-5, the GestureDetector widget wraps a Container widget. In
the onHorizontalDragEnd callback handler, the velocity property of
DragEndDetails object is the moving velocity of the pointer. We use this
property to determine the drag direction.

476

CHAPTER 13 MISCELLANEOUS

Listing 13-5. Use GestureDetector

class SwipingCounter extends StatefulWidget {
@override

_SwipingCounterState createState() => SwipingCounterState();
}

class _SwipingCounterState extends State<SwipingCounter> {
int _count = 0;

@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
Text('$ count'),
Expanded (
child: GestureDetector(
child: Container(
decoration: BoxDecoration(color: Colors.grey.
shade200),
))
onHorizontalDragEnd: (DragEndDetails details) {
setState(() {
double dx = details.velocity.
pixelsPerSecond.dx;
_count += (dx > 0?1 : (dx<0? -1:0));
D;
})
)J
)’
1,
);
}

477

CHAPTER 13 MISCELLANEOUS

13-3. Supporting Multiple Locales
Problem

You want the app to support multiple locales.

Solution

Use Localizations widget and LocalizationsDelegate class.

Discussion

Flutter has built-in support for internalization. If you want to support
multiple locales, you need to use Localizations widget. Localizations
class uses a list of LocalizationsDelegate objects to load localized
resources. LocalizationsDelegate<T> class is a factory of a set of localized
resources of type T. The set of localized resources is usually a class with
properties and methods to provide localized values.

To create a Localizations object, you need to provide the Locale
object and a list of LocalizationsDelegate objects. Most of the time,
you don’t need to explicitly create a Localizations object. WidgetsApp
widget already creates a Localizations object. WidgetsApp constructor
has parameters that are used by the Localizations object. When
you need to use localized values, you can use static Localizations.
of<T>(BuildContext context, Type type) method to get the nearest
enclosing localized resources object of the given type.

By default, Flutter only provides US English localizations. To support
other locales, you need to add Flutter’s own localizations for those locales
first. This is done by adding flutter localizations package to the
dependencies of pubspec.yaml file; see Listing 13-6. With this package,
you can use localized values defined in Materiallocalizations class.

478

CHAPTER 13 MISCELLANEOUS

Listing 13-6. flutter_localizations

dependencies:
flutter:
sdk: flutter
flutter localizations:
sdk: flutter

After adding the flutter localizations package, we
need to enable those localized values. In Listing 13-7, this is
done by adding GlobalMateriallocalizations.delegate and
GlobalWidgetslLocalizations.delegate to the localizationsDelegates
list of MaterialApp constructor. The value of localizationsDelegates
parameter is passed to the Localizations constructor. The
supportedLocales parameter specifies the supported locales.

Listing 13-7. Enable Flutter localized values

MaterialApp(

localizationsDelegates: [
GlobalMateriallocalizations.delegate,
GlobalWidgetslLocalizations.delegate,

])

supportedLocales: [
const Locale('en'),
const Locale('zh', "CN'),

1,
)5

In Listing 13-8, Materiallocalizations.of() method gets
the Materiallocalizations object from the build context.
The copyButtonLabel property is a localized value defined in
Materiallocalizations class. In the runtime, the label of the button
depends on the device’s locale. Materiallocalizations.of()

479

CHAPTER 13 MISCELLANEOUS

method uses Localizations.of() internally to look up the
Materiallocalizations object.

Listing 13-8. Use localized values

RaisedButton(

child: Text(Materiallocalizations.of(context).
copyButtonLabel),

onPressed: () {},

)5

Materiallocalizations class only provides a limit set of localized
values. For your own apps, you need to create custom localized
resources classes. AppLocalizations class in Listing 13-9 is a custom
localized resources class. AppLocalizations class has the appName
property as an example of simple localizable strings. The greeting()
method is an example of localizable strings that require parameters.
AppLocalizationsEn and ApplLocalizationsZhCn classes are
implementations of AppLocalizations class for en and zh_CNlocales,
respectively.

Listing 13-9. AppLocalizations and localized subclasses

abstract class Applocalizations {
String get appName;
String greeting(String name);

static ApplLocalizations of(BuildContext context) {
return Localizations.of<AppLocalizations>(context,
AppLocalizations);
}
}

480

CHAPTER 13 MISCELLANEOUS

class ApplocalizationskEn extends Applocalizations {
@override
String get appName => 'Demo App';

@override
String greeting(String name) {
return 'Hello, $name';
}
}

class ApplocalizationsZhCn extends ApplLocalizations {
@override
String get appName => ‘"IN H";

@override
String greeting(String name) {
return 'fR4f, $name';
}
}

We also need to create a custom LocalizationsDelegate class to
load AppLocalizations objects. There are three methods need to be
implemented:

o 1isSupported() method checks whether a locale is
supported.

o load() method loads the localized resources object for
a given locale.

o shouldReload() method checks whether the 1oad()
method should be called to load the resource again.

In the load() method of Listing 13-10, AppLocalizationsEn or
AppLocalizationsZhCn object is returned based on the given locale.

481

CHAPTER 13 MISCELLANEOUS

Listing 13-10. Custom LocalizationsDelegate

class ApplocalizationsDelegate
extends LocalizationsDelegate<Applocalizations> {
const _ApplocalizationsDelegate();

static const List<Locale> _supportedLocales = [
const Locale('en'),
const Locale('zh', 'CN')

15

@override
bool isSupported(Locale locale) {
return _supportedlLocales.contains(locale);

}

@override
Future<ApplLocalizations> load(Locale locale) {
return Future.value(locale == Locale('zh', '"CN')
? ApplocalizationszhCn()
: ApplLocalizationskn());

}

@override
bool shouldReload(LocalizationsDelegate<ApplLocalizations>
old) {
return false;
}
}

_ApplocalizationsDelegate object needs to be added to the list of
localizationsDelegates in Listing 13-7. Listing 13-11 shows an example
of using AppLocalizations class.

482

CHAPTER 13 MISCELLANEOUS

Listing 13-11. Use AppLocalizations

Text(AppLocalizations.of(context).greeting('John"))

13-4. Generating Translation Files
Problem

You want to extract localizable strings from code and integrate translated
strings.

Solution

Use tools in intl translation package.

Discussion

Recipe 13-3 describes how to support multiple locales using
Localizations widget and LocalizationsDelegate class. The major
drawback of solution in Recipe 13-3 is that you need to manually create
localized resources classes for all supported locales. Because localized
strings are directly embedded in source code, it’s hard to get translators
involved. A better choice is to use tools provided by intl_translation
package to automate the process. You need to add intl_translation:
70.17.3 to the dev_dependencies of the pubspec.yaml file.

Listing 13-12 shows the new AppLocalizations class which has the
same appName property and greeting() method as Listing 13-9. Intl.
message () method describes a localized string. Only the message string is
required. Parameters like name, desc, args, and examples are used to help
translators to understand the message string.

483

CHAPTER 13 MISCELLANEOUS

Listing 13-12. AppLocalizations using Intl. message()

class Applocalizations {
static ApplLocalizations of(BuildContext context) {
return Localizations.of<AppLocalizations>(context,
AppLocalizations);

}

String get appName {
return Intl.message(
'Demo App',
name: 'appName',
desc: 'Name of the app',
)5
}

String greeting(String name) {
return Intl.message(
'Hello, $name',
name: 'greeting’,
args: [name],
desc: 'Greeting message',
examples: const {'name': 'John'},
)s
}
}

Now we can use the tool provided by intl translation package to
extract localized messages from source code. The following command
extracts messages declared with Intl.message() from lib/app_intl.dart
file and saves to 1ib/110n directory. After running this command, you
should see the generated intl _messages.arb file in 1ib/110n directory.
Generated files are in ARB (Application Resource Bundle) format

484

CHAPTER 13 MISCELLANEOUS

(https://github.com/googleil8n/app-resource-bundle) which can be
used as input of translation tools like Google Translator Toolkit. ARB files
are actually JSON files; you can simply use text editors to modify them.

$ flutter packages pub run intl translation:extract to arb
--locale=en --output-dir=1ib/110n lib/app intl.dart

Now you can duplicate the intl _messages.arb file for each supported
locale and get them translated. For example, the intl messages zh.arb
file is the translated version for zh locale. After translated files are ready,
you can use the following command to generate Dart files. After running
this command, you should see amessages_all.dart file and messages _*.
dart files for each locale.

$ flutter packages pub run intl translation:generate from arb
--output-dir=1ib/110n --no-use-deferred-loading lib/app_intl.
dart lib/l10n/intl_*.arb

The initializeMessages() function in messages_all.dart file can be
used to initialize messages for a given locale. The static load() method in
Listing 13-13 uses initializeMessages() function to initialize messages
first, then sets the default locale.

Listing 13-13. Load messages

class Applocalizations {
static Future<ApplLocalizations> load(Locale locale) {
final String name =
locale.countryCode.isEmpty ? locale.languageCode :
locale.toString();
final String localeName = Intl.canonicalizedlLocale(name);
return initializeMessages(localeName).then(() {
Intl.defaultlocale = localeName;
return Applocalizations();

485

https://github.com/googlei18n/app-resource-bundle

CHAPTER 13 MISCELLANEOUS

};
}
}

This static AppLocalizations.load() method can be used
by the load() method of LocalizationsDelegate class to load
ApplLocalizations object.

13-5. Painting Custom Elements
Problem

You want to paint custom elements.

Solution

Use CustomPaint widget with CustomPainter and Canvas classes.

Discussion

If you want to completely customize the painting of a widget, you can use
CustomPaint widget. CustomPaint widget provides a canvas on which to
draw custom elements. Table 13-1 shows the parameters of CustomPaint
constructor. During the painting process, the painter paints on the canvas
first, then the child widget is painted, and finally the foregroundPainter
paints on the canvas.

486

CHAPTER 13 MISCELLANEOUS

Table 13-1. Parameters of CustomPaint

Name Type Description

painter CustomPainter The painter that paints before the child.
foregroundPainter CustomPainter The painter that paints after the child.
size Size The size to paint.

child Widget The child widget.

To create CustomPainter objects, you need to create subclasses of
CustomPainter and override paint() and shouldRepaint() methods.
In paint() method, the canvas parameter can be used to draw custom
elements. Canvas class has a set of methods to draw different elements; see
Table 13-2.

Table 13-2. Methods of Canvas

Name Description

drawArc() Draw an arc.

drawCircle() Draw a circle with specified center and radius.
drawImage() Draw an Image object.

drawLine() Draw a line between two points.

drawOval() Draw an oval.

drawParagraph() Draw text.

drawRect() Draw a rectangle with specified Rect object.
drawRRect() Draw a rounded rectangle.

487

CHAPTER 13 MISCELLANEOUS

Most of the methods in Canvas class have a parameter of type Paint to
describe the style to use when drawing on the canvas. In Listing 13-14,
Shapes class draws a rectangle and a circle on the canvas. In the
CustomShapes widget, the Text widget is painted above the Shapes painter.

Listing 13-14. Use CustomPaint

class CustomShapes extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Container(
width: 300,
height: 300,
child: CustomPaint(
painter: Shapes(),
child: Center(child: Text('Hello World')),
)5
);
}
}

class Shapes extends CustomPainter {
@override
void paint(Canvas canvas, Size size) {
Rect rect = Offset(5, 5) & (size - Offset(5, 5));
canvas.drawRect(
rect,
Paint()
..color = Colors.red
..strokeWidth = 2
..style = PaintingStyle.stroke,

)5

488

CHAPTER 13 MISCELLANEOUS

canvas.drawCircle(
rect.center,
(rect.shortestSide / 2) - 10,
Paint()..color = Colors.blue,
)5
}

@override
bool shouldRepaint(CustomPainter oldDelegate) {
return false;

}
}

13-6. Customizing Themes
Problem

You want to customize themes in Flutter apps.

Solution

Use ThemeData class for Material Design and CupertinoThemeData class
for iOS.

Discussion

It's a common requirement to customize look and feel of an app.

For Flutter apps, if Material Design is used, you can use ThemeData
class to customize the theme. ThemeData class has a large number of
parameters to configure different aspects of the theme. MaterialApp
class has the theme parameter to provide the ThemeData object. For
iOS style, CupertinoThemeData class has the same purpose to specify

489

CHAPTER 13 MISCELLANEOUS

the theme. CupertinoApp class also has the theme parameter of type
CupertinoThemeData to customize the theme.

If you need to access the current theme object, you can use static
Theme.of () method to get nearest enclosing ThemeData object for a build
context in Material Design. The similar CupertinoTheme.of() method can
be used for iOS style.

In Listing 13-15, the first Text widget uses the textTheme.headline
property of current Theme object as the style. The second Text widget uses
the colorScheme.error property as the color to display error text.

Listing 13-15. Use Theme

class TextTheme extends StatelessWidget {
@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
Text('Headline', style: Theme.of(context).textTheme.
headline),
Text('Error',
style: TextStyle(color: Theme.of(context).
colorScheme.error)),

)5

13-7. Summary

This chapter discusses miscellaneous topics in Flutter that are useful in
different scenarios. In the next chapter, we’ll discuss testing and debugging

in Flutter.

490

CHAPTER 14

Testing and
Debugging

This chapter covers recipes related to testing and debugging Flutter apps.

14-1. Writing Unit Tests
Problem

You want to write unit tests.

Solution

Use API in test package.

Discussion

Unit tests are very important in app development. To write tests in Flutter
apps, you need to add test: "1.5.3 to the dev_dependencies section

of pubspec.yaml file. Test files are usually put in the test directory. The
MovingBox class in Listing 14-1 is the class to test. The move () method
updates the internal offset variable.

© Fu Cheng 2019 491
F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6_14

CHAPTER 14 TESTING AND DEBUGGING

Listing 14-1. Dart class to test

class MovingBox {
MovingBox({Offset initPos = Offset.zero}) : offset =
initPos;
Offset offset;

get offset => _offset;

void move(double dx, double dy) {
_offset += Offset(dx, dy);
}
}

Listing 14-2 shows the tests of MovingBox class. The group() function
creates a group to describe a set of tests. The test () function creates a test
case with the given description and body. The body is a function that uses
expect () function to declare expectations to verify. To call the expect()
function, you need to provide the actual value and a matcher to check the
value. The matcher can be simple values or functions from the matcher
package. Common matcher functions include contains(), startsWith(),
endsWith(), lessThan(), greaterThan(), and inInclusiveRange().

Listing 14-2. Test of MovingBox

void main() {
group('MovingBox"', () {
test('position should be (0.0) by default', () {
expect(MovingBox().offset, Offset.zero);

};

test('postion should be initial value', () {
expect(MovingBox(initPos: Offset(10, 10)).offset,
Offset(10, 10));

1

492

CHAPTER 14 TESTING AND DEBUGGING

test('postion should be moved', () {
final box = MovingBox();
box.move(5, 5);
expect (box.offset, Offset(s, 5));
box.move(-1, -1);
expect(box.offset, Offset(4, 4));

D;

};
}

You can use async functions as body of expect () function to write
asynchronous tests. In Listing 14-3, the first test case uses an async
function with await to get the value of a Future object. In the second
test case, completion() function waits for completion of a Future object
and verify the value. The throwsA() function verifies that a Future object
throws the given error. In the third test case, expectAsync1() function
wraps another function to verify the result and checks its invocation times.

Listing 14-3. Asynchronous tests

void main() {
test('future with async', () async {
var value = await Future.value(1);
expect(value, equals(1));

};

test('future', () {
expect(Future.value(1), completion(equals(1)));
expect(Future.error('error'), throwsA(equals('error')));

};

test('future callback', () {
Future.error('error').catchError(expectAsynci((error) {
expect(error, equals('error'));

493

CHAPTER 14 TESTING AND DEBUGGING

}, count: 1));

};
}

You can use setUp() function to add a function to run before tests.
Similarly, the tearDown () function is used to add a function to run after
tests. The setUp() function should be used to prepare the context for test
cases to run. The tearDown () function should be used to run cleanup
tasks. The setUp() and tearDown () functions usually come in pairs. In
Listing 14-4, setUp() and tearDown() functions will be called twice.

Listing 14-4. setUp() and tearDown() functions

void main() {

setUp(() {
print('setUp');

};

test('action1', () {
print('action1');

};

test('action2', () {
print('action2');

};

tearDown(() {
print('tearDown');

};

After running the test case in Listing 14-4, the output should look like
what’s shown in Listing 14-5.

494

CHAPTER 14 TESTING AND DEBUGGING
Listing 14-5. Output with setUp() and tearDown() functions

setUp
action1
tearDown
setUp
action2
tearDown

14-2. Using Mock Objects in Tests
Problem

You want to mock dependencies in test cases.

Solution

Use mockito package.

Discussion

When writing test cases, the classes to test may have dependencies that
require external resources. For example, a service class needs to access
backend API to get data. When testing these classes, you don’t want to
use the real dependencies. Depending on external resources, introduce
uncertainty to execution of test cases and make them unstable. Using live
services also makes it difficult to test all possible scenarios.

A better approach is to create mock objects to replace these
dependencies. With mock objects, you can easily emulate different
scenarios. Mock objects are alternative implementations of classes. You
can create mock objects manually or use mockito package. To use mockito
package, you need to add mockito: "4.0.0 to the dev_dependencies
section of pubspec.yaml file.

495

CHAPTER 14 TESTING AND DEBUGGING

GitHubJobsClient class in Listing 14-6 uses Client class from http
package to access GitHub Jobs API.

Listing 14-6. GitHubJobsClient class to test

class GitHubJobsClient {
GitHubJobsClient({@required this.httpClient}) :
assert(httpClient != null);

final http.Client httpClient;

Future<List<Job>> getJobs(String keyword) async {
Uri url = Uri.https(
'jobs.github.com', '/positions.json', {'description’:
keyword});
http.Response response = await httpClient.get(url);
if (response.statusCode != 200) {
throw Exception('Failed to get job listings');
}
return (jsonDecode(response.body) as List<dynamic>)
.map((json) => Job.fromIson(json))
.tolist();

To test GitHubJobsClient class, we can create a mock object
for http.Client object. In Listing 14-7, MockHttpClient class is the
mock class for http.Client class. In the first test case, when the get ()
method of MockHttpClient is called with the specified Uri object, a
Future<Response> object with JSON string is used as the result. We
can verify that getJobs () method of GitHubJobsClient can parse the
response and return a List object with one element. In the second test
case, the return result of get () method of MockHttpClient is set to a

496

CHAPTER 14 TESTING AND DEBUGGING

Future<Response> with HTTP 500 error. We then verify an exception is
thrown by calling getJobs () method.

Listing 14-7. GitHubJobsClient test with mock

import 'package:mockito/mockito.dart’;
class MockHttpClient extends Mock implements http.Client {}

void main() {
group('getJobs', () {
Uri url = Uri.https(
"jobs.github.com', '/positions.json', {'description’:
"flutter'});

test('should return list of jobs', () {
final httpClient = MockHttpClient();
when(httpClient.get(url))
.thenAnswer((_) async => http.Response('[{"id":
"123"}]", 200));
final jobsClient = GitHubJobsClient(httpClient:
httpClient);
expect(jobsClient.getJobs('flutter'),
completion(hasLength(1)));

};

test('should throws an exception', () {
final httpClient = MockHttpClient();
when(httpClient.get(url))

.thenAnswer((_) async => http.Response('error', 500));
final jobsClient = GitHubJobsClient(httpClient:
httpClient);
expect(jobsClient.getJobs('flutter'), throwsException);

D;
1;
}

497

CHAPTER 14 TESTING AND DEBUGGING

14-3. Writing Widget Tests
Problem

You want to write test cases to test widgets.

Solution

Use flutter_test package.

Discussion

Using test and mockito packages is enough to write tests for Dart classes.
However, you need to use flutter_ test package to write tests for widgets.
The flutter test package is already included in the pubspec.yaml

file for new projects created by flutter create command. Test cases

for widgets are declared using testWidgets() function. When calling
testWidgets(), you need to provide a description and a callback to run
inside the Flutter test environment. The callback receives a WidgetTester
object to interact with widgets and the test environment. After the widget
under test is created, you can use Finder objects and matchers to verify
state of the widget.

Table 14-1 shows methods of WidgetTester class. The pumpWidget ()
method is usually the entry point of a test by creating the widget to test.
When testing stateful widgets, after changing the state, you need to call
pump () method to trigger the rebuild. If the widget uses animations, you
should use pumpAndSettle() method to wait for animations to finish.
Methods like enterText () and ensureVisible() use Finder objects to
find the widgets to interact with.

498

CHAPTER 14 TESTING AND DEBUGGING

Table 14-1. Methods of WidgetTester

Name Description

pumpWidget() Render the specified widget.

pump () Trigger a frame that causes the widget to rebuild.

pumpAndSettle() Repeatedly call pump () method until there are no
frames scheduled.

enterText() Enter text to a text input widget.

pageBack() Dismiss the current page.

runAsync() Run a callback asynchronously.

dispatchEvent() Dispatch an event.

ensureVisible() Make a widget visible by scrolling its ancestor
Scrollable widget.

drag() Drag the widget by given offset.

press() Press the widget.

longPress() Long press the widget.

tap() Tap the widget.

ToUppercase widget in Listing 14-8 is a stateful widget to test. It has a

TextField widget to input text. When the button is pressed, the uppercase

of input text is displayed using a Text widget.

Listing 14-8. Widget to test

class ToUppercase extends StatefulWidget {

@override

_ToUppercaseState createState() => ToUppercaseState();

}

499

CHAPTER 14 TESTING AND DEBUGGING

class ToUppercaseState extends State<ToUppercase> {
final _controller = TextEditingController();

@override
Widget build(BuildContext context) {
return Column(
children: <Widget>[
Row(
children: <Widget>[
Expanded(child: TextField(controller:
_controller)),
RaisedButton(
child: Text('Uppercase'),
onPressed: () {
setState(() {});

b
))
])
))
Text((_controller.text ?? ").toUpperCase()),
1,
);
}
}

Listing 14-9 shows the test case of ToUppercase widget. The
_wrapInMaterial() function wraps the ToUppercase widgetin a
MaterialApp before testing. This is because TextField widget requires
an ancestor Material widget. In the test case, the widget is rendered
using pumpWidget () first. The find object is a top-level constant of

500

CHAPTER 14 TESTING AND DEBUGGING

CommonFinders class. It has convenient methods to create different kinds
of Finder objects. Here we find the widget of type TextField and uses
enterText() to input the text “abc”. Then the RaisedButton widget is
tapped and the state is changed. The pump () method is required to trigger
the rebuild. Finally, we verify that a Text widget exists with the text “ABC”.

Listing 14-9. Test ToUppercase widget

Widget wrapInMaterial(Widget widget) {
return MaterialApp(
home: Scaffold(
body: widget,
)5
)
}

void main() {
testWidgets('ToUppercase', (WidgetTester tester) async {
await tester.pumpWidget(wrapInMaterial(ToUppercase()));
await tester.enterText(find.byType(TextField), 'abc');
await tester.tap(find.byType(RaisedButton));
await tester.pump();
expect(find.text('ABC'), findsOneWidget);

};

501

CHAPTER 14 TESTING AND DEBUGGING

Table 14-2. Methods of CommonFinders

Name Description
byType() Find widgets by type.
byIcon() Find Icon widgets by icon data.
byKey() Find widgets by a particular Key object.
byTooltip() Find Tooltip widgets with the given message.
byWidget() Find widgets by the given widget instance.
text() Find Text and EditableText widgets with the given text.
widgetWithIcon() Find widgets that contain a descendant widget with
the icon.
widgetWithText() Find widgets that contain a Text descendant with the

given text.

Finder objects are used with matchers to verify the state. There are

four matchers to work with Finder objects:

o findsOneWidget expects exactly one widget is found.

o findsNothing expects no widgets are found.

o findsNWidgets expects specified number of widgets

are found.

o findsWidgets expects at least one widget is found.

14-4. Writing Integration Tests

Problem

You want to write integration tests running on emulators or real devices.

502

CHAPTER 14 TESTING AND DEBUGGING

Solution

Use flutter_ driver package.

Discussion

Unit tests and widget tests can only test individual classes, functions, or
widgets. These tests are running on development or testing machines.
These tests cannot test integration between different components of an
app. Integration tests should be used for this scenario.

Integration testing comes in two parts. The first part is the
instrumented app deployed to an emulator or real device. The second part
is the test code to drive the app and verify state of the app. The app under
test is isolated from the test code to avoid interference.

The flutter driver package is required to write integration tests. You
need to add flutter driver package to the dev_dependencies section of
the pubspec.yaml file; see Listing 14-10.

Listing 14-10. Add flutter_driver package

dev_dependencies:
flutter driver:
sdk: flutter

Integration test files are usually put in the test _driver directory. The
target to test is the page to search job listings on GitHub. It’s important to
provide ValueKey objects as the key parameter of the widgets that need to
be used by integration tests. This makes it easier to find those widgets in
the test case. In Listing 14-11, Key (' keyword") creates a ValueKey object
with name “keyword”.

503

CHAPTER 14 TESTING AND DEBUGGING
Listing 14-11. Add key to widget

TextField(
key: Key('keyword"),
controller: controller,

)

The github_jobs.dart file in test_driver directory contains an
instrumented version of the page to test. Listing 14-12 shows the content
of github_jobs.dart file. The enableFlutterDriverExtension()
function from the flutter_driver package enables Flutter Driver to
connect to the app.

Listing 14-12. App to test using Flutter Driver

void main() {
enableFlutterDriverExtension();
runApp(SampleApp());

}

Listing 14-13 shows the content of github_jobs test.dart file. The
file name is selected by appending _test suffix to the name of the app
file. This is the convention used by Flutter Driver to find the Dart file to
run the app under test. In the setUpAll() function, FlutterDriver.
connect() is used to connect to the app. In the test case, find is the top-
level constant of CommonFinders object that has convenient methods to
create SerializableFinder objects. The byValueKey() method finds
the TextField widget in Listing 14-11 by the specified key. The tap()
method of FlutterDriver taps at the TextField widget to make it gain
focus. Then enterText () method is used to input search keyword to the
focused TextField widget. The search button is then tapped to trigger the
loading of data. If the data is loaded successfully, the ListView widget with
jobsList key is available. The waitFor () method waits for the ListView
widget to appear.

504

CHAPTER 14 TESTING AND DEBUGGING

Listing 14-13. Test using Flutter Driver

void main() {
group('GitHub Jobs', () {
FlutterDriver driver;

setUpAl11(() async {
driver = await FlutterDriver.connect();

};

test('searches by keyword', () async {
await driver.tap(find.byValueKey('keyword'));
await driver.enterText('android');
await driver.tap(find.byValueKey('search'));
await driver.waitFor(find.byValueKey('jobsList"),
timeout: Duration(seconds: 5));

};

tearDownAll(() {
if (driver != null) {
driver.close();
}
1K
}s
}

Now we can use the following command to run the integration test.
Flutter Driver deploys the app to the emulator or real device and runs the
test code to verify the result.

$ flutter driver --target=test driver/github_jobs.dart

Table 14-3 shows methods of FlutterDriver class that can be
used to interact with the app during tests. If you want to perform
custom actions, you can provide a DataHandler function when calling

505

CHAPTER 14 TESTING AND DEBUGGING

enableFlutterDriverExtension() function. Messages sent using
requestData() method will be handled by the DataHandler.

Table 14-3. Methods of FlutterDriver

Name Description

enterText() Enter text into the currently focused text input.

getText() Get text in the Text widget.

tap() Taps at the widget.

waitFor() Wait until the finder locates a widget.

waitForAbsent() Wait until the finder can no longer locate a
widget.

scroll() Scroll in a widget by the given offset.

scrollIntoView() Scroll the Scrollable ancestor of the widget
until it’s visible.

scrollUntilVisible(Serial Repeatedly call scroll() inthe
izableFinder scrollable, scrollable widget until the itemis visible,
SerializableFinder item) then call scrollIntoView() onthe item.

traceAction() Run the action and return its performance
trace.

startTracing() Start recording performance traces.

stopTracingAndDownload Stop recording performance traces and

Timeline() download the result.

forceGC() For a garbage collection to run.

getRenderTree() Returns a dump of the current render tree.

requestData() Sends a message to the app and receives a
response.

screenshot() Take a screenshot.

506

CHAPTER 14 TESTING AND DEBUGGING

Methods in FlutterDriver class use SerializableFinder objects to
locate widgets. Table 14-4 shows methods of CommonFinders class to create
SerializableFinder objects. These methods only support using String
or int values as parameters. This is because values need to be serialized
when sending to the app.

Table 14-4. Methods of CommonkFinders in flutter_driver

Name Description

byType() Find widgets by class name.

byValueKey() Find widgets by key.

byTooltip() Find widgets with a tooltip with the given message.
text() Find Text and EditableText widgets with the given text.
pageBack() Find the back button.

14-5. Debugging Apps
Problem

You want to debug issues found in the apps.

Solution

Use IDE and utilities provided by Flutter SDK.

Discussion

When the code doesn’t work as you expected in the runtime, you need

to debug the code to find out the cause. With the help of IDEs, it’s quite
straightforward to debug Flutter apps. You can add breakpoints in the code
and start the app in debug mode.

507

CHAPTER 14 TESTING AND DEBUGGING

Another common approach to debug code is to write outputs to the
system console using print () function. These logs can be viewed using
flutter logs command. Android Studio also displays these logs in the
Console view. You can also use debugPrint () function to throttle the
output to avoid the logs being dropped by Android.

When creating your own widgets, you should override
debugFillProperties() method to add custom diagnostic properties.
These properties can be viewed in Flutter Inspector. In Listing 14-14, the
Debughidget has name and price properties. In the debugFillProperties()
method, two DiagnosticsProperty objects are added using
DiagnosticPropertiesBuilder object.

Listing 14-14. debugFillProperties()

class Debughidget extends StatelessWidget {
Debughidget({Key key, this.name, this.price}) : super(key:
key);

final String name;
final double price;

@override
Widget build(BuildContext context) {
return Text('$name - $price');

}

@override
void debugFillProperties(DiagnosticPropertiesBuilder
properties) {
super.debugFillProperties(properties);

properties.add(StringProperty('name’, name));
properties.add(DoubleProperty('price’, price));

}
}

508

CHAPTER 14 TESTING AND DEBUGGING

There are different types of DiagnosticsProperty subclasses
to use based on the property type. Table 14-5 shows common
DiagnosticsProperty subclasses.

Table 14-5. Methods of CommonFinders

Name Description

StringProperty For String property.
DoubleProperty For double property.
PercentProperty Format double property as percentage.
IntProperty For int property.

FlagProperty Format bool property as flags.
EnumProperty For enum property.
IterableProperty For Iterable property.

14-6. Summary

This chapter covers topics related to testing and debugging Flutter apps.

509

Index

A

Align widget, 140, 143, 152, 162
heightFactor, 141
widthFactor, 141

Alignment class, 141, 142

Alignment constants, 141

AlignmentDirectional class, 142

AlignmentDirectional instance, 143

AlignmentDirectional
constants, 142
AlignmentGeometry class, 141
ancestorWidgetOfExactType()
method, 110
android directory, 453
Animations
creation, 413
AnimatedWidget, 417, 418
AnimationController class,
413-415
AnimationStatus,
values, 416
build() method, 414
forward() method, 414
initState() method, 414
methods, 416
status listener, 416, 417
curve, 421

© Fu Cheng 2019

Curves.easelnOut curve,
423,424
parameters, 422
types, 421, 422
linear interpolation, 418
animate() method, 418
ColorTween, 419, 420
transitions, 434
FadeTransition, 436
ScaleTransition, 435
AppLocalizations.load()
method, 486
apply() method, 125
asBroadcastStream() method, 321
AspectRatio constructor, 158
AspectRatio widget, 158, 159, 453
AssetImage class, 475
asStream() method, 320, 333
async function, 493

B

BoxConstraints class, 137

BoxConstraints instance, 138

BoxFit values, 152, 153, 155

build() method, 109-111, 116, 348,
366, 368, 369, 414

511

F. Cheng, Flutter Recipes, https://doi.org/10.1007/978-1-4842-4982-6

https://doi.org/10.1007/978-1-4842-4982-6

INDEX

BuildContex
methods, 109
use, 110

Business Logic Component (Bloc)
core concepts, 389
definition, 390
Equatable class, 390
events, 389
GitHubJobs class, 393
http package, 390
mapEventToState()

function, 390
byValueKey() method, 504

C

calculate() function, 317
Cameras
camera plugin, 466
CameraController, methods,
467, 468
iOS, privacy requirements, 466
selection, 469, 470
canGoBack() method, 457
catchError() methods, 313-315
Center widget, 41, 106, 111,
139, 140
chain() method, 425
Chained then() methods, 315
Child widget, 140, 145, 147, 149,
207, 248, 258, 267, 287
ChoiceChip widget, 218, 219, 221
colorScheme.error property, 490
CommonFinders, 502, 507, 509

512

completion() function, 493
Complicated page flows, 301-305
Config class, inherited widget, 372
ConfigWidget, 115, 373, 374
ConstrainedBox constructor, 144
Constraints class, 137
Container constructor, 162
Container widget, 163, 164
copyWith() method, 125, 372, 398
createElement() method, 106
createState() method, 112, 366
Creation, Flutter
Android studio, 20-24
command line, 19
VS code, 24, 25
CrossAxisAlignment values, 167
Cross-platform code
built-in types, 77
boolean values, 79, 80
lists and maps, 80
numbers, 78
runes, 81
strings, 78, 79
symbols, 81
cascade operator, 87, 88
constructors, 89-91
dynamic type, 83
enumerated type, 81, 82
exceptions, 101-104
extending class, 92-94
functions, 84, 85
generics, 97-99
inheritance, 94-96
interfaces, 96, 97

libraries, 100, 101

override operators, 88, 89

typedefs, 86
CupertinoDialogAction,

parameters, 291, 292, 294

Cupertinolcons class, 129
CupertinoSwitch, 214
CupertinoThemeData class, 489
CupertinoTheme.of() method, 490
Customizing themes, 489, 490

D

dart:io library, 351, 354, 355, 441
Dart observatory, 29-31, 63
Dart strings, 78
DateFormat class, 357
debugFillProperties() method, 508
debugPrint() function, 508
DecoratedBox widget, 152
DefaultAssetBundle.of()
method, 474
Descendant widget, 369, 371, 372,
385, 386, 388, 502
didChangeDependencies()
method, 368, 369
Discrete set of values, 214-217
Display
icons, 128, 129
images, 126-128
Displaying web pages
methods, 458
parameters, 457
WebView, 459, 460

INDEX

webview_flutter plugin, 456
dispose() method, 368, 393, 414
DragEndDetails object, 476
drive() method, 425
Dropdown list, 206-208
Dynamic route matching, 284, 285

E

Edgelnsets constructors, 157
EdgelnsetsDirectional class, 158
EdgelnsetsDirectional.fromSTEB()
constructor, 158
EditUserDetailsPage widget, 279
enableFlutterDriverExtension()
function, 504, 506
ensureVisible() method, 498, 499
enterText() method, 498, 504
evaluateJavascript() method, 458
example directory, 453
Exception handling
catch, 102-104
Error object, 102
try-catch-finally, 101
expect() function, 492, 493
expectAsyncl() function, 493

F

FilterChip widget, 219-221

Finder objects, 498, 501, 502

FittedBox widget, 152

FixedPositionLayoutDelegate
class, 174

513

INDEX

FlatButton, 130-132
FlatButton.icon() constructors, 132
Flex Box Layout Algorithm,
165, 166
Flexible widget, 165, 168
flipped property, 422
flutter analyze, 59, 60
Flutter apps
code structure, 27
configuration, 28
run, 26
flutter attach, 64
flutter bash-completion command,
72,73
flutter_bloc packages, 389
flutter devices command, 70
flutter drive command, 71
flutter_driver package, 503
Flutter Driver, 505, 506, 508
FlutterDriver.connect()
function, 504
Flutter Inspector
render tree, 108
widgets tree, 107
flutter logs command, 68, 508
flutter packages, 54-56
Flutter SDK
build app binaries, 51
APK file, 51, 52
i0§, 52, 53
channels, 35
clean build files, 74
configuration, 66, 67

514

debugging, 36-39
emulators management, 61, 62
flutter run, 46
arguments, 48, 49
build flavors, 47
output, 50
formatting source code, 68, 69
installation, 53, 54
integration tests, 70-72
listing connected devices, 70
manage cache, 74, 75
outline view, Android Studio,
39-41
package management, 54-56
projects, creation, 42
configurations, 45
enable/disable features, 45,
46
sample code, 44
types, 43
running app, 64
showing app logs, 67, 68
taking screenshots, 62, 63
tests, 56, 57
arguments, 58
coverage report, 57
debug, 58
tracing, running app, 65, 66
updation, 34-36
VS Code, debugging, 41, 42
flutter test command, 56
Font Awesome icon, 129
formatEditUpdate() method, 203

Form widgets
date and time selection,
221-225
formatting text, 202, 203
form creation, 230-233
multiple values, selection,
209, 211
single values, selection, 203,
204, 206-208
text limits setting, 196-198
text selection, 198-201
using chips, 217-221
wrapping form fields, 225-230
Future objects, 313-316, 327, 351
FutureBuilder, 334

G

genhtml command, 58
GestureDetector widget, 476, 477
get() method, 351, 496
getApplicationDocuments
Directory() function, 443
getJobs() method, 400, 401, 407,
409, 496, 497
getNetworkOperator method, 447,
449, 453
getTemporaryDirectory()
function, 443
getValue() function, 317
GitHubJobsClient class, 496, 497
GridView, 244-249
group() function, 492

INDEX

GrowingSizeLayoutDelegate,
178-180

gRPC services, interaction,
360-362

H

Hot reload
compilation errors, 33
console output, 33
debug mode, 32
Flutter SDK, 31
Hot restart, 31-34
HttpClient.addCredentials()
method, 353

Icon() constructor, 129
IconButton constructor, 132
ImageBox widget, 152, 155
Image.network() constructor,
126, 127
ImageRepeat values, 127
IndexedStack class, 170
Inflation, 106
Inherited model, 378-381
Inherited notifier, 382-384
InheritedWidget class, 113,
114, 379
inheritFromWidgetOfExactType()
method, 114, 371, 373
initializeMessages() function, 485

515

INDEX

Installation, Flutter
Android devices, set up, 18
Android emulators, set up,
13-15,17

Android platform, set up, 11-13

iOS devices, setup, 9, 10

iOS platform, 7, 8

iOS simulator, set up, 9

Linux machine, 4, 5

macOS machine, 5-7

Windows, 1-3
invokeListMethod() method, 447
ios directory, 453
10S dialogs, 290-293
isSupported() method, 481

J, K

JavascriptMessageHandler
function, 458

Job class, 357, 358

json_annotation, 338, 406

jsonDecode() function, 336,
338, 358

jsonEncode() function, 336, 338

json_serializable, 338, 339

L

layout() method, 137, 144
Layout
algorithm, 138
BoxConstraints instance, 138
Flutter, 135

516

multiple children, 176
RenderObject instance, 137
single child, 173, 174
widgets, 139
layoutChild() method, 177
lib directory, 453
Lifecycle methods, 368
LimitedBox constructor, 151
LimitedBox widget, 151, 168
listen() method, 320, 321, 354
ListTile, 238-244
ListView widget, 504
creation, 236
item builders, 237, 238
static children, 236
load() method, 474, 481
loadString() method, 474
LocalizationsDelegate class, 478,
481-483, 486
LoggingNavigatorObserver class,
306, 307
Login form, 231, 233
loosen() method, 143

main() method, 34, 47, 106
MainAxisAlignment values, 167
MethodCallHandler interface, 453
Mobgx, state management, 405-407,
409, 412
MockHttpClient class, 496
mockito package, 495
move() method, 491

MultiChildLayoutDelegate, 177
MultiChildRenderObjectWidget
class, 139
Multiple locales
AppLocalizations/localized
subclasses, 480, 483
Custom Localizations
Delegate, 482
flutter_localizations, 479
Localizations widget, 478
LocalizationsDelegate class, 478
MaterialLocalizations
object, 480
methods, 481
Multiple values, selection, 209-211

N

Navigator.of() method, 274, 301
NetworkPlugin.java file, 453

O

On-boarding page, 302, 303
onHorizontalDragEnd
callback, 476
onHorizontalDragStart
callback, 476
onHorizontalDragUpdate
callback, 476
OutlineButton, 130, 131
OutlineButton.icon()
constructors, 132
OverflowBox constructor, 148, 149

INDEX

P

padding parameter, 157
Padding widget, 158
Page navigation
data passing between routes,
278-284
dynamic route matching,
284, 285
implementation, 273-276
ioS
action sheets, 293-296
dialogs, 290-293
material design
dialogs, 286-290
menus, 296-300
named routes, 276-278
Painting custom elements, 486
canvas methods, 487
CustomPaint widget, 486
parameters, 487
Shapes class, 488, 489
parentData property, 137
Parent widget, 148, 174, 236, 385
parse() function, 344, 349
performLayout() method, 176, 177
Physics simulations
GravitySimulation, 438
Simulation class, 437
SimulationController widget,
439, 440
SpringSimulation class,
437,438
Placeholder() constructor, 133

517

INDEX

Platform-specific code
Flutter app, 446
Future object, 447
get network operator, 448, 449
android implementation,
449, 450
swift implementation,
450, 451
MethodChannel class, 446, 447
Playing videos
Android, 461
iOS HTTP security config, 461
methods, 462
video_player plugin, 460
VideoPlayerController,
constructors, 462
VideoPlayerView class, 463, 465
Plugins, creation, 452-455
PopupMenultem constructor, 297
positionChild() method, 177
postMessage function, 459
print() function, 508
pump() method, 498, 501
pumpAndSettle() method, 498
pumpWidget() method, 498

Q

quarterTurns parameter, 156

R

Radio widgets, 204-206
RaisedButton, 130-132, 369

518

RaisedButton widget, 501
RaisedButton.icon()
constructors, 132
Range of continuous, 214-217
readConfig() method, 443
Reading/writing files, 441
asynchronous methods, 442
config.txt file, 443, 444
Directory class, 443
readAsString() methods, 441
readAsStringSync()
methods, 441
receiveNetworkOperator()
function, 450
Redux
actions, 399, 400
GitHub jobs widget, 402-405
jobsstate, 398, 399
reducer function, 400
thunk function, 401
Register named routes, 277
RenderBox class, 137
RenderObiject class, 137
RenderObjectWidget class, 139
Render tree, 106, 108, 137, 138
request.close() method, 351
requestData() method, 506
reset() method, 231, 416
resolve() method, 143
REST services, 356-360
RichText() constructor, 121
RichText widgets, 116
name parameters, 117
RotatedBox widget, 156

Route class, 274

RouteAware methods, 307
RouteSettings properties, 283
runApp() method, 106

S

save() method, 230
Scaffold
AppBar widget, 256, 257
BottomAppBar, 260
BottomNavigationBar, 260-263
BottomSheet widget, 263
drawer widget, 258-260
elements, 256
FloatingActionButton
widget, 258
iOS pages, 265, 266
material design pages, 255, 256
SnackBar widget, 264, 265
stateful widget, 264
Scoped model, 384-389
_SelectColorState.build()
method, 366
Sequential/overlapping
animations, 428-430
Service interactions
async and await, 317, 318
build a widget, 330-335
complex JSON data, 337-339
creating future objects, 318, 319
creating streams, 328, 329
future objects, 314-316
gRPC services, 360-362

INDEX

HTML data handling, 349, 350
HTTP requests, 350-353
JsonKey properties, 342, 343
JsonValue, 343
properties of JsonSerializable,
340, 341
REST services, 356-360
simple JSON data, 335-337
socket servers, 355, 356
streams, working, 320
use JsonlLiteral, 343
user class, 341, 342
webSocket servers, 353, 354
working with future objects, 313
XML data handling, 344
setState() method, 112, 366
setUp() function, 494
setUpAll() function, 504
share() method, 471
share plugin, 470
shared_preferences plugin, 444
shouldRelayout() methods, 176
shouldReload() method, 481
showDatePicker() function,
221, 222
showDialog() function, 287
showSnackBar() method, 264
showTimePicker() function,
221,223
Simultaneous animations, 427-428
SingleChildRenderObjectWidget
class, 139
SizedBox widget, 144, 147, 149, 152,
162,414

519

INDEX

SizedBox constructors, 145
SizedOverflowBox widget, 150
Slider widget, 215-217
Socket.connect() method, 354-356
Socket servers, 355, 356
SpringDescription.
withDampingRatio()
constructor, 437, 438
Stack constructor, 170
StackFilt.expand, 170
StackFilt.passthrough, 170
StackFit.loose, 170
Stack widget, 171
phases, 170
State.build() methods, 109, 110
StatefulWidget class, 112, 365-371
StatelessWidget.build() methods,
109,110
StatelessWidget class, 111
State management
bloc patter, 389-397
inherited model, 378-381
inherited notifier, 382-384
inherited widgets, 371-378
mobx, 405-412
redux, 397-405
scoped model, 384-389
stateful widgets, 365-371
State of navigator, 305-309
Static assets
AssetImage class, 475
load string, 474
pubspec.yaml file, 474
types, 473

520

variants, 475
Stop routes from popping, 310-312
Storing key-value pairs
getBool() methods, 445
setBool() methods, 445
SharedPreference, 445, 446
StreamBuilder, 330, 332
Stream of events
subscription, 321-323
transformation, 323-328
SwiftNetworkPlugin.swift file, 455
Switch widget, 211, 212, 214
System share sheet, 470-471

T

Tab layout

i0S§, 270, 271

material design, 266-270
Tabular data, 250-255
tap() method, 504
tearDown() function, 494, 495
test directory, 56, 453, 491
test() function, 492
testWidgets() function, 498
Text widget, 119

constructors, 116

name parameters, 117
TextAlign values, 118
TextDecoration class, 124
TextDecoration.combine()

constructor, 124

TextDecoration constants, 124
TextDecorationStyle, 124

values, 125
TextField widget, 192, 193, 197, 212,
222, 369, 499, 504
Text fields, material design
borders, 192-194
customize the keyboard, text
input, 188-191
InputDecoration, 192, 193
prefix and suffix, 194, 195
text, 195, 196
TextField widgets, 193, 197
TextInputAction values, 190
TextInputFormatter.withFunction()
method, 202, 203
Text inputs, collection
callbacks, 186-188
CupertinoTextField widget, 182
EditableText widget, 182
material design, 181
TextEditingController, 182-184
using listener, 184-186
TextInputType constants, 189
TextOverflow values, 118
TextSpan() constructor, 119
TextSpan objects, 119
name parameters, 120
TextStyle() constructor, 122
name parameters, 123
TextStyle, update, 126
ThemeData object, 489
throwsA() function, 493
timeout() method, 316
Toggling on/off state, 211-214
toJson() function, 337

INDEX

Tranform.rotate() constructor, 160
transform() method, 421
Transform constructor, 160
Transform.scale() constructor, 161
Transform.translate() constructor,
161
Translation files
Intl.message(), 484
intl_messages.arb file, 485
intl_translation package, 483
load messages, 485, 486
TweenSequence class, 425,
426, 429

U

UnconstrainedBox widget, 147

Unknown route handling, 285, 286

updateShouldNotify() method,
114, 373, 379

User details page, 279, 281

\'

validate() method, 230

W

waitFor() method, 504, 506

WebSocket.connect() method, 354

WebSocket servers, 353, 354

WebViewController object,
456-458

whenComplete() method, 315, 316

521

INDEX

Widgets _wrapInMaterial()

align, 140 function, 500
buttons, 130 Wrapping form fields

icons, 132 methods, 227

types, 130, 131 named parameters, 226
center, 139 TextFormField, 227-229
constraints, 146 Wrapping Layoutld widget, 178
flex box, 165 Wrap widget, 171, 173
layout aspects, 161-163 writeConfig() method, 443

layout constraints, 144
multiple horizontal/vertical

runs, 171, 173 X, Y, Z
overlap, 169 XML data handling, 344
placeholders, 133 parsing, 344
size, 158 properties, 345
test, 498 querying, 346, 347
transformation, 160 XmlBuilder
Widgets tree, 33, 106, 107, 305, 368, build document, 348
369, 371, 431 methods, 347
WidgetTester, 499 use, 348

522

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Get Started
	1-1. Installing Flutter SDK on Windows
	Problem
	Solution
	Discussion

	1-2. Installing Flutter SDK on Linux
	Problem
	Solution
	Discussion

	1-3. Installing Flutter SDK on macOS
	Problem
	Solution
	Discussion

	1-4. Setting Up iOS Platform
	Problem
	Solution
	Discussion

	1-5. Setting Up iOS Simulators
	Problem
	Solution
	Discussion

	1-6. Setting Up iOS Devices
	Problem
	Solution
	Discussion

	1-7. Setting Up Android Platform
	Problem
	Solution
	Discussion

	1-8. Setting Up Android Emulators
	Problem
	Solution
	Discussion

	1-9. Setting Up Android Devices
	Problem
	Solution
	Discussion

	1-10. Creating Flutter Apps Using Command Line
	Problem
	Solution
	Discussion

	1-11. Creating Flutter Apps Using Android Studio
	Problem
	Solution
	Discussion

	1-12. Creating Flutter Apps Using VS Code
	Problem
	Solution
	Discussion

	1-13. Running Flutter Apps
	Problem
	Solution
	Discussion

	1-14. Understanding Code Structure of Flutter Apps
	Problem
	Solution
	Discussion

	1-15. Fixing Configuration Issues of Flutter SDK
	Problem
	Solution
	Discussion

	1-16. Summary

	Chapter 2: Know the Tools
	2-1. Using Dart Observatory
	Problem
	Solution
	Discussion

	2-2. Using Hot Reload and Hot Restart
	Problem
	Solution
	Discussion

	2-3. Upgrading Flutter SDK
	Problem
	Solution
	Discussion

	2-4. Debugging Flutter Apps in Android Studio
	Problem
	Solution
	Discussion

	2-5. Viewing Outline of Flutter Apps in Android Studio
	Problem
	Solution
	Discussion

	2-6. Debugging Flutter Apps in VS Code
	Problem
	Solution
	Discussion

	2-7. Creating Flutter Projects
	Problem
	Solution
	Discussion
	Type of Project
	Code Sample
	Project Configurations
	Enable or Disable Features

	2-8. Running Flutter Apps
	Problem
	Solution
	Discussion
	Different Build Flavors
	Other Options

	2-9. Building Flutter App Binaries
	Problem
	Solution
	Discussion
	Build APK Files for Android
	Build for iOS

	2-10. Installing Flutter Apps
	Problem
	Solution
	Discussion

	2-11. Managing Packages
	Problem
	Solution
	Discussion

	2-12. Running Flutter Tests
	Problem
	Solution
	Discussion
	Filter the Tests to Run
	Test Coverage
	Debug a Test
	Other Options

	2-13. Analyzing the Code
	Problem
	Solution
	Discussion

	2-14. Managing Emulators
	Problem
	Solution
	Discussion

	2-15. Taking Screenshots
	Problem
	Solution
	Discussion

	2-16. Attaching to Running Apps
	Problem
	Solution
	Discussion

	2-17. Tracing Running Flutter Apps
	Problem
	Solution
	Discussion

	2-18. Configuring Flutter SDK
	Problem
	Solution
	Discussion

	2-19. Showing App Logs
	Problem
	Solution
	Discussion

	2-20. Formatting Source Code
	Problem
	Solution
	Discussion

	2-21. Listing Connected Devices
	Problem
	Solution
	Discussion

	2-22. Running Integration Tests
	Problem
	Solution
	Discussion

	2-23. Enabling Bash Completion of Flutter SDK Commands
	Problem
	Solution
	Discussion

	2-24. Cleaning Build Files of Flutter Apps
	Problem
	Solution
	Discussion

	2-25. Managing Flutter SDK Cache
	Problem
	Solution
	Discussion

	2-26. Summary

	Chapter 3: Essential Dart
	3-1. Understanding Built-In Types
	Problem
	Solution
	Discussion
	Numbers
	Strings
	Booleans
	Lists and Maps
	Runes
	Symbols

	3-2. Using Enumerated Types
	Problem
	Solution
	Discussion

	3-3. Using Dynamic Type
	Problem
	Solution
	Discussion

	3-4. Understanding Functions
	Problem
	Solution
	Discussion

	3-5. Using Typedefs
	Problem
	Solution
	Discussion

	3-6. Using Cascade Operator
	Problem
	Solution
	Discussion

	3-7. Overriding Operators
	Problem
	Solution
	Discussion

	3-8. Using Constructors
	Problem
	Solution
	Discussion

	3-9. Extending a Class
	Problem
	Solution
	Discussion

	3-10. Adding Features to a Class
	Problem
	Solution
	Discussion

	3-11. Using Interfaces
	Problem
	Solution
	Discussion

	3-12. Using Generics
	Problem
	Solution
	Discussion

	3-13. Using Libraries
	Problem
	Solution
	Discussion

	3-14. Using Exceptions
	Problem
	Solution
	Discussion
	Report Failures
	Catch Exceptions

	3-15. Summary

	Chapter 4: Widget Basics
	4-1. Understanding Widgets
	Problem
	Solution
	Discussion

	4-2. Understanding BuildContext
	Problem
	Solution
	Discussion

	4-3. Understanding Stateless Widget
	Problem
	Solution
	Discussion

	4-4. Understanding Stateful Widget
	Problem
	Solution
	Discussion

	4-5. Understanding Inherited Widget
	Problem
	Solution
	Discussion

	4-6. Displaying Text
	Problem
	Solution
	Discussion
	Text
	TextSpan
	RichText

	4-7. Applying Styles to Text
	Problem
	Solution
	Discussion

	4-8. Displaying Images
	Problem
	Solution
	Discussion

	4-9. Displaying Icons
	Problem
	Solution
	Discussion

	4-10. Using Buttons with Text
	Problem
	Solution
	Discussion

	4-11. Using Buttons with Icons
	Problem
	Solution
	Discussion

	4-12. Adding Placeholders
	Problem
	Solution
	Discussion

	4-13. Summary

	Chapter 5: Layout Widgets
	5-1. Understanding Layout in Flutter
	Problem
	Solution
	Discussion
	RenderObject
	BoxConstraints
	Layout Algorithm
	Layout Widgets

	5-2. Placing Widgets in the Center
	Problem
	Solution
	Discussion

	5-3. Aligning Widgets
	Problem
	Solution
	Discussion

	5-4. Imposing Constraints on Widgets
	Problem
	Solution
	Discussion

	5-5. Imposing No Constraints on Widgets
	Problem
	Solution
	Discussion

	5-6. Imposing Constraints on Widgets when Ignoring Parents
	Problem
	Solution
	Discussion

	5-7. Limiting Size to Allow Child Widget to Overflow
	Problem
	Solution
	Discussion

	5-8. Limiting Widgets Size when Unbounded
	Problem
	Solution
	Discussion

	5-9. Scaling and Positioning Widgets
	Problem
	Solution
	Discussion

	5-10. Rotating Widgets
	Problem
	Solution
	Discussion

	5-11. Adding Padding when Displaying Widgets
	Problem
	Solution
	Discussion

	5-12. Sizing Widgets to Aspect Ratio
	Problem
	Solution
	Discussion

	5-13. Transforming Widgets
	Problem
	Solution
	Discussion

	5-14. Controlling Different Layout Aspects on a Widget
	Problem
	Solution
	Discussion

	5-15. Implementing Flex Box Layout
	Problem
	Solution
	Discussion
	Flex Box Layout Algorithm
	Flexible

	5-16. Displaying Overlapping Widgets
	Problem
	Solution
	Discussion

	5-17. Displaying Widgets in Multiple Runs
	Problem
	Solution
	Problem

	5-18. Creating Custom Single Child Layout
	Problem
	Solution
	Discussion

	5-19. Creating Custom Multiple Children Layout
	Problem
	Solution
	Discussion

	5-20. Summary

	Chapter 6: Form Widgets
	6-1. Collecting Text Inputs
	Problem
	Solution
	Discussion
	Using TextEditingController
	Using Listeners of TextEditingController
	Using Callbacks

	6-2. Customizing Keyboard for Text Input
	Problem
	Solution
	Discussion

	6-3. Add Decorations to Text Input in Material Design
	Problem
	Solution
	Discussion
	Borders
	Prefix and Suffix
	Text

	6-4. Setting Text Limits
	Problem
	Solution
	Discussion

	6-5. Selecting Text
	Problem
	Solution
	Discussion

	6-6. Formatting Text
	Problem
	Solution
	Discussion

	6-7. Selecting a Single Value
	Problem
	Solution
	Discussion

	6-8. Selecting a Single Value from Dropdown
	Problem
	Solution
	Discussion

	6-9. Selecting Multiple Values
	Problem
	Solution
	Discussion

	6-10. Toggling On/Off State
	Problem
	Solution
	Discussion

	6-11. Selecting from a Range of Values
	Problem
	Solution
	Discussion

	6-12. Using Chips
	Problem
	Solution
	Discussion

	6-13. Selecting Date and Time
	Problem
	Solution
	Discussion

	6-14. Wrapping Form Fields
	Problem
	Solution
	Discussion

	6-15. Creating Forms
	Problem
	Solution
	Discussion

	6-16. Summary

	Chapter 7: Common Widgets
	7-1. Displaying a List of Items
	Problem
	Solution
	Discussion
	ListView with Static Children
	ListView with Item Builders
	ListTile

	7-2. Displaying Items in a Grid
	Problem
	Solution
	Discussion

	7-3. Displaying Tabular Data
	Problem
	Solution
	Discussion

	7-4. Scaffolding Material Design Pages
	Problem
	Solution
	Discussion
	App Bar
	Floating Action Button
	Drawer
	Bottom App Bar
	Bottom Navigation Bar
	Bottom Sheet
	Scaffold State
	SnackBar

	7-5. Scaffolding iOS Pages
	Problem
	Solution
	Discussion

	7-6. Creating Tab Layout in Material Design
	Problem
	Solution
	Discussion

	7-7. Implementing Tab Layout in iOS
	Problem
	Solution
	Discussion

	7-8. Summary

	Chapter 8: Page Navigation
	8-1. Implementing Basic Page Navigation
	Problem
	Solution
	Discussion

	8-2. Using Named Routes
	Problem
	Solution
	Discussion

	8-3. Passing Data Between Routes
	Problem
	Solution
	Discussion

	8-4. Implementing Dynamic Route Matching
	Problem
	Solution
	Discussion

	8-5. Handling Unknown Routes
	Problem
	Solution
	Discussion

	8-6. Displaying Material Design Dialogs
	Problem
	Solution
	Discussion

	8-7. Displaying iOS Dialogs
	Problem
	Solution
	Discussion

	8-8. Displaying iOS Action Sheets
	Problem
	Solution
	Discussion

	8-9. Showing Material Design Menus
	Problem
	Solution
	Discussion

	8-10. Managing Complicated Page Flows Using Nested Navigators
	Problem
	Solution
	Discussion

	8-11. Observing Navigator State Changes
	Problem
	Solution
	Discussion

	8-12. Stopping Routes from Popping
	Problem
	Solution
	Discussion

	8-13. Summary

	Chapter 9: Service Interaction
	9-1. Working with Futures
	Problem
	Solution
	Discussion

	9-2. Using async and await to Work with Futures
	Problem
	Solution
	Discussion

	9-3. Creating Futures
	Problem
	Solution
	Discussion

	9-4. Working with Streams
	Problem
	Solution
	Discussion
	Stream Subscription
	Stream Transformation

	9-5. Creating Streams
	Problem
	Solution
	Discussion

	9-6. Building Widgets Based on Streams and Futures
	Problem
	Solution
	Discussion

	9-7. Handle Simple JSON Data
	Problem
	Solution
	Discussion

	9-8. Handle Complex JSON Data
	Problem
	Solution
	Discussion

	9-9. Handling XML Data
	Problem
	Solution
	Discussion
	Parse XML Documents
	Build XML Documents

	9-10. Handling HTML Data
	Problem
	Solution
	Discussion

	9-11. Sending HTTP Requests
	Problem
	Solution
	Discussion

	9-12. Connecting to WebSocket
	Problem
	Solution
	Discussion

	9-13. Connecting to Socket
	Problem
	Solution
	Discussion

	9-14. Interacting JSON-Based REST Services
	Problem
	Solution
	Discussion

	9-15. Interacting with gRPC Services
	Problem
	Solution
	Discussion

	9-16. Summary

	Chapter 10: State Management
	10-1. Managing State Using Stateful Widgets
	Problem
	Solution
	Discussion

	10-2. Managing State Using Inherited Widgets
	Problem
	Solution
	Discussion

	10-3. Managing State Using Inherited Model
	Problem
	Solution
	Discussion

	10-4. Managing State Using Inherited Notifier
	Problem
	Solution
	Discussion

	10-5. Managing State Using Scoped Model
	Problem
	Solution
	Discussion

	10-6. Managing State Using Bloc
	Problem
	Solution
	Discussion

	10-7. Managing State Using Redux
	Problem
	Solution
	Discussion

	10-8. Managing State Using Mobx
	Problem
	Solution
	Discussion

	10-9. Summary

	Chapter 11: Animations
	11-1. Creating Simple Animations
	Problem
	Solution
	Discussion

	11-2. Creating Animations Using Linear Interpolation
	Problem
	Solution
	Discussion

	11-3. Creating Curved Animations
	Problem
	Solution
	Discussion

	11-4. Chaining Tweens
	Problem
	Solution
	Discussion

	11-5. Creating Sequences of Tweens
	Problem
	Solution
	Discussion

	11-6. Running Simultaneous Animations
	Problem
	Solution
	Discussion

	11-7. Creating Staggered Animations
	Problem
	Solution
	Discussion

	11-8. Creating Hero Animations
	Problem
	Solution
	Discussion

	11-9. Using Common Transitions
	Problem
	Solution
	Discussion

	11-10. Creating Physics Simulations
	Problem
	Solution
	Discussion

	11-11. Summary

	Chapter 12: Platform Integration
	12-1. Reading and Writing Files
	Problem
	Solution
	Discussion

	12-2. Storing Key-Value Pairs
	Problem
	Solution
	Discussion

	12-3. Writing Platform-Specific Code
	Problem
	Solution
	Discussion

	12-4. Creating Plugins
	Problem
	Solution
	Discussion

	12-5. Displaying Web Pages
	Problem
	Solution
	Discussion

	12-6. Playing Videos
	Problem
	Solution
	Discussion

	12-7. Using Cameras
	Problem
	Solution
	Discussion

	12-8. Using System Share Sheet
	Problem
	Solution
	Discussion

	12-9. Summary

	Chapter 13: Miscellaneous
	13-1. Using Assets
	Problem
	Solution
	Discussion

	13-2. Using Gestures
	Problem
	Solution
	Discussion

	13-3. Supporting Multiple Locales
	Problem
	Solution
	Discussion

	13-4. Generating Translation Files
	Problem
	Solution
	Discussion

	13-5. Painting Custom Elements
	Problem
	Solution
	Discussion

	13-6. Customizing Themes
	Problem
	Solution
	Discussion

	13-7. Summary

	Chapter 14: Testing and Debugging
	14-1. Writing Unit Tests
	Problem
	Solution
	Discussion

	14-2. Using Mock Objects in Tests
	Problem
	Solution
	Discussion

	14-3. Writing Widget Tests
	Problem
	Solution
	Discussion

	14-4. Writing Integration Tests
	Problem
	Solution
	Discussion

	14-5. Debugging Apps
	Problem
	Solution
	Discussion

	14-6. Summary

	Index

