
M A N N I N G

Simon Holmes
Clive Harber

SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org

Data integration differences for various approaches

used by Node.js applications

Integration
layer

Database Database API
Node.js

application
Node.js

application

Integration
layer

Mobile
app

Mobile
app

Angular
application

Angular
application

Integrated approach API approach

 www.allitebooks.com

http://www.allitebooks.org

Praise for the First Edition

Looking to go full stack? Getting MEAN will take you there.
—Matt Merkes, MyNeighbor

Fantastic explanations and up-to-date, real-world examples.
—Rambabu Posa, GL Assessment

From novice to experienced developer, all who want to use the MEAN
stack will get useful advice here.

—Davide Molin, CodingShack

A ground-up explanation of MEAN stack layers.
—Andrea Tarocchi, Red Hat

Maybe the best coding book I’ve ever read.
—An Amazon reviewer

Just an awesome first book to learn the MEAN stack.
—An Amazon reviewer

 www.allitebooks.com

http://www.allitebooks.org

 www.allitebooks.com

http://www.allitebooks.org

Getting MEAN
WITH MONGO, EXPRESS, ANGULAR, AND NODE

SECOND EDITION

SIMON HOLMES
CLIVE HARBER

M A N N I N G
SHELTER ISLAND

 www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisitions editor: Brian Sawyer
20 Baldwin Road Development editor: Kristen Watterson
PO Box 761 Technical development editor: Luis Atencio
Shelter Island, NY 11964 Review editor: Ivan Martinović

Production editor: Anthony Calcara
Copy editor: Kathy Simpson
Proofreader: Katie Tennant

Technical proofreader: Tony Mullen
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617294754
Printed in the United States of America

http://www.manning.com

v

brief contents
PART 1 SETTING THE BASELINE... 1

1 ■ Introducing full-stack development 3
2 ■ Designing a MEAN stack architecture 25

PART 2 BUILDING A NODE WEB APPLICATION 51
3 ■ Creating and setting up a MEAN project 53
4 ■ Building a static site with Node and Express 81
5 ■ Building a data model with MongoDB and Mongoose 119
6 ■ Writing a REST API: Exposing the MongoDB

database to the application 160
7 ■ Consuming a REST API: Using an API from inside Express 201

PART 3 ADDING A DYNAMIC FRONT END WITH ANGULAR 239
8 ■ Creating an Angular application with TypeScript 241
9 ■ Building a single-page application with Angular:

Foundations 274
10 ■ Building a single-page application with Angular:

The next level 304

PART 4 MANAGING AUTHENTICATION AND USER SESSIONS 343
11 ■ Authenticating users, managing sessions, and securing APIs 345
12 ■ Using an authentication API in Angular applications 371

vii

contents
preface xv
acknowledgments xvii
about this book xix
about the authors xxii
about the cover illustration xxiii

PART 1 SETTING THE BASELINE......................................1

1 Introducing full-stack development 3
1.1 Why learn the full stack? 4

A brief history of web development 5 ■ The trend toward
full-stack developing 7 ■ Benefits of full-stack development 7
Why the MEAN stack specifically? 8

1.2 Introducing Node.js: The web server/platform 8
JavaScript: The single language through the stack 9 ■ Fast,
efficient, and scalable 9 ■ Using prebuilt packages via npm 13

1.3 Introducing Express: The framework 13
Easing your server setup 14 ■ Routing URLs to responses 14
Views: HTML responses 14 ■ Remembering visitors with session
support 14

1.4 Introducing MongoDB: The database 15
Relational databases vs. document stores 15 ■ MongoDB
documents: JavaScript data store 15 ■ More than just a document
database 16 ■ What is MongoDB not good for? 16
Mongoose for data modeling and more 16

CONTENTSviii

1.5 Introducing Angular: The front-end framework 18
jQuery vs. Angular 18 ■ Two-way data binding: Working with
data in a page 18 ■ Using Angular to load new pages 19
Are there any downsides? 19 ■ Developing in TypeScript 20

1.6 Supporting cast 20
Twitter Bootstrap for user interface 20 ■ Git for source
control 21 ■ Hosting with Heroku 22

1.7 Putting it together with a practical example 22
Introducing the example application 22 ■ How the MEAN
stack components work together 24

2 Designing a MEAN stack architecture 25
2.1 A common MEAN stack architecture 26
2.2 Looking beyond SPAs 27

Hard to crawl 27 ■ Analytics and browser history 28
Speed of initial load 28 ■ To SPA or not to SPA? 29

2.3 Designing a flexible MEAN architecture 29
Requirements for a blog engine 30 ■ A blog engine
architecture 31 ■ Best practice: Building an internal
API for a data layer 34

2.4 Planning a real application 35
Planning the application at a high level 36 ■ Architecting
the application 37 ■ Wrapping everything in an Express
project 38 ■ The end product 39

2.5 Breaking the development into stages 40
Rapid prototype development stages 41 ■ The steps to build
Loc8r 42

2.6 Hardware architecture 48
Development hardware 48 ■ Production hardware 48

PART 2 BUILDING A NODE WEB APPLICATION51

3 Creating and setting up a MEAN project 53
3.1 A brief look at Express, Node, and npm 55

Defining packages with package.json 55 ■ Working with
dependency versions in package.json 56 ■ Installing Node
dependencies with npm 56

CONTENTS ix

3.2 Creating an Express project 58
Installing the pieces 58 ■ Verifying the installations 59
Creating a project folder 59 ■ Configuring an Express
installation 59 ■ Creating an Express project and trying it
out 61 ■ Restarting the application 63

3.3 Modifying Express for MVC 65
A bird’s-eye view of MVC 65 ■ Changing the folder
structure 66 ■ Using the views and routes relocated
folders 67 ■ Splitting controllers from routes 68

3.4 Importing Bootstrap for quick, responsive layouts 71
Downloading Bootstrap and adding it to the application 72
Using Bootstrap in the application 72

3.5 Making it live on Heroku 75
Getting Heroku set up 75 ■ Pushing the site live
using Git 77

4 Building a static site with Node and Express 81
4.1 Defining the routes in Express 83

Different controller files for different collections 84

4.2 Building basic controllers 85
Setting up controllers 85 ■ Testing the controllers and
routes 87

4.3 Creating some views 88
A look at Bootstrap 88 ■ Setting up the HTML
framework with Pug templates and Bootstrap 90
Building a template 94

4.4 Adding the rest of the views 99
Details page 99 ■ Adding the Review page 102 ■ Adding
the About page 104

4.5 Taking the data out of the views and making them
smarter 106
Moving data from the view to the controller 107 ■ Dealing
with complex, repeating data patterns 109 ■ Manipulating
the data and view with code 113 ■ Using includes and
mixins to create reusable layout components 113 ■ Viewing
the finished homepage 115 ■ Updating the rest of the views
and controllers 117

CONTENTSx

5 Building a data model with MongoDB and Mongoose 119
5.1 Connecting the Express application to MongoDB

by using Mongoose 121
Adding Mongoose to your application 122 ■ Adding a
Mongoose connection to your application 123

5.2 Why model the data? 128
What is Mongoose and how does it work? 130 ■ How does
Mongoose model data? 131 ■ Breaking down a schema
path 131

5.3 Defining simple Mongoose schemas 132
The basics of setting up a schema 133 ■ Using geographic
data in MongoDB and Mongoose 135 ■ Creating more
complex schemas with subdocuments 137 ■ Final schema 142
Compiling Mongoose schemas into models 144

5.4 Using the MongoDB shell to create
a MongoDB database and add data 146
MongoDB shell basics 146 ■ Creating a MongoDB
database 148

5.5 Getting your database live 151
Setting up mLab and getting the database URI 151
Pushing up the data 153 ■ Making the application use
the right database 155

6 Writing a REST API: Exposing the MongoDB database
to the application 160
6.1 The rules of a REST API 161

Request URLs 162 ■ Request methods 163 ■ Responses
and status codes 165

6.2 Setting up the API in Express 167
Creating the routes 167 ■ Creating the controller
placeholders 170 ■ Returning JSON from an Express
request 170 ■ Including the model 171 ■ Testing the API 171

6.3 GET methods: Reading data from MongoDB 173
Finding a single document in MongoDB using Mongoose 173
Finding a single subdocument based on IDs 177 ■ Finding
multiple documents with geospatial queries 179

CONTENTS xi

6.4 POST methods: Adding data to MongoDB 186
Creating new documents in MongoDB 186 ■ Validating the data
using Mongoose 188 ■ Creating new subdocuments in
MongoDB 188

6.5 PUT methods: Updating data in MongoDB 192
Using Mongoose to update a document in MongoDB 193
Using the Mongoose save method 193 ■ Updating an existing
subdocument in MongoDB 195

6.6 DELETE method: Deleting data from MongoDB 197
Deleting documents in MongoDB 197 ■ Deleting a subdocument
from MongoDB 198

7 Consuming a REST API: Using an API from inside Express 201
7.1 How to call an API from Express 202

Adding the request module to your project 202 ■ Setting up
default options 203 ■ Using the request module 203

7.2 Using lists of data from an API: The Loc8r
homepage 205
Separating concerns: Moving the rendering into a named
function 205 ■ Building the API request 206 ■ Using the API
response data 207 ■ Modifying data before displaying it: fixing the
distances 209 ■ Catching errors returned by the API 211

7.3 Getting single documents from an API:
The Loc8r Details page 215
Setting URLs and routes to access specific MongoDB
documents 215 ■ Separating concerns: Moving the rendering into
a named function 217 ■ Querying the API using a unique ID
from a URL parameter 217 ■ Passing the data from the API to
the view 218 ■ Debugging and fixing the view errors 220
Formatting dates using a Pug mixin 221 ■ Creating status-specific
error pages 222

7.4 Adding data to the database via the API:
add Loc8r reviews 224
Setting up the routing and views 225 ■ POSTing the review
data to the API 229

7.5 Protecting data integrity with data validation 231
Validating at the schema level with Mongoose 231 ■ Validating
at the application level with Node and Express 235
Validating in the browser with jQuery 236

CONTENTSxii

PART 3 ADDING A DYNAMIC FRONT END
WITH ANGULAR ...239

8 Creating an Angular application with TypeScript 241
8.1 Getting up and running with Angular 242

Using the command line to create a boilerplate Angular app 242
Running the Angular app 244 ■ The source code behind the
application 245

8.2 Working with Angular components 250
Creating a new home-list component 250 ■ Creating the HTML
template 252 ■ Moving data out of the template into the
code 254 ■ Using class member data in the HTML template 257

8.3 Getting data from an API 264
Creating a data service 264 ■ Using a data service 267

8.4 Putting an Angular application into production 270
Building an Angular application for production 270
Using the Angular application from the Express site 271

9 Building a single-page application with Angular:
Foundations 274
9.1 Adding navigation in an Angular SPA 275

Importing the Angular router and defining the first route 276
Routing configuration 276 ■ Creating a component for the
framework and navigation 277 ■ Defining where to display
the content using router-outlet 279 ■ Navigating between
pages 279 ■ Adding active navigation styles 282

9.2 Building a modular app using multiple nested
components 283
Creating the main homepage component 284
Creating and using reusable subcomponents 285

9.3 Adding geolocation to find places near you 291
Creating an Angular geolocation service 292 ■ Adding the
geolocation service to the application 293 ■ Using the geolocation
service from the home-list component 293

9.4 Safely binding HTML content 298
Adding the About page content to the app 298 ■ Creating a pipe to
transform the line breaks 299 ■ Safely binding HTML by using a
property binding 301

9.5 Challenge 302

CONTENTS xiii

10 Building a single-page application with Angular:
The next level 304

10.1 Working with more-complex views and routing
parameters 305
Planning the layout 305 ■ Creating the required
components 306 ■ Setting up and defining routes with
URL parameters 308 ■ Using URL parameters in components
and services 310 ■ Passing data to the Details page
component 314 ■ Building the Details page view 315

10.2 Working with forms and handling submitted data 321
Creating the review form in Angular 321 ■ Sending submitted
form data to an API 325

10.3 Improving the architecture 331
Using a separate routing-configuration file 331 ■ Improving
the location class definition 334

10.4 Using the SPA instead of the server-side application 338
Routing Express requests to the build folder 339 ■ Making sure
that deep URLs work 340

PART 4 MANAGING AUTHENTICATION AND
USER SESSIONS...343

11 Authenticating users, managing sessions, and securing APIs 345
11.1 How to approach authentication in the MEAN stack 346

Traditional server-based application approach 346 ■ Using
the traditional approach in the MEAN stack 348 ■ Full
MEAN stack approach 348

11.2 Creating a user schema for MongoDB 350
One-way password encryption: Hashes and salts 350 ■ Building
the Mongoose schema 351 ■ Basic user schema 351 ■ Setting
encrypted paths using Mongoose methods 352 ■ Validating a
submitted password 353 ■ Generating a JSON Web Token 354

11.3 Creating an authentication API with Passport 357
Installing and configuring Passport 357 ■ Creating API
endpoints to return JWTs 360

11.4 Securing relevant API endpoints 364
Adding authentication middleware to Express routes 365
Using the JWT information inside a controller 367

CONTENTSxiv

12 Using an authentication API in Angular applications 371
12.1 Creating an Angular authentication service 371

Managing a user session in Angular 372 ■ Allowing users to
sign up, sign in, and sign out 373 ■ Using the JWT data in
the Angular service 376

12.2 Creating the Register and Login pages 378
Building the Register page 379 ■ Building the Login page 382

12.3 Working with authentication in the Angular app 385
Updating the navigation 385 ■ Adding a right-side section
to the navigation 385

appendix A Installing the stack 395
appendix B Installing and preparing the supporting cast 399
appendix C Dealing with all of the views 405
appendix D Reintroducing JavaScript 413

index 467

xv

preface
Back in 1995, I got my first taste of web development, putting together a few pages of
simple HTML for a piece of university coursework. It was a small part of my course,
which was a mixture of software engineering and communication studies—an unusual
mixture. I learned the fundamentals of software development, database design, and
programming. But I also learned about the importance of the audience and end user
and how to communicate with them, both verbally and nonverbally.

 In 1998, on the communication-studies side of the degree, I was required to write a
publication for an organization of my choice. I decided to write a prospectus for the
school where my mother was teaching at the time. But I decided to do it as a website.
Again, this was all front-end work. Fortunately, I no longer have a copy of it, as I shud-
der at the thought of the code. We’re talking HTML with frames, table layouts, inline
styles, and a smattering of basic JavaScript. By today’s standards, it was shocking, but
back then it was quite futuristic. I was the first person at the university to submit a web-
site as a publication. I even had to tell my instructors how to open it in their browsers
from the floppy disk it was submitted on! After it was completed and marked, I sold
the website to the school it featured. I figured there was probably a future in this web
development thing.

 During the following years, I made use of both parts of my degree working as the
“web guy” in a London design agency. Because it was a design agency, user experience
(before it was called UX) and the front end were crucial. But of course, there has to
be a back end to support the front end. As the only web guy, I fulfilled both roles as
the classic full-stack developer. There wasn’t much separation of concerns in those
days. The database was tightly coupled to the back end. Back-end logic, markup, and
front-end logic all wove together tightly, largely because the project was thought of as
a single thing: the website.

PREFACExvi

 Many of the best practices from this book were borne from the pain of finding out
the hard way during these years. Something that might seem harmless, most definitely
easier, or sometimes even sensible at the time can come back to bite you later. Don’t
let this put you off from diving in and having a go. Mistakes are there to be made,
and—in this arena, at least—mistakes are a great way of learning. They say that intelli-
gence is learning from your mistakes. This is true, but you’ll be a step ahead if you can
also learn from others’ mistakes.

 The web development landscape changed over the years, but I was still heavily
involved with creating—or managing the creation of—full websites and applications. I
came to appreciate that there’s a real art to gluing together applications made from
different technologies. It’s a skill in itself: knowing the technologies and what they can
do is only part of the challenge.

 When Node.js came onto my radar, I jumped right in and embraced the idea full
on. I had done a lot of context switching between various languages, and the idea of
having a single language to focus on and master was extremely compelling. I figured
that when used the right way, JavaScript could streamline development by reducing
the cost of context switching between languages. Playing with Node, I started to create
my own MVC framework before discovering Express. Express solved a lot of the prob-
lems and challenges I faced when trying to learn Node and use it to create a website or
web application. In many ways, adopting it was a no-brainer.

 Naturally, behind pretty much any web application is a database. I didn’t want to
fall back on my previous go-to option, Microsoft SQL Server, as the cost made it pro-
hibitive to launch small personal projects. Some research led me to the leading open
source NoSQL database: MongoDB. It worked natively with JavaScript! I was possibly
more excited than I should have been about a database. But MongoDB was different
from all the databases I’d used before. My previous experience was with relational
databases; MongoDB is a document database, which is something quite different,
making the way you approach database design quite different as well. I had to retrain
my brain to think in this new way, and eventually, it all made sense.

 There was one piece missing. JavaScript in the browser was no longer only about
enhancing functionality; it was also about creating the functionality and managing the
application logic. Of the available options, I was already leaning toward AngularJS.
When I heard Valeri Karpov of MongoDB coin the term “MEAN stack,” that was it. I
knew that here was a next-generation stack.

 I knew that the MEAN stack would be powerful. I knew that the MEAN stack would
be flexible. I knew that the MEAN stack would capture the imagination of developers.
Each of the individual technologies is great, but when you put them all together, you
have something exceptional on your hands. This is where Getting MEAN comes from.
Getting the best out of the MEAN stack is about more than knowing the technologies;
it’s also about knowing how to get those technologies working together.

 This second edition takes things to the next level. Angular moved from JavaScript
to TypeScript, a superset of JavaScript that introduces typesafety. We bring the Angu-
lar component right up to date in this edition and use advances in JavaScript to make
building applications easier and simpler to understand.

xvii

acknowledgments
I must start with the people who mean the world to me, who inspire me to push
myself, and who ultimately make everything worthwhile. I’m talking about my daugh-
ters, Eri and Bel. Everything I do starts and ends with these two little ladies.

 Thanks, of course, must go to the Manning team. I know it extends beyond the peo-
ple I’m about to name, so if you were involved in any way, thank you! Here are the peo-
ple I’ve personally dealt with: Right from the beginning, there was Robin de Jongh,
who was instrumental in getting the project started and also in shaping the book. And
many thanks go to Bert Bates for providing great insight and challenging me to justify
my thinking and opinions from an early stage. Those were fun conversations.

 Crucial to the momentum and feel of the book were my developmental editors,
Toni Arritola and Kristen Watterson, and of course my technical developmental edi-
tor, Luis Atencio, and technical proofer, Tony Mullen. I’d also like to extend my
thanks to Clive Harber for his important contributions to this book. Thank you all for
your sharp eyes, great ideas, and positive feedback.

 The next two people really impressed me with their amount of effort and attention
to detail. So thank you, Kathy Simpson and Katie Tennant, for the copyediting and
proofreading, and for staying on top of everything on increasingly short time frames.

 Last but by no means least for the Manning team is Candace Gillhoolley, who kept
up the marketing pace on the book, giving me the sales numbers to maintain my
motivation.

 Manning must also be congratulated for its Manning Early Access Program
(MEAP) and associated online discussion forum. The comments, corrections, ideas,
and feedback from early readers proved to be invaluable in improving the quality of
this book. I don’t have the names of everybody who contributed. You know who you
are—thank you!

ACKNOWLEDGMENTSxviii

 Special thanks for their insights and suggestions go to the following peer reviewers
who read the manuscript at various stages of its development: Al Krinker, Alex Saez,
Avinash Kumar, Barnaby Norman, Chris Coppenbarger, Deniz Vehbi, Douglas Dun-
can, Foster Haines, Frank Krul, Giuseppe Caruso, Holger Steinhauer, James Bishop,
James McGinn, Jay Ordway, Jon Machtynger, Joseph Tingsanchali, Ken W. Alger,
Lorenzo DeLeon, Olivier Ducatteeuw, Richard Michaels, Rick Oller, Rob Green, Rob
Ruetsch, and Stefan Trost.

 A couple of extra shout-outs to Tamas Piros and Marek Karwowski for putting up
with me and my late-night technology discussions. Thanks, guys!

 —SIMON HOLMES

Opportunities like this don’t come along every day, and when Manning approached
me to work on this book, how could I say no? I’d like to thank the team at Manning
for giving me this particular title to work on and placing their trust in me to get it fin-
ished, especially Kristen, who has been really kind with her feedback.

 I’d also like to thank Tony Mullen for stepping in on short notice as technical
proofer and saying that things weren’t terrible.

 Special thanks go to my family for supporting me and putting up with late nights
and early mornings to get this book on the shelf.

 Finally, for those people who believed that I had some kind of book in me (you
know who you are): here’s a start. Thanks.

 —CLIVE HARBER

xix

about this book
JavaScript has come of age. Building an entire web application from front to back with
one language is now possible with JavaScript (even if that JavaScript is TypeScript-
flavored). The MEAN stack is comprised of the best-of-breed technologies in this
arena. You’ve got MongoDB for the database, Express for the server-side web-applica-
tion framework, Angular for the client-side framework, and Node for the server-side
platform.

 This book introduces these technologies and explains how to get them working
well together as a stack. Throughout the book, you’ll build a working application,
focusing on one technology at a time, seeing how each technology fits into the overall
application architecture. Therefore, this is a practical book designed to get you com-
fortable with all the technologies and using them together.

 A common theme running through the book is “best practice.” This book is a
springboard to building great things with the MEAN stack, so there’s a focus on creat-
ing good habits, doing things the right way, and planning.

 This book doesn’t teach HTML, CSS, or basic JavaScript; previous knowledge is
assumed. It does include a brief primer on the Twitter Bootstrap CSS framework and an
introduction to TypeScript. Also, see appendix D for a good, long discussion on Java-
Script theory, best practice, tips, and gotchas; it’s worth checking out early.

Roadmap
This book takes you on a journey through 12 chapters, in four parts.

 In part 1, chapter 1 takes a look at the benefits of learning full-stack development
and explores the components of the MEAN stack. Chapter 2 builds on this knowledge
of the components and discusses options for using them together to build things.

ABOUT THIS BOOKxx

 In part 2, chapter 3 gets you going with creating and setting up a MEAN project,
getting you acquainted with Express. Chapter 4 provides much deeper understanding
of Express. You’ll build a static version of the application. Chapter 5 takes what you’ve
learned about the application so far and works with MongoDB and Mongoose to
design and build the data model you’ll need. Chapter 6 covers the benefits and pro-
cesses of creating a data API. You’ll create a REST API by using Express, MongoDB,
and Mongoose. Chapter 7 ties this REST API back into the application by consuming
it from your static Express application.

 In part 3, chapter 8 introduces Angular and TypeScript to the stack. You’ll see how
to use them to build components for an existing web page, including calling your
REST API to get data. Chapter 9 covers the fundamentals of creating a single-page
application (SPA) with Angular, showing how to build a modular, scalable, and main-
tainable application. Chapter 10 builds on the foundations of chapter 9, developing
the SPA further by covering some critical concepts and increasing the complexity of
the Angular application.

 In part 4, chapter 11 touches every part of the MEAN stack as you add an authenti-
cation API to the application, enabling users to register and log in. Chapter 12 builds
on the API, consuming it in the Angular application, creating registered-user-only
functionality, and detailing additional best practices for SPAs.

About the code
All source code in listings or in the text is in a fixed-width font like this to sepa-
rate it from ordinary text. Method and function names, properties, JSON elements,
and attributes in the text are presented in this same font.

 In some cases, the original source code has been reformatted to fit on the pages. In
general, the original code was written with page-width limitations in mind, but some-
times, you may find a slight formatting difference between the code in the book and
that provided in the source download. In a few rare cases, when we couldn’t reformat
long lines without changing their meaning, the book listings contain line-continuation
markers (➥).

 Code annotations accompany many of the listings, highlighting important con-
cepts. In many cases, numbered bullets link to explanations that follow in the text.

 The source code for the application built throughout the book is available to
download at www.manning.com/books/getting-mean-with-mongo-express-angular-
and-node-second-edition. It’s also available on GitHub at https://github.com/clive-
harber/gettingMean-2.

 There’s a separate folder (branch on GitHub) for each stage of the application,
typically at the end of a chapter. The folders (or branches) don’t include the node
modules folder, as is best practice. To run the application in any of the given folders,
you need to install the dependencies by using npm install in the command line. The
book covers this instruction and shows why it’s necessary.

http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-editio
http://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-editio
https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2

ABOUT THIS BOOK xxi

liveBook discussion forum
The purchase of Getting MEAN includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/getting-mean-with-mongo-express-angu-
lar-and-node-second-edition/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contributions to the forum remain voluntary (and unpaid). We sug-
gest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/book/getting-mean-with-mongo-express-angular-and-node-second-edition/discussion
https://livebook.manning.com/#!/book/getting-mean-with-mongo-express-angular-and-node-second-edition/discussion
https://livebook.manning.com/#!/discussion

xxii

about the authors
SIMON HOLMES is the author of the first edition of Getting
MEAN. He’s been a full-stack developer since 2000, as well as a
solutions architect, trainer, team lead, and engineering man-
ager. He also runs a training company, Full Stack Training Ltd.
Simon has a wide range of experience from his past, and
through his work mentoring and training, he understands
where people struggle.

CLIVE HARBER has been programming computers since he was
thirteen. He holds a Master’s degree in Chemical Engineering
from University of Wales, Swansea. Having written code in a
number of programming languages and different paradigms
over the years for the sports and betting industries, telecommu-
nications, and health care and retail sectors, he’s now at a point
where he feels he can be useful to the programming commu-
nity as a whole.

Clive has helped out on a number of other Manning titles as both a reviewer and a
technical reviewer, including Vue.js in Action, Testing Vue.js Applications, React in Action,
Elixir in Action, 2nd ed., Mesos in Action, Usability Matters, Testing Microservices with
Mountebank, Cross-Platform Desktop Applications, and Web Components in Action.

xxiii

about the cover illustration
The figure on the cover of this book is captioned “Habit of a Lady of Constantinople
ca. 1730.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to
King George III.” He was an English cartographer who was the leading map supplier
of his day. He engraved and printed maps for government and other official bodies;
he also produced a wide range of commercial maps and atlases, especially of North
America. His work as a map maker sparked an interest in local dress customs of the
lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late eighteenth century, and collections such as this one were popular,
introducing both the tourist and the armchair traveler to the inhabitants of other
countries. The diversity of the drawings in Jefferys’ volumes speaks vividly of the
uniqueness and individuality of the world’s nations some 200 years ago. Dress codes
have changed since then, and diversity by region and country, so rich at the time, has
faded away. Now it’s often hard to tell the inhabitants of one continent from another.
Perhaps, viewing the situation optimistically, we’ve traded cultural and visual diversity
for more varied personal lives (or more varied and interesting intellectual and techni-
cal lives).

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of the regional life of two centuries ago, brought back to
life by Jefferys’ pictures.

Part 1

Setting the baseline

Full-stack development is rewarding when you get it right. An application has
many moving parts, and it’s your job to get them working in harmony. The best
first steps you can take are understanding the building blocks you have to work
with and looking at the ways you can put them together to achieve different
results.

 These steps are what part 1 is all about. In chapter 1, you’ll take a look at the
benefits of learning full-stack development in some detail and explore the com-
ponents of the MEAN stack. Chapter 2 builds on this knowledge of the compo-
nents and discusses how you can use them together to build things.

 By the end of part 1, you’ll have a good understanding of possible software
and hardware architectures for a MEAN stack application, as well as the plan for
the application you’ll build throughout the book.

3

Introducing full-stack
development

If you’re like us, you’re probably impatient to dive into some code and get on with
building something. But let’s take a moment first to clarify what we mean by full-
stack development and look at the component parts of the stack to make sure that you
understand each one.

 When we talk about full-stack development, we’re really talking about develop-
ing all parts of a website or application. The full stack starts with the database and
web server in the back end, contains application logic and control in the middle,
and goes all the way through to the user interface at the front end.

This chapter covers
 Evaluating full-stack development

 Getting to know the MEAN stack components

 Examining what makes the MEAN stack so compelling

 Previewing the application you’ll build throughout this book

4 CHAPTER 1 Introducing full-stack development

 The MEAN stack is a pure JavaScript stack comprised of four main technologies,
with a cast of supporting technologies:

 MongoDB—the database
 Express—the web framework
 Angular—the front-end framework
 Node.js—the web server

MongoDB has been around since 2007 and is actively maintained by MongoDB, Inc.,
previously known as 10gen.

 Express was first released in 2009 by T. J. Holowaychuk and has become the most
popular framework for Node.js. It’s open source, with more than 100 contributors,
and is actively developed and supported.

 Angular is open source and backed by Google. The first version of Angular, known
as AngularJS or Angular 1, has been around since 2010. Angular 2, now known simply
as Angular, was officially released in 2016 and is continually being developed and
extended. The current version is Angular 7.1; Angular 2+ isn’t backward-compatible
with AngularJS. See the sidebar “Angular versions and release cycles” for a bit more
information about the number and release cycles.

Node.js was created in 2009, and its development and maintenance are currently
under the purview of the Node Foundation, of which Joyent (the organization that
created Node) is a major member. Node.js uses Google’s open source V8 JavaScript
engine at its core.

1.1 Why learn the full stack?
Indeed, why learn the full stack? It sounds like an awful lot of work! Well, yes, it is
quite a lot of work, but it’s also rewarding, as you get to create fully functioning data-
driven websites and applications all by yourself. And with the MEAN stack, the work
isn’t as hard as you might think.

Angular versions and release cycles
The change from Angular 1.x to Angular 2 was a big deal in the developer community.
It was a long time coming, different, and not backward-compatible. But now Angular
is releasing versions much more frequently, aiming for every six months. The current
version is Angular 7.1, with further iterations already being heavily worked on.

The frequency of change is nothing to worry about, though; the changes are nowhere
near as big as the complete rewrite that happened between 1.x and 2.0. The changes
are generally small, incremental changes. There may be some breaking changes
between 4 and 5, or 5 and 6, and so on, but these changes are normally small, spe-
cific items that are easy to pick up—unlike the change from Angular 1.x to 2.0.

https://mongoosejs.com/

5Why learn the full stack?

1.1.1 A brief history of web development

Back in the early days of the web, people didn’t have high expectations of websites.
Not much emphasis was given to presentation; building websites was much more
about what was going on behind the scenes. Typically, if you knew something like Perl
and could string together a bit of HTML, you were a web developer.

 As use of the internet spread, businesses started to take more of an interest in how
their online presence portrayed them. In combination with increased browser support
for Cascading Style Sheets (CSS) and JavaScript, this interest led to more-complicated
front-end implementations. It was no longer a case of being able to string together
HTML; you needed to spend time on CSS and JavaScript, making sure that it looked
right and worked as expected. And all this needed to work in different browsers,
which were much less compliant than they are today.

 This is where the distinction between front-end developer and back-end developer
came in. Figure 1.1 illustrates this separation over time.

 While back-end developers focused on the mechanics behind the scenes, front-end
developers focused on building a good user experience. As time went on, higher
expectations were made of both camps, encouraging this trend to continue. Develop-
ers often had to choose an area of expertise and focus on it.

HELPING DEVELOPERS WITH LIBRARIES AND FRAMEWORKS

During the 2000s, libraries and frameworks started to become popular and prevalent
for the most common languages on both the front and back ends. Think Dojo and

Front and
back-end

developers

Specialist
front-end

developers

Specialist
back-end

developers

Increasing
back-end

complexity

Increasing
front-end

complexity

Time
Figure 1.1 Divergence of front-end
and back-end developers over time

6 CHAPTER 1 Introducing full-stack development

jQuery for front-end JavaScript; think Symfony for PHP and Ruby on Rails. These
frameworks were designed to make life easier for developers, lowering the barriers to
entry. A good library or framework abstracts away some of the complexities of devel-
opment, allowing you to code faster and requiring less in-depth expertise. This trend
toward simplification has resulted in a resurgence of full-stack developers who build
both the front end and the application logic behind it, as figure 1.2 shows.

 Figure 1.2 illustrates a trend rather than proclaims a definitive “all web developers
should be full-stack developers” maxim. There have been full-stack developers
throughout the entire history of the web, and moving forward, it’s most likely that
some developers will choose to specialize in either front-end or back-end develop-
ment. The intention is to show that through the use of frameworks and modern tools,
you no longer have to choose one end or the other to be a good web developer.

 A huge advantage in embracing the framework approach is that you can be incred-
ibly productive, because you’ll have an all-encompassing vision of the application and
how it ties together.

MOVING THE APPLICATION CODE FORWARD IN THE STACK

Continuing with the trend toward frameworks, the past few years have seen an increas-
ing effort to move the application logic away from the server and into the front end.

Front and
back-end
developersIncreasing

back-end
complexity

Increasing
front-end

complexity

Specialist
back-end

developers

Specialist
front-end

developers
Introduction

of
frameworks

Full-stack
developers

Time

Figure 1.2 Impact of
frameworks on the separated
web development factions

7Why learn the full stack?

Think of this as coding the back end in the front end. Some of the most popular
JavaScript frameworks doing this are Angular, React, and Vue.js.

 Tightly coupling the application code to the front end this way tends to blur the
lines between traditional front-end and back-end developers. One of the reasons why
people like to use this approach is that it reduces the load on the servers, thus reduc-
ing cost. What you’re doing in effect is crowdsourcing the computational power
required for the application by pushing that load into users’ browsers.

 We’ll discuss the pros and cons of this approach in section 1.5 and explain when it
may (or may not) be appropriate to use one of these technologies.

1.1.2 The trend toward full-stack developing

As discussed, the paths of front-end and back-end developers are merging; it’s entirely
possible to be fully proficient in both disciplines. If you’re a freelancer, consultant, or
part of a small team, being multiskilled is extremely useful, increasing the value that
you can provide for your clients. Being able to develop the full scope of a website or
application gives you better overall control and can help the parts work seamlessly
together, because they haven’t been built in isolation by separate teams.

 If you work as part of a large team, chances are that you’ll need to specialize in (or
at least focus on) one area. But it’s generally advisable to understand how your com-
ponent fits with other components, giving you a greater appreciation of the require-
ments and goals of other teams and the overall project.

 In the end, building on the full stack yourself is rewarding. Each part comes with
its own challenges and problems to solve, keeping things interesting. The technology
and tools available today enhance this experience and empower you to build great
web applications relatively quickly and easily.

1.1.3 Benefits of full-stack development

There are many benefits to learning full-stack development. For starters, there’s the
enjoyment of learning new things and playing with new technologies, of course. Then
you have the satisfaction of mastering something different and the thrill of being able
to build and launch a full database-driven application all by yourself.

 The benefits of working in a team include the following:

 You’re more likely to have a better view of the bigger picture by understanding
the different areas and how they fit together.

 You’ll form an appreciation of what other parts of the team are doing and what
they need to be successful.

 Like other team members, you can move around more freely.

The additional benefits of working by yourself include

 You can build applications end-to-end by yourself without depending on other
people.

 You develop more skills, services, and capabilities to offer customers.

8 CHAPTER 1 Introducing full-stack development

All in all, there’s a lot to be said for full-stack development. Most of the accomplished
developers we’ve met have been full-stack developers. Their overall understanding
and ability to see the bigger picture is a tremendous bonus.

1.1.4 Why the MEAN stack specifically?

The MEAN stack pulls together some of the “best-of-breed” modern web technologies
into a powerful, flexible stack. One great thing about the MEAN stack is that it not
only uses JavaScript in the browser, but also uses JavaScript throughout. Using the
MEAN stack, you can code the front end and back end in the same language. That
being said, it’s more common to build the Angular part of the stack in TypeScript.
We’ll discuss this reasoning in chapter 8.

 Figure 1.3 demonstrates the principal technologies of the MEAN stack and shows
where each one is commonly used.

The principal technology allowing full-stack JavaScript to happen is Node.js, bringing
JavaScript to the back end.

1.2 Introducing Node.js: The web server/platform
Node.js is the N in MEAN. Being last doesn’t mean that it’s the least important: it’s the
foundation of the stack!

 In a nutshell, Node.js is a software platform that allows you to create your own web
server and build web applications on top of it. Node.js isn’t itself a web server; neither is
it a language. It contains a built-in HTTP server library, meaning that you don’t need to
run a separate web server program such as NGINX, Apache, or Internet Information
Services (IIS). This gives you greater control of how your web server works but also
increases the complexity of getting it up and running, particularly in a live environment.

 With PHP, for example, you can easily find a shared-server web host running
Apache and send some files over FTP, and—all being well—your site is running. This
works because the web host has already configured Apache for you and others to use.
With Node.js, this isn’t the case, because you configure the Node.js server when you
create your application. Many of the traditional web hosts are behind the curve on

Database Application server Front end

MongoDB Node.js and Express

Language: Language:

Angular

JavaScript TypeScript

Figure 1.3 The principal
technologies of the MEAN
stack

9Introducing Node.js: The web server/platform

Node.js support, but several new Platform as a Service (PaaS) hosts are springing up
to address this need, including Heroku, Nodejitsu, and DigitalOcean. The approach
to deploying live sites on these PaaS hosts is different from the old FTP model but easy
when you get the hang of it. You’ll be deploying a site live to Heroku as you go
through the book.

 An alternative approach to hosting a Node.js application is doing it yourself on a
dedicated server or virtual server from a cloud provider like AWS or Azure, on which
you can install anything you need. But production server administration is a topic for
another book! And although you could independently swap out any of the other com-
ponents with an alternative technology, if you take Node.js out, everything that sits on
top of it changes.

1.2.1 JavaScript: The single language through the stack

One of the main reasons why Node.js is gaining broad popularity is that you code it in
a language that most web developers are already familiar with: JavaScript. Until Node
was released, if you wanted to be a full-stack developer, you had to be proficient in at
least two languages: JavaScript on the front end and something like PHP or Ruby on
the back end.

With the release of Node.js, you can use what you already know and put it to use on
the server. One of the hardest parts of learning a new technology like this is learning
the language, but if you already know some JavaScript, you’re one step ahead!

 There’s a learning curve when you’re taking on Node.js, even if you’re an experi-
enced front-end JavaScript developer. The challenges and obstacles in server-side pro-
gramming are different from those on the front end, but you’ll face those challenges
no matter what technology you use. On the front end, you may be concerned about
making sure that everything works in a variety of browsers on different devices. On the
server, you’re more likely to be aware of the flow of the code to ensure that nothing
gets held up and that you don’t waste system resources.

1.2.2 Fast, efficient, and scalable

Another reason for the popularity of Node.js is that, when coded correctly, it’s
extremely fast and makes efficient use of system resources. These features enable a
Node.js application to serve more users on fewer server resources than most of the

Microsoft’s foray into server-side JavaScript
In the late 1990s, Microsoft released Active Server Pages (now known as Classic
ASP). ASP could be written in VBScript or JavaScript, but the JavaScript version didn’t
take off, largely because at the time, a lot of people were familiar with Visual Basic,
which VBScript looks like. Many books and online resources were for VBScript, so it
snowballed into becoming the standard language for Classic ASP.

10 CHAPTER 1 Introducing full-stack development

other mainstream server technologies. Business owners also like the idea of Node.js
because it can reduce their running costs, even at large scale.

 How does Node.js do this? Node.js is light on system resources because it’s single-
threaded, whereas traditional web servers are multithreaded. In the following sec-
tions, we’ll look at what those terms mean, starting with the traditional multithreaded
approach.

TRADITIONAL MULTITHREADED WEB SERVER

Most of the current mainstream web servers are multithreaded, including Apache and
IIS. What this means is that every new visitor (or session) is given a separate thread
and associated amount of RAM, often around 8 MB.

 Thinking of a real-world analogy, imagine two people going into a bank wanting to
do separate things. In a multithreaded model, they’d each go to a separate bank teller
who would deal with their requests, as shown in figure 1.4.

 You can see in figure 1.4 that Simon goes to bank teller 1, and Sally goes to bank
teller 2. Neither side is aware of or affected by the other. Bank teller 1 deals with
Simon, and nobody else, throughout the entirety of the transaction; the same goes for
bank teller 2 and Sally.

 This approach works perfectly well as long as you have enough tellers to service the
customers. When the bank gets busy and the customers outnumber the tellers, the ser-
vice starts to slow and the customers have to wait to be seen. Although banks don’t
always worry about this situation too much and seem happy to make you stand in line,
the same isn’t true of websites. If a website is slow to respond, users are likely to leave
and never come back.

 This is one of the reasons why web servers are often overpowered and have so
much RAM, even though they don’t need it 90% of the time. The hardware is set up
in such a way as to be prepared for a huge spike in traffic. This setup is like the bank
hiring an additional 50 full-time tellers and moving to a bigger building because it
gets busy at lunchtime.

 Surely there’s a better way—a way that’s a bit more scalable. Here’s where the single-
threaded approach comes in.

SINGLE-THREADED WEB SERVER

A Node.js server is single-threaded and works differently from a multithreaded server.
Rather than giving each visitor a unique thread and a separate silo of resources, the
server has every visitor join the same thread. A visitor and thread interact only when
necessary—when the visitor is requesting something or the thread is responding to a
request.

 Returning to the bank-teller analogy, there’d be only one teller who deals with all
the customers. But rather than taking on and managing all requests end to end, the
teller delegates any time-consuming tasks to back-office staff and deals with the next
request. Figure 1.5 illustrates how this process might work, using the two requests
from the multithreaded example.

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/

11Introducing Node.js: The web server/platform

In the single-threaded approach shown in figure 1.5, Sally and Simon give their
requests to the same bank teller. But instead of dealing with one of them exclusively
before the next, the teller takes the first request and passes it to the best person to
deal with it before taking the next request and doing the same thing. When the teller
is told that a requested task is complete, the teller passes the result back to the visitor
who made the request.

Simon Sally

Bank teller 1 Bank teller 2

Put $500 in the
safe. Tell me how
much I have.

Goes to
safe

Deposits
money Retrieves

money from
drawer

Counts
total

Your total is
$5,000.

Here is
your $100.

Checks
account
details

Withdraw
$100.

Figure 1.4 Example of a multithreaded approach: Visitors use separate resources.
Visitors and their dedicated resources have no awareness of or contact with other
visitors and their resources.

12 CHAPTER 1 Introducing full-stack development

Simon

Safe manager

Cashier

SallyBank teller

Put $500 in the
safe. Tell me how
much I have.

Your total is
$5,000.

Here is
your $100.

Goes to safe,
deposits $500,

and counts total

Gets
$100

Withdraw
$100.

Figure 1.5 Example of a single-threaded approach: Visitors use the same central
resource. The central resource must be well disciplined to prevent one visitor from
affecting others.

Blocking vs. nonblocking code
With the single-threaded model, it’s important to remember that all of your users use
the same central process. To keep the flow smooth, you need to make sure that noth-
ing in your code causes a delay, blocking another operation. An example would be if
the bank teller has to go to the safe to deposit the money for Simon, in which case
Sally would have to wait to make her request.

13Introducing Express: The framework

Despite there being a single teller, neither of the visitors is aware of the other, and nei-
ther is affected by the requests of the other. This approach means that the bank
doesn’t need several tellers always on hand. This model isn’t infinitely scalable, of
course, but it’s more efficient. You can do more with fewer resources. It doesn’t mean,
however, that you’ll never need to add more resources.

 This particular approach is possible in Node.js due to the asynchronous capabili-
ties of JavaScript, as you’ll see in action throughout the book. But if you’re not sure
about the theory, check out appendix D (available online or in the e-book), particu-
larly the section on callbacks.

1.2.3 Using prebuilt packages via npm

A package manager, npm, gets installed when you install Node.js. npm gives you the
ability to download Node.js modules or packages to extend the functionality of your
application. Currently, more than 350,000 packages are available through npm, an
indication of how much depth of knowledge and experience you can bring to an
application. This figure is up from 46,000, when the first edition of Getting MEAN was
written four years ago!

 Packages in npm vary widely in what they give you. You’ll use some npm packages
throughout this book to bring in an application framework and a database driver with
schema support. Other examples include helper libraries such as Underscore, testing
frameworks like Mocha, and utilities like Colors, which adds color support to Node.js
console logs. You’ll look more closely at npm and how it works when you start building
an application in chapter 3.

 As you’ve seen, Node.js is extremely powerful and flexible, but it doesn’t give you
much help when you’re trying to create a website or application. Express can give you
a hand here. You install Express by using npm.

1.3 Introducing Express: The framework
Express is the E in MEAN. Because Node.js is a platform, it doesn’t prescribe how it
should be set up or used, which is one of its great strengths. But every time you create
websites and web applications, quite a few common tasks need doing. Express is a web
application framework for Node.js that’s designed to perform these tasks in a well-
tested, repeatable way.

Similarly, if your central process is responsible for reading each static file (such as
CSS, JavaScript, or images), it won’t be able to process any other request, thus
blocking the flow. Another common task that’s potentially blocking is interacting with
a database. If your process is going to the database each time it’s asked, be it
searching for data or saving data, it won’t be able to do anything else.

For the single-threaded approach to work, you must make sure that your code is non-
blocking. The way to achieve this is to make any blocking operations run asynchro-
nously, preventing them from blocking the flow of your main process.

14 CHAPTER 1 Introducing full-stack development

1.3.1 Easing your server setup

As already noted, Node.js is a platform, not a server, which allows you to get creative
with your server setup and do things that you can’t do with other web servers. It also
makes getting a basic website up and running harder.

 Express abstracts away this difficulty by setting up a web server to listen to incom-
ing requests and return relevant responses. In addition, it defines a directory struc-
ture. One folder is set up to serve static files in a nonblocking way; the last thing you
want is for your application to have to wait when someone requests a CSS file! You
could configure this yourself directly in Node.js, but Express does it for you.

1.3.2 Routing URLs to responses

One of the great features of Express is that it provides a simple interface for directing
an incoming URL to a certain piece of code. Whether this interface will serve a static
HTML page, read from a database, or write to a database doesn’t matter. The inter-
face is simple and consistent.

 Express abstracts away some of the complexity of creating a web server in native
Node.js to make code quicker to write and easier to maintain.

1.3.3 Views: HTML responses

It’s likely that you’ll want to respond to many of the requests to your application by
sending some HTML to the browser. By now, it will come as no surprise to you that
Express makes this task easier than it is in native Node.js.

 Express provides support for many templating engines that make it easier to build
HTML pages in an intelligent way, using reusable components as well as data from
your application. Express compiles these together and serves them to the browser as
HTML.

1.3.4 Remembering visitors with session support

Being single-threaded, Node.js doesn’t remember a visitor from one request to the
next. It doesn’t have a silo of RAM set aside for you; it sees only a series of HTTP
requests. HTTP is a stateless protocol, so there’s no concept of storing a session state.
As it stands, it’s difficult to create a personalized experience in Node.js or have a
secure area where a user has to log in; it’s not much use if the site forgets who you are
on every page. You can do it, of course, but you have to code it yourself.

 You’ll never guess what: Express has an answer to this problem too! Express can
use sessions so that you can identify individual visitors through multiple requests and
pages. Thank you, Express!

 Sitting on top of Node.js, Express gives you a great helping hand and a sound start-
ing point for building web applications. It abstracts away many complexities and
repeatable tasks that most of us don’t need—or want—to worry about. We only want
to build web applications.

15Introducing MongoDB: The database

1.4 Introducing MongoDB: The database
The ability to store and use data is vital for most applications. In the MEAN stack, the
database of choice is MongoDB, the M in MEAN. MongoDB fits into the stack incredi-
bly well. Like Node.js, it’s renowned for being fast and scalable.

1.4.1 Relational databases vs. document stores

If you’ve used a relational database before, or even a spreadsheet, you’ll be used to the
concepts of columns and rows. Typically, a column defines the name and data type,
and each row is a different entry. See table 1.1 for an example.

MongoDB is not like that! MongoDB is a document store. The concept of rows still
exists, but columns are removed from the picture. Rather than a column defining
what should be in the row, each row is a document, and this document both defines
and holds the data itself. Table 1.2 shows how a collection of documents might be
listed. (The indented layout is for readability, not a visualization of columns.)

This less-structured approach means that a collection of documents could have a wide
variety of data inside. In the next section, you’ll look at a sample document to get a
better idea of what we’re talking about.

1.4.2 MongoDB documents: JavaScript data store

MongoDB stores documents as BSON, which is binary JSON (JavaScript Serialized
Object Notation). Don’t worry for now if you’re not fully familiar with JSON; check
out the relevant section in appendix D. In short, JSON is a JavaScript way of holding
data, which is why MongoDB fits so well into the JavaScript-centric MEAN stack!

Table 1.1 An example of rows and columns in a relational database table

firstName middleName lastName maidenName nickname

Simon David Holmes Si

Sally June Panayiotou

Rebecca Norman Holmes Bec

Table 1.2 Each document in a document database defines and holds the data, in no particular order.

firstName:
"Simon"

middleName:
"David"

lastName:
"Holmes"

nickname: "Si"

lastName:
"Panayiotou"

middleName:
"June"

firstName:
"Sally"

maidenName:
"Holmes"

firstName:
"Rebecca"

lastName:
"Norman"

nickname: "Bec"

16 CHAPTER 1 Introducing full-stack development

 The following code snippet shows a simple example MongoDB document:

{
 "firstName" : "Simon",
 "lastName" : "Holmes",
 _id : ObjectId("52279effc62ca8b0c1000007")
}

Even if you don’t know JSON well, you can probably see that this document stores the
first and last names of Simon Holmes. Rather than a document holding a data set that
corresponds to a set of columns, a document holds name/value pairs, which makes a
document useful in its own right because it both describes and defines the data.

 A quick word about _id: You most likely noticed the _id entry alongside the names
in the preceding example MongoDB document. The _id entity is a unique identifier
that MongoDB assigns to any new document when it’s created.

 You’ll look at MongoDB documents in more detail in chapter 5, when you start to
add data to your application.

1.4.3 More than just a document database

MongoDB sets itself apart from many other document databases with its support for
secondary indexing and rich queries. You can create indexes on more than the
unique identifier field, and querying indexed fields is much faster. You can also create
some fairly complex queries against a MongoDB database—not to the level of huge
SQL commands with joins all over the place, but powerful enough for most use cases.

 As you build an application through the course of this book, you’ll get to have
some fun with MongoDB and start to appreciate exactly what it can do.

1.4.4 What is MongoDB not good for?

As of version 4, there’s little that a traditional RDBMS can do that MongoDB can’t,
beyond the obvious differences we’ve already discussed. One of the biggest issues in
earlier versions of MongoDB was lack of transaction support. MongoDB 4, the version
used in this book, has the capability to perform multidocument transactions with
ACID (atomicity, consistency, isolation, durability) guarantees.

1.4.5 Mongoose for data modeling and more

MongoDB’s flexibility in what it stores in documents is a great thing for the database.
But most applications need some structure to their data. Note that the application
needs structure, not the database. So where does it make most sense to define the
structure of your application data? In the application itself!

 To this end, the company behind MongoDB created Mongoose. In the company’s
words, Mongoose provides “elegant MongoDB object modeling for Node.js” (https://
mongoosejs.com).

https://mongoosejs.com
https://mongoosejs.com
https://mongoosejs.com

17Introducing MongoDB: The database

WHAT IS DATA MODELING?
Data modeling, in the context of Mongoose and MongoDB, defines what data can be
in a document and what data must be in a document. When storing user information,
you may want to be able to save the first name, last name, email address, and phone
number. But you need only the first name and email address, and the email address
must be unique. This information is defined in a schema, which is used as the basis for
the data model.

WHAT ELSE DOES MONGOOSE OFFER?
As well as modeling data, Mongoose adds an entire layer of features on top of
MongoDB that are useful for building web applications. Mongoose makes it easier to
manage the connections to your MongoDB database and to save and read data. You’ll
use all of these features later. Also later in the book, we’ll discuss how Mongoose
enables you to add data validation at the schema level, making sure that you allow only
valid data to be saved in the database.

 MongoDB is a great choice of database for most web applications, because it pro-
vides a balance between the speed of pure document databases and the power of rela-
tional databases. The data is effectively stored in JSON, which makes it the perfect
data store for the MEAN stack.

 Figure 1.6 shows some of the highlights of Mongoose and how it fits between the
database and the application.

MongoDB Mongoose

Connections
Schemas
Queries

Validations
Aggregations

etc.

Object models

Application

Figure 1.6 Mongoose fits between the database and the application,
providing an easy-to-use interface (object models) and access to other
functionality, such as validation.

18 CHAPTER 1 Introducing full-stack development

1.5 Introducing Angular: The front-end framework
Angular is the A in MEAN. In simple terms, Angular is a JavaScript framework for cre-
ating the interface for your website or application. In this book, you’ll be working with
Angular 7, which is the most recently available version. All previous versions have
been deprecated, and the online documentation no longer applies.

 You could use Node.js, Express, and MongoDB to build a fully functioning, data-
driven web application, and you’ll do that in this book. But you can put some icing on
the cake by adding Angular to the stack.

 The traditional way of doing things is to have all data processing and application
logic on the server, which then passes HTML to the browser. Angular enables you to
move some or all of this processing and logic to the browser, often leaving the server
passing data from the database. We’ll take a look at this process in a moment when we
discuss data binding, but first, we need to address the question of whether Angular is
like jQuery, the leading front-end JavaScript library.

1.5.1 jQuery vs. Angular

If you’re familiar with jQuery, you may be wondering whether Angular works the same
way. The short answer is no, not really. jQuery is generally added to a page to provide
interactivity after the HTML has been sent to the browser and the Document Object
Model (DOM) has completely loaded. Angular comes in a step earlier, building the
HTML from templates, based on the data provided.

 Also, jQuery is a library and as such has a collection of features that you can use as
you wish. Angular is known as an opinionated framework, which means that it forces its
opinion on you as to how it needs to be used. It also abstracts away some of the under-
lying complexity, simplifying the development experience.

 As mentioned earlier, Angular helps put the HTML together based on the data
provided, but it does more: it also immediately updates the HTML if the data changes
and can update the data if the HTML changes. This feature is known as two-way data
binding, which we’ll take a quick look at in the next section.

1.5.2 Two-way data binding: Working with data in a page

To understand two-way data binding, consider a simple example. Compare this
approach with traditional one-way data binding. Imagine that you have a web page
and some data, and you want to do the following:

1 Display that data as a list to the user
2 Allow the user to filter that list by inputting text into a form field

In both approaches—one-way and two-way binding—step 1 is similar. You use the data
to generate some HTML markup for the end user to see. Step 2 is where things get a
bit different.

 In step 2, you want to let the user enter some text in a form field to filter the list of
data being displayed. With one-way data binding, you have to add event listeners to

19Introducing Angular: The front-end framework

the form input field manually to capture the data and update the data model (to ulti-
mately change what’s displayed to the user).

 With two-way data binding, any updates to the form can be captured automatically,
updating the model and changing what’s displayed to the user. This capability may not
sound like a big deal, but to understand its power, it’s good to know that with Angular,
you can achieve everything in steps 1 and 2 without writing a single line of JavaScript
code! That’s right—it’s all done with Angular’s two-way data binding ... and a bit of
help from some other Angular features.

 As you go through part 3 of the book, you’ll get to see—and use—this in action.
Seeing is believing with this feature, and you won’t be disappointed.

1.5.3 Using Angular to load new pages

One thing that Angular was specifically designed for is single-page application (SPA)
functionality. In real terms, an SPA runs everything inside the browser and never does
a full page reload. All application logic, data processing, user flow, and template deliv-
ery can be managed in the browser.

 Think Gmail. That’s an SPA. Different views get shown in the page, along with a
variety of data sets, but the page itself never fully reloads.

 This approach can reduce the amount of resources you need on your server, because
you’re essentially crowdsourcing the computational power. Each person’s browser is
doing the hard work; your server is serving up static files and data on request.

 The user experience can also be better under this approach. After the application
is loaded, fewer calls are made to the server, reducing the potential of latency.

 All this sounds great, but surely there’s a price to pay. Why isn’t everything built
into Angular?

1.5.4 Are there any downsides?

Despite its many benefits, Angular isn’t appropriate for every website. Front-end
libraries like jQuery are best used for progressive enhancement. The idea is that your
site will function perfectly well without JavaScript, and the JavaScript you use makes
the experience better. That isn’t the case with Angular or indeed with any other SPA
framework. Angular uses JavaScript to build the rendered HTML from templates and
data, so if your browser doesn’t support JavaScript or there’s a bug in the code, the site
won’t run.

 This reliance on JavaScript to build the page also causes problems with search
engines. When a search engine crawls your site, it won’t run all JavaScript; with Angu-
lar, the only thing you get before JavaScript takes over is the base template from the
server. If you want to be 100% certain that your content and data are indexed by
search engines rather than only your templates, you need to think about whether
Angular is right for that project.

 You have ways to combat this issue: in short, you need your server to output com-
piled content as well as Angular. But, if you don’t need to fight this battle, we recom-
mend against doing so.

20 CHAPTER 1 Introducing full-stack development

 One thing you can do is use Angular for some things and not others. There’s noth-
ing wrong with using Angular selectively in your project. You might have a data-rich
interactive application or section of your site that’s ideal for building in Angular, for
example. Or you might have a blog or some marketing pages around your applica-
tion. These elements don’t need to be built in Angular and arguably would be better
served from the server in the traditional way. So part of your site is served by Node.js,
Express, and MongoDB, and another part also has Angular doing its thing.

 This flexible approach is one of the most powerful aspects of the MEAN stack.
With one stack, you can achieve a great many things so long as you remember to be
flexible in your thinking and don’t think of the MEAN stack as being a single architec-
ture stack.

 Things are improving, though. Web-crawling technologies, particularly those
employed by Google, are becoming ever more capable, and this issue is quickly
becoming part of the past.

1.5.5 Developing in TypeScript

Angular applications can be written in many flavors of JavaScript, including ES5,
ES2015+, and Dart. But the most popular by far is TypeScript.

 TypeScript is a superset of JavaScript, meaning that it is JavaScript, but with added
features. In this book, you’ll use TypeScript to build the Angular part of your applica-
tion. But don’t worry: we’ll start from the ground up in part 3 and cover the parts of
TypeScript you need to know.

1.6 Supporting cast
The MEAN stack gives you everything you need to create data-rich interactive web
applications, but you may want to use a few extra technologies to help you along the
way. You can use Twitter Bootstrap to create a good user interface, Git to help manage
your code, and Heroku to help by hosting the application on a live URL, for example.
In later chapters, we’ll look at incorporating these technologies into the MEAN stack.
In this section, we’ll cover briefly what each one can do for you.

1.6.1 Twitter Bootstrap for user interface

In this book, you’re going to use Twitter Bootstrap to create a responsive design with
minimal effort. It’s not essential for the stack, and if you’re building an application
from existing HTML or a specific design, you probably won’t want to add it. But in this
book, you’ll build an application in a rapid prototype style, going from idea to applica-
tion with no external influences.

 Bootstrap is a front-end framework that provides a wealth of help for creating a
great user interface. Among its features, Bootstrap provides a responsive grid system,
default styles for many interface components, and the ability to change the visual
appearance with themes.

21Supporting cast

RESPONSIVE GRID LAYOUT

In a responsive layout, you serve up a single HTML page that arranges itself differ-
ently on different devices by detecting the screen resolution rather than trying to sniff
out the actual device. Bootstrap targets four different pixel-width breakpoints for their
layouts, loosely aimed at phones, tablets, laptops, and external monitors. If you give a
bit of thought to how you set up your HTML and CSS classes, you can use one HTML
file to offer the same content in different layouts suited to screen size.

CSS CLASSES AND HTML COMPONENTS

Bootstrap comes with a set of predefined CSS classes that can create useful visual com-
ponents, such as page headers, alert-message containers, labels and badges, and styl-
ized lists. The creators of Bootstrap put a lot of thought into the framework. Bootstrap
helps you build an application quickly without having to spend too much time on the
HTML layout and CSS styling.

 Teaching Bootstrap isn’t an aim of this book, but we’ll point out various features as
you use them.

ADDING THEMES FOR A DIFFERENT FEEL

Bootstrap has a default look and feel that provides a neat baseline, and it’s so com-
monly used that your site could end up looking like anybody else’s. Fortunately, you
can download themes for Bootstrap to give your application a different twist. Down-
loading a theme is often as simple as replacing the Bootstrap CSS file with a new one.
You’ll use a free theme in this book to build your application, but it’s also possible to
buy premium themes from several websites to give an application a unique feel.

1.6.2 Git for source control

Saving code on your computer or a network drive is all very well and good, but a com-
puter or network drive holds only the current version and lets only you (or other users
on your network) access it.

 Git is a distributed revision control and source code management system that
allows several people to work on the same codebase at the same time on different
computers and networks. These can be pushed together, with all changes stored and
recorded. It’s also possible to roll back to an earlier state if necessary.

HOW TO USE GIT

Git is typically used from the command line, although GUIs are available for Win-
dows, Linux, and Mac. Throughout this book, you’ll use command-line statements to
issue the commands that you need. Git is powerful, and we’ll scratch the surface of it
in this book, but everything we do will be provided as part of the examples.

 In a typical Git setup, you have a local repository on your machine and a remote
centralized master repository hosted somewhere like GitHub or Bitbucket. You can
pull from the remote repository into your local one or push from local to remote. All
these tasks are easy to perform from the command line, and GitHub and Bitbucket
have web interfaces so that you can visually keep track of everything you’ve committed.

22 CHAPTER 1 Introducing full-stack development

WHAT IS GIT USED FOR HERE?
In this book, you’ll use Git for two reasons:

 The source code of the sample application in this book will be stored on
GitHub, with different branches for various milestones. You’ll be able to clone
the master or the separate branches to use the code.

 You’ll use Git as the method of deploying your application to a live web server
for the world to see. For hosting, you’ll use Heroku.

1.6.3 Hosting with Heroku

Hosting Node.js applications can be complicated, but it doesn’t have to be. Many tra-
ditional shared hosting providers haven’t kept up with the interest in Node.js. Some
providers install it for you so that you can run applications, but the servers generally
aren’t set up to meet the unique needs of Node.js. To run a Node.js application suc-
cessfully, you need a server that has been configured with it in mind, or you can use a
PaaS provider that’s specifically designed for hosting Node.js.

 In this book, you’ll take the latter approach. You’ll use Heroku (https://www
.heroku.com) as your hosting provider. Heroku is one of the leading hosts of Node.js
applications and it has an excellent free tier that you’ll make use of.

 Applications on Heroku are essentially Git repositories, making the publishing
process incredibly simple. After everything is set up, you can publish your application
to a live environment by using a single command:

$ git push heroku master

1.7 Putting it together with a practical example
As we’ve already mentioned a few times, throughout the course of this book, you’ll
build a working application on the MEAN stack. This process will give you a good
grounding in each of the technologies and show you how they fit together.

1.7.1 Introducing the example application

So what are you going to be building as you go through the book? You’ll be building
an application called Loc8r. Loc8r lists nearby places with Wi-Fi where people can go
to get some work done. It also displays facilities, opening times, a rating, and a loca-
tion map for each place. Users will be able to log in and submit ratings and reviews.

 This application has some grounding in the real world. Location-based applica-
tions themselves aren’t particularly new and come in a few guises. Swarm and Face-
book Check In list everything nearby that they can and crowdsource data for new
places and information updates. Urbanspoon helps people find nearby places to eat,
allowing a user to search on price bracket and type of cuisine. Even companies like
Starbucks and McDonald’s have sections of their applications that help users find the
nearest one.

https://www.heroku.com
https://www.heroku.com
https://www.heroku.com

23Putting it together with a practical example

REAL OR FAKE DATA?
Okay, we’re going to fake the data for Loc8r in this book, but you could collate the
data, crowdsource it, or use an external source if you wanted to. For a rapid prototype
approach, you’ll often find that faking data for the first private version of your applica-
tion speeds the process.

END PRODUCT

You’ll use all layers of the MEAN stack to create Loc8r, including Twitter Bootstrap to
help you create a responsive layout. Figure 1.7 shows some screenshots of what you’ll
build throughout the book.

Figure 1.7 Loc8r is the application you’ll build throughout this book. It displays differently on different
devices, showing a list of places and details about each place, and allows visitors to log in and leave
reviews.

24 CHAPTER 1 Introducing full-stack development

1.7.2 How the MEAN stack components work together

By the time you’ve been through this book, you’ll have an application running on the
MEAN stack, using JavaScript all the way through. MongoDB stores data in binary
JSON, which, through Mongoose, is exposed as JSON. The Express framework sits on
top of Node.js, where the code is written in JavaScript. In the front end is Angular,
which is TypeScript. Figure 1.8 illustrates this flow and connection.

We’ll explore various ways that you can architect the MEAN stack and how you’ll build
Loc8r in chapter 2.

 Because JavaScript plays such a pivotal role in the stack, please take a look at
appendix D (available online and in the e-book), which has a refresher on JavaScript
pitfalls and best practices.

Summary
In this chapter, you learned

 Which technologies make up the MEAN stack and how they work together
 Where MongoDB fits as the data layer
 How Node.js and Express work together to provide an application server layer
 How Angular provides an amazing front-end, data-binding layer
 A few ways to extend the MEAN stack with additional technologies

Database

Language:Language:Data format:

Exposed data format: Data format: Data format:

Application server Front end

MongoDB Node.js and Express Angular

Mongoose

BSON JavaScript TypeScript

JSON JSON JSON

Figure 1.8 JavaScript (partly as TypeScript) is the common language throughout
the MEAN stack, and JSON is the common data format.

25

Designing a MEAN
stack architecture

In chapter 1, we took a look at the component parts of the MEAN stack and how
they fit together. In this chapter, we’re going to look in more detail at how they fit
together.

 We’ll start off by looking at what some people think of as the MEAN stack archi-
tecture, especially when they first encounter the stack. Using some examples, we’ll
explore why you might use a different architecture and then switch things up a bit
and move things around. MEAN is a powerful stack that can be used to solve a
diverse range of problems ... if you get creative with how you design your solutions.

This chapter covers
 Introducing a common MEAN stack architecture

 Single-page applications

 Discovering alternative MEAN stack architectures

 Designing an architecture for a real application

 Planning a build based on architecture design

26 CHAPTER 2 Designing a MEAN stack architecture

2.1 A common MEAN stack architecture
A common way to architect a MEAN stack application is to have a representational
state transfer (REST) API feeding a single-page application (SPA). The API is typically
built with MongoDB, Express, and Node.js, with the SPA being built in Angular. This
approach is particularly popular with those who come to the MEAN stack from an
Angular background and are looking for a stack that provides a fast, responsive API.
Figure 2.1 illustrates the basic setup and data flow.

Figure 2.1 is a great setup, ideal if you have or intend to build an SPA as your user-
facing side. Angular is designed with a focus on building SPAs, pulling in data from a
REST API as well as pushing it back. MongoDB, Express, and Node.js are also
extremely capable when it comes to building an API, using JSON all the way through
the stack, including the database itself.

 This is where many people start with the MEAN stack, looking for an answer to the
question, “I’ve built an application in Angular; now where do I get the data?”

 Having an architecture like this is great if you have an SPA, but what if you have dif-
fering requirements? The MEAN stack is far more flexible than the current design
suggests. All four components are individually powerful and have a lot to offer.

Rest API
JSON

Single-page
application

Angular

JSON

MongoDB
Express
Node.js

Figure 2.1 A common approach to MEAN
stack architecture, using MongoDB,
Express, and Node.js to build a REST API
that feeds JSON data to an Angular SPA run
in the browser

What is a REST API?
REST stands for REpresentational State Transfer, which is an architectural style rather
than a strict protocol. REST is stateless; it has no idea of any current user state or
history.

API is an abbreviation for application program interface, which enables applications
to talk to one another. In the case of the web, an API is normally a set of URLs that
respond with data when called in the correct manner with the correct information.

A REST API is a stateless interface to your application. In the case of the MEAN stack,
the REST API is used to create a stateless interface to your database, enabling a way
for other applications, such as an Angular SPA, to work with the data. In other words,
you create a collection of structured URLs that return specific data when called.

27Looking beyond SPAs

2.2 Looking beyond SPAs
Coding an SPA in Angular is like driving a Porsche along a coastal road with the roof
down. Both are amazing. They’re fun, fast, sexy, agile, and exceedingly capable. If, his-
torically, you’ve not done either thing before, it’s most likely that both are a vast
improvement.

 But sometimes, they’re not appropriate. If you want to pack up the surfboards and
take your family away for the week, you’re going to struggle with the sports car. As
amazing as your car may be, in this case you’re going to want to use something differ-
ent. It’s the same story with SPAs. Yes, building them in Angular is amazing, but some-
times an SPA isn’t the best solution to your problem. Let’s take a brief look at some
things to bear in mind about SPAs when designing a solution and deciding whether a
full SPA is right for your project.

 SPAs generally offer a fantastic user experience while reducing the load on your
servers and therefore also your hosting costs. In sections 2.3.1 and 2.3.2, you’ll look at
a good use case for an SPA and a bad one, and you’ll have built a full SPA by the end
of this book.

2.2.1 Hard to crawl

JavaScript applications are hard for search engines to crawl and index. Most search
engines look at the HTML content on a page but don’t execute or even download
much JavaScript. For those that do, the actual crawling of JavaScript-created content is
nowhere near as good as content delivered by the server. If all your content is served
via a JavaScript application, you can’t be sure how much of it will be indexed.

 A related downside is that automatic previews from social-sharing sites like Face-
book, LinkedIn, and Pinterest don’t work well, also because they look at the HTML of
the page you’re linking to and try to extract some relevant text and images. Like
search engines, they don’t run JavaScript on the page, so content served by JavaScript
won’t be seen.

 All this is slowly improving. We hope that future editions of this book won’t need
to have this section!

MAKING AN SPA CRAWLABLE

You can use a couple of workarounds to make your site look crawlable. Both involve
creating separate HTML pages that mirror the content of your SPA. You can have your
server create an HTML-based version of your site and deliver that to crawlers, or you
can use a headless browser such as PhantomJS to run your JavaScript application and
output the resulting HTML.

 Each method requires quite a bit of effort and can end up being a maintenance
headache if you have a large, complex site. You also have potential search engine opti-
mization (SEO) pitfalls. If your server-generated HTML is deemed to be too different
from the SPA content, your site will be penalized. Running PhantomJS to output the
HTML can slow the response speed of your pages, which is something for which
search engines—Google in particular—downgrade you.

28 CHAPTER 2 Designing a MEAN stack architecture

DOES IT MATTER?
Whether this matters depends on what you want to build. If the main growth plan for
whatever you’re building is through search engine traffic or social sharing, you want
to give these concerns a great deal of thought. If you’re creating something small that
will stay small, managing the workarounds is achievable, whereas at a larger scale,
you’ll struggle.

 On the other hand, if you’re building an application that doesn’t need much
SEO—or indeed, if you want your site to be harder to scrape—you don’t need to be
concerned about this issue. It could even be an advantage.

2.2.2 Analytics and browser history

Analytics tools like Google Analytics rely heavily on entire new pages loading in the
browser, initiated by a URL change. SPAs don’t work this way. There’s a reason why
they’re called single-page applications!

 After the first page load, all subsequent page and content changes are handled
internally by the application. The browser never triggers a new page load; nothing
gets added to the browser history; and your analytics package has no idea who’s doing
what on your site.

ADDING PAGE LOADS TO AN SPA
You can add page load events to an SPA by using the HTML5 history API, which will
help you integrate analytics. The difficulty comes in managing this and ensuring that
everything is being tracked accurately, which involves checking for missing reports
and double entries.

 The good news is that you don’t have to build everything from the ground up. Sev-
eral open source analytics integrations for Angular are available online, addressing
most of the major analytics providers. You still have to integrate them into your appli-
cation and make sure that everything is working correctly, but you don’t have to do
everything from scratch.

IS IT A MAJOR PROBLEM?
The extent to which this is a problem depends on your need for undeniably accurate
analytics. If you want to monitor trends in visitor flows and actions, you’re probably
going to find analytics easy to integrate. The more detail and definite accuracy you
need, the more work it is to develop and test. Although it’s arguably much easier to
include your analytics code on every page of a server-generated site, analytics integra-
tion isn’t likely to be the sole reason to choose a non-SPA route.

2.2.3 Speed of initial load

SPAs have a slower first page load than server-based applications, because the first
load has to bring down the framework and the application code before rendering the
required view as HTML in the browser. A server-based application only has to push
out the required HTML to the browser, reducing latency and download time.

29Designing a flexible MEAN architecture

SPEEDING THE PAGE LOAD

You have some ways of speeding up the initial load of an SPA, such as a heavy
approach to caching and lazy-loading modules when you need them. But you’ll never
get away from the fact that the SPA needs to download the framework (at least, some
of the application code) and will most likely hit an API for data before displaying
something in the browser.

SHOULD YOU CARE ABOUT SPEED?
The answer to whether you should care about the speed of the initial page load is,
once again, “It depends.” It depends on what you’re building and how people are
going to interact with it.

 Think about Gmail. Gmail is an SPA and takes quite a while to load. Granted, this
load time is normally only a couple of seconds, but everyone online is impatient
these days and expects immediacy. But people don’t mind waiting for Gmail to load
because it’s snappy and responsive once you’re in. And when you’re in, you often stay
in for a while.

 But if you have a blog pulling in traffic from search engines and other external
links, you don’t want the first page load to take a few seconds. People will assume that
your site is down or running slowly and will click the Back button before you’ve had
the chance to show them content.

2.2.4 To SPA or not to SPA?

Just a reminder that the preceding sections aren’t an exercise in SPA-bashing; we’re
just taking a moment to think about some things that often get pushed to the side
until it’s too late. The three points about crawlability, analytics integration, and page
load speed aren’t designed to give clear-cut definitions about when to create an SPA
and when to do something else. They’re there to give a framework for consideration.

 It may be the case that none of those things is an issue for your project and that an
SPA is definitely the right way to go. If you find that each point makes you pause and
think, and it looks as though you need to add workarounds for all three, an SPA prob-
ably isn’t the way to go.

 If you’re somewhere in between, it’s a judgment call about what’s most important
and, crucially, what’s the best solution for the project. As a rule of thumb, if your solu-
tion includes a load of workarounds at the outset, you probably need to rethink it.

 Even if you decide that an SPA isn’t right for you, that doesn’t mean that you can’t
use the MEAN stack. In the next section, we’ll take a look at how you can design a dif-
ferent architecture.

2.3 Designing a flexible MEAN architecture
If Angular is like having a Porsche, the rest of the stack is like also having an Audi RS6
in the garage. A lot of people may be focusing on your sports car out front and not
give a second glance to the estate car in your garage. But if you do go into the garage
and have a poke around, you’ll find that there’s a Lamborghini V10 engine under the
hood. There’s a lot more to that estate car than some people think!

30 CHAPTER 2 Designing a MEAN stack architecture

 Only ever using MongoDB, Express, and Node.js together to build a REST API is
like only ever using the Audi RS6 to do the school drop-off runs. They’re all extremely
capable and will do the job very well, but they have a lot more to offer.

 We talked a little about what the technologies can do in chapter 1, but here are a
few starting points:

 MongoDB can store and stream binary information.
 Node.js is particularly good for real-time connections using web sockets.
 Express is a web application framework with templating, routing, and session

management built in.

There’s also a lot more, and we’re certainly not going to be able to address the full
capabilities of all the technologies in this book. We’d need several books to do that!
What we can do here is give you a simple example and show you how you can fit
together the pieces of the MEAN stack to design the best solution.

2.3.1 Requirements for a blog engine

In this section, you’ll take a look at the familiar idea of a blog engine and see how you
can best architect the MEAN stack to build one.

 A blog engine typically has two sides: a public-facing side serving up articles to
readers and (we hope) being syndicated and shared across the internet, and an
administrator interface where blog owners log in to write new articles and manage
their blogs. Figure 2.2 shows some of the key characteristics of these two sides.

 Looking at the lists in figure 2.2, you can easily see a high level of conflict between
the characteristics of the two sides. You’ve got content-rich, low interaction for the
blog articles but a feature-rich, highly interactive environment for the admin inter-
face. The blog articles should be quick to load to reduce bounce rates, whereas the

Blog entries

Characteristics
� Content-rich
� Low interaction
� Fast first load
� Short user duration
� Public and shareable

Characteristics
� Feature-rich
� High interaction
� Fast response to actions
� Long user duration
� Private

Admin interface

Figure 2.2 Conflicting characteristics of the two sides of a blog
engine: the public-facing blog entries and the private admin
interface

31Designing a flexible MEAN architecture

admin area should be quick to respond to user input and actions. Finally, users typi-
cally stay on a blog entry for a short time but may share it with others, whereas the
admin interface is private, and an individual user could be logged in for a long time.

 Taking what we’ve discussed about potential issues with SPAs and looking at the
characteristics of blog entries, you’ll see quite a lot of overlap. Bearing this in mind,
it’s likely that you wouldn’t choose to use an SPA to deliver your blog articles to read-
ers. On the other hand, the admin interface is a perfect fit for an SPA.

 So what do you do? Arguably the most important thing is to keep the blog readers
coming. If they get a bad experience, they won’t come back; neither will they share. If
a blog doesn’t get readers, the writer will stop writing or move to another platform.
Then again, a slow and unresponsive admin interface will also see your blog owners
jumping ship. So what do you do? How do you keep everybody happy and keep the
blog engine in business?

2.3.2 A blog engine architecture

The answer lies in not looking for a one-size-fits-all solution. You effectively have two
applications: public-facing content that should be delivered direct from the server
and an interactive private admin interface that you want to build as an SPA. To start,
look at the two applications separately, starting with the admin interface.

ADMIN INTERFACE: AN ANGULAR SPA
We’ve already stated that this interface would be an ideal fit for an SPA built in Angu-
lar. The architecture for this part of the engine should look familiar: a REST API built
with MongoDB, Express, and Node.js, with an Angular SPA up front. Figure 2.3 shows
how this looks.

There’s nothing particularly new shown in figure 2.3. The entire application is built in
Angular and runs in the browser, with JSON data being passed back and forth
between the Angular application and the REST API.

REST API

MongoDB
Express
Node.js

Angular

Admin interface

JSON

JSON

Figure 2.3 A familiar sight: the admin interface is an
Angular SPA making use of a REST API built with
MongoDB, Express, and Node.js.

32 CHAPTER 2 Designing a MEAN stack architecture

BLOG ENTRIES: WHAT TO DO?
Looking at the blog entries, you can see that things get a little more difficult.

 If you think of the MEAN stack only as an Angular SPA calling a REST API, you’re
going to get a bit stuck. You could build the public-facing site as an SPA anyway,
because you want to use JavaScript and the MEAN stack. But it’s not the best solution.
You could decide that the MEAN stack isn’t appropriate in this case and choose a dif-
ferent technology stack. But you don’t want to do that! You want end-to-end JavaScript.

 Take another look at the MEAN stack, and think about all the components. You
know that Express is a web application framework. You know that Express can use tem-
plate engines to build HTML on the server. You know that Express can use URL rout-
ing and MVC patterns. You should start to think that perhaps Express has the answer!

BLOG ENTRIES: MAKING GOOD USE OF EXPRESS

In this blog scenario, delivering the HTML and content directly from the server is
exactly what you want to do. Express does this particularly well, even offering a choice
of template engines right from the get-go. The HTML content will require data from
the database, so you’ll use a REST API again. (For more on why it’s best to take this
approach, see section 2.3.3.) Figure 2.4 lays out the basis for this architecture.

This approach enables you to use the MEAN stack (or part of it, at least) to deliver
database-driven content directly from the server to the browser. But it doesn’t have to
stop there. The MEAN stack is even more flexible.

BLOG ENTRIES: USING MORE OF THE STACK

You’re looking at an Express application delivering blog content to visitors. If you want
visitors to be able to log in, perhaps to add comments to articles, you need to track user
sessions. You could use MongoDB with your Express application to do just this.

 You might also have some dynamic data in the sidebar of your posts, such as related
posts or a search box with type-ahead autocompletion. You could implement these in
Angular. Remember, Angular isn’t only for SPAs; it can also be used to create individual

REST API

MongoDB
Express
Node.js

Express
Node.js

Blog entries

JSON

JSON

Figure 2.4 An architecture for delivering HTML
directly from the server: an Express and Node.js
application at the front, interacting with a REST API
built in MongoDB, Express, and Node.js

33Designing a flexible MEAN architecture

components that add some rich data interactivity to an otherwise static page. Figure 2.5
shows these optional parts of MEAN added to the blog entry architecture.

 Now you have the possibility of a full MEAN application delivering content to visi-
tors who interact with your REST API.

BLOG ENGINE: A HYBRID ARCHITECTURE

At this point, you have two separate applications, each using a REST API. With a little
bit of planning, you can have a common REST API used by both sides of the applica-
tion. Figure 2.6 shows what this looks like as a single architecture, with the single
REST API interacting with the two front-end applications.

REST API

MongoDB
Express
Node.js

Express
Node.js

(Angular)
(MongoDB)

Blog entries

JSON

JSON

Figure 2.5 Adding the options of using Angular and
MongoDB as part of the public-facing aspect of the blog
engine, serving the blog entries to visitors

Blog entries

Angular

Admin interface

Express
Node.js

(Angular)
(MongoDB)

MongoDB
Express
Node.js

REST API
JSON

JSON
Figure 2.6 A hybrid MEAN stack
architecture: a single REST API feeding two
separate user-facing applications, built
using different parts of the MEAN stack to
provide the most appropriate solution

34 CHAPTER 2 Designing a MEAN stack architecture

This figure is a simple example to show how you can piece together the various parts
of the MEAN stack into different architectures to answer the questions that your proj-
ects ask of you. Your options are limited only by your understanding of the compo-
nents and your creativity in putting them together. There’s no one correct
architecture for the MEAN stack.

2.3.3 Best practice: Building an internal API for a data layer

You’ve probably noticed that every version of the architecture includes an API to sur-
face the data and allow interaction between the main application and the database.
There’s a good reason for this.

 If you were to start by building your application in Node.js and Express, serving
HTML directly from the server, it would be easy to talk to the database directly from
the Node.js application code. With a short-term view, this way is the easy way. But with
a long-term view, it becomes the difficult way, because it tightly couples your data to
your application code in such a way that nothing else can use it.

 The other option is to build your own API that can talk to the database directly and
output the data you need. Then your Node.js application can talk with this API
instead of directly with the database. Figure 2.7 shows a comparison of the two setups.

Looking at figure 2.7, you could well be wondering why you’d want to go to the effort
of creating an API just to sit between your application and your database. Isn’t it creat-
ing more work? At this stage, yes, it’s creating more work, but you want to look farther
down the road. What if you want to use your data in a native mobile application or in
an Angular front end later?

 You certainly don’t want to find yourself having to write separate but similar inter-
faces for each. If you’ve built your own API up front that outputs the data you need,
you can avoid this work. If you have an API in place, when you want to integrate the
data layer into your application, you can simply make it reference your API. It doesn’t
matter whether your application is Node.js, Angular, iOS, or Android. It doesn’t have
to be a public API that anyone can use so long as you can access it. Figure 2.8 shows a
comparison of the two approaches when you have Node.js, Angular, and iOS/Android
applications all using the same data source.

Database Database API Node.js application

Integrated approach

Node.js application

API approach

Figure 2.7 The short-term view of integrating data into your Node.js application. You can set up
your Node.js application to talk directly to your database, or you can create an API that interacts
with the database, and have your Node.js application talk only with the API.

35Planning a real application

As figure 2.8 shows, the previously simple integrated approach is becoming frag-
mented and complex. You’ll have three data integrations to manage and maintain, so
any changes will have to be made in multiple places to maintain consistency. If you
have a single API, you don’t have any of these worries. With a little bit of extra work at
the beginning, you can make life much easier for your future self. We’ll look at creat-
ing internal APIs in chapter 6.

2.4 Planning a real application
As we talked about in chapter 1, throughout the course of this book you’ll build a
working application on the MEAN stack, called Loc8r. Loc8r lists nearby places with
Wi-Fi where people can go to get some work done. It also displays facilities, opening
times, a rating, and a location map for each place. Visitors will be able to submit rat-
ings and reviews.

 For the sake of the demo application, you’ll create fake data so that you can test it
quickly and easily. In the next section, we’ll walk you through the application planning.

Integration
layer

Database Database API
Node.js

application
Node.js

application

Integration
layer

Mobile
app

Mobile
app

Angular
application

Angular
application

Integrated approach API approach

Figure 2.8 The long-term view of integrating data into your Node.js application and additional Angular
and iOS applications. The integrated approach has become fragmented, whereas the API approach is
simple and maintainable.

36 CHAPTER 2 Designing a MEAN stack architecture

2.4.1 Planning the application at a high level

The first step is thinking about what screens you’ll need in your application. Focus on
the separate page views and the user journeys. You can do this at a high level, not
really concerning yourself with the details of what’s on each page. It’s a good idea to
sketch out this stage on a piece of paper or a whiteboard, which helps you visualize the
application as a whole. It also helps with organizing the screens into collections and
flows while serving as a good reference point when you’re ready to build. As no data is
attached to the pages or application logic behind them, it’s easy to add and remove
parts, change what’s displayed where, and even change how many pages you want.
Chances are that you won’t get it right the first time; the key is to start, and then iter-
ate and improve until you’re happy with the separate pages and overall user flow.

PLANNING THE SCREENS

Think about Loc8r. As stated earlier, your aim is as follows:

Loc8r lists nearby places with Wi-Fi where people can go to get some work done. It also
displays facilities, opening times, a rating, and a location map for each place. Visitors
will be able to submit ratings and reviews.

From this description, you can get an idea about some of the screens you’re going to
need:

 A screen that lists nearby places
 A screen that shows details about an individual place
 A screen for adding a review about a place

You’ll probably also want to tell visitors what Loc8r is for and why it exists, so you
should add another screen to the list:

 A screen for “about us” information

DIVIDING THE SCREENS INTO COLLECTIONS

Next, take the list of screens and collate them
where they logically belong together. The first
three screens in the list, for example, deal
with locations. The About page doesn’t
belong anywhere, so it can go in a miscella-
neous Others collection. A sketch of this
arrangement looks something like figure 2.9.

 Making a quick sketch like figure 2.9 is the
first stage in planning, and you need to go
through this stage before you can start think-
ing about architecture. This stage gives you a
chance to look at the basic pages and think
about the flow. Figure 2.9, for example, also
shows a basic user journey in the Locations Figure 2.9 Collate the separate screens

for your application into logical collections.

List page

About page

Details page Add Review page

Locations

Others

37Planning a real application

collection, going from the List page to a Details page and then to the form to add a
review.

2.4.2 Architecting the application

On the face of it, Loc8r is a fairly simple application, with a few screens. But you still
need to think about how to architect it, because you’re going to be transferring data
from a database to a browser, letting users interact with the data, and allowing data to
be sent back to the database.

STARTING WITH THE API
Because the application will use a database and pass data around, start building the
architecture with the piece you’re definitely going to need. Figure 2.10 shows the
starting point: a REST API built with Express and Node.js to enable interactions with
the MongoDB database.

Building an API to interface with your data is a bit of a given and the base point of the
architecture. The more interesting question is how you architect the application itself.

APPLICATION ARCHITECTURE OPTIONS

At this point, you need to take a look at the specific requirements of your application
and how to put together the pieces of the MEAN stack to build the best solution. Do
you need something special from MongoDB, Express, Angular, or Node.js that will
swing the decision a certain way? Do you want HTML to be served directly from the
server, or is an SPA a better option?

 For Loc8r, you have no unusual or specific requirements, and whether it should be
easily crawlable by search engines depends on the business growth plan. If the aim is
to bring in organic traffic from search engines, yes, it needs to be crawlable. If the aim
is to promote the application as an application and drive use that way, search engine
visibility is a lesser concern.

 Thinking back to the blog example, you can immediately envisage three possible
application architectures, as shown in figure 2.11:

 A Node.js and Express application
 A Node.js and Express application with Angular additions for interactivity
 An Angular SPA

With these three options in mind, which is the best for Loc8r?

Database

JSON

API

Express
Node.js

MongoDB

JSON
Figure 2.10 Start with the
standard MEAN REST API, using
MongoDB, Express, and Node.js.

38 CHAPTER 2 Designing a MEAN stack architecture

CHOOSING AN APPLICATION ARCHITECTURE

No specific business requirements are pushing you to favor one particular architec-
ture over another. It doesn’t matter, because you’re going to do all three in this book.
Building all three of the architectures allows you to explore how each approach works
and enables you to take a look at each of the technologies in turn, building up the
application layer by layer.

 You’ll be building the architectures in the order in which they’re shown in figure
2.11, starting with a Node.js and Express application, and then adding some Angular
before refactoring to an Angular SPA. Although this isn’t necessarily how you might
build a site normally, it gives you a great opportunity to learn all aspects of the MEAN
stack. In section 2.5, we’ll talk about this approach and walk through the plan in a bit
more detail.

2.4.3 Wrapping everything in an Express project

The architecture diagrams that you’ve been looking at so far imply that you’ll have
separate Express applications for the API and the application logic. This is perfectly
possible and a good way to go for a large project. If you’re expecting large amounts of

Database

JSON

API

Express
Node.js

MongoDB

JSON

Express application

Express
Node.js

Express and extras

Express
Node.js
Angular

Angular SPA

Angular

1. An Express and
Node.js application

1. An Express and
Node.js application

2. An Express and
Node.js application
with additional
Angular components

2. An Express and
Node.js application
with additional
Angular components

3. An Angular SPA3. An Angular SPA

Figure 2.11 Three options for building the Loc8r application, ranging from a server-side Express
and Node.js application to a full client-side Angular SPA

39Planning a real application

traffic, you may even want your main application and your API on different servers.
An additional benefit of this approach is that you can have more specific settings for
each of the servers and applications that are best suited to particular needs.

 Another way is to keep things simple and contained by having everything inside a
single Express project. With this approach, you have only one application to worry
about hosting and deploying and one set of source code to manage. This is what do
with Loc8r: creating one Express project that contains a few subapplications. Figure
2.12 illustrates this approach.

When you’re putting together an application in this way, it’s important to organize
your code well so that the distinct parts of the application are kept separate. As well as
making code easier to maintain, this makes it easier to split the code into separate
projects if a future you decides that doing so is the right route. We’ll keep coming
back to this key theme throughout the book.

2.4.4 The end product

As you can see, you use all layers of the MEAN stack to create Loc8r. You also include
Twitter Bootstrap to create a responsive layout. Figure 2.13 shows some screenshots of
what you’ll build throughout the book.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Figure 2.12 The architecture of the application with the API and application logic wrapped inside
the same Express project

40 CHAPTER 2 Designing a MEAN stack architecture

2.5 Breaking the development into stages
In this book, you have two aims:

 Build an application on the MEAN stack.
 Learn about the different layers of the stack as you go.

You’ll approach the project in the way that you’d go about building a rapid prototype,
but with a few tweaks to give you the best coverage of the whole stack. Start by looking

Figure 2.13 Loc8r is the application you’ll build throughout this book. It displays differently on different
devices, showing a list of places and details about each place, and enables visitors to log in and leave
reviews.

41Breaking the development into stages

at the five stages of rapid prototype development, and then see how to use this
approach to build up Loc8r layer by layer, focusing on the different technologies as
you go.

2.5.1 Rapid prototype development stages

The following sections break the process into stages, which lets you concentrate on
one thing at a time, increasing your chances of success. We find that this approach
works well for making an idea a reality.

STAGE 1: BUILD A STATIC SITE

The first stage is building a static version of the application, which is essentially several
HTML screens. The aims of this stage are

 To quickly figure out the layout
 To ensure that the user flow makes sense

At this point, you’re not concerned with a database or flashy effects on the user inter-
face; all you want to do is create a working mockup of the main screens and journeys
that a user will take through the application.

STAGE 2: DESIGN THE DATA MODEL AND CREATE THE DATABASE

When you have a working static prototype that you’re happy with, the next thing to do
is look at any hardcoded data in the static application, and put it in a database. The
aims of this stage are

 To define a data model that reflects the requirements of the application
 To create a database to work with the model

The first part is defining the data model. Stepping back to a bird’s-eye view, what are
the objects you need data about, how are the objects connected, and what data is held
in them?

 When you try to do this stage before building the static prototype, you’re dealing
with abstract concepts and ideas. When you have a prototype, you can see what’s hap-
pening on different pages and what data is needed where. Suddenly, this stage
becomes much easier. Almost unknown to you, you’ve done the hard thinking while
building the static prototype.

STAGE 3: BUILD YOUR DATA API
After stages 1 and 2, you have a static site on one hand and a database on the other.
This stage and the next take the natural steps of linking them. The aim of stage 3 is

 To create a RESTful API that allows your application to interact with the data-
base

STAGE 4: HOOK THE DATABASE INTO THE APPLICATION

When you get to this stage, you have a static application and an API exposing an inter-
face to your database. The aim of this stage is

 To get your application to talk to your API

42 CHAPTER 2 Designing a MEAN stack architecture

When this stage is complete, the application will look pretty much the same as it did
before, but the data will be coming from the database. When it’s done, you’ll have a
data-driven application!

STAGE 5: AUGMENT THE APPLICATION

This stage is all about embellishing the application with additional functionality. You
might add authentication systems, data validation, or methods for displaying error
messages to users. This stage could include adding more interactivity to the front end
or tightening the business logic in the application.

 The aims of this stage are

 To add finishing touches to your application
 To get the application ready for people to use

These five stages of development provide a great methodology for approaching a new
build project. In the next section, you’ll take a look at how you’ll follow these steps to
build Loc8r.

2.5.2 The steps to build Loc8r

In building Loc8r throughout this book, you have two aims. First, of course, you want
to build a working application on the MEAN stack. Second, you want to learn about
the different technologies, how to use them, and how to put them together in differ-
ent ways.

 Throughout the book, you’ll follow the five stages of development, but with a cou-
ple of twists so that you get to see the whole stack in action. Before looking at the steps
in detail, quickly remind yourself of the proposed architecture shown in figure 2.14.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Figure 2.14 Proposed architecture for Loc8r
as you’ll build it throughout this book

43Breaking the development into stages

STEP 1: BUILD A STATIC SITE

You’ll start by following stage 1 and building a static site. We recommend doing this
for any application or site, because you can learn a lot with relatively little effort.
When building the static site, it’s good to keep one eye on the future, keeping in mind
what the final architecture will be. The architecture for Loc8r is already defined, as
shown in figure 2.14.

 Based on this architecture, you’ll build the static application in Node and Express,
using that as your starting point into the MEAN stack. Figure 2.15 highlights this step
in the process as the first part of developing the proposed architecture. This step is
covered in chapters 3 and 4.

STEP 2: DESIGN THE DATA MODEL AND CREATE THE DATABASE

Still following the stages of development, you’ll continue to stage 2 by creating the
database and designing the data model. Again, any application is likely to need this
step, and you’ll get much more out of it if you’ve been through step 1 first.

 Figure 2.16 illustrates how this step adds to the overall picture of building up the
application architecture.

 In the MEAN stack, you’ll use MongoDB for this step, relying heavily on Mongoose
for the data modeling. The data models are actually defined inside the Express appli-
cation. This step is covered in chapter 5.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API Angular

Angular SPA

Angular

Express
Node.js

MongoDB

1. Build a static
app with
Express and
Node.js.

1. Build a static
app with
Express and
Node.js.

Figure 2.15 The starting point for your
application is building the user interface in
Express and Node.js.

44 CHAPTER 2 Designing a MEAN stack architecture

STEP 3: BUILD YOUR REST API
When you’ve built the database and defined the data models, you’ll want to create a
REST API so that you can interact with the data through making web calls. Pretty
much any data-driven application will benefit from having an API interface, so this
step is another one you’ll want to have in most build projects.

 You can see where this step fits into building the overall project in figure 2.17.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

API
Node.js
Angular

Angular SPA

Angular

Express
Node.js

2. Create a database and
design a data model.

2. Create a database and
design a data model.

Figure 2.16 After the static site is built, you’ll use
the information gleaned to design the data model and
create the MongoDB database.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

3. Build an API
to expose the
database.

3. Build an API
to expose the
database.

Figure 2.17 Use Express and Node.js to build
an API, exposing methods of interacting with
the database.

45Breaking the development into stages

In the MEAN stack, this step is done mainly in Node.js and Express, with quite a bit of
help from Mongoose. You’ll use Mongoose to interface with MongoDB rather than
deal with MongoDB directly. This step is covered in chapter 6.

STEP 4: USE THE API FROM YOUR APPLICATION

This step matches stage 4 of the development process and is where Loc8r starts to
come to life. The static application from step 1 will be updated to use the REST API
from step 3 to interact with the database created in step 2.

 To learn about all parts of the stack and the different ways in which you can use
them, you’ll use Express and Node.js to make calls to the API. If, in a real-world sce-
nario, you planned to build the bulk of an application in Angular, you’d hook your
API into Angular instead. That approach is covered in chapters 8, 9, and 10.

 At the end of this step, you’ll have an application running on the first of the three
architectures: an Express and Node.js application. Figure 2.18 shows how this step
glues together the two sides of the architecture.

In this build, you’ll do the majority of this step in Node.js and Express. This step is cov-
ered in chapter 7.

STEP 5: EMBELLISH THE APPLICATION

Step 5 relates to stage 5 in the development process, where you get to add extra
touches to the application. You’ll use this step to take a look at Angular and see how
you can integrate Angular components into an Express application. This addition to
the project architecture is highlighted in figure 2.19.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Angular

Angular SPA

Angular

4. Hook the Express
application into
the data API.

4. Hook the Express
application into
the data API.

Figure 2.18 Update the static Express
application by hooking it into the data API,
allowing the application to be database-driven.

46 CHAPTER 2 Designing a MEAN stack architecture

This step is all about introducing and using Angular. To support this step, you’ll most
likely also change some of your Node.js and Express setup. This step is covered in
chapter 8.

STEP 6: REFACTOR THE CODE INTO AN ANGULAR SPA
In step 6, you’ll radically change the architecture by replacing the Express application
and moving all the logic into an SPA, using Angular. Unlike the previous steps, this
step replaces some of what came before it rather than building on it.

 This step would be an unusual one in a normal build process—to develop an appli-
cation in Express and redo it in Angular—but it suits the learning approach in this
book particularly well. You’ll be able to focus on Angular, as you already know what
the application should do, and a data API is ready for you to use.

 Figure 2.20 shows how this change affects the overall architecture. This step once
again focuses on Angular and is covered in chapters 9 and 10.

STEP 7: ADD AUTHENTICATION

In step 7, you’ll add functionality to the application by enabling users to register and
log in. You’ll also see how to make use of users’ data while they’re using the applica-
tion. You’ll build on everything you’ve done so far and add authentication to the
Angular SPA. As part of this step, you’ll save user information in the database and
secure certain API endpoints so that they can be used only by authenticated users.

 Figure 2.21 shows what you’ll be working with in the architecture. In this step, you’ll
work with all the MEAN technologies. This step is covered in chapters 11 and 12.

 That’s the planned software architecture. In the next section, we’ll have a quick
chat about hardware.

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Angular

Angular SPA

Angular

5. Add the Angular
components to
the front end.

5. Add the Angular
components to
the front end.

Figure 2.19 One way to use Angular in a MEAN
application is to add components to the front end
in an Express application.

47Breaking the development into stages

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

6. Refactor the code
into an Angular SPA.

6. Refactor the code
into an Angular SPA.

Figure 2.20 Effectively rewriting the application as an Angular SPA

Database API

Express application

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Express application

Express
Node.js
Angular

7. Use the whole MEAN
stack to add authentication
to the Angular SPA.

7. Use the whole MEAN
stack to add authentication
to the Angular SPA.

Figure 2.21 Using all the MEAN stack to add authentication to the Angular SPA

48 CHAPTER 2 Designing a MEAN stack architecture

2.6 Hardware architecture
No discussion of architecture would be complete without a section on hardware.
You’ve seen how the software and code components can be put together, but what
type of hardware do you need to run it all?

2.6.1 Development hardware

The good news is that you don’t need anything particularly special to run a develop-
ment stack. A single laptop or even a virtual machine (VM) is enough to develop a
MEAN application. All components of the stack can be installed on Windows, macOS,
and most Linux distributions.

 We’ve successfully developed applications on Windows and macOS laptops, as well
as on Ubuntu VMs. Our preference is native development on macOS, but we know
others who swear by Linux VMs.

 If you have a local network and several servers, you can run different parts of your
application across them. It’s possible to have one machine as a database server,
another for the REST API, and a third for the main application code itself, for exam-
ple. So long as the servers can talk to one another, this setup isn’t a problem.

2.6.2 Production hardware

The approach to production hardware architecture isn’t all that different from devel-
opment hardware. The main difference is that production hardware is normally
higher-spec and open to the internet to receive public requests.

STARTER SIZE

It’s possible to have all parts of your application hosted and running on the same
server. You can see a basic diagram in figure 2.22.

This architecture is okay for applications with low traffic but isn’t generally advised as
your application grows, because you don’t want your application and database fight-
ing over the same resources.

GROWING UP: A SEPARATE DATABASE SERVER

One of the first things moved to a separate server is often the database. Now you have
two servers: one for the application code and one for the database. Figure 2.23 illus-
trates this approach.

Database REST API Application

Figure 2.22 The simplest of
hardware architectures, with
everything on a single server

49Hardware architecture

This model is common, particularly if you choose to use a Platform as a Service (PaaS)
provider for your hosting. You’ll use that approach in this book.

GOING FOR SCALE

Much as we talked about in the section on development hardware, you can have a dif-
ferent server for the different parts of your application: a database server, an API
server, and an application server. This setup allows you to deal with more traffic as the
load is spread across three servers, as illustrated in figure 2.24.

But it doesn’t stop there. If your traffic starts to overload your three servers, you can
have multiple instances (or clusters) of these servers, as shown in figure 2.25.

Database REST API Application

Figure 2.23 A common hardware
architecture approach: one server to
run the application code and API and a
second, separate database server

Database REST API Application

Figure 2.24 A decoupled architecture using three servers: one for the
database, one for the API, and one for the application code

Database REST API Application

Figure 2.25 You can scale
MEAN applications by having
clusters of servers for each
part of your entire application.

50 CHAPTER 2 Designing a MEAN stack architecture

Setting up this approach is a little more involved than the previous methods, because
you need to ensure that your database remains accurate and that the load is balanced
across servers. Once again, PaaS providers offer a convenient route into this type of
architecture.

 You’ll get started on the journey in chapter 3 by creating the Express project that
will hold everything together.

Summary
In this chapter, you learned

 How to design a common MEAN stack architecture with an Angular SPA, using
a REST API built in Node.js, Express, and MongoDB

 How to assess the factors in your project to determine whether an SPA fits well
 How to design a flexible architecture in the MEAN stack
 The best practice of building an API to expose a data layer
 Development and production hardware architectures

Part 2

Building a
Node web application

Node.js underpins any MEAN application, so that’s where you’ll start.
Throughout part 2, you’ll build a data-driven web application by using Node.js,
Express, and MongoDB. You’ll learn the individual technologies as you go,
steadily building up the application to a point where you have a fully functioning
Node web application.

 In chapter 3, you’ll get going by creating and setting up a MEAN project, get-
ting acquainted with Express before getting a much deeper understanding of
Express by building out a static version of the application in chapter 4. Taking
what you’ve learned about the application so far, in chapter 5 you’ll work with
MongoDB and Mongoose to design and build the data model you’ll need.

 Good application architecture should include a data API rather than tightly
couple database interactions with application logic. In chapter 6, you’ll create a
REST API by using Express, MongoDB, and Mongoose before tying it back into
the application in chapter 7 by consuming the REST API from your static appli-
cation. As you get to the end of part 2, you’ll have a data-driven website using
Node.js, MongoDB, and Express, as well as a fully functioning REST API.

53

Creating and setting up
a MEAN project

In this chapter, you’ll start building your application. Remember from chapters 1
and 2 that, throughout this book, you’re going to build an application called
Loc8r—a location-aware web application that displays listings near users and invites
people to log in and leave reviews.

This chapter covers
 Managing dependencies by using npm and package.json

 Creating and configuring Express projects

 Setting up an MVC environment

 Adding Twitter Bootstrap for layout

 Publishing to a live URL, and using Git and Heroku

54 CHAPTER 3 Creating and setting up a MEAN project

In the MEAN stack, Express is the Node web application framework. Together,
Node.js and Express underpin the entire stack, so you’ll start there. In terms of build-
ing up the application architecture, figure 3.1 shows where this chapter focuses. You’ll
do two things:

1 Create the project and the encapsulating Express application that will house
everything except the database.

2 Set up the main Express application.

You’ll start with a bit of groundwork by looking at Express and seeing how you can
manage dependencies and modules by using npm and a package.json file. You’ll need
this background knowledge to get going and set up an Express project.

 Before you do anything, make sure that you have everything you need installed on
your machine. When that’s done, look at creating new Express projects from the com-
mand line and the various options you can specify at this point.

 Express is great, but you can make it better—and get to know it better—by tinker-
ing a little and changing some things around. This involves a quick look at model-
view-controller (MVC) architecture. Here is where you get under the hood of Express
a little and see what it’s doing by modifying it to have a clear MVC setup.

 When the framework of Express is set up as you want it, you’ll then include Twit-
ter’s Bootstrap framework and make the site responsive by updating the Pug tem-
plates. In the final step of this chapter, you’ll push the modified, responsive, MVC
Express application to a live URL using Heroku and Git.

Getting the source code
The source code for this application is on GitHub at https://github.com/cliveharber/
gettingMean-2. Each chapter with a significant update will have its own branch. We
encourage you to build it up from scratch through the course of the book, but if you
want to, you can get the code that you’ll be building throughout this chapter from the
chapter-03 branch on GitHub. In a fresh folder in terminal, if you already have Git
installed, the following two commands will clone it:

$ git clone -b chapter-03 https://github.com/cliveharber/
gettingMean-2.git

This gives you a copy of the code that’s stored on GitHub. To run the application, you
need to install some dependencies with the following commands:

$ cd gettingMean-2
$ npm install

Don’t worry if some of this doesn’t make sense yet or if some of the commands
aren’t working. During this chapter, you’ll install these technologies as you go.

https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2

55A brief look at Express, Node, and npm

3.1 A brief look at Express, Node, and npm
As previously mentioned, Express is a web application framework for Node. In basic
terms, an Express application is a Node application that happens to use Express as the
framework. Remember from chapter 1 that npm is a package manager that gets
installed when you install Node, which enables you to download Node modules or
packages to extend the functionality of your application.

 But how do these things work together, and how do you use them? A key piece of
this puzzle is the package.json file.

3.1.1 Defining packages with package.json

In every Node application, you should have a file in the root folder of the application
called package.json. This file can contain various metadata about a project, including
the packages that it depends on to run. The following listing shows an example pack-
age.json file that you might find in the root of an Express project.

{
 "name": "application-name",
 "version": "0.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },

Listing 3.1 Example package.json file in a new Express project

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API Angular

Angular SPA

Angular

Express
Node.js

MongoDB

1. Create the
project and the
encapsulating
Express app.

1. Create the
project and the
encapsulating
Express app.

2. Start creating
the main
Express app.

2. Start creating
the main
Express app.

Figure 3.1 Creating the encapsulating Express application and starting to set up the main Express
application

Various metadata
defining the
application

56 CHAPTER 3 Creating and setting up a MEAN project

 "dependencies":
 "body-parser": "~1.18.3",
 "cookie-parser": "~1.4.3",
 "debug": "~4.1.0",
 "express": "^4.16.4",
 "morgan": "^1.9.1",
 "pug": "^2.0.3",
 "serve-favicon": "~2.5.0"
 }
}

This listing is the file in its entirety, so it’s not particularly complex. Various metadata
at the top of the file is followed by the dependencies section. In this default installa-
tion of an Express project, quite a few dependencies are required for Express to run,
but you don’t need to worry about what each one does. Express itself is modular so
that you can add components or upgrade them individually.

3.1.2 Working with dependency versions in package.json

Alongside the name of each dependency is the version number that the application
will use. Notice that they’re prefixed with either a tilde (~) or a caret (^).

 Take a look at the dependency definition for Express 4.16.3, which specifies a par-
ticular version at three levels:

 Major version (4)
 Minor version (16)
 Patch version (3)

Prefixing the whole version number with a ~ is like replacing the patch version with a
wildcard, which means that the application will use the latest patch version available.
Similarly, prefixing the version with a caret (^) is like replacing the minor version with
a wildcard. This has become best practice, because patches and minor versions should
contain only fixes that won’t have any effect on the application. But new major ver-
sions are released when a breaking change is made, so you want to avoid automatically
using later versions of these in case the breaking change affects your application. If
you find a module that breaks these rules, it’s easy to specify an exact version to use by
removing any prefixes. Note that it’s good practice to always specify the full version
and not use wildcards for this reason: you always have a reference for a specific version
that you know works.

3.1.3 Installing Node dependencies with npm

Any Node application or module can have dependencies defined in a package.json
file. Installing them is easy and is done the same way regardless of the application or
module.

 Using a terminal prompt in the same folder as the package.json file, run the fol-
lowing command:

$ npm install

Package dependencies
needed for the
application to run

57A brief look at Express, Node, and npm

This command tells npm to install all the dependencies listed in the package.json file.
When you run it, npm downloads all the packages listed as dependencies and installs
them in a specific folder in the application, called node_modules. Figure 3.2 illus-
trates the three key parts.

 npm installs each package into its own subfolder because each one is effectively a
Node package in its own right. As such, each package also has its own package.json file
defining the metadata, including the specific dependencies. It’s quite common for a
package to have its own node_modules folder. You don’t need to worry about manu-
ally installing all the nested dependencies, though, because this task is handled by the
original npm install command.

ADDING MORE PACKAGES TO AN EXISTING PROJECT

You’re unlikely to have the full list of dependencies for a project right from the outset.
It’s far more likely that you’ll start with a few key ones that you know you’ll need and
perhaps some that you always use in your workflow.

 Using npm, it’s easy to add more packages to the application whenever you want.
Find the name of the package you want to install, open a command prompt in the
same folder as the package.json file, and then run a simple command like this:

$ npm install --save package-name

With this command, npm downloads and installs the new package in the node_mod-
ules folder. The --save flag tells npm to add this package to the list of dependencies
in the package.json file. As of npm version 5, the --save flag is no longer required, as
NPM saves changes to the package.json file automatically. We’ve added it here for
completeness. When this command is run, npm generates a package-lock.json file to
maintain versions of dependencies between environments, which is helpful when
you’re deploying from development to a live server.

Modules and packages
are defined in the
package.json file
(or package-lock.json).

npm is used in
the command line to
install the modules.

package.json $ npm install node_modules

npm downloads the
packages defined in the
package file and installs
them in a node_modules
folder in your application.

+

Figure 3.2 The npm modules defined in a package.json file are downloaded and
installed in the application’s node_modules folder when you run the npm install
terminal command.

58 CHAPTER 3 Creating and setting up a MEAN project

UPDATING PACKAGES TO LATER VERSIONS

The only time npm downloads and reinstalls existing packages is when you upgrade to
a new version. When you run npm install, npm goes through all the dependencies
and checks the following:

 The version defined in the package-lock.json file (if it exists) or package.json (if
it doesn’t)

 The latest matching version on npm (which may be different if you used ~ or ^)
 The version of the module (if there is one) in the node_modules folder

If your installed version is different from the definition in the package.json (or package-
lock.json) file, npm downloads and installs the defined version. Similarly, if you’re
using a wildcard, and a later matching version is available, npm downloads and installs
it in place of the previous version.

 With that knowledge under your belt, you can start creating your first Express project.

3.2 Creating an Express project
All journeys must have a starting point, which for building a MEAN application is cre-
ating a new Express project. To create an Express project, you’ll need to have five key
things installed on your development machine:

 Node and npm
 The Express generator installed globally
 Git
 Heroku
 Suitable command-line interface (CLI) or terminal

3.2.1 Installing the pieces

If you don’t have Node, npm, or the Express generator installed yet, see appendix A
for instructions and pointers to online resources. All can be installed on Windows,
macOS, and all mainstream Linux distributions.

 By the end of this chapter, you’ll also have used Git to manage the source control
of your Loc8r application and pushed it to a live URL hosted by Heroku. Please take a
look through appendix B, which guides you through setting up Git and Heroku.

 Depending on your operating system, you may need to install a new CLI or termi-
nal. See appendix B to find out whether this requirement applies to you.

NOTE Throughout this book, we’ll often refer to the CLI as terminal. When
we say “Run this command in terminal,” we mean run it in whichever CLI
you’re using. When terminal commands are included as code snippets
throughout this book, they start with a $. You shouldn’t type this symbol in
terminal; it’s simply there to denote a command-line statement. If you’re
entering the echo command $ echo 'Welcome to Getting MEAN', for example,
type echo 'Welcome to Getting MEAN'.

59Creating an Express project

3.2.2 Verifying the installations

To create a new Express project, you must have Node and npm installed, and you
must also have the Express generator installed globally. You can verify by checking for
the version numbers in terminal, using the following commands:

$ node --version
$ npm --version
$ express --version

Each of these commands should output a version number to terminal. If one of them
fails, head to appendix A for details on how to install it again.

3.2.3 Creating a project folder

Assuming that all is good, start by creating a new folder on your machine called loc8r.
This folder can be on your desktop, in your documents, or in a Dropbox folder; the
location doesn’t matter as long as you have full read and write access rights to the
folder.

 Simon personally does a lot of his MEAN development in Dropbox folders so that
his work is immediately backed up and accessible on any of his machines. If you’re in
a corporate environment, however, this approach may not be suitable for you, so cre-
ate the folder wherever you think is best.

3.2.4 Configuring an Express installation

An Express project is installed from the command line, and the configuration is
passed in with parameters of the command you use. If you’re not familiar with using
the command line, don’t worry; none of what we’ll go through in the book is particu-
larly complex, and it’s all easy to remember. Once you’ve started using it, you’ll proba-
bly love how it makes some operations so fast.

 You can install Express in a folder with a simple command (but don’t do this yet):

$ express

This command installs the framework with default settings in your current folder. This
step probably is a good start, but take a look at some configuration options first.

CONFIGURATION OPTIONS WHEN CREATING AN EXPRESS PROJECT

What can you configure when creating an Express project this way? You can specify
the following:

 Which HTML template engine to use
 Which CSS preprocessor to use
 Whether to create a .gitignore file

A default installation uses the Jade template engine, but it has no CSS preprocessing
or session support. You can specify a few options, as laid out in table 3.1.

60 CHAPTER 3 Creating and setting up a MEAN project

You aren’t going to do that here, but if you want to create a project that uses the Less
CSS preprocessor and the Handlebars template engine and includes a .gitignore file,
you’d run the following command in terminal:

$ express --css=less --view=hbs --git

To keep things simple in your project, you won’t use CSS preprocessing, so you can
stick with the default of plain CSS. But you do need to use a template engine, so in the
next section, you’ll take a quick look at the options.

DIFFERENT TEMPLATE ENGINES

When you’re using Express in this way, a few template options are available, including
Jade, EJS, Handlebars, and Pug. The basic workflow of a template engine is creating
the HTML template, including placeholders for data, and then passing it some data.
Then the engine compiles the template and data together to create the final HTML
markup that the browser will receive.

 All engines have their own merits and quirks, and if you already have a preferred
one, that’s fine. In this book, you’ll use Pug. Pug is powerful and provides all the func-
tionality you’re going to need. Pug is the next evolution of Jade; due to trademark
issues, the creators of Jade had to rename it, and they chose Pug. Jade still exists, so
existing projects won’t break, but all new releases are under the name Pug. Jade was
(and still is) the default template engine in Express, so you’ll find that most examples
and projects online use it, which means that it’s helpful to be familiar with the syntax.
Finally, the minimal style of Jade and Pug make them ideal for code samples in a book.

A QUICK LOOK AT PUG

Pug is unusual compared with the other template engines, in that it doesn’t contain
HTML tags in the templates. Instead, Pug takes a rather minimalist approach, using
tag names, indentation, and a CSS-inspired reference method to define the structure
of the HTML. The exception is the <div> tag. Because it’s so common, if the tag name
is omitted from the template, Pug assumes that you want a <div>.

TIP Pug templates must be indented with spaces, not tabs.

Table 3.1 Command-line configuration options for creating a new Express project

Configuration command Effect

--css=less|stylus Adds a CSS preprocessor to your project, either Less or Stylus,
depending on which you type in the command

--view=ejs|hbs|pug Changes the HTML template engine from Jade to EJS, Handlebars, or
Pug, depending on which you type

--git Adds a .gitignore file to the directory

61Creating an Express project

The following code snippet shows a simple example of a Pug template:

#banner.page-header
 h1 My page
 p.lead Welcome to my page

This snippet shows the compiled output:

<div id="banner" class="page-header">
 <h1>My page</h1>
 <p class="lead">Welcome to my page</p>
</div>

From the first lines of the input and output, you should be able to see that

 With no tag name specified, a <div> is created.
 #banner in Pug becomes id="banner" in HTML.
 .page-header in Pug becomes class="page-header" in HTML.

Note also that the indentation in Pug is important, as it defines the nesting of the
HTML output. Remember that the indentation must be done with spaces, not tabs!

 To recap, you don’t need a CSS preprocessor, but you do want the Pug template
engine. How about the .gitignore file?

A QUICK INTRO TO .GITIGNORE FILES

A .gitignore file is a simple configuration file that sits in the root of your project
folder. This file specifies which files and folders Git commands should ignore. In
essence, it says, “Pretend these files don’t exist, and don’t track them,” meaning that
they won’t end up in source control.

 Common examples include log files and the node_modules folder. Log files don’t
need to be up on GitHub for everyone to see, and your Node dependencies should be
installed from npm whenever your application is downloaded. You’ll be using Git in
section 3.5, so ask the Express generator to create a file for you.

 With that starting knowledge behind you, it’s time to create a project.

3.2.5 Creating an Express project and trying it out

You know the basic command for creating an Express project and have decided to use
the Pug template engine. You’ll also let it generate a .gitignore file for you. Now create
a new project. In section 3.2.3, you should have created a new folder called loc8r. Nav-
igate to this folder in terminal, and run the following command:

$ express --view=pug --git

This command creates a bunch of folders and files inside the loc8r folder that form
the basis of your Loc8r application. But you’re not quite ready yet. Next, you need to
install the dependencies. As you may remember, you do this by running the following
command from a terminal prompt in the same folder as the package.json file:

$ npm install

Pug template contains
no HTML tags

Compiled output is
recognizable HTML

62 CHAPTER 3 Creating and setting up a MEAN project

As soon as you run it, your terminal window lights up with all the things it’s download-
ing. When it finishes, the application is ready for a test drive.

TRYING IT OUT

Make sure that everything works as expected. In section 3.2.6, we’ll show you a better
way of running the project.

 In terminal, in the loc8r folder, run the following command (but if your applica-
tion is in a folder with a different name, swap out loc8r accordingly):

$ DEBUG=loc8r:* npm start

You should see a confirmation similar to this:

loc8r:server Listening on port 3000 +0ms

This confirmation means that the Express application is running. You can see it in
action by opening a browser and heading over to localhost:3000. We hope that you’ll
see something like the screenshot in figure 3.3.

Admittedly, this isn’t exactly ground-breaking stuff, but getting the Express applica-
tion up and running to the point of working in a browser was easy, right?

 If you head back to terminal now, you should see a couple of log statements con-
firming that the page has been requested and that a stylesheet has been requested. To
get to know Express a little better, take a look at what’s going on here.

HOW EXPRESS HANDLES THE REQUESTS

The default Express landing page is simple. The page contains a small amount of
HTML, of which some of the text content is pushed as data by the Express route.
There’s also a CSS file. The logs in terminal should confirm that this is what Express
requested and has returned to the browser. But how?

Figure 3.3 Landing page for a bare-bones Express project

63Creating an Express project

All requests to the Express server run through the middleware defined in the app.js
file (see the sidebar “About Express middleware”). As well as doing other things, a
default piece of middleware looks for paths to static files. When the middleware
matches the path against a file, Express returns this asynchronously, ensuring that the
Node.js process isn’t tied up with this operation and therefore blocking other opera-
tions. When a request runs through all the middleware, Express attempts to match the
path of the request against a defined route. We’ll get into this topic in a bit more
detail in section 3.3.3.

 Figure 3.4 illustrates this flow, using the example of the default Express homepage
from figure 3.3. The flow in figure 3.4 shows the separate requests made and how
Express handles them differently. Both requests run through the middleware as a first
action, but the outcomes are different.

3.2.6 Restarting the application

A Node application compiles before running, so if you make changes to the applica-
tion code while it’s running, they won’t be picked up until the Node process is
stopped and restarted. Note that this is true only for application code; Jade templates,
CSS files, and client-side JavaScript can all be updated on the fly.

 Restarting the Node process is a two-step procedure. First, you have to stop the
running process in terminal by pressing Ctrl-C. Then, you have to start the process
again in terminal, using the same command as before: DEBUG=loc8r:* npm start.

 This process doesn’t sound problematic, but when you’re actively developing and
testing an application, having to do these two steps every time you want to check an
update becomes quite frustrating. Fortunately, there’s a better way.

About Express middleware
The app.js file contains a bunch of lines that start with app.use somewhere in the
middle. These lines are known as middleware. When a request comes in to the appli-
cation, it passes through each piece of middleware in turn. Each piece of middleware
may or may not do something with the request, but it’s always passed on to the next
one until it reaches the application logic itself, which returns a response.

Take app.use(express.cookieParser());, for example. This line takes an incom-
ing request, parses out any of the cookie information, and attaches the data to the
request in a way that makes it easy to reference in the controller code.

You don’t need to know what each piece of middleware does right now, but you may
well find yourself adding to this list as you build out applications.

64 CHAPTER 3 Creating and setting up a MEAN project

AUTOMATICALLY RESTARTING THE APPLICATION WITH NODEMON

Some services have been developed to monitor application code and restart the pro-
cess when they detect that changes have been made. One such service, and the one
you’ll use in this book, is nodemon. nodemon wraps the Node application and, other
than monitoring for changes, causes no interference.

 To use nodemon, start by installing it globally, much as you did with Express. Use
npm in terminal:

$ npm install -g nodemon

When the installation is finished, you’ll be able to use nodemon wherever you want.
Using it is simple. Instead of typing node to start the application, you type nodemon. So,

Visitor
enters URL
into browser

Browser
requests URL
from server

Express runs request
through all middleware
specified in app.js

Express checks
and matches
required route

Express compiles
data and
view template
into HTML

Visitor

Visitor

Browser

Browser

Browser

Browser completes
rendering of web page

Express returns
CSS file to browser
asynchronously

Server

Server

Middleware

Middleware

Router

Data + ViewHTML
Express returns
HTML to browser

Browser
requests CSS
file referenced
in HTML

Express runs
request through
all middleware

Static folder
CSS file

In middleware,
Express matches
request to a file
path in a specified
static folder

Figure 3.4 The key interactions and processes that Express goes through when responding to the request for
the default landing page. The HTML page is processed by Node to compile data and a view template, and the
CSS file is served asynchronously from a static folder.

65Modifying Express for MVC

making sure that you’re in the loc8r folder in terminal and that you’ve stopped the
Node process, if it’s still running, enter the following command:

$ nodemon

You should see a few extra lines output to terminal, confirming that nodemon is run-
ning and that it has started node ./bin/www. If you head back over to your browser and
refresh, you should see that the application is still there.

NOTE nodemon is intended only for easing the development process in your
development environment and shouldn’t be used in a live production envi-
ronment. Projects like pm2 or foreman are designed for production use.

USING THE SUPPLIED DOCKER ENVIRONMENT

Each chapter comes with a Dockerfile set up. Head over to appendix B to see how to
install and use the Docker containers. You don’t have to use Docker to benefit from
this book; it’s been added as a convenience.

3.3 Modifying Express for MVC
Firstly, what is MVC architecture? MVC architecture separates the data (model), the
display (view) and the application logic (controller). This separation aims to remove
any tight coupling between the components, theoretically making code more main-
tainable and reusable. A bonus is that these components fit nicely into your rapid pro-
totype development approach and allow you to concentrate on one aspect at a time as
we discuss each part of the MEAN stack.

 Whole books are dedicated to the nuances of MVC, but we won’t go to that depth
here. We’ll keep the discussion of MVC at a high level and show you how to use it with
Express to build your Loc8r application.

3.3.1 A bird’s-eye view of MVC

Most applications or sites that you build are designed to take an incoming request, do
something with it, and return a response. At a simple level, this loop in an MVC archi-
tecture works like this:

1 A request comes into the application.
2 The request gets routed to a controller.
3 The controller, if necessary, makes a request to the model.
4 The model responds to the controller.
5 The controller merges the view and the data to form a response.
6 The controller sends the generated response to the original requester.

In reality, depending on your setup, the controller may compile the view before send-
ing the response to the visitor. The effect is the same, though, so keep this simple flow
in mind as a visual for what will happen in your Loc8r application. See figure 3.5 for
an illustration of this loop.

66 CHAPTER 3 Creating and setting up a MEAN project

Figure 3.5 highlights the parts of the MVC architecture and shows how they link
together. It also illustrates the need for a routing mechanism along with the model,
view, and controller components.

 Now that you’ve seen how you want the basic flow of your Loc8r application to
work, it’s time to modify the Express setup to make this happen.

3.3.2 Changing the folder structure

If you look inside the newly created Express project in the loc8r folder, you should see
a file structure including a views folder and even a routes folder, but no mention of
models or controllers. Rather than cluttering the root level of the application with
some new folders, keep things tidy by creating one new folder for all your MVC archi-
tecture. Follow these three quick steps:

1 Create a new folder called app_server.
2 In app_server, create two new folders called models and controllers.
3 Move the views and routes folders from the root of the application into the

app_server folder.

Figure 3.6 illustrates these changes and shows the folder structures before and after
modification.

 Now you have an obvious MVC setup in the application, which makes it easier to
separate your concerns. But if you try to run the application now, it won’t work, as
you’ve just broken it. So fix it. Express doesn’t know that you’ve added some new fold-
ers or have any idea what you want to use them for, so you need to tell it.

1. Request
comes into
application

2. Request
gets routed to
controller

3. Controller may
send request
to model

4. Model
responds to
controller

5. Controller
merges data
with view

6. Controller
sends response
to requestor

Request

Response Response

Request Request

Figure 3.5 Request-response flow
of a basic MVC architecture

67Modifying Express for MVC

3.3.3 Using the views and routes relocated folders

The first thing you need to do is tell Express that you’ve moved the views and routes
folders, because Express will be looking for them in their old location.

USING THE NEW VIEWS FOLDER LOCATION

Express will be looking for /views, but it needs to look for /app_server/views. Chang-
ing the path is simple. In app.js, find the following line:

app.set('views', path.join(__dirname, 'views'));

Change it to the following (modifications in bold):

app.set('views', path.join(__dirname, 'app_server', 'views'));

Your application still won’t work, because you’ve moved the routes, so tell Express
about them too.

USING THE NEW ROUTES FOLDER LOCATION

Express will be looking for /routes, but it needs to look for /app_server/routes.
Changing this path is also simple. In app.js, find the following lines:

const indexRouter = require('./routes/index');
const usersRouter = require('./routes/users');

1. Create folder
app_server

2. Create sub-folders
controllers
and models

3. Move the views
and routes folders
into app_server

Before After

Figure 3.6 Changing the folder structure of an Express project into an MVC architecture

68 CHAPTER 3 Creating and setting up a MEAN project

Change these lines to the following (modifications in bold):

const indexRouter = require('./app_server/routes/index');
const usersRouter = require('./app_server/routes/users');

Note that you also changed var to const to upgrade to ES2015. Check out the sidebar
“Defining variables in ES2015” if this concept is new to you. If you save your changes
and run the application again, you’ll find that it works once more!

3.3.4 Splitting controllers from routes

In a default Express setup, controllers are part of the routes, but you want to separate
them out. Controllers should manage the application logic, and routing should map
URL requests to controllers.

UNDERSTANDING ROUTE DEFINITION

To understand how routes work, take a look at the route already set up for delivering
the default Express homepage. Inside index.js in app_server/routes, you should see
the following code snippet:

/* GET homepage. */
router.get('/', function(req, res) {
 res.render('index', { title: 'Express' });
});

In the code at B you can see router.get('/'. The router checks internally for GET
requests that map to the homepage URL path, which is '/'. The anonymous function
that runs the code B is the controller. This basic example has no application code to
speak of. So B and C are the pieces you want to separate here.

 Rather than dive straight in and put the controller code in the controllers folder,
test the approach in the same file first. To do this, you can define the anonymous
function from the route definition as a named function. Then pass the name of this

Defining variables in ES2015
One of the most fundamental changes in ES2015 is deprecation of the var keyword
to define variables. It still works, but instead, you should use one of the two new key-
words: const and let. Variables defined with const can’t be changed at a later point
in the code, whereas variables defined with let can be changed.

Best practice is to define variables with const unless their values are going to
change. All instances of var in app.js can be changed to const. We’ve done this in
the source code for this book; feel free to do it too.

One other thing to bear in mind is that const and let are block-level variable initial-
izers, whereas var is a context-level variable initializer. If these terms mean nothing
to you, read appendix D, available with the e-book or online from manning.com.

B Where the
router looks
for the URL

C
Controller content, albeit
very basic right now

69Modifying Express for MVC

function through as the callback in the route definition. Both of these steps are in the
following listing, which you can put in place inside app_server/routes/index.js.

const homepageController = (req, res) => {
 res.render('index', { title: 'Express' });
};
/* GET homepage. */
router.get('/', homepageController);

If you refresh your homepage now, it should still work as before. You haven’t changed
anything in how the site works—only moved a step toward separating concerns.

Now that you’re clear about how route definition works, it’s time to put the controller
code in its proper place.

MOVING THE CONTROLLER OUT OF THE ROUTES FILE

In Node, to reference code in an external file, you create a module in your new file,
and then require it in the original file. See the sidebar “Creating and using Node
modules” for some overarching principles behind this process.

Listing 3.2 Taking the controller code out of the route: step 1

Gives a name to the
arrow function

Passes the name of the function through
as a callback in the route definition

Understanding res.render
You’ll look at this topic more in chapter 4, but render is the Express function for com-
piling a view template to send as the HTML response that the browser will receive.
The render method takes the name of the view template and a JavaScript data
object in the following construct:

Note that the template file doesn’t need to have the file extension suffix, so
index.pug can be referenced as index. You also don’t need to specify the path to the
view folder, because you’ve already done this in the main Express setup.

JavaScript object containing
data for template to use

Name of template to use,
in this case referencing index.pug

Creating and using Node modules
Taking some code out of a Node file to create an external module is, fortunately, sim-
ple. In essence, you create a new file for your code, choose which bits of it you want
to expose to the original file, and then require your new file in your original file.

70 CHAPTER 3 Creating and setting up a MEAN project

The first thing you need to do is create a file to hold the controller code. Create a new
file called main.js in app_server/controllers. In this file, create and export a method
called index, and use it to house the res.render code, as shown in the following listing.

/* GET homepage */
const index = (req, res) => {
 res.render('index', { title: 'Express' });
};

Listing 3.3 Setting up the homepage controller in app_server/controllers/main.js

(continued)
In your new module file, you expose the parts of the code that you want to by using
the module.exports method, like so:

module.exports = function () {
 console.log("This is exposed to the requester");
};

Then you require this in your main file, like so:

require('./yourModule');

If you want your module to have separate named methods exposed, you can do so
by defining them in your new file in the following way:

module.exports.logThis = function (message){
 console.log(message);
};

Even better is to define a named function and export it at the end of the file. This lets
you expose all the functions you need to in one place, creating a handy list for your
future self (or subsequent developers).

const logThis = function (message) {
 console.log(message);
};
module.exports = {
 logThis
};

To reference this in your original file, you need to assign your module to a variable
name, and then invoke the method. You might enter this in your main file:

const yourModule = require('./yourModule');
yourModule.logThis("Hooray, it works!");

This code assigns your new module to the variable yourModule. The exported func-
tion logThis is now available as a method of yourModule.

Note that, when using the require function, you don’t need to specify a file exten-
sion. The require function looks for a couple of things: an npm module, a JavaScript
file of the same name, or an index.js file inside a folder of the given name.

Creates an
index function

Includes controller
code for the homepage

71Importing Bootstrap for quick, responsive layouts

module.exports = {
 index
};

That’s all there is to exporting the controller. The next step is to require this control-
ler module in the routes file so that you can use the exposed method in the route defi-
nition. The following listing shows how the index.js file in app_server/routes should
look.

const express = require('express');
const router = express.Router();
const ctrlMain = require('../controllers/main');
/* GET homepage. */
router.get('/', ctrlMain.index);
module.exports = router;

This code links the route to the new controller by “requiring” the controller file B
and referencing the controller function in the second parameter of the router.get
function C.

 Now you have the routing and controller architecture, as illustrated in figure 3.7,
where app.js requires routes/index.js, which in turn requires controllers/main.js. If
you test this now in your browser, you should see that the default Express homepage
displays correctly once again.

Everything is set up with Express for now, so it’s almost time to start the building pro-
cess. But you need to do a couple more things. The first is adding Twitter Bootstrap to
the application.

3.4 Importing Bootstrap for quick, responsive layouts
As discussed in chapter 1, your Loc8r application uses Twitter’s Bootstrap framework
to speed the development of a responsive design. You’ll also make the application
stand out by adding some font icons and custom styles. The aim is to help you keep
moving forward quickly with building the application and not get sidetracked with the
semantics of developing a responsive interface.

Listing 3.4 Updating the routes file to use external controllers

Exposes the index
function as a method

B Requires the main
controllers file

C
References the index method of the
controllers in the route definition

app.js index.js main.js

Application Routes Controllers

Figure 3.7 Separating the controller
logic from the route definitions

72 CHAPTER 3 Creating and setting up a MEAN project

3.4.1 Downloading Bootstrap and adding it to the
application

Instructions for downloading Bootstrap, downloading
the font icons (by Font Awesome), creating a custom
style, and adding the files to the project folder are in
appendix B. Note that you use Bootstrap 4.1. A key
point is that the downloaded files are all static files to
be sent directly to the browser; they don’t need any
processing by the Node engine. Your Express applica-
tion already has a folder for this purpose: the public
folder. When you have it ready, the public folder
should look something like figure 3.8.

 Bootstrap also requires jQuery and Popper.js for
some of the interactive components to work. Because
they aren’t core to your application, you’ll reference
them from a content delivery network (CDN) in the
next step.

3.4.2 Using Bootstrap in the application

Now that all of the Bootstrap pieces are sitting in the
application, it’s time to hook it up to the front end,
which means taking a look at the Pug templates.

WORKING WITH PUG TEMPLATES

Pug templates often have a main layout file that has defined areas for other Pug files
to extend. This makes a great deal of sense when you’re building a web application,
because many screens or pages have the same underlying structure with different con-
tent on top.

 This is how Pug appears in a default Express installation: If you look in the views
folder in the application, you see three files—layout.pug, index.pug, and error.pug.
The index.pug file is controlling the content for the index page of the application.
Open it, and you see that not much is in there. The entire contents are shown in the
following listing.

extends layout
block content
 h1= title
 p Welcome to #{title.}

There’s more going on here than meets the eye. Right at the top of the file is a state-
ment declaring that this file is an extension of another file B—in this case, the layout

Listing 3.5 The complete index.pug file

B Declares that this file is
extending the layout file C Declares that the following

section goes into an area of
the layout file called content

D
Outputs h1 and p tags
to the content area

Figure 3.8 Structure of the public
folder in the Express application
after adding Bootstrap

73Importing Bootstrap for quick, responsive layouts

file. Following is a statement defining a block of code C that belongs to a specific area
of the layout file: an area called content. Finally, there’s the minimal content dis-
played on the Express index page: a single <h1> tag and a single <p> tag D.

 There are no references to <head> or <body> tags here, or any stylesheet refer-
ences. These are handled in the layout file, so that’s where you want to go to add
global scripts and stylesheets to the application. Open layout.pug, and you should see
something similar to the following listing.

doctype html
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

This shows the layout file being used for the basic index page in the default Express
installation. There’s a head section and a body section, and within the body section,
there’s a block content line with nothing inside it. This named block can be refer-
enced by other Pug templates, such as the index.pug file in listing 3.5. The block con-
tent from the index file gets pushed into the block content area of the layout file
when the views are compiled.

ADDING BOOTSTRAP TO THE ENTIRE APPLICATION

If you want to add some external reference files to the entire application, using the
layout file makes sense in the current setup. In layout.pug, you need to accomplish
four things:

 Reference the Bootstrap and Font Awesome CSS files.
 Reference the Bootstrap JavaScript file.
 Reference jQuery and Popper.js, which Bootstrap requires.
 Add viewport metadata so that the page scales nicely on mobile devices.

The CSS file and the viewport metadata should both be in the head of the document,
and the two script files should be at the end of the body section. The following listing
shows all this in place in layout.pug, with the new lines in bold.

doctype html
html
 head
 meta(name='viewport', content='width=device-width,
 ➥initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/stylesheets/bootstrap.min.css')
 link(rel='stylesheet', href='/stylesheets/all.min.css')

Listing 3.6 Default layout.pug file

Listing 3.7 Updated layout.pug including Bootstrap references

Empty named block
can be used by other
templates

Sets the viewport metadata for
better display on mobile devices

Includes
Bootstrap
and Font
Awesome CSS

http://herokuapp.com

74 CHAPTER 3 Creating and setting up a MEAN project

 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content
 script(src='https://code.jquery.com/jquery-3.3.1.slim.min.js',
 ➥integrity='sha384-
 ➥q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo',
 ➥crossorigin='anonymous')
 script(src='https://cdnjs.cloudflare.com/ajax/libs/
 ➥popper.js/1.14.3/umd/popper.min.js',integrity='sha384-
 ➥ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49',
 crossorigin='anonymous')
 script(src='/javascripts/bootstrap.min.js')

With that done, any new template that you create automatically has Bootstrap
included and will scale on mobile devices—as long as your new templates extend the
layout template, of course. Should you have any problems or unexpected results at
this stage, remember that Pug is sensitive to indentation, spacing, and newlines. All
indentation must be done with spaces to get the correct nesting in the HTML output.

TIP If you followed along in appendix B, you’ll also have some custom styles
in the style.css file in /public/stylesheets to prevent the default Express styles
from overriding the Bootstrap files and help you get the look you want.

Now you’re ready to test.

VERIFYING THAT IT WORKS

If the application isn’t already running with nodemon, start it, and view it in your
browser. The content hasn’t changed, but the appearance should have. You should
have something that looks like figure 3.9.

Brings in jQuery and Popper, needed by
Bootstrap. Make sure that the script tags
are all at the same indentation.

Brings in the Bootstrap
JavaScript file

Figure 3.9 Bootstrap and your styles having an effect on the default Express index page

75Making it live on Heroku

If yours doesn’t look like this, make sure that you’ve added the custom styles as out-
lined in appendix B. Remember that you can get the source code of the application so
far from the chapter-03 branch on GitHub. In a fresh folder in terminal, use the fol-
lowing command to clone it:

$ git clone -b chapter-03 https://github.com/cliveharber/
➥gettingMean-2.git

Now you’ve got something working locally. In the next section, you’ll see how you can
get it running on a live production server.

3.5 Making it live on Heroku
A common perceived headache with Node applications is deploying them to a live
production server. You’re going to get rid of that headache early and push your Loc8r
application to a live URL right away. As you iterate and build it up, you can keep push-
ing out the updates. For prototyping, this approach is great, because it makes showing
your progress to others easy.

 As mentioned in chapter 1, there are a few PaaS providers such as Google Cloud
Platform, Nodejitsu, OpenShift, and Heroku. You’ll use Heroku here, but there’s noth-
ing to stop you from trying other options. Next, you’ll get Heroku up and running, and
walk through a few basic Git commands to deploy your application to a live server.

3.5.1 Getting Heroku set up

Before you can use Heroku, you need to sign up for a free account and install the Her-
oku CLI on your development machine. Appendix B has more detailed information
on how to do this. You also need a bash-compatible terminal; the default terminal for
Mac users is fine, but the default CLI for Windows users won’t do. If you’re on Win-
dows, you need to download something like the GitHub terminal, which comes as part
of the GitHub desktop application. When you have everything set up, you can con-
tinue getting the application ready to push live.

UPDATING PACKAGE.JSON

Heroku can run applications on various types of codebases, so you need to tell it what
your application is running. Besides telling it that you’re running a Node application
using npm as the package manager, you also need to tell it which version you’re run-
ning to ensure that the production setup is the same as the development setup.

 If you’re not sure which versions of Node and npm you’re running, you can find
out with a couple of terminal commands:

$ node --version
$ npm --version

Currently, these commands return v11.0.0 and 6.4.1, respectively. Using the ~ syn-
tax to add a wildcard for a minor version, as you’ve seen previously, you need to add
these to a new engines section in the package.json file. The complete updated pack-
age.json file is shown in the following listing, with the added section in bold.

76 CHAPTER 3 Creating and setting up a MEAN project

{
 "name": "Loc8r",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"
 },
 "engines": {
 "node": ">=11.0.0",
 "npm": ">=6.4.0"
 },
 "dependencies": {
 "body-parser": "~1.18.3",
 "cookie-parser": "~1.4.3",
 "debug": "~3.1.0",
 "express": "~4.16.3",
 "morgan": "~1.9.0",
 "pug": "~2.0.0-beta11",
 "serve-favicon": "~2.5.0"
 }
}

When pushed up to Heroku, this code tells Heroku that your application uses the lat-
est minor version of Node 11 and the latest minor version of npm 6.

CREATING A PROCFILE

The package.json file tells Heroku that the application is a Node application but
doesn’t tell it how to start it. For this task, you need a Procfile, which is used to declare
the process types used by your application and the commands used to start them.

 For Loc8r, you want a web process, and you want it to run the Node application. In
the root folder of the application, create a file called Procfile. (The name is case sensi-
tive and has no file extension.) Enter the following line in the Procfile:

web: npm start

When pushed up to Heroku, this file tells Heroku that the application needs a web
process and that it should run npm start.

TESTING IT LOCALLY WITH HEROKU LOCAL

The Heroku CLI comes with a utility called Heroku Local. You can use this utility to
verify your setup and run your application locally before pushing the application up
to Heroku. If the application is currently running, stop it by pressing Ctrl-C in the ter-
minal window that’s running the process. Then, in the terminal window, make sure
you’re in your application folder, and enter the following command:

$ heroku local

If all is well with the setup, this command starts the application running on localhost
again, but this time on a different port: 5000. The confirmation you get in terminal
should be along these lines:

Listing 3.8 Adding an engines section to package.json

Adds an engines section to
package.json to tell Heroku
which platform your application
is on and which version to use

77Making it live on Heroku

16:09:02 web.1 | > loc8r@0.0.1 start /path/to/your/application/folder
16:09:02 web.1 | > node ./bin/www

You’ll probably also see the warning No ENV file found. This message is nothing to
worry about at this stage. If you fire up a browser and head over to localhost:5000
(note that the port is 5000 instead of 3000), you should see the application up and
running again.

 Now that you know the setup is working, it’s time to push your application up to
Heroku.

3.5.2 Pushing the site live using Git

Heroku uses Git as the deployment method. If you already use Git, you’ll love this
approach; if you haven’t, you may feel a bit apprehensive about it, because the world
of Git can be complex. But it doesn’t need to be, and when you get going, you’ll love
this approach too!

STORING THE APPLICATION IN GIT

The first action is storing the application in Git on your local machine. This process
involves the following three steps:

1 Initialize the application folder as a Git repository.
2 Tell Git which files you want to add to the repository.
3 Commit these changes to the repository.

This process may sound complex but isn’t. You need a single, short terminal com-
mand for each step. If the application is running locally, stop it in terminal (Ctrl-C).
Then, ensuring you’re still in the root folder of the application, stay in terminal, and
run the following commands:

$ git init
$ git add --all
$ git commit -m "First commit"

These three things together create a local Git repository containing the entire code-
base for the application. When you update the application later and want to push
some changes live, you’ll use the second two commands, with a different message, to
update the repository. Your local repository is ready. It’s time to create the Heroku
application.

CREATING THE HEROKU APPLICATION

This next step creates an application on Heroku as a remote Git repository of your
local repository. You do all this with a single terminal command:

$ heroku create

Initializes folder as a
local Git repository Adds everything in

folder to the repository

Commits changes to the
repository with a message

78 CHAPTER 3 Creating and setting up a MEAN project

You’ll see a confirmation in terminal of the URL that the application is on, the Git
repository address, and the name of the remote repository, as in this example:

https://pure-temple-67771.herokuapp.com/ | git@heroku.com:pure-temple-
67771.git

Git remote heroku added

If you log in to your Heroku account in a browser, you’ll also see that the application
exists there. Now that you have a place on Heroku for the application, the next step is
pushing the application code up.

DEPLOYING THE APPLICATION TO HEROKU

You have the application stored in a local Git repository, and you’ve created a new
remote repository on Heroku. The remote repository is empty, so you need to push
the contents of your local repository to the heroku remote repository.

 If you don’t know Git, there’s a single command for this purpose, which has the
following construct:

This command pushes the contents of your local Git repository to the heroku remote
repository. Currently, you only have a single branch in your repository—the master
branch—so that’s what you’ll push to Heroku. See the sidebar “What are Git
branches?” for more information on Git branches.

 When you run this command, terminal displays a load of log messages as it goes
through the process, eventually showing (about five lines from the end) a confirma-
tion that the application has been deployed to Heroku. This confirmation is some-
thing like the following except that, of course, you’ll have a different URL:

http://pure-temple-67771.herokuapp.com deployed to Heroku

Target repository name

Git command Branch name

What are Git branches?
If you work on the same version of the code and push it up to a remote repository like
Heroku or GitHub periodically, you’re working on the master branch. This process is
absolutely fine for linear development with one developer. If you have multiple devel-
opers, however, or your application is already published, you don’t want to be doing
your development on the master branch. Instead, you start a new branch from the
master code in which you can continue development, add fixes, or build a new fea-
ture. When work on a branch is complete, it can be merged back into the master
branch.

79Making it live on Heroku

ABOUT WEB DYNOS ON HEROKU

Heroku uses the concept of dynos for running and scaling an application. The more
dynos you have, the more system resources and processes you have available to your
application. Adding more dynos when your application gets bigger and more popular
is easy.

 Heroku also has a great free tier, which is perfect for application prototyping and
building a proof of concept. You get one web dyno free with each application, which is
more than adequate for your purposes here. If you have an application that needs
more resources, you can always log in to your account and pay for more.

 In the following section, you’ll check out the live URL.

VIEWING THE APPLICATION ON A LIVE URL
Everything is in place, and the application is live on the internet! You can see it by typ-
ing the URL given to you in the confirmation, via your account on the Heroku web-
site, or by using the following terminal command:

$ heroku open

This command launches the application in your default browser, and you should see
something like figure 3.10.

Your URL will be different, of course, and within Heroku, you can change it to use
your domain name instead of the address it gave you. In the application settings on
the Heroku website, you can change it to the more meaningful subdomain hero-
kuapp.com.

 Having your prototype on an accessible URL is handy for cross-browser and cross-
device testing, as well as for sending it to colleagues and partners.

Figure 3.10 MVC Express application running on a live URL

80 CHAPTER 3 Creating and setting up a MEAN project

A SIMPLE UPDATE PROCESS

Now that the Heroku application is set up, updating it is easy. Every time you want to
push some new changes through, you need three terminal commands:

$ git add --all
$ git commit -m "Commit message here"
$ git push heroku master

That’s all there is to it, for now at least. Things may get a bit more complex if you have
multiple developers and branches to deal with, but the process of pushing the code to
Heroku using Git remains the same.

 In chapter 4, you’ll get to know Express even more when you build out a prototype
of the Loc8r application.

Summary
In this chapter, you learned

 How to create a new Express application
 How to manage application dependencies with npm and the package.json file
 How a standard Express project can be changed to meet an MVC approach to

architecture
 How routes and controllers fit together
 The simplest way to publish an Express application live to Heroku using Git

Adds all changes to the
local Git repository Commits changes to the local

repository with a useful message

Pushes changes to the
Heroku repository

81

Building a static site
with Node and Express

By the end of chapter 3, you should have had an Express application running, set
up in an MVC way, with Bootstrap included to help with building page layouts. Your
next step is building on this base, creating a static site that you can click through.
This step is critical in putting together any site or application. Even if you’ve been
given a design or some wireframes to work from, there’s no substitute for rapidly
creating a realistic prototype that you can use in the browser. Something always
comes to light in terms of layout or usability that you hadn’t noticed before. From
this static prototype, you’ll take the data out from the views and put it into the con-
trollers. By the end of this chapter, you’ll have intelligent views that can display data
passed to them and controllers passing hardcoded data to the views.

This chapter covers
 Prototyping an application by building a static version

 Defining routes for application URLs

 Creating views in Express by using Pug and Bootstrap

 Using controllers in Express to tie routes to views

 Passing data from controllers to views

82 CHAPTER 4 Building a static site with Node and Express

In terms of building up the application architecture, this chapter focuses on the
Express application as shown in figure 4.1.

 Two main steps are accomplished in this chapter, so two versions of the source
code are available. The first version contains all the data in the views and represents
the application as it stands at the end of section 4.4. This code is available from the
chapter-04-views branch on GitHub.

 The second version has the data in the controllers, in the state in which the appli-
cation will be at the end of this chapter. This code is available from the chapter-04
branch on GitHub.

 To get one of these versions, use the following commands in a fresh folder in ter-
minal, remembering to specify the branch that you want:

$ git clone -b chapter-04 https://github.com/cliveharber/gettingMean-2.git
$ cd gettingMean2
$ npm install

Getting the source code
If you haven’t yet built the application from chapter 3, you can get the code from the
chapter-03 branch on GitHub at https://github.com/cliveharber/gettingMean-2. In a
fresh folder in terminal, enter the following commands to clone it and install the npm
module dependencies:

$ git clone -b chapter-03 https://github.com/cliveharber/

➥gettingMean-2.git
$ cd gettingMean-2

$ npm install

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API

Encapsulating
Express app

Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Building an app
in Express and
Node.js

Figure 4.1 Using Express and Node to build a static site for testing views

https://github.com/cliveharber/gettingMean-2

83Defining the routes in Express

If you want to run the Docker environment, see appendix B. Now you’re ready to get
back to Express.

4.1 Defining the routes in Express
In chapter 2 you planned the application and decided on the four pages you’re going
to build. You have a collection of Locations pages and a page in the Others collection,
as shown in figure 4.2.

Having a set of screens is great, but these screens need to relate to incoming URLs.
Before you do any coding, it’s a good idea to map out the links between screens and
URLs and to get a good standard in place. Take a look at table 4.1, which shows a sim-
ple mapping of the screens against URLs. These mappings will form the basis of the
routing for your application.

When somebody visits the homepage, for example, you want to show them a list of
places, but when somebody visits the /about URL path, you want to show them infor-
mation about Loc8r.

Table 4.1 Defining a URL path, or route, for each of the screens in the prototype

Collection Screen URL path

Locations List of locations (the homepage) /

Locations Location detail /location

Locations Location review form /location/review/new

Others About Loc8r /about

List page

About page

Details page Add Review page

Locations

Others

Figure 4.2 Collections of screens you’ll
build for the Loc8r application

84 CHAPTER 4 Building a static site with Node and Express

4.1.1 Different controller files for different collections

In chapter 3, you moved any sense of controller logic out of the route definitions and
into an external file. Looking to the future, you know that your application will grow,
and you don’t want to have all the controllers in one file. A logical starting point for
splitting them up is dividing them by collections.

 Looking at the collections you’ve decided on, you decide to split the controllers into
Locations and Others. To see how this approach might work from a file-architecture
point of view, you can sketch something like figure 4.3. Here, the application includes
the routes file, which in turn includes multiple controller files, each named according
to the relevant collection.

You have a single route file, as well as one controller file for each logical collection of
screens. This setup is designed to help you organize your code in line with how your
application is organized. You’ll look at the controllers shortly, but first, you’ll deal with
the routes.

 The time for planning is over; now it’s time for action! Head back to your develop-
ment environment and open the application. You’ll start by working in the routes file
index.js.

REQUIRING THE CONTROLLER FILES

As shown in figure 4.3, you want to reference two controller files in this routes file.
You haven’t created these controller files yet; you’ll do that shortly.

 These files will be called locations.js and others.js. They will be saved in app_
server/controllers. In index.js you’ll require both of these files and assign each to a
relevant variable name, as shown in the following listing.

app.js index.js

others.js

locations.js

Application Routes Controllers

Figure 4.3 Proposed file architecture for routes and controllers in
your application

85Building basic controllers

const express = require('express');
const router = express.Router();
const ctrlLocations = require('../controllers/locations');
const ctrlOthers = require('../controllers/others');

Now you have two variables that you can reference in the route definitions, containing
different collections of routes.

SETTING UP THE ROUTES

In index.js, you need to have the routes for the three screens in the Locations collec-
tion and the About page in the Others collection. Each route will also need a reference
to a controller. Remember that routes serve as a mapping service, taking the URL of an
incoming request and mapping it to a specific piece of application functionality.

 From table 4.1, you already know which paths you want to map, so you need to put
everything together into the routes/index.js file. What you need to have in the file is
shown in entirety in the following listing.

const express = require('express');
const router = express.Router();
const ctrlLocations =

require('../controllers/locations');
const ctrlOthers = require('../controllers/others');

/* Locations pages */
router.get('/', ctrlLocations.homelist);
router.get('/location', ctrlLocations.locationInfo);
router.get('/location/review/new', ctrlLocations.addReview);

/* Other pages */
router.get('/about', ctrlOthers.about);

module.exports = router;

This routing file maps the defined URLs to some specific controllers, although you
haven’t created those yet. You’ll take care of that task in the following section.

4.2 Building basic controllers
At this point, you’ll keep the controllers basic so that your application will run, and
you can test the URLs and routing.

4.2.1 Setting up controllers

You currently have one file: the main.js file in the controllers folder (in the app_server
folder), which has a single function that’s controlling the homepage. This function is
shown in the following code snippet:

Listing 4.1 Requiring the controller files in app_server/routes/index.js

Listing 4.2 Defining the routes and mapping them to controllers

Replaces existing
ctrlMain reference
with two new
requires

Requires
controller files

Defines location
routes and maps
them to controller
functions

Defines other
routes

86 CHAPTER 4 Building a static site with Node and Express

/* GET 'home' page */
const index = (req, res) => {
 res.render('index', { title: 'Express' });
};

You don’t want a “main” controller file anymore, but you can use this one as a tem-
plate. Start by renaming this file others.js.

ADDING THE OTHERS CONTROLLERS

Recall from listing 4.2 that you want one controller in others.js called about. Rename
the existing index controller about; keep the same view template for now; and update
the title property to something relevant. This approach makes it easy to test whether
the route is working as expected. The following listing shows the full content of the
others.js controller file after these little changes.

/* GET 'about' page */
const about = (req, res) => {
 res.render('index', { title: 'About' });
};
module.exports = {
 about
};

That’s the first controller done, but the application still won’t work, as there aren’t any
controllers for the Locations routes yet.

ADDING THE LOCATIONS CONTROLLERS

Adding the controllers for the Locations routes is going to be pretty much the same
process. In the routes file, you specified the name of the controller file to look for and
the name of the three controller functions.

 In the controllers folder, create a file called locations.js, and create and export
three basic controller functions: homelist, locationInfo, and addReview. The follow-
ing listing shows how this file should look.

/* GET 'home' page */
const homelist = (req, res) => {
 res.render('index', { title: 'Home' });
};

/* GET 'Location info' page */
const locationInfo = (req, res) => {
 res.render('index', { title: 'Location info' });
};

/* GET 'Add review' page */
const addReview = (req, res) => {
 res.render('index', { title: 'Add review' });
};

Listing 4.3 Others controller file

Listing 4.4 Locations controller file

Defines the route, using the
same view template but
changing the title to About

Updates the export to
reflect the name change

87Building basic controllers

module.exports = {
 homelist,
 locationInfo,
 addReview
};

Everything is in place, so you’re ready to test it.

4.2.2 Testing the controllers and routes

Now that the routes and basic controllers are in place, you should be able to start and
run the application. If you don’t already have it running with nodemon, head to the
root folder of the application in the terminal and start it:

$ nodemon

All being well, this run should give you no errors, meaning that the routes are point-
ing to controllers. At this point, you can head over to your browser and check each
of the four routes you’ve created, such as localhost:3000 for the homepage and

Troubleshooting
If you’re having problems restarting the application at this point, the main thing to
check is that all the files, functions, and references are named correctly. Look at the
error messages you’re getting in the terminal window to see whether they give you
any clues. Some messages are more helpful than others. Take a look at the following
possible error and pick out the parts that are interesting to you:

module.js:340
 throw err;
 ^
Error: Cannot find module '../controllers/other'
 at Function.Module._resolveFilename (module.js:338:15)
 at Function.Module._load (module.js:280:25)
 at Module.require (module.js:364:17)
 at require (module.js:380:17)
 at module.exports (/Users/sholmes/Dropbox/

➥Manning/GettingMEAN/Code/Loc8r/

 ➥BookCode/routes/index.js:2:3)
 at Object.<anonymous> (/Users/sholmes/Dropbox/

➥Manning/GettingMEAN/Code/Loc8r/

 ➥BookCode/app.js:26:20)
 at Module._compile (module.js:456:26)
 at Object.Module._extensions..js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)

First, you see that a module called other can’t be found B. Farther down the stack
trace, you see the file where the error originated C. Open the routes/index.js file,
and you’ll discover that you wrote require('../controllers/other'), when the
file you want to require is others.js. To fix the problem, correct the reference by chang-
ing it to require('../controllers/others').

B Clue 1: A module
can’t be found.

C Clue 2: A file-throwing
error occurred.

88 CHAPTER 4 Building a static site with Node and Express

localhost:3000/location for the location information page. Because you changed the
data being sent to the view template by each of the controllers, you can easily see that
each one is running correctly—the title and heading should be different on each
page. Figure 4.4 shows a collection of screenshots of the newly created routes and con-
trollers. You can see that each route is getting unique content, so you know that the
routing and controller setup has worked.

The next stage in this prototyping process is putting some HTML, layout, and content
on each screen. You’ll do this by using views.

4.3 Creating some views
When you have your empty pages, paths, and routes sorted out, it’s time to get some
content and layout into your application. This step is where you bring the application
to life and start to see your idea become reality. For this step, the technologies that
you’ll use are Pug and Bootstrap. Pug is the template engine you’re using in Express
(although you can use others if you prefer), and Bootstrap is a front-end layout frame-
work that makes it easy to build a responsive website that looks different on desktop
and mobile devices.

4.3.1 A look at Bootstrap

Before getting started, let’s take a quick look at Bootstrap. We won’t go into all the
details about Bootstrap and everything it can do, but it’s useful for you to see some of
the key concepts before you try to throw it into a template file.

 Bootstrap uses a 12-column grid. No matter the size of the display you’re using,
there will always be these 12 columns. On a phone, each column is narrow, and on a

Figure 4.4 Screenshots of the four routes created so far, with different heading text
coming through from the specific controllers associated with each route

89Creating some views

large external monitor, each column is wide. The fundamental concept of Bootstrap is
that you can define how many columns an element uses, and this number can be dif-
ferent for different screen sizes.

 Bootstrap has various CSS references that let you target up to five different pixel-
width breakpoints for your layouts. These breakpoints are noted in table 4.2, along
with the example device that each size targets.

To define the width of an element, you combine a CSS reference from table 4.2 with
the number of columns you want it to span. A class denoting a column is constructed
like this:

This class of col-sm-6 makes the element it’s applied to take up six columns on
screens of size sm and larger. On tablets, laptops, and monitors, this column will take
up half the available width.

 To get the responsive side of things to work, you can apply multiple classes to a single
element. If you wanted a div to span the entire width or the screen on phones but only
half the width on tablets and larger devices, you could use the following code snippet:

<div class="col-12 col-md-6"></div>

The col-12 class tells the layout to use 12 columns on extra-small devices, and the
col-md-6 class tells the layout to use 6 columns for medium devices and larger. Figure
4.5 illustrates the effect of this class on different devices if you have two of them on the
page, one after another, like this:

<div class="col-12 col-md-6">DIV ONE</div>
<div class="col-12 col-md-6">DIV TWO</div>

Table 4.2 Breakpoints that Bootstrap sets to target different types of devices

Breakpoint name CSS reference Example device Width

Extra-small devices (none) Small phones Fewer than 576

Small devices sm Smartphones 576 or more

Medium devices md Tablets 768 or more

Large devices lg Laptops 992 or more

Extra-large devices xl External monitors 1,200 or more

Minimum target
break point

Denotes that this
element will act
as a column

Number of
columns to
take up

90 CHAPTER 4 Building a static site with Node and Express

This approach allows for a semantic way of putting together responsive templates, and
you’ll rely heavily on it for the Loc8r pages. Speaking of which, you’ll make a start in
the next section.

4.3.2 Setting up the HTML framework with Pug templates and
Bootstrap

The pages you’ll have in the application have some common requirements. At the top
of each page, you’ll want a navigation bar and logo; at the bottom of the page, you’ll
have a copyright notice in the footer; and you’ll have a content area in the middle.
What you’re aiming for is something like figure 4.6. This framework for a layout is sim-
ple, but it suits your needs. It provides a consistent look and feel while allowing for dif-
ferent layouts to go in the middle.

As you saw in chapter 3, Pug templates use the concept of extendable layouts,
enabling you to define this type of repeatable structure once in a layout file. In the lay-
out file, you can specify which parts can be extended; when you have this layout file set
up, you can extend it as many times as you want. Creating the framework in a layout
file means that you only have to do it once, and you can maintain it in only one place.

DIV ONE

Desktop Phone

DIV ONE

DIV TWO

DIV TWO

Figure 4.5 Bootstrap’s
responsive column system on a
desktop and mobile device. CSS
classes are used to determine the
number of columns (out of 12) that
each element should take up at
different screen resolutions.

Navigation

Changeable content area

Footer

Figure 4.6 Basic structure of the reusable
layout, comprising a standard navigation
bar and footer with an extendable,
changeable content area in between

91Creating some views

LOOKING AT THE LAYOUT

To build the common framework, you’ll work mainly with the layout.pug file in the
app_server/views folder. This file is minimal and looks like this code snippet:

doctype html
html
 head
 meta(name='viewport', content='width=device-width, initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/stylesheets/bootstrap.min.css')
 link(rel='stylesheet', href='/stylesheets/all.min.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content
 script(src='https://code.jquery.com/jquery-3.3.1.slim.min.js',
 ➥integrity='sha384
 ➥q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo',
 ➥crossorigin=anonymous)
 script(src=https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/
 ➥umd/popper.min.js,
 ➥integrity='sha384
 ➥ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49',
 ➥crossorigin='anonymous')
 script(src='/javascripts/bootstrap.min.js')

There isn’t any HTML content in the body area yet—only a single extendable block
called content and a couple of script references. You want to keep all this but add a
navigation section above the content block and a footer below it.

BUILDING THE NAVIGATION

Bootstrap offers a collection of elements and classes that you can use to create a sticky
navigation bar that’s fixed to the top and collapses the options into a drop-down
menu on mobile devices. We won’t explore the details of Bootstrap’s CSS classes here.
All you need to do is grab the example code from the Bootstrap website, tweak it a lit-
tle, and update it with the correct links.

 In the navigation, you want to have

 The Loc8r logo linking to the homepage
 An About link on the left, pointing to the /about URL page

The code that does these things is in the following snippet and can be placed in the
layout.pug file above the block content line:

nav.navbar.fixed-top.navbar-expand-md.navbar-light
 .container
 a.navbar-brand(href='/') Loc8r
 button.navbar-toggler(type='button', data-toggle='collapse',
 ➥data-target='#navbarMain')
 span.navbar-toggler-icon
 #navbarMain.navbar-collapse.collapse
 ul.navbar-nav.mr-auto
 li.nav-item
 a.nav-link(href='/about/') About

Sets up a Bootstrap navigation bar
fixed to the top of the window

Adds a
brand-

styled link
to the

homepage
Sets up collapsing navigation for
smaller screen resolutions

Adds an About link to
the left side of the bar

92 CHAPTER 4 Building a static site with Node and Express

If you pop that code in and run it, you’ll notice that the navigation now overlays the
page heading. You’ll fix this problem when you build the layouts for the content area
in sections 4.3.3 and 4.4, so it’s nothing to worry about.

TIP Remember that Pug doesn’t include any HTML tags and that correct
indentation is critical for providing the expected outcome.

That’s it for the navigation bar, which is all you need for a while. If Pug and Bootstrap
are new to you, it may take a little while to get used to the approach and the syntax,
but as you can see, you can achieve a lot with little code.

WRAPPING THE CONTENT

Working down the page from top to bottom, the next area is the content block. You
don’t have much to do with this block, as other Pug files decide the contents. As it
stands, though, the content block is anchored to the left margin and is uncon-
strained, meaning that it stretches the full width of any device.

 Addressing this situation is easy with Bootstrap. Still in layout.pug, wrap the
content block in a container div like so, remembering to ensure that the indentation
is correct:

.container
 block content

The div with a class of container is centered in the window and constrained to sensi-
ble maximum widths on large displays. The contents of a container div remains
aligned to the left as normal, though.

ADDING THE FOOTER

At the bottom of the page, you want to add a standard footer. You could add a bunch
of links in here, or terms and conditions, or a privacy policy. For now, to keep things
simple, you’ll add a copyright notice. As this change is going in the layout file, it’ll be
easy to update this notice across all the pages should you need to at a later date.

 The following code snippet shows all the code needed for your simple footer in
layout.pug:

footer
 .row
 .col-12
 small © Getting Mean - Simon Holmes/Clive Harber 2018

This code is placed inside the container div that holds the content block, so when
you add it, make sure that the footer line is at the same level of indentation as the
block content line.

ALL TOGETHER NOW

Now that the navigation bar, content area, and footer have been dealt with, you have
the complete layout file. The full code for layout.pug is shown in the following listing.

93Creating some views

doctype html
html
 head
 meta(name='viewport', content='width=device-width, initial-scale=1.0')
 title= title
 link(rel='stylesheet', href='/stylesheets/bootstrap.min.css')
 link(rel='stylesheet', href='/stylesheets/all.min.css')
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 nav.navbar.fixed-top.navbar-expand-md.navbar-light
 .container
 a.navbar-brand(href='/') Loc8r
 button.navbar-toggler(type='button', data-toggle='collapse',
 ➥data-target='#navbarMain')
 span.navbar-toggler-icon
 #navbarMain.navbar-collapse.collapse
 ul.navbar-nav.mr-auto
 li.nav-item
 a.nav-link(href='/about/') About

 .container.content
 block content

 footer
 .row
 .col-12
 small © Getting MEAN – Simon Holmes/Clive Harber 2018

 script(src='https://code.jquery.com/jquery-3.3.1.slim.min.js',
 ➥integrity='sha384-
 ➥q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo',
 ➥crossorigin='anonymous')
 script(src='https://cdnjs.cloudflare.com/ajax/libs/
 ➥popper.js/1.14.3/umd/popper.min.js' integrity='sha384- ZMP7rVo
 ➥]3mIykV+2+9J3UJ46jBk0WLaUAdn689a CwoqbBJiSnjAK/l8WvCWPIPm49',
 ➥crossorigin='anonymous')
 script(src='/javascripts/bootstrap.min.js')

That’s all it takes to create a responsive layout framework with Bootstrap, Pug, and
Express. If you’ve got everything in place, when you run the application, you should
see something like the screenshots in figure 4.7, depending on your device.

 You see that the navigation still overlays the content, but you’ll address that prob-
lem when you start looking at the content layouts. It’s a good indication that the navi-
gation is working as you want it to, though: you want the navigation to be ever present,
fixed to the top of the window. Also notice that Bootstrap has collapsed the navigation
into a drop-down menu on the smaller screen of the phone—a nice result for little
effort on your part.

TIP If you can’t access your development site on a phone, you can always try
resizing your browser window. All major web browsers allow you to emulate
various mobile devices and screen sizes through their built-in developer tools.

Listing 4.5 Final code for the layout framework in app_server/views/layout.pug

Starting layout
with a fixed
navigation bar

Simple copyright
footer in the same
container as the
content block

Extendable content
block is now wrapped in
a container div

https://developers.google.com/maps/documentation/javascript/get-api-key?utm_source=geoblog&utm_medium=social&utm_campaign=2016-geo-na-website-gmedia-blogs-us-blogPost&utm_content=TBC
https://developers.google.com/maps/documentation/javascript/get-api-key?utm_source=geoblog&utm_medium=social&utm_campaign=2016-geo-na-website-gmedia-blogs-us-blogPost&utm_content=TBC

94 CHAPTER 4 Building a static site with Node and Express

Now that the generic layout template is complete, it’s time to start building the actual
pages of your application.

4.3.3 Building a template

When you’re building templates, start with whichever one makes the most sense to
you. This template may be the most complicated or the simplest, or the first in the
main user journey. For Loc8r, a good place to start is the homepage, which is the
example we’ll go through in the most detail.

DEFINING A LAYOUT

The primary aim for the homepage is to display a list of locations. Each location needs
to have a name, an address, the distance away from the user, user ratings, and a facili-
ties list. You also want to add a header to the page and some text to put the list in con-
text, so that users know what they’re looking at when they visit.

 You may find it useful, as we do, to sketch a layout or two on a piece of paper or a
whiteboard. We find this sketch helpful for creating a starting point for the layout,
making sure that we’ve got all the pieces we need on a page without getting bogged
down in the technicalities of code. Figure 4.8 shows what you might sketch for the
homepage of Loc8r.

 You’ll see that there are two layouts: one for a desktop and one for a phone. It’s
worth making the distinction at this point, with your understanding of what Bootstrap
can do and how it works. This is the beginning of starting to think about response
design.

 At this stage, the layouts are by no means final, and you may well tweak and change
them as you build the code. But any journey is easier if you have a destination and a
map, which the sketch gives you. You can start your code off in the right direction.
The few minutes it takes to create a sketch can save you hours, if you find that you

Figure 4.7 The homepage after the layout template has been set up. Bootstrap automatically
collapsed the navigation on the small screen size of the phone. The navigation bar overlaps the
content, but that problem will be fixed when the content layouts are created.

95Creating some views

need to move parts around or even throw them out and start again. The process is
much easier with a sketch than with a load of code.

 Now that you have an idea of the layout and the pieces of content required, it’s
time to put everything together in a new template.

SETTING UP THE VIEW AND THE CONTROLLER

The first step is creating a new view file and linking it to the controller. In the app_
server/views folder, make a copy of the index.pug view, and save it in the same folder
as locations-list.pug. It’s best not to call the file homepage or something similar, as at
some point, you may change your mind about what should be displayed on the home-
page. This way, the name of the view clearly identifies it, and it can be used anywhere
without confusion.

 The second step is telling the controller for the homepage that you want to use this
new view. The controller for the homepage is in the locations.js file in app_server/con-
trollers. Update this file to change the view called by the homelist controller, as shown
in the following code snippet (modifications in bold):

const homelist = (req, res) => {
 res.render('locations-list', { title: 'Home' });
};

Now you’re ready to build the view template.

Navigation

Desktop Phone

Page header

Name 100m Slidebar
text

200m

250m

Address
Facilities

Name

Name

Footer

Multiple
locations

Address
Facilities

Navigation

Page header

Name 100m

200m

Address
Facilities

Name

Sidebar text

Footer

Address
Facilities

Multiple
locations

Figure 4.8 Desktop and mobile layout sketches for the homepage. Sketching the layouts for a page can
give you a quick idea of what you’re going to build without getting distracted by the intricacies of Adobe
Photoshop or the technicalities of code.

96 CHAPTER 4 Building a static site with Node and Express

CODING THE TEMPLATE: PAGE LAYOUT

When we write the code for layouts, we prefer to start with the big pieces and then
move toward the detail. As you extend the layout file, the navigation bar and footer
are already done, but you still have the page header, the main area for the list, and the
sidebar to consider.

 At this point, you need to take a first stab at how many of the 12 Bootstrap columns
you want each element to take up on different devices. The following code snippet
shows the layout of the three distinct areas of the Loc8r List page in locations-list.pug:

.row.banner
 .col-12
 h1 Loc8r
 small Find places to work with wifi near you!
.row
 .col-12.col-md-8
 p List area.
 .col-12.col-md-4
 p.lead Loc8r helps you find places to work when out and about.

You might go back and forth a bit, testing the columns at various resolutions until
you’re happy with them. Having device simulators can make this process easier, but a
simple method is to change the width of your browser window to force the different
Bootstrap breakpoints. When you’ve got something that you think is probably okay,
you can push it up to Heroku and test it for real on your phone or tablet.

CODING THE TEMPLATE: LOCATIONS LIST

Now that the containers for the homepage are defined, it’s time for the main area.
You have an idea of what you want here from the sketches you drew for the page lay-
out. Each place should show the name, address, rating, distance from the user, and
key facilities.

 Because you’re creating a clickable prototype, all the data will be hardcoded into
the template for now. This approach is the quickest way of putting a template together
and ensuring that you have the information you want displayed the way you want.
You’ll worry about the data side later. If you’re working from an existing data source
or have constraints on what data you can use, naturally you’ll have to bear those facts
in mind when creating the layouts.

 Again, getting a layout you’re happy with may take a bit of testing, but Pug and
Bootstrap working together make the process considerably easier than it might be.
The following code snippet shows what you might come up with for a single location
to replace the p List area placeholder in locations-list.pug:

.card
 .card-block

Page header that
fills the entire width
of the screen

Container for the list of locations,
spanning all 12 columns on extra-small
and small devices, and 8 columns on
medium devices and larger

Container for secondary or sidebar
information, spanning all 12 columns on

extra-small and small devices, and 4
columns on medium devices and larger

Creates a new Bootstrap card and
card block to wrap the content

97Creating some views

 h4
 a(href="/location") Starcups
 small
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 span.badge.badge-pill.badge-default.float-right 100m
 p.address 125 High Street, Reading, RG6 1PS
 .facilities
 span.badge.badge-warning Hot drinks
 span.badge.badge-warning Food
 span.badge.badge-warning Premium wifi

Once again, you can see how much you can achieve with relatively little effort and
code, all thanks to the combination of Pug and Bootstrap. Remember that some cus-
tom classes to help with styling are in the styles.css file in public/stylesheets, available
in the GitHub repo. Without these classes, your visuals will look much different. To
get an idea of what the preceding code snippet does, take a look at figure 4.9.

This section is set to go across the full width of the available area: 12 columns on all
devices. Remember, though, that this section is nested inside a responsive column, so
“full width” is the full width of the containing column, not necessarily that of the
browser viewport. This explanation will make more sense when you put everything
together and see the application in action.

CODING THE TEMPLATE: PUTTING IT TOGETHER

You have the layout of page elements, the structure of the list area, and some hard-
coded data, so it’s time to see what everything looks like. To get a better feel for the
layout in the browser, it’s a good idea to duplicate and modify the List page so that sev-
eral locations show up. The code, including a single location for brevity, is shown in
the following listing.

extends layout

block content
 .row.banner
 .col-12
 h1 Loc8r
 small Find places to work with wifi near you!

Listing 4.6 Complete template for app_server/views/locations-list.pug

Name of the listing and a
link to the location

Uses Font Awesome icons
to output a star rating Uses Bootstrap’s

badge helper class
to display the
distance away

Address of
the location

Facilities of the location,
output using Bootstrap’s
badge classes

Figure 4.9 Onscreen rendering of
a single location on the List page

Starts header area

98 CHAPTER 4 Building a static site with Node and Express

 .row
 .col-12.col-md-8
 .card
 .card-block
 h4
 a(href="/location") Starcups
 small
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 span.badge.badge-pill.badge-default.float-right 100m
 p.address 125 High Street, Reading, RG6 1PS
 p.facilities
 span.badge.badge-warning Hot drinks
 span.badge.badge-warning Food
 span.badge.badge-warning Premium wifi
 .col-12.col-md-4
 p.lead Looking for wifi and a seat? Loc8r helps you find places to
 ➥work when out and about. Perhaps with coffee, cake or a pint?
 ➥Let Loc8r help you find the place you're looking for.

When you’ve got this code in place, you’ve got the homepage listing template done. If
you run the application and head to localhost:3000, you should see something like fig-
ure 4.10.

 See how the layout changes between a desktop view and a mobile view? That
change is thanks to Bootstrap’s responsive framework and your choice of CSS classes.
Scrolling down in the mobile view, you see the sidebar text content between the main
list and the footer. On the smaller screen, it’s more important to display the list in the
available space than the text.

Starts responsive main
listing column section

An individual listing;
duplicates this section

to create a list of
multiple items

Sets up sidebar
area and
populates it
with some
content

Figure 4.10 Responsive template for the homepage in action on different devices

99Adding the rest of the views

 Great; you created got a responsive layout for the homepage by using Pug and
Bootstrap in Express and Node. Next, you’ll add the other views.

4.4 Adding the rest of the views
The Locations List page is built, so you need to create the other pages to give users a
site that they can click through. In this section, we’ll cover adding these pages:

 Details
 Add Review
 About

We won’t go through the process in much detail for all of them, though—only a bit of
explanation, the code, and the output. You can always download the source code from
GitHub if you prefer.

4.4.1 Details page

The logical step, and arguably the next-most-important page to look at, is the Details
page for an individual location.

 This page needs to display all the information about a location, including

 Name
 Address
 Rating
 Opening hours
 Facilities
 Location map
 Reviews, each with

– Rating
– Reviewer name
– Review date
– Review text
– Button to add a new review
– Text to set the context of the page

That’s quite a lot of information! This template is the single most complicated one in
your application.

PREPARATION

The first step is updating the controller for this page to use a different view. Look for
the locationInfo controller in the locations.js file in app_server/controllers. Change
the name of the view to location-info, as shown in the following code snippet:

const locationInfo = (req, res) => {
 res.render('location-info', { title: 'Location info' });
};

100 CHAPTER 4 Building a static site with Node and Express

The next step is obtaining a key to access the Google Maps API. To get your keys, you
need to sign up for an account, if you don’t already have one, at the following address:

https://developers.google.com/maps/documentation/javascript/
get-api-key?utm_source=geoblog&utm_medium=social&utm_campaign=
2016-geo-na-website-gmedia-blogs-us-blogPost&utm_content=TBC

Make sure that you keep your API key safe; you’ll need it for the next listing.
 Remember, if you run the application at this point, it won’t work, because Express

can’t find the view template—not surprising, as you haven’t created it yet. That’s the
next part.

THE VIEW

Create a new file in app_server/views and save it as location-info.pug. The content of
this file is shown in listing 4.7, which is the largest listing in this book. Remember that
for the purposes of this stage in the prototype development, you’re generating click-
able pages with the data hardcoded directly into them.

extends layout

block content
 .row.banner
 .col-12
 h1 Starcups
 .row
 .col-12.col-lg-9
 .row
 .col-12.col-md-6
 p.rating
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 p 125 High Street, Reading, RG6 1PS
 .card.card-primary
 .card-block
 h2.card-title Opening hours
 p.card-text Monday - Friday : 7:00am - 7:00pm
 p.card-text Saturday : 8:00am - 5:00pm
 p.card-text Sunday : closed
 .card.card-primary
 .card-block
 h2.card-title Facilities
 span.badge.badge-warning
 i.fa.fa-check
 | Hot drinks
 |
 span.badge.badge-warning
 i.fa.fa-check
 | Food

Listing 4.7 View for the Details page, app_server/views/location-info.pug

Starts with page header

Sets up nested responsive
columns needed for the
template

One of several
Bootstrap card
components used to
define information
areas—in this case,
opening hours

The entity is being
used because Pug doesn’t
always understand
whitespace and has a habit
of trimming it away.

101Adding the rest of the views

 |
 span.badge.badge-warning
 i.fa.fa-check
 | Premium wifi
 |
 .col-12.col-md-6.location-map
 .card.card-primary
 .card-block
 h2.card-title Location map
 img.img-fluid.rounded(src=

➥'http://maps.googleapis.com/maps/api/..............

➥staticmap?center=51.455041,-0.9690884&zoom=17&size=400x350

➥&sensor=false&markers=51.455041,-0.9690884&scale=2&key=<API Key>')
 .row
 .col-12
 .card.card-primary.review-card
 .card-block
 a.btn.btn-primary.float-right(href='/location/review/new')
 ➥Add review
 h2.card-title Customer reviews
 .row.review
 .col-12.no-gutters.review-header
 span.rating
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 span.review Author Simon Holmes
 small.review Timestamp 16 February 2017
 .col-12
 p What a great place.
 .row.review
 .col-12.no-gutters.review-header
 span.rating
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 span.reviewAuthor Charlie Chaplin
 small.reviewTimestamp 14 February 2017
 .col-12
 p It was okay. Coffee wasn't great.
 .col-12.col-lg-3
 p.lead
 | Starcups is on Loc8r because it has accessible wifi and space to
 ➥sit down with your laptop and get some work done.
 p
 | If you've been and you like it - or if you don't - please leave
 ➥a review to help other people just like you.

That’s a long template, and you’ll look at how to shorten it soon. But the page itself is
complex, containing a lot of information and a few nested responsive columns. Imag-
ine how much longer it would be if it were written in full HTML!

Uses a static Google Maps image,
including coordinates in the query

string 51.455041,-0.9690884.
Remember to replace the

<APIKey> with the Google API
Key that you obtained earlier.

Creates a link to the Add Review
page, using Bootstrap’s button
helper class

Final responsive
column for sidebar
contextual
information

102 CHAPTER 4 Building a static site with Node and Express

 Make sure that you have the full version of style.css from GitHub included, as
you’re using it to add a bit of life to the standard Bootstrap theme.

 With that all done, the Details page layout is complete; you can head over to local-
host:3000/location to check it out. Figure 4.11 shows how this layout looks in a
browser and on a mobile device.

The next step in this user journey is the Add Review page, which has much simpler
requirements.

4.4.2 Adding the Review page

This page is straightforward, holding a form that contains the user’s name and a cou-
ple of input fields for the rating and review.

 The first step is updating the controller to reference a new view. In app_
server/controllers/locations.js, change the addReview controller to use the new view
location-review-form, as in the following code snippet:

const addReview = (req, res) => {
 res.render('location-review-form', { title: 'Add review' });
};

The second step is creating the view itself. In the views folder app_server/views, create
a new file called location-review-form.pug. Because this page is designed to be a click-
able prototype, you’re not going to be posting the form data anywhere, so the aim is
to get the action to redirect to the Details page that displays the review data. In the
form, then, set the action to /location and the method to get. Later, you’ll change
this to a post method, but this form will give you the functionality you need for now.
The entire code for the review form page is shown in the following listing.

Figure 4.11 Details page layout on desktop and mobile devices

103Adding the rest of the views

extends layout

block content
 .row.banner
 .col-12
 h1 Review Starcups
 .row
 .col-12.col-md-8
 form(action="/location", method="get", role="form")
 .form-group.row
 label.col-10.col-sm-2.col-form-label(for="name") Name
 .col-12.col-sm-10
 input#name.form-control(name="name")
 .form-group.row
 label.col-10.col-sm-2.col-form-label(for="rating") Rating
 .col-12.col-sm-2
 select#rating.form-control.input-sm(name="rating")
 option 5
 option 4
 option 3
 option 2
 option 1
 .form-group.row
 label.col-sm-2.col-form-label(for="review") Review
 .col-sm-10
 textarea#review.form-control(name="review", rows="5")
 button.btn.btn-primary.float-right Add my review
 .col-12.col-md-4

Bootstrap has a lot of helper classes for dealing with forms, which are evident in listing
4.8. But the page is simple, and when you run it, it should look like figure 4.12.

 The Add Review page marks the end of the user’s journey through the Locations
collection of screens. There’s only the About page left to do.

Listing 4.8 View for the Add Review page, app_server/views/location-review-form.pug

Sets the form action
to /location, and the

method to get

Input field for
reviewer to
leave their name

Drop-down select
box for rating 1 to 5

Text area for the
text content of

the review Submit button
for the form

Figure 4.12 Complete Add Review page in desktop and mobile view

104 CHAPTER 4 Building a static site with Node and Express

4.4.3 Adding the About page

The final page of the static prototype is the About page, which has a header and some
content—nothing complicated. The layout may be useful for other pages farther
down the line, such as a privacy policy, or a terms and conditions page, so you’re best
off creating a generic, reusable view.

 The controller for the About page is in the others.js file in app_server/controllers.
You’re looking for the controller called about, and you want to change the name of
the view to generic-text, as in the following code snippet:

const about = (req, res) => {
 res.render('generic-text', { title: 'About' });
};

Next, create the view generic-text.pug in app_server/views. This template is small
and should look like the following listing.

extends layout
block content
 .row.banner
 .col-12
 h1= title
 .row
 .col-12.col-lg-8
 p
 | Loc8r was created to help people find places to sit down and
 ➥get a bit of work done.
 |

 | Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc
 ➥sed lorem ac nisi dignissim accumsan.

This is a simple layout. Don’t worry about including page-specific content in a generic
view at this point; you’ll take that task on soon and make the page reusable. For the
purposes of finishing the clickable static prototype, it’s okay.

 You’ll probably want some additional lines so that the page appears to have real
content. Notice that the lines starting with the pipe character (|)can contain HTML
tags if you want them to. Figure 4.13 shows how the page might look in a browser with
a bit more content.

 That’s the last of the four pages you need for the static site. You can push this page
up to Heroku and have people visit the URL and click around. If you’ve forgotten
how, the following code snippet shows the terminal commands you need, assuming
that you’ve already set up Heroku. In terminal, you need to be in the root folder of
the application. Then issue these commands:

$ git add --all
$ git commit –m "Adding the view templates"
$ git push heroku master

Listing 4.9 View for text-only pages: app_server/views/generic-text.pug

Use | to create lines of plain
text within a <p> tag.

105Adding the rest of the views

What’s next? The routes, views, and controllers are set up for a static site that you can
click through, and you’ve pushed it up to Heroku so that others can also try it. In
some ways, you’ve reached the goal for this stage; you can stop here while you play
with the journeys and get feedback. This stage is definitely the easiest point in the pro-
cess to make large, sweeping changes.

 If you definitely plan to build an Angular SPA, and assuming that you’re happy
with what you’ve done to this point, you probably wouldn’t go any further with creat-
ing a static prototype. Instead, you’d start to create an application in Angular.

 But the next step you’ll take now continues down the road of creating the Express
application. So while keeping with the static site, you’ll remove the data from the views
and put it in the controllers.

Figure 4.13 Generic text template rendering the About page

Get the source code
The source code for the application as it stands at this point is available in the chapter-
04-views branch on GitHub. In a fresh folder in terminal, enter the following com-
mands to clone it and install the npm module dependencies:

$ git clone -b chapter-04-views

➥https://github.com/cliveharber/gettingMean-2.git
$ cd gettingMean-2

$ npm install

106 CHAPTER 4 Building a static site with Node and Express

4.5 Taking the data out of the views
and making them smarter
At the moment, all the content and data are held in the views. This arrangement is
perfect for testing stuff and moving things around, but you need to move forward. A
goal of the MVC architecture is to have views without content or data. The views
should be fed data that they present to the end user while being agnostic about the
data they’re fed. The views need a data structure, but what’s inside the data doesn’t
matter to the view itself.

 Consider the MVC architecture: the model holds the data; the controller processes
the data; and, finally, the view renders the processed data. You’re not dealing with the
model yet; you’ll do that starting in chapter 5. For now, you’re working with the views
and controllers.

 To make the views smarter and do what they’re intended to do, you need to take
the data and content out of the views and put it in the controllers. Figure 4.14 illus-
trates the data flow in an MVC architecture and the changes you want to make.

 Making these changes now allows you to finalize the views so that you’re ready for
the next step. As a bonus, you’ll start thinking about how the processed data should
look in the controllers. Rather than starting with a data structure, start with the ideal
front end and slowly reverse-engineer the data back through the MVC steps as your
understanding of the requirements solidifies.

 How are you going to do these things? Starting with the homepage, you’ll take every
piece of content out of the Pug view. You’ll update the Pug file to contain variables in

Data flow in an MVC pattern

Holds the
data

Processes
the data

Model

Data flow

Controller

Data flow

View

The data is currently in the view.
Move it back a step to the controller
and give the view processed data.

Renders the
processed data

Figure 4.14 How the data should flow in an MVC pattern, from the model through the controller to
the view. At this point in the prototype, your data is in the view, but you want to move it a step back
into the controller.

107Taking the data out of the views and making them smarter

place of the content and put the content as variables in the controller. Then the con-
troller can pass these values into the view. The result should look the same in the
browser, and users shouldn’t be able to spot a difference. The roles of the various parts
and the movement and use of data are shown in figure 4.15.

 At the end of this stage, the data is still hardcoded, but in the controllers instead of
the views. The views are now smarter and able to accept and display whatever data is
sent to them (provided that the data is in the correct format, of course).

4.5.1 Moving data from the view to the controller

You’ll start with the homepage and move the data out of the locations-list.pug
view into the homelist function in the locations.js controllers file. Start at the top with
something simple: the page header. The following code snippet shows the page
header section of the locations-list.pug view, which has two pieces of content:

.row.banner
 .col-12
 h1 Loc8r
 small Find places to work with wifi near you!

These two pieces of content are the first that you’ll move into the controller. The
homepage controller currently looks like the following:

const homelist = (req, res) => {
 res.render('locations-list', { title: 'Home' });
};

This controller is already sending one piece of data to the view. Remember that the sec-
ond parameter in the render function is a JavaScript object containing the data to send
to the view. Here, the homelist controller sends the data object { title: 'Home' } to
the view. This object is being used by the layout file to put the string Home in the HTML
<title>, which isn’t necessarily the best choice of text.

HTML returned to browser

Controller

Specifies view
Defines variables
Assigns data to
variables

HTML layout
References to
variables

variables

The controller passes
data to the view
as variables.

The view uses data
to generate final
HTML output.

View

Figure 4.15 When the controller specifies the data, it passes the data to the view as
variables; the view uses that data to generate the final HTML that’s delivered to the user.

Large-font
page title

Smaller-font
strapline for page

108 CHAPTER 4 Building a static site with Node and Express

UPDATING THE CONTROLLER

Change the title to something more appropriate for the page, and also add the two
data items for the page header. Make these changes to the controller first, as follows
(modifications in bold):

const homelist = (req, res) => {
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 }
 });
};

For neatness and future manageability, the title and the strapline are grouped within a
pageHeader object. This approach is a good habit to get into and will make the con-
trollers easier to update and maintain.

UPDATING THE VIEW

Now that the controller is passing these pieces of data to the view, you can update the
view to reference them in place of the hardcoded content. Nested data items like
these are referenced using dot syntax, as you do when getting data out of objects in
JavaScript. To reference the page header strapline in the locations-list.pug view,
use pageHeader.strapline. The following code snippet shows the page header sec-
tion of the view (modifications in bold):

.row.banner
 .col-12
 h1= pageHeader.title
 small

 #{pageHeader.strapline}

The code outputs pageHeader.title and pageHeader.strapline in the relevant places
in the view. See the sidebar “Referencing data in Pug templates” for more details.

New nested
pageHeader object
containing properties
for the title and the
strapline of the page

= signifies that the
following content is
buffered code—in this
case, a JavaScript object.

#{} delimiters are used
to insert data into a
specific place, such as
part of a piece of text.

Referencing data in Pug templates
There are two key syntaxes for referencing data in Pug templates. The first syntax is
called interpolation, and it’s typically used to insert data into the middle of some
other content. Interpolated data is defined by the opening delimiter #{ and the end
delimiter }. You normally use it like this:

h1 Welcome to #{pageHeader.title}

If your data contains HTML, this is escaped for security reasons; end users won’t see
any HTML tags displayed as text, and the browser won’t interpret them as HTML. If
you want the browser to render any HTML contained in the data, you can use the fol-
lowing syntax:

h1 Welcome to !{pageHeader.title}

109Taking the data out of the views and making them smarter

If you run the application now and head back to the homepage, the only change you
should notice is that the <title> has been updated. Everything else still looks the
same, but some of the data is now coming from the controller.

 This section serves as a simple example of what you’re doing at this point and how
you’re doing it. The complicated part of the homepage is the listing section, so in the
next section, you’ll look at how you can approach that task.

4.5.2 Dealing with complex, repeating data patterns

The first thing to bear in mind about the listing section is that it has multiple entries,
all following the same data pattern and layout pattern. Like you’ve just done with the
page header, start with the data, taking it from the view to the controller.

 In terms of JavaScript data, a repeatable pattern lends itself nicely to the idea of an
array of objects. You want one array to hold multiple objects, with each object contain-
ing all the relevant information for an individual listing.

ANALYZING THE DATA IN THE VIEW

Take a look at a listing to see what information you need the controller to send. Figure
4.16 reminds you how a listing looks in the homepage view.

This syntax poses potential security risks, however, and should be done only for data
sources that you trust. You shouldn’t allow user inputs to display like this without
some additional security checks.

The second method of outputting the data is with buffered code. Instead of inserting
the data into a string, you build the string with JavaScript, using the = sign directly
after the tag declaration, like this:

h1= "Welcome to " + pageHeader.title

Again, this escapes any HTML for security reasons. If you want to have unescaped
HTML in your output, you can use slightly different syntax:

h1!= "Welcome to " + pageHeader.title

Once again, be careful. Whenever possible, you should use one of the escaped meth-
ods to be on the safe side.

For this buffered code approach, you can also use JavaScript template strings, like
this:

h1= `Welcome to ${pageHeader.title}`

Figure 4.16 An individual listing, showing the data that you need

110 CHAPTER 4 Building a static site with Node and Express

From this screenshot, you can see that an individual listing on the homepage has the
following data requirements:

 Name
 Rating
 Distance away
 Address
 List of facilities

Taking the data from the screenshot in figure 4.16 and creating a JavaScript object
from it, you could come up with something simple, like the following code snippet:

{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}

That’s all you need to represent a single location as an object. For multiple locations,
you need an array of these objects.

ADDING THE REPEATING DATA ARRAY TO THE CONTROLLER

You need to create an array of the single-location objects—using the data that you cur-
rently have in the view, if you want—and add it to the data object passed to the render
function in the controller. The following code snippet shows the updated homelist
controller, including the array of locations:

const homelist = (req, res) => {
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
 },{
 name: 'Cafe Hero',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 4,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '200m'
 },{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 2,
 facilities: ['Food', 'Premium wifi'],

List of facilities is
sent as an array of
string values

Array of locations
being passed as
locations to the
view for rendering

111Taking the data out of the views and making them smarter

 distance: '250m'
 }]
 });
};

Here, you’ve got the details for three locations being sent in the array. You can add
many more, of course, but this code is as good a start as any. Now you need to get the
view to render this information instead of the data currently hardcoded inside it.

LOOPING THROUGH ARRAYS IN A PUG VIEW

The controller is sending an array to Pug as the variable locations. Pug offers a sim-
ple syntax for looping through an array. In one line, you specify which array to use
and what variable name you want to use as the key. The key is a named reference to
the current item in the array, so its contents change as the loop iterates through the
array. The construct of a Pug loop is like so:

Anything nested inside this line in Pug is iterated through for each item in the array.
Take a look at an example using the locations data and part of the view you want. In
the view file, locations-list.pug, each location starts with the code in the following snip-
pet, with a different name each time:

.card
 .card-block
 h4
 a(href="/location") Starcups

You can use Pug’s each/in syntax to loop through all the locations in the locations
array and output the name of each location. How this works is shown in the next code
snippet:

each location in locations
 .card
 .card-block
 h4
 a(href="/location")= location.name

Given the controller data you’ve got, with three locations in it, using that data with the
preceding code would result in the following HTML:

<div class="card">
 <div class="card-block">
 <h4>

Name of the key you want to
use to access the data

Name of the array
to iterate through

Sets up a loop, defining a
variable location as key

Nested items are
all looped through. Outputs the name of each

location, accessing the name
property of each location

112 CHAPTER 4 Building a static site with Node and Express

 Starcups
 </h4>
 </div>
</div>
<div class="card">
 <div class="card-block">
 <h4>
 Cafe Hero
 </h4>
 </div>
</div>
<div class="card">
 <div class="card-block">
 <h4>
 Burger Queen
 </h4>
 </div>
</div>

As you can see, the HTML construct—the divs and the h4 and a tags—are repeated
three times. But the name of the location is different in each one, corresponding to
the data in the controller.

 Looping through arrays is easy, and with that little test, you’ve already got the first
few lines of the updated view text you need. Now you need to follow through with the
rest of the data used in the listings. You can’t deal with the rating stars this way, so
you’ll ignore them for now and deal with them soon.

 Dealing with the rest of the data, you can produce the following code snippet,
which outputs all the data for each listing. As the facilities are being passed as an array,
you need to loop through that array for each listing:

each location in locations
 .card
 .card-block
 h4
 a(href="/location")= location.name
 small
 i.fas.fa-star
 i.fas.fa-star
 i.fas.fa-star
 i.far.fa-star
 i.far.fa-star
 span.badge.badge-pill.badge-default.float-right= location.distance
 p.address= location.address
 .facilities
 span.badge.badge-warning= facility

Looping through the facilities array is no problem, and Pug handles this with ease.
Pulling out the rest of the data, the distance and the address, is straightforward, using
the techniques you’ve already used.

 The only part left to deal with is the rating stars. For that task, you’ll need a bit of
inline JavaScript code.

Looping through a nested array to
output facilities for each location

113Taking the data out of the views and making them smarter

4.5.3 Manipulating the data and view with code

For the star ratings, the view is outputting spans with different classes, using Font Awe-
some’s icon system. The rating system has a total of five stars, which are either solid or
empty depending on the rating. A rating of five, for example, shows five solid stars; a
rating of three shows three solid stars and two empty stars, as shown in figure 4.17;
and a rating of zero shows five empty stars.

To generate this type of output, you’ll use some code inside the Pug template. The
code is essentially JavaScript, with some Pug-specific conventions thrown in. To add a
line of inline code to a Pug template, prefix the line with a dash (hyphen). This prefix
tells Pug to run the JavaScript code rather than pass it through to the browser.

 To generate the output for the stars, you’ll use a couple of for loops. The first loop
outputs the correct number of solid stars, and the second loop outputs any remaining
empty stars. The following code snippet shows how these loops look and work in Pug:

small
 - for (let i = 1; i <= location.rating; i++)
 i.fas.fa-star
 - for (let i = location.rating; i < 5; i++)
 i.far.fa-star

Notice that the syntax is familiar JavaScript, but with no curly brackets defining the
block of code to run. Instead, the block of code is defined by indentation, like the rest
of Pug. Also notice the mixture of code and Pug. The lines of code are saying, “Every
time I evaluate as true, render the indented Pug content.” This design is nice, as you
don’t have to try to construct your HTML with JavaScript.

 That’s all the content and layout for the homepage sorted, so you can move on.
You can do one more thing to improve what you’ve got and make some of the code
reusable.

4.5.4 Using includes and mixins to create reusable layout components

The star-rating code will be useful in other layouts. You’re going to want it on the
Details page, for example, and maybe in more places in the future. You don’t want to
have to add it to every page manually. What if you decide that you don’t like the Font
Awesome icons anymore and want to change the markup? You certainly don’t want to
have to make changes on every single page that shows a rating—not if you can help it.

 Fortunately, Pug enables you to create reusable components by using mixins and
includes.

Figure 4.17 The Font Awesome star-rating system
in action, showing a rating of three out of five stars

114 CHAPTER 4 Building a static site with Node and Express

DEFINING PUG MIXINS

A mixin in Pug is essentially a function. You can define a mixin at the top of your file
and use it in multiple places. A mixin definition is straightforward: you define the
name of the mixin, and then nest the content of it with indentation. The following
code snippet shows a basic mixin definition:

mixin welcome
 p Welcome

This definition outputs the Welcome text inside a <p> tag wherever it’s invoked.
 Mixins can also accept parameters, as JavaScript functions do. This feature will be

useful for creating the mixin you need to display the rating, as the HTML output will
be different depending on the actual rating. The following code snippet shows how
this process can work, defining the mixin you want to use on the homepage to output
the rating stars:

mixin outputRating(rating)
 - for (let i = 1; i <= rating; i++)
 i.fas.fa-star
 - for (let i = rating; i < 5; i++)
 i.far.fa-star

In a sense, this mixin works like a JavaScript function. When you define the mixin, you
can specify the parameters that it expects. You can use these parameters in the mixin.
You can take the preceding code snippet and pop it into the top of the locations-
list.pug file, between the extends layout and block content lines.

CALLING PUG MIXINS

After defining the mixin, you’ll want to use it, of course. The syntax for calling a mixin
is to place a + before its name. If you have no parameters, such as the welcome mixin,
this syntax looks like the following:

+welcome

This syntax calls the welcome mixin and outputs the text Welcome inside a <p> tag.
 Calling a mixin with parameters is equally easy. You send the values of the parame-

ters inside parentheses, as you do when calling a JavaScript function. In the locations-
list.pug file, at the point where you’re outputting the ratings, the value of the rating is
held in the variable location.rating, as shown here:

small
 - for (let i = 1; i <= location.rating; i++)
 i.fas.fa-star
 - for (let i = location.rating; i < 5; i++)
 i.far.fa-star

You can replace this code with a call to your new mixin outputRating, sending the
location.rating variable as the parameter. This call looks like the following code
snippet:

Defines mixin outputRating, expecting
a single parameter rating

Uses the rating parameter inside for
loops to output correct HTML

115Taking the data out of the views and making them smarter

 h4
 a(href='/location')= location.name
 +outputRating(location.rating)

This code outputs exactly the same HTML as before, but you’ve taken part of the code
outside the contents of the layout. Right now, this code is reusable only within the
same file, but next, you’ll use includes to make it accessible to other files.

USING INCLUDES IN PUG

To allow your new mixin to be called from other Pug templates, you need to make it
an include file, which is easy.

 Within the app_server/views folder, create a subfolder called _includes. (The _
prefix is a convention that we find useful for keeping folders like this one at the top.)
Within this folder, create a new file called sharedHTMLfunctions.pug, and paste the
outputRating mixin definition into it, as follows:

mixin outputRating(rating)
 - for (let i = 1; i <= rating; i++)
 i.fas.fa-star
 - for (let i = rating; i < 5; i++)
 i.far.fa-star

Save the file, and you’ve created the include. Pug provides a simple syntax for using
include files in layouts: use the keyword include, followed by the relative path to the
include file. The following code snippet shows how you might do this. This line
should go immediately after the extends layout line at the top of locations-list.pug:

include _includes/sharedHTMLfunctions

Now, rather than having the mixin code inline in the template, you’re calling it in
from an include file. Notice that you can omit the .pug file extension when calling the
include. From now on, when you create a new template that needs to have rating stars,
you can easily reference this include file and call the outputRatings mixin.

 Now you’re done with the homepage!

4.5.5 Viewing the finished homepage

You made quite a lot of changes to the homepage template throughout this chapter.
Now, take a look at what you’ve ended up with. First, look at the updated controller.
The following listing shows the final homelist controller, incorporating the hard-
coded data for the title, page header, sidebar, and locations list.

const homelist = (req, res) => {
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },

Listing 4.10 The homelist controller, passing hardcoded data to the view

Updates text for the
HTML <title>

Adds text for the page
header as two items
inside an object

116 CHAPTER 4 Building a static site with Node and Express

 sidebar: "Looking for wifi and a seat? Loc8r helps you find places
to work when out and about. Perhaps with coffee, cake or a pint?
Let Loc8r help you find the place you're looking for.",
 locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
 },{
 name: 'Cafe Hero',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 4,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '200m'
 },{
 name: 'Burger Queen',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 2,
 facilities: ['Food', 'Premium wifi'],
 distance: '250m'
 }]
 });
};

Seeing all this code together, you can start to appreciate where you’re going with this
approach. You’ve got a clear picture of all the data required for the homepage of
Loc8r, which will come in handy in chapter 5. This controller contains the text for the
sidebar. We didn’t talk about this step, but taking this text from the view to the con-
troller is as simple as creating a new variable for it in the controller and referencing it
in the view.

 Something important that you achieved through this process is removing data from
the view. Building the view with data was great as a first step, as it allowed you to focus
on the end-user experience without getting distracted by technicalities. Now that
you’ve moved the data from the view into the controller, you have a much smarter,
dynamic view. The view knows what pieces of data it needs, but it doesn’t care what’s in
those pieces of data. The following listing shows the final view for the homepage.

extends layout
include _includes/sharedHTMLfunctions
block content
 .row.banner
 .col-12
 h1= pageHeader.title
 small #{pageHeader.strapline}
 .row
 .col-12.col-md-8
 each location in locations
 .card
 .card-block

Listing 4.11 Final view for the homepage: app_server/views/locations-list.pug

Adds text for
the sidebar

Creates an array of
one object for each
location in the list

Brings in the external include file
containing outputRating mixin

Outputs the page header text
using different methods

Loops through the array of locations

117Taking the data out of the views and making them smarter

 h4
 a(href="/location")= location.name
 +outputRating(location.rating)
 span.badge.badge-pill.badge-default.float-right=

location.distance
 p.address= location.address
 .facilities
 each facility in location.facilities
 span.badge.badge-warning= facility

 .col-12.col-md-4
 p.lead= sidebar

That’s a small template, especially considering everything it’s doing. This is a testa-
ment to the power of Pug and Bootstrap working together, combined with removing
all the content.

 You’re one step closer to the MVC—and general development—goal of separation
of concerns, with the homepage at least.

4.5.6 Updating the rest of the views and controllers

We walked you through the process for the homepage in some detail, but we won’t
spend so much time on the other pages. Before you can move to the next stage of
development—building the data model—you need to go through the process on all
the pages. The goal is to have no data in any of the views; instead, the views will be
smarter, and the data will be hardcoded into the relevant controllers.

 The process for each page is this:

1 Look at the data in the view.
2 Create a structure for that data in the controller.
3 Replace the data in the view with references to the controller data.
4 Look for opportunities to reuse code.

Appendix C goes through the process for each of the three remaining pages, showing
what the controller and view code should look like for each one. When you’ve fin-
ished, none of your views should contain any hardcoded data; the controller for each
page should be passing the required data. Figure 4.18 shows a collection of screen-
shots of the final pages you should have at the end of this stage.

 You’ve reached the end of the first phase of your rapid prototype development and
are primed to start the next phase.

Calls the outputRating
mixin for each location,
passing the value of the

current location’s rating

References the sidebar
content from the controller

Get the source code
The source code of the application so far is available on the chapter-04 branch of
GitHub’s gettingMean-2 repository. In a fresh folder in terminal, enter the following
commands to clone it and install the dependencies:

$ git clone -b chapter-04 https://github.com/cliveharber/gettingMean-2.git
$ cd gettingMean-2
$ npm install

118 CHAPTER 4 Building a static site with Node and Express

In chapter 5, you’ll continue the journey of moving the data back up through the
MVC architecture by using MongoDB and Mongoose to create a data model. That’s
right; it’s database time!

Summary
In this chapter, you learned

 Simple ways of defining and organizing routes in Express
 How to use Node modules to hold the controllers
 The best ways to set up multiple sets of controllers by proper definition of the

routes
 Prototyping views with Pug and Bootstrap
 Making reusable Pug components and mixins
 Displaying dynamic data in Pug templates
 Passing data from controllers to views

Figure 4.18 Screenshots of all four pages in the static prototype, using smart views and data
hardcoded into the controllers

119

Building a data model with
MongoDB and Mongoose

In chapter 4, you moved your data out of the views and back the MVC path into the
controllers. Ultimately, the controllers will pass data to the views, but they shouldn’t
store it. Figure 5.1 recaps the data flow in an MVC pattern.

 For storing the data, you’ll need a database—specifically, MongoDB. This step is
the next one in the process: creating a database and a data model.

NOTE If you haven’t yet built the application from chapter 4, you can get
the code on the chapter-04 branch at https://github.com/cliveharber/
gettingMean-2. In a fresh folder in terminal, enter the following command
to clone it:

$ git clone -b chapter-04 https://github.com/cliveharber/gettingMean-2.git

This chapter covers
 Connecting Express/Node applications to MongoDB using

Mongoose

 Defining schemas for a data model using Mongoose

 Connecting an application to a database

 Managing databases using the MongoDB shell

 Pushing a database into a live environment

https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2

120 CHAPTER 5 Building a data model with MongoDB and Mongoose

You’ll start by connecting your application to a database before using Mongoose to
define schemas and models. When you’re happy with the structure, you can add some
test data directly to the MongoDB database. The final step is making sure that access
to the data store also works when pushed up to Heroku. Figure 5.2 shows the flow of
these four steps.

For those of you who are worried that you’ve missed a section or two, don’t worry; you
haven’t created a database yet. And you don’t need to. In various other technology
stacks, this situation can present an issue and throw errors. But with MongoDB, you
don’t need to create a database before connecting to it. MongoDB creates a database
when you first try to use it. Figure 5.3 shows where this chapter focuses in terms of
overall architecture.

 You’ll be working with a MongoDB database, but most of the work will be in
Express and Node. In chapter 2, we discussed the benefits of decoupling the data inte-
gration by creating an API rather than tightly integrating data into the main Express
app. Although you’ll be working in Express and Node and still within the same encap-
sulating application, you’ll be starting the foundations of your API layer.

NOTE To follow through this chapter, you need to have MongoDB installed.
If you haven’t done so already, you can find the instructions in appendix A.
The source code of the application as it will be at the end of this chapter is
available on the chapter-05 branch on GitHub. In a fresh folder in terminal,

Data flow in an MVC pattern

Holds the
data

Processes
the data

Model

Data flow

Controller

Data flow

View

Renders the
processed data

Figure 5.1 In an MVC pattern, data is held in the model, processed by a controller, and
then rendered by a view.

1. Connect
application to
database

2. Define
schemas and
models

3. Add test data
to database

4. Push to live
environment

Figure 5.2 Four main steps in this chapter, from connecting your application to a database to
pushing the whole thing into a live environment

121Connecting the Express application to MongoDB by using Mongoose

enter the following commands to clone it and install the npm module depen-
dencies:

$ git clone -b chapter-05 https://github.com/cliveharber/gettingMean-2.git
$ cd gettingMean-2
$ npm install

5.1 Connecting the Express application to MongoDB
by using Mongoose
You could connect your application directly to MongoDB and have the two interact by
using the native driver. Although the native MongoDB driver is powerful, it isn’t partic-
ularly easy to work with. It also doesn’t offer a built-in way of defining and maintaining
data structures. Mongoose exposes most of the functionality of the native driver, but in
a more convenient way, designed to fit into the flow of application development.

 Where Mongoose really excels is in the way it enables you to define data structures
and models, maintain them, and use them to interact with your database, all from the
comfort of your application code. As part of this approach, Mongoose includes the
ability to add validation to your data definitions, meaning that you don’t have to write
validation code in every place in your application where you send data back to the
database.

Database

1. Use Mongoose
with Express and
Node.js to model the
data and connect it
to the database.

2. Create the database
and add the data to it.

API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Figure 5.3 Viewing the MongoDB database and using Mongoose inside Express to model the data
and manage the connection to the database

122 CHAPTER 5 Building a data model with MongoDB and Mongoose

Mongoose fits into the stack inside the Express application by being the liaison
between the application and the database, as shown in figure 5.4.

 MongoDB talks only to Mongoose, and Mongoose in turn talks to Node and
Express. Angular won’t talk directly to MongoDB or Mongoose—only to the Express
application.

 You should already have MongoDB installed on your system (covered in appendix
A), but not Mongoose. Mongoose isn’t installed globally but is instead added directly
to your application. You’ll do that in the next section.

5.1.1 Adding Mongoose to your application

Mongoose is available as an npm module. As you saw in chapter 3, the quickest and
easiest way to install an npm module is through the command line. You can install
Mongoose and add it to your list of dependencies in package.json with one command.

 Head over to terminal, and make sure that the prompt is at the root folder of the
application, where the package.json file is. Then run the following command:

$ npm i mongoose

Here, we’re using an alternative version; this version saves typing. When that com-
mand has finished running, you’ll see a new mongoose folder inside the node_
modules folder of the application, and the dependencies section of the package.json
file should look like the following code snippet:

"dependencies": {
 "body-parser": "~1.18.3",
 "cookie-parser": "~1.4.3",
 "debug": "~4.1.0",
 "express": "~4.16.4",
 "mongoose": "^5.3.11",
 "morgan": "~1.9.1",

Database Application

AngularMongoDB Node.js
Express

Mongoose

Browser
application

Angular

Browser
application

Figure 5.4 The data interactions in the MEAN stack and where Mongoose fits in. The Node/
Express application interacts with MongoDB through Mongoose; Node and Express can also talk to
Angular.

123Connecting the Express application to MongoDB by using Mongoose

 "pug": "~2.0.3",
 "serve-favicon": "~2.5.0"
}

You may have slightly different version numbers, of course, but currently, the latest sta-
ble version of Mongoose is 5.3.11. Now that Mongoose is installed, you’re ready to get
it connected.

5.1.2 Adding a Mongoose connection to your application

At this stage, you’ll connect your application to a database. You haven’t created a data-
base yet, but that doesn’t matter, because MongoDB creates a database when you first
try to use it. This can seem a little odd, but for putting an application together, it’s a
great advantage: you don’t need to leave your application code to mess around in a
different environment.

MONGODB AND MONGOOSE CONNECTION
Mongoose opens a pool of five reusable connections when it connects to a MongoDB
database. This pool of connections is shared among all requests. Five is the default
number; you can increase or decrease the connection options if you need to.

BEST PRACTICE TIP Opening and closing connections to databases can take a
little bit of time, especially if your database is on a separate server or service.
It’s best to run these operations only when you need to. The best practice is to
open the connection when your application starts and to leave it open until
your application restarts or shuts down. This approach is the one you’re
going to take.

SETTING UP THE CONNECTION FILE

When you first sorted out the file structure for the application, you created three fold-
ers inside the app_server folder: models, views, and controllers. For working with data
and models, you’ll be predominantly located in the app_server/models folder. Setting
up the connection file is a two-part process—creating the file and requiring it into the
application so that it can be used:

 Step 1: Create a file called db.js in app_server/models, and save it. For now,
you’ll require Mongoose in this file with the following single command line:

const mongoose = require('mongoose');

 Step 2: Bring this file into the application by requiring it in app.js. As the actual
process of creating a connection between the application and the database can
take a little while, you want to do this early in the setup. Amend the top part of
app.js to look like the following code snippet (modifications in bold):
const express = require('express');
const path = require('path');
const cookieParser = require('cookie-parser');
const logger = require('morgan');
const favicon = require('serve-favicon');
require('./app_server/models/db');

124 CHAPTER 5 Building a data model with MongoDB and Mongoose

You’re not going to export any functions from db.js, so you don’t need to assign it to a
variable when you require it. You need it to be there in the application, but you won’t
need to hook into any of its methods from within app.js.

 If you restart the application, it should run as before, but now you have Mongoose
in the application. If you get an error, check that the path in the require statement
matches the path to the new file, that your package.json includes the Mongoose
dependency, and that you’ve run npm install from terminal in the root folder of the
application.

CREATING THE MONGOOSE CONNECTION

Creating a Mongoose connection can be as simple as declaring the URI for your data-
base and passing it to Mongoose’s connect method. A database URI is a string follow-
ing this construct:

The username, password, and port are optional. On your local machine, your data-
base URI will be simple. For now, assuming that you have MongoDB installed on your
local machine, adding the following code snippet to db.js is all you need to create a
connection:

const dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI, {useNewUrlParser: true});

The second argument to connect() tells Mongoose to use its new internal URL
parser, which avoids deprecation warnings due to MongoDB deprecating but leaves
available the older connection string parser. If you run the application with this addi-
tion to db.js, it should start and function as before. So how do you know that your con-
nection is working correctly? The answer lies in connection events.

MONITORING THE CONNECTION WITH MONGOOSE CONNECTION EVENTS

Mongoose publishes events based on the status of the connection, and these events
are easy to hook into so that you can see what’s going on. You’ll use events to see when
the connection is made, when there’s an error, and when the connection is discon-
nected. When any one of these events occurs, you’ll log a message to the console. The
following code snippet shows the required code:

mongoose.connection.on('connected', () => {
 console.log(`Mongoose connected to ${dbURI}`);
});
mongoose.connection.on('error', err => {
 console.log('Mongoose connection error:', err);
});

MongoDB
protocol

Login credentials
for database

Server
address

Port Database
name

Monitors for a successful
connection through Mongoose

Checks for a connection error

125Connecting the Express application to MongoDB by using Mongoose

mongoose.connection.on('disconnected', () => {
 console.log('Mongoose disconnected');
});

With this code added to db.js, when you restart the application, you should see the fol-
lowing confirmations logged to the terminal window:

Express server listening on port 3000
Mongoose connected to mongodb://localhost/Loc8r

If you restart the application again, however, you’ll notice that you don’t get any dis-
connection messages, because the Mongoose connection doesn’t automatically close
when the application stops or restarts. You need to listen for changes in the Node pro-
cess to deal with this situation.

CLOSING A MONGOOSE CONNECTION

Closingthe Mongoose connection when the application stops is as much a part of best
practices as opening the connection when it starts. The connection has two ends: one
in your application and one in MongoDB. MongoDB needs to know when you want to
close the connection so that it doesn’t keep redundant connections open.

 To monitor when the application stops, you need to listen to the Node.js process
for an event called SIGINT.

Checks for a
disconnection event

Listening for SIGINT on Windows
SIGINT is an operating system–level signal that fires on UNIX-based systems such as
Linux and macOS. It also fires on some later versions of Windows. If you’re running
on Windows and the disconnection events don’t fire, you can emulate them. If you
need to emulate this behavior on Windows, first add a new npm package, readline,
to your application. As before, use the npm install command in the command line
like this:

$ npm install --save readline

When that’s done, in the db.js file, above the event listener code, add the following:

const readLine = require ('readline');
if (process.platform === 'win32'){
 const rl = readLine.createInterface ({
 input: process.stdin,
 output: process.stdout
 });
 rl.on ('SIGINT', () => {
 process.emit ("SIGINT");
 });
}

This code emits the SIGINT signal on Windows machines, allowing you to capture it
and gracefully close down anything else you need to before the process ends.

126 CHAPTER 5 Building a data model with MongoDB and Mongoose

If you’re using nodemon to automatically restart the application, you’ll also have to
listen to a second event on the Node process: SIGUSR2. Heroku uses a different
event, SIGTERM, so you need to listen for that event as well.

CAPTURING THE PROCESS TERMINATION EVENTS

Capturing these events prevents the default behavior from happening. You need to
make sure that you manually restart the behavior required (after closing the Mon-
goose connection, of course).

 To do this, you need three event listeners and one function to close the database
connection. Closing the database is an asynchronous activity, so you need to pass
through whatever function is required to restart or end the Node process as a call-
back. While you’re at it, you can output a message to the console confirming that the
connection is closed and the reason why. You can wrap all this in a function called
gracefulShutdown in db.js:

const gracefulShutdown = (msg, callback) => {
 mongoose.connection.close(() => {
 console.log(`Mongoose disconnected through ${msg}`);
 callback();
 });
};

You need to call this function when the application terminates or when nodemon
restarts it. The following code snippet shows the two event listeners you need to add to
db.js for this to happen:

process.once('SIGUSR2', () => {
 gracefulShutdown('nodemon restart', () => {
 process.kill(process.pid, 'SIGUSR2');
 });
});
process.on('SIGINT', () => {
 gracefulShutdown('app termination', () => {
 process.exit(0);
 });
});
process.on('SIGTERM', () => {
 gracefulShutdown('Heroku app shutdown', () => {
 process.exit(0);
 });
});

Defines a function to
accept a message and
a callback function

Closes the Mongoose connection,
passing through an anonymous
function to run when it’s closed

Outputs a message
and calls a callback
when the Mongoose
connection is closed

Listens for SIGUSR2, which
is what nodemon uses

Sends a message to graceful-
Shutdown and a callback to kill the
process, emitting SIGUSR2 again

Listens for SIGINT to be
emitted upon application
termination

Sends a message to
gracefulShutdown and a
callback to exit the Node
process

Listens for SIGTERM to be emitted
when Heroku shuts down the process

Sends a message to
gracefulShutdown
and a callback to exit
the Node process

127Connecting the Express application to MongoDB by using Mongoose

Now when the application terminates, it gracefully closes the Mongoose connection
before it ends. Similarly, when nodemon restarts the application due to changes in the
source files, the application closes the current Mongoose connection first. The node-
mon listener is using process.once as opposed to process.on, as you want to listen
for the SIGUSR2 event only once. nodemon also listens for the same event, and you
don’t want to capture it each time, preventing nodemon from working.

TIP It’s important to manage opening and closing your database connec-
tions properly in every application you create. If you use an environment with
different process termination signals, you should ensure that you listen to
them all.

COMPLETE CONNECTION FILE

That’s quite a lot of stuff you’ve added to the db.js file, so take a moment to recap. So
far, you’ve

 Defined a database connection string
 Opened a Mongoose connection at application startup
 Monitored the Mongoose connection events
 Monitored some Node process events so that you can close the Mongoose con-

nection when the application ends

Altogether, the db.js file should look like the following listing. Note that it includes
the extra code required by Windows to emit the SIGINT event.

const mongoose = require('mongoose');
const dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI, {useNewUrlParser: true});
mongoose.connection.on('connected', () => {
 console.log(`Mongoose connected to ${dbURI}`);
});
mongoose.connection.on('error', err => {
 console.log(`Mongoose connection error: ${err}`);
});
mongoose.connection.on('disconnected', () => {
 console.log('Mongoose disconnected');
});
const gracefulShutdown = (msg, callback) => {
 mongoose.connection.close(() => {
 console.log(`Mongoose disconnected through ${msg}`);
 callback();
 });
};
// For nodemon restarts
process.once('SIGUSR2', () => {
 gracefulShutdown('nodemon restart', () => {
 process.kill(process.pid, 'SIGUSR2');
 });

Listing 5.1 Complete database connection file db.js in app_server/models

Defines a database connection
string and uses it to open a
Mongoose connection

Listens for Mongoose
connection events and
outputs statuses to the
console

Reusable function to
close the Mongoose
connection

Listens to Node processes for
termination or restart signals
and calls the gracefulShutdown
function when appropriate,
passing a continuation callback

128 CHAPTER 5 Building a data model with MongoDB and Mongoose

});
// For app termination
process.on('SIGINT', () => {
 gracefulShutdown('app termination', () => {
 process.exit(0);
 });
});
// For Heroku app termination
process.on('SIGTERM', () => {
 gracefulShutdown('Heroku app shutdown', () => {
 process.exit(0);
 });
});

When you have a file like this one, you can easily copy it from application to applica-
tion, because the events you’re listening for are always the same. All you have to do
each time is change the database connection string. Remember that you also
required this file into app.js, right near the top, so that the connection opens up
early in the application’s life.

5.2 Why model the data?
In chapter 1, we talked about how MongoDB is a document store rather than a tradi-
tional table-based database using rows and columns. This fact gives MongoDB great
freedom and flexibility, but sometimes you want—or need—structure to your data.

 Take the Loc8r homepage, for example. The listing section shown in figure 5.5
contains a specific dataset that’s common to all locations.

Listens to Node processes for
termination or restart signals
and calls the gracefulShutdown
function when appropriate,
passing a continuation callback

Using multiple databases
What you’ve seen so far is known as the default connection and is well suited to
keeping a single connection open throughout the uptime of an application. But if you
want to connect to a second database, perhaps for logging or managing user ses-
sions, you can use a named connection. In place of the mongoose.connect method,
you’d use a method called mongoose.createConnection and assign it to a variable.
You can see this in the following code snippet:

const dbURIlog = 'mongodb://localhost/Loc8rLog';
const logDB = mongoose.createConnection(dbURIlog);

This snippet creates a new Mongoose connection object called logDB. You can inter-
act with it in the same way as you would with mongoose.connection for the default
connection. Here are a couple of examples:

logDB.on('connected', () => {
 console.log(`Mongoose connected to ${dbURIlog}`);
});
logDB.close(() => {
 console.log('Mongoose log disconnected');
});

Monitoring a
connection event for
a named connection

Closing a named
connection

129Why model the data?

The page needs these data items for all locations, and the data record for each loca-
tion must have a consistent naming structure. Without this structure, the application
wouldn’t be able to find the data and use it. At this point in development, the data is
held in the controller and passed into the view. In terms of MVC architecture, you
started with the data in the view and then moved it back a step to the controller. Now
what you need to do is move it back one final step to where it should belong: in the
model. Figure 5.6 illustrates your current position, highlighting the goal.

Figure 5.5 Listing section of
the homepage has defined data
requirements and structure

Data flow in an MVC pattern

Holds the
data

Processes
the data

The data is currently in the controller.
Move the data backward into the model,
allowing the controller to be dynamic.

Model

Data flow

Controller

Data flow

View

Renders the
processed data

Figure 5.6 How data should flow in an MVC pattern, from the model through the controller
and into the view. At this point in your prototype, your data is in the controller, so you want
to move it a step back into the model.

130 CHAPTER 5 Building a data model with MongoDB and Mongoose

One outcome of moving the data back through the MVC flow step by step as you’ve
done so far is that it helps solidify the requirements of the data structure, ensuring
that the data structure accurately reflects the needs of your application. If you try to
define your model first, you end up second-guessing what the application will look
like and how it will work.

 When you talk about modeling data, you’re describing how you want the data to be
structured. In your application, you could create and manage the definitions manu-
ally and do the heavy lifting yourself, or you could use Mongoose and let it do the
hard work.

5.2.1 What is Mongoose and how does it work?

Mongoose was built specifically as a MongoDB Object Document Modeler (ODM) for
Node applications. One key principle is that you can manage your data model from
within your application. You don’t have to mess around directly with databases or
external frameworks or relational mappers; you can define your data model in the
comfort of your application.

 First, we’ll get some naming conventions out of the way:

 In MongoDB, each entry in a database is called a document.
 In MongoDB, a group of documents is called a collection. (Think table if you’re

used to relational databases.)
 In Mongoose, the definition of a document is called a schema.
 Each individual data entity defined in a schema is called a path.

Using the example of a stack of business cards, figure 5.7 illustrates these naming con-
ventions and how each is related to the others.

Collection

Each document contains
data, the structure of which
is defined by a schema.

A collection
contains many
documents.

Each schema
is made up of a
number of paths.

Each path can
have multiple
defining properties.

Document

Ronnie Barker

555–1234

Schema

firstname lastname
telephone

Path

firstname: {
 type: String,
 required: true
}

Figure 5.7 Relationships among collections, documents, schemas, and paths in MongoDB and
Mongoose, using a business card metaphor

131Why model the data?

One final definition is for models. A model is the compiled version of a schema. All
data interactions using Mongoose go through the model. You’ll work with models
more in chapter 6, but for now, you’re focusing on building them.

5.2.2 How does Mongoose model data?

If you’re defining your data in the application, how are you going to do it? In Java-
Script, of course—JavaScript objects, to be precise. You’ve already had a sneak peek in
figure 5.7, but now take a look at a simple MongoDB document to see what the Mon-
goose schema for it might look like. The following code snippet shows a MongoDB
document, followed by the Mongoose schema:

{
 "firstname" : "Simon",
 "surname" : "Holmes",
 _id : ObjectId("52279effc62ca8b0c1000007")
}
{
 firstname : String,
 surname : String
}

As you can see, the schema has a strong resemblance to the data itself. The schema
defines the name for each data path and the data type it will contain. In this example,
you’ve simply declared the paths firstname and surname as strings.

5.2.3 Breaking down a schema path

The basic construct for an individual path definition is the pathname followed by a
properties object. In the previous example, you looked at a Mongoose schema, which
demonstrates a kind of shorthand for defining a data path and its data type. A schema
path is constructed of the pathname and the properties object, like so:

Example
MongoDB
document

Corresponding
Mongoose
schema

About the _id path
You may have noticed that you haven’t declared the id path in the schema. _id is
the unique identifier—the primary key, if you like—for each document. MongoDB
automatically creates this path when each document is created and assigns it a
unique ObjectId value. The value is designed to always be unique by combining the
time since the UNIX epoch with machine and process identifiers and a counter.

It’s possible to use your own unique key system if you prefer (if you have a preexisting
database, for example). In this book and the Loc8r application, you’ll stick with the
default ObjectId.

Pathname Properties object

132 CHAPTER 5 Building a data model with MongoDB and Mongoose

The pathname follows JavaScript object definition conventions and requirements.
There are no spaces or special characters, and you should try to avoid reserved words.
Our convention is to use camelCase for pathnames. If you’re using an existing database,
use the names of the paths already in the documents. If you’re creating a new database,
the pathnames in the schema will be used in the documents, so think carefully.

 The properties object is essentially another JavaScript object. This one defines the
characteristics of the data held in the path. At a minimum, this object contains the
data type, but it can include validation characteristics, boundaries, default values, and
more. You’ll explore and use some of these options over the next few chapters as you
turn Loc8r into a data-driven application.

 In the next section, you’ll get moving and start defining the schemas you want in
the application.

5.3 Defining simple Mongoose schemas
We’ve discussed the fact that a Mongoose schema is essentially a JavaScript object,
which you define from within the application. Start by setting up and including the
file so that it’s done and out of the way, leaving you free to concentrate on the schema.

 As you’d expect, you’ll define the schema in the model folder alongside db.js. In
fact, you’re going to require it into db.js to expose it to the application. Inside the mod-
els folder in app_server, create a new empty file called locations.js. You need Mongoose
to define a Mongoose schema, naturally, so enter the following line to locations.js:

const mongoose = require('mongoose');

Allowed schema types
The schema type is the property that defines the data type for a given path. It’s
required for all paths. If the only property of a path is the type, you can use the short-
hand definition. There are eight schema types that you can use:

 String—Any string, UTF-8 encoded.
 Number—Mongoose doesn’t support long or double numbers, but it can be

extended using Mongoose plugins; the default support is enough in most
cases.

 Date—Typically returned from MongoDB as an ISODate object.
 Boolean—True or false.
 Buffer—For binary information such as images.
 Mixed—Any data type.
 Array—Can be an array of the same data type or an array of nested subdocu-

ments.
 ObjectId—For a unique ID in a path other than _id; typically used to refer-

ence _id paths in other documents.

If you need to use a different schema type, it’s possible to write your own custom
schema types or to use an existing Mongoose plugin from http://plugins.mongoosejs.io.

http://plugins.mongoosejs.io/

133Defining simple Mongoose schemas

You’ll bring this file into the application by adding a require in db.js for it. At the end
of db.js, add the following line:

require('./locations');

And with that, you’re set up and ready to go.

5.3.1 The basics of setting up a schema

Mongoose gives you a constructor function for defining new schemas, which you typi-
cally assign to a variable so that you can access it later. This function looks like the fol-
lowing line:

const locationSchema = new mongoose.Schema({ });

In fact, that’s exactly the construct you’re going to use. Add it to the locations.js
model, below the line requiring Mongoose. The empty object inside the mongoose-
Schema({ }) brackets is where you’ll define the schema.

DEFINING A SCHEMA FROM CONTROLLER DATA

One of the outcomes of moving the data back from the view to the controller is that
the controller can give you a good idea of the data structure you need. Start simple by
taking a look at the homelist controller in app_server/controllers/locations.js. The
homelist controller passes the data to be shown on the homepage into the view. Fig-
ure 5.8 shows how one of the locations looks on the homepage.

The following code snippet shows the data for this location, as found in the controller:

locations: [{
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}]

You’ll come back to the distance a bit later, as that needs to be calculated. The other
four data items are fairly straightforward: two strings, one number, and one array of
strings. Taking what you know so far, you can use this information to define a basic
schema like the following:

const locationSchema = new mongoose.Schema({
 name: String,
 address: String,
 rating: Number,
 facilities: [String]
});

Figure 5.8 A single location as
displayed in the homepage list

name is a string.

address is another string.
rating is a number.

facilities is an
array of strings.

B Declares an array of the same
schema type by declaring that
type inside square brackets

134 CHAPTER 5 Building a data model with MongoDB and Mongoose

Note the simple approach to declaring facilities as an array B. If your array will con-
tain only one schema type, such as String, you can define it by wrapping the schema
type in square brackets.

ASSIGNING DEFAULT VALUES

In some cases, it’s useful to set a default value when a new MongoDB document is cre-
ated based on your schema. In the locationSchema, the rating path is a good candi-
date. When a new location is added to the database, it won’t have had any reviews, so it
won’t have a rating. But your view expects a rating between zero and five stars, which is
what the controller needs to pass through.

 What you’d like to do is set a default value of 0 for the rating on each new docu-
ment. Mongoose lets you do this from within the schema. Remember that rating:
Number is shorthand for rating: {type: Number}? Well, you can add other options to
the definition object, including a default value. This means that you can update the
rating path in the schema as follows:

rating: {
 type: Number,
 'default': 0
}

The word default doesn’t have to be in quotes, but it’s a reserved word in JavaScript;
therefore, it’s a good idea to use them.

ADDING SOME BASIC VALIDATION: REQUIRED FIELDS

Through Mongoose, you can quickly add some basic validation at the schema level.
This practice helps maintain data integrity and can protect your database from miss-
ing or malformed data. Mongoose’s helpers make it easy to add some of the most
common validation tasks, meaning that you don’t have to write or import the code
each time.

 The first example of this type of validation ensures that required fields aren’t
empty before saving the document to the database. Rather than writing the checks for
each required field in code, you can add a required: true flag to the definition
objects of each path that you decide should be mandatory. In the locationSchema,
you certainly want to ensure that each location has a name, so you can update the
name path like this:

name: {
 type: String,
 required: true
}

If you try to save a location without a name, Mongoose returns a validation error
that you can capture immediately in your code without making a round trip to the
database.

135Defining simple Mongoose schemas

ADDING SOME BASIC VALIDATION: NUMBER BOUNDARIES

You can use a similar technique to define the maximum and minimum values you
want for a number path. These validators are called max and min. Each location you
have has a rating assigned to it, which you’ve given a default value of 0. The value
should never be less than 0 or greater than 5. Update the rating path as follows:

rating: {
 type: Number,
 'default': 0,
 min: 0,
 max: 5
}

With this update, Mongoose won’t let you save a rating value less than 0 or greater
than 5. If you try, it returns a validation error that you can handle in your code. One
great thing about this approach is that the application doesn’t have to make a round
trip to the database to check the boundaries. Another bonus is that you don’t have to
write validation code in every place in the application where you might add, update,
or calculate a rating value.

5.3.2 Using geographic data in MongoDB and Mongoose

When you started to map your application’s data from the controller into a Mongoose
schema, you left the question of distance until later. Now it’s time to discuss how
you’re going to handle geographic information.

 MongoDB can store geographic data as longitude and latitude coordinates and
can even create and manage an index based on this data. This ability enables users to
do fast searches of places that are near one another or near a specific longitude and
latitude—helpful indeed for building a location-based application!

About MongoDB indexes
Indexes in any database system enable faster and more efficient query, and Mon-
goDB is no different. When a path is indexed, MongoDB can use this index to quickly
grab subsets of data without having to scan through all documents in a collection.

Think of a filing system you might have at home. Suppose that you need to find a
particular credit card statement. You might keep all your paperwork in one drawer or
cabinet. If everything is thrown in there randomly, you’ll have to sort through all types
of irrelevant documents until you find what you’re looking for. If you’ve indexed your
paperwork into folders, however, you can quickly find your credit card folder. When
you’ve picked out this folder, you look through this one set of documents, making
your search much more efficient.

This scenario is akin to how indexing works in a database. In a database, though, you
can have more than one index for each document, enabling you to search efficiently
on different queries.

136 CHAPTER 5 Building a data model with MongoDB and Mongoose

The data for a single geographical location is stored according to the GeoJSON for-
mat specification, which you’ll see in action shortly. Mongoose supports this data type,
allowing you to define a geospatial path inside a schema. As Mongoose is an abstrac-
tion layer on top of MongoDB, it strives to make things easier for you. All you have to
do to add a GeoJSON path in your schema:

1 Define the path as an array of the Number type.
2 Define the path as having a 2dsphere index.

To put this into action, you can add a coords path to your location schema. If you fol-
low the two preceding steps, your schema should look like this:

const locationSchema = new mongoose.Schema({
 name: {
 type: String,
 required: true
 },
 address: String,
 rating: {
 type: Number,
 'default': 0,
 min: 0,
 max: 5
 },
 facilities: [String],
 coords: {
 type: { type: String },
 coordinates: [Number]
 }
});
locationSchema.index({coords: '2dsphere'});

The 2dsphere here is the critical part because it enables MongoDB to do the correct
calculations when running queries and returning results. It allows MongoDB to calcu-
late geometries based on a spherical object. You’ll work more with this feature in
chapter 6 when you build your API and start to interact with the data.

TIP To meet the GeoJSON specification, a coordinate pair must be entered
into the array in the correct order: longitude, then latitude. Valid longitude
values range from -180 to 180, whereas valid latitude values range from -90 to
90. Getting your coordinates in the wrong order is an easy mistake to make, so
keep this in mind when saving location data to the collection.

(continued)
Indexes do take maintenance and database resources, though, as it takes time to
file your paperwork correctly. For best overall performance, try to limit your database
indexes to the paths that most need indexing and are used for most queries.

137Defining simple Mongoose schemas

You’ve got the basics covered, and your schema for Loc8r currently holds everything
needed to satisfy the homepage requirements. Next, it’s time to take a look at the
Details page. This page has more complex data requirements, and you’ll see how to
handle them with Mongoose schemas.

5.3.3 Creating more complex schemas with subdocuments

The data you’ve used up until now has been simple and can be held in a fairly flat
schema. You’ve used a couple of arrays for the facilities and location coordinates, but
again, those arrays are simple, containing only a single data type each. Now you’ll look
at what happens when you have a slightly more complicated dataset to work with.

 Start by reacquainting yourself with the Details page and the data that it shows. Fig-
ure 5.9 shows a screenshot of the page with all the different areas of information. The
name, rating, and address are right at the top; a little farther down are the facilities. On
the right side is a map, based on the geographic coordinates. You’ve already covered

Figure 5.9 The information displayed for a single location on the Details page

138 CHAPTER 5 Building a data model with MongoDB and Mongoose

these elements with the basic schema. The two areas that you don’t have anything for
are opening hours and customer reviews.

 The data powering this view is currently held in the locationInfo controller in
app_server/controllers/locations.js. The following listing shows the relevant portion
of the data in this controller.

location: {
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: {lat: 51.455041, lng: -0.9690884},

 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 },{
 days: 'Saturday',
 opening: '8:00am',
 closing: '5:00pm',
 closed: false
 },{
 days: 'Sunday',
 closed: true
 }],
 reviews: [{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place.

 ➥I can\'t say enough good things about it.'
 },{
 author: 'Charlie Chaplin',
 rating: 3,
 timestamp: '16 June 2013',
 reviewText: 'It was okay. Coffee wasn\'t great,
 ➥but the wifi was fast.'
 }]
}

Here, you have arrays of objects for the opening hours and for the reviews. In a rela-
tional database, you’d create these as separate tables and join them in a query when
you need the information. But that’s not how document databases work, including
MongoDB. In a document database, anything that belongs specifically to a parent doc-
ument should be contained within that document. Figure 5.10 illustrates the concep-
tual difference between the two approaches.

 MongoDB offers the concept of subdocuments to store this repeating, nested data.
Subdocuments are much like documents in that they have their own schema; each is

Listing 5.2 Data in the controller powering the Details page

Already covered
with the existing
schema

Data for opening
hours is held as an
array of objects.

Reviews are also
passed to the view
as an array of
objects.

139Defining simple Mongoose schemas

given a unique _id by MongoDB when created. But subdocuments are nested inside a
document, and they can be accessed only as a path of that parent document.

USING NESTED SCHEMAS IN MONGOOSE TO DEFINE SUBDOCUMENTS

Subdocuments are defined in Mongoose by nested schemas—one schema nested
inside another. In this section, you’ll create one to see how it works in code. The first
step is defining a new schema for a subdocument. Start with the opening times,
and create the following schema. Note that this schema needs to be in the same file as
the locationSchema definition and (important) must be before the locationSchema
definition:

const openingTimeSchema = new mongoose.Schema({
 days: {
 type: String,
 required: true
 },
 opening: String,
 closing: String,
 closed: {
 type: Boolean,
 required: true
 }
});

Relational database

Location

Reviews

Open times

Each location record links
out to separate tables for
reviews and open times. Each location document contains

the reviews and open times
in subdocuments.

Reviews

Open times

Location

Document database

Figure 5.10 Difference between how a relational database and a document database
store repeating information relating to a parent element

140 CHAPTER 5 Building a data model with MongoDB and Mongoose

This schema definition is simple and maps over from the data in the controller. You
have two required fields: the closed Boolean flag and the days each subdocument is
referring to.

 Nesting this schema inside the location schema is another straightforward task.
You need to add a new path to the parent schema and define it as an array of your sub-
document schema. The following code snippet shows how to nest the openingTime-
Schema inside the locationSchema:

const locationSchema = new mongoose.Schema({
 name: {
 type: String,
 required: true
 },
 address: String,
 rating: {
 type: Number,
 'default': 0,
 min: 0,
 max: 5
 },
 facilities: [String],

Options for storing time information
In the opening-time schema, you have an interesting situation: you want to save time
information, such as 7:30 a.m., but without a date associated with it.

Here, you’re using a String method, as it doesn’t require any processing before
being put into the database or after being retrieved. It also makes each record easy
to understand. The downside is that it makes doing any computational processing
with it harder.

One option is to create a date object with an arbitrary data value assigned to it and
manually set the hours and minutes, such as

const d = new Date();
d.setHours(15);
d.setMinutes(30);

Using this method, you could easily extract the time from the data. The downsides
are that you store unnecessary data, and that this method is technically incorrect.

A second option is to store the number of minutes since midnight. So 7:30 a.m. is
(7 × 60) + 30 = 450. This computation is a fairly simple one to make when you’re
putting data into the database and pulling it out again. But the data at a glance is
meaningless.

This second option, however, would be our preference for making the dates smarter
and could be a good extension if you want to try something new. For the sake of read-
ability and avoiding distractions, you’ll keep using the String method through the
book.

d is now Sun Mar 12
2017 15:30:40
GMT+0000 (GMT).

141Defining simple Mongoose schemas

 coords: {
 type: {type: String},
 coordinates: [Number]
 },
 openingTimes: [openingTimeSchema]
});

With this in place, you can add multiple opening-time subdocuments to a given loca-
tion, and these subdocuments are stored within that location document. An example
document from MongoDB based on this schema is shown in the following code snip-
pet, with the subdocuments for the opening times in bold:

{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f5"),
 "name": "Starcups",
 "address": "125 High Street, Reading, RG6 1PS",
 "rating": 3,
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "coords": [-0.9690884, 51.455041],
 "openingTimes": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f6"),
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f7"),
 "days": "Saturday",
 "opening": "8:00am",
 "closing": "5:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f8"),
 "days": "Sunday",
 "closed": true
 }]
}

With the schema for the opening times taken care of, next you’ll look at adding a
schema for the review subdocuments.

ADDING A SECOND SET OF SUBDOCUMENTS

Neither MongoDB nor Mongoose limits the number of subdocument paths in a docu-
ment, so you’re free to use what you’ve done for the opening times and replicate the
process for the reviews:

 Step 1: Look at the data used in a review:
{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place. I can\'t say enough good things
about it.'
}

Adds nested schema by
referencing another schema
object as an array

In a MongoDB
document, nested
opening-times
subdocuments live
inside the location
document.

142 CHAPTER 5 Building a data model with MongoDB and Mongoose

 Step 2: Map this code into a new reviewSchema in app_server/models/
location.js:
const reviewSchema = new mongoose.Schema({
 author: String,
 rating: {
 type: Number,
 required: true,
 min: 0,
 max: 5
 },
 reviewText: String,
 createdOn: {
 type: Date,
 'default': Date.now
 }
});

 Step 3: Add this reviewSchema as a new path to locationSchema:
const locationSchema = new mongoose.Schema({
 name: {type: String, required: true},
 address: String,
 rating: {type: Number, "default": 0, min: 0, max: 5},
 facilities: [String],
 coords: {type: { type: String }, coordinates: [Number]},
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});

When you’ve defined the schema for reviews and added it to your main location
schema, you have everything you need to hold the data for all locations in a struc-
tured way.

5.3.4 Final schema

Throughout this section, you’ve done quite a bit in the file, so take a look at it all
together to see what’s what. The following listing shows the contents of the locations.js
file in app_server/models, defining the schema for the location data.

const mongoose = require('mongoose');
const openingTimeSchema = new

mongoose.Schema({
 days: {type: String, required: true},
 opening: String,
 closing: String,
 closed: {
 type: Boolean,
 required: true
 }
});
const reviewSchema = new mongoose.Schema({
 author: String,
 rating: {

Listing 5.3 Final location schema definition, including nested schemas

Requires Mongoose so that
you can use its methods

Defines a schema
for opening times

Defines a schema
for reviews

143Defining simple Mongoose schemas

 type: Number,
 required: true,
 min: 0,
 max: 5
 },
 reviewText: String,
 createdOn: {type: Date, default: Date.now}
});
const locationSchema = new mongoose.Schema({
 name: {
 type: String,
 required: true
 },
 address: String,
 rating: {
 type: Number,
 'default': 0,
 min: 0,
 max: 5
 },
 facilities: [String],
 coords: {
 type: {type: String },
 coordinates:[Number]
 },
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});
locationSchema.index({coords: '2dsphere'});

Documents and subdocuments all have a schema defining their structure, and you’ve
also added some default values and basic validation. To make this scenario a bit more
real, the following listing shows an example MongoDB document based on this
schema.

{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f5"),
 "name": "Starcups",
 "address": "125 High Street, Reading, RG6 1PS",
 "rating": 3,
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "coords": [-0.9690884, 51.455041],
 "openingTimes": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f6"),
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f7"),
 "days": "Saturday",
 "opening": "8:00am",

Listing 5.4 Example MongoDB document based on the location schema

Defines a schema
for reviews

Starts the main location
schema definition

Uses 2dsphere to add support
for GeoJSON longitude and
latitude coordinate pairs

References the opening times and reviews
schemas to add nested subdocuments

Coordinates are stored as
a GeoJSON pair [longitude,
latitude].

Opening times are
stored as nested
array of objects
(subdocuments).

144 CHAPTER 5 Building a data model with MongoDB and Mongoose

 "closing": "5:00pm",
 "closed": false
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7f8"),
 "days": "Sunday",
 "closed": true
 }],
 "reviews": [{
 "_id": ObjectId("52ef3a9f79c44a86710fe7f9"),
 "author": "Simon Holmes",
 "rating": 5,
 "createdOn": ISODate("2013-07-15T23:00:00Z"),
 "reviewText": "What a great place. I can't say enough good
things about it."
 }, {
 "_id": ObjectId("52ef3a9f79c44a86710fe7fa"),
 "author": "Charlie Chaplin",
 "rating": 3,
 "createdOn": ISODate("2013-06-15T23:00:00Z"),
 "reviewText": "It was okay. Coffee wasn't great, but the wifi was fast."
 }]
}

That listing should give you an idea of what a MongoDB document looks like, includ-
ing subdocuments, when based on a known schema. In readable form like this, it’s a
JSON object, although technically, MongoDB stores it as BSON, which is Binary JSON.

5.3.5 Compiling Mongoose schemas into models

An application doesn’t interact with the schema directly when working with data; data
interaction is done through models.

 In Mongoose, a model is a compiled version of the schema. When it’s compiled, a
single instance of the model maps directly to a single document in your database. It’s
through this direct one-to-one relationship that the model can create, read, save, and
delete data. Figure 5.11 illustrates this arrangement.

 This approach makes Mongoose a breeze to work with, and you’ll get your teeth
into it in chapter 6 when you build the internal API for the application.

COMPILING A MODEL FROM A SCHEMA

Anything with the word compiling in it tends to sound a bit complicated. In reality,
compiling a Mongoose model from a schema is a simple one-line task. You need to
ensure that the schema is complete before you invoke the model command. The
model command follows this construct:

Opening times are
stored as nested
array of objects
(subdocuments).

Reviews are also
arrays of

subdocuments.

Connection
name

Name of
the model

Schema to
use

MongoDB collection
name (optional)

145Defining simple Mongoose schemas

TIP The MongoDB collection name is optional. If you exclude it, Mongoose
uses a lowercase pluralized version of the model name. A model name of
Location, for example, would look for a collection name of locations unless
you specify something different.

As you’re creating a database and not hooking into an existing data source, you can
use a default collection name, so you don’t need to include that parameter in the
model command. To build a model of your location schema, you can add the follow-
ing line to the code below the locationSchema definition:

mongoose.model('Location', locationSchema);

That’s all there is to it. You’ve defined a data schema for the locations and compiled
the schema into a model that you can use in the application. What you need now is
some data.

Application

Schema

The schema
compiles into
a model.

Model

Array of
instances

Single
instance

Single
document

Subset of
documents

Collection

Database
A single instance
of the model maps
directly to a single
document.

An array of instances
maps to a subset of documents.
Each instance in the array has a 1:1
relationship with a specific single
document in the subset.

1 : 1

1 : 1

Figure 5.11 The application and the database talk to each other through models. A single instance
of a model has a one-to-one relationship with a single document in the database. It’s through this
relationship that the creating, reading, updating ,and deleting of data are managed.

146 CHAPTER 5 Building a data model with MongoDB and Mongoose

5.4 Using the MongoDB shell to create
a MongoDB database and add data
To build the Loc8r app, you’ll create a new database and manually add some test data.
You get to create your own personal version of Loc8r for testing and at the same time
play directly with MongoDB.

5.4.1 MongoDB shell basics

The MongoDB shell is a command-line utility that gets installed with MongoDB and
allows you to interact with any MongoDB databases on your system. It’s powerful and
can do a lot. You’re only going to get acquainted with the basics to get up and running.

STARTING THE MONGODB SHELL

Drop into the shell by running the following line in terminal:

$ mongo

This command should respond in terminal with a few lines confirming

 The shell version
 The server and port that it’s connecting to
 The server version it has connected to

These confirmation lines should look similar to this, so long as the version is equal to
or later than 4:

MongoDB shell version 4.0.0
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 4.0.0

If you’re using an older version of MongoDB, you may see different messages, but it’s
normally obvious if the command has worked or failed. You might also see a few lines
starting with Server has startup warnings going on to state Access control is
not enabled for the database. This isn’t anything to worry about on your local
development machine.

TIP When you’re in the shell, newlines start with a > to differentiate from the
standard command-line entry point. The shell commands printed in this sec-
tion start with > instead of $ to make it clear that you’re using the shell, but
like $, you don’t need to type it.

LISTING ALL LOCAL DATABASES

Next is a simple command that shows a list of all the local MongoDB databases. Enter
the following line in the shell:

> show dbs

This line returns a list of the local MongoDB database names and their sizes. If you
haven’t created any databases at this point, you still see the two default ones, which
look something like this:

147Using the MongoDB shell to create a MongoDB database and add data

admin 0.000GB
local 0.000GB

USING A SPECIFIC DATABASE

If you want to use a specific database, such as the default one called local, you can use
the use command, like this:

> use local

The shell responds with a message along these lines:

switched to db local

This message confirms the name of the database the shell has connected to.

LISTING THE COLLECTIONS IN A DATABASE

When you’re using a particular database, it’s easy to output a list of its collections by
using the following command:

> show collections

If you’re using the local database, you’ll probably see a single collection name output
to terminal: startup_log.

SEEING THE CONTENTS OF A COLLECTION

The MongoDB shell also lets you query the collections in a database. The construct
for a query or find operation is as follows:

The query object is used to specify what you’re trying to find in the collection, and
you’ll look at examples of this query object later in chapter 6. (Mongoose also uses
the query object.) The simplest query is an empty query, which returns all the docu-
ments in a collection. Don’t worry if your collection is large, as MongoDB returns a
subset of documents that you can page through. Using the startup_log collection as
an example, you can run the following command:

> db.startup_log.find()

This command returns several documents from the MongoDB startup log, the con-
tent of which isn’t interesting enough to show here. This command is useful when
you’re getting your database up and running and making sure that things are being
saved as you expect.

Specifies the name
of the collection
to query

An optional object
providing query
parameters

148 CHAPTER 5 Building a data model with MongoDB and Mongoose

5.4.2 Creating a MongoDB database

You don’t have to create a MongoDB database; you only need to start using it. For the
Loc8r application, it makes sense to have a database called Loc8r. In the shell, you use
it with the following command:

> use Loc8r

If you run the show collections command, it won’t return anything yet, and you
won’t even see it if you run show dbs. But you’ll be able to see it after saving some data
to it.

CREATING A COLLECTION AND DOCUMENTS

Similarly, you don’t have to explicitly create a collection, as MongoDB creates it for
you when you first save data to it.

To match the Location model, you’ll want a locations collection. Remember that
the default collection name is a lowercase pluralized version of the model name. You
can create and save a new document by passing a data object into the save command
of a collection, as in the following code snippet:

> db.locations.save({
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: [-0.9690884, 51.455041],
 openingTimes: [{
 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 }, {

Location data more personal to you
Loc8r is all about location-based data, and the examples are all fictitious places, geo-
graphically close to where Simon lives in the United Kingdom. You can make your ver-
sion more personal to you by changing the names, addresses, and coordinates.

To get your current coordinates, visit https://whatsmylatlng.com. There’s a button on
the page to find your location by using JavaScript, which gives you a much more accu-
rate location than the first attempt. Note that the coordinates are shown to you in
latitude–longitude order, and you need to flip them around for the database so that
longitude is first.

To get the coordinates of any address, you can use http://mygeoposition.com. This
site lets you enter an address or drag and drop a pointer to give you the geographic
coordinates. Again, remember that the pairs in MongoDB must be longitude and then
latitude.

Note collection name
specified as part of the
save command

https://whatsmylatlng.com
http://mygeoposition.com

149Using the MongoDB shell to create a MongoDB database and add data

 days: 'Saturday',
 opening: '8:00am',
 closing: '5:00pm',
 closed: false
 }, {
 days: 'Sunday',
 closed: true
 }]
})

In one step, you’ve created the Loc8r database and a new locations collection, and
added the first document to the collection. If you run show dbs in the MongoDB shell
now, you should see the new Loc8r database being returned alongside the other data-
bases, like so:

> show dbs
Loc8r 0.000GB
admin 0.000GB
local 0.000GB

Now when you run show collections in the MongoDB shell, you should see the new
locations collection being returned:

> show collections
locations

You can query the collection to find the documents. Only one document is there cur-
rently, so the returned information is small. You can use the find command on the
collection as well:

> db.locations.find()
{
 "_id": ObjectId("530efe98d382e7fa4345f173"),
 "address": "125 High Street, Reading, RG6 1PS",
 "coords": [-0.9690884, 51.455041],
 "facilities": ["Hot drinks", "Food", "Premium wifi"],
 "name": "Starcups",
 "openingTimes": [{
 "days": "Monday - Friday",
 "opening": "7:00am",
 "closing": "7:00pm",
 "closed": false
 }, {
 "days": "Saturday",
 "opening": "8:00am",
 "closing": "5:00pm",
 "closed": false
 }, {
 "days": "Sunday",
 "closed": true
 }],
 "rating": 3,
}

Remember to run
the find
operation on the
collection itself.

MongoDB has
automatically added a

unique identifier for
this document.

150 CHAPTER 5 Building a data model with MongoDB and Mongoose

This code snippet has been formatted for readability; the document that MongoDB
returns to the shell won’t have the line breaks and indentation. But the MongoDB
shell can prettify it for you if you add .pretty() to the end of the command, like this:

> db.locations.find().pretty()

Notice that the order of the data in the returned document doesn’t match the order
of the data in the object you supplied. As the data structure isn’t column-based, it
doesn’t matter how MongoDB stores the individual paths within a document. The
data is always still there in the correct paths, and data held inside arrays always main-
tains the same order.

ADDING SUBDOCUMENTS

You’ve probably noticed that your first document doesn’t have the full dataset; there
are no review subdocuments. You can add them to the initial save command as
you’ve done with the opening times, or you can update an existing document and
push them in.

 MongoDB has an update command that accepts two arguments: a query so that it
knows which document to update, and the instructions on what to do when it finds
the document. At this point, you can do a simple query and look for the location by
name (Starcups), as you know that there aren’t any duplicates. For the instruction
object, you can use a $push command to add a new object to the reviews path. It
doesn’t matter if the reviews path doesn’t exist yet; MongoDB adds it as part of the
push operation.

 Putting it all together shows something like the following code snippet:

> db.locations.update({
 name: 'Starcups'
}, {
 $push: {
 reviews: {
 author: 'Simon Holmes',
 _id: ObjectId(),
 rating: 5,
 timestamp: new Date("Mar 12, 2017"),
 reviewText: "What a great place."
 }
 }
})

If you run that command in the MongoDB shell while using the Loc8r database, you
add a review to the document. You can repeat the command as often as you like,
changing the data to add multiple reviews.

 You may have noticed that here, you specify the _id property and assign it the
value of ObjectId(). MongoDB doesn’t automatically add _id to subdocuments as it
does for documents, but this feature will be useful for you later. Giving the review sub-
document the value of ObjectId() tells MongoDB to create a new unique identifier
for this subdocument.

Starts with a query object
to find correct document

When the document is found, pushes a
subdocument into the reviews path

Subdocument
contains this data

151Getting your database live

 Note the new Date() function call for setting the timestamp of the review. Using
this timestamp ensures that MongoDB stores the date as an ISO date object, not a
string—which is what your schema expects, and which allows greater manipulation of
dates data.

REPEAT THE PROCESS

These few commands have given you one location to test the application with, but ide-
ally, you need a couple more. Add some more locations to your database.

 When you’re done with that and your data is set, you’re almost at the point where
you can start using it from the application. In this case, you’ll be building an API. But
before you jump into that task in chapter 6, there’s one more piece of housekeeping.
You want to keep pushing regular updates to Heroku, and now that you’ve added a
database connection and data models to your application, you need to make sure that
these updates are supported in Heroku.

5.5 Getting your database live
If you’ve got your application out in the wild, it’s no good having your database on
your local host. Your database also needs to be externally accessible. In this section,
you’ll push your database into a live environment and update your Loc8r application
so that it uses the published database from the published site, and the local host data-
base from the development site. You’ll start by using the free tier of a service called
mLab, which can be used as an add-on to Heroku. If you have a different preferred
provider or your own database server, that’s no problem. The first part of this section
runs through setting up on mLab, but the following parts—migrating the data and
setting the connection strings in the Node application—aren’t platform specific.

5.5.1 Setting up mLab and getting the database URI

The first goal is getting an externally accessible database URI so that you can push
data to it and add it to the application. You’ll use mLab for this purpose, as it has a
good free tier, excellent online documentation, and a responsive support team.

 You have a couple of ways to set up a database on mLab. The quickest and easiest
way is to use an add-on via Heroku. This method is what you’ll use here, but it does
require you to register a valid credit card with Heroku. Heroku makes you do this
when you use add-ons through its ecosystem to protect itself from abusive behavior.
Using the free sandbox tier of mLab won’t incur any charges. If you’re not comfort-
able using a credit card to set up your mLab database directly through Heroku, check
out the sidebar "Setting up mLab manually" for details on setting up an mLab data-
base and connecting it to your Heroku application manually. If you opt to set up your
database manually, don’t follow the instructions for Heroku add-on installation; other-
wise, you’ll end up with multiple databases associated with your application.

152 CHAPTER 5 Building a data model with MongoDB and Mongoose

ADDING THE MLAB ADD-ON TO THE HEROKU APPLICATION

The quickest way to add mLab as a Heroku add-on is through terminal. Make sure
that you’re in the root folder of your application, and run the following command
(using mLab’s old name, MongoLab):

$ heroku addons:create mongolab

Unbelievably, that’s it! You have a MongoDB database ready and waiting for you in the
cloud. You can prove this to yourself and open a web interface to this new database by
using the following command:

$ heroku addons:open mongolab

To use the database, you’ll need to know its URI.

GETTING THE DATABASE URI
You can get the full database URI by using the command line. This method gives you
the full connection string that you can use in the application and also shows you the
various components that you’ll need to push data up to the database.

Setting up mLab manually
You don’t have to use the Heroku add-on system if you don’t want to. What you want
to do is to set up a MongoDB database in the cloud and get a connection string for it.

The mLab documentation can guide you through this process; see https://docs
.mlab.com.

In short, the steps are

1 Sign up for a free account.
2 Create a new database (select Single Node, Sandbox for the free tier).
3 Add a user.
4 Get the database URI (connection string).

The connection string looks something like this:

mongodb://dbuser:dbpassword@ds059957.mlab.com:59957/loc8r-dev

All the parts will be different for you, of course, and you’ll have to swap out the user-
name and password with what you specified in step 3.

When you have your full connection string, you should save it as part of your Heroku
configuration. With a terminal prompt in the root folder of your application, you can
do this with the following command:

$ heroku config:set MLAB_URI=your_db_uri

Replace your_db_uri with your full connection string, including the mongodb://
protocol. The quick and easy way automatically creates the MLAB_URI setting in your
Heroku configuration. These manual steps bring you to the same point as the quick
way, and you can jump back to the main text.

https://docs.mlab.com/
https://docs.mlab.com/
https://docs.mlab.com/

153Getting your database live

 The command to get the database URI is

$ heroku config:get MONGODB_URI

This command outputs the full connection string, which looks something like this:

mongodb://heroku_t0zs37gc:1k3t3pgo8sb5enovqd9sk314gj@ds159330.mlab.com:59330/
heroku_t0zs37gc

Keep your version handy, as you’ll use it in the application soon. First, you need to
break it down into its components.

BREAKING DOWN THE URI INTO ITS COMPONENTS

The URI looks like a random mess of characters, but you can break it down to make
sense of it. From section 5.1.2, you know that this is how a database URI is con-
structed:

Taking the URI that mLab has given you, you can break it down into something like
the following:

 Username—heroku_t0zs37gc

 Password—1k3t3pgo8sb5enovqd9sk314gj

 Server address—ds159330.mlab.com

 Port—59330

 Database name—heroku_t0zs37gc

These examples are from the example URI. Yours will be different, of course, but
make note of them; they’ll be useful.

5.5.2 Pushing up the data

Now that you have an externally accessible database set up and know all the details for
connecting to it, you can push data up to it. The steps are as follows:

1 Navigate to a directory on your machine that’s suitable to hold a data dump.
2 Dump the data from your development Loc8r database.
3 Restore the data to your live database.
4 Test the live database.

All these steps can be achieved quickly through terminal, so that’s what you’ll do. It
saves jumping around between environments.

MongoDB
protocol

Login credentials
for database

Server
address

Port Database
name

154 CHAPTER 5 Building a data model with MongoDB and Mongoose

NAVIGATE TO A SUITABLE DIRECTORY

When you run the data dump command from the command line, it creates a folder
called /dump in the current directory and places the data dump inside it. The first
step, then, is navigating in terminal to a suitable location on your hard drive. Your
home directory or documents folder will do, or you can create a specific folder if you
prefer.

DUMPING THE DATA FROM THE DEVELOPMENT DATABASE

Dumping the data sounds like you’re deleting everything from your local develop-
ment version, but this isn’t the case. The process is more an export than a trashing.

 The command used is mongodump, which can accept many parameters, of which
you need these two:

 -h—The host server (and port)
 -d—The database name

Putting it all together and using the default MongoDB port of 27017, you should end
up with a command like the following:

$ mongodump -h localhost:27017 -d Loc8r

Run that command, and you have a temporary dump of the data.

RESTORING THE DATA TO YOUR LIVE DATABASE

The process of pushing up the data to your live database is similar, this time using the
mongorestore command. This command expects the following parameters:

 -h—Live host and port
 -d—Live database name
 -u—Username for the live database
 -p—Password for the live database
 Path to the dump directory and database name (comes at the end of the com-

mand and doesn’t have a corresponding flag like the other parameters)

Putting all this together, using the information you have about the database URI, you
should have a command like the following:

$ mongorestore -h ds159330.mlab.com:59330 -d heroku_t0zs37gc

 ➥-u heroku_t0zs37gc -p 1k3t3pgo8sb5enovqd9sk314gj dump/

Your command will look a bit different, of course, because you’ll have a different host,
live database name, username, and password. When you run your mongorestore com-
mand, it pushes the data up from the data dump into your live database.

TESTING THE LIVE DATABASE

The MongoDB shell isn’t restricted to accessing databases on your local machine. You
can also use the shell to connect to external databases (if you have the right creden-
tials, of course).

155Getting your database live

 To connect the MongoDB shell to an external database, you use the same mongo
command but add information about the database you want to connect to. You need
to include the hostname, port, and database names, and you can supply a username
and password if required. Use the following construct:

$ mongo hostname:port/database_name -u username -p password

Using the setup you’ve been looking at in this section would give you this command:

$ mongo ds159330.mlab.com:59330/heroku_t0zs37gc -u heroku_t0zs37gc -p

➥ 1k3t3pgo8sb5enovqd9sk314gj

This command connects you to the database through the MongoDB shell. When the
connection is established, you can use the commands you’ve already been using to
interrogate it, such as

> show collections
> db.locations.find()

Now you’ve got two databases and two connection strings. It’s important to use the
right one at the right time.

5.5.3 Making the application use the right database

You have your original development database on your local machine plus your new
live database up on mLab (or elsewhere). You want to keep using the development
database while you’re developing your application, and you want the live version of
your application to use the live database. Yet both use the same source code. Figure
5.12 shows the issue.

Source code

Local host
Development

database

Live
databaseHeroku

Figure 5.12 The source code runs in two locations, each of which needs to
connect to a different database.

156 CHAPTER 5 Building a data model with MongoDB and Mongoose

You now have one set of source code running in two environments, each of which
should use a different database. The way to handle this problem is through using a
Node environment variable, NODE_ENV.

THE NODE_ENV ENVIRONMENT VARIABLE

Environment variables affect the way the core process runs, and the one you’ll look at
and use here is NODE_ENV. The application already uses NODE_ENV; you don’t see it
exposed anywhere. By default, Heroku should set NODE_ENV to production so that the
application will run in production mode on its server.

You can read NODE_ENV from anywhere in the application by using the following
statement:

process.env.NODE_ENV

Unless specified in your environment, this statement comes back as undefined. You
can specify different environment variables when starting the Node application by
prepending the assignment to the launch command, as in this example:

$ NODE_ENV=production nodemon

This command starts the application in production mode, and the value of process
.env.NODE_ENV is set to production.

TIP Don’t set NODE_ENV from inside the application; only read it.

SETTING THE DATABASE URI BASED ON THE ENVIRONMENT

The database connection for your application is held in the db.js file in app_
server/models. The connection portion of this file currently looks like this:

const dbURI = 'mongodb://localhost/Loc8r';
mongoose.connect(dbURI);

Changing the value of dbURI based on the current environment is as simple as using
an if statement to check NODE_ENV. The next code snippet shows how you can do this
to pass in your live MongoDB connection. Remember to use your own MongoDB con-
nection string rather than the one in this example:

Ensuring Heroku is using production mode
In certain instances, depending on how the application was set up, the Heroku appli-
cation may not be running in production mode. You can ensure that the Heroku envi-
ronment variable is set correctly with the following terminal command:

$ heroku config:set NODE_ENV=production

You can validate this setting by using a get version of this command, like so:

$ heroku config:get NODE_ENV

157Getting your database live

let dbURI = 'mongodb://localhost/Loc8r';
if (process.env.NODE_ENV === 'production') {
 dbURI =

'mongodb://heroku_t0zs37gc:1k3t3pgo8sb5enosk314gj@ds159330.mlab.com:5933
 ➥0/ heroku_t0zs37gc';
}
mongoose.connect(dbURI);

If the source code is going to be in a public repository, you probably don’t want to give
everybody the login credentials to your database. A way around this situation is to use
an environment variable. With mLab on Heroku, you automatically have one set up;
it’s how you originally got access to the connection string. (If you set up your mLab
account manually, this variable is the Heroku configuration variable that you set.) If
you’re using a different provider that hasn’t added anything to the Heroku configura-
tion, you can add your URI with the heroku config:set command that you used to
ensure that Heroku is running in production mode.

 The following code snippet shows how you can use the connection string set in the
environment variables:

let dbURI = 'mongodb://localhost/Loc8r';
if (process.env.NODE_ENV === 'production') {
 dbURI = process.env.MONGODB_URI;
}
mongoose.connect(dbURI, { useNewUrlParser: true });

Now you can share your code, but only you retain access to your database credentials.

TESTING BEFORE LAUNCHING

You can test this update to the code locally before pushing the code to Heroku by set-
ting the environment variable as you start the application from terminal. The Mon-
goose connection events you set up earlier output a log to the console when the
database connection is made, verifying the URI used.

 To do this, you need to add both the NODE_ENV and MJONGODB_URI environment
variables in front of the nodemon command, like this (note that all of the following
should be entered as one line):

$ NODE_ENV=production
MONGODB_URI=mongodb://<username>:<password>@<hostname>:<port>/<database>
nodemon

Now your console log on startup should look like this:

Mongoose connected to
mongodb://heroku_t0zs37gc:1k3t3pgo8sb5enosk314gj@ds159330.mlab.com:59330

 ➥/ heroku_t0zs37gc

When running this command, you’ll probably notice that the Mongoose connection
confirmation takes longer to appear in the production environment, due to the latency
of using a separate database server. This is why it’s a good idea to open the database
connection at application startup and leave it open.

158 CHAPTER 5 Building a data model with MongoDB and Mongoose

TESTING ON HEROKU

If your local tests are successful, and you can connect to your remote database by tem-
porarily starting the application in production mode, you’re ready to push it up to
Heroku. Use the same commands as normal to push the latest version of the code up:

$ git add --all
$ git commit –m "Commit message here"
$ git push heroku master

Heroku lets you look at the latest 100 lines of logs by running a terminal command.
You can check those logs to see the output of your console log messages, one of which
will be your Mongoose connected to logs. To view the logs, run the following com-
mand in terminal:

$ heroku logs

This command outputs the latest 100 rows to the terminal window, with the latest mes-
sages at the bottom. Scroll up until you find the Mongoose connected to message that
looks something like this:

2017-04-14T07:01:22.066997+00:00 app[web.1]: Mongoose connected to
 mongodb://heroku_t0zs37gc:1k3t3pgo8sb5enosk314gj@ds159330.mlab.com:59330/

 ➥heroku_t0zs37gc

When you see this message, you know that the live application on Heroku is connect-
ing to your live database.

 So that’s the data defined and modeled, and your Loc8r application is connected
to the database. But you’re not interacting with the database at all yet. That comes
next!

In chapter 6, you’ll use Express to create a REST API so that you can access the data-
base through web services.

Get the source code
The source code of the application so far is available from GitHub on the chapter-05
branch of the gettingMean-2 repository. In a fresh folder in terminal, enter the follow-
ing commands to clone it and install the npm module dependencies:

$ git clone -b chapter-05 https://github.com/cliveharber/
gettingMean-2.git

$ cd gettingMean-2

$ npm install

159Summary

Summary
In this chapter, you learned

 Some ways of connecting a MongoDB database to an Express application using
Mongoose

 Best practices for managing Mongoose connections
 How to model data using Mongoose schemas
 How schemas compile into models
 Using the MongoDB shell to work directly with the database
 Pushing your database to a live URI
 Connecting to different databases from different environments

160

Writing a REST API:
Exposing the MongoDB

database to the application

As you come into this chapter, you have a MongoDB database set up, but you can
interact with it only through the MongoDB shell. During the course of this chapter,
you’ll build a REST API so that you can interact with your database through HTTP
calls and perform the common CRUD functions: create, read, update, and delete.

 You’ll work mainly with Node and Express, using Mongoose to help with inter-
actions. Figure 6.1 shows where this chapter fits into the overall architecture.

 You’ll start by looking at the rules of a REST API. We’ll discuss the importance
of defining the URL structure properly, the different request methods (GET, POST,

This chapter covers
 Examining the rules of REST APIs

 Evaluating API patterns

 Handling typical CRUD functions (create, read, update,
delete)

 Using Express and Mongoose to interact with MongoDB

 Testing API endpoints

161The rules of a REST API

PUT, and DELETE) that should be used for different actions, and how an API should
respond with data and an appropriate HTTP status code. When you have that knowl-
edge under your belt, you’ll move on to building your API for Loc8r, covering all the
typical CRUD operations. We’ll discuss Mongoose along the way and get into some
Node programming and more Express routing.

NOTE If you haven’t yet built the application from chapter 5, you can get
the code from GitHub on the chapter-05 branch at https://github.com/
cliveharber/ gettingMean-2. In a fresh folder in terminal, enter the following
commands to clone it and install the npm module dependencies:
$ git clone -b chapter-05 https://github.com/cliveharber/

gettingMean-2.git
$ cd gettingMean-2
$ npm install

6.1 The rules of a REST API
We’ll start with a recap of what makes a REST API. From chapter 2, you may remem-
ber that

 REST stands for REpresentational State Transfer, which is an architectural style
rather than a strict protocol. REST is stateless; it has no idea of any current user
state or history.

Database

Build a REST API
using Express,
Node.js, and
Mongoose.

API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Database

MongoDB

Figure 6.1 This chapter focuses on building the API that interacts with the database, exposing an
interface for the applications to talk to.

https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2
https://github.com/cliveharber/gettingMean-2

162 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 API is an abbreviation for application program interface, which enables applica-
tions to talk to one another.

A REST API is a stateless interface to your application. In the case of the MEAN stack,
the REST API is used to create a stateless interface to your database, enabling a way
for other applications to work with the data.

 REST APIs have an associated set of standards. Although you don’t have to stick to
these standards for your own API, it’s generally best to, as it means that any API you
create will follow the same approach. It also means that you’re used to doing things
the “right” way if you decide that you’re going to make your API public.

 In basic terms, a REST API takes an incoming HTTP request, does some process-
ing, and always sends back an HTTP response, as shown in figure 6.2.

The standards that you’ll follow for Loc8r revolve around the requests and the
responses.

6.1.1 Request URLs

Request URLs for a REST API have a simple standard. Following this standard makes
your API easy to pick up, use, and maintain.

 The way to approach this task is to start thinking about the collections in your data-
base, as you’ll typically have a set of API URLs for each collection. You may also have a
set of URLs for each set of subdocuments. Each URL in a set has the same basic path,
and some may have additional parameters.

 Within a set of URLs, you need to cover several actions, generally based on the
standard CRUD operations. The common actions you’ll likely want are

REST API

Request

Application

Response

1. Someone or something
sends a request to the API.

2. The API processes
the request, talking
to a database if
necessary.

3. The API always
sends a response
back to the
requestor.

Figure 6.2 A REST API takes incoming HTTP requests, does some
processing, and returns HTTP responses.

163The rules of a REST API

 Create a new item
 Read a list of several items
 Read a specific item
 Update a specific item
 Delete a specific item

Using Loc8r as an example, the database has a Locations collection that you want to
interact with. Table 6.1 shows how the URL paths might look for this collection. Note
that all URLs have the same base path and, where used, have the same location ID
parameter.

As you can see from table 6.1, each action has the same URL path, and three of them
expect the same parameter to specify a location. This situation poses an obvious ques-
tion: how do you use the same URL to initiate different actions? The answer lies in
request methods.

6.1.2 Request methods

HTTP requests can have different methods that essentially tell the server what type of
action to take. The most common type of request is a GET request—the method used
when you enter a URL in the address bar of your browser. Another common method
is POST, often used for submitting form data.

 Table 6.2 shows the methods you’ll be using in your API, their typical use cases,
and what you’d expect to be returned.

Table 6.1 URL paths and parameters for an API to the Locations collection

Action URL path Example

Create new location /locations http://loc8r.com/api/locations

Read list of locations /locations http://loc8r.com/api/locations

Read a specific location /locations/:locationid http://loc8r.com/api/locations/123

Update a specific location /locations/:locationid http://loc8r.com/api/locations/123

Delete a specific location /locations/:locationid http://loc8r.com/api/locations/123

Table 6.2 Four request methods used in a REST API

Request method Use Response

POST Create new data in the database New data object as seen in the database

GET Read data from the database Data object answering the request

PUT Update a document in the database Updated data object as seen in the data-
base

DELETE Delete an object from the database Null

164 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

The four HTTP methods that you’ll use are POST, GET, PUT, and DELETE. If you look at
the corresponding entries in the Use column, you’ll notice that each method per-
forms a different CRUD operation.

 The method is important, because a well-designed REST API often has the same
URL for different actions. In these cases, the method tells the server which type of
operation to perform. We’ll discuss how to build and organize the routes for methods
in Express later in this chapter.

 If you take the paths and parameters and map across the appropriate request
method, you can put together a plan for your API, as shown in table 6.3.

Table 6.3 shows the paths and methods you’ll use for the requests to interact with the
location data. There are five actions but only two URL patterns, so you can use the
request methods to get the desired results.

 Loc8r only has one collection right now, so this is your starting point. But the doc-
uments in the Locations collection do have reviews as subdocuments, so you’ll quickly
map them out too.

 Subdocuments are treated in a similar way but require an additional parameter.
Each request needs to specify the ID of the location, and some requests also need to
specify the ID of a review. Table 6.4 shows the list of actions and their associated meth-
ods, URL paths, and parameters.

Table 6.3 Request methods that link URLs to the desired actions, enabling the API to use the same URL for
different actions

Action Method URL path Example

Create new location POST /locations http://loc8r.com/api/locations

Read list of locations GET /locations http://loc8r.com/api/locations

Read a specific location GET /locations/:locationid http://loc8r.com/api/locations/123

Update a specific location PUT /locations/:locationid http://loc8r.com/api/locations/123

Delete a specific location DELETE /locations/:locationid http://loc8r.com/api/locations/123

Table 6.4 URL specifications for interacting with subdocuments; each base URL path must contain the ID of the
parent document

Action Method URL path Example

Create new review POST /locations/:locationid/reviews http://loc8r.com/api/
locations/123/reviews

Read a specific review GET /locations/:locationid/reviews/
:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Update a specific review PUT /locations/:locationid/reviews/
:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

165The rules of a REST API

You may have noticed that for the subdocuments, you don’t have a “read a list of
reviews” action, because you’ll be retrieving the list of reviews as part of the main doc-
ument. The preceding tables should give you an idea of how to create basic API
request specifications. The URLs, parameters, and actions will be different from one
application to the next, but the approach should remain consistent.

 That’s the story on requests. The other half of the flow, before you get stuck in
some code, is responses.

6.1.3 Responses and status codes

A good API is like a good friend. If you go for a high five, a good friend won’t leave
you hanging. The same goes for a good API. If you make a request, a good API always
responds and doesn’t leave you hanging. Every single API request should return a
response. The contrast between a good API and a bad one is shown in figure 6.3.

 For a successful REST API, standardizing the responses is as important as standard-
izing the request format. There are two key components to a response:

 The returned data
 The HTTP status code

Combining the returned data with the appropriate status code should give the
requester all the information required to continue.

Delete a specific review DELETE /locations/:locationid/reviews/
:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Table 6.4 URL specifications for interacting with subdocuments; each base URL path must contain the ID of the
parent document (continued)

Action Method URL path Example

REST API

Request

Application

Response

High-five!

REST API

Request

Application

Don’t leave
me hanging

Good API Bad API

Figure 6.3 A good API always returns a response and shouldn’t leave you hanging.

166 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

RETURNING DATA FROM AN API
Your API should return a consistent data format. Typical formats for a REST API are
XML and/or JSON. You’ll use JSON for your API, because it’s the natural fit for the
MEAN stack. MongoDB outputs JSON, which Node and Angular can both natively
understand. JSON is, after all, the JavaScript way of transporting data. JSON is also
more compact than XML, so it can help speed the response times and efficiency of an
API by reducing the bandwidth required.

 Your API will return one of three things for each request:

 A JSON object containing data answering the request query
 A JSON object containing error data
 A null response

During this chapter, we’ll discuss how to do all these things as you build the Loc8r
API. As well as responding with data, a REST API should return the correct HTTP sta-
tus code.

USING HTTP STATUS CODES

A good REST API should return the correct HTTP status code. The status code most
people are familiar with is 404, which is what a web server returns when a user
requests a page that can’t be found. This error code is probably the most prevalent
one on the internet, but there are dozens of other codes, relating to client errors,
server errors, redirections, and successful requests. Table 6.5 shows the 10 most popu-
lar HTTP status codes and where they might be useful for building an API.

Table 6.5 Most popular HTTP status codes and how they might be used to send responses to an API
request

Status code Name Use case

200 OK A successful GET or PUT request

201 Created A successful POST request

204 No content A successful DELETE request

400 Bad request An unsuccessful GET, POST, or PUT request due to invalid
content

401 Unauthorized Requesting a restricted URL with incorrect credentials

403 Forbidden Making a request that isn’t allowed

404 Not found Unsuccessful request due to an incorrect parameter in the
URL

405 Method not allowed Request method not allowed for the given URL

409 Conflict Unsuccessful POST request when another object with the
same data already exists

500 Internal server error Problem with your server or the database server

167Setting up the API in Express

As you go through this chapter and build the Loc8r API, you’ll use several of these sta-
tus codes while returning the appropriate data.

6.2 Setting up the API in Express
You’ve already got a good idea about the actions you want your API to perform and
the URL paths needed to do so. As you know from chapter 4, to get Express to do
something based on an incoming URL request, you need to set up controllers and
routes. The controllers do the action, and the routes map the incoming requests to
the appropriate controllers.

 You have files for routes and controllers already set up in the application, so you
could use those. A better option, though, is to keep the API code separate so that you
don’t run the risk of confusion and complication in your application. In fact, this is
one of the reasons for creating an API in the first place. Also, keeping the API code
separate makes it easier to strip it out and put it into a separate application at a future
point, should you choose to do so. You do want easy decoupling here.

 The first thing you want to do is create a separate area inside the application for
the files that will create the API. At the top level of the application, create a new folder
called app_api. If you’ve been following along and building up the application as you
go, this folder sits alongside the app_server folder.

 This folder holds everything specific to the API: routes, controllers, and mod-
els. When you’ve got everything set up, take a look at some ways to test these API
placeholders.

6.2.1 Creating the routes

As you did with the routes for the main Express application, you’ll have an index.js file
in the app_api/routes folder that will hold all the routes you’ll use in the API. Start by
referencing this file in the main application file app.js.

INCLUDING THE ROUTES IN THE APPLICATION

The first step is telling your application that you’re adding more routes to look out for
and when it should use them. You can duplicate a line in app.js to require the server
application routes, and set the path to the API routes as follows:

const indexRouter = require('./app_server/routes/index');
const apiRouter = require('./app_api/routes/index');

You may also have a line in app.js that still brings the example user routes. You can
delete this now, if so, because you don’t need it. Next, you need to tell the application
when to use the routes. You currently have the following line in app.js telling the
application to check the server application routes for all incoming requests:

app.use('/', indexRouter);

Notice the '/' as the first parameter. This parameter enables you to specify a subset of
URLs for which the routes will apply. You’ll define all your API routes starting with

http://localhost:3000/api/locations/1234
http://localhost:3000/api/locations/1234
http://localhost:3000/api/locations/1234

168 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

/api/. By adding the line shown in the following code snippet, you can tell the appli-
cation to use the API routes only when the route starts with /api:

app.use('/', indexRouter);
app.use('/api', apiRouter);

As before, you can delete the similar line for user routes if it’s there. Now it’s time to
set up these URLs.

SPECIFYING THE REQUEST METHODS IN THE ROUTES

Up to now, you’ve used only the GET method in the routes, as in the following code
snippet from your main application routes:

router.get('/location', ctrlLocations.locationInfo);

Using the other methods—POST, PUT, and DELETE—is as simple as switching the get
with the respective keywords post, put, and delete. The following code snippet shows
an example using the POST method which creates a new location:

router.post('/locations', ctrlLocations.locationsCreate);

Note that you don’t specify /api at the front of the path. You specify in app.js that
these routes should be used only if the path starts with /api, so it’s assumed that all
routes specified in this file are prefixed with /api.

SPECIFYING REQUIRED URL PARAMETERS

It’s common for API URLs to contain parameters for identifying specific documents
or subdocuments—locations and reviews, in the case of Loc8r. Specifying these
parameters in routes is simple; you prefix the name of the parameter with a colon
when defining each route.

 Suppose that you’re trying to access a review with the ID abc that belongs to a loca-
tion with the ID 123. You’d have a URL path like this:

/api/locations/123/reviews/abc

Swapping out the IDs for the parameter names (with a colon prefix) gives you a path
like this:

/api/locations/:locationid/reviews/:reviewid

With a path like this, Express matches only URLs that match that pattern. So a loca-
tion ID must be specified and must be in the URL between locations/ and /reviews.
Also, a review ID must be specified at the end of the URL. When a path like this is
assigned to a controller, the parameters will be available to use in the code, with the
names specified in the path (locationid and reviewid, in this case).

 We’ll review exactly how you get to them in a moment, but first, you need to set up
the routes for your Loc8r API.

169Setting up the API in Express

DEFINING THE LOC8R API ROUTES

Now you know how to set up routes to accept parameters, and you also know what
actions, methods, and paths you want to have in your API. You can combine all this
knowledge to create the route definitions for the Loc8r API.

 If you haven’t done so yet, you should create an index.js file in the app_api/routes
folder. To keep the sizes of individual files under control, separate the locations and
reviews controllers into different files.

 You’ll also use a slightly different way of defining routes in Express, which is ideal
for managing multiple methods on a single route. With this approach, you define the
route first and then chain on the different HTTP methods. This process streamlines
route definitions, making them much easier to read.

 The following listing shows how the defined routes should look.

const express = require('express');
const router = express.Router();
const ctrlLocations = require('../controllers/locations');
const ctrlReviews = require('../controllers/reviews');

// locations
router
 .route('/locations')
 .get(ctrlLocations.locationsListByDistance)
 .post(ctrlLocations.locationsCreate);

router
 .route('/locations/:locationid')
 .get(ctrlLocations.locationsReadOne)
 .put(ctrlLocations.locationsUpdateOne)
 .delete(ctrlLocations.locationsDeleteOne);

// reviews
router
 .route('/locations/:locationid/reviews')
 .post(ctrlReviews.reviewsCreate);

router
 .route('/locations/:locationid/reviews/:reviewid')
 .get(ctrlReviews.reviewsReadOne)
 .put(ctrlReviews.reviewsUpdateOne)
 .delete(ctrlReviews.reviewsDeleteOne);

module.exports = router;

In this router file, you need to require the related controller files. You haven’t cre-
ated these controller files yet and will do so in a moment. This method is a good way
to approach it, because by defining all the routes and declaring the associated control-
ler functions here, you develop a high-level view of what controllers are needed.

 The application now has two sets of routes: the main Express application routes
and the new API routes. The application won’t start at the moment, though, because
none of the controllers referenced by the API routes exists.

Listing 6.1 Routes defined in app_api/routes/index.js

Includes controller
files. (You’ll create
these next.)

Defines routes
for locations

Defines routes
for reviews

Exports routes

170 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

6.2.2 Creating the controller placeholders

To enable the application to start, you can create placeholder functions for the con-
trollers. These functions won’t do anything, but they stop the application from falling
over while you’re building the API functionality.

 The first step, of course, is creating the controller files. You know where these files
should be and what they should be called because you’ve already declared them in the
app_api/routes folder. You need two new files called locations.js and reviews.js in the
app_api/controllers folder.

 You can create a placeholder for each of the controller functions as an empty func-
tion, as in the following code snippet:

const locationsCreate = (req, res) => { };

Remember to put each controller in the correct file, depending on whether it’s for a
location or a review, and export them at the bottom of the files, as in this example:

module.exports = {
 locationsListByDistance,
 locationsCreate,
 locationsReadOne,
 locationsUpdateOne,
 locationsDeleteOne
};

To test the routing and the functions, though, you need to return a response.

6.2.3 Returning JSON from an Express request

When building the Express application, you rendered a view template to send HTML
to the browser, but with an API, you instead want to send a status code and some JSON
data. Express makes this task easy with the following lines:

res

 .status(status)

 .json(content);

You can use these two commands in the placeholder functions to test the success, as
shown in the following code snippet:

const locationsCreate = (req, res) => {
 res
 .status(200)
 .json({"status" : "success"});
};

As you build up your API, you’ll use this method a lot to send different status codes
and data as the response.

Uses the Express response object
Sends response status code, such as 200
Sends response data, such as {“status” : “success”}

https://shortener.manning.com/wEya

171Setting up the API in Express

6.2.4 Including the model

It’s vitally important that the API can talk to the data-
base; without it, the API isn’t going to be of much use!
To do this with Mongoose, you first need to require
Mongoose into the controller files and then bring in
the Location model. Right at the top of the controller
files, above all the placeholder functions, add the fol-
lowing two lines:

const mongoose = require('mongoose');
const Loc = mongoose.model('Location');

The first line gives the controllers access to the data-
base connection, and the second brings in the Location
model so that you can interact with the Locations
collection.

 If you take a look at the file structure of your appli-
cation, you see the /models folder containing the data-
base connection, and the Mongoose setup is inside the
app_server folder. But it’s the API that’s dealing with
the database, not the main Express application. If the
two applications were separate, the model would be
kept part of the API, so that’s where it should live.

 Move the /models folder from the app_server
folder into the app_api folder, creating a folder struc-
ture like that shown in figure 6.4.

 You need to tell the application that you’ve moved the app_api/models folder, of
course, so you need to update the line in app.js that requires the model to point to the
correct place:

require('./app_api/models/db');

With that done, the application should start again and still connect to your database.
The next question is how to test the API.

6.2.5 Testing the API

You can test the GET routes in your browser quickly by heading to the appropriate
URL, such as http://localhost:3000/api/locations/1234. You should see the success
response being delivered to the browser, as shown in figure 6.5.

 This is okay for testing GET requests, but it doesn’t get you far with the POST, PUT,
and DELETE methods. A few tools can help you test API calls like this, but our current
favorite is a free application called Postman REST Client, available as a standalone
application or browser extension.

Figure 6.4 Folder structure of
the application at this point.
app_api has models, controllers,
and routes, and app_server has
views, controllers, and routes.

172 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

Postman enables you to test API URLs with several request methods, allowing you to
specify additional query string parameters or form data. After you click the Send but-
ton, Postman makes a request to the URL you specified and displays the response data
and status code.

 Figure 6.6 shows a screenshot of Postman making a PUT request to the same URL
as before.

It’s a good idea to get Postman or another REST client up and running now. You’ll
need to use one a lot during this chapter as you build up a REST API. In the next sec-
tion, you’ll start on the workings of the API by using GET requests to read data from
MongoDB.

Figure 6.5 Testing a GET request
of the API in the browser

Figure 6.6 Using the Postman REST Client to test a PUT request to the API

173GET methods: Reading data from MongoDB

6.3 GET methods: Reading data from MongoDB
GET methods are all about querying the database and returning some data. In your
routes for Loc8r, you have three GET requests doing different things, as listed in table 6.6.

You’ll look at how to find a single location first, because it provides a good introduc-
tion to the way Mongoose works. Next, you’ll locate a single document by using an ID,
and then you’ll expand into searching for multiple documents.

6.3.1 Finding a single document in MongoDB using Mongoose

Mongoose interacts with the database through its models, which is why you imported
the Location model as Loc at the top of the controller files. A Mongoose model has
several associated methods to help manage the interactions, as noted in the sidebar
“Mongoose query methods.”

For finding a single database document with a known ID in MongoDB, Mongoose has
the findById() method.

Table 6.6 Three GET requests of the Loc8r API

Action Method URL path Example

Read a list of locations GET /locations http://loc8r.com/api/
locations

Read a specific location GET /locations/:locationid http://loc8r.com/api/
locations/123

Read a specific review GET /locations/:locationid/
reviews/:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Mongoose query methods
Mongoose models have several methods available to help with querying the data-
base. Here are some of the key ones:

 find—General search based on a supplied query object
 findById—Looks for a specific ID
 findOne—Gets the first document to match the supplied query
 geoNear—Finds places geographically close to the provided latitude and lon-

gitude
 geoSearch—Adds query functionality to a geoNear operation

You’ll use some but not all of these methods in this book.

http://loc8r.com/api/locations
http://loc8r.com/api/locations/123
http://loc8r.com/api/locations/123/reviews/abc

174 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

APPLYING THE FINDBYID METHOD TO THE MODEL

The findById() method is relatively straightforward, accepting a single parameter:
the ID to look for. As it’s a model method, it’s applied to the model like this:

Loc.findById(locationid)

This method won’t start the database query operation; it tells the model what the
query will be. To start the database query, Mongoose models have an exec method.

RUNNING THE QUERY WITH THE EXEC METHOD

The exec method executes the query and passes a callback function that will run
when the operation is complete. The callback function should accept two parameters:
an error object and the instance of the found document. As it’s a callback function,
the names of these parameters can be whatever you like.

 The methods can be chained as follows:

Loc
 .findById(locationid)
 .exec((err, location) => {
 console.log("findById complete");
 });

This approach ensures that the database interaction is asynchronous and, therefore,
doesn’t block the main Node process.

USING THE FINDBYID METHOD IN A CONTROLLER

The controller you’re working with to find a single location by ID is locations-
ReadOne(), in the locations.js file in app_api/controllers.

 You know the basic construct of the operation: apply the findById() and exec
methods to the Location model. To get this working in the context of the controller,
you need to do two things:

 Get the locationid parameter from the URL, and pass it to the findById()
method.

 Provide an output function to the exec method.

Express makes it easy to get the URL parameters you defined in the routes. The
parameters are held inside a params object attached to the request object. With your
route being defined like so

router
 .route('/api/locations/:locationid')

you can access the locationid parameter from inside the controller like this:

req.params.locationid

For the output function, you can use a simple callback that sends the found locations
as a JSON response. Putting all this together gives you the following:

Applies the findById method to
the Location model, using Loc

Executes the query

Logs the message
when complete

175GET methods: Reading data from MongoDB

const locationsReadOne = (req, res) => {
 Loc
 .findById(req.params.locationid)
 .exec((err, location) => {
 res
 .status(200)
 .json(location);
 });
};

Now you have a basic API controller. You can try it out by getting the ID of one of the
locations in MongoDB and going to the URL in your browser or by calling it in Post-
man. To get one of the ID values, you can run the command db.locations.find ()
in the Mongo shell, and the command lists all the locations you have, each of which
includes the _id value. When you’ve put the URL together, the output should be a full
location object as stored in MongoDB; you should see something like figure 6.7.

Did you try out the basic controller? Did you put an invalid location ID in the URL? If
you did, you’ll have seen that you got nothing back—no warning, no message; a 200
status telling you that everything is okay, but no data returned.

CATCHING ERRORS

The problem with that basic controller is that it outputs only a success response,
regardless of whether it was successful. This behavior isn’t good for an API. A good
API should respond with an error code when something goes wrong.

 To respond with error messages, the controller needs to be set up to trap potential
errors and send an appropriate response. Error trapping in this fashion typically
involves if statements. Every if statement must have a corresponding else statement
or include a return statement.

TIP Your API code must never leave a request unanswered.

Gets a locationid from the
URL parameters, and gives it
to the findById method

Defines callback
to accept possible
parametersSends the document found

as a JSON response with an
HTTP status of 200

Figure 6.7 A basic controller for finding a single location by ID returns a JSON object to
the browser if the ID is found.

176 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

With your basic controller, you need to trap three errors:

 The request parameters don’t include locationid.
 The findById() method doesn’t return a location.
 The findById() method returns an error.

The status code for an unsuccessful GET request is 404. Bearing this fact in mind, the
final code for the controller to find and return a single location looks like the follow-
ing listing.

const locationsReadOne = (req, res) => {
 Loc
 .findById(req.params.locationid)
 .exec((err, location) => {
 if (!location) {
 return res
 .status(404)
 .json({
 "message": "location not found"
 });
 } else if (err) {
 return res
 .status(404)
 .json(err);
 }
 res
 .status(200)
 .json(location);
 });
};

Listing 6.2 uses both methods of trapping with if statements. Error trap 1 B and
error trap 2 C use an if to check for an error returned by Mongoose. Each if
includes a return statement, which prevents any following code in the callback scope
from running. If no error was found, the return statement is ignored, and the code
moves on to send the successful response D.

 Each of these traps provides a response for success and failure, leaving no room for
the API to leave a requester hanging. If you want to, you can also throw in a few
console.log() statements so that it’s easier to track what’s going on in terminal; the
source code in GitHub has some.

 Figure 6.8 shows the difference between a successful request and a failed request,
using the Postman extension in Chrome.

 That’s one complete API route dealt with. Now it’s time to look at the second GET
request to return a single review.

Listing 6.2 locationsReadOne controller

B Error trap 1: If Mongoose doesn’t
return a location, sends a 404
message and exits the function
scope, using a return statement

C Error trap 2: If Mongoose returns
an error, sends it as a 404
response and exits the controller,
using a return statement

D If Mongoose doesn’t error,
continues as before, and sends a
location object in a 200 response

177GET methods: Reading data from MongoDB

6.3.2 Finding a single subdocument based on IDs

To find a subdocument, you first have to find the parent document, and then pin-
point the required location using its ID. When you’ve found the document, you can
look for a specific subdocument. You can take the locationsReadOne() controller as
the starting point, and add a few modifications to create the reviewsReadOne() con-
troller. These modifications are

 Accept and use an additional reviewid URL parameter.
 Select only the name and reviews from the document rather than have

MongoDB return the entire document.
 Look for a review with a matching ID.
 Return the appropriate JSON response.

To do these things, you can use a couple of new Mongoose methods.

LIMITING THE PATHS RETURNED FROM MONGODB
When you retrieve a document from MongoDB, you don’t always need the full docu-
ment; sometimes, you want some specific data. Limiting the data being passed around
is also better for bandwidth consumption and speed.

Figure 6.8 Testing successful (left) and failed (right) API responses using Postman

178 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 Mongoose does this through a select() method chained to the model query. The
following code snippet tells MongoDB that you want to get only the name and the
reviews of a location:

Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec();

The select() method accepts a space-separated string of the paths you want to
retrieve.

USING MONGOOSE TO FIND A SPECIFIC SUBDOCUMENT

Mongoose also offers a helper method for finding a subdocument by ID. Given an
array of subdocuments, Mongoose has an id method that accepts the ID you want to
find. The id method returns the single matching subdocument, and it can be used as
follows:

Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec((err, location) => {
 const review = location.reviews.id(req.params.reviewid);
 }
);

In this code snippet, a single review is returned to the review variable in the callback.

ADDING SOME ERROR TRAPPING AND PUTTING IT ALL TOGETHER

Now you’ve got the ingredients needed to make the reviewsReadOne() controller.
Starting with a copy of the locationsReadOne() controller, you can make the modifi-
cations required to return a single review.

 The following listing shows the reviewsReadOne() controller in review.js (modifi-
cations in bold).

const reviewsReadOne = (req, res) => {
 Loc
 .findById(req.params.locationid)
 .select('name reviews')
 .exec((err, location) => {
 if (!location) {
 return res
 .status(404)
 .json({
 "message": "location not found"
 });
 } else if (err) {
 return res
 .status(400)
 .json(err);
 }
 if (location.reviews && location.reviews.length > 0) {

Listing 6.3 Controller for finding a single review

Passes reviewid
from the parameters

into the id method

Adds the Mongoose select method
to the model query, stating that
you want to get the name of a
location and its reviews

Checks that the
returned location

has reviews

179GET methods: Reading data from MongoDB

 const review = location.reviews.id(req.params.reviewid);
 if (!review) {
 return res
 .status(400)
 .json({
 "message": "review not found"
 });
 } else {
 response = {
 location : {
 name : location.name,
 id : req.params.locationid
 },
 review
 };
 return res
 .status(200)
 .json(response);
 }
 } else {
 return res
 .status(404)
 .json({
 "message": "No reviews found"
 });
 }
 }
);
};

When this code is saved and ready, you can test it with Postman again. You need to
have correct ID values, which you can get from the Postman query you made to check
for a single location or directly from MongoDB via the Mongo shell. The Mongo com-
mand db.locations.find() return all the locations and their reviews. Remember
that the URL is in the structure /locations/:locationid/reviews/:reviewid.

 You can also test what happens if you put in a false ID for a location or a review or
try a review ID from a different location.

6.3.3 Finding multiple documents with geospatial queries

The homepage of Loc8r should display a list of locations based on the user’s current
geographical location. MongoDB and Mongoose have some special geospatial aggre-
gation methods to help find nearby places.

 Here, you’ll use the Mongoose aggregate $geoNear to find a list of locations close
to a specified point, up to a specified maximum distance. $geoNear is an aggregation
method that accepts multiple configuration options, of which of the following are
required:

 near as a geoJSON geographical point
 A distanceField object option
 A maxDistance object option

Uses the
Mongoose

subdocument
.id method as a

helper for
searching for a

matching ID

If a review isn’t
found, returns an
appropriate response

If a review is found,
builds a response
object returning the
review and location
name and ID

If no reviews are found,
returns an appropriate
error message

180 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

The following code snippet shows the basic construct:

Loc.aggregate([{$geoNear: {near: {}, distanceField: "distance",

➥maxDistance: 100}}]);

Like the findById method, the $geoNear aggregate returns a Promise, and its value
can be obtained by using a callback, its exec method, or async/await.

CONSTRUCTING A GEOJSON POINT

The first parameter of $geoNear is a geoJSON point: a simple JSON object containing a
latitude and a longitude in an array. The construct for a geoJSON point is shown in the
following code snippet:

const point = {
 type: "Point",
 coordinates: [lng, lat]
};

The route set up here to get a list of locations doesn’t have the coordinates in the URL
parameters, meaning that they’ll have to be specified in a different way. A query string
is ideal for this data type, so the request URL will look more like this:

api/locations?lng=-0.7992599&lat=51.378091

Express, of course, gives you access to the values in a query string, putting them in a
query object attached to the request object, such as req.query.lng. The longitude
and latitude values will be strings when retrieved, but they need to be added to the
point object as numbers. JavaScript’s parseFloat() function can see to this. The fol-
lowing code snippet shows how to get the coordinates from the query string and cre-
ate the geoJSON point required by the $geoNear aggregation:

const locationsListByDistance = async (req, res) => {
 const lng = parseFloat(req.query.lng);
 const lat = parseFloat(req.query.lat);
 const near = {
 type: "Point",
 coordinates: [lng, lat]
 };
 const geoOptions = {
 distanceField: "distance.calculated",
 spherical: true,
 maxDistance: 20000,
 limit: 10
 };
 try {
 const results = await Loc.aggregate([
 {
 $geoNear: {
 near,
 ...geoOptions
 }
 }

Declares object

Defines it as type “Point”

Sets longitude and latitude coordinates
in an array, longitude first

Gets coordinates
from the query string
and converts from
strings to numbers

Creates
geoJSON
point

You’re using spherical: true here because it causes
MongoDB to use $nearSphere semantics, which
calculates distances using spherical geometry.
If this were false, it would use 2D geometry.

The aggregation

The spread operator
(see the nearby sidebar)

181GET methods: Reading data from MongoDB

]);
 } catch (err) {
 console.log(err);
 }
};

Trying to execute this controller code won’t result in a response, as processing of the
data has not been started. Remember that this code is returning a Promise object.

THE SPHERICAL OPTION IN THE AGGREGATION SPECIFICATION

The geoOptions object contains a spherical key. This value is required to be set to
true, as you’ve already specified the search index in the MongoDB data store as
2dsphere. If you try to set it to false, the application throws an exception:

const geoOptions = {
 distanceField: "distance.calculated",
 spherical: true
};

LIMITING GEONEAR RESULTS BY NUMBER

You’ll often want to look after the API server—and the responsiveness seen by end
users—by limiting the number of results when returning a list. In the $geoNear aggre-
gate, adding the option num or limit does this. You specify the maximum number of
results you want to have returned. You can specify both, but num is given priority over
limit.

 The following code snippet shows limit added to the previous geoOptions object,
limiting the size of the returned dataset to 10 objects:

const geoOptions = {
 distanceField: "distance.calculated",
 spherical: true,
 limit: 10
};

Now the search brings back no more than the 10 closest results.

LIMITING GEONEAR RESULTS BY DISTANCE

When returning location-based data, another way to keep the processing of the API
under control is to limit the list of results by distance from the central point. This is a
case of adding another option called maxDistance. When you use the spherical

Spread operator
New in ES2015 is the spread operator. This operator takes an iterable (an array,
string, or object) and allows it to be expanded into places where zero or more argu-
ments (when used in a function call) or elements (for array literals) are expected.

In the case of the aggregate function in the preceding code block, it injects the object
properties in geoOptions into the $geoNear object. The spread operator has many
uses; details are available at http://mng.bz/wEya.

http://mng.bz/wEya

182 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

option, MongoDB does the calculations in meters for you, making life simple. This
wasn’t always the case. Older versions of MongoDB used radians, which made things
much more complicated.

 If you want to output in miles, you’ll need to do a little calculation, but you’ll stick
to meters and kilometers. You’ll impose a limit of 20 km, which is 20,000 m. Now you
can add the maxDistance value to the options and add these options to the controller
as follows:

const locationsListByDistance = (req, res) => {
 const lng = parseFloat(req.query.lng);
 const lat = parseFloat(req.query.lat);
 const near = {
 type: "Point",
 coordinates: [lng, lat]
 };
 const geoOptions = {
 distanceField: "distance.calculated",
 spherical: true,
 maxDistance: 20000,
 num: 10
 };
 ...
};

That’s the last of the options you need for your $geoNear database search, so it’s time
to start working with the output.

LOOKING AT THE $GEONEAR AGGREGATE OUTPUT

The result object for the $geoNear aggregate method is a list of the matched items
from the database or an error object. If you were using the callback function, it would
have the following signature: callback(err, result). As you’re using async/await,
you use try/catch to perform the operation or catch the error.

 With a successful query, the error object is undefined; the results object is a list of
items, as previously stated. You’ll start by working with the successful query response
before adding error trapping.

 Following a successful $geoNear aggregation, MongoDB returns an array of
objects. Each object contains a distance value (at the path specified by the distance-
Field) and a returned document from the database. In other words, MongoDB
includes the distance in the data. The following code snippet shows an example of the
returned data, truncated for brevity:

[{ _id: 5b2c166f5caddf7cd8cea46b,
 name: 'Starcups',

Creates an options object,
including setting the
maximum distance to 20 km

The rest of the definition object

Extra credit
Try taking the maximum distance from a query string value instead of hardcoding it
into the function. The code on GitHub for this chapter has the answer.

183GET methods: Reading data from MongoDB

 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: { type: 'Point', coordinates: [Array] },
 openingTimes: [[Object], [Object], [Object]],
 distance: { calculated: 5005.183015553589 } }]

This array has only one object, but a successful query is likely to have several objects
returned at once. The $geoNear aggregate returns the entire document contained in
the data store, but the API shouldn’t return more data than is requested. So rather
than send the returned data back as the response, you have some processing to do first.

PROCESSING THE $GEONEAR OUTPUT

Before the API can send a response, you need to make sure that it’s sending the right
thing and only what’s needed. You know what data the homepage listing needs; you’ve
already built the homepage controller in app_server/controllers/location.js. The
homelist() function sends several location objects, similar to the following example:

{
 id: 111,
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 distance: '100m'
}

To create an object along these lines from the results, you need to iterate through the
results and map the relevant data into a new array. Then this processed data can be
returned with a status 200 response. The following code snippet shows how this result
might look:

try {
 const results = await Loc.aggregate([
 {
 $geoNear: {
 near,
 ...geoOptions
 }
 }
]);
 const locations = results.map(result => {
 return {
 id: result._id,
 name: result.name,
 address: result.address,
 rating: result.rating,
 facilities: result.facilities,
 distance: `${result.distance.calculated.toFixed()}m`
 }
 });
 return res
 .status(200)

Creates a new array to
hold mapped results data

Returns the result
of the mapping

Gets the distance and fixes
to the nearest integer

Sends the processed data
back as a JSON response

184 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 .json(locations);
 } catch (err) {
 ...

If you test this API route with Postman—remembering to add longitude and latitude
coordinates to the query string—you’ll see something like figure 6.9.

If you test this by sending coordinates too far away from the test data, you should still
get a 200 status, but the returned array will be empty.

ADDING THE ERROR TRAPPING

Once again, you’ve started by building the success functionality. Now you need to add
some error traps to make sure that the API always sends the appropriate response.

 The traps you need to set should check that

 All the parameters have been sent correctly.
 The $geoNear aggregate hasn’t returned an error condition.

Extra credit
Try passing the results to an external named function to build the list of locations.
This function should return the processed list, which can then be passed into the
JSON response.

Figure 6.9 Testing the locations list route in Postman should give a 200
status and a list of results, depending on the geographical coordinates
sent in the query string.

185GET methods: Reading data from MongoDB

The following listing shows the final controller, including these error traps.

const locationsListByDistance = async(req, res) => {
 const lng = parseFloat(req.query.lng);
 const lat = parseFloat(req.query.lat);
 const near = {
 type: "Point",
 coordinates: [lng, lat]
 };
 const geoOptions = {
 distanceField: "distance.calculated",
 key: 'coords',
 spherical: true,
 maxDistance: 20000,
 limit: 10
 };
 if (!lng || !lat) {
 return res
 .status(404)
 .json({
 "message": "lng and lat query parameters are required"
 });
 }

 try {
 const results = await Loc.aggregate([
 {
 $geoNear: {
 near,
 ...geoOptions
 }
 }
]);
 const locations = results.map(result => {
 return {
 id: result._id
 name: result.name,
 address: result.address,
 rating: result.rating,
 facilities: result.facilities,
 distance: `${result.distance.calculated.toFixed()}m`
 }
 });
 res
 .status(200)
 .json(locations);
 } catch (err) {
 res
 .status(404)
 .json(err);
 }
};

Listing 6.4 Locations list controller locationsListByDistance

Checks whether lng
and lat query
parameters exist in
the right format;
returns a 404 error
and message if not

If $geoNear aggregation query
returns error, sends this as a
response with a 404 status

186 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

This listing completes the GET requests that your API needs to service, so it’s time to
tackle the POST requests.

6.4 POST methods: Adding data to MongoDB
POST methods are all about creating documents or subdocuments in the database and
then returning the saved data as confirmation. In the routes for Loc8r, you have two
POST requests doing different things, as listed in table 6.7.

POST methods work by taking form data posted to them and adding it to the database.
In the same way that URL parameters are accessed via req.params and query strings
are accessed via req.query, Express controllers access posted form data via req.body.

 Start by looking at how to create documents.

6.4.1 Creating new documents in MongoDB

In the database for Loc8r, each location is a document, so you’ll create a document in
this section. Mongoose couldn’t make the process of creating MongoDB documents
much easier for you. You apply the create() method to your model, and send it some
data and a callback function. This construct is minimal, as it would be attached to
your Loc model:

That’s simple. The creation process has two main steps:

1 Use the posted form data to create a JavaScript object that matches the schema.
2 Send an appropriate response in the callback, depending on the success or fail-

ure of the create() operation.

Table 6.7 Two POST requests of the Loc8r API

Action Method URL path Example

Create new location POST /locations http://api.loc8r.com/locations

Create new review POST /locations/:locationid/
reviews

http://api.loc8r.com/
locations/123/reviews

The create method Runs on completion;
expects two parameters:

• Error object
• Document as saved

in the database

Model name

JavaScript object
containing data that

matches schema

187POST methods: Adding data to MongoDB

Looking at step 1, you already know that you can get data sent to you in a form by
using req.body, and step 2 should be familiar by now. Jump straight into the code.
The following listing shows the full locationsCreate() controller for creating a new
document.

const locationsCreate = (req, res) => {
 Loc.create({
 name: req.body.name,
 address: req.body.address,
 facilities:

req.body.facilities.split(","),
 coords: {
 type: "Point",
 [
 parseFloat(req.body.lng),
 parseFloat(req.body.lat)
]
 }, {
 days: req.body.days2,
 opening: req.body.opening2,
 closing: req.body.closing2,
 closed: req.body.closed2,
 }]
 }, (err, location) => {
 if (err) {
 res
 .status(400)
 .json(err);
 } else {
 res
 .status(201)
 .json(location);
 }
 });
};

This listing shows how easy it can be to create a new document in MongoDB and save
some data. For the sake of brevity, you’ve limited the openingTimes array to two
entries, but this array could easily be extended or, better, put in a loop to check for the
existence of the values.

 You may also notice that no rating is set. Remember that in the schema, you set a
default of 0, as in the following snippet:

rating: {
 type: Number,
 "default": 0,
 min: 0,
 max: 5
},

This snippet is applied when the document is created, setting the initial value to 0.
Something else about this code may be shouting out at you: there’s no validation!

Listing 6.5 Complete controller for creating a new location

Applies the create method to the model

Creates an array of facilities by
splitting a comma-separated list

Parses coordinates from
strings to numbers

Supplies a callback function,
containing appropriate responses
for success and failure

188 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

6.4.2 Validating the data using Mongoose

This controller has no validation code inside it, so what’s to stop somebody from
entering loads of empty or partial documents? Again, you started building validations
in the Mongoose schemas. In the schemas, you set a required flag to true in a few of
the paths. When this flag is set, Mongoose won’t send the data to MongoDB.

 Given the following base schema for locations, for example, you can see that only
name is a required field:

const locationSchema = new mongoose.Schema({
 name: {
 type: String,
 required: true
 },
 address: String,
 rating: {
 type: Number,
 'default': 0,
 min: 0,
 max: 5
 },
 facilities: [String],
 coords: {
 type: {type: String},
 coordinates: [Number]
 },
 openingTimes: [openingTimeSchema],
 reviews: [reviewSchema]
});

If this field is missing, the create() method raises an error and doesn’t attempt to
save the document to the database.

 Testing this API route in Postman looks like figure 6.10. Note that the method is
set to post and that the data type selected (above the list of names and values) is
x-www-form-urlencoded. You’ll enter the keys and values to submit with your POST
request in the Postman interface, as shown in that figure. Be careful not to have any
blank spaces before or after the keys you type in the Postman fields, as spaces will
result in unexpected inputs.

6.4.3 Creating new subdocuments in MongoDB

In the context of Loc8r locations, reviews are subdocuments. Subdocuments are cre-
ated and saved through their parent document. Put another way, to create and save a
new subdocument, you have to

1 Find the correct parent document.
2 Add a new subdocument.
3 Save the parent document.

Finding the correct parent isn’t a problem, as you’ve already done that and can use it as
the skeleton for the next controller, reviewsCreate(). When you’ve found the parent,

189POST methods: Adding data to MongoDB

you can call an external function to do the next part (you’ll write this function soon),
as shown in the following listing.

const reviewsCreate = (req, res) => {
 const locationId = req.params.locationid;
 if (locationId) {
 Loc
 .findById(locationId)
 .select('reviews')
 .exec((err, location) => {
 if (err) {
 res

Listing 6.6 Controller for creating a review

Figure 6.10 Testing a POST method in Postman, ensuring that the method and form data
settings are correct

190 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 .status(400)
 .json(err);
 } else {
 doAddReview(req, res, location);
 }
 });
 } else {
 res
 .status(404)
 .json({"message": "Location not found"});
 }
};

This code isn’t doing anything particularly new; you’ve seen it all before. By putting in
a call to a new function, you can keep the code neater by reducing the amount of nest-
ing and indentation, and also make it easier to test.

ADDING AND SAVING A SUBDOCUMENT

Having found the parent document and retrieved the existing list of subdocuments,
you need to add a new one. Subdocuments are arrays of objects, and the easiest way to
add a new object to an array is to create the data object and use the JavaScript push()
method, as the following code snippet demonstrates:

location.reviews.push({
 author: req.body.author,
 rating: req.body.rating,
 reviewText: req.body.reviewText
});

This snippet is getting posted form data; hence, it uses req.body.
 When the subdocument has been added, the parent document must be saved

because subdocuments can’t be saved on their own. To save a document, Mongoose
has a model method save(), which expects a callback with an error parameter and a
returned object parameter. The following code snippet shows this method in action:

location.save((err, location) => {
 if (err) {
 res
 .status(400)
 .json(err);
 } else {
 let thisReview = location.reviews[location.reviews.length - 1];
 res
 .status(201)
 .json(thisReview);
 }
});

The document returned by the save method is the full parent document, not the new
subdocument alone. To return the correct data in the API response—that is, the sub-
document—you need to retrieve the last subdocument from the array B.

Successful find operation will
call a new function to add a
review, passing request,
response, and location object

BFinds last review in the
returned array, as MongoDB

returns the entire parent
document, not only the new

subdocument

191POST methods: Adding data to MongoDB

 When adding documents and subdocuments, you need to keep in mind any effect
this action may have on other data. In Loc8r, for example, adding a review adds a new
rating, and this new rating affects the overall rating for the document. On the success-
ful save of a review, you’ll call another function to update the average rating.

 Putting everything you have together in the doAddReview() function, plus a little
error trapping, gives you the following listing.

const doAddReview = (req, res, location) => {
 if (!location) {
 res
 .status(404)
 .json({"message": "Location not found"});
 } else {
 const {author, rating, reviewText} = req.body;
 location.reviews.push({
 author,
 rating,
 reviewText
 });
 location.save((err, location) => {
 if (err) {
 res
 .status(400)
 .json(err);
 } else {
 updateAverageRating(location._id);
 const thisReview = location.reviews.slice(-1).pop();
 res
 .status(201)
 .json(thisReview);
 }
 });
 }
};

UPDATING THE AVERAGE RATING

Calculating the average rating isn’t particularly complicated, so we won’t dwell on it
long. The steps are

1 Find the correct document, given a provided ID.
2 Add up the ratings from all the review subdocuments.
3 Calculate the average rating value.
4 Update the rating value of the parent document.
5 Save the document.

Turning this list of steps into code gives you something along the lines of the following
listing, which should be placed in the reviews.js controller file along with the review-
based controllers.

Listing 6.7 Adding and saving a subdocument

When provided a
parent document . . .

. . . pushes new data into
a subdocument array . . .

. . . before saving it.

On successful save operation,
calls a function to update the
average rating

Retrieves the last review added
to the array, and returns it as a

JSON confirmation response

192 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

const doSetAverageRating = (location) => {
 if (location.reviews && location.reviews.length > 0) {
 const count = location.reviews.length;
 const total = location.reviews.reduce((acc, {rating}) => {
 return acc + rating;
 }, 0);

 location.rating = parseInt(total / count, 10);
 location.save(err => {
 if (err) {
 console.log(err);
 } else {
 console.log(`Average rating updated to ${location.rating}`);
 }
 });
 }
};

const updateAverageRating = (locationId) => {
 Loc.findById(locationId)
 .select('rating reviews')
 .exec((err, location) => {
 if (!err) {
 doSetAverageRating(location);
 }
 });
};

You may have noticed that you’re not sending any JSON response here, because
you’ve already sent it. This entire operation is asynchronous and doesn’t need to
affect sending the API response that confirms the saved review.

 Adding a review isn’t the only time you’ll need to update the average rating, which
is why it makes extra sense to make these functions accessible from the other control-
lers and not tightly coupled to the actions of creating a review.

 What you’ve done here offers a sneak peek at using Mongoose to update data in
MongoDB, so now you’ll move on to the PUT methods of the API.

6.5 PUT methods: Updating data in MongoDB
PUT methods are all about updating existing documents or subdocuments in the data-
base and returning the saved data as confirmation. In the routes for Loc8r, you have
two PUT requests doing different things, as listed in table 6.8.

Listing 6.8 Calculating and updating the average rating

Table 6.8 Two PUT requests of the Loc8r API for updating locations and reviews

Action Method URL path Example

Update a specific location PUT /locations/:locationid http://loc8r.com/api/
locations/123

Uses the location
supplied data

Uses the JavaScript array
reduce method to sum up the
ratings of the subdocuments

Calculates the average
rating value and updates
the rating value of the
parent document

Saves the
parent
document

Finds the location
based on the provided
locationid data

http://loc8r.com/api/locations/123

193PUT methods: Updating data in MongoDB

PUT methods are similar to POST methods, because they work by taking form data
posted to them. But instead of using the data to create new documents in the data-
base, PUT methods use the data to update existing documents.

6.5.1 Using Mongoose to update a document in MongoDB

In Loc8r, you may want to update a location to add new facilities, change the open
times, or amend any of the other data. The approach to updating data in a document
is probably starting to look familiar:

1 Find the relevant document.
2 Make some changes to the instance.
3 Save the document.
4 Send a JSON response.

This approach is made possible by the way an instance of a Mongoose model maps
directly to a document in MongoDB. When your query finds the document, you get a
model instance. If you make changes to this instance and then save it, Mongoose
updates the original document in the database with your changes.

6.5.2 Using the Mongoose save method

You saw this method in action when you updated the average rating value. The save
method is applied to the model instance that the find() function returns. It expects a
callback with the standard parameters of an error object and a returned data object.

 A cut-down skeleton of this approach is shown in the following code snippet:

 Loc
 .findById(req.params.locationid)
 .exec((err, location) => {
 location.name = req.body.name;
 location.save((err, loc) => {
 if (err) {
 res
 .status(404)
 .json(err);
 } else {
 res
 .status(200)
 .json(loc);
 }
 });
 }
);
};

Update a specific review PUT /locations/:locationid/
reviews/:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Table 6.8 Two PUT requests of the Loc8r API for updating locations and reviews (continued)

Action Method URL path Example

Finds the document to update

Makes a change to the
model instance, changing
a value of one path

Saves the document with
Mongoose’s save method

Returns a success
or failure response

http://loc8r.com/api/locations/123/reviews/abc

194 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

Here, you can clearly see the separate steps of finding, updating, saving, and respond-
ing. Fleshing out this skeleton into the locationsUpdateOne() controller with some
error trapping and the data you want to save gives you the following listing.

const locationsUpdateOne = (req, res) => {
 if (!req.params.locationid) {
 return res
 .status(404)
 .json({
 "message": "Not found, locationid is required"
 });
 }
 Loc
 .findById(req.params.locationid)
 .select('-reviews -rating')
 .exec((err, location) => {
 if (!location) {
 return res
 .json(404)
 .status({
 "message": "locationid not found"
 });
 } else if (err) {
 return res
 .status(400)
 .json(err);
 }
 location.name = req.body.name;
 location.address = req.body.address;
 location.facilities = req.body.facilities.split(',');
 location.coords = {
 type: "Point",
 [
 parseFloat(req.body.lng),
 parseFloat(req.body.lat)
]
 };
 location.openingTimes = [{
 days: req.body.days1,
 opening: req.body.opening1,
 closing: req.body.closing1,
 closed: req.body.closed1,
 }, {
 days: req.body.days2,
 opening: req.body.opening2,
 closing: req.body.closing2,
 closed: req.body.closed2,
 }];
 location.save((err, loc) => {
 if (err) {
 res
 .status(404)

Listing 6.9 Making changes to an existing document in MongoDB

Finds the location
document by the
supplied ID

Updates paths with
values from the
submitted form

Saves the instance

Sends an appropriate response,
depending on the outcome of
the save operation

195PUT methods: Updating data in MongoDB

 .json(err);
 } else {
 res
 .status(200)
 .json(loc);
 }
 });
 }
);
};

There’s clearly a lot more code here, now that it’s fully fleshed out, but you can still
easily identify the key steps of the update process.

 The eagle-eyed among you may have noticed something strange in the select
statement:

.select('-reviews -rating')

Previously, you used the select() method to say which columns you do want to select.
By adding a dash in front of a pathname, you’re stating that you don’t want to retrieve
it from the database. So this select() statement says to retrieve everything except the
reviews and the rating.

6.5.3 Updating an existing subdocument in MongoDB

Updating a subdocument is exactly the same as updating a document, with one excep-
tion: after finding the document, you have to find the correct subdocument to make
your changes. Then the save method is applied to the document, not the subdocu-
ment. So the steps for updating an existing subdocument are

1 Find the relevant document.
2 Find the relevant subdocument.
3 Make some changes in the subdocument.
4 Save the document.
5 Send a JSON response.

For Loc8r, the subdocuments you’re updating are reviews, so when a review is
changed, you’ll have to remember to recalculate the average rating. That’s the only
additional thing you’ll need to add above and beyond the five steps. The following
listing shows everything put into place in the reviewsUpdateOne() controller.

const reviewsUpdateOne = (req, res) => {
 if (!req.params.locationid || !req.params.reviewid) {
 return res
 .status(404)
 .json({
 "message": "Not found, locationid and reviewid are both required"
 });
 }

Listing 6.10 Updating a subdocument in MongoDB

Sends an appropriate response,
depending on the outcome of
the save operation

196 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 Loc
 .findById(req.params.locationid)
 .select('reviews')
 .exec((err, location) => {
 if (!location) {
 return res
 .status(404)
 .json({
 "message": "Location not found"
 });
 } else if (err) {
 return res
 .status(400)
 .json(err);
 }
 if (location.reviews && location.reviews.length > 0) {
 const thisReview = location.reviews.id(req.params.reviewid);
 if (!thisReview) {
 res
 .status(404)
 .json({
 "message": "Review not found"
 });
 } else {
 thisReview.author = req.body.author;
 thisReview.rating = req.body.rating;
 thisReview.reviewText = req.body.reviewText;
 location.save((err, location) => {
 if (err) {
 res
 .status(404)
 .json(err);
 } else {
 updateAverageRating(location._id);
 res
 .status(200)
 .json(thisReview);
 }
 });
 }
 } else {
 res
 .status(404)
 .json({
 "message": "No review to update"
 });
 }
 }
);
};

The five steps for updating are clear to see in this listing: find the document; find the
subdocument; make changes; save; and respond. Once again, a lot of the code here is
error trapping, but it’s vital for creating a stable, responsive API. You don’t want to

Finds the parent document

Finds the
subdocument

Makes changes to the
subdocument from the
supplied form data

Saves the
parent
document Returns a JSON response,

sending the subdocument
object on the basis of a
successful save

197DELETE method: Deleting data from MongoDB

save incorrect data, send the wrong responses, or delete data you don’t want to delete.
Speaking of deleting data, you can now move on to the final of the four API methods
you’re using: DELETE.

6.6 DELETE method: Deleting data from MongoDB
The DELETE method is, unsurprisingly, all about deleting existing documents or sub-
documents in the database. In the routes for Loc8r, you have a DELETE request for
deleting a location and another for deleting a review. The details are listed in table 6.9.

Start by taking a look at deleting documents.

6.6.1 Deleting documents in MongoDB

Mongoose makes deleting a document in MongoDB extremely simple by giving you
the method findByIdAndRemove(). This method expects a single parameter: the ID of
the document to be deleted.

 The API should respond with a 404 in case of an error and a 204 in case of success.
The following listing shows everything in place in the locationsDeleteOne() controller.

const locationsDeleteOne = (req, res) => {
 const {locationid} = req.params;
 if (locationid) {
 Loc
 .findByIdAndRemove(locationid)
 .exec((err, location) => {
 if (err) {
 return res
 .status(404)
 .json(err);
 }
 res
 .status(204)
 .json(null);
 }
);
 } else {
 res
 .status(404)
 .json({

Table 6.9 Two DELETE requests of the Loc8r API for deleting locations and reviews

Action Method URL path Example

Delete a specific location DELETE /locations/:locationid http://loc8r.com/api/
locations/123

Delete a specific review DELETE /locations/:locationid/
reviews/:reviewid

http://loc8r.com/api/
locations/123/reviews/abc

Listing 6.11 Deleting a document from MongoDB, given an ID

Calls findByIdAndRemove
method, passing in locationid

Executes the method

Responds with
failure or success

198 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

 "message": "No Location"
 });
 }
};

That’s the quick and easy way to delete a document, but you can break it into a two-
step process or, if you prefer, find it and then delete it. This gives you the chance to
do something with the document before deleting (if you need to). This is demon-
strated in the following code snippet:

Loc
 .findById(locationid)
 .exec((err, location) => {
 // Do something with the document
 location.remove((err, loc) => {
 // Confirm success or failure
 });
 }
);

This snippet has an extra level of nesting, but with it comes an extra level of flexibility,
should you need it.

6.6.2 Deleting a subdocument from MongoDB

The process for deleting a subdocument is no different from the other work you’ve
done with subdocuments; everything is managed through the parent document. The
steps for deleting a subdocument are

1 Find the parent document.
2 Find the relevant subdocument.
3 Remove the subdocument.
4 Save the parent document.
5 Confirm success or failure of operation.

Deleting the subdocument itself is easy, as Mongoose gives you another helper
method. You’ve already seen that you can find a subdocument by its ID with the id
method like this:

location.reviews.id(reviewid)

Mongoose allows you to chain a remove method to the end of this statement like so:

location.reviews.id(reviewid).remove()

This instruction deletes the subdocument from the array. Remember to save the par-
ent document to persist the change back to the database. Putting all the steps
together—with a load of error trapping—into the reviewsDeleteOne() controller
looks like the following listing.

199DELETE method: Deleting data from MongoDB

const reviewsDeleteOne = (req, res) => {
 const {locationid, reviewid} = req.params;
 if (!locationid || !reviewid) {
 return res
 .status(404)
 .json({'message': 'Not found, locationid and reviewid are both

required'});
 }

 Loc
 .findById(locationid)
 .select('reviews')
 .exec((err, location) => {
 if (!location) {
 return res
 .status(404)
 .json({'message': 'Location not found'});
 } else if (err) {
 return res
 .status(400)
 .json(err);
 }

 if (location.reviews && location.reviews.length > 0) {
 if (!location.reviews.id(reviewid)) {
 return res
 .status(404)
 .json({'message': 'Review not found'});
 } else {
 location.reviews.id(reviewid).remove();
 location.save(err => {
 if (err) {
 return res
 .status(404)
 .json(err);
 } else {
 updateAverageRating(location._id);
 res
 .status(204)
 .json(null);
 }
 });
 }
 } else {
 res
 .status(404)
 .json({'message': 'No Review to delete'});
 }
 });
 };

Listing 6.12 Finding and deleting a subdocument from MongoDB

Finds the relevant
parent document

Finds and deletes the
relevant subdocument
in one step

Saves the parent document

Returns the
appropriate success
or failure response

200 CHAPTER 6 Writing a REST API: Exposing the MongoDB database to the application

Again, most of the code here is error trapping. The API could return seven possible
responses, and only one is the successful one. Deleting the subdocument is easy; make
absolutely sure that you’re deleting the right one.

 As you’re deleting a review, which will have a rating associated to it, you also have
to remember to call the updateAverageRating() function to recalculate the average
rating for the location. This function should only be called if the delete operation is
successful.

 And that’s it. You’ve built a REST API in Express and Node that can accept GET,
POST, PUT, and DELETE HTTP requests to perform CRUD operations on a MongoDB
database.

 Coming up in chapter 7, you’ll see how to use this API from inside the Express
application, finally making the Loc8r site database-driven!

Summary
In this chapter, you learned

 The best practices for creating a REST API, including URLs, request methods,
and response codes

 How the POST, GET, PUT, and DELETE HTTP request methods map to common
CRUD operations

 Mongoose helper methods for creating the helper methods
 Ways to interact with the data through Mongoose models and how one instance

of the model maps directly to one document in the database
 How to manage subdocuments through their parent document
 Some ways of making the API robust by checking for any possible errors you can

think of so that a request is never left unanswered

201

Consuming a REST API:
Using an API

from inside Express

This chapter is an exciting one! Here’s where you tie the front end to the back end
for the first time. You’ll remove the hardcoded data from the controllers, and even-
tually show data from the database in the browser instead. You’ll also push data
back from the browser into the database via the API, creating new subdocuments.

 The technology focus for this chapter is on Node and Express. Figure 7.1 shows
where this chapter fits into the overall architecture and your grand plan.

 In this chapter, we’ll discuss how to call an API from within Express and how to
deal with the responses. You’ll make calls to the API to read from the database and
write to the database. Along the way, we’ll look at handling errors, processing data,

This chapter covers
 Calling an API from an Express application

 Handling and using data returned by the API

 Working with API response codes

 Submitting data from the browser back to the API

 Validating and trapping errors

https://github.com/mikeal/request
https://github.com/mikeal/request
https://github.com/mikeal/request
https://github.com/mikeal/request

202 CHAPTER 7 Consuming a REST API: Using an API from inside Express

and creating reusable code by separating concerns. Toward the end, we’ll cover the
various layers of the architecture to which you can add validation and why these differ-
ent layers are useful.

 Start by looking at how to call an API from an Express application.

7.1 How to call an API from Express
The first part we need to cover is how to call an API from Express. This approach isn’t
limited to your API; you can use it to call any API.

 Your Express application needs to be able to call the API URLs that you set up in
chapter 6—sending the correct request method, of course—and then be able to inter-
pret the response. To help, you’ll use a module called request.

7.1.1 Adding the request module to your project

The request module is like any of the other packages you’ve used so far and can be
added to your project via npm. To install the latest version and add it to the pack-
age.json file, head to terminal, and type the following command:

$ npm install --save request

When npm finishes doing its thing, you can include request in the files that will use
it. In Loc8r, you have only one file that needs to make API calls: the file with the con-
trollers for the main server-side application. So at the top of locations.js in app_
server/controllers, add the following line to require the request module:

const request = require('request');

Now you’re good to go!

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API

Encapsulating
Express app

Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Working with
Express and
Node.js to
interact with
your API

Figure 7.1 This chapter focuses on updating the Express application from chapter 4 to interact
with the REST API developed in chapter 6.

https://github.com/mikeal/request

203How to call an API from Express

7.1.2 Setting up default options

Every API call with request must have a fully qualified URL, meaning that it must
include the full address and not be a relative link. But this URL is different for devel-
opment than for live environments.

 To avoid having to make this check in every controller that makes an API call, you
can set a default configuration option once at the top of the controllers file. To use
the correct URL depending on the environment, you can use your old friend the
NODE_ENV environment variable.

 Putting this into practice, the top of the app_server/controllers/locations.js file
should look something like the following listing.

const request = require('request');
const apiOptions = {
 server: 'http://localhost:3000'
};
if (process.env.NODE_ENV === 'production') {
 apiOptions.server = 'https://pure-temple-67771.herokuapp.com';
}

With this code in place, every call you make to the API can reference apiOptions
.server and use the correct base URL.

7.1.3 Using the request module

The basic construct for making a request is simple, being a single command taking
parameters for options and a callback like this:

The options specify everything for the request, including the URL, request method,
request body, and query string parameters. These options, indeed, are the ones you’ll
be using in this chapter, and they’re detailed in table 7.1.

Listing 7.1 Adding request and default API options to the locations.js controllers file

Sets the default server URL
for the local development

If the application is running in production mode, sets a different base
URL; changes to the live address of the application

Function to run when a
response is received

JavaScript object
defining the request

204 CHAPTER 7 Consuming a REST API: Using an API from inside Express

The following code snippet shows an example of how you might put these options
together for a GET request. A GET request shouldn’t have a body to send but might
have query string parameters:

const requestOptions = {
 url: 'http://yourapi.com/api/path',
 method: 'GET',
 json: {},
 qs: {
 offset: 20
 }
};

You could specify many more options, but these four are the most common and the
ones you’ll use in this chapter. For more information on other possible options, take a
look at the reference in the GitHub repository: https://github.com/mikeal/request.

 The callback function runs when a response comes back from the API and has
three parameters: an error object, the full response, and the parsed body of the
response. The error object is null unless an error has been caught. Three pieces of
data will be most useful in your code: the status code of the response, the body of the
response, and any error thrown. The following code snippet shows how you might
structure a callback for the request() function:

(err, response, body) => {
 if (err) {
 console.log(err);
 } else if (response.statusCode === 200) {
 console.log(body);
 } else {
 console.log(response.statusCode);
 }
}

Table 7.1 Four common request options for defining a call to an API

Option Description Required

url Full URL of the request to be made, including protocol,
domain, path, and URL parameters

Yes

method Method of the request, such as GET, POST, PUT, or
DELETE

No—defaults to GET if not
specified

json Body of the request as a JavaScript object; an empty
object should be sent if no body data is needed

Yes—ensures that the
response body is also parsed
as JSON

qs JavaScript object representing any query string parame-
ters

No

Defines the URL of the
API call to be made

Sets the request method

Defines the body of the request,
even if it’s an empty JSON object

Optionally adds any query string parameters
that might be used by the API

If an error has passed through,
does something with it

If a response status code is 200
(request was successful), outputs
the JSON body of the response

If the request returns a different
status code, outputs the code

https://github.com/mikeal/request

205Using lists of data from an API: The Loc8r homepage

The full response object contains a huge amount of information, so we won’t go into
it here. You can always check it out yourself by using a console.log statement when
you start adding the API calls to your application.

 Putting the parts together, the skeleton for making API calls looks like the following:

const requestOptions = {
 url: 'http://yourapi.com/api/path',
 method: 'GET',
 json: {},
 qs: {
 offset: 20
 }
};
request(requestOptions, (err, response, body) => {
 if (err) {
 console.log(err);
 } else if (response.statusCode === 200) {
 console.log(body);
 } else {
 console.log(response.statusCode);
 }
});

In the next section, you’ll put this theory into practice and start building the Loc8r
controllers to use the API you’ve already built.

7.2 Using lists of data from an API: The Loc8r homepage
By now, the controllers file that will be doing the work should already have the
request module required in and some default values set. Now come the fun parts:
updating the controllers to call the API and pulling the data for the pages from the
database.

 You’ve got two main pages that pull data: the homepage, showing a list of loca-
tions, and a Details page, giving more information about a specific location. Start at
the beginning and get the data for the homepage from the database.

 The current homepage controller contains a res.render() function call, sending
hardcoded data to the view. But the way you want it to work is to render the homepage
after the API returns some data. The homepage controller will have quite a lot to do
anyway, so move this rendering into its own function.

7.2.1 Separating concerns: Moving the rendering
into a named function

There are a couple of reasons for moving the rendering into its own named function.
First, you decouple the rendering from the application logic. The process of render-
ing doesn’t care where or how it got the data; if it’s given data in the right format, it
uses that data. Using a separate function helps you get closer to the testable ideal that
each function should do one thing. A related bonus is that the function becomes reus-
able, so you can call it from multiple places.

Defines options
for the request

Makes the request,
sending through
options and supplying
a callback function to
use responses as
needed

206 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 The second reason for creating a new function for the homepage rendering is that
the rendering process occurs inside the callback of the API request. In addition to
making the code hard to test, it makes the code hard to read. The level of nesting
required makes for a rather large, heavily indented controller function. As a point of
best practice, you should try to avoid deeply indenting code: it’s hard to read and
understand when you come back to it.

 The first step is making a new function called renderHomepage() in the locations.js
file in the app_server/controllers folder and moving the contents of the homelist
controller into it. Remember to ensure that the new function accepts the req and res
parameters too. The following listing shows a stripped-down version of what you’re
doing here. You can call this code from the homelist controller, as shown in the list-
ing, and things will work as before.

const renderHomepage = (req, res) => {
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 …
 });
};
const homelist = (req, res) => {
 renderHomepage(req, res);
};

This step is a start, but you’re not there yet; you want data!

7.2.2 Building the API request

You’ll get the data you want by asking the API for it, and to do this, you need to build
the request. To build the request, you need to know the URL, method, JSON body,
and query string to send. Looking back at chapter 6, or indeed at the API code itself,
you can see that you need to supply the information shown in table 7.2.

Mapping this information to a request is straightforward. As you saw earlier in the
chapter, the options for a request are JavaScript objects. For the time being, you’ll
hardcode values for longitude and latitude into the options, which is a quicker and

Listing 7.2 Moving the contents of the homelist controller into an external function

Table 7.2 Information needed to make a request to the API for
a list of locations

Parameter Value

URL SERVER:PORT/api/locations

Method GET

JSON body null

Query string lng, lat, maxDistance

Includes all code from
the res.render call here
(snipped for brevity)

Calls a new
renderHomepage function
from the homelist controller

207Using lists of data from an API: The Loc8r homepage

easier method for testing. Later in the book, you’ll make the application location-
aware. For now, you’ll choose coordinates close to where the test data is stored. The
maximum distance is set to 20 km.

 When you make the request, you’ll pass through a simple callback function to call
the renderHomepage() function so that you don’t leave the browser hanging. Express-
ing this idea as code looks like the following listing.

const homelist = (req, res) => {
 const path = '/api/locations';
 const requestOptions = {
 url: `${apiOptions.server}${path}`,
 method: 'GET',
 json: {},
 qs: {
 lng: -0.7992599,
 lat: 51.378091,
 maxDistance: 20
 }
 };
 request(
 requestOptions,
 (err, response, body) => {
 renderHomepage(req, res);
 }
);
};

If you save this code and run the application again, the homepage should display
exactly as before. You might now be making a request to the API, but you’re ignoring
the response.

7.2.3 Using the API response data

Seeing as you’re going to the effort of calling the API, the least you can do is use the
data it’s sending back. You can handle the response more robustly later, but you’ll
start with making the handler work. In order to make this happen, you’re going to
assume that a response body is returned to the callback, and you can pass it straight
into the renderHomepage() function, as highlighted in the following listing.

 request(
 requestOptions,
 (err, response, body) => {
 renderHomepage(req, res, body);
 }
);

Listing 7.3 Updating the homelist controller to call the API before rendering the page

Listing 7.4 Updating the contents of the homelist controller to use the API response

Sets the path for the API
request. (The server is already
set at the top of the file.)

Sets the request options,
including URL, method,
empty JSON body, and
hardcoded query string
parameters

Makes request, sending
through request options

Supplies the callback to
render the homepage

Passes the body returned by
the request to the
renderHomepage() function

208 CHAPTER 7 Consuming a REST API: Using an API from inside Express

You coded the API, so you know that the response body returned by the API should be
an array of locations. The renderHomepage() function needs an array of locations to
send to the view, so try passing it straight through, making the changes highlighted in
bold in the following listing.

const renderHomepage = (req, res, responseBody) => {
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 sidebar: "Looking for wifi and a seat? Loc8r helps you find places
 ➥to work when out and about. Perhaps with coffee, cake or a pint?
 ➥ Let Loc8r help you find the place you're looking for.",
 locations: responseBody
 });
};

Can the process be that easy? Try it in the browser to see what happens. We hope that
you’ll get something like figure 7.2.

 That looks pretty good, right? You need to do something about how the distance
is displayed, but other than that, the data is coming through as you wanted. Plugging
in the data was quick and easy because of the work you did up front designing the

Listing 7.5 Updating the renderHomepage function to use the data from the API

Adds an additional
responseBody
parameter to the
function declaration

Removes the hardcoded array of
locations, and passes the
responseBody through instead

Figure 7.2 Initial result using data from the database in the browser: close to the desired result

209Using lists of data from an API: The Loc8r homepage

views, building controllers based on the views, and developing the model based on
the controllers.

 You’ve made it work. Now you need to make it better. There’s no error trapping
yet, and the distances need some work.

7.2.4 Modifying data before displaying it: fixing the distances

At the moment, the distances in the list are displaying 15 decimal places and no unit
of measurement, so they’re extremely accurate and totally useless! You want to say
whether each distance is in meters or kilometers and round the numbers off to a sin-
gle meter or to one decimal place of a kilometer. You should do this before sending
the data to the renderHomepage() function, as that function should be reserved for
handling the actual rendering, not sorting out the data.

 You need to loop through the array of returned locations, formatting the distance
value of each one. Rather than do this inline, you’ll create an external function (in
the same file) called formatDistance() that accepts a distance value and returns it
nicely formatted. Put the following function before renderHomepage() in the control-
ler file.

const formatDistance = (distance) => {
 let thisDistance = 0;
 let unit = 'm';
 if (distance > 1000) {
 thisDistance = parseFloat(distance / 1000).toFixed(1);
 unit = 'km';
 } else {
 thisDistance = Math.floor(distance);
 }
 return thisDistance + unit;
};

Now make the change as shown in bold in the following listing. Note that the frame-
work of the homelist controller has been left out of this code snippet. To keep things
short, the request statement still sits inside the controller.

request(
 requestOptions,
 (err, response, body) => {
 let data = [];
 data = body.map((item) => {
 item.distance = formatDistance(item.distance);
 return item;
 });
 renderHomepage(req, res, data);
 }
);

Listing 7.6 Adding formatDistance function

Listing 7.7 Adding and using a function to format the distance returned by the API

If the supplied
distance is more
than 1000 m,
converts to km,
rounds to one
decimal place, and
adds km unit

Otherwise, rounds
down to the
nearest meter

Creates a
variable for
future use

Maps the data in an array,
formatting the distance
value of the location

Sends the modified data to
be rendered instead of the
original body content

210 CHAPTER 7 Consuming a REST API: Using an API from inside Express

You have one small additional change to make. You added m to the API output for dis-
tances, but with the formatDistance() function, this addition is no longer required,
so make the following change in /app_api/controllers/locations.js.

const locations = results.map(result => {
 return {
 name: result.name,
 address: result.address,
 rating: result.rating,
 facilities: result.facilities,
 distance: `${result.distance.calculated.toFixed()}`
 }
});

If you make these changes and refresh the page, you should see that the distances are
tidied up a bit and are useful, as shown in figure 7.3.

 That’s better; the homepage is looking more like you want it to. For extra credit,
you can add some error trapping to the formatDistance() function to make sure
that a distance parameter has been passed and that it’s a number.

Listing 7.8 Removing the unit from the API response

Removes m
from this line

Figure 7.3 The homepage looks better after you format the distances returned by the API.

211Using lists of data from an API: The Loc8r homepage

7.2.5 Catching errors returned by the API

So far, you’ve assumed that the API will always return an array of data along with a 200
success code. But this isn’t necessarily the case. You coded the API to return a 200 sta-
tus even if no locations are found nearby. As things stand, when this happens, the
homepage will display without any content in the central area. A far better user expe-
rience would be to output a message to the user that there are no places nearby.

 You also know that your API can give 404 errors, so you’ll need to make sure you
handle these errors appropriately. You don’t want to show a 404 to the user in this
case, because the error won’t be due to the homepage being missing. The better
option, again, is to send a message to the browser in the context of the homepage.

 Handling these scenarios shouldn’t be too difficult. The following sections show
you how, starting with the controller.

MAKING THE REQUEST CALLBACK MORE ROBUST

One of the main reasons for catching errors is to make sure that they don’t cause code
to fail. The first point of weakness is in the request callback, where you’re manipulat-
ing the response before sending the data off to be rendered. This is fine if the data is
always consistent, but you don’t have that luxury.

 The request callback currently runs a for loop to format the distances no matter
what data is returned by the API. You should run this loop only when the API returns
a 200 code and some results.

 The following listing shows how to achieve this result by adding a simple if state-
ment (app_server/controllers/locations.js) checking the status code and the length
of the returned data.

request(
 requestOptions,
 (err, {statusCode}, body) =>
 let data = [];
 if (statusCode === 200 && body.length) {
 data = body.map((item) => {
 item.distance = formatDistance(item.distance):
 return item;
 });
 }
 renderHomepage(req, res, data);
 }
);

Updating this piece of code should prevent this callback from falling over and throw-
ing an error if the API responds with a status code other than 200. The link in the
chain is the renderHomepage() function.

Listing 7.9 Validating that the API has returned some data before trying to use it

Uses object destructing
to get the statusCode, as
that’s all you need

Runs a loop to format
distances only if the API
returned a 200 status
and some data

212 CHAPTER 7 Consuming a REST API: Using an API from inside Express

DEFINING OUTPUT MESSAGES BASED ON THE RESPONSE DATA

As with the request callback, your original focus for the renderHomepage() function
is to make it work when it’s passed an array of locations to display. Now that this func-
tion might be sent different data types, you need to make it handle the possibilities
appropriately.

 The response body could be one of three things:

 An array of locations
 An empty array when no locations are found
 A string containing a message when the API returns an error

You already have the code in place to deal with an array of locations, so you need to
address the other two possibilities. When catching these errors, you also want to set a
message that can be sent to the view.

 To do so, you need to update the renderHomepage() function to also do the
following:

 Set a variable container for a message
 Check to see whether the response body is an array; if not, set an appropriate

message
 If the response is an array, set a different message if it’s empty (that is, no loca-

tions are returned)
 Send the message to the view

The following listing shows how this looks in code.

const renderHomepage = function(req, res, responseBody){
 let message = null;
 if (!(responseBody instanceof Array)) {
 message = "API lookup error";
 responseBody = [];
 } else {
 if (!responseBody.length) {
 message = "No places found nearby";
 }
 }
 res.render('locations-list', {
 title: 'Loc8r - find a place to work with wifi',
 pageHeader: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 },
 sidebar: "Looking for wifi and a seat? Loc8r helps you find
 ➥places to work when out and about. Perhaps with coffee, cake or a
 ➥pint? Let Loc8r help you find the place you're looking for.",
 locations: responseBody,
 message
 });
};

Listing 7.10 Outputting messages if the API doesn’t return location data

Defines a
variable

to hold a
message

If the response isn’t an array, sets a
message and sets the responseBody
to be an empty array

If the response is an array
with no length, sets a message

Adds a message to variables
to send to the view

213Using lists of data from an API: The Loc8r homepage

The only surprise is when you set the responseBody to be an empty array if it was orig-
inally passed through as a string. You do this to prevent the view from throwing an
error. The view expects an array to be sent in the locations variable; it effectively
ignores it if an empty array is sent but throws an error if a string is sent.

 The last link in this chain is updating the view to display a message when one
is sent.

UPDATING THE VIEW TO DISPLAY THE ERROR MESSAGES

You’re catching the errors from the API, and you’re also working with them to pass
something back to the user. The final step is letting the user see a message by adding a
placeholder to the view template.

 You don’t need to do anything fancy here; a simple div with a class of error to con-
tain any messages will suffice. The following listing shows the block content section of
the homepage view locations-list.pug in app_server/views.

block content
 .row.banner
 .col-12
 h1= pageHeader.title
 small #{pageHeader.strapline}
 .row
 .col-12.col-md-8
 .error= message

 each location in locations
 .card
 .card-block
 h4
 a(href="/location")= location.name
 small
 +outputRating(location.rating)
 span.badge.badge-pill.badge-default.float-right=
 ➥location.distance
 p.address= location.address
 .facilities
 each facility in location.facilities
 span.badge.badge-warning= facility

 .col-12.col-md-4
 p.lead= sidebar

That’s easy—basic, but easy. It will certainly do for now. All that’s left is to test it.

TESTING THE API ERROR TRAPPING

As with any new code, you need to make sure that it works. An easy way to test this
code is to change the query string values that you’re sending in the requestOptions.

 To test the No places found nearby trap, you can set the maxDistance to a small
number (remembering that it’s specified in kilometers) or set the lng and lat to a
point where there are no locations, as shown in this example:

Listing 7.11 Updating the view to display an error message when needed

Adds a div to the main content
area, and has it display a
message if one is sent

214 CHAPTER 7 Consuming a REST API: Using an API from inside Express

requestOptions = {
 url: `${apiOptions.server}${path}`,
 method: 'GET',
 json: {},
 qs: {
 lng: 1,
 lat: 1,
 maxDistance : 0.002
 }
};

You can use a similar tactic to test the 404 error. The API expects all the query string
parameters to be sent and returns a 404 if one of them is missing. To test the code
quickly, you can comment one of them out:

const requestOptions = {
 url: `${apiOptions.server}${path}`,
 method: 'GET',
 json: {},
 qs: {
 // lng: -0.7992599,
 lat: 51.378091,
 maxDistance: 20
 }
};

Do these two things one at a time and refresh the homepage to see the different mes-
sages coming through. These messages are shown in figure 7.4.

Changes the query string values
sent in the request to get no
results returned

Fixing an interesting bug
Did you try testing the API error trapping by setting lng or lat to 0? You should have
been expecting to see the No places found nearby message but instead saw API
lookup error, due to a bug in the error trapping in your API code.

In the locationsListByDistance controller, check whether the lng and lat query
string parameters were omitted by using a generic “falsey” JavaScript test. Your code
has this: if (!lng || !lat).

In falsey tests like this one, JavaScript looks for any of the values that it considers
to be false, such as an empty string, undefined, null, and (important for you) 0. This
introduces an unexpected bug into your code. If someone happened to be on the
equator or on the Prime Meridian (that’s the Greenwich Mean Time line), they’d
receive an API error.

You can fix this bug by verifying the falsey test to say, “If it’s false but not zero.” In
code, this statement looks like this: if ((!lng && lng !== 0) || (!lat && lat
!== 0)) .

Updating your controller in the API removes this bug.

Comment out one query string
parameter in the request to help test
what happens when the API returns 404.

215Getting single documents from an API: The Loc8r Details page

That figure shows the homepage set up nicely. Your Express application queries the
API you built, which pulls data from the MongoDB database and passes it back to the
application. When the application gets a response from the API, it works out what to
do with it and shows either the data or an error message in the browser.

 Next, you’ll do the same thing for the Details page, this time working with single
instances of data.

7.3 Getting single documents from an API:
The Loc8r Details page
The Details page should display all the information you have about a specific location,
from the name and address to ratings, reviews, facilities, and a location map. At the
moment, this page is using data hardcoded into the controller and looks like figure 7.5.

 In this section, you’ll update the application so that it allows you to specify which
location you want the details for, get the details from the API, and output them to the
browser. You’ll also add some error trapping, of course.

7.3.1 Setting URLs and routes to access specific MongoDB documents

The current path you have to the Details page is /location. This path doesn’t offer a
way to specify which location you want to look at. To address this situation, you can
borrow the approach from the API routes, where you specify the ID of the location
document as a URL parameter.

 The API route for a single location is /api/location/:locationid. You can do the
same thing for the main Express application and update the route to contain the
locationid parameter. The main application routes for locations are in index.js in

Figure 7.4 Showing error messages in the view after trapping the errors being returned

216 CHAPTER 7 Consuming a REST API: Using an API from inside Express

the /routes folder. The following code snippet shows the simple change needed to
update the location detail route to accept the locationid URL parameter (app_
server/routes/index.js):

router.get('/', ctrlLocations.homelist);
router.get('/location/:locationid', ctrlLocations.locationInfo);
router.get('/location/review/new', ctrlLocations.addReview);

Okay, great, but where do you get the IDs of the locations from? Thinking about the
application as a whole, the homepage is the best place to start, as that’s where the
links for the Details page come from.

 When the API for the homepage returns an array of locations, each location object
contains its unique ID. This entire object is already passed to the view, so it shouldn’t
be too difficult to update the homepage view to add this ID as a URL parameter.

 It’s not difficult at all, in fact! The following listing shows the little change that
needs to be made in the locations-list.pug file to append the unique ID of each loca-
tion to the link through to the Details page.

block content
 .row.banner
 .col-12
 h1= pageHeader.title

Listing 7.12 Updating the list view to add the location ID to the relevant links

Figure 7.5 The Details page as it is now, using data hardcoded into the controller

Adds the locationid parameter
to the route for a single location

217Getting single documents from an API: The Loc8r Details page

 small #{pageHeader.strapline}
 .row
 .col-12.col-md-8
 .error= message

 each location in locations
 .card
 .card-block
 h4
 a(href=`/location/${location._id}`)= location.name
 small
 +outputRating(location.rating)
 span.badge.badge-pill.badge-default.float-right=

 ➥location.distance
 p.address= location.address
 .facilities
 each facility in location.facilities
 span.badge.badge-warning= facility

If only everything in life were that easy. Now the homepage contains unique links for
each of the locations, and the links all click through to the Details page. Now you
need to make them show the correct data.

7.3.2 Separating concerns: Moving the rendering
into a named function

As you did for the homepage, you’ll move the rendering of the Details page into its
own named function. Again, you do this to keep the rendering functionality separate
from the API call and data processing.

 The following listing shows a trimmed-down version of the new renderDetail-
Page() function and how it’s called from the locationInfo controller.

const renderDetailPage = (req, res) => {
 res.render('location-info', {
 title: 'Starcups',
 ...
 });

const locationInfo = (req, res) => {
 renderDetailPage(req, res);
};

Now you’re set up with a nice, clear controller, ready to query the API.

7.3.3 Querying the API using a unique ID from a URL parameter

The URL for the API call needs to contain the ID of the location. Your Details page
has this ID now as the URL parameter locationid, so you can get the value of this by
using req.params and add it to the path in the request options. The request is a GET
request, so the json value will be an empty object.

Listing 7.13 Moving contents of the locationInfo controller into an external function

As each location in the array is
looped through, pulls the unique ID

from the object and appends it to
href for a link to the Details page

Creates a new function called
renderDetailPage and moves
all contents of the locationInfo
controller into it

Calls a new function from the controller,
remembering to pass it req and res parameters

218 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 Knowing all this, you can use the pattern you created in the homepage controller
to build and make the request to the API. You’ll call the renderDetailPage() func-
tion when the API responds. All this is shown in the following listing.

const locationInfo = (req, res) => {
 const path = `/api/locations/${req.params.locationid}`;
 const requestOptions = {
 url: `${apiOptions.server}${path}`,
 method: 'GET',
 json: {}
 };
 request(
 requestOptions,
 (err, response, body) => {
 renderDetailPage(req, res);
 }
);
};

If you run this code now, you’ll see the same static data as before, as you’re not yet
passing the data returned from the API into the view. You can add some console log
statements to the request callback if you want to have a quick look at what’s being
returned.

 If you’re happy that everything is working as it should, it’s time for you to pass the
data into the view.

7.3.4 Passing the data from the API to the view

You’re currently assuming that the API is returning the correct data; you’ll get around
to error trapping soon. This data needs a small amount of preprocessing: the coordi-
nates are returned from the API as an array, but the view needs them to be named key-
value pairs in an object.

 The following listing shows how you can do this in the context of the request state-
ment, transforming the data from the API before sending it to the renderDetail-
Page() function.

request(
 requestOptions,
 (err, response, body) => {
 const data = body;
 data.coords = {
 lng: body.coords[0],
 lat: body.coords[1]
 };
 renderDetailPage(req, res, data);
 }
);

Listing 7.14 Updating the locationInfo controller to call the API

Listing 7.15 Preprocessing data in the controller

Gets the locationid
parameter from the
URL and appends it
to the API pathSets all request

options needed to
call the API

Calls the
renderDetailPage()
function when the API
has responded

Creates a copy of
the returned data
in a new variable

Resets the coords property to be an
object, setting lng and lat using
values pulled from the API response

Sends the transformed
data to be rendered

219Getting single documents from an API: The Loc8r Details page

The next logical step is updating the renderDetailPage() function to use this data
rather than the hardcoded data. To make this work, you need to make sure that the
function accepts the data as a parameter and then update the values passed through
to the view as required. The following listing highlights the changes needed in bold.

const renderDetailPage = function (req, res, location) {
 res.render('location-info', {
 title: location.name,
 pageHeader: {
 title: location.name
 },
 sidebar: {
 context: 'is on Loc8r because it has accessible wifi and
 ➥space to sit down with your laptop and get some work done.',
 callToAction: "If you've been and you like it - or if you
 ➥don't - please leave a review to help other people just
 ➥like you."
 },
 location
 });
};

You’re able to take the approach of sending the full object through like this because
you originally based the data model on what was needed by the view and the control-
ler. If you run the application now, you should see that the page loads with the data
pulled from the database, as shown in figure 7.6.

Listing 7.16 Updating renderDetailPage to accept and use data from the API

Adds a new
parameter for
data in the
function definition

References specific
items of data as needed
in the function

Passes the full location data object
to the view, containing all the details

Figure 7.6 Details page pulling in data from MongoDB via the API

220 CHAPTER 7 Consuming a REST API: Using an API from inside Express

The eagle-eyed reader will have noticed a problem with the screenshot in figure 7.6:
the review doesn’t have a date associated with it.

7.3.5 Debugging and fixing the view errors

So you have a problem with the view, which isn’t outputting the review date correctly.
You built the data model based on the data provided by the view and controller, but
now you see that you don’t have enough information. In this section, you’ll take a look
at what’s going on.

 Starting with looking at the Pug file location-info.pug in app_server/views, you can
isolate the line that outputs this section:

small.reviewTimestamp #{review.timestamp}

Now you need to check the schema to see whether you changed something when
defining the model. The schema for reviews is in locations.js in app_api/models and
looks like the following code snippet:

const reviewSchema = new mongoose.Schema({
 author: String,
 rating: {
 type: Number,
 required: true,
 min: 0,
 max: 5
 },
 reviewText: String,
 createdOn: {
 type: Date,
 'default': Date.now
 }
});

Ah, yes; here you can see that you changed the timestamp to createdOn, which is a
more accurate name for the path.

 Updating the Pug file with this value looks like the following:

small.reviewTimestamp #{review.createdOn}

Making these changes and refreshing the page gives you figure 7.7.
 Success! Of sorts. The date is now showing, but not quite in the user-readable for-

mat that you’d like to see. You should be able to fix this problem by using Pug.

Figure 7.7 Pulling the name and date directly from the returned data;
the format of the date isn’t user friendly.

221Getting single documents from an API: The Loc8r Details page

7.3.6 Formatting dates using a Pug mixin

Back when you were setting up the views, you used a Pug mixin to output the rating
stars based on the rating number provided. In Pug, mixins are like functions; you can
send parameters when you call them, run some JavaScript code if you want, and have
them generate some output.

 Formatting dates could be useful in several places, so create a mixin to do the job.
Your outputRating mixin is in the shared HTMLfunctions.pug file in app_
server/views/_includes. Add a new mixin called formatDate to that file.

 In this mixin, you’ll largely use JavaScript to convert the date from the long ISO
format to the more readable format Day Month Year (such as 10 May 2017). The ISO
date object arrives here as a string, so the first thing to do is convert it to a JavaScript
date object. When that’s done, you’ll be able to use various JavaScript date methods to
access the various parts of the date.

 The following listing shows how to do this in a mixin. Remember that lines of
JavaScript in a Pug file must be prefixed by a dash.

mixin formatDate(dateString)
 - const date = new Date(dateString);
 - const monthNames = ['January', 'February', 'March', 'April',
 ➥'May', 'June', 'July', 'August', 'September', 'October', 'November',
 ➥'December'];
 - const d = date.getDate();
 - const m = monthNames[date.getMonth()];
 - const y = date.getFullYear();
 - const output = `${d} ${m}

${y}`;
 =output

Now, that mixin takes a date and processes it to output in the format that you want. As
the mixin renders the output, you simply need to call it from the correct place in the
code. The following code demonstrates this call, again based on the same two isolated
lines from the whole template:

span.reviewAuthor #{review.author.displayName}
small.reviewTimestamp
 +formatDate(review.createdOn)

The call to the mixin should be placed on a new line, so you’ll need to remember to
take care with the indentation; the date should be nested inside the <small> tag. Now
the Details page is complete and looking like it should, as shown in figure 7.8.

 Excellent; that’s exactly what you wanted. If the URL contains an ID that’s found in
the database, the page displays nicely. But what happens if the ID is wrong or isn’t
found in the database?

Listing 7.17 Creating a Jade mixin to format the dates

Converts the date provided
from a string to a date object Sets up an array of values for

the names of the months

Uses JavaScript data methods to extract
and convert the required parts of the date

Puts the parts back together in the
desired format and renders output

Calls the mixin from its own line,
passing the creation date of the
review (make sure that the new
line is correctly indented)

222 CHAPTER 7 Consuming a REST API: Using an API from inside Express

7.3.7 Creating status-specific error pages

If the ID from the URL isn’t found in the database, the API returns a 404 error. This
error originates from the URL in the browser, so the browser should also return a 404;
the data for the ID wasn’t found, so in essence, the page can’t be found.

 Using techniques you’ve already seen in this chapter, you can easily catch when the
API returns a 404 status by using response.statusCode in the request callback. You
don’t want to deal with it inside the callback, so you’ll pass the flow into a new func-
tion that you can call: showError().

CATCHING ALL ERROR CODES

Even better than trapping for a 404 response, you can flip it on its head and look for
any response from the API that isn’t a 200 success response. You can pass the status
code to the showError() function and let it figure out what to do. To enable the show-
Error() function to keep control, you’ll also pass through the req and res objects.

 The following listing shows how to update the request callback to render the
Details page for successful API calls and route all other errors to the catchall function
showError().

Figure 7.8 The complete Details page. The ID of the location is passed from the URL to the API, and
the API retrieves the data and passes it back to the page to be formatted and rendered correctly.

223Getting single documents from an API: The Loc8r Details page

request(
 requestOptions,
 (err, {statusCode}, body) => {
 let data = body;
 if (statusCode === 200) {
 data.coords = {
 lng : body.coords[0],
 lat : body.coords[1]
 };
 renderDetailPage(req, res, data);
 } else {
 showError(req, res, statusCode);
 }
 }
);

Great; now you’ll try to render the Details page if you have something from the API to
display. What shall you do with the errors? Well, for now you want to send a message to
the users, letting them know that there’s a problem.

DISPLAYING ERROR MESSAGES

You don’t want to do anything fancy here—only let users know that something is
going on and give them some indication of what it is. You already have a generic Pug
template that’s suitable for this purpose; it’s called generic-text.pug and expects only a
title and some content. That will do you.

 If you wanted to, you could create a unique page and layout for each type of error,
but for now, you’re satisfied with catching it and letting the user know. As well as let-
ting the user know, you should let the browser know by returning the appropriate sta-
tus code when the page is displayed.

 The following listing shows what the showError() function looks like, accepting a
status parameter that, as well as being passed through as the response status code, is
used to define the title and content of the page. Here, you have a specific message for
a 404 page and a generic message for any other errors that are passed.

const showError = (req, res, status) => {
 let title = '';
 let content = '';
 if (status === 404) {
 title = '404, page not found';
 content = 'Oh dear. Looks like you can\'t find this page. Sorry.';
 } else {
 title = `${status}, something's gone wrong`;
 content = 'Something, somewhere, has gone just a little bit wrong.';
 }
 res.status(status);

Listing 7.18 Trapping any errors caused by the API not returning a 200 status

Listing 7.19 Creating an error-handling function for API status codes that aren’t 200

You’re interested only in the
statusCode, so get only that.

Checks a for
successful
response
from the API

Continues with
rendering the page if the
check was successful

If check wasn’t successful, passes the
error to the showError() function.

If the status passed through is 404,
sets the title and content for the page

Uses the status parameter
to set a response statusOtherwise, sets a generic

catchall message

224 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 res.render('generic-text', {
 title,
 content
 });
};

This function can be reused from any of the controllers where you might find it use-
ful. It’s also built in such a way that you can easily add new, specific error messages for
particular codes if you want to.

 You can test the 404 error page by slightly changing the location ID in the URL,
and you should see something like figure 7.9.

That brings you to the end of the Details page. You can successfully display all the
information from the database for a given location and also display a 404 message to
the visitor if the location can’t be found.

 Following through the user journey, your next and final task is adding the ability to
add reviews.

7.4 Adding data to the database via the API:
add Loc8r reviews
In this section, you’ll see how to take form data submitted by a user, process it, and
post it to the API. Reviews are added to Loc8r by clicking the Add Review button on a
location’s Details page, filling in a form, and submitting it. That’s the plan, anyway.
You currently have the views to do this but not the underlying functionality to make it
happen. You need to change that situation right now.

 Here’s a list of the things you’ll do:

Sends data to the view
to be compiled and
sent to the browser

Figure 7.9 The 404 error page displayed when the location ID in the URL isn’t found in the
database by the API

225Adding data to the database via the API: add Loc8r reviews

1 Make the review form aware of which location the review will be for.
2 Create a route for the form to POST to.
3 Send the new review data to the API.
4 Show the new review in place on the Details page.

Note that at this stage in development, you don’t have an authentication method in
place, so you have no concept of user accounts.

7.4.1 Setting up the routing and views

The first item on your list involves getting the ID of the location to the Add Review
page in such a way that you can use it when the form is submitted. After all, this ID is
the unique identifier that the API needs to add a review. The best approach for get-
ting the ID to the page is to contain it in the URL, as you did for the Details page
itself.

DEFINING THE TWO REVIEW ROUTES

Getting the location ID into the URL means changing the route of the Add Review
page to add a locationid parameter. While you’re at it, you can deal with the second
item on the list and create a route for the form to POST to. Ideally, this route should
have the same path as the review form and be associated with a different request
method and a different controller. To do this, you’ll update to the router.route syn-
tax, making it clear that you’re using a single route with two different methods.

 The following code snippet shows how you can update the routes in index.js in the
app_server/routes folder:

router.get('/', ctrlLocations.homelist);
router.get('/location/:locationid', ctrlLocations.locationInfo);
router
 .route('/location/:locationid/review/new')
 .get(ctrlLocations.addReview)
 .post(ctrlLocations.doAddReview);

Those routes are all you’ll need for this section, but restarting the application will fail
because the POST route references a controller that doesn’t exist. You can fix this
problem by adding a placeholder function to the controller file. Add the following
code snippet to locations.js in app_server/controllers, and add doAddReview to the
exports list at the bottom. Then the application will fire up successfully once again:

const doAddReview = (req, res) => {
};

If you click through to the Add Review page, however, you’ll get an error. Oh, yes—
you need to update the link to the Add Review page from the Details page.

Updates to router.route syntax,
and inserts a locationid parameter
into the review form route

Creates a new route on the
same URL, but using the POST
method and referencing a
different controller

226 CHAPTER 7 Consuming a REST API: Using an API from inside Express

FIXING THE LOCATION DETAIL VIEW

You need to add the location ID to the href specified in the Add Review button on the
Details page. The controller for this page passes through the full data object as
returned from the API, which, along with the rest of the data, contains the _id field.
This data object is called location when passed to the view.

 The following code snippet shows a single line from the location-info.pug template
in the app_server/views folder. This line shows how to add the location ID to the link
for the Add Review button; note that you now use a JavaScript template string for the
href value:

a.btn.btn-primary.float-right(href=`/location/${location._id}

➥/review/new`) Add review

With the template updated and saved, you can click through to a review form for each
individual location. A couple of issues still exist, however: the form doesn’t post any-
where, and the name of the location is hardcoded into the controller.

UPDATING THE REVIEW FORM VIEW

Next, you want to make sure that the form posts to the correct URL. When the form is
submitted now, it makes a GET request to the /location URL:

form(action="/location", method="get", role="form")

This line is taken from the location-review-form.pug file in app_server/views. The
/location path is no longer valid in your application, and you also want to use a POST
request instead of a GET request. The URL you want to post the form to is the same as
the URL for the Add Review: /location/:locationid/reviews/new.

 An easy way to achieve this task is to set the action of the form to be an empty
string and set the method to be post, as shown here:

form(action="", method="post", role="form")

Now, when the form is submitted, it makes a POST request to the URL of the current
page.

CREATING A NAMED FUNCTION FOR RENDERING THE ADD REVIEW PAGE

As with the other pages, you’ll move the rendering of the page to a separate named
function. This step allows you the separation of concerns you’re looking for when cod-
ing and prepares you for the next steps.

 The following listing shows how this should look in the code. Make your changes
in locations.js in app_server/controllers.

const renderReviewForm = (req, res) => {
 res.render('location-review-form', {
 title: 'Review Starcups on Loc8r',
 pageHeader: { title: 'Review Starcups' }
 });
};

Listing 7.20 Creating a render function for the addReview controller body

Creates the new function
renderReviewForm(), and
moves the contents of the
addReview controller into it

227Adding data to the database via the API: add Loc8r reviews

/* GET 'Add review' page */
const addReview = (req, res) => {
 renderReviewForm(req, res);
};

This code might look a little odd—creating a named function and then having the
call to that function be the only thing in the controller—but it will be useful in a
moment.

GETTING THE LOCATION DETAIL

On the Add Review page, you want to display the name of the location to retain a
sense of context for the user. You want to hit the API again, give it the ID of the loca-
tion, and get the information back to the controller and into the view. You’ve done
this for the Details page, albeit with a different controller. If you approach this task
correctly, you shouldn’t have to write much new code.

 Rather than duplicate code and have to maintain two pieces, you’ll go for a DRY
(don’t repeat yourself) approach. The Details page and the Add Review page both
want to call the API to get the location information and then do something with it. So
why not create a new function that does this? You’ve already got most of the code in
the locationInfo controller; you need to change how it calls the final function.
Instead of calling the renderDetailPage() explicitly, you’ll make it a callback.

 You’ll have a new function called getLocationInfo() that makes the API request.
Following a successful request, this function should invoke whatever callback function
was passed. The locationInfo controller calls this function, passing a callback func-
tion that calls the renderDetailPage() function. Similarly, the addReview controller
can call this new function, passing it the renderReviewForm() function in the call-
back.

 These changes give you one function making API calls that will have different out-
comes depending on the callback function sent. The following listing shows every-
thing in place.

const getLocationInfo = (req, res, callback) => {
 const path = `/api/locations/${req.params.locationid}`;
 const requestOptions = {
 url : `${apiOptions.server}${path}`,
 method : 'GET',
 json : {}
 };
 request(
 requestOptions,
 (err, {statusCode}, body) => {
 let data = body;
 if (statusCode === 200) {
 data.coords = {
 lng : body.coords[0],
 lat : body.coords[1]
 };

Listing 7.21 Creating a new reusable function to get location information

Calls the new function from
within the addReview controller,
passing the same parameters

New function getLocationInfo()
accepts a callback as a third

parameter and contains all code
that used to be in locationInfo

controller

228 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 callback(req, res, data);
 } else {
 showError(req, res, statusCode);
 }
 }
);
};

const locationInfo = (req, res) => {
 getLocationInfo(req, res,
 (req, res, responseData) => renderDetailPage(req, res, responseData)
);
};

const addReview = (req, res) => {
 getLocationInfo(req, res,
 (req, res, responseData) => renderReviewForm(req, res, responseData)
);
};

And there you have a nice, DRY approach to the problem. It would have been easy to
copy and paste the API code from one controller to another—which, if we’re being
honest, is absolutely fine if you’re figuring out your code and what you need to do to
make it work. But when you see two pieces of code doing pretty much the same thing,
always ask yourself how you can make it DRY to make your code cleaner and easier to
maintain.

DISPLAYING THE LOCATION DETAIL

You have one more thing to take care of. The function for rendering the form still
contains hardcoded data instead of using the data from the API. A quick tweak to the
function changes that situation.

const renderReviewForm = function (req, res, {name}) {
 res.render('location-review-form', {
 title: `Review ${name} on Loc8r`,
 pageHeader: { title: `Review ${name}` }
 });
};

The Add Review page is looking good once again, displaying the correct name based
on the ID found in the URL, as shown in figure 7.10.

Listing 7.22 Removing hardcoded data from the renderReviewForm function

Following a successful API
response, invokes callback
instead of a named function

In the locationInfo controller, calls the
getLocationInfo() function, passing a callback
function that will call the renderDetailPage()
function upon completion

Also calls getLocationInfo() from
the addReview controller, but this
time passes renderReviewForm()
in a callback

Updates the renderReviewForm() function
to accept a new parameter containing data,

destructed to what you needSwaps out hardcoded data for data
references using template strings

229Adding data to the database via the API: add Loc8r reviews

7.4.2 POSTing the review data to the API

By now, you have the Add Review page set up and ready to go, including the posting
destination. You’ve even got the route and controller for the POST action in place. The
controller, doAddReview, is an empty placeholder, though.

 The plan for this controller is as follows:

1 Get the location ID from the URL to construct the API request URL.
2 Get the data posted in the form, and package it up for the API.
3 Make the API call.
4 Show the new review in place, if successful.
5 Display an error page, if not successful.

The only part of this procedure that you haven’t seen yet is passing the data to the
API; so far, you’ve passed an empty JSON object to ensure that the response is format-
ted as JSON. Now you’ll take the form data and pass it to the API in the format it
expects. You have three fields on the form and three references that the API expects.
All you need to do is map one to the other. The form fields and model paths are
shown in table 7.3.

Figure 7.10 Add Review page pulling in the location name via the API, based
on the ID contained in the URL

230 CHAPTER 7 Consuming a REST API: Using an API from inside Express

Turning this mapping into a JavaScript object is straightforward. Create a new object
containing the variable names that the API expects, and use req.body to get the val-
ues from the posted form. The following code snippet shows this object in isolation,
and you’ll put it in the controller in just a moment:

const postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
};

Now that you’ve seen how that works, you can add it to the standard pattern you’ve
been using for these API controllers and build out the doAddReview controller.
Remember that the status code the API returns for a successful POST operation is 201,
not the 200 you’ve been using so far with GET requests. The following listing shows the
doAddReview controller, using everything you’ve learned so far.

const doAddReview = (req, res) => {
 const locationid = req.params.locationid;
 const path = `/api/locations/${locationid}/reviews`;
 const postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
 };
 const requestOptions = {
 url: `${apiOptions.server}${path}`,
 method: 'POST',
 json: postdata
 };
 request(
 requestOptions,
 (err, {statusCode}, body) => {
 if (statusCode === 201) {
 res.redirect(`/location/${locationid}`);
 } else {
 showError(req, res, statusCode);
 }
 }
);
};

Listing 7.23 doAddReview controller used to post review data to the API

Form field API references

name author

rating rating

review reviewText

Table 7.3 Mapping the names
of the form fields to the model
paths expected by the API

Gets location ID from
the URL to construct
the API URL

Creates a data object to send to the
API, using the submitted form data

Sets the request options, including the path,
setting the POST method, and passing the
submitted form data into a json parameter

Makes the request

Redirects to the Details page if
review was added successfully,
or shows an error page if the
API returned an error

231Protecting data integrity with data validation

Now you can create a review, submit it, and then see it on the Details page, as shown in
figure 7.11.

 Now that everything works, let’s take a quick look at adding form validation.

7.5 Protecting data integrity with data validation
Whenever an application accepts external input and adds it to a database, you need to
make sure that the data is complete and accurate—as much as you can or as much as
it makes sense to. If someone adds an email address, you should check that it’s a valid
email format, but you can’t programmatically validate that it’s a real email address.

 In this section, you’ll look at the ways that you can add validation to your applica-
tion to prevent people from submitting empty reviews. You can add validation in three
places:

 At the schema level, using Mongoose, before the data is saved
 At the application level, before the data is posted to the API
 At the client side, before the form is submitted

You’ll look at each of these places in turn and add some validation at every step.

7.5.1 Validating at the schema level with Mongoose

Validating the data before saving it is arguably the most important stage. This step is
the final step, the one last chance to make sure that everything is as correct as it can
be. This stage is particularly important when the data is exposed through an API; if
you don’t have control of all the applications using the API, you can’t guarantee the
quality of the data that you’re going to get. It’s important to ensure that the data is
valid before saving it.

Figure 7.11 After filling in and submitting the review form, the review is shown in situ on the Details
page.

232 CHAPTER 7 Consuming a REST API: Using an API from inside Express

UPDATING THE SCHEMA

When you first set up the schema in chapter 5, you looked at adding some validation
in Mongoose. You set the rating path to be required, but you also want the author
displayName and reviewText to be required. If one of these fields is missing, a review
won’t make sense. Adding this to the schema is simple enough and looks like the fol-
lowing listing. (The schema is in locations.js in the app_api/model folder.)

const reviewSchema = new mongoose.Schema({
 author: {
 type: String,
 required: true
 },
 rating: {
 type: Number,
 required: true,
 min: 0,
 max: 5
 },
 reviewText: {
 type: String,
 required: true
 },
 createdOn: {
 type: Date,
 'default': Date.now
 }
});

When this code is saved, you can no longer save a review without any review text. You
can try, but you’ll see the error page shown in figure 7.12.

Listing 7.24 Adding validation to reviews at the schema level

Makes each of these paths a
required field, because if one of
them is missing, a review won’t
make sense

createdOn doesn’t need to be
required, because Mongoose
automatically populates it when
a new review is created.

Figure 7.12 Error message shown when trying to save a review without any review text,
now that the schema says it’s required

233Protecting data integrity with data validation

On one hand, it’s good that you’re protecting the database, but it’s not a great user
experience. You should try to catch that error and let the visitor try again.

CATCHING MONGOOSE VALIDATION ERRORS

If you try to save a document with one or more required paths missing or empty, Mon-
goose returns an error. It does this without having to make a call to the database,
because Mongoose itself holds the schema and knows what is and isn’t required. The
following code snippet shows an example of such an error message:

{
 message: 'Validation failed',
 name: 'ValidationError',
 errors: {
 'reviews.1.reviewText': {
 message: 'Path `reviewText` is required.',
 name: 'ValidatorError',
 path: 'reviewText',
 type: 'required',
 value: ''
 }
 }
}

In the flow of the application, this happens inside the callback from the save func-
tion. If you take a look at the save command inside the doAddReview() function (in
app_api/controllers/reviews.js), you can see where the error bubbles up and where
you set the 400 status. The following code snippet shows this, including a temporary
console log statement to show the output of the error to terminal:

location.save((err, location) => {
 if (err) {
 console.log(err);
 res
 .status(400)
 .json(err);
 } else {
 updateAverageRating(location._id);
 let thisReview = location.reviews[location.reviews.length - 1];
 res
 .status(201)
 .json(thisReview);
 }
});

Your API returns this message as the response body, alongside the 400 status. You can
look for this information in your application by looking at the response body when
the API returns a 400 status.

 The place to do this is in the app_server—in the doAddReview() function in con-
trollers/locations.js, to be precise. When you’ve caught a validation error, you want to
let the user try again by redirecting to the Add Review page. So that the page knows
that an attempt has been made, you can pass a flag in the query string.

Mongoose validation errors are
returned through an error
object following an attempted
save action.

234 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 The following listing shows this code in place, inside the request statement call-
back for the doAddReview() function.

request(
 requestOptions,
 (err, {statusCode},{name}) => {
 if (statusCode === 201) {
 res.redirect(`/location/${locationid}`);
 } else if (statusCode === 400
 && name && name === 'ValidationError') {
 res.redirect(`/location/${locationid}/review/new?err=val`);
 } else {
 console.log(body);
 showError(req, res, statusCode);
 }
 }
);

Now when the API returns a validation error, you can catch it and send the user back
to the form to try again. Passing a value in the query string means that you can look
for it in the controller that displays the review form and send a message to the view to
alert the user to the problem.

DISPLAYING AN ERROR MESSAGE IN THE BROWSER

To display an error message in the view, you need to send a variable to the view if you
see the err parameter passed in the query string. The renderReviewForm() function
is responsible for passing variables into the view. When it’s called, it’s also passed the
req object, which contains the query object, making it easy to pass the err parameter,
when it exists. The following listing highlights the simple change required to make
this happen.

const renderReviewForm = (req, res,{name}) => {
 res.render('location-review-form', {
 title: `Review ${name} on Loc8r`,
 pageHeader: { title: `Review ${name}` },
 error: req.query.err
 });
};

The query object is always part of the req object, regardless of whether it has any con-
tent. This is why you don’t need to error-trap this object to check whether it exists; if
the err parameter isn’t found, it returns undefined.

 All that remains is to do something with this information in the view, letting the
user know what the problem is. You’ll show a message to the user at the top of the
form, if a validation error was bubbled up. To give this message some style and pres-
ence on the page, you’ll use a Bootstrap alert component: a div with some relevant

Listing 7.25 Trapping validation errors returned by the API

Listing 7.26 Updating the controller to pass an error string from query object to view

Adds a check to see whether
the status is 400, the body
has a name, and that name is
ValidationError

If true, redirects to the
review form, passing an

error flag in a query string

Sends a new error variable to
the view, passing the view any
existing query parameters

235Protecting data integrity with data validation

classes and attributes. The following code snippet shows the two lines to add to the
location-review-form view:

form(action="", method="post", role="form")
 - if (error == "val")
 .alert.alert-danger(role="alert") All fields required, please try again

Now when the API returns a validation error, you catch it and display a message to the
user. Figure 7.13 shows how this message looks.

This type of validation at the API level is important and generally a great place to start,
because it protects a database against inconsistent or incomplete data, regardless of
the origin. But the experience for end users isn’t always best; they have to submit the
form, and the form request makes a round trip to the API before the page reloads
with an error. There’s clearly room for improvement, and the first step is performing
some validation at the application level before the data is passed to the API.

7.5.2 Validating at the application level with Node and Express

Validation at the schema level is the backstop, the final line of defense in front of a
database. An application shouldn’t rely solely on this backstop, however, and you
should try to prevent unnecessary calls to the API, reducing overhead and speeding
thing up for the user. One way is to add validation at the application level, checking
the submitted data before sending it to the API.

Figure 7.13 The validation error message in the browser, the result of
a process kicked off by Mongoose’s catching the error and returning it

236 CHAPTER 7 Consuming a REST API: Using an API from inside Express

 In your application, the validation required for a review is simple; you can add
some simple checks to ensure that each of the fields has a value. If this test fails, you
redirect the user back to the form, adding the same query string error flag as before.
If the validation checks are successful, you allow the controller to continue to the
request method. The following listing shows the additions needed in the doAddReview
controller in locations.js in the app_server/controllers folder.

const doAddReview = (req, res) => {
 const locationid = req.params.locationid;
 const path = `/api/locations/${locationid}/reviews`;
 const postdata = {
 author: req.body.name,
 rating: parseInt(req.body.rating, 10),
 reviewText: req.body.review
 };
 const requestOptions = {
 url: apiOptions.server + path,
 method: 'POST',
 json: postdata
 };
 if (!postdata.author || !postdata.rating || !postdata.reviewText) {
 res.redirect(`/location/${locationid}/review/new?err=val`);
 } else {
 request(
 requestOptions,
 (err, {statusCode},{name}) => {
 if (statusCode === 201) {
 res.redirect(`/location/${locationid}`);
 } else if (statusCode === 400 && name
 ➥&& name === 'ValidationError') {
 res.redirect(`/location/${locationid}/review/new?err=val`);
 } else {
 showError(req, res, statusCode);
 }
 }
);
 }
};

The outcome is the same as before: if the review text is missing, the user is shown the
error message on the Add Review page. The user doesn’t know that you’re no longer
posting data to the API, but it’s one less round trip and so should be a faster experi-
ence. But you can make it even faster with the third tier of validation: browser-based
validation.

7.5.3 Validating in the browser with jQuery

As application-level validation speeds things up by not requiring a call to the API,
client-side validation in the browser can speed things up by catching an error before

Listing 7.27 Adding some simple validation to an Express controller

If any of three required data fields is
falsey, redirects to the Add Review
page, appending the query string

used to display the error message

Otherwise,
continues
as before

237Protecting data integrity with data validation

the form is submitted to the application, by removing yet another call. Catching an
error at this point keeps the user on the same page.

 To get JavaScript running in the browser, you need to place it in the public folder
in the application. Express treats the contents of this folder as static files to be down-
loaded to the browser instead of run on the server. If you don’t have a folder called
javascripts in your public folder, create one now. Inside this folder, create a new file
called validation.js.

WRITING THE JQUERY VALIDATION

Inside this new validation.js file, put a jQuery function that does the following:

 Listens for the submit event of the review form
 Checks to see that all the required fields have a value
 If one is empty, shows an error message like the ones you’ve used in the other

types of validation and prevents the form from submitting

The following listing shows the code to do this. We won’t dive into the semantics of
jQuery here, assuming you have some familiarity with it or a similar library.

$('#addReview').submit(function (e) {
 $('.alert.alert-danger').hide();
 if (!$('input#name').val() || !$('select#rating').val() ||
 ➥!$('textarea#review').val()) {
 if ($('.alert.alert-danger').length) {
 $('.alert.alert-danger').show();
 } else {
 $(this).prepend('<div role="alert" class="alert alert-danger">
 ➥All fields required, please try again</div>');
 }
 return false;
 }
});

You need to ensure that the form has an ID of addReview set so that the jQuery can lis-
ten for the correct event. You also need to add this script to the page so that the
browser can run it.

ADDING THE JQUERY TO THE PAGE

You’ll include this jQuery file at the end of the body, along with the other client-side
JavaScript files. These files are set in the layout.pug view in app_server/views, at the
bottom. Add a new line below the others pointing to the new file:

script(src='/bootstrap/js/bootstrap.min.js')
script(src='/javascripts/validation.js')

Listing 7.28 Creating a jQuery form validation function

Listens for the submit event of the review form

Checks for any
missing values

Shows or injects an error
message into the page if

a value is missing

Prevents the form from
submitting if a value is
missing

238 CHAPTER 7 Consuming a REST API: Using an API from inside Express

That’s all there is to it. Now the form validates in the browser without the data being
submitted anywhere, removing a page reload and any associated calls to the server.

TIP Client-side validation may seem to be all that you need, but the other
types are vital to the robustness of an application. JavaScript can be turned off
in the browser, removing the ability to run this validation, or the validation
could be bypassed, with data being posted directly to either the form action
URL or the API endpoint.

In chapter 8, you’ll introduce Angular into the mix and start playing with some inter-
active front-end components on top of the Express application.

Summary
In this chapter, you learned

 How to use the request module to make API calls from Express and how to
make POST and GET requests to API endpoints

 Some ways of separating concerns by keeping rendering functions away from
the API request logic

 How to apply a simple pattern to the API logic in each controller
 The application of data validation in three places in the architecture and when

and why to use each

Part 3

Adding a dynamic front end
with Angular

A ngular is one of the most exciting technologies of our time and is a core
part of the MEAN stack with proven stability and longevity. You’ve done a lot of
work so far with Express, which is the server-side framework. Angular is the
client-side framework that enables you to build entire applications that run in
the browser.

 You’ll get to know Angular and TypeScript (like JavaScript, a bit different but
good different) in chapter 8, seeing what all the fuss is about and getting into the
particular syntax semantics and jargon associated with it. Angular can have a
steep learning curve, but it doesn’t have to. As you get started with Angular and
TypeScript in chapter 8, you’ll see how to use them to build a component for an
existing web page, including calling your REST API to get data.

 Chapters 9 and 10 focus on how to use Angular to build a single-page applica-
tion (SPA). Building on what you learned in chapter 8, you re-create Loc8r as an
SPA. You’ll focus on best practices throughout, learning how to build a modular
application that’s easily maintainable with components that can easily be reused.
By the end of part 3, you’ll have a fully functioning SPA interacting with your
REST API to create and read data.

241

Creating an Angular
application with TypeScript

Here it comes. It’s time to take a look at the final part of the MEAN stack: Angular!
When you’re getting started with Angular and TypeScript, it can feel like a different
language at times, but TypeScript is a superset of JavaScript, so it’s JavaScript with
some additional bits and pieces. TypeScript is the preferred language for creating
Angular applications. We’ll cover what we need to as we go, and you’ll be fairly
comfortable with it by the end of this chapter.

 To get into it all, you’ll rebuild the list of locations shown in the homepage as an
Angular application. You’ll embed this little application in the Express-driven
homepage, replacing the list delivered by Express, to serve two purposes:

This chapter covers
 Using the Angular CLI and creating an Angular application

 Understanding the basics of TypeScript

 Creating and using Angular components

 Getting data from an API and binding data to HTML
templates

 Building an Angular application for production

242 CHAPTER 8 Creating an Angular application with TypeScript

 You’ll work with some of the building blocks of Angular without getting over-
whelmed.

 You’ll see how to use Angular to create a single component within an existing
page or application.

Figure 8.1 shows where you are in the overall plan, adding Angular to the front end of
the existing Express application.

The approach taken in this chapter is what you’d do if you wanted to enhance a page,
project, or application with a bit of Angular. Building a full application entirely in
Angular is coming up in chapters 9 and 10 and adds to what you’ll learn in this chapter.

8.1 Getting up and running with Angular
In this section, you’ll create a skeleton Angular application, look at how it’s put
together, and explore some of the tools that come with it to help development. If you
haven’t done so yet, you’ll need to install the Angular command-line interface (CLI)
as described in appendix A.

 You’ll start by using the CLI to create a new application.

8.1.1 Using the command line to create a boilerplate Angular app

The easiest way to create a new Angular application is to use the Angular CLI, which
creates a fully functional small application and generates a good folder structure.

 The base command is simple:

ng new your-app-name

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API

Encapsulating
Express app

Angular SPA

Angular

Express
Node.js

MongoDB

Adding Angular
to the front
end of your
Express app

Figure 8.1 This chapter focuses on adding Angular to the front end of the existing Express application

243Getting up and running with Angular

Before you run the command to create your Angular app for Loc8r—which would
create a new application called your-app-name with default settings in the current
folder—you’ll want to look at some options.

 You can apply many options to this command, and you can see them by running ng
help in the command line. The options you’re interested in are the following:

 --skipGit, to skip the default Git initialization and first commit. By default, ng
new initializes the folder as a new Git repository, but you don’t need to do that,
because you’re going to create it inside an existing Git repo.

 --skipTests, to skip installation of some testing files. We don’t cover unit tests
in this book, so you don’t need these extra files. See the sidebar “Testing Angu-
lar applications” as to why we don’t cover this topic.

 --directory, to specify the folder where you want the application to be gener-
ated.

 --defaults forces default Angular settings to be used.

Putting all this together, you’ll use a command to create a boilerplate Angular applica-
tion inside a new folder called app_public. This command installs a lot of stuff, so it’ll
take a little while to run, and you’ll need to be online for it to work. Make sure that in
terminal, you’re in the root folder of your Loc8r application before running the fol-
lowing command:

$ ng new loc8r-public --skipGit=true --skipTests=true –defaults=true –

➥directory app_public

IMPROVEMENT To those who are familiar with AngularJS (Angular 1.x), this
is quite a change from the days of being able to download a single library file
to start coding! The good news is that this new approach encourages better
application architecture out of the box.

When everything is installed, the contents of your app_public folder should look like
figure 8.2.

 You may notice that this project has its own package.json file and node_modules
folder, so it looks a lot like a Node application. The src folder is where you’ll do most
of your work.

Testing Angular applications
Testing is an important, but really large, topic—so large, in fact, that there are many
books written on the topic. (Several really good ones are published by Manning
Publications.)

We don’t cover testing in this book due to space constraints. If you’re interested in
finding out more about testing Angular applications, then your first stop should be
https://www.manning.com/books/testing-angular-applications.

https://www.manning.com/books/testing-angular-applications

244 CHAPTER 8 Creating an Angular application with TypeScript

8.1.2 Running the Angular app

This is a fully functional Angular app, albeit a rather minimal one. Now run it, see
what you’ve got, and take a look under the hood. To run the app, head to your app_
public folder in terminal, and run the following command:

$ ng serve

When you run this command, you’ll see some notifications in terminal as Angular
builds the application, ending with ?wdm?: Compiled successfully. When you see
this message, your app is ready to view on port 4200. To check it out, open your
browser, and go to http://localhost:4200. Not much is going on here, admittedly, but
if you view the source or inspect element, you should see something like figure 8.3.

Figure 8.2 Default contents of a
freshly generated Angular project

Figure 8.3 The autogenerated Angular app working in the browser alongside the generated
HTML

245Getting up and running with Angular

You’ll see some minimal HTML and a bunch of JavaScript files being referenced. Take
note of the app-root HTML tag, however; that’s unusual and important. Remember
this tag, because you’ll come back to it when you look at the source files.

8.1.3 The source code behind the application

Angular applications are built with components, which are compiled into modules.
Component and module are terms that are often used loosely to label the building blocks
of an application, but in Angular, they have specific meanings. A component handles
a specific piece of functionality, and a module contains one or more components
working together. This default example is a simple module with one component.

 Open the src folder in your editor, and you’ll see several files and folders. Start at
the beginning by looking at the index.html file in the src folder; it should look some-
thing like listing 8.1.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Loc8rPublic</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-root></app-root>
</body>
</html>

There’s not a huge amount here aside from some basic HTML scaffolding. You can
see that Angular has populated the title tag for you B, taking the application name
you specified in the terminal command (loc8r-public) and turning it into
camelCase. Also, you see the app-root tag C that you noticed in the source of the
running application, but this time, no <h1> tag is inside it.

 Dig a bit deeper and look inside the app folder (inside the src folder).

THE MAIN MODULE

Remember that we said Angular applications are built with components, which are compiled
into modules? A good place to start investigating is in the module definition.

 In src/app, you’ll find a file called app.module.ts. This file is the central point of
your Angular module, and it’s where all of the components are brought together. At
the moment, this file looks like listing 8.2.

 We won’t go deeply into the semantics of each part right now; we’ll only give you a
high-level view of what each section does. In essence, this file does the following
things:

Listing 8.1 The default contents of the src/index.html file

B The title has been
created from the
application name.

C
The only tag in the
body is the app-root.

246 CHAPTER 8 Creating an Angular application with TypeScript

 Imports various pieces of Angular functionality that the app will use
 Imports the components that the app will use
 Describes the module by using a decorator
 Exports the module

In this file, follow the journey of AppComponent, highlighted in bold in listing 8.2.
First, it’s imported from the file system (you may recognize the ./ syntax from
require and Node.js) before being both declared and bootstrapped inside the mod-
ule decorator. For more information on decorators, check out the sidebar “Decora-
tors and dependency injection.”

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule,
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

This is the main module, and you can see from the bootstrap line in the decorator
that the entry point into the application itself is AppComponent. You can also see from
the import statement where this component lives in the file system—in this case, in
the same folder as this module definition. Check it out.

Listing 8.2 The default contents of the src/app/app.module.ts file

Decorators and dependency injection
A decorator is a way that ES2015 and TypeScript provide metadata and annotations
to functions, modules and classes. A common use case in Angular is to handle
dependency injection, which is a way of saying, “This module or class depends on
this piece of functionality to run.”

You can see in listing 8.2 that you import the module BrowserModule into your mod-
ule. In this case, the decorator also declares the components it contains and which
component should be used as the start point (bootstrap).

Imports various
Angular modules
that the
application will
use

Imports a
component
from the file
systemDescribes the module by

using a decorator . . .

. . . including the entry point
into the application

Exports the module

247Getting up and running with Angular

THE DEFAULT BOOTSTRAPPED COMPONENT

In the app_public/src/app folder, alongside the module file, you can see three
app.component files:

 app.component.css
 app.component.html
 app.component.ts

These files are typical for any component. The CSS and HTML files define the styles
and markup for the component, and the TS file defines the behavior in TypeScript.

 The CSS file is empty, but the HTML file contains the following code:

<!--The content below is only a placeholder and can be replaced.-->
<div style="text-align:center">
 <h1>
 Welcome to {{ title }}!
 </h1>
 <img width="300" alt="Angular Logo"

➥src="

➥MjAwMC9zdmciIHZpZXdCb3g9IjAgMCAyNTAgMjUwIj4KICAgIDxwYXRoIGZpbGw9IiN

➥ERDAwMzEiIGQ9Ik0xMjUgMzBMMzEuOSA2My4ybDE0LjIgMTIzLjFMMTI1IDIzMGw3OC

➥45LTQzLjcgMTQuMi0xMjMuMXoiIC8+CiAgICA8cGF0aCBmaWxsPSIjQzMwMDJGIiBkP

➥SJNMTI1IDMwdjIyLjItLjFWMjMwbDc4LjktNDMuNyAxNC4yLTEyMy4xTDEyNSAzMHoi

➥IC8+CiAgICA8cGF0aCAgZmlsbD0iI0ZGRkZGRiIgZD0iTTEyNSA1Mi4xTDY2LjggMTg

➥yLjZoMjEuN2wxMS43LTI5LjJoNDkuNGwxMS43IDI5LjJIMTgzTDEyNSA1Mi4xem0xNy

➥A4My4zaC0zNGwxNy00MC45IDE3IDQwLjl6IiAvPgogIDwvc3ZnPg==">
</div>
<h2>Here are some links to help you start: </h2>

 <h2><a target="_blank" rel="noopener"
href="https://angular.io/tutorial">

➥Tour of Heroes</h2>

 <h2><a target="_blank" rel="noopener"
href="https://github.com/angular/angular-

➥cli/wiki">CLI Documentation</h2>

 <h2><a target="_blank" rel="noopener"
href="https://blog.angular.io/">Angular

➥blog</h2>

This code makes some sense, as you think back to when you inspected the elements
within the browser and saw some minimal HTML content. In Angular, double curly
brackets are used to denote a binding between the data and the view. Here, the vari-
able title is being bound, as are the contents of the <h1> tag. To see where this title
variable is being defined, you need to look inside the component definition file,
app.component.ts, which is shown in full in listing 8.3.

248 CHAPTER 8 Creating an Angular application with TypeScript

 This component file does three main things:

 Imports what it needs from Angular
 Decorates the component, giving it the information that the app needs to run it
 Exports the component as a class

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'loc8r-public';
}

This file is simple, but the syntax is a bit alien if you’re used to plain JavaScript. If you
look inside it, though, you can see some interesting information, and you can see the
pieces coming together.

 Starting with the decorator, you can see the HTML and CSS files being referenced,
but you can also see selector: 'app-root'. Ah-ha! That’s the name of the tag you
found in the index.html file! And when you inspected the elements, you saw that tag
with an <h1> tag and some content inside, which matches your app.component.html
file. Okay, it’s coming together.

 Next, you see the AppComponent class being exported, which you’ve already seen
imported and bootstrapped in the module definition. Finally, you see the definition of
title (you saw the binding in the HTML file for the component) and the value of
loc8r-public (which you saw when running it in the browser). Note that no var,
const, or let is associated with title because inside a class definition, you define class
members as opposed to variables.

TYING IT ALL TOGETHER

Okay, you’ve seen a lot here, so we’ll quickly recap how everything ties together:

 The component AppComponent comprises three files: TypeScript, HTML, and
CSS.

 The TypeScript file is the key part of the component, defining the functionality
referencing the other files and declaring which selector (HTML tag) it will bind
to.

 The component TypeScript file exports the AppComponent class.
 The module file imports the AppComponent class from the component Type-

Script file and declares it as the entry point into the application.
 The module file also imports various pieces of native Angular functionality.

Figure 8.4 illustrates all this.

Listing 8.3 The default contents of app.component.ts

Imports the
Component from
the Angular core

Decorates the
component

Exports the
component
as a class

249Getting up and running with Angular

This information gives you a good understanding of how this simple app is con-
structed. But when you viewed the source in the browser earlier, none of the files you
looked at were referenced, and you saw a few JavaScript files. What’s going on? How
did the TypeScript files become JavaScript in the browser?

THE ANGULAR BUILD PROCESS

Currently, browsers don’t support TypeScript—only JavaScript—and some don’t fully
support even ES2015 yet. But writing in TypeScript gives you more-robust code. And
although this sample application is small, you can look into the future a little bit and
see that if you have an application with several components, you have a lot of separate
files to deal with. You don’t want to have to specify all these files in your HTML source.

 Angular deals with these issues by using a build process to take all the separate
TypeScript files, convert them to vanilla JavaScript, and put them in one file called
main.bundle.js. If you look at the sources in the browser, you’ll be able to find title =
'loc8r-public' there, as shown in figure 8.5.

App component

TypeScript

HTML

CSS

Module
Native Angular
components

Figure 8.4 How the pieces of the
simple Angular app fit together

Figure 8.5 Finding the component definition inside the built JavaScript code

250 CHAPTER 8 Creating an Angular application with TypeScript

At the moment, you’re using the ng serve

command to compile, build, and deliver the
Angular application to the browser on port
4200. This command runs in memory; you
won’t find these built files inside the applica-
tion code anywhere. When it comes to build-
ing a final version, you’ll use a different
command, ng build. More on that later.

 For development, ng serve is perfect. It
not only gives you this browser environment,
but also watches the source code for changes
and rebuilds and refreshes the application
when it changes. You can see this in action by
changing 'loc8r-app' in src/app/app.component.ts to 'I am Getting MEAN!'

Head back to the application in the browser, and you’ll see that the content has
changed, as shown in figure 8.6.

 ng serve helps in the development process by eliminating the need to build and
refresh manually with every change.

 Now that you know enough about Angular to be dangerous, you’ll make the move
into building something for Loc8r. You’ll uncover more about Angular and Type-
Script as you go, and everything will start to become more familiar.

8.2 Working with Angular components
You’ll start by building the listing section of the homepage, which you’ll embed in the
Express application. It’s an example of how you can add some Angular functionality
to an existing site, which is a common requirement on large enterprise sites where
you’re not likely to have complete control of everything. In the following chapters,
you’ll build on this foundational knowledge and see how to build a standalone single-
page application (SPA) in Angular.

 Begin by creating a new component.

8.2.1 Creating a new home-list component

You can create all the files manually, or you can use the Angular CLI. You’ll take
advantage of the CLI to create a skeleton component. In terminal, from within the
app_public folder, run the following command:

$ ng generate component home-list

This command creates a new folder called home-list within the src folder. Create the
TypeScript, HTML, and CSS files inside it, and also update the app.module.ts file to
tell the module about the new component. You’ll also see a spec.ts file in the new
component folder. This file is a template for unit testing, but we’re not covering it
here, so you can ignore it for now. Angular CLI outputs into terminal confirmations of
all these actions.

Figure 8.6 ng serve rebuilds and
reloads the application when the source
code changes.

251Working with Angular components

MAKING IT THE DEFAULT COMPONENT

The new home-list component will be the basis for this Angular module, so you need to
make it the default component. You do this inside the app.module.ts file by changing the
bootstrap value inside the module decorator from AppComponent to HomeListComponent.

 AppComponent is no longer needed, so you can remove the import statement,
remove it from the declarations, and even delete the files. The changes to app.module
.ts are shown in the following listing.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { HomeListComponent } from './home-list/home-list.component';

@NgModule({
 declarations: [
 HomeListComponent
],
 imports: [
 BrowserModule
],
 providers: [],
 bootstrap: [HomeListComponent]
})

If you run ng serve or still have it running, you’ll see a blank page displayed in the
browser window and several errors in the JavaScript console. These errors are a lot of
red text that can seem intimidating, but the first line is helpful: it says, “The selector
“app-home-list” did not match any elements.”

 If you think back to the original component, you’ll remember that selector
defines the tag on the page that the component will bind to. You’ve changed the com-
ponent but not the tag on the page!

SETTING THE HTML TAG FOR THE COMPONENT

To ensure that you use the right tag, open the home-list.component.ts file, and check
out the component decorator, which should look something like this:

@Component({
 selector: 'app-home-list',
 templateUrl: './home-list.component.html',
 styleUrls: ['./home-list.component.css']
})

Here, you can see that the selector is app-home-list, so that’s what you need to use.
You could change it if you want to have a different naming convention, but this will
work. Open the index.html file in the src folder, and change the app-root tag to app-
home-list so that it looks like this:

<body>
 <app-home-list></app-home-list>
</body>

Listing 8.4 Changing to the new component in app.module.ts

This line was added by the
Angular CLI; delete the

AppComponent import, as
it’s no longer needed.Deletes

AppComponent from
the declarations array

Changes AppComponent
to HomeListComponent
for the bootstrap value

252 CHAPTER 8 Creating an Angular application with TypeScript

Now check the browser—from now on, we’ll
assume you have ng serve running whenever
you check out the browser—and see that the
page has changed to say home-list works!, as
shown in figure 8.7.

 Now that your component is there, you can
start working on making it look like it should.

8.2.2 Creating the HTML template

Using an approach similar to how you built the
Express application, you’ll start by creating
some static HTML with hardcoded data. This
way, you make sure that everything is working
properly before you try to get the data from the API.

 Fortunately, you’ve already created the markup and the styles for this component;
now, you need to transfer them to Angular.

GETTING THE HTML MARKUP

You can’t copy and paste the HTML directly from the Express source code, because
it’s in Pug format and also is templated to use data bindings. For now, you want the
full HTML, including data.

 The easiest way to get the HTML is to run the Express app and go to the home-
page in a browser. Different browsers have slightly different ways of getting the HTML
but are similar to the following procedure in Chrome:

1 Right-click in the HTML area, and choose Inspect Element from the contextual
menu.

2 Highlight the <div class="card"> element.
3 Select Copy, and then Copy Outer HTML.

Paste this into home-list.component.html, replacing the existing contents, and you
should see something like the following.

<div class="card">
 <div class="card-block">
 <h4>
 Costy
 <small>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 </small>
 <span class="badge badge-pill badge-default float-
 ➥right">14.0km

Listing 8.5 Some static HTML for home-list.component.html to get started

Figure 8.7 Confirmation that the new
home-list component is working as
the default in the application

253Working with Angular components

 </h4>
 <p class="address">High Street, Reading</p>
 <div class="facilities">
 hot drinks
 food
 power
 </div>
 </div>
</div>

If you take a look in the browser when this is saved, you’ll be able to see the contents,
but it won’t look nice. You need to add the styles.

BRINGING IN THE STYLES

Like the HTML, the CSS styles already exist in the Express application; you only need
to access them. You could update the index.html file to access them directly from
localhost:3000, but certain browsers give you a CORS warning if you try, because the
Angular development app and the Express app are running on different ports. See
the sidebar “What is CORS?” if this term is new to you.

To allow access to the resources, the server must be set to respond with a new HTTP
header called Access-Control-Allow-Origin , with a value that matches the request-
ing domain.

 Not all browsers give a CORS warning for a different port, but to avoid the prob-
lem altogether, grab all the styles and fonts, and drop them into the Angular app.
Copy the webfonts, stylesheets, and js folders from /public folder, and paste them into
the src/assets folder in app_public.

 Next, reference these CSS and JS files in the index.html file (in app_public), as
shown in the following listing. Notice that you’re also adding the references for the
bootstrap dependencies.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Loc8rPublic</title>
 <base href="/">

Listing 8.6 Adding the CSS files to index.html for the Angular app

What is CORS?
Browsers aren’t allowed to access or request certain resources from a different
domain, including requesting font files and making AJAX calls. This policy is known
as the same-origin policy.

CORS (cross-origin resource sharing) is a mechanism that allows this to happen but
can be set only from the server that hosts the resources. If the server denies you,
there’s nothing you can do from the browser side to change it.

254 CHAPTER 8 Creating an Angular application with TypeScript

 <link rel="stylesheet" href="assets/stylesheets/bootstrap.min.css">
 <link rel="stylesheet" href="assets/stylesheets/all.min.css">
 <link rel="stylesheet" href="assets/stylesheets/style.css">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-home-list></app-home-list>

 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

➥integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRv

➥H+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/

➥umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46

➥jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous">
 </script>
 <script src="assets/javascripts/bootstrap.min.js"></script>
</body>
</html>

With the styles in place, you can look at the browser and see something like figure 8.8.

NOTE When you’re building an application to sit inside another page, as you
are here, the application uses the CSS of that containing page. The copies of
the stylesheets you have here are for development use only, so your module
looks right as you build it. When you’re building an SPA, however, the final
application uses the stylesheets inside the Angular app.

Now that you’ve got your homepage component looking about right, you’re ready to
move on to making the HTML smarter by moving the hardcoded data out.

8.2.3 Moving data out of the template into the code

As you saw earlier in this chapter, with Angular, you can define a class member inside
the component code and bind it to the HTML by using curly braces. You could add
this to home-list.component.ts to define the name of a location:

export class HomeListComponent implements OnInit {
 constructor() { }

Figure 8.8 The Angular app displaying
static content and using the styles and fonts

255Working with Angular components

 name = 'Costy';

 ngOnInit() { }
}

Then you could have this display in the HTML by replacing the location name with
the binding, as shown in bold here:

{{name}}

The result would be that the browser displays the same way as before, but now part of
the data is coming from the code and being bound to the template; it’s no longer
hardcoded HTML.

 This example is good and shows you the way forward, but you need a lot more data
for a location and a better way to manage it. For this purpose, you need to use a class.

DEFINING A CLASS TO GIVE STRUCTURE TO DATA

In Angular, a class is used to define the structure of a data object. In terms of what
you’ve already learned, you could think of it as being similar to a simple Mongoose
schema—essentially, a list of the pieces of data you expect an object to hold and the
type of value.

 The type is important. One thing that JavaScript doesn’t have is the ability to state
what type of value can be assigned to a given variable. It’s easy to change the value
from a string to a number to a Boolean; JavaScript doesn’t care! But TypeScript does
care, and it can help your code be more robust by making sure that you’re always
using the correct type of data for each variable. TypeScript is called TypeScript for a rea-
son. See the sidebar “Types in TypeScript” for a list of available types.

Defining a class is a simple task, and you’ll do it at the top of the home-list.component
.ts file, after the initial import statement but before the component decorator. To
define a class and make it accessible, export it; give it a name; and then list the names
of the data items along with their expected data types.

Types in TypeScript
The different data types that TypeScript accepts are as follows:

 String—Text values.
 number—Any numerical value; integers and decimals are treated the same

way.
 boolean—True or false.
 Array—An array of a given type of data.
 enum—A way of giving friendly names to a set of numeric values.
 Any—This data type can be anything, like how JavaScript is by default.
 Void—The absence of a type, typically used for functions that don’t return

anything.

256 CHAPTER 8 Creating an Angular application with TypeScript

import { Component, OnInit } from '@angular/core';

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: string[];
}

With this done, you’ve defined the data you expect to see in your location objects. In
fact—and this is important—each object defined with the class Location must have a
value for each item specified.

 Now that you’ve defined a class, you’re ready to use it.

CREATING AN INSTANCE OF THE LOCATION CLASS

When declaring variables and class members in TypeScript, you should state the type
of data as well as the name, as you did when defining the properties of the Location
class. Use the format variableName: variableType = variableValue.

 When you added name = 'Costy' to the home-list component to try it out, for
example, you should have added name: string = 'Costy' instead. This code would
have told TypeScript that name should only ever be a string value.

 You do the same when creating a variable or class member that’s an instance of a
class, but in this case stating that the type is the name of the class. Listing 8.8 shows
how to add a location class member with the type Location to the home-list compo-
nent, giving it all the values it needs. The common way to describe this is to say that
location is an instance of type Location.

export class HomeListComponent implements OnInit {

 constructor() { }

 location: Location = {
 _id: '590d8dc7a7cb5b8e3f1bfc48',
 name: 'Costy',
 distance: 14.0,
 address: 'High Street, Reading',
 rating: 3,
 facilities: ['hot drinks', 'food', 'power']
 };

 ngOnInit() {
 }

}

A little later, you’ll look at constructor and ngOnInit, seeing why they’re there and
what they can be used for. For now, you can ignore them and focus on the new class

Listing 8.7 Defining the Location class in home-list.component.ts

Listing 8.8 Defining a location with the Location class in home-list.component.ts

Creates and exports a
class called Location

Defines the class
members and
their types . . .

. . . including an array of strings

257Working with Angular components

member you’ve created. That’s got all the data you need for one of the homepage list-
ings, so next, you’ll use this data in the HTML.

8.2.4 Using class member data in the HTML template

As a quick recap, you’ve already seen how to bind data exposed from the component
class in the HTML template by using curly braces—as in {{title}}. Now your data is
a little more complex, and you need to access the properties of the class member,
which you can do by using the standard JavaScript dot syntax. location.name, for
example, gives you the value of the name property.

 The next listing highlights some of the quick and easy changes to make to the
HTML template to bring the data in.

<div class="card">
 <div class="card-block">
 <h4>
 {{location.name}}
 <small>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 <i class="far fa-star"></i>
 </small>
 <span class="badge badge-pill badge-default float-
 ➥right">{{location.distance}}km
 </h4>
 <p class="address">{{location.address}}</p>
 <div class="facilities">
 hot drinks
 food
 power
 </div>
 </div>
</div>

Here, you have four single pieces of data being bound into the HTML template. The
facilities and the star rating are going to take a bit more work. Start with the facilities,
and loop through an array of data.

FACILITIES: LOOPING THROUGH AN ARRAY OF ITEMS IN AN HTML TEMPLATE

In the TypeScript file, you defined facilities as an array of strings, like this: ['hot
drinks', 'food', 'power']. Now you’ll see how Angular can help you loop through
these strings and create a span tag for each facility in the array.

 The secret is to use an Angular directive called *ngFor. When applied to a HTML
tag and given an array of data, it loops through the array, creating an element for each
entry. To access the value or properties of each item, you need to define a variable that
Angular can use as it goes through the loop.

Listing 8.9 Binding the first pieces of data in home-list.component.html

258 CHAPTER 8 Creating an Angular application with TypeScript

 The following listing shows how to use the *ngFor directive to loop through the
location.facilities array, assigning and using the variable facility to access the
value.

<div class="facilities">
 <span *ngFor="let facility of location.facilities" class="badge
 ➥badge-warning">{{facility}}
</div>

The * is important, because without it, Angular won’t perform the loop. With the *, it
repeats the and everything in it. Given the data facilities ['hot drinks',

'food', 'power'], the output is

hot drinks
food
power

Note that Angular creates some additional comments and tag attributes, which you
can see in figure 8.9, along with the output in the browser.

Now that the facilities are done, you can move on to the rating stars.

RATING STARS: USING ANGULAR EXPRESSIONS TO SET CSS CLASSES

So far, the data bindings you’ve used have been simple: one variable name or property
within the double curly braces. With Angular, you can also use simple expressions
inside a binding. You could join two strings by using {{ 'Getting ' + 'MEAN' }} or per-
form a simple math operation with {{ Math.floor(14.65) }}.

 For the rating stars, each star is defined with a Font Awesome class: .fas.fa-star
for a solid star and .far.fa-star for an outline. You want to set the classes by using
Angular, making sure that you have the correct number of solid and hollow stars to
convey the rating.

Listing 8.10 Using *ngFor to loop through an array in home-list.component.html

Figure 8.9 The output of Angular looping through the array of facilities

259Working with Angular components

 To achieve this task, you’ll use a JavaScript ternary operator, which is shorthand for
a simple if / else expression. Using the first star as an example, you want to say, “If the
rating is less than 1, make the star hollow; otherwise, make it solid.” Example code:

if (location.rating < 1) {
 return 'far';
} else {
 return 'fas';
}

Translated into a ternary operator, the same expression looks like this:

{{ location.rating < 1 ? 'far' : 'fas' }}

Flowing this logic through into the <i> tags that make up the rating stars and putting
the expressions into Angular bindings results in something that looks like the next
listing. Note that each expression has a different number to show the correct stars and
that you’re always outputting fa-star, so you’ve taken it out of the expression.

<small>
 <i class="fa{{ location.rating < 1 ? 'r' : 's' }} fa-star"></i>
 <i class="fa{{ location.rating < 2 ? 'r' : 's' }} fa-star"></i>
 <i class="fa{{ location.rating < 3 ? 'r' : 's' }} fa-star"></i>
 <i class="fa{{ location.rating < 4 ? 'r' : 's' }} fa-star"></i>
 <i class="fa{{ location.rating < 5 ? 'r' : 's' }} fa-star"></i>
</small>

You can validate that this code is working correctly in the browser, and you’ll see some-
thing like figure 8.10.

Looking good! You have one more piece of data to deal with: the distance.

FORMATTING DATA USING PIPES

Angular gives you a way to format data within the binding, using what are known as
pipes. For those familiar with AngularJS, pipes used to be called filters. Angular has sev-
eral built-in pipes, including date and currency formatting, as well as uppercase, low-
ercase, and title-case string transformations.

Listing 8.11 Binding the ternary expressions to generate ratings-stars classes

Figure 8.10 Showing the rating
stars correctly, using Angular
expression bindings to generate the
correct class

260 CHAPTER 8 Creating an Angular application with TypeScript

 You apply pipes inside a binding by adding the pipe character (|) after the vari-
able or expression to be bound, followed by the name of the pipe. If you want to dis-
play the address of a location in uppercase, for example, you could add the uppercase
binding like this:

<p class="address">{{location.address | uppercase}}</p>

You don’t want to do that, but you could if you wanted to!
 A pipe that can be useful for debugging is the JSON pipe, which turns a JSON

object into a string so that it can be displayed in the browser. If you aren’t sure what
data is coming through in the location object, you could temporarily bind to it some-
where in the HTML and add the JSON pipe.

 Some pipes can take options to define how they work. Take the currency pipe, for
example. You can apply the currency pipe without any options, like this:

{{ 12.3485 | currency }}

This pipe assumes a default currency of US dollars and rounds the digit up to the
nearest cent. In this example, the output would be USD12.35.

 You can apply options to this pipe to change the currency and display the symbol
instead of the currency code. Pipe options are specified directly after the pipe name,
separated by colons. The order of the options is important. The first option for the
currency pipe is the currency code itself, to change the currency; the second option is
a Boolean to state whether to display the symbol.

 If you wanted to display the currency as Euros, for example, and show the symbol
instead of the code, you could use the pipe like this:

{{ 12.3485 | currency:'EUR':true }}

This pipe would output ?12.35.
 That’s how pipes work, and you’ll work with some other default pipes as you build

the Loc8r application. Now you need to format the distance into meters or kilometers,
and for that purpose, you need to create a custom pipe.

DISTANCES: CREATING A CUSTOM PIPE

Before you create a new pipe to format the distance, make sure the data you’re pass-
ing it reflects what you’ll get from the API. In your current mocked-up data, you’ve
got 14.0 so that the distance number displays nicely. But the API returns the distance
in meters, so update the distance in home-list.component.ts to reflect this fact—
14000.1234, for example.

 To create the boilerplate files for a custom pipe, you can use the Angular CLI. In
terminal, from the app_public folder, run the following command:

ng generate pipe distance

This command generates two new files—distance.pipe.ts and distance.pipe.spec.ts—
in the src/app folder. The CLI adds the import to the app.module.ts file. If you want
to move your pipe files somewhere else, such as into a subfolder, you’d have to update
app.module.ts to say where they were moved. Leave them where they are for now.

261Working with Angular components

 The boilerplate pipe file, distance.pipe.ts, looks like this:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({
 name: 'distance'
})
export class DistancePipe implements PipeTransform {

 transform(value: any, args?: any): any {
 return null;
 }

}

This structure should be starting to look familiar. You’ve got the imports at the top,
followed by the decorator, with the export class at the end. It’s the contents of the class
that you’re interested in here—in particular, that transform function.

 At first glance, this code looks a bit odd and somewhat complicated, with all the
colons and any all over the place. But this code is TypeScript doing what it does: defin-
ing the types for variables. The contents of the parentheses (value: any, args?:
any) is saying that the function accepts a parameter value of any type and other argu-
ments of any type. The third : any, after the parentheses, is defining the type of the
return value of the function.

 You want to change these, as your distance function will accept a number and
return a string. To do so, update the transform function like this:

transform(distance: number): string {
 return null;
}

Note that you’ve changed the name of the parameter to distance. You’ve already writ-
ten the code to format the distance in Node, so you can copy it from /app_
server/controllers/locations.js and paste it here. You want the isNumeric helper
along with the contents of the formatDistance function. When that’s done, the
transform function looks like the following.

transform(distance: number): string {
 const isNumeric = function (n) {
 return !isNaN(parseFloat(n)) && isFinite(n);
 };

 if (distance && isNumeric(distance)) {
 let thisDistance = '0';
 let unit = 'm';
 if (distance > 1000) {
 thisDistance = (distance / 1000).toFixed(1);
 unit = 'km';
 } else {
 thisDistance = Math.floor(distance).toString();
 }

Listing 8.12 Creating the distance format pipe in distance.pipe.ts

262 CHAPTER 8 Creating an Angular application with TypeScript

 return thisDistance + unit;
 } else {
 return '?';
 }
}

Note that all the code, including the helper function, is inside the transform func-
tion. All that’s left now is to update the binding to use your new pipe and remove the
km from the template. The following snippet shows the updated binding from home-
list.component.html:

<span class="badge badge-pill badge-default float-

➥right">{{location.distance | distance}}

You can also check this out in the browser (see figure 8.11).

Play around with the data in the component definition, and test that it displays as you
think it should. This looks good, and you’ve got all the data bindings set with all the
data being supplied by the component definition. This is a single item, however, and
your API will return an array of multiple items; it is a list, after all! In the next section,
you’ll update it to work as a list.

WORKING WITH MULTIPLE INSTANCES OF A CLASS

The data for your single location is defined as location of type Location. Don’t read
that out loud! The construct, without data, looks like this:

location: Location = {};

When you get the data from the API, however, this will be an array, so you need to
define an array of objects of type Location. The way to do this is to add square brack-
ets after the class name so that it looks like this construct:

locations: Location[] = [{},{}];

If you take this approach (note that you change the member name to the plural
locations, as you’re dealing with an array) and update your home-list component
to contain two locations, the result looks like the following.

Figure 8.11 Using the
Angular pipe to format the
distance supplied in meters

263Working with Angular components

locations: Location[] = [{
 _id: '590d8dc7a7cb5b8e3f1bfc48',
 name: 'Costy',
 distance: 14000.1234,
 address: 'High Street, Reading',
 rating: 3,
 facilities: ['hot drinks', 'food', 'power']
}, {
 _id: '590d8dc7a7cb5b8e3f1bfc48',
 name: 'Starcups',
 distance: 120.542,
 address: 'High Street, Reading',
 rating: 5,
 facilities: ['wifi', 'food', 'hot drinks']
}];

Having renamed location to locations and changed the type to an array, you’ll
need to update the HTML template. You’ve already seen how to loop through an
array by using *ngFor, and this process is no different. In fact, all you need to do is
add an *ngFor attribute to the outermost div of a single location—the one with the
class of card. It looks like this:

<div class="card" *ngFor="let location of locations">

By defining the instance name location, you don’t need to change any of the data
bindings inside the template, because that’s what you were already using.

 Now you have multiple items in your list, as shown in figure 8.12. This is looking
good and working well. The next step is removing the hardcoded data entirely and
calling the API instead.

Listing 8.13 Changing the locations instantiation to an array in home-list.component.ts

Figure 8.12 Updating the
component to display
multiple locations in a list

264 CHAPTER 8 Creating an Angular application with TypeScript

8.3 Getting data from an API
In this section, you’ll see how to call an API from an Angular application to get data.
When you’ve got the data, you’ll display it instead of the hardcoded data you currently
have.

 To interact with an API, you need to use another building block of Angular appli-
cations: a service. A service works in the background and isn’t directly connected to the
user interface, like everything you’ve seen so far.

8.3.1 Creating a data service

You create a service in the same way that you’ve created components and pipes so far:
by using the Angular CLI. You use the same ng generate command as before, this
time followed by the options service and service name. In the app_public folder,
run the following command in terminal:

$ ng generate service loc8r-data

This command generates the files for a new service called loc8r-data in the app/src
folder. Terminal confirms the creation of the files.

 Services are generated with a providedIn value passed to the Injectable decora-
tor, which defaults to 'root'. It takes the place of explicitly listing services in the pro-
viders array in your application root module, and is suitable for your purposes, so
leave the default value as is.

 Before you worry about including it, look at the boilerplate code and build it out.
The code layout should look familiar by now: imports followed by a decorator fol-
lowed by the exported class:

import { Injectable } from '@angular/core';

@Injectable({
 providedIn: 'root'
})
export class Loc8rDataService {

 constructor() { }

}

This boilerplate is sparse, which isn’t surprising, because services can be used for
many things besides requesting data from APIs. Get started by giving the service some
of the things it needs.

ENABLING HTTP REQUESTS AND PROMISE HANDLING IN A SERVICE

In Angular, HTTP requests run asynchronously and return Observables, but you want
to wait until the data is complete before working with it, so you’ll convert them to
Promises. For a quick explanation, see the sidebar “Observables and Promises.”

265Getting data from an API

This doesn’t mean that you can’t, or shouldn’t, use Observables—only that you aren’t
in the sample application. If you want to see how to use Observables within the Loc8r
application, check out appendix C.

 To set up the service to make HTTP requests and return Promises, you need to
inject the HTTP service into your service. You import the HTTP service by updating
the top of the loc8r-data.service.ts file like this:

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http';

The second step is injecting the HTTPClient service into your service so you can use it
and call the HTTP service methods. To do this, you use the constructor part of the
boilerplate code. A class constructor defines the parameters that are provided when
the class is instantiated. Angular uses this to manage dependency injection, telling the
class which other services or components it needs to run.

 Injecting the service is simple: you define the parameter name and its type. You
can also state whether the service is public or private—that is, whether it will be acces-
sible from outside the class or kept within it. Private is the most common option.

 You inject http of type HttpClient, and keep it private by updating the construc-
tor in loc8r-data.service.ts to look like this:

constructor(private http: HttpClient) { }

Finally, you need to ensure that the HttpClientModule is imported and available to
your application. Do this by adding the following import to your app.module.ts file:
import { HttpClientModule } from '@angular/common/http';

 In the same file, add the module’s name to the imports array in the @NgModule
decorator, like so:

@NgModule({
 declarations: [
 HomeListComponent,
 DistancePipe
],
 imports: [
 BrowserModule,
 HttpClientModule
],

Observables and Promises
Observables and Promises are great ways of handling asynchronous requests.
Observables return chunks of data in a stream, whereas Promises return complete
sets of data. Angular includes the RxJS library for working with observables, including
converting them into Promises.

There’s much more to RxJS and Observables than we can cover here—enough for a
whole book, in fact. Check out RxJS in Action, by Luis Atencio and Paul P. Daniels, to
learn more (https://www.manning.com/books/rxjs-in-action).

https://www.manning.com/books/rxjs-in-action

266 CHAPTER 8 Creating an Angular application with TypeScript

 providers: [],
 bootstrap: [HomeListComponent]
})

With those small updates, your data service can make HTTP requests and return
Promises.

CREATING THE METHOD TO GET DATA

Your service needs a public method exposed so the component can call it. At this
point, the method doesn’t need to accept any parameters but returns a Promise con-
taining an array of locations.

 Inside the Loc8rDataService class, you want to define a method like this:

public getLocations(): Promise<Location[]> {
 // Your code will go here
}

This is good except that your service doesn’t know what Location is. You defined and
exported the Location class in your home-list component, so you can import that
into the service by adding this line along with the other imports:

import { Location } from './home-list/home-list.component';

Now you’re ready to code the meat of your service.

MAKING HTTP REQUESTS

Making the HTTP request to the API is straightforward, involving only a few steps:

1 Build the URL to call.
2 Tell the HTTP service to make a request for the URL.
3 Convert the Observable response to a Promise.
4 Convert the response to JSON.
5 Return the response.
6 Catch, handle, and return errors.

Putting these steps into code looks like the following listing, all of which is inside the
Loc8rDataService class in loc8r-data.service.ts.

private apiBaseUrl = 'http://localhost:3000/api';

public getLocations(): Promise<Location[]> {
 const lng: number = -0.7992599;
 const lat: number = 51.378091;
 const maxDistance: number = 20;
 const url: string = `${this.apiBaseUrl}/locations?lng=

➥${lng}&lat=${lat}&maxDistance=${maxDistance}`;
 return this.http
 .get(url)
 .toPromise()

Listing 8.14 Making and returning the HTTP request to your API in loc8r-data.service.ts

Builds the URL to the API,
using parameters for
future enhancements

Returns the
Promise

Makes the HTTP GET call
to the URL you builtConverts the Observable

response to a Promise

267Getting data from an API

 .then(response => response as Location[])
 .catch(this.handleError);
}

private handleError(error: any): Promise<any> {
 console.error('Something has gone wrong', error);
 return Promise.reject(error.message || error);
}

Note that only the method you need to call from somewhere else, getLocations, is
public; everything else is defined as private so it can’t be accessed externally.

 That’s not a lot of code, but it’s doing a lot. As you’ll see is quite common with
Angular, after you get your head around the setting up of components, classes, and
services, a lot of the actual code can be simple, because many of the common tasks
have had the complexities abstracted away.

 Now that your data service is created, it’s time to use it from your home-list
component.

8.3.2 Using a data service

You’re at a point where you have an Angular component that can display an array of
locations (which are currently hardcoded), an API that can return an array of loca-
tions, and a service to call that API and expose the response. The missing link is
between the component and the service.

IMPORTING THE SERVICE INTO THE COMPONENT

Three steps are required to include the service in the component, all of which take
place inside the home-list.component.ts file. You need to import the service, inject the
service, and then provide the service.

 First, import the service from the TypeScript file, which you do at the top of the
component file directly below the existing import line, like this:

import { Component, OnInit } from '@angular/core';
import { Loc8rDataService } from '../loc8r-data.service';

Note that you define a relative path to the service file with ../, which means “Go up a
level in the folder structure.” If you move the service files to a different place, you
need to remember to update the references in code.

 The second step is injecting the service into the component, using the constructor
as you did inside the data service itself. This time, though, you update the constructor
in home-list.component.ts by injecting loc8rDataService of type Loc8rDataService
and keeping it private, like this:

constructor(private loc8rDataService: Loc8rDataService) { }

By the end, the top of the home-list.component.ts file should look like the following.

Converts the
response to a
JSON object of
type LocationHandles and

returns any
errors

268 CHAPTER 8 Creating an Angular application with TypeScript

import { Component, OnInit } from '@angular/core';
import { Loc8rDataService } from '../loc8r-data.service';

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: [string];
}

@Component({
 selector: 'app-home-list',
 templateUrl: './home-list.component.html',
 styleUrls: ['./home-list.component.css']
})
export class HomeListComponent implements OnInit {

 constructor(private loc8rDataService: Loc8rDataService) { }

Now that the service is created and brought into the component, you can use it.

USING THE SERVICE TO GET THE DATA

Inside the class, create a private method to call your data service method and handle
the Promise response. When it has the Promise response, this method can set the
value of the locations array, which automatically updated in the HTML.

 To show that this is working, remove all the hardcoded data from the component
and declare locations to be of type Location, with no value assigned. Pop the
code from the next listing into the HomeListComponent class definition in home-list
.component.ts.

public locations: Location[];

private getLocations(): void {
 this.loc8rDataService
 .getLocations()
 .then(foundLocations => this.locations = foundLocations);
}

Great stuff. This code still won’t work, though, because you’re not calling the private
getLocations method in the component. That step is the next and final step, but you
need to make sure that you do it at the right time.

 As you’ve seen, an Angular application is composed of many files. But you have no
control of the order in which the files are put together and, therefore, no direct

Listing 8.15 Making your service available to the component in home-list.component.ts

Listing 8.16 Creating a function to call the data service from home-list.component.ts

Imports the
service from the
source code file

Injects the
service into
the
component
using the
constructor

Changes the locations declaration
to have no default value Defines a getLocations

method that accepts
no parameters and
returns nothing

Calls your data service method

Updates the locations array with
the contents of the response

269Getting data from an API

control of the execution order. You need to make sure that the service is called only
after it’s available, which is where that little empty ngOnInit() block comes into play.

 ngOnInit is one of several Angular lifecycle hooks. While an Angular application is
starting and running, things happen in a specific order to make sure that the applica-
tion maintains integrity and always does things the same way. The lifecycle hooks allow
you to listen to the process and take action at certain times.

 The ngOnInit hook allows you to hook into when the component is initialized and
ready. This is a good time to make that data call, because you know that it’s safe to do
so and that the component is ready to run. Make a call to the local getLocations
method in home-list.component.ts, like so:

ngOnInit() {
 this.getLocations();
}

Now the application will compile properly, run, and make the call to the API. Great!
But if you try it on certain browsers (most notably Chrome), no data comes through.
If you open the browser developer tools or JavaScript console, you’ll see a CORS warn-
ing, because the Angular app and Express API are running on different ports.

ALLOWING CORS REQUESTS IN EXPRESS

The CORS issue can’t be fixed from the browser side; it has to be done on the server
side. You need to change gears for a moment and drop back into Express.

 Allowing cross-origin requests is simple, fortunately. For every request made to the
API, you need to add two HTTP headers: Access-Control-Allow-Origin and
Access-Control-Allow-Headers. The first of these headers can contain a specific
URL from which you’ll allow requests or a * as a wildcard to accept requests from any
domain. You’ll limit requests to your Angular development application by specifying
the URL and port.

 Head back to app.js in the root of the application, and add the following bold font
lines before the routes are used:

app.use('/api', (req, res, next) => {
 res.header('Access-Control-Allow-Origin', 'http://localhost:4200');
 res.header('Access-Control-Allow-Headers', 'Origin, X-Requested-With,

➥Content-Type, Accept');
next();

});
app.use('/', indexRouter);
app.use('/api', apiRouter);

This code adds the two headers and their values to the responses for all requests made
to the API routes. If you’ve still got your Express application running on port 3000
and your Angular application running on port 4200, you should see your data coming
through into the browser, as in figure 8.13.

 This is great! You’ve built a nice little self-contained Angular application without
too much trouble. This isn’t a bad start, especially considering that you’ve also been

270 CHAPTER 8 Creating an Angular application with TypeScript

coming to grips with TypeScript throughout this chapter. In the next section, you’ll
finish this application and embed it in your Express application.

8.4 Putting an Angular application into production
So far, you’ve been working with Angular in development mode while building your
little application. But as soon as you stop ng serve from running, all you’re left with is
a bunch of source files, nothing you could include in a website. What you need to do
now is build your application for production and add it to your homepage.

8.4.1 Building an Angular application for production

You’ve been using the ng serve command throughout this chapter to rebuild your
application automatically and serve the compiled files from memory. Now you’ll use
the ng build command to compile the files once and save them to disk.

 The ng build command generates all the application files and puts them in a
folder called dist. This folder is at the same level as the src folder which would be
great, but if you run ng serve again afterward, it deletes the dist folder, which isn’t
helpful, as you can imagine. But you can change this destination folder by using the
option --output-path when running the command. If you do, your destination
folder won’t unexpectedly be deleted the next time you decide to run ng serve.

 There are far too many build options for us to go through here (you can check
them out by running ng help in terminal), and the only other one you need to know
right now is the one to specify that you want a production build (as opposed to a
development build). You specify that by adding the --prod flag to the command.

 To create a production build of your application in the folder app_public/build,
run the following command in terminal from the app_public folder:

$ ng build --prod --output-path build

This command kicks off the build process. If you get an error about not being able to
find where AppComponent goes, that’s probably because the references were taken out of

Figure 8.13 Your Angular
component is now displaying
data brought in from the API.

271Putting an Angular application into production

app.module.ts, but the files weren’t deleted. The fix is to delete the old app.component
files, because you’re not using them anymore.

 That’s it: the application is built for production! Now you need to include it in the
Express application.

8.4.2 Using the Angular application from the Express site

To use the Angular application in your homepage, you need to do a few small things
in Express. First, you’ll set the app_public folder to be a static path, meaning that you
can easily reference the files in the build folder from the browser. To do the second
part, update the Pug templates to include the JavaScript files in the build folder.

 Easy, right? Now do it!

DEFINING A STATIC PATH FOR THE ANGULAR APPLICATION

You’ve already seen how Express defines folders to use for static resources, because
the generator automatically defined the public folder to be static. You can do the
same for the app_public folder by duplicating the line in app.js in the root of the
application and setting the name to be app_public:

app.use(express.static(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'app_public')));

Now Express will serve static resources from either the public or the app_public
folder. Why define the whole app_public folder and not only the build subfolder to be
a static resource? Well, the build folder also contains an index.html file. If this file is
included as a static resource, it shows up as the homepage, as the static resources are
checked before the other Express routes. This feature will be useful in the following
chapters, when you create the full Angular application, but it’s not what you want
right now. Right now, you want to use the Angular application inside your existing site,
because you’re replacing part of the homepage.

REFERENCING THE COMPILED ANGULAR JAVASCRIPT FILES FROM THE HTML
You want to reference the Angular files on only the homepage, not on the other
pages. The problem at the moment is that you can include script files only in the
layout.pug template; all the other templates extend a small nested HTML part of this.
There’s nowhere to put new script tags.

 A simple way to address this problem is to create a new block in the layout.pug
template. Then any other page that extends this layout will have an option for includ-
ing page-specific scripts.

 In layout.pug, include this line at the bottom to define a new block called scripts:

block scripts

Make sure that the indentation matches that of the final script tag in the file; the
desired outcome is that any page-specific scripts will be added at the bottom of the
HTML body.

272 CHAPTER 8 Creating an Angular application with TypeScript

 Next, use this new block from within locations-list.pug, and reference all three
JavaScript files from the app_public/build folder. The code should look a bit like this,
but you’ll have different filenames:

block scripts
 script(src='/build/runtime.f0178fcd0cc34a5688b1.js')
 script(src='/build/polyfills.682313b6b06f69a5089e.js')
 script(src='/build/main.ad6de91d9e2170cae9d4.js')

You’re almost there! You only need to add a tag in the HTML for the application to
bind to.

ADDING THE HTML TAG TO BIND THE ANGULAR APP

If you cast your mind back to earlier in the chapter or check the source code, you’ll
remember that your app was bootstrapped into an HTML tag called app-home-list. All
you want to do now is replace the list part of the homepage with your new holding tag.

 In locations-list.pug, find the each location in locations section, and either delete
it or comment it out for reference. In its place, add app-home-list, ensuring that the
indentation is correct. This part of the template should look something like this:

.row
 .col-12.col-md-8
 .error= message

 app-home-list

Now you’re done! Head to the browser; go back on localhost:3000; and check out the
homepage, now including your Angular application, which is getting data from your API.

 If you’ve done everything properly, the page should look the same as before. To
prove that the homepage is using the Angular application, inspect an element of the
list; you’ll see the app-home-list tag and all the Angular stuff inside (see figure 8.14).

Figure 8.14 Validating that the homepage list is using the Angular module

273Summary

We love this stuff! It’s great how all the pieces fit together and work together. Now
you’re Getting MEAN. In chapter 9, you’ll start work on building Loc8r as a full Angu-
lar SPA.

Summary
In this chapter, you learned

 How the Angular CLI is used to generate application boilerplate, components,
and more

 How to work with TypeScript classes, importing and exporting, and using them
to define types for variables

 How to control the code execution flow using Angular lifecycle hooks
 How to create and use some of the Angular building blocks to put an applica-

tion together, covering modules, components, pipes, and services
 How to use the Angular CLI to target for production

274

Building a single-page
application with Angular:

Foundations

You saw in chapter 8 how to use Angular to add functionality to an existing page. In
this chapter and chapter 10, you’ll take Angular to the next level by using it to cre-
ate a single-page application (SPA). Instead of running the entire application logic
on the server using Express, you’ll run it all in the browser using Angular. For some
benefits and considerations when using an SPA instead of a traditional approach,
flick through chapter 2. By the end of this chapter, you’ll have the framework for
an SPA in place with the first part up and running by using Angular to route to the
homepage and display the content.

This chapter covers
 Working with the Angular router and navigating between

pages

 Architectural best practices for an SPA

 Building up views through multiple components

 Injecting HTML into bindings

 Working with browsers’ native geolocation capabilities

275Adding navigation in an Angular SPA

Figure 9.1 shows where you are in the overall plan, recreating the main application as
an Angular SPA.

 In a normal development process, you probably wouldn’t create an entire applica-
tion on the server and recreate it as an SPA. Ideally, your early planning phases
defined whether you wanted an SPA, enabling you to start in the appropriate technol-
ogy. For the learning process you’re going through now, it’s a good approach; you’re
already familiar with the functionality of the site, and the layouts have already been
created. This approach lets you focus on the more exciting prospect of seeing how to
build a full Angular application.

 In this chapter, you’ll start by adding the Angular router to navigate between pages;
then, you’ll create the homepage and the About page and add geolocation functional-
ity. As you add more components and functionality, you’ll explore various best prac-
tices, such as making reusable components and building up a modular application.

9.1 Adding navigation in an Angular SPA
In this section, you’ll add the outline of the About page and enable navigation
between this new page and the homepage. The main focus of this section is the navi-
gation; you’ll complete the About page in section 9.4.

 You may remember that when you configured the Express application, you defined
URL paths (routes) and used the Express router to map the routes to specific pieces
of functionality. In Angular, you’ll do the same thing but use the Angular router
instead.

Using Angular
to recreate your
application
as an SPA

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Express
Node.js

MongoDB

Figure 9.1 This chapter recreates the Loc8r application as an Angular SPA, moving the application
logic from the back end to the front end.

276 CHAPTER 9 Building a single-page application with Angular: Foundations

 One big difference in using the Angular router is that the full application is
already loaded in the browser, so when you navigate between pages, the browser
doesn’t fully download all the HTML, CSS, and JavaScript each time. Navigating
becomes a much quicker experience for the user; the only things they normally have
to wait for are data from API calls and any new images.

 The first step is importing the Angular router into the application.

9.1.1 Importing the Angular router and defining the first route

The Angular router needs to be imported into app.module.ts, which is also where you’ll
define the routes. The router is imported from @angular/router as RouterModule,
which should be placed with the other Angular imports at the top of app.module.ts.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { HttpClientModule } from '@angular/common/http';
import { RouterModule } from '@angular/router';

In the same file, in the @NgModule decorator, all these modules are listed in the
imports section. You need to do the same with RouterModule, but in this case, you also
need to pass it the routing configuration you want.

9.1.2 Routing configuration

The routing configuration is an array of objects, each object specifying one route. The
properties for each route are

 path—The URL path to match
 component—The name of the Angular component to use

The path property shouldn’t contain any leading or trailing slashes, so instead of
/about/, you’d have about, for example. It can also be an empty string to denote the
homepage. Remember that the base href is set in the index.html file? You set yours to
be "/", as you want everything running at the top level, but even if you set it to have a
value, that value wouldn’t make any difference to the routing configuration. In your
routing configuration, you should leave out anything set in the base href html tag.

 You start by adding the configuration for the homepage, so path is an empty
string, and component is the name of your existing component: HomeListComponent.
The configuration is passed to a forRoot method on the RouterModule.

@NgModule({
 declarations: [
 HomeListComponent,
 DistancePipe
],

Listing 9.1 Adding the RouterModule to the list of imports in app.module.ts

Listing 9.2 Adding the routing configuration to the decorator in app.module.ts

Imports the
Angular
RouterModule

277Adding navigation in an Angular SPA

 imports: [
 BrowserModule,
 HttpClientModule,
 RouterModule.forRoot([
 {
 path: '',
 component: HomeListComponent
 }
])
],
 providers: [],
 bootstrap: [HomeListComponent]
})

You’ve imported the Angular RouterModule into your application and told it which
component to use for the homepage. You can’t test it, however, because you’re also
specifying the same component as the default component. Note the line bootstrap:
[HomeListComponent] in listing 9.2. What you need to do is create a new default com-
ponent, which you’ll use to hold the navigation.

9.1.3 Creating a component for the framework and navigation

To hold the navigation elements, you need to create a new component and make that
the default component for the application. You’ll also use this component to hold all
the framework HTML, much as you did in layout.pug in Express. In reality, the frame-
work HTML is three things: navigation, content container, and footer.

 First, create a new component called framework by running the following in termi-
nal from the app_public directory:

$ ng generate component framework

This command creates a new framework folder inside app_public/src/app/ and also
generates all the files you need. Find the framework.component.html file, and add all
the HTML shown in the following listing, which is pretty much what the HTML con-
tent of layout.pug would look like if converted to HTML

<nav class="navbar fixed-top navbar-expand-md navbar-light">
 <div class=”container”>
 Loc8r
 <button type="button" data-toggle="collapse" data-target=
 ➥"#navbarMain"class="navbar-toggler">

 </button>

 <div id="navbarMain" class="navbar-collapse collapse">
 <ul class="navbar-nav mr-auto">
 <li class="nav-item">
 About

Listing 9.3 Adding the HTML for the framework in framework.component.html

Adds the RouterModule to
the imports, calling the
forRoot method

Defines the homepage
route as an empty string

Specifies the
HomeListComponent
as the one to use for
this route

Sets up the
navigation

section

278 CHAPTER 9 Building a single-page application with Angular: Foundations

 </div>
 </div>
</nav>
<div class="container content">
 <footer>
 <div class="row">
 <div class="col-12">
 <small>© Getting Mean - Simon Holmes/Clive Harber 2018</small>
 </div>
 </div>
 </footer>
</div>

Now that you’ve got the component set up, you need to tell the application to use it as
the default component, and tell it where to put it in the HTML.

 To set the new framework component as the default component, update the boot-
strap value in app.module.ts like so, replacing HomeListComponent with Framework-
Component:

bootstrap: [FrameworkComponent]

Finally, you need to update index.html to have the correct tag for this component
rather than home-list. Open framework.component.ts, and find the selector in the
decorator, which gives you the name of the HTML tag you should use:

@Component({
 selector: 'app-framework',
 templateUrl: './framework.component.html',
 styleUrls: ['./framework.component.css']
})

So app-framework is the tag you need to have in index.html so Angular knows where
to put the framework component. Update index.html to look like the following.

<body>
 <app-framework></app-framework>
</body>

Now that your framework component is created and linked to the HTML, you can
check it out in the browser, as shown in figure 9.2. If you haven’t done so already,
remember to run nodemon from the root folder of the application to get the API run-
ning, and also run ng serve from the app_public folder to get the development ver-
sion of the Angular app running.

 You can see the page header displaying, so you have success of sorts. Your new
component works! But you don’t see any content, even though you’re on the home-
page route. If you open the JavaScript console in the browser, you see an error: Cannot
find primary outlet to load 'HomeListComponent'.

 You’ve told the application to load HomeListComponent for the homepage route,
but haven’t specified where it should be positioned in the HTML.

Listing 9.4 Updating index.html file to use the new framework component

Creates the
main container

Nests the footer inside the
main container

Replaces the home-list component
for the app-framework

279Adding navigation in an Angular SPA

9.1.4 Defining where to display the content using router-outlet

Specifying the destination for a routed component is as simple as adding an empty tag
pair in the HTML where you want it to go. This special tag is <router-outlet>. Angu-
lar adds the routed component after this tag, not inside it, as you might expect if
you’re familiar with AngularJS.

 Adding this empty tag pair to the correct place in the framework HTML—where
you had block content in layout.pug—looks like the following.

<div class="container">
 <router-outlet></router-outlet>
 <footer>
 <div class="row">
 <div class="col-12"><small>© Getting Mean - Simon Holmes/Clive

Harber 2018</small></div>
 </div>
 </footer>
</div>

If you check out the browser now, you see the listing information as well as the frame-
work. Inspecting the elements, as shown in figure 9.3, demonstrates that <router-
outlet> remains empty, and that <app-home-list> was injected afterward.

 You can see the framework and the listing for the homepage, but it’s not the home-
page you know and love. It’s missing a header and sidebar. You’ll come back to this
page in section 9.2. First, you need to see how the navigation works.

9.1.5 Navigating between pages

To see the navigation in action, update the Angular application so that you can flip
between the homepage and the About page. If you click the links right now, they
won’t work. To get the navigation working, you need to create an about component,
define the about route, and change the links in the navigation to something Angular
can use.

Listing 9.5 Adding router-outlet to framework.component.html

Figure 9.2 Showing the
framework component by
default instead of the listing

Outlet for the router; Angular uses
the URL to find the component
and injects it here.

280 CHAPTER 9 Building a single-page application with Angular: Foundations

Creating the about component with Angular CLI should be familiar by now. In termi-
nal, in the app_public folder, run the following generate command:

$ ng generate component about

This command creates the new component inside app_public/src/app/about. You’ll
leave it as it is for now, so you can focus on the navigation. In section 9.4, you’ll return
to the About page and build it out fully.

DEFINING A NEW ROUTE

As with the homepage route, you need to configure the route for the About page in
app.module.ts. You need to specify the path for the route as well as the name of the
component. The path is 'about'. Remember that you don’t need any leading or trail-
ing slashes.

 To make sure you get the name of the component correct, you can open about
.component.ts to find it in the export line: export class AboutComponent implements
OnInit.

 Knowing the path and component name, you can add the new route in app
.module.ts.

RouterModule.forRoot([
 {
 path: '',
 component: HomeListComponent
 },
 {
 path: 'about',
 component: AboutComponent
 }
])

Listing 9.6 Defining the new about route in app.module.ts

<app-home-list>
is injected after
<router-outlet>.

Figure 9.3 The routed component—the listing information—is now being displayed on the
homepage route, with the HTML being injected after the <router-outlet> tag.

281Adding navigation in an Angular SPA

If you open the browser directly to localhost:4200/about, you get the About page, but
the navigation links don’t work properly yet. You’ll fix them in the next section.

SETTING ANGULAR NAVIGATION LINKS

When you’re using links defined in the router, Angular doesn’t want to see href attri-
butes in the <a> tags; instead, it looks for a directive called routerLink. Angular takes
the value you give to routerLink to create the href property.

 The rules that apply to defining a path in the router also apply to setting the value
for a routerLink. You don’t need to include leading or trailing slashes, and bear in
mind that you don’t need to duplicate anything set in the base href.

 Following these rules, updating the navigation links in framework.component
.html looks like the next listing. Replace href attributes with routerLink direc-
tives, ensuring that the values match what you have in the router definition in
app.module.ts.

Loc8r
<div id="navbarMain" class="navbar-collapse collapse">
 <ul class="navbar-nav mr-auto">
 <li class="nav-item">
 About

</div>

With this code in place and saved, you can click between the two links, as shown in
figure 9.4.

Listing 9.7 Defining the navigation router links in framework.component.html

Empty routerLink path
pointing to the default
component

about path to cause
navigation to the
about component

Figure 9.4 Using the navigation buttons to switch between the homepage and the About page—
an Angular SPA!

282 CHAPTER 9 Building a single-page application with Angular: Foundations

Notice that the URL in the browser changes as normal, but the page doesn’t reload or
flicker when moving between the pages. If you check the network traffic when switch-
ing between these two pages, you’ll see only calls to the API being made. You can also
use the back and forward buttons in your browser, and the site will work like a tradi-
tional website. Congratulations—you’ve built a single-page application!

 Before you move on, quickly improve the navigation by adding active styles.

9.1.6 Adding active navigation styles

It’s standard practice in web design to have an active class on navigation items so that
the link for the current page looks a bit different—a simple visual cue to tells users
where they are. You’ve got only one link in your navigation, but the process is still
worthwhile.

 Twitter Bootstrap has helper classes defined to create an active navigation state;
you set the class active on the active link. As it’s such a common requirement, Angu-
lar also has a helper for this class: a directive called routerLinkActive.

 On an <a> tag containing a router link, you can add the routerLinkActive direc-
tive and specify the name of the class you want to use for active links. You’ll use the
class active in framework.component.html:

About

The positioning of the routerLinkActive attribute is important. If it doesn’t seem to
be working, make sure that you included it before the class attribute.

 Now, when you visit the About page, the <a> tag has an extra class of active added
to it, which Bootstrap displays as a stronger white color, as you can see in figure 9.5.

Extra active
class in About
link when on
the About page

Figure 9.5 Seeing the active class in action; Angular adds and removes it from the link as
navigation changes are made.

283Building a modular app using multiple nested components

And with that, you’ve covered the basics of the Angular router, creating working navi-
gation for your SPA. You can see that the views clearly need some work, so that’s what
you’ll focus on in the next two sections.

9.2 Building a modular app using
multiple nested components
In this section, you’ll focus on building out the familiar homepage in Angular. To set
yourself up for success—and to follow Angular architectural best practices—you’ll do
this by creating several new components and nesting them as you need to. This pro-
cess gives you a modular application, so you can reuse pieces in different places in the
application.

 The homepage has three main sections:

 Page header
 List of locations
 Sidebar

You already have the list of locations built as a component; that’s your home-list com-
ponent. You’ll need to create the header and the sidebar as two new components.

 You’ll also need to wrap all three of these components inside a main homepage
component to ensure that everything works together, has the correct layout, and can
be navigated to via the Angular router. Figure 9.6 shows an overlay of how these com-
ponents fit together on top of the homepage design. You have the framework compo-
nent on the outside, holding everything. Nested inside this component is the
homepage component to control the content area, with the page header, listing, and
sidebar components nested inside it.

Figure 9.6 Breaking the homepage layout into components, using two levels of nesting

284 CHAPTER 9 Building a single-page application with Angular: Foundations

 This is what you’re going to build. You’ll start with the homepage component.

9.2.1 Creating the main homepage component

The homepage component contains all the HTML and information for the home-
page—everything between the header and the footer. This component is what you’ll
reference in the router for Angular to use whenever anybody requests the homepage.

 Start by using the Angular CLI to generate the component in the now-familiar way
(in terminal from the app_public folder):

$ ng generate component homepage

Next, tell the router to use this component for the default home route by updating
app.module.ts like so:

RouterModule.forRoot([
 {
 path: '',
 component: HomepageComponent
 },
 {
 path: 'about',
 component: AboutComponent
 }
])

In homepage.component.html, put the selector for the home-list component for a
moment before checking it in the browser:

<app-home-list></app-home-list>

If you look at the application in the browser, it looks the way it did before, with the
navigation bar, footer, and listing section in between.

 But you want to see all the content for the homepage now; that’s the page header,
main content, and sidebar. Taking the framework code from the Pug templates and
turning it into HTML looks like the following listing. Note that you’re putting the
app-home-list component here to display the listing section.

<div class="row banner">
 <div class="col-12">
 <h1>Loc8r
 <small>Find places to work with wifi near you!</small>
 </h1>
 </div>
</div>
<div class="row">
 <div class="col-12 col-md-8">
 <div class="error"></div>
 <app-home-list></app-home-list>
 </div>
 <div class="col-12 col-md-4">

Listing 9.8 Putting the HTML for homepage content in homepage.component.html

The page header

Container for the homepage listing component

The sidebar

285Building a modular app using multiple nested components

 <p class="lead">Looking for wifi and a seat? Loc8r helps you
 ➥find places to work when out and about. Perhaps with coffee,
 ➥cake or a pint? Let Loc8r help you find the place you're
 ➥ looking for.</p>
 </div>
</div>

Now, when you view the page in the browser, you get something like figure 9.7—your
good old familiar homepage!

Everything is there and working correctly, including the home-list component
nested inside the homepage component. But you can do better. The page header and
sidebar are repeated on other pages, albeit with different text content. You can follow
some architectural best practices here and try to avoid repeating code by creating
reusable components.

9.2.2 Creating and using reusable subcomponents

You’re going to create the page header and sidebar as new components so that you
never need to copy the HTML into multiple views. If the site grows to have dozens or
hundreds of pages, you wouldn’t want to have to repeat the same HTML in each lay-
out. This situation gets even worse if you need to update the HTML in the future. It’s
much easier to update the HTML in one place, and is also much less prone to errors
or omissions.

 You’ll make the components “smart” so that you can pass them different content to
display. In your case, the reusable components are all about the HTML rather than
the content. Start with the page header.

Figure 9.7 The homepage in Angular with the page header and sidebar hardcoded in the
homepage component

286 CHAPTER 9 Building a single-page application with Angular: Foundations

CREATING THE PAGE-HEADER COMPONENT

The first step is issuing the familiar component generation command in terminal:

$ ng generate component page-header

Following that command, copy the header content from the homepage HTML and
paste it into page-header.component.html:

<div class="row banner">
 <div class="col-12">
 <h1>Loc8r
 <small>Find places to work with wifi near you!</small>
 </h1>
 </div>
</div>

Then you need to reference this content in the homepage.component.html instead of
the full HTML currently there. To do so, you need the correct tag, which you can find
by looking for the selector in the page-header.component.ts file. In this case, the
selector is app-page-header, so that’s what you’ll use in the homepage component
HTML.

<app-page-header></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <div class="error"></div>
 <app-home-list>Loading...</app-home-list>
 </div>
 <div class="col-12 col-md-4">
 <p class="lead">Looking for wifi and a seat? Loc8r helps you find
 ➥places to work when out and about. Perhaps with coffee, cake
 ➥or a pint? Let Loc8r help you find the place you\'re looking
 ➥for.</p>
 </div>
</div>

Good start. You’ve created the new page-header component, but it still has hard-
coded content. Next, you’ll pass data to the page header from the homepage compo-
nent.

DEFINING THE DATA FOR THE PAGE-HEADER COMPONENT ON THE HOMEPAGE

You want to set the data for the homepage instance of the page-header component
from within the homepage component so you can pass it through.

 Defining the data is simple. In the homepage component class definition, you cre-
ate a new member to hold the data. You’ll create a member called pageContent and
nest the header inside it, as shown in the next listing. The class member is a simple
JavaScript object with text data. Note that the strapline content is shortened in this
snippet to save trees.

Listing 9.9 Replacing the page header HTML in homepage.component.html

287Building a modular app using multiple nested components

export class HomepageComponent implements OnInit {
 constructor() { }

 ngOnInit() {
 }

 public pageContent = {
 header: {
 title: 'Loc8r',
 strapline: 'Find places to work with wifi near you!'
 }
 };

}

The header is nested inside pageContent because, soon, you’ll add the sidebar con-
tent too, and having them both within the same member will keep the code neater.
Next, you pass this data to the page-header component.

PASSING DATA INTO THE PAGE-HEADER COMPONENT

The homepage class member pageContent is now available to the homepage HTML,
but rather than use the data directly, you want to pass it through to the page-header
component. Data is passed through to the nested component via a special binding in
the HTML. The name of the binding is a property you define in the nested compo-
nent, so it can be anything you want.

 You’ll bind the page header content to a property called content. (This property
doesn’t exist yet; you’ll define it in the next step.) In homepage.component.html,
update <app-page-header> to include the binding:

<app-page-header [content]="pageContent.header"></app-page-header>

Note that although the square brackets may not be valid HTML, that’s okay here,
because Angular removes them before serving the HTML to the browser. The actual
HTML that the browser will receive is something like <app-page-header_ngcontent-
c6="" _nghost-c2="">, which is valid HTML.

 You’re now passing data from the homepage component to the nested page-header
component; you need to update the page header to accept and use this data.

ACCEPTING AND DISPLAYING INCOMING DATA IN A COMPONENT

You need to tell the pageHeader component that content should exist as a property and
to get the value from the outside. Technically, content is an input to the component.

 Any property of a class needs to be defined, and this one is no different. Where it
differs from what you’ve seen before is that it needs to be defined as an input prop-
erty. To do that, you need to import Input into the component from the Angular core
and use it as a decorator when you define the content member.

Listing 9.10 Defining the homepage page header content in homepage.component.ts

Creates a new class member to
hold the page header content

288 CHAPTER 9 Building a single-page application with Angular: Foundations

import { Component, OnInit, Input } from '@angular/core';

@Component({
 selector: 'app-page-header',
 templateUrl: './page-header.component.html',
 styleUrls: ['./page-header.component.css']
})
export class PageHeaderComponent implements OnInit {

 @Input() content: any;

 constructor() { }

 ngOnInit() {
 }

}

When that’s done, the component will understand the data being sent to it from the
homepage component, and you’ll be able to display it. Replace the hardcoded text in
page-header.component.html with the relevant Angular data bindings.

<div class="row banner">
 <div class="col-12">
 <h1>{{ content.title }}
 <small>{{ content.strapline }}</small>
 </h1>
 </div>
</div>

Now you have a fully reusable component for the page header, which can display the
data sent to it from a parent component. This component is an important building
block of Angular application architecture. You’ll cement the process by doing the
same for the sidebar so that you can complete the homepage, but you’ll run into a lit-
tle hiccup along the way.

CREATING THE SIDEBAR COMPONENT

We won’t dwell too long on the steps for setting up the sidebar component, as you
completed them for the page header earlier in this chapter.

 First, generate the component:

$ ng generate component sidebar

Second, grab the sidebar HTML from homepage.component.html, and paste it into
sidebar.component.html. When you do, replace the text content with a binding to
content:

<div class="col-12 col-md-4">
 <p class="lead">{{ content }}</p>
</div>

Listing 9.11 Telling page-header.component.ts to accept content as an Input

Listing 9.12 Putting the data bindings in page-header.component.html

Imports Input from
the Angular core

Defines content as a class
member that accepts an
input of any type

289Building a modular app using multiple nested components

Third, allow the sidebar component to receive data by importing Input from Angular
core and defining the content property—of type string—with the @Input decorator:

import { Component, OnInit, Input } from '@angular/core';

@Component({
 selector: 'app-sidebar',
 templateUrl: './sidebar.component.html',
 styleUrls: ['./sidebar.component.css']
})
export class SidebarComponent implements OnInit {

 @Input() content: string;

 constructor() { }

 ngOnInit() {
 }

}

Fourth, update the pageContent member in homepage.component.ts to contain the
sidebar data:

public pageContent = {
 header : {
 title : 'Loc8r',
 strapline : 'Find places to work with wifi near you!'
 },
 sidebar : 'Looking for wifi and a seat? Loc8r helps you find places
 ➥to work when out and about. Perhaps with coffee, cake or a pint?
 ➥Let Loc8r help you find the place you\'re looking for.'
};

Fifth, update the homepage.component.html to use the new sidebar component, and
pass the data through as content:

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <div class="error"></div>
 <app-home-list>Loading...</app-home-list>
 </div>
 <app-sidebar [content]="pageContent.sidebar"></app-sidebar>
</div>

All done! But is it? If you view this page in the browser, you’ll notice that no matter
how wide you make your browser window, the sidebar is always below the content (see
figure 9.8).

 The position of the sidebar is defined by the classes in the <div class="col-12
col-md-4"> element. But by putting this content inside a component, you wrapped it
in a new tag, <app-sidebar>, so Bootstrap is throwing the sidebar below as a new row.

 This problem is something to look out for, especially when you’re nesting compo-
nents. But it’s easy to fix.

290 CHAPTER 9 Building a single-page application with Angular: Foundations

WORKING WITH ANGULAR ELEMENTS AND BOOTSTRAP LAYOUT CLASSES

The problem you have is that the browser now sees this following HTML markup
generated:

<div class="col-12 col-md-8">
 <app-home-list>Loading...</app-home-list>
</div>
<app-sidebar [content]="pageContent.sidebar">
 <div class="col-12 col-md-4">
 <p class="lead">{{ content }}</p>
 </div>
</app-sidebar>

The Bootstrap col classes for the sidebar are in the wrong level in the hierarchy, so
<app-sidebar> is being treated as a full-width column regardless of browser size. All
you need to do is move the classes from the <div> in sidebar.component.html to
<app-sidebar> in homepage.component.html, so that homepage.component.html
looks like the following.

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <app-home-list>Loading...</app-home-list>
 </div>
 <app-sidebar class="col-12 col-md-4" [content]="pageContent.sidebar">

Listing 9.13 Moving the sidebar classes into homepage.component.html

Figure 9.8 The new sidebar component is in and working, but it’s below the main content
instead of where it should be.

291Adding geolocation to find places near you

 ➥</app-sidebar>
</div>

With that done, you no longer need the <div> in the sidebar markup; you can keep
the <p> and the content. Now sidebar.component.html looks like this:

<p class="lead">{{ content }}</p>

With that fix, everything should look right with the homepage, as shown in figure 9.9.

The homepage is looking good! Something has been missing so far, though. Wouldn’t
it be great if Loc8r could tell where you are and find places nearby? You’ll add geolo-
cation to the homepage in the next section.

9.3 Adding geolocation to find places near you
The main premise of Loc8r is that it’s location aware and able to find places that are
near the user. So far, you’ve been faking it by hardcoding geographic coordinates into
the API requests. You’re going to change that right now by adding HTML5 geolocation.

 To get geolocation working, you’ll need to do the following things:

 Add a call to the HTML5 location API to your Angular application.
 Query the Express API if location details are available.
 Pass the coordinates to your Angular data service, removing the hardcoded

location.
 Output messages along the way so the user knows what’s going on.

Starting at the top, you’ll add the geolocation JavaScript function by creating a new
service.

Figure 9.9 The completed homepage rendering correctly, constructed of multiple nested
components

292 CHAPTER 9 Building a single-page application with Angular: Foundations

9.3.1 Creating an Angular geolocation service

The ability to find the location of the user feels like something that would be reusable,
in this and other projects. To snap it off as a piece of standalone functionality, you’ll
create another service to hold it. As a rule, any code that’s interacting with APIs, run-
ning logic, or performing operations should be externalized into services. Leave the
component to control the services rather than perform the functions.

 To create the skeleton of the geolocation service, run the following in terminal
from app_public:

$ ng generate service geolocation

We won’t distract you right now by diving into the details of how the HTML5/Java-
Script geolocation API works. Modern browsers have a method on the navigator
object that you can call to find the coordinates of the user. The user has to give per-
mission for this to happen. The method accepts two parameters (a success callback
and an error callback) and looks like the following:

navigator.geolocation.getCurrentPosition(cbSuccess, cbError);

You’ll need to expose the standard geolocation script in a public method so that you
can use it as a service. While you’re here, you’ll also error-trap against the possibility
that the current browser doesn’t support this feature. The following listing shows the
full code for geolocation.service.ts, providing a public getPosition method that
other components can call.

import { Injectable } from '@angular/core';

@Injectable({
 providedIn: 'root'
})
export class GeolocationService {

 constructor() { }

 public getPosition(cbSuccess, cbError, cbNoGeo): void {
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(cbSuccess, cbError);
 } else {
 cbNoGeo();
 }
 }
}

That code gives you a geolocation service, with a public method, getPosition, to
which you can pass three callback functions. This service checks to see whether the
browser supports geolocation and then attempts to get the coordinates. Then the ser-
vice calls one of the three different callbacks, depending on whether geolocation is
supported and whether it was able to obtain the coordinates.

 The next step is adding the service to the application.

Listing 9.14 Creating a geolocation service using a callback to get current position

Defines a public member called
getPosition that accepts three
callback functions for success,

error, and not supported

If geolocation is supported,
calls the native method,
passing through success

and error callbacks

If geolocation isn’t
supported, invokes the
not supported callback

293Adding geolocation to find places near you

9.3.2 Adding the geolocation service to the application

To use your new geolocation service, you need to import it into the home-list compo-
nent, as you did for your data service. You need to do the following:

 Import the service into the component.
 Add the service to the providers in the decorator.
 Add the service to the class constructor.

The following listing highlights in bold the additions you need to make to the home-
list component definition to import and register the geolocation service.

import { Component, OnInit } from '@angular/core';
import { Loc8rDataService } from '../loc8r-data.service';
import { GeolocationService } from '../geolocation.service';

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: string[];
}

@Component({
 selector: 'app-home-list',
 templateUrl: './home-list.component.html',
 styleUrls: ['./home-list.component.css']
})
export class HomeListComponent implements OnInit {

 constructor(
 private loc8rDataService: Loc8rDataService,
 private geolocationService: GeolocationService
) { }

When you’ve done this, you’ll be able to use the geolocation service from within your
home-list component.

9.3.3 Using the geolocation service from the home-list component

The home-list component now has access to the geolocation service, so use it!
Remember, your getPosition method in the service accepts three callback functions,
so you’ll need to create those functions before you can call the method.

 As the geolocation process can take a few seconds before you even start searching
the database for locations, you’ll also want to provide some useful messages to users so
that they know what’s going on.

 You already have an element for messages in your HTML, but it’s currently in
homepage.component.html, and you need it in home-list.component.html. Find the
<div class="error"></div> in the homepage HTML and remove it. Then, paste it

Listing 9.15 Updating home-list.component.ts to bring in the geolocation service

Imports the
geolocation service

Passes the service into
the class constructor

294 CHAPTER 9 Building a single-page application with Angular: Foundations

into the top of home-list.component.html, adding a binding so that you can display
messages like so:

<div class="error">{{message}}</div>
<div class="card" *ngFor="let location of locations">

With this code, you’ll be able to use the message binding to keep the user up to date
on what’s happening. Now you’re ready to create the callback functions.

CREATING THE GEOLOCATION CALLBACK FUNCTIONS

Inside the component, create three new private members, one for each of the possible
geolocation outcomes:

 Successful geolocation attempt
 Unsuccessful geolocation attempt
 Geolocation not supported

You’ll also update the messages being displayed to users, letting them know that the
system is doing something. This message is particularly important, because geoloca-
tion can take a second or two.

 The success callback is the existing getLocations method, with some additional
message-setting thrown in: the other two set error messages, as shown in the following
listing. As you’ll be using the message binding from within these new functions, you’ll
also need to define it as a property of the class with type string.

export class HomeListComponent implements OnInit {

 constructor(
 private loc8rDataService: Loc8rDataService,
 private geolocationService: GeolocationService
) { }

 public locations: Location[];

 public message: string;

 private getLocations(position: any): void {
 this.message = 'Searching for nearby places';
 this.loc8rDataService
 .getLocations()
 .then(foundLocations => {
 this.message = foundLocations.length > 0 ? '' :
 ➥'No locations found';
 this.locations = foundLocations;
 });
 }

 private showError(error: any): void {
 this.message = error.message;
 };

 private noGeo(): void {
 this.message = 'Geolocation not supported by this browser.';
 };

Listing 9.16 Setting up the geolocation callback functions in home-list.component.ts

Defines the message
property of type string

Sets some messages
inside the existing
getLocations member

The function to run if
geolocation is supported
but not successful

The function
to run if

geolocation
isn’t supported

by browser

295Adding geolocation to find places near you

 ngOnInit() {
 this.getLocations();
 }

}

You’ve got your three callback functions there for success, failure, and error. Now you
need to use your geolocation service rather than call getLocations() on the ngOnInit()
of the component.

CALLING THE GEOLOCATION SERVICE

To call the getPosition method of your geolocation service, you’ll need to create a
new member in the home-list component and call it on init instead of calling the
getLocations method directly.

 Your geolocation service accepts three callback parameters—success, error, and
unsupported—so you can add a new member to home-list.component.ts called get-
Position that calls your service, passing through your callback functions. That mem-
ber should look like this:

private getPosition(): void {
 this.message = 'Getting your location...';
 this.geolocationService.getPosition(
 this.getLocations,
 this.showError,
 this.noGeo);
}

Then, you need to call this member when the component is initialized, instead of the
getLocations method, so replace the call in ngOnInit to be this new member:

ngOnInit() {
 this.getPosition();
}

Save this code, and head to the browser. You should see something like figure 9.10,
where the browser asks you for permission to access your location.

Figure 9.10 A successful call to your geolocation service is marked by a browser request
to know your location.

296 CHAPTER 9 Building a single-page application with Angular: Foundations

Great news—until you click Allow and the screen hangs on the Getting your
location message, quietly throwing a JavaScript error in the background. The error
you’re getting says Cannot set property 'message' of null and looks like figure 9.11.

 This message tells you what the problem is and where it occurs, which helps you fix it.

WORKING WITH THIS IN CALLBACKS ACROSS COMPONENTS AND SERVICES

You can see from the error in figure 9.11 that it can’t set this.message inside the get-
Locations callback, because this is null. When passing the class member through as
a callback, you lose the context of this, which is the instance of the class itself.

 Luckily, the fix is easy. You can send the context through by binding this to each
callback as you send it. Where each callback function is passed, add .bind(this) to
the end.

private getPosition(): void {
 this.message = 'Getting your location...';
 this.geolocationService.getPosition(
 this.getLocations.bind(this),
 this.showError.bind(this),
 this.noGeo.bind(this)
);
}

Now you’re binding the context of this to the callback function so that it exists when
you need it. When you visit the browser again, you have success! After displaying a few
messages and getting your location, the browser displays home-list again.

Listing 9.17 Binding this to geolocation callback functions in home-list.component.ts

Figure 9.11 Error message shown when you’re trying to set
messages in the geolocation callback

297Adding geolocation to find places near you

 But you’re not using the location yet. You’re getting it but doing nothing with it.
You’ll change that situation next.

USING THE GEOLOCATION COORDINATES TO QUERY THE API
In home-list.component.ts, the getPosition method calls your geolocation service to
get the coordinates. When it’s successful, it calls the getLocations method—again in
home-list.component.ts—as a callback, passing the position as a parameter. You need
to update this callback to receive the position. Then this callback calls your data ser-
vice to search for locations. You need to pass the coordinates to the service, and then
update the service to use these values when calling the API.

 You have two things to update. Starting with getLocations() in home-list.component
.ts, you need to update it to accept a position parameter, extract the coordinates from
it, and pass them through to the data service, as highlighted in the following listing.

private getLocations(position: any): void {
 this.message = 'Searching for nearby places';
 const lat: number = position.coords.latitude;
 const lng: number = position.coords.longitude;
 this.loc8rDataService
 .getLocations(lat, lng)
 .then(foundLocations => {
 this.message = foundLocations.length > 0 ? '' : 'No locations found';
 this.locations = foundLocations;
 });
}

You’re now getting the position from the geolocation service, extracting the latitude
and longitude coordinates, and passing them to the data service. To get the last piece
in place, you need to update the data service to accept the coordinate parameters and
use them instead of the hardcoded values.

public getLocations(lat: number, lng: number): Promise<Location[]> {
 const maxDistance: number = 20000;
 const url: string = `${this.apiBaseUrl}/locations?lng=${lng}&lat=${lat}&
 ➥maxDistance=${maxDistance}`;
 return this.http
 .get(url)
 .toPromise()
 .then(response => response.json() as Location[])
 .catch(this.handleError);
}

Now the coordinates are finding their way from the geolocation service to the API
call, so you’re now using Loc8r to find places near you! If you check it out in the

Listing 9.18 Updating home-list.component.ts to use the geolocation position

Listing 9.19 Updating loc8r-data.service.ts to use the geolocation coordinates

Accepts
the
position
as a
parameter

Extracts the latitude and
longitude coordinates
from the position

Passes the coordinates
to the data service call

Accepts lat and lng
parameters of type number

Deletes the hardcoded values
you had for lat and lng before

298 CHAPTER 9 Building a single-page application with Angular: Foundations

browser—if you’ve added some places within 20 km of where you are—you should see
them listed, as shown in figure 9.12. You’ll probably notice a slight change in the dis-
tance coordinates, depending on how accurate your test data was.

That’s the last piece of the puzzle for the homepage. Loc8r now finds your current
location and lists the places near you, which was the whole idea from the start. The
last thing you’ll do in this chapter is sort out the About page, during which you’ll
explore the challenges of injecting HTML through Angular bindings.

9.4 Safely binding HTML content
The current status of the About page in the Angular SPA is that it exists only as a
default skeleton page, as you created it to demonstrate navigation and routing in
Angular. In this section, you’ll complete the page.

9.4.1 Adding the About page content to the app

The About page should be fairly straightforward. You add the content to the compo-
nent definition and create the simple markup with the bindings to display it. Easy, right?

 Start by adding the content to the component definition. In the following listing,
you can see the class definition in about.component.ts. You’re defining a pageContent
member to hold all the text information, as you’ve done before. We’ve trimmed the
text in the main content area to save ink and trees.

Figure 9.12 The Loc8r homepage as an Angular app, using geolocation to find places nearby
from your own API

299Safely binding HTML content

export class AboutComponent implements OnInit {

 constructor() { }

 ngOnInit() {
 }

 public pageContent = {
 header : {
 title : 'About Loc8r',
 strapline : ''
 },
 content : 'Loc8r was created to help people find places to sit
 ➥down and get a bit of work done.\n\nLorem ipsum dolor sit
 ➥amet, consectetur adipiscing elit.'
 };
}

As components go, this one is simple. No magic is going on here. Note, though, that
you’ve still got the \n characters to denote line breaks.

 Next, you need to create the HTML layout. From your original Pug templates, you
know what the markup needs to be; you need a page header and then a couple of
<div>s to hold the content. For the page header, you can reuse the pageHeader com-
ponent that you created earlier and pass the data through as you did for the home-
page. There’s not much to the rest of the markup. The entire contents of about
.component.html are shown in the following snippet:

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-lg-8">{{ pageContent.content }}</div>
</div>

Again, nothing unusual here—only the page header, some HTML, and a standard
Angular binding. If you look at this page in the browser, you’ll see that the content is
coming through, but the line breaks aren’t displaying, as illustrated in figure 9.13.

 This situation isn’t ideal. You want your text to be readable and shown as originally
intended. If you can change the way that the distances appear on the homepage by
using a pipe, why not do the same thing to fix the line breaks? Give it a shot, and cre-
ate a new pipe.

9.4.2 Creating a pipe to transform the line breaks

You want to create a pipe that takes the provided text and replaces each instance of \n
with a
 tag. You’ve already solved this problem in Pug by using a JavaScript
replace command, as shown in the following code snippet:

p !{(content).replace(/\n/g, '
')}

With Angular, you can’t do this inline. Instead, you need to create a pipe and apply it
to the binding.

Listing 9.20 Creating the Angular controller for the About page

300 CHAPTER 9 Building a single-page application with Angular: Foundations

CREATING AN HTMLLINEBREAKS PIPE

As you’ve already seen, pipes are best created by the Angular CLI, so run the following
command in terminal to generate the files and register the pipe with the application:

$ ng generate pipe html-line-breaks

The pipe itself is fairly straightforward. It needs to accept incoming text as a string
value. Replace each \n with a
, and then return a string value. Update the main
content of html-line-breaks.html to look like the following snippet:

export class HtmlLineBreaksPipe implements PipeTransform {

 transform(text: string): string {
 return text.replace(/\n/g, '
');
 }

}

When you’ve done that, try using it.

APPLYING THE PIPE TO THE BINDING

Applying a pipe to a binding is simple; you’ve already done it a few times. In the
HTML, add the pipe character (|) after the data object being bound, and follow it
with the name of the filter like this:

<div class="col-12 col-lg-8">{{ pageContent.content | htmlLineBreaks }}</div>

Simple, right? But if you try it in the browser, all isn’t quite as you’d hoped. As you can
see in figure 9.14, the line breaks are being replaced by
, but they’re being dis-
played as text instead of rendering as HTML.

Figure 9.13 The content for the About page is coming through from the controller, but the line
breaks are being ignored.

301Safely binding HTML content

Hmmmm, this isn’t quite what you wanted, but at least the pipe seems to be working.
There’s a good reason for this output: security. Angular protects you and your applica-
tion from malicious attacks by preventing HTML from being injected into a data bind-
ing. Think about when you let visitors write reviews for locations, for example. If they
could add any HTML they wanted to, someone could easily insert a <script> tag and
run some JavaScript, hijacking the page.

 But there’s a way to let a subset of HTML tags through into a binding, which you’ll
look at next.

9.4.3 Safely binding HTML by using a property binding

Angular lets you pass through some HTML tags if you use a property binding instead
of the default bindings you normally use for content. This technique works only for a
subset of HTML tags to prevent XSS hacks, attacks, and weaknesses. Think of property
binding as being “one-way” binding. The component can’t read the data back out and
use it, but it can update it and change the data in the binding.

 You used property bindings when you passed data into nested components.
Remember building the About page? There, you were binding data to a property you
defined in the nested component, which you called content. Here, you’re binding to
a native property of a tag—in this case, innerHTML.

 Property bindings are denoted by wrapping square brackets around them and
then passing the value. You can remove the content binding in about.component
.html and use a property binding:

<div class="col-12 col-lg-8" [innerHTML]="pageContent.content |
htmlLineBreaks"></div>

Note that you can apply pipes to this type of binding too, so you’re still using your
htmlLineBreaks pipe. Finally, when you view the About page in the browser, you’ll see
the line breaks in place, looking like figure 9.15.

 Success! You’ve made a great start toward building Loc8r as an Angular SPA.
You’ve got a couple of pages, some routing and navigation, geolocation, and a great
modular application architecture. Keep on moving!

Figure 9.14 The
 tags
being inserted with your filter are
being rendered as text rather than
HTML tags.

302 CHAPTER 9 Building a single-page application with Angular: Foundations

9.5 Challenge
Use what you’ve learned about Angular so far and create a new component called
rating-stars. This component will be used in the homepage listing section and in
the other places where you display rating stars, which you’ll be building out in the
next section.

 This new component should

 Accept an incoming number value (the rating)
 Display the correct number of solid stars based on the rating
 Be reusable many times on a single page

As a clue, your elements should look something like this:

<app-rating-stars [rating]="location.rating"></app-rating-stars>

Good luck! The code (should you need it) is available in GitHub, on the chapter-09
branch.

 In chapter 10, you’ll continue building out the Angular SPA, encountering more-
complex page layouts and modal popups, and accepting user input via forms.

Figure 9.15 Using the htmlLineBreaks pipe in conjunction with the property binding, you
now see the line breaks rendering as intended.

303Summary

Summary
In this chapter, you learned

 That Angular has a Router and how it works
 How to build a functional website and use site navigation
 That using nested components to create a modular and scalable application is

best practice
 How to work with external interfaces like the browser’s geolocation capabilities

304

Building a single-page
application with Angular:

The next level

In this chapter, you’ll follow on from the work you started in chapter 9 with build-
ing a single-page application (SPA). By the end of this chapter, the Loc8r applica-
tion will be a single Angular application that uses your API to get the data.

 Figure 10.1 shows where you are in the overall plan, still recreating the main
application as an Angular SPA.

 You’ll start by creating the missing pages and functionality, and see how to use
URL parameters in routes, including using them when querying the API. When
you’ve got most of the functionality in place, you’ll build the form to add new

This chapter covers
 Routing with URL parameters in Angular

 Querying the API with URL parameter data

 Building more-complex layouts and handling form
submissions

 Creating a separate router configuration file

 Replacing the Express UI with the Angular app

305Working with more-complex views and routing parameters

reviews, but rather than have a separate page as you had in Express, you’ll include the
form inline and be able to add reviews without leaving the Details page. This tech-
nique is an SPA way of doing things and eliminates extra round trips to the server.
When everything’s running, you’ll look at a couple of ways to improve the architec-
ture to follow some Angular and TypeScript best practices.

 To finish, you’ll use your Angular application as the front end for Loc8r, eliminat-
ing the need for the public-facing part of the Express application.

10.1 Working with more-complex views
and routing parameters
In this section, you’ll add the Details page to the Angular SPA. One crucial aspect is
retrieving the location ID from the URL parameter to ensure that you get the correct
data. Using URL parameters in this way is common practice and is a useful technique
to know in any framework. You’ll also have to update the data service to ask the API
for specific location details. As you translate the Pug view into an Angular template,
you’ll also discover some additional functionality that Angular provides to help you
create the various layouts required.

 You’ve got a lot to do, so before you get into the fun stuff, you’d better plan it.

10.1.1 Planning the layout

The Details page has quite a bit more to it than the others you’ve made in Angular so
far, but as you know what it looks like, you can start to plan it from a high level. When
that’s done, it’ll be easier to add the details.

Using Angular
to recreate your
application
as an SPA

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Express
Node.js

MongoDB

Figure 10.1 This chapter continues the work you started in chapter 9: recreating the Loc8r
application as an Angular SPA, moving the application logic from the back end to the front end.

306 CHAPTER 10 Building a single-page application with Angular: The next level

 By looking at the layout and what you’ve done already, you can begin to see the dif-
ferent components you’ll need and how to nest them. You’ll keep the existing frame-
work component on the outside, of course, containing the navigation and footer. In
the routable area, you’ll have a new details-page component containing the page
header, sidebar, and main content. Figure 10.2 shows a sketch of this layout plan over-
laid on a screenshot of the Details page itself.

This plan gives you a good idea of what you need to build and what you can reuse. We
hope that you’re starting to see why creating reusable components is a good idea! At
this point, note that you need some of the location data in three components: the
page header, the location details component, and the sidebar. You’ll need to take this
fact into consideration when coding the page.

 Of the five components in the plan, you need to create two: the Details page com-
ponent to organize all the others and the location details component to display the
actual details. You’ll create basic versions of these components next so that you have a
page to route to.

10.1.2 Creating the required components

You know that you want a Details page component containing the location details
along with the sidebar and header. The location details component is missing, so
you’ll create a skeleton of that first. Then you can create the framework component
ready for routing.

Figure 10.2 Planning the components and nesting needed for building the Details
page in Angular

307Working with more-complex views and routing parameters

 Use the Angular CLI to create the location details component; run the following
command in terminal in the app_public folder:

$ ng generate component location-details

You can leave the default content in this new component for the time being, as you’ll
build it out properly soon. Next, create the Details page component, and add the skel-
eton layout to it. In terminal, use the Angular CLI again with the following command:

$ ng generate component details-page

You’ll add some content to this component, as it’s going to hold the other compo-
nents for the page: the page header, location details, and sidebar. Listing 10.1 shows
how you want to lay these components out in details-page.component.html. You’ll also
add the content bindings for the page header and sidebar so that you can pass in
information from this component.

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <app-location-details></app-location-details>
 </div>
 <app-sidebar class="col-12 col-md-4" [content]="pageContent.sidebar">
 ➥</app-sidebar>
</div>

So that you’ll be able to see the content in the header and sidebar, you’ll create some
default content. In the HTML for the Details page component, you’ll use the bindings
pageContent.header and pageContent.sidebar, so in the component class, you’ll
create a corresponding pageContent member containing header and sidebar prop-
erties. The following listing shows what this looks like in details-page.component.ts,
also giving the content properties some default text.

export class DetailsPageComponent implements OnInit {

 constructor() { }

 ngOnInit() {
 }

 public pageContent = {
 header: {
 title: 'Location name',
 strapline: ''
 },
 sidebar: 'is on Loc8r because it has accessible wifi and space

Listing 10.1 The basic layout for details-page.component.html

Listing 10.2 The starting content for the Details page in details-page.component.ts

Page header component,
including a property binding

Location details component

Sidebar component, including
a property binding

The new pageContent
member containing . . .
header details and . . .

308 CHAPTER 10 Building a single-page application with Angular: The next level

 ➥to sit down with your laptop and get some work done.\n\nIf
 ➥you\'ve been and you like it - or if you don\'t - please
 ➥leave a review to help other people just like you.'
 };

}

Now you’ve got your Details page component, containing the three nested compo-
nents you need to lay out the page. You’ve even got some starting data being passed
into two of the nested components.

 You’re ready to set up the routing so that you can see the page.

10.1.3 Setting up and defining routes with URL parameters

Defining routes with URL parameters is as easy in Angular as it is in Express. Even the
syntax is the same—not something you hear often in the programming world!

 Your routes for the app are defined in app.module.ts, so that’s where you’ll add
the new one. As you want to accept a URL parameter, you’ll define the route the same
way you did in Express: by putting a locationId variable at the end of the path, pre-
ceded by a colon.

RouterModule.forRoot([
 {
 path: '',
 component: HomepageComponent
 },
 {
 path: 'about',
 component: AboutComponent
 },
 {
 path: 'location/:locationId',
 component: DetailsPageComponent
 }
])

With that in place, you can go to location/something in the browser, and Angular will
route you to the Details page component. At the moment, this component looks like
figure 10.3.

 If you remember from your original layouts, the sidebar content in this page should
be in two paragraphs, so your line breaks aren’t coming through. Fortunately, you’ve
already created a pipe for that purpose. You need to update the sidebar component to
use it. In sidebar.component.html, change the Angular binding to an innerHTML prop-
erty binding, passing in the content and the htmlLineBreaks pipe like this:

<p class="lead" [innerHTML]="content | htmlLineBreaks"></p>

Now the \n parts of the sidebar content are converted to
 tags and rendered as
HTML, looking like figure 10.4.

Listing 10.3 Adding the Details page route to app.module.ts

. . . sidebar
content

Defines a ‘locationId’ URL
parameter in the route by
prefixing it with a colon

309Working with more-complex views and routing parameters

The general page layout looks good, and you can see that it’s working. Before you
build it out, it would be useful to navigate to this page with real location IDs in the
URL. To do so, you need to update the links in the homepage listings.

CREATING ANGULAR LINKS TO THE DETAILS PAGE

The homepage listing currently displays links to this page, and if you try them, they
take you there. But you may well notice that when you do, the page flickers. This hap-
pens because the links are standard href attributes in an <a> tag, so the browser fol-
lows them like normal links. The result is that the page has a full reload and reloads
the Angular application—not what you want in an SPA!

 You want Angular to capture clicks of these links and to handle the navigation and
routing. When you created the navigation, you used routerLink instead of href in
the <a> tags, and you need to do the same here. In home-list.component.html, find
the link to the location, and swap out the href attribute:

{{location.name}}

Figure 10.3 Testing the new location details route and seeing the default content you added
to the components

Figure 10.4 Enabling line breaks in
the sidebar by using your custom pipe

310 CHAPTER 10 Building a single-page application with Angular: The next level

The rest of the code can stay the same. With that simple change, you’ve made your
app even more like a proper SPA. Now you’re ready to start using the URL parameter
in the page.

10.1.4 Using URL parameters in components and services

The plan is to get the location ID URL parameter and use it in a call to the API to get
the details for a specific location. When the data comes back, you want to display it on
the page.

 Where’s the best place to put this logic? Any of the components in the routable
area could be configured to get the URL parameter and call the API, but you want to
display data in all three nested components. So you’ll go for the approach of using the
“parent” Details page component to get the data and then pass it through to the three
child components. First, you’ll add a method to your data service to call the API to get
a single location by ID.

CREATING THE DATA SERVICE TO CALL THE API
The data service that you created in chapter 8 currently has a single method: get-
Locations. This method retrieves a list of locations when given a pair of coordinates.
The new method you need has a similar construct, so make a copy of this method in
loc8r-data.service.ts and call it getLocationById.

 You need to make a few small adjustments to get this method working:

1 Change the expected input parameters to a single locationId of type string.
2 Change the return type to a single Location instance instead of an array.
3 Change the API URL to call, using locationId as a URL parameter.
4 Set the JSON response to a single Location instance.

The following listing shows how this method looks in code, in loc8r-data.service.ts.

public getLocationById(locationId: string): Promise<Location> {
 const url: string = `${this.apiBaseUrl}/locations/${locationId}`;
 return this.http
 .get(url)
 .toPromise()
 .then(response => response as Location)
 .catch(this.handleError);
}

With the data service method ready, you can import the service into the Details page
component, ready to use.

Listing 10.4 Adding a method to get a location by ID in loc8r-data.service.ts

Sets the correct input parameters and
expected return type, both single items

Changes the API
URL to use the

location ID as a
URL parameter

Sets the JSON response
to be a single Location
instance

311Working with more-complex views and routing parameters

IMPORTING THE DATA SERVICE INTO THE COMPONENT

You’ve imported a service into a component before—the data service into the home-
list component—so we won’t dwell on the process too much here. You’ll need to
import the data service into the Details page component, add it to the providers, and
then make it available by declaring it in the class constructor.

 While you’re here, you’ll also import the Location class from the home-list compo-
nent and empty the default page content. All these updates to details-page.component
are shown in the following listing.

import { Component, OnInit } from '@angular/core';
import { Loc8rDataService } from '../loc8r-data.service';
import { Location } from '../home-list/home-list.component';

@Component({
 selector: 'app-details-page',
 templateUrl: './details-page.component.html',
 styleUrls: ['./details-page.component.css'],
})
export class DetailsPageComponent implements OnInit {

 constructor(private loc8rDataService: Loc8rDataService) { }

 ngOnInit(): void { }

 public pageContent = {
 header : {
 title : '',
 strapline : ''
 },
 sidebar : ''
 };
}

The only real thing to be careful with here is the case of loc8rDataService in the
constructor: the class type definition has an uppercase L, and the local instance is
defined with a lowercase l.

 Now you’re ready to get the URL parameter into the component.

USING URL PARAMETERS IN A COMPONENT

Given that using URL parameters in an app is a common requirement, the process is
surprisingly complicated. You need three new pieces of functionality:

 ActivatedRoute from the Angular router to get you the value of the current
route from inside the component

 ParamMap from the Angular router to get you the URL parameters of the active
route as an Observable

 switchMap from RxJS to get the values from the ParamMap Observable and use
them to call your API, creating a second Observable

Listing 10.5 Importing your data service in details-page.component.ts

Imports your data service

Imports the
Location class
definition

Creates a private
local instance of
the data serviceClears the default

page content

312 CHAPTER 10 Building a single-page application with Angular: The next level

The following snippet shows in bold the additions needed in details-page.component
.ts to import these pieces of functionality:

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute, ParamMap } from '@angular/router';
import { Loc8rDataService } from '../loc8r-data.service';
import { Location } from '../home-list/home-list.component';
import { switchMap } from 'rxjs/operators';

You also need to make the activated route available to the component by defining a
private member route of type ActivatedRoute in the constructor:

constructor(
 private loc8rDataService: Loc8rDataService,
 private route: ActivatedRoute
) { }

Now comes the complicated bit. Complete these steps to get a location ID from the
URL parameter and turn it into location data from the API:

1 When the component initializes, use switchMap to subscribe to the paramMap
Observable of the activated route.

2 When the paramMap Observable returns a ParamMap object, get the value of the
locationId URL parameter.

3 Call the getLocationsById method of your data service, passing it the ID.
4 Return the API call so that it returns an Observable.
5 Subscribe to listen for when the Observable returns the data from your API.

The result should be a single object of type Location.
6 Set the content for the page header and sidebar, using the location name

returned from the API.

Phew! That’s a lot of steps for a seemingly simple process. All this takes place in the
ngOnInit lifecycle hook in details-page.component.ts. The next listing shows what the
code looks like.

ngOnInit(): void {
 this.route.paramMap
 .pipe(
 switchMap((params: ParamMap) => {
 let id = params.get('locationId');
 return this.loc8rDataService.getLocationById(id);
 })
)

Listing 10.6 Getting and using the URL parameter in details-page.component.ts

Gets the paramMap Observable
of the activated route

Uses the pipe operator to
compose a sequence of
operations that will act
on the Observable Uses switchMap to extract

the required elements
from the ParamMap and
return an Observable

Makes the call to your new data service
method, returning it as an ObservableUses the .get method to get the value of the

locationId URL parameter from the ParamMap

313Working with more-complex views and routing parameters

 .subscribe((newLocation: Location) => {
 this.pageContent.header.title = newLocation.name;
 this.pageContent.sidebar = `${newLocation.name} is on Loc8r
 ➥[because it has accessible wifi and space to sit down with
 ➥your laptop and get some work done.\n\nIf you\'ve been and
 ➥you like it - or if you don\'t - please leave a review to
 ➥help other people just like you.`;
 });
}

That’s some fairly dense code; a lot is happening in a few lines and commands. We rec-
ommend reading the plan and the annotated code a few times to piece everything
together. It’s powerful, a little different from what you’ve seen so far, and about as com-
plex as you’ll see in this book. In particular, note the two chained Observables: first, the
route paramMap being subscribed to by the switchMap, which returns the second.

 The good news is that when you’re done, your Details page shows the location
name in the page header and the sidebar, as shown in figure 10.5.

Sends the location name to
the page header and sidebar

Subscribes to the API call
Observable, expecting a
Location back

Location name in the header
and sidebar components

Location ID in the URL

Figure 10.5 Displaying the location name in the header and sidebar after getting the location ID
from the URL and sending it to the API

314 CHAPTER 10 Building a single-page application with Angular: The next level

You’re now using the location ID in the URL to query the database and passing a bit
of the returned data to two of the components on the page. Before you build out the
main part of the Details page, make sure that the final component is getting the data
it needs.

10.1.5 Passing data to the Details page component

To pass the location data from the Details page component to the nested location
details component, you need to do three things:

1 Add a class member to the Details page component to hold the location data
when you get it back from the data service.

2 Pass the data into the child component, using a property binding in the HTML.
3 Update the location details component to accept this incoming data.

First, as shown in listing 10.7, define a new member newLocation of type Location in
details-page.component.ts, and give it a value when you get a location back from the
API call.

newLocation: Location;

ngOnInit(): void {
 this.route.paramMap
 .switchMap((params: ParamMap) => {
 let id = params.get('locationId');
 return this.loc8rDataService.getLocationById(id);
 })
 .subscribe((newLocation: Location) => {
 this.newLocation = newLocation;
 this.pageContent.header.title = newLocation.name;
 this.pageContent.sidebar = `${newLocation.name} is on Loc8r
 ➥because it has accessible wifi and space to sit down with
 ➥your laptop and get some work done.\n\nIf you\'ve been and
 ➥you like it - or if you don\'t – please leave a review to
 ➥help other people just like you.`;
 });
}

With the location details being exposed through this newLocation class member, you
can pass this through to the nested component by adding a property binding to the
element in details-page.component.html:

<app-location-details [location]="newLocation"></app-location-details>

You’ve seen this type of setup before. The property binding will pass the contents of
newLocation in the Details page component to the location member of the location
details component.

 Your location details component doesn’t have a location member yet, so you’ll
need to add it to the component definition and set it up to be an input member of

Listing 10.7 Exposing the found location details in details-page.component.ts

Updating the local
newLocation with
that received from
the Observable

315Working with more-complex views and routing parameters

type Location. You’ve performed these actions before, so the following listing serves
as a handy reminder, showing everything in place in location-details.component.ts.

import { Component, OnInit, Input } from '@angular/core';
import { Location } from '../home-list/home-list.component';

@Component({
 selector: 'app-location-details',
 templateUrl: './location-details.component.html',
 styleUrls: ['./location-details.component.css']
})
export class LocationDetailsComponent implements OnInit {

 @Input() location: Location;

 public googleAPIKey: string = '<Put your Google Maps API Key here>';

 constructor() { }

 ngOnInit() {
 }

}

The page is still working and looks as it did before, but now the Details page compo-
nent is getting the data from the database and passing it to all three of the nested
components. It’s time to build out the nested view.

10.1.6 Building the Details page view

For the location details, you’ve already got a Pug template with Pug data bindings, and
you need to transform this template into HTML with Angular bindings. You have
quite a few bindings to put in place, as well as some loops, utilizing Angular’s *ngFor
construct. You’ll use the rating-stars component that you created for the challenge
at the end of chapter 9 to show the overall rating and the rating for each review. If you
haven’t created this component, refer to the book’s code repository on GitHub. You’ll
also need to allow line breaks in the review text by using the htmlLineBreaks pipe.

GETTING THE MAIN TEMPLATE IN PLACE

Listing 10.9 shows everything in place, with the bindings in bold. This code should
make up the entire contents of location-details.component.html. We’ve left out some
pieces, such as the opening times, which you’ll fill in when you’ve got this code in
place and tested.

<div class="row">
 <div class="col-12 col-md-6">
 <app-rating-stars [rating]="location.rating"></app-rating-stars>
 <p>{{ location.address }}</p>
 <div class="card card-primary">

Listing 10.8 Accepting incoming location data in location-details.component.ts

Listing 10.9 Angular template for location details in location-details.component.html

Imports
'Input'

from the
Angular

core

Imports your
'Location' class
definition

Defines 'location' as
an input member of
type 'Location'

Don’t forget the Google
API key. (You got one in
chapter 2, didn’t you?)

Use rating-stars component to
show average rating for location.

316 CHAPTER 10 Building a single-page application with Angular: The next level

 <div class="card-block">
 <h2 class="card-title">Opening hours</h2>
 <!-- Opening times to go here -->
 </div>
 </div>
 <div class="card card-primary">
 <div class="card-block">
 <h2 class="card-title">Facilities</h2>
 <span *ngFor="let facility of location.facilities" class="badge
 ➥badge-warning">
 <i class="fa fa-check"></i>
 {{facility}}

 </div>
 </div>
 </div>
 <div class="col-12 col-md-6 location-map">
 <div class="card card-primary">
 <div class="card-block">
 <h2 class="card-title">Location map</h2>
 <img src="https://maps.googleapis.com/maps/api/staticmap?
 ➥center={{location.coords[1]}},{{location.coords[0]}}
 ➥&zoom=17&size=400x350&sensor=false&markers={{location
 ➥coords[1]}},{{location.coords[0]}}&key=
 ➥{{googleAPIKey}}&scale=2" class="img-fluid rounded"/>
 </div>
 </div>
 </div>
</div>
<div class="row">
 <div class="col-12">
 <div class="card card-primary review-card">
 <div class="card-block"><a href="/location/{{location._id}}
 ➥/review/new" class="btn btn-primary float-right">Add review
 <h2 class="card-title">Customer reviews</h2>
 <div *ngFor="let review of location.reviews" class="row review">
 <div class="col-12 no-gutters review-header">
 <app-rating-stars [rating]="review.rating">
 ➥</app-rating-stars>
 {{ review.author }}
 <small class="reviewTimestamp">{{ review.createdOn }}</small>
 </div>
 <div class="col-12">
 <p [innerHTML]="review.reviewText | htmlLineBreaks"></p>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

That code listing is long, but that’s to be expected, as quite a lot is going on in the
Details page. If you look at the page in the browser now, it looks about right. You have
a few things to fix, but you know about them.

Loop through facilities.

Don’t forget the
Google Maps API key.

Loop
through
reviews.

Apply htmlLineBreaks pipe to
review text and bind as HTML.

Use rating-stars component to
show rating for each review.

317Working with more-complex views and routing parameters

 Although the page looks good, if you open the JavaScript console, you’ll see that
the page has thrown a lot of errors along the lines of Cannot read property 'rating'
of undefined. These errors are binding errors, happening because the nested loca-
tion details component is trying to bind to data as soon as the page loads, but you
don’t have any data until after the API call has completed.

HIDING COMPONENTS TO STOP PREMATURE-BINDING ERRORS

The binding errors are occurring because the component is trying to bind to data
before the data has been provided. How do you stop this from happening? A good way
is to hide the component in the HTML until the data has been received from the API
and you have the location details ready to display.

 Angular includes a helpful native directive called *ngIf, which you can add to an
element in the HTML. *ngIf is given an expression. If the expression resolves to
true, the element is shown; otherwise, it’s hidden.

 For your situation, you want to show the location details component only when the
location data exists. So you can add an *ngIf directive to the location details element
in details-page.component.html like so:

<div class="col-12 col-md-8">
 <app-location-details *ngIf="newLocation" [location]="newLocation">
 ➥</app-location-details>
</div>

With that small change, you have no more binding errors!
 Now it’s on to fixing the remaining page template issues. Because you’re not show-

ing opening times yet, the reviews are coming through oldest first, and the data of the
reviews needs formatting.

ADDING IF-ELSE STYLE LOGIC WITH NGSWITCHCASE TO SHOW THE OPENING TIMES

It’s not unusual to want some type of if-else logic in a template to show different
chunks of HTML depending on a certain parameter. For each opening time, you want
to display the days in the range and either a closed message or the opening and clos-
ing times. In your Pug template, you had a bit of logic, a simple if statement checking
whether closed was true:

if time.closed
| closed
else
| #{time.opening} - #{time.closing}

You want to do something similar in your Angular template. You’ve seen how *ngIf
can work for a one-off case, but for if-else logic, Angular works along the lines of
JavaScript’s switch method. With this method, you define which condition you want
to check at the top, and then provide different options depending on the value of the
condition.

 The key parts here are an [ngSwitch] binding for defining the condition to switch
on, an *ngSwitchCase directive for providing a specific value, and an *ngSwitch-
Default directive for providing a backup option if none of the specific values

318 CHAPTER 10 Building a single-page application with Angular: The next level

matches. You can see all these parts in action in the following listing, where you add
the opening times to location-details.component.html.

<div class="card card-primary">
 <div class="card-block">
 <h2 class="card-title">Opening hours</h2>
 <p class="card-text" *ngFor="let time of location.openingTimes"
 ➥[ngSwitch]="time.closed">
 {{ time.days }} :
 Closed
 {{ time.opening + " - " + time.closing}}
 ➥
 </p>
 </div>
</div>

Now you have a bit of logic in the template. Note that as all the ngSwitch commands
are property bindings and directives, they need to be added to HTML tags.

 Okay, it’s time to get the reviews showing most recent first.

CHANGING THE DISPLAY ORDER OF A LIST BY USING A CUSTOM PIPE

If you have experience with AngularJS, you may be expecting an update of the old
orderBy filter, which could be used to magically reorder a repeated list in almost any
way imaginable. It was flexible and powerful, but it came with a downside: with large
datasets, this flexible filter became slow. For this reason, the Angular team decided
not to include it in the new versions.

 Without a native way to change the order of a list, the options are to write some
code in the component or to create a new pipe. A pipe is often best—especially if you
think you may want to reuse the functionality somewhere else—and you also know
that a pipe will always be applied if the data changes.

 Create a new pipe specifically to order the reviews by date, most recent first. You’ll
create the new pipe the normal way by running the following command in terminal,
in the app_public folder:

$ ng generate pipe most-recent-first

When the pipe is generated, add it to the *ngFor directive looping the reviews in
location-details.component.html, like so:

<div *ngFor="let review of location.reviews | mostRecentFirst" class="row
review">

Next, you’ll code the pipe itself. Remember that it comes with a transform hook that
accepts a value and returns a value. For your purposes, you want to accept and return
an array, as reviews are returned from the database as an array.

 As you’re working with arrays, you can use JavaScript’s native array sort method,
which accepts a function as a parameter. This function takes two items at a time from

Listing 10.10 Using ngSwitch in location-details.component.html

Runs switch
based on the

value of
time.closed

When time.closed is
true, outputs closed

Otherwise, default action is to
output opening and closing times

319Working with more-complex views and routing parameters

the array and can compare them however you code. The return value of the function
should be a positive or negative number. A negative number means that the order
stays the same; positive means that the order changes.

 You’re comparing dates and want the most recent first. In terms of comparison
operators, a more recent date is “greater than” an older date. So if the date of the first
parameter is greater than (more recent than) the date of the second, you return a
negative number to keep the order the same. Otherwise, return a positive number to
swap them round. That’s more complicated to explain than it is to code!

 The next listing shows what the pipe code looks like, creating a comparison func-
tion called compare and using it to sort the array of reviews before returning the
updated array.

export class MostRecentFirstPipe implements PipeTransform {

 private compare(a, b) {
 const createdOnA = a.createdOn;
 const createdOnB = b.createdOn;

 let comparison = 1;
 if (createdOnA > createdOnB)
 comparison = -1;
 }
 return comparison;
 }

 transform(reviews: any[]): any[] {
 if (reviews && reviews.length > 0) {
 return reviews.sort(this.compare);
 }
 return null;
 }

}

If you reload the page, you should see your reviews showing in the correct order: most
recent first. It’s a little hard to tell, though, as the date format isn’t exactly user
friendly. You’ll fix this problem in the next section.

FIXING THE DATE FORMAT BY USING THE DATE PIPE

Fortunately, formatting dates is much simpler than ordering by them. One of Angu-
lar’s default pipes is the date pipe, which formats a given date in the style you want.
This pipe takes one argument: the format for your date.

 To apply your formatting, you send a string describing the output you want. Too
many options are available to be listed here, but the format is easy to get the hang of.
For the format 1 September 2017, for example, send the string 'd MMMM yyyy', as shown
in the following listing.

Listing 10.11 Creating most-recent-first.pipe.ts to change display order of reviews

Your comparing
function, taking two
values from the arrayGets the creation date

of each review

If a is more recent than
b, returns -1;
otherwise, returns 1

The transform method, accepting
and returning arrays of reviews

Uses your compare function
to sort the array, returning
the reordered version

320 CHAPTER 10 Building a single-page application with Angular: The next level

<div *ngFor="let review of location.reviews" class="row review">
 <div class="col-12 no-gutters review-header">
 <app-rating-stars [rating]="review.rating"></app-rating-stars>
 {{ review.author }}
 <small class="reviewTimestamp">{{ review.createdOn | date : 'd MMMM
 ➥yyyy' }}</small>
 </div>
 <div class="col-12">
 <p [innerHTML]="review.reviewText | htmlLineBreaks"></p>
 </div>
</div>

With that, you’re done with the layout and formatting of the Details page, which
should look like figure 10.6.

The next and final step is enabling reviews to be added, but you’re going to drop the
concept of an extra page to do this, which is how you did it in Express. Instead, you’ll
do it inline on the page to provide a slicker experience.

Listing 10.12 Formatting with a date pipe in location-details.component.html

Figure 10.6 All the location details are now being shown on the Angular page.

321Working with forms and handling submitted data

10.2 Working with forms and handling submitted data
In this section, you’ll create the Add Review page in Angular, and have it submit data
to the API. Rather than navigate to a separate form page when the Add Review button
is clicked, it’ll display a form inline in the page. When the form is submitted, you’ll
have Angular handle the data, submit it to the API, and display the new review at the
top of the list. You’ll start by seeing what’s involved with creating the form in Angular.

10.2.1 Creating the review form in Angular

To create the review form, you’ll get the HTML in place, add data bindings to the
input fields, make sure that they all work as expected, and, finally, ensure that the
form is initially hidden and is displayed only if the button is clicked.

PUTTING THE FORM HTML IN PLACE

Add the inline form to the page just after the Customer reviews<h2> tag, as shown in
the following listing. Much of the layout is taken from the form you used in Express,
including the form input names and IDs.

<h2 class="card-title">Customer reviews</h2>
<div>
 <form action="">
 <hr>
 <h4>Add your review</h4>
 <div class="form-group row">
 <label for="name" class="col-sm-2 col-form-label">Name</label>
 <div class="col-sm-10">
 <input id="name" name="name" required="required" class="form-
 ➥control">
 </div>
 </div>
 <div class="form-group row">
 <label for="rating" class="col-sm-2 col-form-label">Rating</label>
 <div class="col-sm-10 col-md-2">
 <select id="rating" name="rating" class=”form-control”>
 <option value="5">5</option>
 <option value="4">4</option>
 <option value="3">3</option>
 <option value="2">2</option>
 <option value="1">1</option>
 </select>
 </div>
 </div>
 <div class="form-group row">
 <label for="review" class="col-sm-2 col-form-label">Review</label>
 <div class="col-sm-10">
 <textarea name="review" id="review" rows="5" class="form-
 ➥control"></textarea>
 </div>
 </div>
 <div class="form-group row">

Listing 10.13 Adding the review form to location-details.component.html

Adds the new div and the
form HTML directly after the
Customer reviews header

322 CHAPTER 10 Building a single-page application with Angular: The next level

 <div class="col-12">
 <button type="submit" class="btn btn-primary float-right"
 ➥style="margin-left:15px">Submit review</button>
 <button type="button" class="btn btn-default float-
 ➥right">Cancel</button>
 </div>
 </div>
 <hr>
 </form>
</div>

Right now, you’re not doing anything clever or asking Angular to do anything. You’ve
put raw HTML with some Bootstrap classes in the template. In the browser, this looks
like figure 10.7.

That’s the basic form in place. Next, add the data bindings.

ADDING DATA BINDINGS TO FORM INPUTS

In Express, you posted the form to another URL and handled the submitted data
there, but with Angular, you don’t want to change the page at all. With Angular, the
approach is to add data bindings to all the fields in a form so the component can
access the values.

 To add a data binding to a form field, use a directive with a special syntax like this:
[(ngModel)]="bindingName". (Remembering the order of the brackets can be diffi-
cult, so this has become known as “banana in a boat” to help you remember!)

Figure 10.7 The review form displays inline in the Details page, between the Add Review
button and the list of reviews.

323Working with forms and handling submitted data

 To use ngModel in your HTML, you need to have FormsModule and Reactive-
FormsModule imported into the application in app.module.ts. Add the line import
{ FormsModule, ReactiveFormsModule } from '@angular/forms'; to app.mod-
ule.ts, and add both of those module names to the imports array in the same file.

 In your component, you’ll want to keep all the submitted form data inside a single
object so you can pass it around easily. Define a new public member, newReview, in
location-details.component.html, giving it properties for the author name, rating, and
review content. Each property needs to have a default value, so the definition should
look like this:

public newReview = {
 author: '',
 rating: 5,
 reviewText: ''
};

Now that this newReview object and its properties are defined in the component, you
can use them in the HTML. The following listing shows how to add the bindings to
the form in location-details.component.html.

<form action="">
 <hr>
 <h4>Add your review</h4>
 <div class="form-group row">
 <label for="name" class="col-sm-2 col-form-label">Name</label>
 <div class="col-sm-10">
 <input [(ngModel)]="newReview.author" id="name" name="name"
 ➥required="required" class="form-control">
 </div>
 </div>
 <div class="form-group row">
 <label for="rating" class="col-sm-2 col-form-label">Rating</label>
 <div class="col-sm-10">
 <select [(ngModel)]="newReview.rating" id="rating" name="rating">
 <option value="5">5</option>
 <option value="4">4</option>
 <option value="3">3</option>
 <option value="2">2</option>
 <option value="1">1</option>
 </select>
 </div>
 </div>
 <div class="form-group row">
 <label for="reviewText" class="col-sm-2 col-form-label">Review</label>
 <div class="col-sm-10">
 <textarea [(ngModel)]="newReview.reviewText" name="reviewText"
 ➥id="reviewText" rows="5" class="form-control"></textarea>
 </div>
 </div>
 <div class="form-group row">
 <div class="col-12">

Listing 10.14 Adding data bindings to review form in location-details.component.html

Adds the “banana
in a boat” model

bindings to the
form inputs

324 CHAPTER 10 Building a single-page application with Angular: The next level

 <button type="submit" class="btn btn-primary float-right"
 ➥style="margin-left:15px">Submit review</button>
 <button type="button" class="btn btn-default float-
 ➥right">Cancel</button>
 </div>
 </div>
 <hr>
</form>

This looks good and, on the face of it, seems to work. But you want the rating to be a
number, and in a select option, value="5" is a string containing the character 5.

WORKING WITH SELECT VALUES THAT ARE NOT STRINGS

A select option value is by default a string, but your database requires a number for
the rating. Angular has a way to help you get different types of data from a select field.

 Instead of using value="STRING VALUE" inside each <option>, use [ngValue]=
"ANGULAR EXPRESSION". When written out, the value of [ngValue] looks like a string,
but it’s an Angular expression. This could be an object or a true Boolean, but you
want a number.

 In location-details.component.html, update each of the <option> tags to use
[ngValue] instead of value:

<option [ngValue]="5">5</option>
<option [ngValue]="4">4</option>
<option [ngValue]="3">3</option>
<option [ngValue]="2">2</option>
<option [ngValue]="1">1</option>

Now Angular gets the value of the <select> as a number, not a string. This technique
will be useful when you submit the data to the API. Next, you hide the form by default,
as you don’t want it showing all the time.

SETTING THE VISIBILITY OF THE FORM

You don’t want the Add Review section of the page to be visible when the page loads;
you want the Add Review button to show it, and when the form is displayed, you want
the Cancel button to hide it again.

 To show and hide the form, you can use your old friend *ngIf. *ngIf needs a Bool-
ean value to decide whether to show the element it’s applied to, so you’ll need to
define one in the component.

 In location-details.component.ts, define a new public member formVisible of
type boolean with a default value of false:

public formVisible: boolean = false;

You’ve set the default value to false, as you want the form to be hidden by default. To
use this Boolean to set the visibility of the form, locate the <div> surrounding the
<form> in location-details.component.html, and add the *ngIf directive to it like this:

<h2 class="card-title">Customer reviews</h2>
<div *ngIf="formVisible">
 <form action="">

325Working with forms and handling submitted data

Now the form is hidden by default when the page loads.

TOGGLING THE VISIBILITY OF THE FORM

To change the visibility of the form, you need a way to change the value of form-
Visible when the Add Review and Cancel buttons are clicked. Not surprisingly, Angu-
lar has an on-click handler you can use to track clicks of elements and then do
something.

 Angular’s click handler is accessed by adding (click) to the element and giving it
an Angular expression. This expression could be one that calls a public member in the
component class or any other kind of valid expression. You want to set formVisible to
true when the Add Review button is clicked and false when the Cancel button is
clicked.

 In location-details.component.html, change the Add Review button from an <a>
tag to a <button>, removing the href attribute and replacing it with a (click) setting
formVisible to be true:

<button (click)="formVisible=true" class="btn btn-primary float-right">Add
review</button>

In a similar way, add a (click) to the Cancel button, setting formVisible to be false:

<button type="button" (click)="formVisible=false" class="btn btn-default
float-right">Cancel</button>

With those click handlers in place, you can use the two buttons to show and hide the
review form, using the formVisible property of the component to keep track of the
status. The final thing you need to do is hook up the form so that when it’s submitted,
a review is added.

10.2.2 Sending submitted form data to an API

Now is the time to make your review form work and add a review to the database when
it’s submitted. To get to this point, you have to complete a few steps:

1 Add a new member to your data service to POST new reviews to the API.
2 Have Angular handle the form when it’s submitted.
3 Validate the form so that only complete data is accepted.
4 Send the review data to your service.
5 Push the review into the list in the Details page.

You’ll start with step 1.

STEP 1: UPDATING THE DATA SERVICE TO ACCEPT NEW REVIEWS

To use the form to post review data, you need to add a method to your data service
that talks to the correct API endpoint and can post the data. You’ll call this new
method addReviewByLocationId and have it accept two parameters: a location ID
and the review data.

326 CHAPTER 10 Building a single-page application with Angular: The next level

 The contents of the method are the same as the others, except you’ll use post
instead of get to call the API. The following listing shows the new method to be added
to loc8r-data.service.ts.

public addReviewByLocationId(locationId: string, formData: any): Promise<any> {
 const url: string = `${this.apiBaseUrl}/locations/${locationId}/reviews`;
 return this.http
 .post(url, formData)
 .toPromise()
 .then(response => response as any)
 .catch(this.handleError);
}

Brilliant; now you’ll be able to use this method from your component when you’ve got
the form handling sorted. Now move on to step 2.

STEP 2: ADDING THE ONSUBMIT FORM HANDLER

When working with a form in HTML, you typically have an action to tell the browser
where to send the data and a method describing which HTTP verb to use. You may
also have an onSubmit event handler if you want to do anything with the form data by
using JavaScript before it’s sent.

 In an Angular SPA, you don’t want the form to submit to a different URL, taking
you to a new page. You want Angular to handle everything, so you’ll remove the form
element’s action="" attribute and replace it with Angular’s ngSubmit event handler
to call a public member in the component. The following code snippet shows how the
event handler is used, adding it to the form definition, calling a function in the com-
ponent that you’ll write in a moment:

<form (ngSubmit)="onReviewSubmit()">

This line calls a public method on the component called onReviewSubmit when the
form is submitted. You need to create this method, so you’ll add a simple method to
location-details.component.ts to create a console log when the form is submitted:

public onReviewSubmit(): void {
 console.log(this.newReview);
}

Because you bound all the form fields to properties of newReview, this console log out-
puts all the data submitted. Now that you can capture the form data, you’ll add some
validation in step 3 so that only complete data is accepted.

STEP 3: VALIDATING THE SUBMITTED FORM DATA

Before you blindly send every form submission to the API to save to the database, you
want to do some quick validation to ensure that all the fields are filled in. If any of
them aren’t filled in, you’ll display an error message. Your browser may prevent forms
from being submitted with empty required fields; if this is the case for you, temporar-
ily remove the required attribute from the form fields to test the Angular validation.

Listing 10.15 New public member for adding reviews in loc8r-data.service.ts

327Working with forms and handling submitted data

 When a form is submitted, you’ll start by removing any existing error messages
before checking whether each data item in the form is truthy (that is, any form of
true value). If any of the checks returns false—that is, a field has no data—you’ll set
a form error message in the component. If all the data exists, you’ll continue to log it
to the console as before.

 The following listing shows the new validation member you need to add to location-
details.component.ts and how you need to change the onReviewSubmit function to
use it.

public formError: string;

private formIsValid(): boolean {
 if (this.newReview.author && this.newReview.rating
 ➥&& this.newReview.reviewText) {
 return true;
 } else {
 return false;
 }
}

public onReviewSubmit():void {
 this.formError = '';
 if (this.formIsValid()) {
 console.log(this.newReview);
 } else {
 this.formError = 'All fields required, please try again';
 }
}

Now that you’re creating an error message, you want to show it to users when it’s gen-
erated. For this task, you’ll add in a new Bootstrap alert div to the form template and
bind the message as the content. You want to show the div only when there’s an error
message to display, so use the familiar *ngIf directive to handle this task, checking
whether formError has a value.

 The addition you need to make to the review form template, adding the alert near
the top of the form, looks like this:

<h4>Add your review</h4>
<div *ngIf="formError" class="alert alert-danger" role="alert">
 {{ formError }}
</div>
<div class="form-group row">

Now, if you click the Submit button without adding details to the form, you’ll get an
alert, something like figure 10.8.

 So you’ve got invalid data covered. Next, you’ll deal with valid data, and send it to
the API.

Listing 10.16 Adding validation to the review form in location-details.component.ts

Declares the formError variable

Private member to
check that all form
fields have content

Resets any
existing error
messages

If form validation passes,
log submits data to console

Otherwise, sets
an error message

328 CHAPTER 10 Building a single-page application with Angular: The next level

STEP 4: SENDING THE FORM DATA TO THE DATA SERVICE

Your form data is being posted, and you’ve got a data service ready to post it to the
API. Now hook these two tasks up. You’ll use the data service as you’ve done before;
using this new method is no different.

 But first, you need to import the data service into location-details.component.ts
and add it to the decorator.

import { Component, Input, OnInit } from '@angular/core';

import { Location } from '../home-list/home-list.component';
import { Loc8rDataService } from '../loc8r-data.service';

@Component({
 selector: 'app-location-details',
 templateUrl: './location-details.component.html',
 styleUrls: ['./location-details.component.css']
})

In the same file, you also need to add the service to the constructor so that you can
use it:

Listing 10.17 Importing and providing the data service to location-details.component.ts

Figure 10.8 When a user tries to submit an incomplete form, an error
message is displayed.

329Working with forms and handling submitted data

constructor(private loc8rDataService: Loc8rDataService) { }

With the service now available in the component, you can call your new addReviewBy-
LocationId method. The method expects the location ID and review details, and
resolves a Promise, which returns the review record as saved in the database, as shown
in the next listing. To validate that it’s working, you’ll also add a console log output-
ting the returned review.

public onReviewSubmit():void {
 this.formError = '';
 if (this.formIsValid()) {
 console.log(this.newReview);
 this.loc8rDataService.addReviewByLocationId(this.location._id,
 ➥this.newReview)
 .then(review => {
 console.log('Review saved', review);
 });
 } else {
 this.formError = 'All fields required, please try again';
 }
}

Now you can send reviews to the database and see the console logs as demonstrated in
figure 10.9. Note the createdOn and _id in the console log that are generated by
Mongoose when the record is saved.

Listing 10.18 Sending new reviews to the service in location-details.component.ts

Calls the data service
method, passing the location

ID and new review data

The method resolves a promise,
returning the saved review.Logs the

saved
review

data

Figure 10.9 Console logs validating that reviews are being added to the database

330 CHAPTER 10 Building a single-page application with Angular: The next level

One last thing to make it slick: push the submitted review to the list underneath the
form. When the review is sent, you want to hide the form and add the review to the list
that the user can see.

STEP 5: UPDATING THE LIST OF REVIEWS AND HIDING THE FORM

Displaying the new review is a simple task, fortunately. You’ve got the list of reviews as
an array, which is already sorted most recent first. Now you’ll need to use the native
JavaScript unshift method to add the new review to the first spot in the array.

 To hide the form, you can change formVisible to false, as that’s what’s con-
trolling the *ngIf on the form. While you’re at it, you can reset the values of the form
so that it becomes blank again. The following listing shows all the additions you need
to put in location-details.component.ts.

private resetAndHideReviewForm(): void {
 this.formVisible = false;
 this.newReview.author = '';
 this.newReview.rating = 5;
 this.newReview.reviewText = '';
}

public onReviewSubmit():void {
 this.formError = '';
 if (this.formIsValid()) {
 console.log(this.newReview);
 this.loc8rDataService.addReviewByLocationId(this.location._id,
 ➥this.newReview)
 .then(review => {
 console.log('Review saved', review);
 let reviews = this.location.reviews.slice(0);
 reviews.unshift(review);
 this.location.reviews = reviews;
 this.resetAndHideReviewForm();
 })
 } else {
 this.formError = 'All fields required, please try again';
 }
}

That’s it, almost. This code won’t work until reviews is in the class definition for the
Location type, so you’ll add it as an array of type any in home-list.component.ts like
this:

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: string[];
 reviews: any[];
}

Listing 10.19 Hiding the form and showing the review in location-details.component.ts

A new private member to
hide and reset the form

Updates the reviews in the
location object, changing
the array reference, and
Angular updates the page.
If you manipulate the array
directly, the page doesn’t
update.

Calls the private
member to hide

and resets the
form

331Improving the architecture

That really is it. Your Angular SPA is complete and fully functional. Well done! But you
can do a couple of things to improve the architecture and follow some best practices.

10.3 Improving the architecture
You’ve got a fully functioning SPA, which is awesome! But before you use it instead of
the Express front end, you can improve the architecture by taking the routing config-
uration out of the app.module.ts file and the location class definition out of the
home-list.component.ts file.

10.3.1 Using a separate routing-configuration file

Your first mission for improving the architecture and following an Angular best prac-
tice is moving the routing configuration into a separate file. Why is this a best
practice? It largely comes down to separation of concerns. The purpose of the
app.module.ts file is to tell the Angular compiler all about the app and the files it
needs. If you have only a couple of routes, it’s okay to keep them in the app.module.ts
file, but if you add more routes, they eventually take over the file and mask the origi-
nal purpose.

 You’ve got three routes in your application at the moment, but you’ll explore this
best practice by moving the routing configuration into a separate file. You’ll add more
to this file when you look at authentication in chapter 11.

CREATING A ROUTING-CONFIGURATION FILE

You can use the Angular CLI to generate the routing-configuration file, this time
using the module template. Run the following command in terminal in the app_public
folder:

$ ng generate module app-routing

This command generates an app-routing folder (in src/app) containing an app-routing
.module.ts file. You haven’t seen one of these files before, so the next listing shows the
default content of this file.

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';

@NgModule({
 imports: [
 CommonModule
],
 declarations: []
})
export class AppRoutingModule { }

To add the application routing to this file, you need to do the following:

1 Import the router module and routes type definition from Angular router.
2 Import the components used for each of the three routes.

Listing 10.20 The default module template of app-routing.module.ts

332 CHAPTER 10 Building a single-page application with Angular: The next level

3 Define the paths and components for the routes.
4 Add the routes (using routerModule.forRoot) to the module imports.
5 Export RouterModule so the setup can be used.

This process seems like quite a few steps, but it doesn’t use anything you haven’t
already seen. You’ve used the router module and defined routes before; now you’re
putting them in a different place. All the updates to the app-routing.module.ts are
shown in the following listing.

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RouterModule, Routes } from '@angular/router';

import { AboutComponent } from '../about/about.component';
import { HomepageComponent } from '../homepage/homepage.component';
import { DetailsPageComponent } from '../details-page/details-

➥page.component';

const routes: Routes = [
 {
 path: '',
 component: HomepageComponent
 },
 {
 path: 'about',
 component: AboutComponent
 },
 {
 path: 'location/:locationId',
 component: DetailsPageComponent
 }
];

@NgModule({
 imports: [
 CommonModule,
 RouterModule.forRoot(routes)
],
 exports: [RouterModule],
 declarations: []
})
export class AppRoutingModule { }

That’s all there is to a routing configuration file. Next, you need to update the main
app.module.ts file to use this file instead of the inline route definitions.

TIDYING UP THE APP.MODULE.TS FILE

You don’t want or need the route definitions in two files, so you can delete them from
the main module file. You also don’t need to import the router from Angular router, so
you can delete that line too. Your new routing-configuration file handles importing it.

Listing 10.21 Completing the routing configuration in app-routing.module.ts

Imports the router
module and route
type definition

Imports the
components

for the routes

Defines the routes
as an array of
type Routes . . .

. . . and imports them,
using the router module

Exports the router module

333Improving the architecture

 Although you’re deleting the routes, you do need to keep the imports for all the
components. These imports are still required by app.module.ts, as this file tells the
compiler what to use and where to find the source files.

 Finally, you need to add an import for the new router file instead of the inline con-
figuration. This import is normally placed between the core imports and component
imports so it’s easy to spot when you’re looking in the file. Also, add the router file to
the imports part of the decorator.

 The following listing shows the final app.module.ts with all the additions and dele-
tions having been made.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule, ReactiveFormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/http';

import { AppRoutingModule } from './app-routing/app-routing.module';

import { HomeListComponent } from './home-list/home-list.component';
import { RatingStarsComponent } from './rating-stars/rating-stars.component';
import { DistancePipe } from './distance.pipe';
import { FrameworkComponent } from './framework/framework.component';
import { AboutComponent } from './about/about.component';
import { HomepageComponent } from './homepage/homepage.component';
import { PageHeaderComponent } from './page-header/page-header.component';
import { SidebarComponent } from './sidebar/sidebar.component';
import { HtmlLineBreaksPipe } from './html-line-breaks.pipe';
import { LocationDetailsComponent } from

➥'./location-details/location-details.component';
import { DetailsPageComponent } from './details-page/details-page.component';
import { MostRecentFirstPipe } from './most-recent-first.pipe';

@NgModule({
 declarations: [
 HomeListComponent,
 RatingStarsComponent,
 DistancePipe,
 FrameworkComponent,
 AboutComponent,
 HomepageComponent,
 PageHeaderComponent,
 SidebarComponent,
 HtmlLineBreaksPipe,
 LocationDetailsComponent,
 DetailsPageComponent,
 MostRecentFirstPipe
],
 imports: [
 BrowserModule,
 FormsModule,
 ReactiveFormsModule,
 HttpClientModule,

Listing 10.22 Removing inline route definitions from app.module.ts

Imports your new routing
module, containing the

routing configuration for
the application

334 CHAPTER 10 Building a single-page application with Angular: The next level

 AppRoutingModule
],
 providers: [],
 bootstrap: [FrameworkComponent]
})
export class AppModule { }

That’s all there is to it. The application will work as it did before, but we’re sure you’ll
agree that both the routing configuration and main app module files are improved by
this change. For a small application, you may not want or need to do this, but if you’re
planning something big, it’s definitely worthwhile.

 Next, you’ll improve your location class definition.

10.3.2 Improving the location class definition

Your definition for the location class is currently held in home-list.component.ts. This
location stems from when you created the homepage listing component in chapter 8; it
was the only component doing anything in the application. Now, you’re importing the
location class definition in many places in the application; it’s becoming a key part of
the application in its own right. As such, it makes sense to separate it into its own file.

 When you do, you’ll also add the missing properties, as it currently defines only
the properties that were used in the homepage listing; things like reviews and opening
times are missing. Also, you’ll create a nested class for reviews that you can use in the
class definition and in the application when you’re dealing directly with reviews.

 When all this is done, you’ll have a much better TypeScript application.

DEFINING THE LOCATION CLASS IN ITS OWN FILE

The first step is creating the file for the class definition, using the Angular CLI again:

$ ng generate class location

This command generates a file, location.ts, in the src folder of the application. And
it’s sparse! It should look something like this:

export class Location {
}

It’s a little bit underwhelming, but at least it has nothing complex or unexpected. All
you need to do is get the Location definition from home-list.component.ts and paste
it in.

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: string[];
 reviews: any[];
}

Listing 10.23 Adding the basic Location class definition in location.ts

Adds it as an import
for the app module

335Improving the architecture

That’s still pretty simple. The definition for the Location class is now in its own file.
You’d better start using it.

USING THE NEW CLASS FILE WHERE NEEDED

The first place to use the new class definition file is home-list.component.ts, as that’s
where it was initially defined. To do this, delete the original inline definition from this
file and replace it with a simple import command:

import { Component, OnInit } from '@angular/core';
import { Loc8rDataService } from '../loc8r-data.service';
import { GeolocationService } from '../geolocation.service';

import { Location } from '../location';

That replaces the location definition in the homepage listing, which is a good start.
But if you’re still running ng serve at this point, you’ll get Angular compilation errors
along these lines:

Failed to compile.
/FILE/PATH/TO/LOC8R/app_public/src/app/location-details/location-

details.component.ts (3,10): Module
'"/FILE/PATH/TO/LOC8R/app_public/src/app/home-list/home-list.component"'
has no exported member 'Location'.

This tells you that location-details.component.ts was using the Location class
exported from home-list, so you need to update that too. Change the file you’re
importing Location from:

import { Component, Input, OnInit } from '@angular/core';

import { Location } from '../location';
import { Loc8rDataService } from '../loc8r-data.service';

When you’re done, do the same in the other places from which Location is imported:
details-page.component.ts and loc8r-data.service.ts. Remember that the path to
Location is preceded by one dot rather than two when you’re importing it into loc8r-
data.service.ts, due to the relative locations of these files.

 Next, add the missing properties.

ADDING MISSING PATHS FOR THE LOCATION CLASS DEFINITION

When you use class properties in your application that you don’t declare in the class
definition, you run the risk of having problems at build time, even though it may work
fine under ng serve.

 You’re currently missing coords and openingTimes from your class definition.
coords is a simple addition—an array of numbers. openingTimes is a different deal,
though, as that’s a complex object in its own right.

 Remember how with Mongoose, you can use nested schemas to define subdocu-
ments? (See chapter 5 if you don’t.) Well, you can do the same thing with classes in
TypeScript. Listing 10.24 shows how to update the location.ts file to define a class
called OpeningTimes, and how to define a property of the same name on the Location
class to be an array of the OpeningTimes type. It also adds the coords property.

336 CHAPTER 10 Building a single-page application with Angular: The next level

class OpeningTimes {
 days: string;
 opening: string;
 closing: string;
 closed: boolean;
}

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;
 facilities: string[];
 reviews: any[];
 coords: number[];
 openingTimes: OpeningTimes[];
}

Looking good. The class definition has all the properties you need and use. Note that
the OpeningTimes class isn’t available to be imported into other files by itself, as it isn’t
declared as an export. Although this has everything you need, you can improve the
reviews property definition.

DEFINING A REVIEW CLASS, AVOIDING THE ‘ANY’ TYPE

You’ve got reviews defined as an array of type any. This should be a bit of a red flag,
as best practice in TypeScript is to try to avoid using any wherever possible, as it weak-
ens the class structure.

 Here, it’s possible to avoid using any, as you know the schema of a review, and
you’ve seen how to define and use nested classes. Unlike with the OpeningTimes defi-
nition, you’ll want to use the Review class definition elsewhere in the application, so
you’ll declare this one as an export.

 The following listing shows how to define the Review class, export it, and use it
inside the Location class definition. Note that the source code should also include
the OpeningTimes definition, but we’ve left it out of this listing for brevity.

export class Review {
 author: string;
 rating: number;
 reviewText: string;
}

export class Location {
 _id: string;
 name: string;
 distance: number;
 address: string;
 rating: number;

Listing 10.24 Adding missing properties and a nested class definition to location.ts

Listing 10.25 Defining, using, and exporting a class for reviews in locations.ts

Defines a new
OpeningTimes class

Adds the missing coords
property to Location

Adds the openingTimes property
to the Location class to be an
array of the OpeningTimes class

Defines and exports the
class definition for reviews

337Improving the architecture

 facilities: string[];
 reviews: Review[];
 coords: number[];
 openingTimes: OpeningTimes[];
}

Now your Location class is complete. You’ve got a nested class for reviews, which is
available to be used elsewhere, and another nested class for opening times, which is
available only to this file. One final thing to tighten your use of the Location class is to
use the Review class within the application.

EXPLICITLY IMPORTING AND USING THE REVIEW CLASS WHERE NEEDED

You have two places where you could make good use of the Review class: in the loca-
tion details component, where you use the form to add new reviews, and in your data
service, where you push the new review data to the API.

 In the files for these components (location-details.component.ts and loc8r-
data.service.js), update the Location import to also import the Review class, like this:

import { Location, Review } from '../location';

There are two places in the location details component where you can use the Review
definition to add types to your variables, as shown in the next listing. The first place is
when you define newReview and give it default values, and the second is when the
saved review is returned from the API.

public newReview: Review = {
 author: '',
 rating: 5,
 reviewText: ''
};

public onReviewSubmit():void {
 this.formError = '';
 if (this.formIsValid()) {
 console.log(this.newReview);
 this.loc8rDataService.addReviewByLocationId(this.location._id,
 ➥this.newReview)
 .then((review: Review) => {
 console.log('Review saved', review);
 let reviews = this.location.reviews.slice(0);
 reviews.unshift(review);
 this.location.reviews = reviews;
 this.resetAndHideReviewForm();
 })
 } else {
 console.log('Not valid');
 this.formError = 'All fields required, please try again';
 }
}

Listing 10.26 Updating location-details.component.ts to use the new Review type

Declares location reviews
to be of type Review

Adds the Review type to
the newReview definition

The saved review
returned from the
API should also be
of type Review.

338 CHAPTER 10 Building a single-page application with Angular: The next level

In a similar way, you can tighten the addReviewByLocationId method in your data ser-
vice by specifying that the inputs and outputs should be of type Review, changing
them from any. The three changes are shown in the following listing.

public addReviewByLocationId(locationId: string, formData: Review)

➥: Promise<Review> {
 const url: string = `${this.apiBaseUrl}locations/${locationId}/reviews`;
 return this.http
 .post(url, formData)
 .toPromise()
 .then(response => response.json() as Review)
 .catch(this.handleError);
}

That wasn’t too painful, and now you have a much tighter application following some
good TypeScript and Angular best practices. Using type definitions is helpful for pre-
venting unexpected mistakes when passing around data; it’s easy to forget which
parameter is supposed to be a string or an array, which properties an object should
have, and so on. This approach saves you from these problems, which is especially
helpful when someone else is trying to read your code or you return to it after a break
and forget the finer details.

 You’re now in a position where you’re happy with your SPA and want to use it as
the front end of your Loc8r application, replacing the current Express version.

10.4 Using the SPA instead of the server-side application
In the final section of this chapter, you’ll build your Angular app for production and
update Express to deliver this app as the front end instead of the Pug templates. As
you go, you’ll make adjustments to ensure direct access to deep URLs in the applica-
tion without compromising the API routing.

 Before you do any of that, you’ll prepare the application for your production envi-
ronment, by updating the environments/environment files. If you take a look in the
environments folder, you’ll see two files: environment.ts and environment.prod.ts.
Both of these files need to be updated. In environment.ts, make the following change
(in bold).

export const environment = {
 apiBaseUrl: 'http://localhost:3000/api',
 production: false
};

You also need to make a similar change in environments/environment.prod.ts.

Listing 10.27 Using the Review type to tighten the definitions in loc8r-data.service.ts

Listing 10.28 Adding an environment variable to the development environment

The incoming form
data should be of type
Review, as should the
expected return value

of the method.
The response of the API

should also be of type
Review, not any.

New environment
variable for development

339Using the SPA instead of the server-side application

export const environment = {
 apiBaseUrl: <Heroku API URL>,
 production: true
};

Instead of using the localhost address that has been used throughout development,
you’ll use the Heroku URL for your deployed application. Once this is done, you’ll
update loc8r-data.service.ts to use the newly minted environment variable.

 In the import block at the top of loc8r-data.service.ts file, add the following:

import { environment } from '../environments/environment';

This means that you can now replace

private apiBaseUrl = 'http://localhost:3000/api';

with

private apiBaseUrl = environment.apiBaseUrl;

With this change, Angular will choose the correct environment when you build, and
you’re now ready build your application for deployment. As you did at the end of
chapter 8, run the ng build command in the app_public folder in terminal, specify-
ing options to flag it as a production build with the output folder of build:

$ ng build --prod --output-path build

When that code finishes running, you’ll find a compiled version of the SPA in the
folder app_public/build. This folder has everything the SPA needs to run, including
the HTML page, JavaScript files, CSS, and fonts.

 Next, you’ll tell Express to use it.

10.4.1 Routing Express requests to the build folder

To get Express to serve the Angular app for the front end, you need to do two things:
disable all the previous routes for the front-end application, and tell Express that your
Angular build folder should serve static files.

 To disable the Express-based routes for the front end, find these two lines in app.js,
and delete them or comment them out:

const indexRouter = require('./app_server/routes/index');

and

app.use('/', indexRouter);

You also no longer need the /public folder for serving static files, as all the files the
Angular app needs are sitting inside the Angular build folder. Don’t delete that line,
though, as you need Express to serve the contents of the build folder as static files.
Instead, find the following line in app.js,

app.use(express.static(path.join(__dirname, 'public')));

Listing 10.29 Adding an environment variable to the production environment

Adds the Heroku URL to the API endpoints
(the Heroku URL with /api appended)

340 CHAPTER 10 Building a single-page application with Angular: The next level

and add a similar line below it to use the app_public/build folder, like so:

app.use(express.static(path.join(__dirname, 'app_public', 'build')));

Run the Express app, if it’s not already running under nodemon, and head to local-
host:3000 in the browser. Everything you see there now is the Angular app, which you
can validate by inspecting the elements of the page, as shown in figure 10.10.

With these changes, when the homepage is requested, Express serves the first match-
ing resource, which is the index.html file in the app_public/build folder. It’s no lon-
ger matching an Express route and using a Pug template.

 This works great for the homepage, and you can navigate through the app fine.
But if you take the URL for the About page or a Details page and paste it into the URL
bar, you get a 404 error. You need to fix this inability to access deep URLs directly, as
it’s not a useful site if you allow people to come in only through the homepage.

10.4.2 Making sure that deep URLs work

This routing problem shouldn’t be a great surprise. You’ve told Express to serve a
static file for the homepage, but there’s no about folder inside the build folder, so
Express couldn’t possibly know to show the Angular app.

Figure 10.10 The homepage of the running Express app now delivers the Angular SPA.

341Summary

 A simple way to address this problem is to let Express try to match the routes
against everything it knows to exist and then add a catchall route at the end to serve
anything that hasn’t matched yet. This catchall route can be defined by using a * as a
wildcard for unmatched GET requests and should respond by sending the index.html
file for the Angular app.

 The following snippet shows how to add the catchall route after all the other route-
matching statements in app.js, in this case after the definition for the API routes:

app.use('/api', apiRoutes);
app.get('*', function(req, res, next) {
 res.sendFile(path.join(__dirname, 'app_public', 'build', 'index.html'));
});

With this code in place, if any URL isn’t matched by Express in the Angular build
folder for the API routes, it responds with the index page for the Angular app. This is
good, but you can make it a bit better.

 Rather than use a * to match everything, you can use a regular expression to
define a pattern to match a URL (or set of URLs) that you want to apply the routing
to. The regular expression to match the /about route is simple; you need to add start
and end string delimiters and escape the forward slash so that it looks like ^\/about$.

 The regular expression for a Details page is a bit more complicated, due to the
location ID. The location ID is a MongoDB ObjectId that is a 24-character, seemingly
random mixture of numbers and lowercase letters. A regular expression to match
these characters is [a-z0-9]{24}. Using the same approach as the About page’s regu-
lar expression, the complete one for the location details pages is ^\/location\/[a-
z0-9]{24}$.

 The following snippet shows how to update the catchall route in app.js with a com-
bined regular expression to match either the About page or a location details page:

app.get(/(\/about)|(\/location\/[a-z0-9]{24})/, function(req, res, next) {
 res.sendFile(path.join(__dirname, 'app_public', 'build', 'index.html'));
});

That’s a good change, as now Express will send the Angular app as a response only
when a valid URL is entered.

 With that, your SPA is now fully working, being served up by Express, and talking
to the Express API, which in turn is getting data in and out of MongoDB. You’ve got a
full MEAN stack application. Congratulations!

 In chapters 11 and 12, you’ll see how to manage authenticated sessions by adding
the ability for users to register and log in before leaving reviews.

Summary
In this chapter, you learned

 That URL parameters can be used to pass data from routes to components and
services

 That services are used to query the API

342 CHAPTER 10 Building a single-page application with Angular: The next level

 How Angular templates have display logic in the form of *ngIf and ngSwitch
 How to create custom pipes and use them
 About best practice for placing routing configuration in a separate file to

improve the architecture
 About the best practice for creating standalone class definitions, including

nested classes, and for improving the use of custom type definitions through
the application

 How to get Express to deliver an Angular application instead of server-side
routes for certain URL requests

Part 4

Managing authentication
and user sessions

The ability to identify individual users is a key piece of functionality for
most web applications. Visitors should be able to register their details so that
they can log back in as returning users at a later date. When users are registered
and logged in, the application should be able to make use of the data.

 In chapter 11, you look at how authentication works in the MEAN stack. The
focus is on creating an authentication API that you’ll use to power the user-
centered parts of the Angular SPA.

 Chapter 12 rounds things off by integrating the API you created in chapter
11 and updates the Angular application to take advantage of the new capabilities
introduced. We also expand on some of the themes and patterns that we intro-
duced to you in chapter 10.

345

Authenticating users,
managing sessions,
and securing APIs

In this chapter, you’ll improve on the existing application by making users log in
before they can leave reviews. This topic is an important one, as many web applica-
tions need to let users log in and manage a session.

 Figure 11.1 shows where you are in the overall plan, now working with the Mon-
goDB database, Express API, and Angular single-page application (SPA).

 Your first stop is an overview of how to approach authentication in a MEAN
stack application before updating Loc8r one piece at a time, working through the
architecture from back end to front end. You’ll update the database and data sche-
mas before upgrading the API and finally modifying the front end. By the end of

This chapter covers
 Adding authentication in the MEAN stack

 Using Passport.js to manage authentication in Express

 Generating JSON Web Tokens in Express

 Registering and logging in a user

 Securing API endpoints in Express

346 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

the chapter, you’ll be able to register new users, log them in, maintain a session, and
perform actions that only logged-in users can complete.

11.1 How to approach authentication in the MEAN stack
How to manage authentication in a MEAN application is viewed as one of the great
mysteries of the stack, particularly when using an SPA, largely because the entire appli-
cation code is delivered to the browser. So how do you hide some of it? How do you
define who can see or do what?

11.1.1 Traditional server-based application approach

Much of the confusion arises because people are familiar with the traditional
approach of application authentication and user session management.

 In a traditional setup, the application code sits and runs on the server. To log in, a
user enters their username and password in a form that gets posted to the server.

Database API

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Angular SPA

Angular

Express
Node.js

MongoDB

Working with the MongoDB datastore;
the Node.js/Express API and the
Angular SPA can be used to bring
authentication to the application.

Express applicationEncapsulating
Express app

Express
Node.js
Angular

Figure 11.1 This chapter adds an authentication system to the application that touches most
parts of the architecture, such as the database, API, and front-end SPA.

347How to approach authentication in the MEAN stack

Then the server checks against a database to validate the login details. Assuming that
the login is okay, the server sets a flag or session parameter in the user’s session on the
server to declare that the user is logged in.

 The server may or may not set a cookie on a user’s browser with the session infor-
mation. This is common but isn’t technically required to manage the authenticated
session; it’s the server that maintains the vital session information. This flow is illus-
trated in figure 11.2.

After this initial handshake and with an established session, when a user requests a
secure resource or tries to submit some data to the database, the server validates their
session and decides whether they can continue. Figure 11.3 shows how a traditional
server setup manages access to secured resources by validating the user session,
returning the requested resource when authorization status has been determined.

Figure 11.4 continues with this theme, where the user has requested access to
read/update/delete a resource contained within the application database, uses the
provided data, and has a valid session.

 That’s what the traditional approach looks like, but does it work for the MEAN
stack?

Database
Browser sends
credentials to server

Browser

Server sets
cookie on browser

Server
Server queries database
with credentials

Database returns
user detailsServer updates

session information

Figure 11.2 In a traditional server application, the server validates user credentials stored
in the database and adds them to user’s session on the server.

Server Server validates
user session

Browser Browser sends cookie
with request for new page

Server returns
page to browser

Figure 11.3 In a traditional server application, the server validates a user’s session
before continuing with a secure request.

348 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

11.1.2 Using the traditional approach in the MEAN stack

This traditional approach isn’t a neat fit for the MEAN stack. The approach relies on
the server to reserve some resources for each user so it can maintain the session infor-
mation. You may remember from all the way back in chapter 1 that Node and Express
don’t maintain sessions for each user; the entire application for all users runs on a sin-
gle thread.

 That said, you can use a version of this approach in the MEAN stack if you’re using
a server-side application based on Express, like the one you built in chapter 7. Rather
than using server resources to maintain session information, Express can use a data-
base to store the data. MongoDB can be used; another popular option is Redis, which
is a lightning-fast key-value store.

 We’re not going to cover that approach in this book. Instead, we’ll look at the
more complicated scenario of adding authentication to an SPA hitting an API for
data.

11.1.3 Full MEAN stack approach

In this section, you’ll see how authentication fits in the MEAN stack and how easy it is
to use JSON Web Tokens and middleware like Passport.js.

 Authentication in the MEAN stack poses two problems:

 The API is stateless, as Express and Node have no concept of user sessions.
 The application logic is already delivered to the browser, so you can’t limit the

code that gets delivered.

The logical solution to these problems is to maintain some kind of session state in the
browser and let the application decide what it can and can’t display to the current
user. This is the only fundamental change in approach. A few technical differences
remain, but this is the only major shift.

 A great way to securely keep user data in the browser to maintain a session is to use
a JSON Web Token (JWT). In this section, we’ll use JWT and token interchangeably.
You’ll look at these in more detail in section 11.4 when you start creating them, and
further in chapter 12 when you consume them in your Angular application. In essence,

Server DatabaseServer validates
user session

Server updates
data in database

Browser sends cookie
and data to server

Browser

Figure 11.4 In a traditional server application, the server validates a user’s session
before pushing data to a database.

349How to approach authentication in the MEAN stack

a JWT is a JSON object encrypted into a string that’s meaningless to the human eye but
that can be decoded and understood by both the application and the server.

 The next section covers how this looks at a high level, starting with the login
process.

MANAGING THE LOGIN PROCESS

Figure 11.5 illustrates the flow of a login process. A user posts their credentials to the
server (via an API); the server validates these credentials by using the database and
returns a token to the browser. The browser saves this token to reuse it later.

This approach is similar to the traditional approach, but instead of storing a user’s ses-
sion data on the server, that data is stored in the browser.

CHANGING VIEWS DURING AN AUTHENTICATED SESSION

While a user is in a session, they’ll need to be able to change a page or view, and the
application will need to know what they should be allowed to see. So, as illustrated in
figure 11.6, the application will decode the JWT and use the information to show the
appropriate data to the user.

This is where the change from the traditional approach is obvious. The server is
unaware that users are doing anything until they need to access the API and database.

DatabaseServerBrowser sends
credentials to server

Server queries database
with credentials

Database returns
user details

Server generates
JSON web token

Server sends
token to browser

Browser

Figure 11.5 The login flow in a MEAN application, returning a JSON Web Token to the
browser after the server validates user credentials

User Application
validates token

User clicks to
change view

Browser displays
page to user

Browser

Figure 11.6 Using data inside the JWT, the SPA can determine which resources a
user can use or see.

350 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

SECURELY CALLING AN API
If parts of the application are restricted to authenticated users, it’s quite likely that
some database actions can be used only by authenticated users. As the API is stateless,
it has no idea of who’s making each call unless you tell it. The JWT comes back into
play here. As figure 11.7 shows, the token is sent to the API endpoint, which decodes
the token before validating whether the user is permitted to make that call.

That covers the approach at a high level, and you’ve got a good idea of what you’re
aiming for. You’ll make the first step toward adding an authentication mechanism into
your Loc8r application by setting up MongoDB to store user details.

11.2 Creating a user schema for MongoDB
Usernames and passwords naturally have to be stored in the database. In your case,
you’ll use a User collection. To do that in the MEAN stack, you need to create a Mon-
goose schema. Passwords should never—absolutely never—be stored in a database as
plain text, as doing so presents a massive security breach if the database is ever com-
promised. You’ll have to do something else as you generate the schema.

11.2.1 One-way password encryption: Hashes and salts

The thing to do here is run a one-way encryption on the password. One-way encryp-
tion prevents anyone from decrypting the password, while still making it easy to vali-
date a correct password. When a user tries to log in, the application can encrypt a
given password and see whether it matches the stored value.

 Encrypting isn’t enough, though. If several people used the word password as their
password (it happens!) the encryption for each is the same. Any hackers looking
through the database could see this pattern and identify potentially weak passwords.

 This is where the concept of a salt comes in. A salt is a random string generated by
the application for each user that’s combined with the password before encryption.
The resulting encrypted value is called a hash, as illustrated in figure 11.8.

 The salt and the hash are both stored in the database, rather than just a single pass-
word field. In this approach, all hashes should be unique, and passwords are well
protected.

Browser

Browser sends token
and data to server

Server validates
user token

Server updates
data in database

Server Database

Figure 11.7 When calling an authenticated API endpoint, the browser sends the JWT
along with the data; the server decodes the token to validate a user’s request.

351Creating a user schema for MongoDB

11.2.2 Building the Mongoose schema

You’ll start by creating the file that will hold the schema and require it into the appli-
cation. In the folder app_api/models/, create a new file called users.js.

 Next, you’ll pull that file into the application by referencing it in the db.js file in
the same folder. It should be required alongside the existing line that brings in the
locations model, as shown in the following code snippet, at the bottom of the file:

// BRING IN YOUR SCHEMAS & MODELS
require('./locations');
require('./users');

Now you’re ready to build the basic schema.

11.2.3 Basic user schema

What do you want in the user schema? You know that you need a display name to show
on reviews, plus a hash and a salt for the password. In this section, you’ll also add an
email address and make it the unique identifier that a user logs in with.

 In the new user.js file, you’ll require Mongoose and define a new userSchema.

const mongoose = require('mongoose');
const userSchema = new mongoose.Schema({
 email: {
 type: String,
 unique: true,
 required: true
 },
 name: {
 type: String,
 required: true
 },
 hash: String,
 salt: String
});

mongoose.model('User', userSchema);

Listing 11.1 Basic Mongoose schema for users

HashEncryption

User password

and

Random salt

Figure 11.8 A hash is created by combining a user’s password with a random
salt and encrypting them.

Email should be
required and unique.

Name is also required but
not necessarily unique.

Hash and salt are both strings.

352 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

The email and name are both set from the registration form, but the hash and salt are
both created by the system. The hash, of course, is derived from the salt, and the pass-
word is supplied via the form.

 Next, you’ll see how to set the salt and the hash by using a piece of Mongoose func-
tionality we haven’t touched on yet: methods.

11.2.4 Setting encrypted paths using Mongoose methods

Mongoose allows you to add methods to a schema, which get exposed as model meth-
ods. Such methods give the code direct access to the model attributes.

 The ideal outcome is to be able to do something along the lines of the following
pseudocode.

const User = mongoose.model('User');

const user = new User();

user.name = "User’s name";

user.email = "test@example.com";

user.setPassword("myPassword");

user.save();

Next, you see how to add a method to Mongoose to achieve this purpose.

ADDING A METHOD TO A MONGOOSE SCHEMA

Methods can be added to a schema after the schema has been defined, before the model
is compiled, because it’s regular JavaScript. In the application code, methods are
designed to be used after the model has been instantiated.

 Adding a method to a schema is achieved by chaining onto the .methods object of
the schema. It’s also easy to pass in an argument. The following snippet, for example,
is the outline for the actual setPassword method:

userSchema.methods.setPassword = function (password) {
 this.salt = SALT_VALUE;
 this.hash = HASH_VALUE;
};

Unusually for a snippet of JavaScript, this in a Mongoose method refers to the model
itself. So, in the preceding example, setting this.salt and this.hash in the method
sets them in the model.

 Before you can save anything, though, you need to generate a random salt value
and encrypt the hash. Fortunately, a native Node module is available for that purpose:
crypto.

Listing 11.2 Pseudocode for setting password using Mongoose

Instantiates the user model
Creates a new user

Sets the name and email values

Calls a setPassword method to set the
password. This method allows you to
handle the password hashing in a
controlled and secure manner.

Saves the
new user

353Creating a user schema for MongoDB

USING THE CRYPTO MODULE FOR ENCRYPTION

Encryption is such a common requirement that Node has a built-in module called
crypto. This module comes with several methods for managing the encryption of
data. In this section, we’ll look at the following two:

 randomBytes—To generate a cryptographically strong string of data to use as
the salt.

 pbkdf2Sync—To create the hash from the password and the salt. pbkdf2 stands
for password-based key derivation function 2, an industry standard.

You’ll use these methods to create a random string for the salt and for encrypting the
password and salt into the hash. The first step is to require crypto at the top of the
users.js file:

const mongoose = require('mongoose');
const crypto = require('crypto');

Second, update the setPassword method to set the salt and the hash for users. To set
the salt, you’ll use the randomBytes method to generate a random 16-byte string.
Then, you’ll use the pbkdf2Sync method to create the encrypted hash from the pass-
word and the salt. The following listing shows how to use these two functions in con-
junction with each other.

userSchema.methods.setPassword = function (password) {
 this.salt = crypto.randomBytes(16).toString('hex');
 this.hash = crypto

 .pbkdf2Sync(password, this.salt, 1000, 64, 'sha512')
 .toString('hex');
};

Now, when the setPassword method is called and supplied a password, the salt and
the hash are generated for users and added to the model instance. The password is
never saved anywhere and not even stored in memory.

11.2.5 Validating a submitted password

The other aspect of storing a password is being able to retrieve it when users try to log
in; you need to be able to validate their credentials. Having encrypted the password,
you can’t decrypt it, so what you need to do is use the same encryption on the pass-
word the user is trying to log in with and see whether it matches the stored value.

 You can do the hashing and validation in a simple Mongoose method. Add the fol-
lowing method to users.js. It will be called from a controller when a user has been
found with a given email address and return true or false depending on whether the
hashes match.

Listing 11.3 Setting the password in the User model

Creates a random
string for the salt

Creates an encrypted hash

354 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

userSchema.methods.validPassword = function (password) {
 const hash = crypto
 .pbkdf2Sync(password, this.salt, 1000, 64, 'sha512')
 .toString('hex');
 return this.hash === hash;
};

That’s it. Simple, right? You’ll see these methods in action when you generate the API
controllers. The final thing the controller needs help to do is generate a JWT to
include some of the model data.

11.2.6 Generating a JSON Web Token

A JWT (pronounced jot) is used to pass data around, in your case between the API on
the server and the SPA in the browser. A JWT can also be used by the server that gen-
erated the token to authenticate a user when it’s returned in a subsequent request.

 The next section takes a quick look at the parts of a JWT.

THREE PARTS OF A JWT
A JWT is comprised of three random-looking, dot-separated strings. These strings can
be long. Here’s a real-world example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJfaWQiOiI1NTZiZWRmNDhmOTUzOTViMTlhNjc1
ODgiLCJlbWFpbCI6InNpbW9uQGZ1bGxzdGFja3RyYWluaW5nLmNvbSIsIm5hbWUiOiJTaW1v
biBIb2xtZXMiLCJleHAiOjE0MzUwNDA0MTgsImlhdCI6MTQzNDQzNTYxOH0.GD7UrfnLk295
rwvIrCikbkAKctFFoRCHotLYZwZpdlE

This string is meaningless to the human eye, but you should be able to spot the two
dots and therefore the three separate parts. These three parts are

 Header—An encoded JSON object containing the type and the hashing algo-
rithm used

 Payload—An encoded JSON object containing the data, the real body of the
token

 Signature—An encrypted hash of the header and payload, using a secret that
only the originating server knows

Note that the first two parts aren’t encrypted; they’re encoded, so it’s easy for the
browser—or indeed, other applications—to decode them. Most modern browsers
have a native function called atob() that can decode a Base64 string. A sister function
called btoa() can encode to a Base64 string.

 The third part, the signature, is encrypted. To decrypt it, you need to use the secret
that was set on the server. This secret should remain on the server and never be
revealed in public.

 The good news is that there are libraries to deal with all the complicated parts of
the process. In the next section, you’ll install one of these libraries into your applica-
tion and create a schema method to generate a JWT.

Listing 11.4 Validating the submitted password

Hashes the
provided passwordChecks the password

hash against the hash

355Creating a user schema for MongoDB

GENERATING A JWT FROM EXPRESS

The first step in generating a JWT is including an npm module called jsonweb-token
from the command line:

$ npm install --save jsonwebtoken

Then, you require it at the top of the users.js file:

const mongoose = require('mongoose');
const crypto = require('crypto');
const jwt = require('jsonwebtoken');

Finally, you create a schema method, which you’ll call generateJwt. To generate a
JWT, you need to provide the payload—that is, the data—and a secret value. In the
payload, you’ll send the user’s _id, email, and name. You should also set an expiry date
for the token, after which the user will have to log in again to generate a new one.
You’ll use a reserved field in a JWT payload, exp, which expects the expiry data as a
UNIX number value.

 To generate a JWT, call a sign method on the jsonwebtoken library, sending the
payload as a JSON object and the secret as a string. This method returns a token,
which you can return out of the method. The next listing shows everything in place.

userSchema.methods.generateJwt = function () {
 const expiry = new Date();
 expiry.setDate(expiry.getDate() + 7);
 return jwt.sign({
 _id: this._id,
 email: this.email,
 name: this.name,
 exp: parseInt(expiry.getTime() / 1000, 10),
 }, 'thisIsSecret');
};

When this generateJwt method is called, it uses the data from the current user model
to create a unique JWT and return it, as illustrated in figure 11.9.

Listing 11.5 Creating a schema method to generate a JWT

Creates an expiry date object,
and sets it for seven days

Calls the jwt.sign method,
and returns what it returnsPasses the payload

to the method

Includes exp as UNIX
time in secondsSends secret for hashing

algorithm to use

JWT
Create JWT

signature

Signature object

and

Secret hash

Figure 11.9 A JWT is created by combining a signature object—based on
the information you want to store—and a secret hash. The signature is
created and returned as a JWT.

356 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

There’s one problem with this code: the secret shouldn’t be visible, which creates
security concerns. You’ll deal with that problem next.

KEEPING THE SECRET SECRET WITH ENVIRONMENT VARIABLES

If you’re going to be pushing your code around in version control (in GitHub, for
example), you don’t want to have the secret published. Exposing your secret dramati-
cally weakens your security model. With your secret, anybody could issue fake tokens
that your application believes to be genuine. To keep secrets secret, it’s often a good
idea to set them as environment variables.

 Here’s an easy technique that lets you keep track of environment variables in the
code on your machine. First, create a file in the root of the project called .env, and set
the secret as follows:

JWT_SECRET=thisIsSecret

In this case, the secret is thisIsSecret, but it can be whatever you want it to be so
long as it’s a string. Next, you need to make sure that this file isn’t included in any Git
commits by adding a line to the .gitignore file in the project. If you’re following along
with the code from GitHub, this line is already in place; if not, you need to add it. At a
minimum, the .gitignore file should have the following content:

Dependency directory
node_modules
Environment variables
.env

To read and use this new file to set environment variables, you’ll need to install and
use a new npm module called dotenv. Use the following command in terminal:

$ npm install dotenv --save

The dotenv module should be required into the app.js file as the first line in the file,
as shown here:

require('dotenv').load();
const express = require('express');

Now all that remains is to update the user schema to replace the hardcoded secret
with the environment variable, highlighted in bold in the following listing.

userSchema.methods.generateJwt = () => {
 const expiry = new Date();
 expiry.setDate(expiry.getDate() + 7);
 return jwt.sign({
 _id: this._id,
 email: this.email,
 name: this.name,
 exp: parseInt(expiry.getTime() / 1000),
 }, process.env.JWT_SECRET);
};

Listing 11.6 Updating generateJwt with environment settings

Don’t keep secrets in code; use
environment variables instead.

357Creating an authentication API with Passport

Your production environment needs to know about this environment variable too.
You may remember the command from when you set the database URI on Heroku.
It’s the same thing here, so run the following command in terminal:

$ heroku config:set JWT_SECRET=thisIsSecret

That’s the last step.
 With the MongoDB and Mongoose side of things covered, next, you’ll look at

using Passport to manage authentication.

11.3 Creating an authentication API with Passport
Passport is a Node module by Jared Hanson that’s designed to make authentication in
Node easy. One of its key strengths is that it can accommodate several methods of
authentication, called strategies. Examples of these strategies include

 Facebook
 Twitter
 OAuth
 Local username and password

You can find many more strategies by searching for passport on the npm website. With
Passport, you can easily use one or more of these approaches to let users log in to your
application. For Loc8r, you’ll use the local strategy, as you’re storing usernames and
password hashes in the database. You’ll start by installing the modules.

11.3.1 Installing and configuring Passport

Passport is separated out into a core module and separate modules for each of the
strategies. You’ll install the core module and the local strategy module via npm, using
the following commands in terminal:

$ npm install –-save passport passport-local

When both of those modules are installed, you can create the configuration for your
local strategy.

CREATING A PASSPORT CONFIG FILE

It’s the API in your application that will be using Passport, so you’ll create the config
inside the app_api folder. Inside app_api, create a new folder called config, and inside
that folder, create a new file named passport.js.

 At the top of this file, require Passport and the local strategy module, as well as
Mongoose and the user model:

const passport = require('passport');
const LocalStrategy = require('passport-local').Strategy;
const mongoose = require('mongoose');
const User = mongoose.model('User');

Now you can configure the local strategy.

358 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

CONFIGURING A LOCAL STRATEGY

To set a Passport strategy, you use a passport.use method and pass it a new strategy
constructor. This constructor takes an options parameter and a function that does
most of the work. The skeleton for using a Passport strategy looks like the following:

passport.use(new LocalStrategy({},
 (username, password, done) => {
 }
));

By default, a Passport local strategy expects and uses the fields username and pass-
word. You have password, so that one’s okay, but instead of username, you’re using
email. Passport allows you to override the username field in the options object, as
shown in the following snippet:

passport.use(new LocalStrategy({
 usernameField: 'email'
 },
 (username, password, done) => {
 }
));

Next is the main function, which is a Mongoose call to find users given the username and
password supplied to the function. Your Mongoose function needs to do the following:

 Find a user with the email address supplied.
 Check whether the password is valid.
 Return the user object if the user is found and the password is valid.
 Otherwise, return a message stating what’s wrong.

As the email address is set to be unique in the schema, you can use the Mongoose find-
One method. The other interesting point to note is that you’ll use the validPassword
schema method you created earlier to check whether the supplied password is correct.

 The following listing shows the local strategy in its entirety.

passport.use(new LocalStrategy({
 usernameField: 'email'
 },
 (username, password, done) => {
 User.findOne({ email: username }, (err, user) => {
 if (err) { return done(err); }
 if (!user) {
 return done(null, false, {
 message: 'Incorrect username.'
 });
 }
 if (!user.validPassword(password)) {
 return done(null, false, {
 message: 'Incorrect password.'
 });

Listing 11.7 Full Passport local strategy definition

Searches MongoDB for
a user with the
supplied email address

If no user is found,
returns false and a
message Calls the

validPassword
method, passing the
supplied password

If the password is incorrect,
returns false and a message

359Creating an authentication API with Passport

 }
 return done(null, user);
 });
 }
));

Now that you have Passport installed and a strategy configured, you need to register it
with the application.

ADDING PASSPORT AND THE CONFIG TO THE APPLICATION

To add your Passport settings to the application, you need to do three things in app.js:

 Require Passport.
 Require the strategy config.
 Initialize Passport.

There’s nothing complicated about any of these things; what’s important is where they
go in app.js.

 Passport should be required before the database models and the configuration after
the database models. Both should be in place before the routes are defined. If you
reorganize the top of app.js slightly, you can bring in Passport and the config as shown
in the following listing.

require('dotenv').load();
const createError = require('http-errors');
const express = require('express');
const path = require('path');
const favicon = require('serve-favicon');
const logger = require('morgan');
const cookieParser = require('cookie-parser');
const bodyParser = require('body-parser');
const passport = require('passport');
require('./app_api/models/db');
require('./app_api/config/passport');

The strategy needs to be defined after the model definition because it needs the user
model to exist.

 Passport should be initialized in app.js after the static routes have been defined
and before the routes that are going to use authentication—in your case, the API
routes—so that the authentication middleware can be applied by Express as required.
The following listing shows the passport middleware in place.

app.use(express.static(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'app_public', 'build')));
app.use(passport.initialize());
...
app.use('/api', apiRouter);

Listing 11.8 Introducing Passport to Express

Listing 11.9 Adding the passport middleware

If you’ve reached the end, you
can return the user object.

Requires Passport before
the model definition

Requires strategy after
the model definition

Initializes passport and
adds it as middleware

360 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

One last thing you need to do is update the Access-Control-Allow-Headers to
ensure that CORS functions correctly between these two parts of this application.

app.use('/api', (req, res, next) => {
 res.header('Access-Control-Allow-Origin', 'http://localhost:4200');
 res.header('Access-Control-Allow-Headers', 'Origin, X-Requested-With,
 ➥ Content-Type, Accept, Authorization');
 next();
});

With that in place, Passport is installed, configured, and initialized in your applica-
tion. Next, you’ll create the API endpoints that let users register and log in.

11.3.2 Creating API endpoints to return JWTs

To enable users to log in and register via your API, you need two new endpoints. You
need to add two new route definitions and two new corresponding controllers. When
you’ve got endpoints in place, you can test them by using Postman and also validate
that the registration endpoint worked by using the Mongo shell to look inside the
database. First, you’ll add the routes.

ADDING THE AUTHENTICATION ROUTE DEFINITIONS

The route definitions for the API are held in the index.js file in app_api/routes, so
that’s where you’ll start. Your controllers are separated into logical collections—cur-
rently, Locations and Reviews. It makes sense to add a third collection for the authen-
tication. The following snippet shows this collection added at the top of the file:

const ctrlLocations = require('../controllers/locations');
const ctrlReviews = require('../controllers/reviews');
const ctrlAuth = require('../controllers/authentication');

You haven’t created this controllers/authentication file yet; you’ll do that when you
code the related controllers.

 Next, add the route definitions themselves toward the end of the file (but before
the module.exports line). You want two, one each for registration and login, which
you’ll create at /api/register and /api/login, respectively:

router.post('/register', ctrlAuth.register);
router.post('/login', ctrlAuth.login);

These definitions need to be post actions, of course, as they’re accepting data. Also
remember that you don’t need to specify the /api part of the routes, which is added
when the routes are required inside app.js.

 Now you need to add the controllers before you can test.

Listing 11.10 Update to CORS settings

Adds Authorization as
an acceptable header

361Creating an authentication API with Passport

CREATING THE REGISTER CONTROLLER

We’ll look at the register controller first. To start, you’ll create the file specified in
the route definitions. In the app_api/controllers folder, create a new file called
authentication.js, and enter the following to require the things you’re going to need.

const passport = require('passport');
const mongoose = require('mongoose');
const User = mongoose.model('User');

The registration process won’t use Passport at all. You can do what you need with
Mongoose, as you’ve already set up the various helper methods on the schema.

 The register controller needs to do the following:

1 Validate that the required fields have been sent.
2 Create a new model instance of User.
3 Set the name and email address of the user.
4 Use the setPassword method to create and add the salt and the hash.
5 Save the user.
6 Return a JWT when saved.

This list seems like a lot of things to do, but fortunately, everything is easy; you’ve
already done the hard work by creating the Mongoose methods. Now, you need to tie
everything together. The following listing shows the complete code for the register
controller.

const register = (req, res) => {
 if (!req.body.name || !req.body.email || !req.body.password) {
 return res
 .status(400)
 .json({"message": "All fields required"});
 }
 const user = new User();
 user.name = req.body.name;
 user.email = req.body.email;
 user.setPassword(req.body.password);
 user.save((err) => {
 if (err) {

 res
 .status(404)
 .json(err);
 } else {
 const token = user.generateJwt();
 res
 .status(200)
 .json({token});
 }
 });

Listing 11.11 Importing requirements for the register controller

Listing 11.12 register controller for the API

Responds with an error
status if not all required

fields are found
Creates a new user
instance, and sets the
name and email

Uses the setPassword method
to set the salt and hashSaves the new user

to MongoDB

Generates a JWT, using
the schema method, and
sends it to the browser

362 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

};

module.exports = {
 register
};

In this piece of code, there’s nothing particularly new or complex, but it highlights
the power of Mongoose methods. This registration controller could have been com-
plex had everything been written inline, which would have been tempting if you’d
started here instead of with Mongoose. But as it is, the controller is easy to read and
understand, which is what you want from your code.

 Next, you’ll create the login controller.

CREATING THE LOGIN CONTROLLER

The login controller relies on Passport to do the difficult stuff. You’ll start by validat-
ing that the required fields have been filled, and then hand everything to Passport.
Passport does its thing—attempting to authenticate the user, using the strategy you
specify—and then tells you whether it was successful. If it was successful, you can use
the generateJwt schema method again to create a JWT before sending it to the
browser.

 All this, including the syntax required to initiate the passport.authenticate
method, is shown in the next listing. This code should be added to the new authenti-
cation.js file.

const login = (req, res) => {
 if (!req.body.email || !req.body.password) {
 return res
 .status(400)
 .json({"message": "All fields required"});
 }
 passport.authenticate('local', (err, user, info) => {
 let token;
 if (err) {
 return res
 .status(404)
 .json(err);
 }
 if (user) {
 token = user.generateJwt();
 res
 .status(200)
 .json({token});
 } else {
 res
 .status(401)
 .json(info);
 }
 })(req, res);
};

Listing 11.13 login controller for the API

Validates that the
required fields have
been supplied

Passes the name
of the strategy
and a callback to
authenticate
method

Returns an error if
Passport returns an error

If Passport returned a
user instance, generates
and sends a JWT

Otherwise, returns an info
message (why
authentication failed)

Makes sure that req and res
are available to Passport

363Creating an authentication API with Passport

Add the login function to the module exports at the bottom of the file, below the reg-
ister function:

module.exports = {
 register,
 login

};

With the login controller, you see that once again, all the complicated work is
abstracted out, this time primarily by Passport. The code is easy to read, follow, and
understand, which should always be a goal when you’re coding. Now that you’ve built
these two endpoints in your API, you should test them.

TESTING THE ENDPOINTS AND CHECKING THE DATABASE

When you built the bulk of the API in chapter 6, you tested the endpoints with Post-
man. You can do the same here. Figure 11.10 shows testing the register endpoint and
how it returns a JWT. The URL to test is http://localhost:3000/api/register, creating
form fields for name, email, and password. Remember to select the x-www-form-
urlencoded form type.

Figure 11.11 shows testing of the login endpoint, including the return of a Passport
error message as well as a JWT when successful. The URL for this test is http://
localhost:3000/api/login, and it requires email and password form fields.

Figure 11.10 Trying out the /api/register endpoint in Postman, returning a JWT when successful

364 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

As well as seeing in the browser that JWTs are returned when expected, you can take a
look in the database to see whether the user has been created. You’ll go back to the
Mongo shell, which you haven’t used for a while:

$ mongo
> use Loc8r
> db.users.find()

Or you can find a particular user by specifying the email address:

> db.users.find({email : "simon@fullstacktraining.com"})

Whichever method you use, you should see one or more user documents returned
from the database, looking something like the following listing.

{ "hash" :
"1255e9df3daa899bee8d53a42d4acf3ab8739fa758d533a84da5eb1278412f7a7bdb36e
888aeb80a9eec4fb7bbe9bcef038f01fbbf4e6048e2f4494be44bc3d5", "salt" :
"40368d9155ea690cf9fc08b49f328e38", "email" :
"simon@fullstacktraining.com", "name" : "Simon Holmes", "_id" :
ObjectId("558b95d85f0282b03a603603"), "__v" : 0 }

We’ve made the path names bold to make them easier to pick out in print, but you
should be able to see all the expected data there.

 Now that you’ve created the endpoints to enable users to register and log in, the
next thing you’re going to look at is how to restrict certain endpoints to authenticated
users.

11.4 Securing relevant API endpoints
It’s a common requirement in web applications to limit access to API endpoints to
authenticated users only. In Loc8r, for example, you want to make sure that only regis-
tered users can leave reviews. This process has two parts:

Listing 11.14 Possible database response

Figure 11.11 Using the api/login endpoint in Postman, testing correct credentials

365Securing relevant API endpoints

 Allow only users who send a valid JWT with their request to call the new review
API.

 Inside the controller, validate that the user exists and can create a review.

You’ll start by adding authentication to the routes in Express.

11.4.1 Adding authentication middleware to Express routes

In Express, middleware can be added to routes, as you’ll see in a moment. This mid-
dleware gets between the route and the controller. When a route is called, the middle-
ware is activated before the controller and can prevent the controller from running or
changing the data being sent.

 You want to use middleware that validates the supplied JWT and then extracts the
payload data and adds it to the req object for the controller to use. It’s no surprise
that an npm module is available for this purpose: express-jwt. Install it now with the
following command in terminal:

$ npm install --save express-jwt

Now you can use this module in the routes file.

SETTING UP THE MIDDLEWARE

To use express-jwt, you need to require it and configure it. When included,
express-jwt exposes a function that can be passed an options object, which you’ll use
to send the secret and also to specify the name of the property you want to add to the
req object to hold the payload.

 The default property added to req is user, but in your code, user is an instance of
the Mongoose User model, so set it to payload to prevent confusion and maintain
consistency. user is what it’s called in Passport and inside the JWT, after all.

 Open the API routes file, app_api/routes/index.js, and add the setup to the top of
the file, highlighted in bold in the following listing.

const express = require('express');
const router = express.Router();
const jwt = require('express-jwt');

const auth = jwt({
 secret: process.env.JWT_SECRET,

 userProperty: 'payload'

});

Now that the middleware is configured, you can add the authentication to the routes.

ADDING AUTHENTICATION MIDDLEWARE TO SPECIFIC ROUTES

Adding middleware to the route definitions is simple. Reference it in the router com-
mands, between the route and the controller. It does go in the middle!

Listing 11.15 Adding JWT to app_api/routes/locations.js

Requires express-
jwt module

Sets the secret using the same
environment variable as beforeDefines a property on

req to be the payload

366 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

 The following snippet shows how to add middleware to the post, put, and delete
review method, while leaving get open; the reviews are supposed to be readable by
the public.

router
 .route('/locations/:locationid/reviews')
 .post(auth, ctrlReviews.reviewsCreate);

router
 .route('/locations/:locationid/reviews/:reviewid')
 .get(ctrlReviews.reviewsReadOne)
 .put(auth, ctrlReviews.reviewsUpdateOne)
 .delete(auth, ctrlReviews.reviewsDeleteOne);

So that’s the middleware configured and applied. In a moment, you’ll see how to use
it in the controller, but first, you’ll see how to deal with an invalid token that the mid-
dleware rejects.

DEALING WITH AUTHENTICATION REJECTION

When the supplied token is invalid—or perhaps doesn’t exist—the middleware throws
an error to prevent the code from continuing. You need to catch this error and return
an unauthorized message and status (401).

 The best place to add the new error handler is with the other error handlers in
app.js. You’ll add it as the first error handler so that generic handlers don’t intercept
it. The following listing shows the new error handler to be added to app.js.

// error handlers
// Catch unauthorised errors
app.use((err, req, res, next) => {
 if (err.name === 'UnauthorizedError') {
 res

.status(401)

.json({"message" : err.name + ": " + err.message});
 }
});

With that in place and the app restarted, you can test that rejection occurs by using
Postman again, this time submitting a review. You can use the same POST request that
you used when first testing the API, the result of which is shown in figure 11.12.

 As expected, trying to call the newly protected API endpoint without including a
valid JWT in the request returns an unauthorized status and message, which is what
you wanted. Next, you’ll move on to what happens when a request is authorized by the
middleware and continues to the controller.

Listing 11.16 Updating routing to use the jwt module

Listing 11.17 Catching errors

Adds auth
middleware to the
routing definition

Makes sure that you’re dealing
with UnauthorizedErrors

367Securing relevant API endpoints

11.4.2 Using the JWT information inside a controller

In this section, you’ll see how to use the data from the JWT that has been extracted by
the middleware in Express and added to the req object. You’ll use the email address
to get the user’s name from the database and add it to the review document.

RUNNING THE MAIN CONTROLLER CODE ONLY IF THE USER EXISTS

The first thing to do, as shown in listing 11.18, is take the reviewsCreate controller
and wrap the contents in a new function that you’ll call getAuthor. This new function
should accept the req and res objects, with the existing controller code in a callback.

 The whole point of the getAuthor function is to validate that the user exists in the
database and return the user’s name for use in the controller. So, you can pass this
through as userName to the callback and, in turn, pass it through to the doAddReview
function in app_api/controllers/review.js.

const reviewsCreate = (req, res) => {
 getAuthor(req, res, callback) => {
 (req, res, userName) => {

const locationId = req.params.locationid;
if (locationId) {
Loc
 .findById(locationId)
 .select('reviews')
 .exec((err, location) => {

Listing 11.18 Update the create review controller to get the user’s name first

Figure 11.12 Trying to add a review without a valid JWT now results in a 401 response.

Calls the getAuthor function
and passes the original
controller code in as a
callback; passes the user’s
name into the callback

368 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

 if (err) {
 return res
 .status(400)
 .json(err);
 } else {
 doAddReview(req, res, location, userName);
 }
 });
 } else {
 res
 .status(404)
 .json({message": "Location not found"});
 }
 });
};

Looking at this listing highlights the two things you still need to do: write the get-
Author function, and update the doAddReview function. First, you’ll write the getAu-
thor function so that you can see how to get the JWT data.

VALIDATING THE USER AND RETURNING THE NAME

The idea of the getAuthor function is to validate that the email address is associated
with a user on the system and return the name to use. It needs to do the following:

 Check that there’s an email address in the req object.
 Use the email address to find a user.
 Send the user’s name to the callback function.
 Trap errors and send appropriate messages.

The full code for the getAuthor function is in listing 11.19. The first thing to do is
check for the payload property on req and, in turn, check that it has an email prop-
erty. Remember that payload is the property you specified when you added authenti-
cation to the Express routes. After that, use req.payload.email in a Mongoose query,
passing the user’s name through to the callback if successful.

const User = mongoose.model('User');
const getAuthor = (req, res, callback) => {
 if (req.payload && req.payload.email) {
 User
 .findOne({ email : req.payload.email })
 .exec((err, user) => {
 if (!user) {
 return res
 .status(404)
 .json({"message": "User not found"});
 } else if (err) {
 console.log(err);
 return res
 .status(404)
 .json(err);

Listing 11.19 Use data from the JWT to query the database

Passes the user’s
name into the
doAddReview
function

Closes the getAuthor function

Ensures that the User
model is available

Validates that the JWT
information is on the
request object

Uses the email
address to find

the user

369Securing relevant API endpoints

 }
 callback(req, res, user.name);
 });
 } else {
 return res
 .status(404)
 .json({"message": "User not found"});
 }
};

Now when the callback is invoked, it runs what was the original code in the controller,
finding a location and passing the information to the doAddReview function. It’s also
now passing the username to the function, so quickly update doAddReview to use the
user’s name and add it to the review documents.

SETTING THE USER’S NAME ON REVIEWS

The change to the doAddReview function is simple and is shown in listing 11.20. You
were already saving the author of the review, getting the data from req.body .author.
Now, you have another parameter being passed to the function and can use this
parameter instead. The updates are highlighted in bold.

const doAddReview = (req, res, location, author) => {
 if (!location) {
 res
 .status(404)
 .json({"message": "Location not found"});
 } else {
 const {rating, reviewText} = req.body;
 location.reviews.push({
 author,
 rating,
 reviewText
 });
 location.save((err, location) => {
 if (err) {
 return res
 .status(400)
 .json(err);
 } else {
 updateAverageRating(location._id);
 const thisReview = location.reviews.slice(-1).pop();
 res
 .status(201)
 .json(thisReview);
 }
 });
 }
};

Listing 11.20 Saving the username in the review

Runs the callback,
passing the
user’s name

Adds an author
parameter to the
function definition

Author is now coming from the
database rather than the form

370 CHAPTER 11 Authenticating users, managing sessions, and securing APIs

That simple change brings you to the end of the back-end work. You’ve created a new
user schema, generated and consumed JWTs, created an authentication API, and
secured some other API routes. That’s a lot already!

 In chapter 12, you’ll tackle the front end and focus on integrating it into the Angu-
lar app.

Summary
In this chapter, you learned

 How to approach authentication in the MEAN stack
 Encrypting passwords with hashes and salts
 Using Mongoose model methods to add functions to schemas
 How to create a JSON Web Token with Express
 Managing authentication on the server with Passport
 Making routes in Express available to authenticated users only

371

Using an authentication
API in Angular applications

In this chapter, you’ll integrate the work that you completed in chapter 11 on authen-
tication via API and use the API endpoints in your Angular application. Specifically,
you’ll look at how to use the Angular HTTP client library and localStorage.

12.1 Creating an Angular authentication service
In an Angular app, as in any other application, authentication is likely to be needed
across the board. The obvious thing to do is create an authentication service that
can be used anywhere it’s needed. This service should be responsible for everything
related to authentication, including saving and reading a JWT, returning informa-
tion about the current user, and calling the login and register API endpoints.

 You’ll start by looking at how to manage the user session.

This chapter covers
 Using local storage and Angular to manage a user session

 Managing user sessions in Angular

 Using JWT in Angular Applications

372 CHAPTER 12 Using an authentication API in Angular applications

12.1.1 Managing a user session in Angular

Assume for a moment that a user has just logged in and the API has returned a JWT.
What should you do with the token? Because you’re running an SPA, you could keep
it in the browser’s memory. This approach is okay unless the user decides to refresh
the page, which reloads the application, losing everything in memory—not ideal.

 Next, you’ll look to save the token somewhere a bit more robust, allowing the
application to read it whenever it needs to. The question is whether to use cookies or
local storage.

COOKIES VS. LOCAL STORAGE

The traditional approach to saving user data in a web application is to save a cookie,
and that’s certainly an option. But cookies are there to be used by server applications,
with each request to the server sending the cookies along in the HTTP header to be
read. In an SPA, you don’t need cookies; the API endpoints are stateless and don’t get
or set cookies.

 You need to look somewhere else, toward local storage, which is designed for client-
side applications. With local storage, the data stays in the browser and doesn’t automat-
ically get transmitted with requests, as would happen with cookies.

 Local storage is also easy to use with JavaScript. Look at the following snippet,
which would set and get some data:

window.localStorage['my-data'] = 'Some information';
window.localStorage['my-data']; // Returns 'Some information'

Right, so that’s settled; you’ll use local storage in Loc8r to save the JWT. If localStorage
isn’t familiar territory, head to the Mozilla developer documentation at http://mng.bz/
0WKz to find out more.

 To facilitate the use of localStorage in the Angular application, you’ll first create
an Injectable called BROWSER_STORAGE that you can use in components. You’ll hook
into the localStorage, but you’ll do so via a factory service that you inject into com-
ponents that require access to the localStorage.

 To start, generate the class file

$ ng generate class storage

and place the following code in it.

import { InjectionToken } from '@angular/core';

export const BROWSER_STORAGE = new InjectionToken<Storage>

➥('Browser Storage',{
 providedIn: 'root',
 factory: () => localStorage
});

Listing 12.1 storage.ts

Uses the
InjectionToken class

Creates a new
InjectionToken

factory function
wrapping localStorage

https://shortener.manning.com/0WKz
https://shortener.manning.com/0WKz
https://shortener.manning.com/0WKz

373Creating an Angular authentication service

CREATING A SERVICE TO SAVE AND READ A JWT IN LOCAL STORAGE

You’ll start building the authentication service by creating the methods to save a JWT
in local storage and read it back out again. You’ve seen how easy it is to work with
localStorage in JavaScript, so now you need to wrap it in an Angular service that
exposes two methods: saveToken() and getToken(). No real surprises here, but the
saveToken() method should accept a value to be saved, and getToken() should
return a value.

 First, generate a new service called Authentication inside the Angular application:

$ ng generate service authentication

The following listing shows the contents of the new service, including the first two
methods.

import { Inject, Injectable } from '@angular/core';
import { BROWSER_STORAGE } from './storage';

@Injectable({
 providedIn: 'root'
})
export class AuthenticationService {

 constructor(@Inject(BROWSER_STORAGE) private storage: Storage) { }

 public getToken(): string {
 return this.storage.getItem('loc8r-token');
 }

 public saveToken(token: string): void {
 this.storage.setItem('loc8r-token', token);
 }
}

And there you have a simple service to handle saving loc8r-token to localStorage
and reading it back out again. Next, you’ll look at logging in and registering.

12.1.2 Allowing users to sign up, sign in, and sign out

To use the service to enable users to register, log in, and log out, you’ll need to add
three more methods. Start with registering and logging in.

CALLING THE API TO REGISTER AND LOG IN
You’ll need two methods to register and log in, which post the form data to the
register and login API endpoints you created earlier in this chapter. When success-
ful, both these endpoints return a JWT, so you can use the saveToken method to
save them.

 To prepare, you’ll generate two simple auxiliary classes to help manage the data
that you need across the application—a User class (listing 12.3) and an AuthResponse
class (listing 12.4):

Listing 12.2 Creating the authentication service with the first two methods

Injects the importer
BROWSER_STORAGE

wrapper

Creates the
getToken function

Creates the
saveToken function

374 CHAPTER 12 Using an authentication API in Angular applications

$ ng generate class user
$ ng generate class authresponse

The following two listings show the simple classes that you’ll use to maintain the given
data. Listing 12.3 provides your User class definition, which is a simple class to hold
the name and email as strings.

export class User {
 email: string;
 name: string;
}

Listing 12.4 provides the definition for your AuthResponse object, which at this time
holds the token string.

export class AuthResponse {
 token: string;
}

With these classes in place, you can add the aforementioned register() and login()
methods to the authentication service, as shown in the next listing. As these methods
rely on the Loc8rDataService, you’ll inject that too.

import { Inject, Injectable } from '@angular/core';
import { BROWSER_STORAGE } from './storage';
import { User } from './user';
import { AuthResponse } from './authresponse';
import { Loc8rDataService } from './loc8r-data.service';

@Injectable({
 providedIn: 'root'
})
export class AuthenticationService {

 constructor(
 @Inject(BROWSER_STORAGE) private storage: Storage,
 private loc8rDataService: Loc8rDataService
) { }

 ...

 public login(user: User): Promise<any> {
 return this.loc8rDataService.login(user)
 .then((authResp: AuthResponse) => this.saveToken(authResp.token));
 }

 public register(user: User): Promise<any> {
 return this.loc8rDataService.register(user)
 .then((authResp: AuthResponse) => this.saveToken(authResp.token));
 }
}

Listing 12.3 user.ts

Listing 12.4 authresponse.ts

Listing 12.5 authentication.service.ts

Tells typescript that you
require strings here

Sets the token to be a string

Imports the relevant
classes and services

Injects the
data service

The login
function

The register function

375Creating an Angular authentication service

Take a quick look at the two methods that you’ve added. What you’re doing is provid-
ing a wrapper for the login() and register() methods from the Loc8rDataService
that you’re about to write and ensuring that a Promise gets returned so data can be
passed back to the UI. You don’t necessarily care what’s in the Promise—only that it’s
returned. Then the token from the AuthResponse object that the methods receive is
saved, using the functions already in place.

 Finally, you need to add the aforementioned methods to the Loc8rDataService
that are required to communicate with the API endpoints. Changes are highlighted in
bold in the next listing.

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http';
import { Location, Review } from './location';
import { User } from './user';
import { AuthResponse } from './authresponse';

@Injectable({
 providedIn: 'root'
})
export class Loc8rDataService {

...

 public login(user: User): Promise<AuthResponse> {
 return this.makeAuthApiCall('login', user);
 }

 public register(user: User): Promise<AuthResponse> {
 return this.makeAuthApiCall('register', user);
 }

 private makeAuthApiCall(urlPath: string, user: User):
 ➥Promise<AuthResponse> {
 const url: string = `${this.apiBaseUrl}/${urlPath}`;
 return this.http
 .post(url, user)
 .toPromise()
 .then(response => response as AuthResponse)
 .catch(this.handleError);
 }

 ...
}

The call out to the API in both cases of login and register are essentially the same
call; the only difference is the URL that you’re required to hit to perform the action
you need. In listing 12.6, you POST a payload containing the user details that you’re
attempting to use and returning an AuthResponse object on success or handling the
error on failure. To that end, you have a private method (makeAuthApiCall()) to
manage the call and public methods login() and register() to handle the specific
details of which API endpoint URL you want to call.

 With these methods in place, you can address signing out.

Listing 12.6 Changes to Loc8rDataService

Imports for User and
AuthResponse classes

Login method
returning the
AuthResponse
Promise

Register method
returning the
AuthResponse
Promise

The actual call. login
and register are
similar enough to
make DRY.

Uses the HttpClient POST
request Observable that you
convert to a Promise object

376 CHAPTER 12 Using an authentication API in Angular applications

DELETING LOCALSTORAGE TO SIGN OUT

The user session in the Angular application is managed by saving the JWT in
localStorage. If the token is there, is valid, and hasn’t expired, you can say that the
user is logged in. You can’t change the expiry date of the token from within the Angu-
lar app; only the server can do that. What you can do is delete it.

 To give users the ability to log out, you can create a new logout method in the
authentication service to remove the Loc8r JWT.

 public logout(): void {
 this.storage.removeItem('loc8r-token');
 }

This code removes the loc8r-token item from the browser’s localStorage.
 Now you have methods to get a JWT from the server, save it in localStorage, read

it from localStorage, and delete it. The next question is how to use it in the applica-
tion to see that a user is logged in and to get data out of it.

12.1.3 Using the JWT data in the Angular service

The JWT saved in the browser’s localStorage is what you use to manage a user ses-
sion. The JWT is used to validate whether a user is logged in. If a user is logged in, the
application can also read the user information stored inside.

 First, add a method to check whether somebody is logged in.

CHECKING THE LOGGED-IN STATUS

To check whether a user is currently logged in to the application, you need to check
whether the loc8r-token exists in localStorage. You can use the getToken()
method for that task. But the existence of a token isn’t enough. Remember that the
JWT has expiry data embedded in it, so if a token exists, you’ll need to check that too.

 The expiration date and time of the JWT is part of the payload, which is the second
chunk of data. Remember that this part is an encoded JSON object; it’s encoded
rather than encrypted, so you can decode it. In fact, we’ve already talked about the
function to do this: atob.

 Stitching everything together, you want to create a method that

1 Gets the stored token
2 Extracts the payload from the token
3 Decodes the payload
4 Validates that the expiry date hasn’t passed

This method, added to the AuthenticationService, should return true if a user is
logged in and false if not. The next listing shows this behavior in a method called
isLoggedIn().

Listing 12.7 Removing the token from location storage

Deletes the token
from localStorage

377Creating an Angular authentication service

public isLoggedIn(): boolean {
 const token: string = this.getToken();
 if (token) {
 const payload = JSON.parse(atob(token.split('.')[1]));
 return payload.exp > (Date.now() / 1000);
 } else {
 return false;
 }
 }
}

That isn’t much code , but it’s doing a lot. After you’ve referenced it in the return
statement in the service, the application can quickly check whether a user is logged in
at any point.

 The next and final method to add to the authentication service gets some user
information from the JWT.

GETTING USER INFORMATION FROM THE JWT
You want the application to be able to get a user’s email address and name from the
JWT. You saw in the isLoggedIn() method how to extract data from the token, and
your new method does exactly the same thing.

 Create a new method called getCurrentUser(). The first thing that this method
does is validate that a user is logged in by calling the isLoggedIn() method. If a user
is logged in, it gets the token by calling the getToken() method before extracting and
decoding the payload and returning the data you’re after. The following listing shows
how this looks.

public getCurrentUser(): User {
 if (this.isLoggedIn()) {
 const token: string = this.getToken();
 const { email, name } = JSON.parse(atob(token.split('.')[1]));
 return { email, name } as User;
 }
}

With that done, the Angular authentication service is complete. Looking back over
the code, you can see that it’s generic and easy to copy from one application to
another. All you’ll probably have to change are the name of the token and the API
URLs, so you’ve got a nice, reusable Angular service.

 Now that the service is in the application, you can use it. Keep moving forward by
creating the Login and Register pages.

Listing 12.8 isLoggedIn method for the authentication service

Listing 12.9 getCurrentUser() method (authentication.service.ts)

Gets the token
from storage

If the token
exists, gets the
payload, decodes
it, and parses it
to JSONValidates whether

expiry is passed

Returns the type of User
Ensures that the user is logged in

Typecasts object
to the User type

378 CHAPTER 12 Using an authentication API in Angular applications

12.2 Creating the Register and Login pages
Everything you’ve done so far is great, but without a way for visitors to the website to
register and log in, it would be useless. So that’s what you’ll address now.

 In terms of functionality, you want a Register page where new users can set their
details and sign up, and a Login page where users return to input their username and
password. When users have gone through either of these processes and are success-
fully authenticated, the application should send them back to the page they were on
when they started the process.

 At the end of the following sections, you’d expect your Register page to look a lot
like figure 12.1.

The Login page should look like figure 12.2. You’ll begin with the Register page.

Figure 12.1 Register page

Figure 12.2 Login page

379Creating the Register and Login pages

12.2.1 Building the Register page

To develop a working registration page, you have a few things to do:

1 Create the register component and add it to the routing.
2 Build the template.
3 Flesh out the component body, including redirection.

And, of course, you’ll want to test the page when you’re done.
 Step 1 is creating the component. Reach for the Angular generator:

$ ng generate component register

With that done, amend the application routing by adding entries to app_routing/
app_routing.module.ts. Point the register component at the /register route, as the
next listing shows.

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RouterModule, Routes } from '@angular/router';

import { AboutComponent } from '../about/about.component';
import { HomepageComponent } from '../homepage/homepage.component';
import { DetailsPageComponent } from '../details-page/details-page.

➥component';
import { RegisterComponent } from '../register/

➥register.component';

const routes: Routes = [
...
 {
 path: 'register',
 component: RegisterComponent
 }
];

...
})
export class AppRoutingModule { }

With that done, look at the details of the component template and methods that link
this template to the services that you built earlier.

BUILDING THE REGISTRATION TEMPLATE

Okay, now you’ll build the template for the registration page. Aside from the normal
header and footer, you’ll need a few things. Primarily, you need a form to allow visitors
to input their name, email address, and password. In this form, you should also have
an area to display any errors. You’ll also pop in a link to the Login page, in case users
realize that they’re already registered.

 The next listing shows the template pieced together. Notice that the input fields
have the credentials in the view model bound to them via ngModel.

Listing 12.10 Registration routing

Imports the newly created
register component

Adds the path
information

380 CHAPTER 12 Using an authentication API in Angular applications

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <p class="lead">Already a member? Please
 ➥log in instead</p>
 <form (submit)="onRegisterSubmit()">
 <div role="alert" *ngIf="formErrors" class="alert alert-danger">
 ➥{{ formError }}</div>
 <div class="form-group">
 <label for="name">Full Name</label>
 <input class="form-control" id="name" name="name" placeholder=
 ➥"Enter your name" [(ngModel)]="credentials.name">
 </div>
 <div class="form-group">
 <label for="email">Email Address</label>
 <input type="email" class="form-control" id="email" name="email"
 ➥placeholder="Enter email address" [(ngModel)]=
 ➥"credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="pasword" class="form-control" id="password"
 ➥name="password" placeholder="e.g 12+ alphanumerics"
 ➥[(ngModel)]="credentials.password">
 </div>
 <button type="submit" role="button" class="btn
 ➥btn-primary">Register!</button>
 </form>
 </div>
 <app-sidebar [content]="pageContent.sidebar" class=
 ➥"col-12 col-md-4"></app-sidebar>
</div>

Again, the important thing to note is that a user’s name, email, and password are
bound to the view model in the object credentials.

 Next, you look at the flip side and code the component methods.

CREATING THE REGISTRATION COMPONENT SKELETON

Based on the template, you’ll set up a few things in the register component. You’ll
need the title text for the page header and an onRegisterSubmit() function to han-
dle form submission. You’ll also give all the credentials properties a default empty
string value.

 The next listing shows the initial setup.

import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';
import { AuthenticationService } from '../authentication.service';

@Component({

Listing 12.11 Full template for the registration page (register/register.component.html)

Listing 12.12 Starting the register component

Link to switch
to Login page

A <div> to
display errors

Input for
username

Input
for email
address

Input for
password

Imports the
authentication

service
Imports the services

required from the Router

381Creating the Register and Login pages

 selector: 'app-register',
 templateUrl: './register.component.html',
 styleUrls: ['./register.component.css']
})
export class RegisterComponent implements OnInit {

 public formError: string = '';

 public credentials = {
 name: '',
 email: '',
 password: ''
 };

 public pageContent = {
 header: {
 title: 'Create a new account',
 strapline: ''
 },
 sidebar: ''
 };

 constructor(
 private router: Router,
 private authenticationService: AuthenticationService
) { }

 ngOnInit() {
 }

There’s nothing new here—a couple of public properties to manage the component’s
internal data and injection of the services that you’ll need to use in the component.

 Add the contents of the next listing to the component that you’ve created.

 public onRegisterSubmit(): void {
 this.formError = '';
 if (
 !this.credentials.name ||
 !this.credentials.email ||
 !this.credentials.password
) {
 this.formError = 'All fields are required, please try again';
 } else {
 this.doRegister();
 }
 }

 private doRegister(): void {
 this.authenticationService.register(this.credentials)
 .then(() => this.router.navigateByUrl('/'))
 .catch((message) => this.formError = message);
 }

With this code in place, you can try out the Register page and functionality by starting
the application running and heading to http://localhost:4200/register.

Listing 12.13 Registration submission handler

Error string initialization

credentials object
to hold model data

Page content object for
the usual page data

Submits an event handler

Checks that you’ve received
all the relevant information

Returns messaging
in case of an error

Performs the registration

http://localhost:3000/register
http://localhost:3000/register
http://localhost:3000/register

382 CHAPTER 12 Using an authentication API in Angular applications

 When you’ve done this and successfully registered as a user, open the browser
development tools, and look for the resources. As illustrated in figure 12.3, you
should see a loc8r-token below the local storage folder.

You’ve added the ability for a new user to register. Next, you’ll enable a returning user
to log in.

12.2.2 Building the Login page

The approach to the Login page is similar to the approach to the Register page. Noth-
ing here should be unfamiliar, so you’ll go through it quickly.

 First, generate the new component:

$ ng generate component login

Add the following to the routes object in the router (app-routing/app-routing
.module.ts):

{
 path: 'login',
 component: LoginComponent
}

With this code in place, you can build up the component template file: login/login-
component.html. You can see from the route where you want this file to be. It’s similar

Figure 12.3 Finding the loc8r-token in the browser

383Creating the Register and Login pages

to the register template, so it’s probably easiest to duplicate and edit that template.
All you need to do is remove the name input and change a couple of pieces of text.
The following listing highlights in bold the changes you need to make in the login
template.

<app-page-header [content]="pageContent.header"></app-page-header>
<div class="row">
 <div class="col-12 col-md-8">
 <p class="lead">Not a member? Please
 register first
 </p>
 <form (ngSubmit)="onLoginSubmit(evt)">
 <div role="alert" *ngIf="formError" class="alert alert-danger">
 {{ formError }}
 </div>
 <div class="form-group">
 <label for="email">Email Address</label>
 <input type="email" class="form-control" id="email" name="email"
 ➥placeholder="Enter email address" [(ngModel)]=
 ➥"credentials.email">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="pasword" class="form-control" id="password"
 ➥ name="password" placeholder="e.g 12+ alphanumerics"
 ➥[(ngModel)]="credentials.password">
 </div>
 <button type="submit" role="button" class="btn btn-default">
 ➥Sign in!</button>
 </form>
 </div>
 <app-sidebar [content]="pageContent.sidebar" class="col-12 col-md-4">
 ➥</app-sidebar>
</div>

Finally, you make changes in the login component, which is similar to the register
component. The changes you need to make are these:

 Change the name of the component controller.
 Change the page title.
 Remove references to the name field.
 Rename doRegisterSubmit() to doLoginSubmit(), and doRegister to doLogin.
 Call the login() method of the AuthenticationService instead of the

register() method.

Copy the main body of the component class code from register/register-component
.ts, and make the following changes. The next listing shows the content of the file and
highlights the changes in bold.

Listing 12.14 Changes for the login template

Changes
the link

to register

Updates the
submit event
function call

Note that the name
input is removed.

Changes the text
on the button

384 CHAPTER 12 Using an authentication API in Angular applications

import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';
import { AuthenticationService } from '../authentication.service';

@Component({
 selector: 'app-login',
 templateUrl: './login.component.html',
 styleUrls: ['./login.component.css']
})
export class LoginComponent implements OnInit {

 public formError: string = '';

 public credentials = {
 name: '',
 email: '',
 password: ''
 };

 public pageContent = {
 header: {
 title: 'Sign in to Loc8r',
 strapline: ''
 },
 sidebar: ''
 };

 constructor(
 private router: Router,
 private authenticationService: AuthenticationService
) { }

 ngOnInit() {
 }

 public onLoginSubmit(): void {
 this.formError = '';
 if (!this.credentials.email || !this.credentials.password) {
 this.formError = 'All fields are required, please try again';
 } else {
 this.doLogin();
 }
 }

 private doLogin(): void {
 this.authenticationService.login(this.credentials)
 .then(() => this.router.navigateByUrl('/'))
 .catch((message) => {
 this.formError = message
 });
 }
}

That was easy! There’s no need to dwell on this component as, functionally, it works
like the register controller.

Listing 12.15 Changes required for the login component

Updates the component
definition block

Changes the
component name

Changes the page title

Changes the submit
event method

Changes the doRegister method
to doLogin and updates the
authentication service call

385Working with authentication in the Angular app

 Now you’ll move to the final stage and use the authenticated session in the Angu-
lar application.

12.3 Working with authentication in the Angular app
When you have a way to authenticate users, the next step is making use of that infor-
mation. In Loc8r, you’ll do two things:

 Change the navigation based on whether the visitor is logged in.
 Use the user information when creating reviews.

You’ll tackle the navigation first.

12.3.1 Updating the navigation

One thing that’s currently missing from the navigation is a Sign-in link, so you’ll add
one in the conventional place: the top-right corner of the screen. But when a user is
logged in, you don’t want to display a sign-in message; it would be better to display the
user’s name and give them an option to sign out.

 That’s what you’ll do in this section, starting by adding a right-side section to the
navigation bar.

12.3.2 Adding a right-side section to the navigation

The navigation for Loc8r is set up in the framework component that acts as a layout
for every page. You may remember from chapter 9 that this is the root component
that defines the router outlet; the files are in app_public/src/app/framework. The
following listing highlights in bold the markup you need to add to the template
(framework.component.html) to put a Sign-in link on the right side.

<div id="navbarMain" class="navbar-collapse collapse">
 <ul class="navbar-nav mr-auto">
 <li class="nav-item" routerLinkActive="active">
 About

 <ul class="navbar-nav justify-content-end">
 <li class="nav-item" routerLinkActive="active">
 Sign in

 <li class="nav-item dropdown" routerLinkActive="active">
 <a class="nav-link dropdown-toggle"
data-toggle="dropdown">Username
 <div class="dropdown-menu">
 Logout
 </div>

 </div>
</div>

Listing 12.16 Changes for the framework component

Adds a navbar to the header,
and pushes it to the right

The Sign-in link

Area for the username when logged in

Link for logging out

386 CHAPTER 12 Using an authentication API in Angular applications

The login nav option navigates to the freshly minted login component you’ve built.
 Currently, however, an added link in the drop-down menu doesn’t work, and the

Logout link needs to be fleshed out.
 To make this link work, you need to inject the Authentication service into the

Framework component. You also need to add three methods:

 A click event to trigger the logout (doLogout())
 A method to check the current user login status
 A method to get the current user name

The following listing shows how this is done.

import { Component, OnInit } from '@angular/core';
import { AuthenticationService } from '../authentication.service';
import { User } from '../user';

@Component({
 selector: 'app-framework',
 templateUrl: './framework.component.html',
 styleUrls: ['./framework.component.css']
})
export class FrameworkComponent implements OnInit {

 constructor(
 private authenticationService: AuthenticationService
) { }

 ngOnInit() {
 }

 public doLogout(): void {
 this.authenticationService.logout();
 }

 public isLoggedIn(): boolean {
 return this.authenticationService.isLoggedIn();
 }

 public getUsername(): string {
 const user: User = this.authenticationService.getCurrentUser();
 return user ? user.name : 'Guest';
 }

}

When these functions are in place, you’ll add them to the framework HTML tem-
plate. You need to add an *ngIf to toggle the display of the username drop-down
menu, depending on the result of isLoggedIn(). When isLoggedIn() returns true,
you’ll want to show the user’s name in the HTML. Finally, you need to hook in the
doLogout() function to the click event for the Logout link.

Listing 12.17 Changes to Framework for logout

Imports the
authentication
service

Imports the User class
for type checking

Injects the
imported service

doLogout wrapper for
the authentication
service logout method

isLoggedIn wrapper

getUsername wrapper

387Working with authentication in the Angular app

 <ul class="navbar-nav justify-content-end">
 <li class="nav-item" routerLinkActive="active">

 ➥Sign in

 <li class="nav-item dropdown" routerLinkActive="active"
 ➥*ngIf="isLoggedIn()">

 {{ getUsername() }}

 <div class="dropdown-menu">
 Logout
 </div>

With the logout functionality in place, now is a good time to consider a user-
experience issue. Currently, the login and register components redirect the user
to the homepage on a successful response, which is not a great experience for the
user. What you’ll do is return the user back to the page that they were on before log-
ging in or registering.

 To do this, create a service that takes advantage of the Angular router events prop-
erty. The events property keeps a record of the routing events that occur while the
user navigates the application. To start, generate a service called history:

$ ng generate service history

Add this new service to the framework component so that the reference is in place
before you fill in body of the history service.

import { Component, OnInit } from '@angular/core';
import { AuthenticationService } from '../authentication.service';
import { HistoryService } from '../history.service';
import { User } from '../user';

@Component({
 selector: 'app-framework',
 templateUrl: './framework.component.html',
 styleUrls: ['./framework.component.css']
})
export class FrameworkComponent implements OnInit {

 constructor(
 private authenticationService: AuthenticationService,
 private historyService: HistoryService
) { }
...

Listing 12.18 Changes to the framework component template

Listing 12.19 Adding a history service to the framework component

Doesn’t show if logged in

Shows if logged in

Shows username
if available

Imports the service

Injects it into
the component

388 CHAPTER 12 Using an authentication API in Angular applications

With this code in place, fill in the logic for the HistoryService. You need to do sev-
eral things to track a user’s navigation history:

 Import the Angular Router module.
 Subscribe to the events property to track each navigation event.
 Create a public method to get access to the navigation history.

The next listing shows this in action.

import { Injectable } from '@angular/core';
import { Router, NavigationEnd } from '@angular/router';
import { filter } from 'rxjs/operators';

@Injectable({
 providedIn: 'root'
})
export class HistoryService {
 private urls: string[] = [];

 constructor(private router: Router) {
 this.router.events
 .pipe(filter(routerEvent => routerEvent instanceof NavigationEnd))
 .subscribe((routerEvent: NavigationEnd) => {
 const url = routerEvent.urlAfterRedirects;
 this.urls = [...this.urls, url];
 });
 }
 ...
}

The functionality in the constructor function as given in listing 12.20 probably needs
a closer look. The router events property returns an Observable that emits several
event types, but you’re interested only in the NavigationEnd event, which you
imported from the @angular/router.

 To get these event types from the Observable (events stream), you need to filter
them out, which is where the RxJS filter function comes into play. This function is
piped to your events stream via the Observable pipe method. As we’re not covering
RxJS in this book, we recommend RxJS in Action (https://www.manning.com/
books/rxjs-in-action) for further detail.

 The events of this pipe after you subscribe to them are of type NavigationEnd,
which is exactly what you need. NavigationEnd events have a urlAfterRedirects
property, which is a string that you can push to your array of urls that you hold in
your HistoryService.

 Last, you need to add a method that returns the previous URL from the collected
URL history. Add the following method to the HistoryService.

Listing 12.20 Adding a history service

Brings in
the filter
from rxjs

Imports the Router
and NavigationEnd

classes

The events property
subscription

https://www.manning.com/books/rxjs-in-action
https://www.manning.com/books/rxjs-in-action
https://www.manning.com/books/rxjs-in-action

389Working with authentication in the Angular app

public getPreviousUrl(): string {
 const length = this.urls.length;
 return length > 1 ? this.urls[length – 2] : '/';
}

Now that you have a history service that keeps track of where the user was before login
or registration, implement it as part of your login and register components.

 You’ll add this to the register component as shown in the next listing and change
the login component later as an exercise to be completed, as the operation is identi-
cal. The solution is available on GitHub.

import { Component, OnInit } from '@angular/core';
import { Router } from '@angular/router';
import { AuthenticationService } from '../authentication.service';
import { HistoryService } from '../history.service';

...
 constructor(
 private router: Router,
 private authenticationService: AuthenticationService,
 private historyService: HistoryService
) { }

 ...

 private doRegister(): void {
 this.authenticationService.login(this.credentials)
 .then(() => {
 this.router.navigateByUrl(this.historyService.getPreviousUrl());
 })
 .catch((message) => {
 this.formError = message
 });
 }
...

After completing this change, and maybe through a little testing, you may have
noticed that the page that the register component returns you to is the Login
page—not what you’re looking for. After registering, as a user you’d like to be
returned to the page before Login, because that’s where you entered the login/regis-
tration loop. From a user perspective, it’s not a great experience.

 To avoid this experience, add a new method to the history service that returns
the last URL encountered before either login or register. This way, it doesn’t matter
whether the user travels between these two pages several times before performing the
desired action.

Listing 12.21 getPreviousUrl function

Listing 12.22 Changes required in the register component

Returns the default
location if there’s
no other entry

Imports the
history service

Injects the history
service into constructor

Uses the provided
getPreviousUrl function to
redirect, using the router

390 CHAPTER 12 Using an authentication API in Angular applications

 You’ll achieve this by using a filter across the list of URLs already navigated, remov-
ing all the URLs that match in the exclusions list. Then, pick the last one, safe in the
knowledge that you’ve removed all the register and login items.

public getLastNonLoginUrl(): string {
 const exclude: string[] = ['/register', '/login'];
 const filtered = this.urls.filter(url => !exclude.includes(url));
 const length = filtered.length;
 return length > 1 ? filtered[length – 1] : '/';
}

Add this code the history service, and change the function doLogin() in login
.component.ts and doRegister() in register.component.ts to use it instead, as shown
in the following listing (from register.component.ts).

private doRegister(): void {
 this.authenticationService.register(this.credentials)
 .then(() => {
 this.router.navigateByUrl(
 this.historyService.getLastNonLoginUrl()
);
 })
 .catch((message) => {
 this.formError = message
 });
}

Now you can reap the benefits of being logged in. You’ll inject the authentication
service into location-details.component.ts so you can check to see whether a user is
logged in and present functionality accordingly.

 You’re going to do a couple of things:

 Inject the authentication service into the component to check the user’s login
state.

 Modify the component to take advantage of the logged-in state.

First, do the necessary importing of the AuthenticationService, and then inject into
the component constructor.

import { Component, OnInit, Input } from '@angular/core';
import { Location, Review } from '../location';
import { Loc8rDataService } from '../loc8r-data.service';

Listing 12.23 getLastNonLoginUrl()

Listing 12.24 Updating the doRegister function

Listing 12.25 location-details.component.ts changes

List of strings that
you need to exclude

Filters the collected list of
URLs, and returns only

those not in exclude

Returns the last element
of the filtered array or a
default value

Changes
getPreviousUrl() to
getLastNonLoginUrl()

391Working with authentication in the Angular app

import { AuthenticationService } from '../authentication.service';

...
 constructor(
 private loc8rDataService: Loc8rDataService,
 private authenticationService: AuthenticationService
) { }

 ngOnInit() {}

...
}

Next, add some methods that make use of the functionality provided by the
AuthenticationService. Add the two methods in listing 12.26 to the location-
details component.

public isLoggedIn(): boolean {
 return this.authenticationService.isLoggedIn();
}

public getUsername(): string {
 const { name } = this.authenticationService.getCurrentUser();
 return name ? name : 'Guest';
}

To complete this part of the exercise, you need to update the template by

 Ensuring that the user is authenticated to leave a review
 Removing the need to enter the author name when writing a review
 Providing the username as the author from the authentication service when

submitting a review and preventing validation from failing

First, change the template so that, in the logged-out state, you present a button invit-
ing the user to log in to post a review. When the user is logged in, the page presents a
button to allow them to add a review.

 Change the location-details template (location-details.component.html) as
shown next.

<div class="row">
 <div class="col-12">
 <div class="card card-primary review-card">
 <div class="card-block" [ngSwitch]="isLoggedIn()">
 <button (click)="formVisible=true" class="btn btn-primary
 ➥float-right"*ngSwitchCase="true">Add review</button>
 <a routerLink="/login" class="btn btn-primary float-right"
 ➥*ngSwitchDefault>Log in to add review
 <h2 class="card-title">Customer reviews</h2>
 <div *ngIf="formVisible">

Listing 12.26 Methods to add to location-details.component.ts

Listing 12.27 Changes to location-details.component.html

Imports the
AuthenticationService

Injects the
AuthenticationService

into the component

Wrapper function for
isLoggedIn from
AuthenticationService

Wrapper function for
getCurrentUser from

AuthenticationService
If name isn’t available,

returns Guest

ngSwitch around the
logged-in status

Shows whether
user is logged in

Default state

392 CHAPTER 12 Using an authentication API in Angular applications

The ngSwitch directive checks whether the user is logged in and displays the appro-
priate call to action. Both states are shown in figure 12.4.

Now that a user needs to be logged in to post a review, you no longer need users to
enter their names in the review form, as this data can now be retrieved from the JWT.
As a result, you need to delete code from the location-details.component.html tem-
plate. See the following listing for the elements to remove.

<div class="form-group row">
 <label for="name" class="col-sm-2 col-form-label">Name</label>
 <div class="col-sm-10">
 <input [(ngModel)]="newReview.author" id="name" name="name"
 ➥required="required" class="form-control">
 </div>
</div>

Without the form field, you need to pull the author name from the getUsername()
function that you conveniently created earlier. Listing 12.29 highlights in bold the
pieces to be changed in onReviewSubmit() in location-details.component.ts.
Figure 12.5 shows the final review form.

public onReviewSubmit(): void {
 this.formError = '';
 this.newReview.author = this.getUsername();
 if (this.formIsValid()) {
 this.loc8rDataService.addReviewByLocationId(this.location._id,
 ➥this.newReview)
 .then((review: Review) => {
 console.log('Review saved', review);
 let reviews = this.location.reviews.slice(0);
 reviews.unshift(review);
 this.location.reviews = reviews;
 this.resetAndHideReviewForm();
 });

Listing 12.28 Code to remove from location-details.component.html

Listing 12.29 Removing name validation from location-details.component.ts

Figure 12.4 The two states of the Add Review button, depending on whether the user is logged in

Gets the username
from the component

393Working with authentication in the Angular app

 } else {
 this.formError = 'All fields required, please try again';
 }
 }
 ...
}

If you try this now, you still encounter a problem. If you check the web browser’s
development console, you’ll see that the API returns a 401 Unauthorized response,
because you haven’t updated the review submission API call with the JWT to allow the
API to accept the request.

 To make this work, you need to get access to the JWT stored in localStorage and
pass it forward as a Bearer token in the Authorization request header.

import { Injectable, Inject } from '@angular/core';
...
import { AuthResponse } from './authresponse';
import { BROWSER_STORAGE } from './storage';

@Injectable({
 providedIn: 'root'
})
export class Loc8rDataService {

 constructor(
 private http: HttpClient,
 @Inject(BROWSER_STORAGE) private storage: Storage
) { }

Listing 12.30 Adding AuthenticationService to loc8r-data.service.ts

Figure 12.5 The final review form without a name field

Imports the
AuthenticationService

Injects the
imported service
into the component

394 CHAPTER 12 Using an authentication API in Angular applications

Finally, you need to update the addReviewByLocationId() function to include the
Authorization header in submissions to the API. The following listing shows the
changes.

public addReviewByLocationId(locationId: string, formData: Review):

➥Promise<Review> {
 const url: string = `${this.apiBaseUrl}/locations/${locationId}/
 ➥reviews`;
 const httpOptions = {
 headers: new HttpHeaders({
 'Authorization': `Bearer ${this.storage.getItem('loc8r-token')}`
 })
 };
 return this.http
 .post(url, formData, httpOptions)
 .toPromise()
 .then(response => response as Review)
 .catch(this.handleError);
}

With that update, you’ve completed the authentication section. Users must be logged
in to add a review, and through the authentication system, the review will be given the
correct username.

 This brings you to the end of the book. By now, you should have a good idea of the
power and capabilities of the MEAN stack and be empowered to start building some
cool stuff!

 You have a platform to build REST APIs, server-side web applications, and browser-
based single-page applications. You can create database-driven sites, APIs, and applica-
tions, and then publish them to a live URL.

 When starting your next project, remember to take a little time to think about the
best architecture and user experience. Spend a little time planning to make your
development time more productive and enjoyable. And never be afraid to refactor
and improve your code and application as you go.

 You’ve only scratched the surface of what these amazing technologies can offer. So
please dive in, build things, try stuff, keep learning, and (most important) have fun!

Summary
In this chapter, you learned

 How to use local storage to manage a user session in the browser
 How to use JWT data inside Angular
 How to pass a JWT from Angular to an API via HTTP headers

Listing 12.31 Adding Authorization headers to API call

Creates an httpOptions
object for HttpHeaders

String Template
used here

Adds httpOptions
to the API call

395

appendix A
Installing the stack

Before you can build anything on the MEAN stack, you’ll need to install the soft-
ware to run it. This task is easy on Windows, macOS, and popular Linux distribu-
tions such as Ubuntu.

 As Node underpins the stack, that’s the best place to start. Node ships with npm
included, which will be useful for installing some of the other software.

Installing Node and npm

The best way to install Node and npm depends on your operating system. When-
ever possible, we recommend that you download an installer from the Node web-
site at https://nodejs.org/download. This location always has the latest version as
maintained by the Node core team.

This appendix covers
 Installing Node and npm

 Installing Express globally

 Installing MongoDB

 Installing Angular

https://nodejs.org/download/

396 APPENDIX A Installing the stack

LONG-TERM SUPPORT VERSIONS OF NODE

We recommend using a long-term support (LTS) version of Node. These are the ones
with even major numbers, such as Node 8 and Node 10. These versions are the stable
branches of Node and will be maintained and patched with nonbreaking changes for
18 months. The application in this book is built against Node 11, so the best LTS ver-
sion to use is 10. No features used in this book are incompatible between versions, so
feel free to use either.

INSTALLING NODE ON WINDOWS

Windows users should download an installer from the Node website.

INSTALLING NODE ON MACOS
The best option for macOS users is to download an installer from the Node website.
Alternatively, you can install Node and npm using the Homebrew package manager,
as detailed on Joyent’s Node wiki at https://github.com/joyent/node/wiki/Installing-
Node.js-via-package-manager.

INSTALLING NODE ON LINUX

There aren’t any installers for Linux users, but you can download binaries from the
Node website if you’re comfortable working with them.

 Alternatively, Linux users can install Node from package managers. Package manag-
ers don’t always have the latest version, so be aware of that fact. A particularly out-of-
date one is the popular APT system on Ubuntu. You can find instructions for using a
variety of package managers, including a fix for APT on Ubuntu, on Joyent’s Node wiki
on GitHub at https://github.com/joyent/node/wiki/Installing-Node.js-via-package-
manager.

VERIFYING INSTALLATION BY CHECKING VERSION

After you have Node and npm installed, you can check the versions you have with a
couple of terminal commands:

$ node --version
$ npm --version

These commands output the versions of Node and npm that you have on your
machine. The code in this book is built with Node 11.2.0 and npm 6.4.1.

Installing Express globally

To be able to create new Express applications on the fly from the command line, you
need to install the Express generator. You can do this from the command line using
npm. In terminal, run the following command:

$ npm install -g express-generator

If this command fails due to a permissions error, you’ll need to run it as an administra-
tor. On Windows, right-click the command-prompt icon and choose Run As Adminis-
trator from the contextual menu. Then, try the preceding command again in the
resulting window.

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

397Installing MongoDB

 On macOS and Linux, you can prefix the command with sudo, as shown in the fol-
lowing code snippet; you’ll be prompted for a password.

$ sudo npm install -g express-generator

When the generator finishes installing Express, you can verify it by checking the ver-
sion number from terminal:

$ express --version

The version of Express used in the code samples in this book is 4.16.4.
 If you run into any problems with this installation process, the documentation for

Express is available on its website at http://expressjs.com.

Installing MongoDB

MongoDB is also available for Windows, macOS, and Linux. Detailed instructions
about all the following options are available in the documentation at https://docs
.mongodb.com/manual/administration/install-community.

INSTALLING MONGODB ON WINDOWS

Some direct downloads for Windows are available at https://docs.mongodb.org/
manual/installation, depending on which version of Windows you’re running.

INSTALLING MONGODB ON MACOS
The easiest way to install MongoDB for macOS is to use the Homebrew package man-
ager, but if you prefer, you can choose to install MongoDB manually.

INSTALLING MONGODB ON LINUX

Packages are available for all mainstream Linux distributions, as detailed at https://
docs.mongodb.org/manual/installation. If you’re running a version of Linux that
doesn’t have MongoDB available in a package, you can choose to install it manually.

RUNNING MONGODB AS A SERVICE

After you have MongoDB installed, you’ll probably want to run it as a service so that it
automatically restarts whenever you reboot. Again, you can find instructions in the
MongoDB installation documentation.

CHECKING THE MONGODB VERSION NUMBER

MongoDB installs not only itself, but also a Mongo shell so that you can interact with
your MongoDB databases through the command line. You can check the version num-
ber of MongoDB and the Mongo shell independently. To check the shell version, run
the following command in terminal:

$ mongo --version

To check the version of MongoDB, run this command:

$ mongod --version

This book uses version 4.0.4 of both MongoDB and the Mongo shell.

http://expressjs.com/
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.com/manual/administration/install-community
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/
https://docs.mongodb.org/manual/installation/

398 APPENDIX A Installing the stack

Installing Angular

Angular is simple to install as long as you have Node and npm already installed. What
you actually install is the Angular CLI as a global npm package. To do so, run the fol-
lowing command in terminal:

$ npm install -g @angular/cli

Currently, this command installs Angular CLI version 7.0.6, which covers

Angular 7.1.0.

399

appendix B
Installing and preparing

the supporting cast

Several technologies can help you with developing on the MEAN stack, from front-
end layouts to source control and deployment tools. This appendix covers the
installation and setup of the supporting technologies used throughout this book.
As the actual install instructions tend to change over time, this appendix points you
toward the best places to get the instructions and anything you need to look out for.

This appendix covers
 Adding Twitter Bootstrap and some custom styles

 Using Font Awesome to provide a ready-made set of icons

 Installing Git

 Installing Docker and using the included container setup

 Installing a suitable command-line interface

 Signing up for Heroku

 Installing the Heroku CLI

400 APPENDIX B Installing and preparing the supporting cast

Twitter Bootstrap

Bootstrap isn’t installed as such, but is added to your application. This process is as
simple as downloading the library files, unzipping them, and placing them in the
application.

 The first step is downloading Bootstrap. This book uses version 4.1, which cur-
rently is the official release. You can get it from https://getbootstrap.com. Make sure
you download the “ready to use files” and not the source. The distribution zip con-
tains two folders: css and js.

 When you have the files downloaded and
unzipped, move one file from each folder into
the public folder in your Express application, as
follows:

1 Copy bootstrap.min.css into your public/
stylesheets folder.

2 Copy bootstrap.min.js into your public/js
folder.

Figure B.1 shows how the public folder in your
application should look.

 That gives you access to the default look and feel of Bootstrap, but you probably
want your application to stand out from the crowd a bit. You can do so by adding a
theme or some custom styles.

ADDING SOME CUSTOM STYLES

The Loc8r application in this book uses some custom styles that we created. This
application is simple enough not to need a theme but was based on Bootstrap 4.1.

 To add the custom styles, edit the style.css file in your public/stylesheets folder.
Listing B.1 shows a good starting point and provides the CSS used throughout the
book.

@import url("//fonts.googleapis.com/css?family=Lobster|Cabin:400,700");

h1, h2, h3, h4, h5, h6 {
 font-family: 'Lobster', cursive;
}

legend {
 font-family: 'Lobster', cursive;
}

.navbar {
 background-color: #ad1d28;
 border-color: #911821;
}

.navbar-light .navbar-brand {
 font-family: 'Lobster', cursive;

Listing B.1 Custom styles to give Loc8r a more distinctive look

Figure B.1 The structure and
contents of the public folder after
Bootstrap has been added

https://getbootstrap.com

401Twitter Bootstrap

 color: #fff;
}

.navbar-light .navbar-toggler {
 color: white;
 border-color: white;
}

.navbar-light .navbar-toggler-icon {
 background-image: url("data:image/svgxml;charset=utf8,%3Csvg
 ➥viewBox='0 0 30 30'xmlns='http://www.w3.org/2000/svg'%3E%
 ➥3Cpath stroke='white' stroke-width='2'stroke-linecap='round'
 ➥stroke-miterlimit='10' d='M4 7h22M4 15h22M4 23h22'/%3E%3C/svg%3E")
}

.navbar-light .navbar-nav .nav-link,

.navbar-light .navbar-nav .nav-link:focus,

.navbar-light .navbar-nav .nav-link:hover {
 color: white;
}

.card {
 background-color: #469ea8;
 padding: 1rem;
}

.card-primary {
 border-color: #a2ced3;
 margin-bottom: 0.5rem;
}

.banner {
 margin-top: 4em;
 border-bottom: 1px solid #469ea8;
 margin-bottom: 1.5em;
 padding-bottom: 0.5em;
}

.review-header {
 background-color: #31727a;
 padding-top: 0.5em;
 padding-bottom: 0.5em;
 margin-bottom: 0.5em;
}

.review {
 margin-right: -16px;
 margin-left: -16px;
 margin-bottom: 0.5em;
}

.badge-default, .btn-primary {
 background-color: #ad1d28;
 border-color: #911821;
}

h4 a, h4 a:hover {
 color: #fff;
}

402 APPENDIX B Installing and preparing the supporting cast

h4 small {
 font-size: 60%;
 line-height: 200%;
 color: #aaa;
}

h1 small {
 color: #aaa;
}

.address {
 margin-bottom: 0.5rem;
}

.facilities span.badge {
 margin-right: 2px;
}

p {
 margin-bottom: 0.65rem;
}

a {
 color: rgba(255, 255, 255, 0.8)
}

a:hover {
 color:#fff
}

body {
 font-family: "Cabin", Arial, sans-serif;
 color: #fff;
 background-color: #108a93;
}

To save you from typing all this code, you can get this file from the project repo on
GitHub at https://github.com/cliveharber/gettingMean-2. It’s introduced in the
chapter-04 branch.

Font Awesome

Font Awesome is an awesome way to get scalable icons into your application by using
fonts and CSS instead of images. As with Bootstrap, a few files need to be downloaded
and put in the right places.

 First, head to https://fontawesome.com/how-to-use/on-the-web/setup/hosting-
font-awesome-yourself, and click the download button to download the zip file. (The
button is currently a big blue one, but it may have changed when you get there.) We
used version 5.2.0 in this book. The zip file contains loads of folders. The most import-
ant folders for this book are css and webfonts.

 When Font Awesome is downloaded and unzipped, follow these two steps:

1 Copy the entire webfonts/ folder into the public folder in your application.
2 Copy the all.min.css file from the css folder into public/stylesheets.

https://github.com/cliveharber/gettingMean-2
https://fontawesome.com/how-to-use/on-the-web/setup/hosting-font-awesome-yourself
https://fontawesome.com/how-to-use/on-the-web/setup/hosting-font-awesome-yourself

403Installing Docker

When that’s done, and you’ve got Bootstrap installed
as well, your public folder should look like figure B.2.

 Note that with Font Awesome, the name and posi-
tion of the fonts folder relative to the all.min.css file is
important. The CSS file references the fonts by using
a relative path of ../webfonts/, so if this path is bro-
ken, the font icons won’t work in your application.

 If you don’t have the patience to do all this, it’s
provided in the GitHub repo.

Installing Git

The source code for this book is managed with Git, so
the easiest way to access it is to use Git. Also, Heroku
relies on Git for managing the deployment process
and pushing code from your development machine
into a live environment. You need to install Git if you
don’t already have it.

 You can verify whether you have it with a simple
terminal command:

$ git --version

If this command responds with a version number, you already have it installed and can
move to the next section. If not, you need to install Git.

 A good starting point for macOS and Windows users who are new to Git is to down-
load and install the GitHub user interface from https://help.github.com/articles/set-
up-git.

 You don’t need a GUI, though, and you can install Git by itself by following the
instructions on the main Git website at https://git-scm.com/downloads.

Installing Docker

With this edition, we include the capability to run the application against a local
Docker environment. The eagle-eyed among you probably noticed the Docker files in
the repo.

 To run the Docker container, you need to have Docker locally installed. (We used
Docker Desktop.) If you’re on a macOS or Windows machine, head over to
https://www.docker.com/products/docker-desktop, and install the version suitable to
your machine.

 To run the application in the container, navigate to the cloned repo, and type make
build. Each branch has a Docker file that sets up an environment suitable to run that
chapter’s code in. If you need to bring the containers down, use make destroy.

 If you want to run the code locally without Docker, that’s cool too.

Figure B.2 The structure and
contents of the public folder after
Font Awesome is added

https://help.github.com/articles/set-up-git
https://help.github.com/articles/set-up-git
https://git-scm.com/downloads
https://www.docker.com/products/docker-desktop

404 APPENDIX B Installing and preparing the supporting cast

Installing a suitable command-line interface

You can get the most out of Git by using a CLI, even if you’ve downloaded and
installed a GUI. Some CLIs are better than others, and you can’t use the native Win-
dows command prompt, so if you’re on Windows, you definitely need to run some-
thing else. Here’s what we use in a few environments:

 macOS Mavericks and later: native terminal
 macOS pre-Mavericks (10.8.5 and earlier): iTerm
 Windows: GitHub shell (this comes installed with the GitHub GUI)
 Ubuntu: native terminal

The Visual Studio Code editor comes with a nice, built-in command-line terminal,
which is a good cross-platform option as well. If you have other preferences and the
Git commands work, by all means use what you already have and you’re used to using.

Setting up Heroku

This book uses Heroku for hosting the Loc8r application in a live production environ-
ment. You can do this too—for free—so long as you sign up, install the CLI, and log in
through terminal.

SIGNING UP FOR HEROKU

To use Heroku, you need to sign up for an account. For the purposes of the application
you’ll be building through this book, a free account is fine. Head over to https://www
.heroku.com, and follow the instructions to sign up.

INSTALLING THE HEROKU CLI
The Heroku CLI contains the Heroku command-line shell and a utility called Heroku
Local. The shell is what you’ll use from terminal to manage your Heroku deployment,
and Local is useful for making sure that what you’ve built on your machine is set up to
run properly on Heroku. You can download the Toolbelt for macOS, Windows, and
Linux from https://devcenter.heroku.com/articles/heroku-cli.

LOGGING IN TO HEROKU USING TERMINAL
After you’ve signed up for an account and installed the CLI on your machine, the last
step is logging in to your account from terminal. Enter the following command:

$ heroku login

This command prompts you for your Heroku login credentials. Log in, and you’re all
set up and ready to go with Heroku.

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/heroku-cli

405

appendix C
Dealing with
all the views

Chapter 4 covers setting up the controllers and the views for the static, clickable
prototype. The “how” and “why” are covered in that chapter in more detail, so this
appendix focuses on the results.

Moving the data from the views to the controllers
Part of this process includes moving the data back down the MVC flow, from the
views into the controllers. The example in chapter 4 deals with this task in the
Loc8r homepage, but it needs to be done for the other pages too. Start with the
Details page.

This appendix covers
 Removing the data from all views except the homepage

 Moving the data into the controllers

406 APPENDIX C Dealing with all the views

Details page

The Details page is the largest and most complex of the pages, with the most data
requirements. The first step is setting up the controller.

SETTING UP THE CONTROLLER

The controller for this page is called locationInfo and is in the locations.js file in
app_server/controllers. When you’ve analyzed the data in the view and collated it into
a JavaScript object, your controller will look something like the following listing.

const locationInfo = function(req, res){
 res.render('location-info', {
 title: 'Starcups',
 pageHeader: {title: 'Starcups'},
 sidebar: {
 context: 'is on Loc8r because it has accessible wifi and space to sit
 ➥down with your laptop and get some work done.',
 callToAction: 'If you\'ve been and you like it - or if you don\'t -
 ➥please leave a review to help other people just like you.'
 },
 location: {
 name: 'Starcups',
 address: '125 High Street, Reading, RG6 1PS',
 rating: 3,
 facilities: ['Hot drinks', 'Food', 'Premium wifi'],
 coords: {lat: 51.455041, lng: -0.9690884},
 openingTimes: [{
 days: 'Monday - Friday',
 opening: '7:00am',
 closing: '7:00pm',
 closed: false
 },{
 days: 'Saturday',
 opening: '8:00am',
 closing: '5:00pm',
 closed: false
 },{
 days: 'Sunday',
 closed: true
 }],
 reviews: [{
 author: 'Simon Holmes',
 rating: 5,
 timestamp: '16 July 2013',
 reviewText: 'What a great place. I can\'t say enough good things
 ➥about it.'
 },{
 author: 'Charlie Chaplin',
 rating: 3,
 timestamp: '16 June 2013',
 reviewText: 'It was okay. Coffee wasn\'t great, but the wifi was
 ➥fast.'

Listing C.1 locationInfo controller

Includes latitude and
longitude coordinates to
use in Google Map image

Adds array of open
times, allowing for
different data on
different days

Array for reviews
left by other users

407Moving the data from the views to the controllers

 }]
 }
 });
};

Note the latitude and longitude being sent through. You can get your current latitude
and longitude from https://www.where-am-i.net. You can geocode an address—that is,
get the latitude and longitude of it—from https://www.latlong.net/convert-address-
to-lat-long.html. Your views will be using the lat and lng to display a Google Map
image of the correct location, so it’s worthwhile doing this for the prototype stage.

UPDATING THE VIEW

As this page is the most complex, data-rich page, it stands to reason that it will have
the largest view template. You’ve already seen most of the technicalities in the home-
page layout, such as looping through arrays, bringing in includes, and defining and
calling mixins. You have a couple of extra things to look out for in this template,
though, both of which are annotated and highlighted in bold.

 First, this template uses an if-else conditional statement. This statement looks
like JavaScript without the braces. Second, the template uses a JavaScript replace
function to replace all line breaks in the text of reviews with
 tags. You do this by
using a simple regular expression, looking for all occurrences of the characters \n in
the text. The following listing shows the location-info.pug view template in full.

extends layout
include _includes/sharedHTMLfunctions
block content
 .row.banner
 .col-12
 h1= pageHeader.title
 .row
 .col-12.col-lg-9
 .row
 .col-12.col-md-6
 p.rating
 +outputRating(location.rating)
 p 125 High Street, Reading, RG6 1PS
 .card.card-primary
 .card-block
 h2.card-title Opening hours
 each time in location.openingTimes
 p.card-text
 | #{time.days} :
 if time.closed
 | closed
 else
 | #{time.opening} - #{time.closing}
 .card.card-primary
 .card-block
 h2.card-title Facilities

Listing C.2 location-info.pug view template in app_server/views

Brings in sharedHTMLfunctions
include, which contains
outputRating mixin

Calls outputRating mixin,
sending it the rating of the
current location

Loops through the
array of open times,
checking whether the
location is closed by
using an inline if-else
statement

https://www.where-am-i.net/
https://www.latlong.net/convert-address-to-lat-long.html
https://www.latlong.net/convert-address-to-lat-long.html

408 APPENDIX C Dealing with all the views

 each facility in location.facilities
 span.badge.badge-warning
 i.fa.fa-check
 | #{facility}
 |
 .col-12.col-md-6.location-map
 .card.card-primary
 .card-block
 h2.card-title Location map
 img.img-fluid.rounded(src=`http://maps.googleapis.com/
 ➥maps/api/staticmap?center=${location.coords.lat},
 ➥${location.coords.lng}&zoom=17&size=400x350&sensor=
 ➥false&markers=${location.coords.lat},${location.coords.
 ➥ lng}&key={googleAPIKey}&scale=2`)
 .row
 .col-12
 .card.card-primary.review-card
 .card-block
 a.btn.btn-primary.float-right(href='/location/review/new')
 ➥Add review
 h2.card-title Customer reviews
 each review in location.reviews
 .row.review
 .col-12.no-gutters.review-header
 span.rating
 +outputRating(review.rating)
 span.reviewAuthor #{review.author}
 small.reviewTimestamp #{review.timestamp}
 .col-12
 p !{(review.reviewText).replace(/\n/g, '
')}
 .col-12.col-lg-3
 p.lead #{location.name} #{sidebar.context}
 p= sidebar.callToAction

A question that may arise is, why replace line breaks with
 tags every time? Why
don’t you save the data with
 tags in? That way, you have to run the replace
function only once, when the data is saved. The answer is that HTML is only one
method of rendering text; it happens to be the one you’re using here. Down the line,
you may want to pull this information into a native mobile application. You don’t want
the source data tainted with HTML markup that you don’t use in that environment.
The way to handle that is to keep the data clean.

Add Review page

The Add Review page is simple at the moment, with only one piece of data in it: the
title in the page header. Updating the controller shouldn’t pose much of a problem.
See the following listing for the full code of the addReview controller, in locations.js
in the app_server/controllers folder.

Builds the URL for the
Google Maps static
image, inserting lat
and lng by using an

ES2015 template
literal. Remember that

you’ll need your
Google Maps API Key.

Loops through each review,
calling the outputRating
mixin again to generate
markup for stars

Replaces any line
breaks in review

text with the

tag so it renders as

intended by the
author

409Moving the data from the views to the controllers

const addReview = function(req, res){
 res.render('location-review-form', {
 title: 'Review Starcups on Loc8r',
 pageHeader: { title: 'Review Starcups' }
 });
};

There’s not much to talk about here; you’ve updated the text inside the titles. The fol-
lowing listing shows the corresponding view, location-review-form.pug, in app_
server/views.

extends layout
block content
 .row.banner
 .col-12
 h1= pageHeader.title
 .row
 .col-12.col-md-8
 form(action="/location", method="get", role="form")
 .form-group.row
 label.col-10.col-sm-2.col-form-label(for="name") Name
 .col-12.col-sm-10
 input#name.form-control(name="name")
 .form-group.row
 label.col-10.col-sm-2.col-form-label(for="rating") Rating
 .col-12.col-sm-2
 select#rating.form-control.input-sm(name="rating")
 option 5
 option 4
 option 3
 option 2
 option 1
 .form-group.row
 label.col-sm-2.col-form-label(for="review") Review
 .col-sm-10
 textarea#review.form-control(name="review", rows="5")
 button.btn.btn-primary.float-right Add my review
 .col-12.col-md-4

Again, there’s nothing complicated or new here, so you can move on to the About
page.

About page

The About page doesn’t contain a huge amount of data, either, only a title and some
content. Pull it out of the view and into the controller. Note that the content in the
view currently has some
 tags in it, so replace each
 tag with \n when you
put it into the controller. These tags are highlighted in bold in the following listing.
The about controller is in app_server/controllers/others.js.

Listing C.3 addReview controller

Listing C.4 location-review-form.pug template

410 APPENDIX C Dealing with all the views

const about = function(req, res){
 res.render('generic-text', {
 title: 'About Loc8r',
 content: 'Loc8r was created to help people find places to sit down
 ➥and get a bit of work done.

Lorem ipsum dolor sit
 ➥amet, consectetur adipiscing elit. Nunc sed lorem ac nisi digni
 ➥ssim accumsan. Nullam sit amet interdum magna. Morbi quis
 ➥faucibus nisi. Vestibulum mollis purus quis eros adipiscing
 ➥tristique. Proin posuere semper tellus, id placerat augue dapibus
 ➥ornare. Aenean leo metus, tempus in nisl eget, accumsan interdum
 ➥dui. Pellentesque sollicitudin volutpat ullamcorper.'
 });
};

Aside from removing the HTML from the content, not much is going on here. Take a
quick look at the view, and you’ll be done. The following listing shows the final
generic-text view used for the About page in app_server/views. The view has to use the
same piece of code as the reviews section to replace the \n line breaks with HTML

 tags.

extends layout
 .row.banner
 .col-12
 h1= title
 .row
 .col-12.col-lg-8
 p !{(content).replace(/\n/g, '
')}

This template is a simple, small, reusable one to use whenever you want to output
some text on a page.

Switching from Promises to Observables
In chapter 8, we briefly discuss Observables and Promises and then proceed to use
Promises in the application. Changing the application to use Observables isn’t diffi-
cult, though, and this brief section covers the basics to give you a complete picture of
how this task might be achieved. Typically, an SPA uses both Observables and Prom-
ises, depending on the problem that’s being solved.

 Take a look at the getLocations() method in loc8r-data.service.ts.

public getLocations(lat: number, lng: number): Promise<Location[]> {
 const maxDistance: number = 20000;
 const url: string =

`${this.apiBaseUrl}/locations?lng=${lng}&lat=${lat}&maxDistance=$

➥{maxDistance}`;
 return this.http

Listing C.5 about controller

Listing C.6 generic-text.pug template

Listing C.7 loc8r-data.servce.ts

Replaces all line breaks
with
 tags when
rendering HTML

411Switching from Promises to Observables

 .get(url)
 .toPromise()
 .then(response => response as Location[])
 .catch(this.handleError);
 }

As you can see, you’re taking the Observable returned by the HttpClient get()
method and converting it to a Promise.

 To switch this method to return an Observable, you first need to import Observ-
able from rxjs, and then have the function return the result of the get() method
directly.

import { Observable } from 'rxjs'
...
public getLocations(lat: number, lng: number) : Observable<Location

➥[]> {
 const maxDistance: number = 20000;
 const url: string =

`${this.apiBaseUrl}/locations?lng=${lng}&lat=${lat}&maxDistance=

➥${maxDistance}`;
 return this.http.get<Location[]>(url);
}

At this point, you’re not capturing the response (Observable); to do that, you need a
subscriber. This function is used in the home-list component.

private getLocations(position: any): void {
 this.message = 'Searching for nearby places';
 const lat: number = position.coords.latitude;
 const lng: number = position.coords.longitude;
 this.loc8rDataService
 .getLocations(lat, lng)
 .then(foundLocations => {
 this.message = foundLocations.length > 0 ? '' :
 ➥'No locations found';
 this.locations = foundLocations;
 });
 }

To use the Observable, you need to alter the previous listing.

private getLocations(position: any): void {
 this.message = 'Searching for nearby places';
 const lat: number = position.coords.latitude;
 const lng: number = position.coords.longitude;
 this.loc8rDataService
 .getLocations(lat, lng)

Listing C.8 Changes to loc8r-data.service.ts required to return Observables

Listing C.9 getLocations() from home-list.component.ts

Listing C.10 Changes to subscribe to Observables

Conversion of
Observable to Promise

Returns a Observable
type cast to Location[]

Responds to
the Promise

412 APPENDIX C Dealing with all the views

 .subscribe(
 (foundLocations: Location[]) => {
 this.message = foundLocations.length > 0 ? '' :
 ➥'No locations found';
 this.locations = foundLocations;
 },
 error =>

this.handleError(error)
);

As you can see, switching between methods isn’t difficult. The choice of method
depends on the situation at hand. For reference, however, using Observables is
becoming standard practice.

Observable subscriber

Error handler

413

appendix D
Reintroducing JavaScript

JavaScript is such a fundamental part of the MEAN stack (even if you’re writing the
Angular part with TypeScript) that we’ll spend a little bit of time looking at it. We
need to cover the bases because successful MEAN development depends on it.
JavaScript is such a common language (uniquely, JavaScript has a runtime on
almost every computer currently on the planet) that it seems that everybody knows
some of it, partly because JavaScript is easy to start with and forgiving in the way it’s
written. Unfortunately, this looseness and low barrier to entry can encourage bad
habits, which can cause unexpected results.

This appendix covers
 Applying best practices when writing JavaScript

 Using JSON effectively to pass data

 Examining how to use callbacks and escaping callback
hell

 Writing modular JavaScript with closures, patterns, and
JavaScript classes

 Adopting functional programming principles

414 APPENDIX D Reintroducing JavaScript

 The aim of this appendix isn’t to teach JavaScript from scratch; you should already
know the basics. If you don’t know JavaScript at all, you may struggle and find it hard
going. Like all things, JavaScript has a learning curve. On the other hand, not every-
body needs to read this appendix in detail, particularly experienced JavaScript devel-
opers. If you’re lucky enough to count yourself as part of the experienced camp, it still
may be worthwhile to skim this appendix in case you find something new here.

 We don’t cover TypeScript, though we hope that chapters 8 through 12 cover it in
enough detail for you to be comfortable with it.

 One last thing before we get started in earnest. When you look around the internet
for information around JavaScript, you’ll more than likely come across the appella-
tions ES2015, ES2016, ES5, ES6, ES7, and so on.

 ES5 is the version of JavaScript that has been available for the longest time, from
the dim and distant past that includes the Firefox 4 web browser; the birth of Google
Chrome; and the long, torturous death of the infamous Internet Explorer 6. Luckily,
those days are long gone, but the specification still stands, and most browsers (mostly)
adhere to it.

 Officially, as of 2015, iterations of the JavaScript (or, if you prefer, ECMAScript
[ES]) specification have been denoted by the year: ES2015, ES2016, and so on. Any
reference to single-digit versioning post ES5, like ES6, is incorrect. Throughout this
book, we’ve been careful to ensure that we named things correctly. Many authors
across the internet haven’t been so diligent and continue to perpetuate the incorrect
naming scheme.

 As things stand today, most browsers adhere to most of the changes made in Java-
Script as part of the ES2015 spec, with some browsers also providing some functionality
for later iterations (2016, 2017, and so on). The pace of adoption and implementation
is sometimes slower than we, as developers, would like, so transpilers such as Babel are
available. JavaScript transpilers broadly take code written utilizing more modern ideas
and convert it to a form that older browsers understand. They provide a bridge
between old and new and between different languages. TypeScript, CoffeeScript, Elm,
and ReasonML are all transpiled to JavaScript.

Everybody knows JavaScript, right?
Not everybody knows JavaScript, but the vast majority of developers used it in one
form or another at some point. Naturally, different levels of knowledge and experi-
ence exist. As a test, take a look at the following code listing. The listing contains a
chunk of JavaScript code, the aim of which is to output messages to the console. If you
understand the way the code is written, correctly determine what the output messages
will be, and (more important) why they are what they are, you’re probably good for a
skim read.

415Everybody knows JavaScript, right?

const myName = {
 first: 'Simon',
 last: 'Holmes'
 };
var age = 37,
 country = 'UK';
console.log("1:", myName.first, myName.last);
const changeDetails = (function () {
 console.log("2:", age, country);
 var age = 35;
 country = 'United Kingdom';
 console.log("3:", age, country);
 const reduceAge = function (step) {
 age = age - step;
 console.log("4: Age:", age);
 };
 const doAgeIncrease = function (step) {
 for (let i = 0; i <= step; i++) {
 window.age += 1;
 }
 console.log("5: Age:", window.age);
 },
 increaseAge = function (step) {
 const waitForIncrease = setTimeout(function () {
 doAgeIncrease(step);
 }, step * 200);
 };
 console.log("6:", myName.first, myName.last, age, country);
 return {
 reduceAge: reduceAge,
 increaseAge: increaseAge
 };
})();
changeDetails.increaseAge(5);
console.log("7:", age, country);
changeDetails.reduceAge(5);
console.log("8:", age, country);

How did you get on with that? Listing D.1 has a couple of intentional bugs that Java-
Script will let you make if you’re not careful. All this JavaScript is valid and legal, how-
ever, and it will run without throwing an error; you can test it by running it in a
browser, if you like. The bugs highlight how easy it is to get unexpected results and
also how difficult it can be to spot them if you don’t know what you’re looking for.

 Want to know what the output of that code is? If you haven’t run it yourself, you
can see the result in the following listing.

1: Simon Holmes
2: undefined UK
3: 35 United Kingdom

Listing D.1 Example JavaScript with intentional bugs

Listing D.2 Output of listing D.1

Age is undefined due to scope
clashes and variable hoisting.

416 APPENDIX D Reintroducing JavaScript

6: Simon Holmes 35 United Kingdom
7: 37 United Kingdom
4: Age: 30
8: 37 United Kingdom
5: Age: 43

Among other things, this code snippet shows a private closure exposing public meth-
ods, issues with variable scope and side effects, variables not being defined when
expected, mixing of function and lexical scope, the effects of asynchronous code exe-
cution, and an easy mistake to make in a for loop. There’s quite a lot to take in when
reading the code.

 If you’re not sure what some of this means or didn’t get the outcome correct, read
this appendix.

Good habits or bad habits
JavaScript is an easy language to learn. You can grab a snippet from the internet and
pop it into your HTML page, and you’ve started on your journey. One reason why it’s
easy to learn is that in some respects, it’s not as strict as it should be. It lets you do
things that it possibly shouldn’t, which leads to bad habits. In this section, we’ll take a
look at some of these bad habits and show you how to turn them into good habits.

Variables, scope, and functions

The first step is looking at variables, scope, and functions, which are all closely tied
together. JavaScript has three types of scope: global, function (using the var keyword),
and lexical (using let or const keywords). JavaScript also has scope inheritance. If you
declare a variable in global scope, it’s accessible by everything; if you declare a variable
with var inside a function, it’s accessible only to that function and everything inside it;
if you declare a variable with let or const in a block, it’s accessible inside the braces
and everything inside that block, but unlike var, access doesn’t bleed through to the
surrounding function block.

Country hasn’t changed, but age
has, due to variable scopes.

Runs when called, not when defined;
uses local variables over global

Runs later due to setTimeout; age is
wrong due to a mistake in the for loop

The var keyword in ES2015 and later
Modern practice tends to frown on using the var keyword, which will eventually be
deprecated. var comes with a lot of baggage, and if you’re coming from other lan-
guages, its scoping can be difficult to work with and can trip up even the most expe-
rienced developer. We’ll discuss it here, though, because a lot of JavaScript has been
built with var.

With ES2015, the language specification introduced the let and const keywords,
which are lexically (block) scoped. These keywords have greater similarity with other
variable-definition schemes. The difference is explained in more detail in the following
sections.

417Good habits or bad habits

Working with scope and scope inheritance

Start with a simple example in which scope is used incorrectly.

const firstname = 'Simon';
const addSurname = function () {
 const surname = 'Holmes';
 console.log(firstname + ' ' + surname);
};
addSurname();
console.log(firstname + ' ' + surname);

This piece of code throws an error because it’s trying to use the variable surname in
the global scope, but it was defined in the local scope of the function addSurname(). A
good way to visualize the concept of scope is to draw some nested circles. In figure
D.1, the outer circle depicts the global scope; the middle circle depicts the function
scope; and the inner circle depicts lexical scope. You can see that the global scope
has access to the variable firstname and that the local scope of the function add-
Surname() has access to the global variable firstname and the local variable surname.
In this case, lexical scope and function scope overlap.

If you want the global scope to output the full name while keeping the surname pri-
vate in the local scope, you need a way of pushing the value into the global scope. In
terms of scope circles, you’re aiming for what you see in figure D.2. You want a new
variable, fullname, that you can use in both global and local scopes.

Listing D.3 Scope example

Variable declared in global scope

Variable declared in local lexical scope
Outputs “Simon Holmes”

Throws error because surname isn’t defined

Scope: Global

Scope: Function

Scope:
Lexical

Figure D.1 Scope circles depicting global scope versus local scope and scope inheritance

418 APPENDIX D Reintroducing JavaScript

Pushing from local to global scope: The wrong way

One way you could do it—and we’ll warn you now that it’s bad practice—is to define a
variable against the global scope from inside the local scope. In the browser, the
global scope is the object window; in Node.js, it’s global. Sticking with browser exam-
ples for now, the following listing shows how this would look if you updated the code
to use the fullname variable.

const firstname = 'Simon';
const addSurname = function () {
 const surname = 'Holmes';
 window.fullname = firstname + ' ' + surname;
 console.log(fullname);
};
addSurname();
console.log(fullname);

This approach allows you to add a variable to the global scope from inside a local
scope, but it’s not ideal. The problems are twofold. First, if anything goes wrong with
the addSurname() function and the variable isn’t defined, when the global scope tries
to use it, you’ll get an error thrown. The second problem becomes obvious when
your code grows. Suppose that you have dozens of functions adding things to differ-
ent scopes. How do you keep track of them? How do you test them? How do you
explain to someone else what’s going on? The answer to all these questions is with
great difficulty.

Listing D.4 Global fullname variable

Scope: Global

Scope: Function

Scope:
Lexical

Figure D.2 Using an additional global variable to return data from the local scope

The fullname
variable is defined in
the window object.

Global scope can
output the full name.

419Good habits or bad habits

Pushing from local to global scope: The right way

If declaring the global variable in the local scope is wrong, what’s the right way? The
rule of thumb is always declare variables in the scope in which they belong. If you need a
global variable, you should define it in the global scope, as in the following listing.

var firstname = 'Simon',
 fullname;
var addSurname = function () {
 var surname = 'Holmes';
 window.fullname = firstname + ' ' + surname;
 console.log(fullname);
};
addSurname();
console.log(fullname);

Here, it’s obvious that the global scope now contains the variable fullname, which
makes the code easier to read when you come back to it.

Referencing global variables from local scope

You may have noticed that from within the function, the code still references the
global variable by using the fully qualified window.fullname. It’s best practice to do
this whenever you reference a global variable from a local scope. Again, this practice
makes your code easier to come back to and debug, because you can explicitly see
which variable is being referenced. The code should look like the following listing.

var firstname = 'Simon',
 fullname;
var addSurname = function () {
 var surname = 'Holmes';
 window.fullname = window.firstname + ' ' + surname;
 console.log(window.fullname);
};
addSurname();
console.log(fullname);

This approach might add a few more characters to your code, but it makes it obvious
which variable you’re referencing and where it came from. There’s another reason for
this approach, particularly when assigning a value to a variable.

Implied global scope

JavaScript lets you declare a variable without using var, which is a bad thing indeed.
Worse, if you declare a variable without using var, JavaScript creates the variable in
the global scope, as shown in the following listing.

Listing D.5 Declaring globally scoped variables

Listing D.6 Using global variables in local scope

Variable declared in global
scope, even if a value isn’t
assigned to it yet

When using global
variables in local scope,
always use the fully
qualified reference.

420 APPENDIX D Reintroducing JavaScript

var firstname = 'Simon';
var addSurname = function () {
 surname = 'Holmes';
 fullname = firstname + ' ' + surname;
 console.log(fullname);
};
addSurname();
console.log(firstname + surname);
console.log(fullname);

We hope that you can see how this could be confusing and is a bad practice. The take-
away is always declare variables in the scope in which they belong, using the var statement .

The problem of variable hoisting

You’ve probably heard that with JavaScript, you should always declare your variables at
the top. That’s correct, and the reason is because of variable hoisting. With variable
hoisting, JavaScript declares all variables at the top anyway without telling you, which
can lead to some unexpected results.

 The following code listing shows how variable hoisting might show itself. In the
addSurname() function, you want to use the global value of firstname and later
declare a local scope value.

var firstname = 'Simon';
var addSurname = function () {
 var surname = 'Holmes';
 var fullname = firstname + ' ' + surname;
 var firstname = 'David';
 console.log(fullname);
};
addSurname();

Why is the output wrong? JavaScript “hoists” all variable declarations to the top of
their scope. You see the code in listing D.8, but JavaScript sees the code in listing D.9.

var firstname = 'Simon';
var addSurname = function () {
 var firstname,
 surname,
 fullname;
 surname = 'Holmes';
 fullname = firstname + ' ' + surname;
 firstname = 'David';
 console.log(fullname);
};
addSurname();

Listing D.7 Declaring without var

Listing D.8 Shadowing example

Listing D.9 Hoisting example

surname and fullname are both defined
in the global scope by implication.

They can be used in
the global scope.

You expect this to use
a global variable.

The output is actually
“undefined Holmes.”

JavaScript has moved all
variable declarations to the top.

No value is assigned
before it’s used, so it’s
undefined.

421Good habits or bad habits

When you see what JavaScript is doing, the bug is a little more obvious. JavaScript has
declared the variable firstname at the top of the scope, but it doesn’t have a value to
assign to it, so JavaScript leaves the variable undefined when you first try to use it.

 You should bear this fact in mind when writing your code. What JavaScript sees
should be what you see. If you can see things from the same perspective, you have less
room for error and unexpected problems.

Lexical scope

Lexical scope is sometimes called block scope. Variables defined between a set of braces
are limited to the scope of those braces. Therefore, scoping can be limited to looping
and flow logic constructs.

 JavaScript defines two keywords that provide lexical scope: let and const. Why
two? The functionality of the two is slightly different.

 let is a bit like var. It sets up a variable that can be changed in the scope in which
it is defined. It differs from var in that its scope is limited as described earlier, and
variables declared this way aren’t hoisted. As they’re not hoisted, they’re not tracked
by the compiler the same way as var; the compiler leaves them where they are on the
first pass, so if you try to reference them before they’re defined, the compiler com-
plains with a ReferenceError.

if (true) {
 let foo = 1;
 console.log(foo);
 foo = 2;
 console.log(foo);
 console.log(bar);
 let bar = 'something';
}

const has the same caveats as let. const differs from let in that variables declared in
such a way aren’t allowed to change, either by reassignment or redeclaration; they’re
declared to be immutable. const also prevents shadowing—redefining a previously
defined outer scoped variable. Suppose you have a variable defined in global scope
(with var), and you try to define a variable with const with the same name in an
enclosed scope. The compiler will throw an Error. The type of the error returned
depends on what you’re trying to do.

var bar = 'defined';
if (true) {
 const foo = 1;
 console.log(foo);

Listing D.10 let in action

Listing D.11 Using const

Initially declares variable

Prints out value of 1

Redefines value
Prints out value of 2

Tries to print out a value that’s
not defined yet (ReferenceError)

Definition of variable
that’s not hoisted

Initially declares bar

Initially declares foo variable
Prints out value of 1

422 APPENDIX D Reintroducing JavaScript

 foo = 2;
 const bar = 'something else';
}

Because of the clarity afforded by declaring variables with let and const, this method
is now the preferred way. Issues of hoisting are no longer a concern, and variables
behave in a more conventional way that programmers familiar with other mainstream
languages are more comfortable with.

Functions are variables

You may have noticed throughout the preceding code snippets that the addSurname()
function has been declared as a variable. Again, this is a best practice. First, this is how
JavaScript sees it anyway, and second, it makes it clear which scope the function is in.

 Although you can declare a function in the format

function addSurname() {}

JavaScript interprets it as follows:

const addSurname = function() {}

As a result, it’s a best practice to define functions as variables.

Limiting use of the global scope

We’ve talked a lot about using the global scope, but in reality, you should try to limit
your use of global variables. Your aim should be to keep the global scope as clean as
possible, which becomes important as applications grow. Chances are that you’ll add
various third-party libraries and modules. If all these libraries and modules use the
same variable names in the global scope, your application will go into meltdown.

 Global variables aren’t the “evil” that some people would have you believe, but you
must be careful when using them. When you truly need global variables, a good
approach is to create a container object in the global scope and put everything there.
Do this with the ongoing name example to see how it looks by creating a nameSetup
object in the global scope and use this to hold everything else.

const nameSetup = {
 firstname : 'Simon',
 fullname : '',
 addSurname : function () {
 const surname = 'Holmes';
 nameSetup.fullname = nameSetup.firstname + ' ' + surname;
 console.log(nameSetup.fullname);
 }
};
nameSetup.addSurname();
console.log(nameSetup.fullname);

Listing D.12 Using const to define functions globally

Tries to redefine foo (Error)
Tries to shadow bar variable

Declares a global
variable as an object

Local variables are still
okay inside functions.

Always access
values of an
object by using
a fully qualified
reference.

423Arrow functions

When you code like this, all your variables are held together as properties of an object,
keeping the global space nice and neat. Working like this also minimizes the risk of
having conflicting global variables. You can add more properties to this object after
declaration, and even add new functions. Adding to the preceding code listing, you
could have the code shown next.

nameSetup.addInitial = function (initial) {
 nameSetup.fullname = nameSetup.fullname.replace(" ", " " + initial + " ");
};
nameSetup.addInitial('D');
console.log(nameSetup.fullname);

Working in this way gives you control of your JavaScript and reduces the chances that
your code will give you unpleasant surprises. Remember to declare variables in
the appropriate scope and at the correct time, and group them into objects wherever
possible.

Arrow functions
So far, we’ve avoided discussing the JavaScript this variable. this is a fairly large topic
and can be the source of much confusion. Simply put, the value of this changes
depending on the context in which it’s used. For functions defined outside an Object
context, this refers to the execution context where the function was defined when in
strict mode; it defaults to the current execution context if not in strict mode, so it
changes depending on when it’s used.

 Further, this can be bound to a different execution context if the prototype func-
tions call() or apply() are used.

 If a function is defined as an Object method, this refers to the surrounding object
context. When used in an event handler, this refers to the DOM object that triggered
the event.

 Arrow function expressions (or arrow functions) cut through some of this confusion
by not defining a this variable on creation, as happens with the function keyword.
Some other context-related things are also not available, but this is by far the most
important. Instead, it binds this to the surrounding lexical context and makes it ideal
for nonmethod functions such as event handlers, callbacks, and global functions.

 The following listings provides the general form and some variations for arrow
functions.

Listing D.13 Adding object properties

Defines a new function
inside a global object

Invokes a function and
sends a parameterThe output is

“Simon D Holmes.”

424 APPENDIX D Reintroducing JavaScript

(param, param2, ..., paramN) => { <function body> }
(param, param2, ..., paramN) => expression

singleParam => { <function body> }
singleParam => expression

() => { <function body> }

Arrow functions provide a simpler, cleaner syntax, which in turn facilitates shorter,
more compact, more expressive functions, especially combined with destructuring
assignments. Plenty of examples throughout the book show how arrow functions can
be used. For further information on this, see https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Operators/this; for more on arrow functions, see
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/
Arrow_functions.

Destructuring
Dimly reminiscent of the idea of pattern matching as used in some functional pro-
gramming languages, destructuring allows for the unpacking of array values and
object properties into distinct variables. If you’re passing objects into functions,
destructuring means that you can explicitly state which properties from the argument
object you want to use.

 To use destructuring, on the LHS of the assignment operator (=) place square
brackets for destructuring an array or braces for an object; then, add variable names
for the values that you want. For arrays, variables get assigned values based on index
order. For objects, you should use the keys from the object, but that’s not strictly
necessary.

 The following listing details how to destructure an array.

let fst, snd, rest;
const data = ['first', 'second', 'third', 'fourth', 'fifth'];

[fst, snd, ...rest] = data;
[, fst, snd] = data;

Listing D.14 Arrow function format

Listing D.15 Destructuring an array

The most general form: arguments
in parentheses (=>), function body
(in braces)

With a single expression, the braces can be
omitted, but you get an implicit return

equivalent to => { return expression; }.

If you have a single
argument, you can omit
the parentheses.

If you have a single argument and
a single expression, omit the
parentheses and the braces;
remember that implicit return.

Arrow functions
with no
arguments need
the parentheses.

Assigns 'first' to fst and 'second' to snd
and the remaining values to rest using
the rest operator (...)

Ignores the first value and
pulls 'second' and 'third' into
fst and snd respectively, not
caring about anything else

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

425Logic flow and looping

const shortArr = [1];
[fst, snd = 10] = shortArr;

let a = 3, b = 4;
[a, b] = [b, a];

Destructuring objects requires a little more care; you need to know what properties
the object has so that they can be unpacked.

 See the following listing for examples of use.

const obj = {a: 10, b: 100, c: 1000};

const {a, c} = obj;
const {a: ten, c: hundred} = obj;
const {a, d = 50} = obj;

const shape = {type: 'square', sides: {width: 10, height: 10}};

const areaOfSquare = ({side: {width}}) => width * width;

areaOfSquare(shape);

Destructuring is an operation that can only be applied to the result of assignment, usu-
ally for function return values and regular expression matches, but can also be applied
in function argument lists and in for ... of iteration. Further examples and informa-
tion are available at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Destructuring_assignment.

 We use this technique in multiple places in the Loc8r codebase to cut down on the
amount of data a function or callback is allowed to work with.

Logic flow and looping
Now we’ll take a quick look at best practices for the commonly used patterns of if
statements and for loops. The text assumes that you’re familiar with these elements to
some extent.

Conditional statements: Working with if

JavaScript is helpful with if statements. If you have one expression within an if block,
you don’t have to wrap it in curly braces {}. You can even follow it with an else. The
code in the following listing is valid JavaScript.

Listing D.16 Destructuring objects

Variables in destructuring can be
assigned defaults if the assignment
returns undefined. Here, snd will be 10.

Swapping of variables; a
becomes 4, and b becomes 3.

Unpacks properties a
and c from the object Unpacks a and c, and assigns

values to 10 and 100

A new object with nested object
structure

Unpacks a, and assigns default value to
d if not in the provided object

Arrow function that
destructures the provided
object; ultimately gets the

value of width and uses that
in the function

Uses the function;
prints out 100

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

426 APPENDIX D Reintroducing JavaScript

const firstname = 'Simon';
let surname, fullname;
if (firstname === 'Simon')
 surname = 'Holmes';
else if (firstname === 'Sally')
 surname = 'Panayiotou';
fullname = `${firstname} ${surname}`;
console.log(fullname);

Yes, you can do this in JavaScript, but no, you shouldn’t! Doing this relies on the lay-
out of the code to be readable, which isn’t ideal. More important, what happens if you
want to add some extra lines within the if blocks? Start by giving Sally a middle initial.
See the following code listing for how you might logically try this.

const firstname = 'Simon', initial = '';
let surname, fullname;
if (firstname === 'Simon')
 surname = 'Holmes';
else if (firstname === 'Sally')
 initial = 'J';
 surname = 'Panayiotou';
fullname = `${firstname} ${initial} ${surname}`;
console.log(fullname);

What went wrong here is that without the block braces, only the first expression is con-
sidered to be part of the block, and anything following is outside the block. So here, if
firstname is Sally, initial becomes J, but surname always becomes Panayiotou.

 The following code listing shows the correct way of writing this.

const firstname = 'Simon';
let surname, fullname, initial = '';
if (firstname === 'Simon') {
 surname = 'Holmes';
} else if (firstname === 'Sally') {
 initial = 'J';
 surname = 'Panayiotou';
}
fullname = `${firstname} ${initial} ${surname}`;
console.log(fullname);

By being prescriptive, you see what the JavaScript interpreter sees and reduce the risk
of unexpected errors. It’s a good aim to make your code as explicit as possible, and
not leave anything open to interpretation. This practice helps both the quality of your
code and your ability to understand it when you come back to it after a year of work-
ing on other things.

Listing D.17 if without braces (bad practice)

Listing D.18 Demonstrating issue with no-brace if

Listing D.19 Correctly formatted if

Bad practice! Omitting { } around
single-expression if blocks.

Adds line into if block

Output is “Simon Panayiotou.”

Best practice! Always use { }
to define if blocks.

427Logic flow and looping

Running loops: Working with for

The most common method of looping through a collection of items is the for loop.
JavaScript handles this task fairly well, but you should be aware of a couple of pitfalls
and best practices.

 First, as with the if statement, JavaScript allows you to omit the curly braces {}
around the block if you have only one expression in it. We hope that you know by now
that this is a bad idea, as it is with the if statements. The following code listing shows
some valid JavaScript that may not produce the results you expect.

for (let i = 0; i < 3; i++)
 console.log(i);
 console.log(i * 5);
// Output in the console
// 0
// 1
// 2
// Uncaught ReferenceError: i is not defined

Listing D.20 for loop without braces (bad practice)

How many = symbols to use
In the code snippets here, you’ll notice that in each of the if statements, === is used
to check for a match. This is not only a best practice but also a great habit to get into.

The === (identity) operator is much stricter than == (equality). === provides a positive
match only when the two operands are of the same type, such as number, string, and
Boolean. == attempts type coercion to see whether the values are similar but a dif-
ferent type, which can lead to some interesting and unexpected results.

Look at the following code snippet for some interesting cases that could easily trip
you up:

let number = '';
number == 0;
number === 0;
number = 1;
number == '1';
number === '1';

In some situations, this might appear to be useful, but it’s far better to be clear and
specific about what you consider to be a positive match as opposed to what Java-
Script interprets as a positive match. If it doesn’t matter to your code whether number
is a string or a number type, you can match one or the other:

number === 0 || number === '';

The key is to always use the exact operator ===. The same goes for the not equals
operators: you should always use the exact !== instead of the loose !=.

True
False

True
False

The second statement is
outside the loop, so it
fires only once; and
because i is defined in
the for, it errors.

428 APPENDIX D Reintroducing JavaScript

From the way this is written and laid out, you might expect both console.log() state-
ments to run on each iteration of the loop. For clarity, the preceding snippet should
be written as in the following listing.

for (let i = 0; i < 3; i++) {
 console.log(i);
}
console.log(i*5);

We know that we keep going on about this, but making sure that your code reads the
same way that JavaScript interprets it helps you! Bearing in mind this fact and the best
practice for declaring variables, you should never see let inside a for conditional
statement. Updating the preceding code snippet to meet this best practice gives you
the following listing.

let i;
for (i = 0; i < 3; i++) {
 console.log(i);
}
console.log(i*5);

As the variable declaration should be at the top of the scope, there could be many
lines of code between it and the variable’s first use in a loop. JavaScript interpreters
act as though the variable has been defined there, so that’s where it should go.

 A common use for the for loop is to iterate through the contents of an array, so
next, we’ll cover some best practices and issues to look out for.

Using for loops with arrays

The key to using for loops with arrays is remembering the arrays are zero-indexed:
the first object in an array is in position 0. The knock-on effect is that the position of
the last item in the array is one less than the length. This sounds more complicated
than it is. A simple array breaks down like this:

The typical code you might see for declaring an array like this and looping through it
is in the following listing.

Listing D.21 Adding braces to a for loop

Listing D.22 Extracting the variable declaration

Variables should be
declared outside a
for statement.

Position
0

Array length is the
number of items (three)

Position
1

Position
2

429Getting to know JSON

let i;
const myArray = ["one","two","three"];
for (i = 0; i < myArray.length; i++) {
 console.log(myArray[i]);
}

This code works well and loops through the array correctly, starting at position 0 and
going through to the final position, 2. Some people prefer to rule out the use of i++
to autoincrement in their code because it can make code difficult to fathom. Person-
ally, we think that for loops are the exception to this rule and in fact make the code
easier to read, rather than adding a manual increment inside the loop itself.

 You can do one thing to improve the performance of this code. Each time the loop
goes around, JavaScript checks the length of myArray. This process would be quicker
if JavaScript checked against a variable, so a better practice is to declare a variable to
hold the length of the array. You can see this solution in action in the following code
listing.

let i, arrayLength;
const myArray = ["one","two","three"];
for (i = 0, arrayLength = myArray.length; i < arrayLength; i++) {
 console.log(myArray[i]);
}

Now a new variable, arrayLength, is given the length of the array to be looped
through when the loop is initiated. The script needs to check the length of the array
only once, not on every loop.

Getting to know JSON
JavaScript Object Notation (JSON) is a JavaScript-based approach to data exchange.
It’s much smaller than XML, more flexible, and easier to read. JSON is based on the
structure of JavaScript objects but is language independent and can be used to trans-
fer data among all manner of programming languages.

 We’ve used objects in our sample code in this book, and because JSON is based on
JavaScript objects, we’ll discuss them here briefly.

JavaScript object literals

In JavaScript, everything other than the simplest data types—string, number, Boolean,
null, and undefined—is an object, including arrays and functions. Object literals are
what most people think of as JavaScript objects; they’re typically used to store data but
can also contain functions, as you’ve already seen.

Listing D.23 More for loop

Listing D.24 Alternative for loop declaration

Starts counting at 0;
loops through while
count is less than length.

Declares arrayLength
variable with other variables

Assigns length of array
to arrayLength when

setting up the loop

430 APPENDIX D Reintroducing JavaScript

LOOKING AT THE CONTENTS OF A JAVASCRIPT OBJECT

A JavaScript object is a collection of key-value pairs, which are the properties of the
object. Each key must have a value.

 The rules for a key are simple:

 The key must be a string.
 The string must be wrapped in double quotes if it’s a JavaScript reserved word

or an illegal JavaScript name.

The value can be any JavaScript value, including functions, arrays, and nested objects.
The following listing shows a valid JavaScript object literal based on these rules.

const nameSetup = {
 firstname: 'Simon',
 fullname: '',
 age: 37,
 married: true,
 "clean-shaven": null,
 addSurname: function () {
 const surname = 'Holmes';
 this.fullname = `${this.firstname} ${surname}`;
 },
 children: [
 {
 firstname: 'Erica'
 },
 {
 firstname: 'Isobel'
 }
]
};

Here, all keys in the object are strings, but the values are a mixture of types: string,
number, Boolean, null, function, and array.

ACCESSING THE PROPERTIES OF AN OBJECT LITERAL

The preferred way to access properties is to use dot notation (.). Examples are

nameSetup.firstname
nameSetup.fullname

These examples can be used to get or set property values. If a property doesn’t exist
when you try to get it, JavaScript returns undefined. If a property doesn’t exist when
you try to set it, JavaScript adds it to the object and creates it for you.

 You can’t use dot notation when the key name is a reserved word or an illegal
JavaScript name. To access these properties, you need to wrap the key string in square
braces []. A couple of examples are

nameSetup["clean-shaven"]
nameSetup["var"]

Listing D.25 An example of a JavaScript object literal

A simple key-value pair

A complex key
surrounded by
double quotes

A function

‘this’ in the function
points to the surrounding
object due to the function
keyword; an arrow
function here would point
to the global scope.

Sets up an array as a
value in the object

431Getting to know JSON

Again, these references can be used to get or set the values.
 Next, we’ll take a look at how JSON is related.

Differences with JSON

JSON is based on the notation of JavaScript object literals, but because it’s designed to
be language independent, there are a couple of important differences:

 All key names and strings must be wrapped in double quotes.
 Functions aren’t a supported data type.

These two differences occur largely because you don’t know what will be interpreting
it. Other programming languages won’t be able to process JavaScript functions and
probably will have different sets of reserved names and restrictions on names. If you
send all names as strings, you can bypass this issue.

ALLOWABLE DATA TYPES IN JSON
You can’t send functions with JSON, but as it’s a data exchange format, that’s not such
a bad thing. The data types you can send are

 Strings
 Numbers
 Objects
 Arrays
 Booleans
 The value null

Looking at this list and comparing it with the JavaScript object in listing D.25, if you
remove the function property, you should be able to convert it to JSON.

FORMATTING JSON DATA

Unlike with the JavaScript object, we’re not assigning the data to a variable; neither do
we need a trailing semicolon. By wrapping all key names and strings in double
quotes—and they do have to be double quotes—we can generate the following listing.

{
 "firstname": "Simon",
 "fullname": "",
 "age": 37,
 "married": true,
 "has-own-hair": null,
 "children": [
 {
 "firstname": "Erica"
 },
 {
 "firstname": "Isobel"
 }
]
}

Listing D.26 An example of correctly formatted JSON

With JSON, you can send strings.

Empty strings
Numbers

Boolean values
Null

Arrays of other
JSON objects

432 APPENDIX D Reintroducing JavaScript

This listing shows some valid JSON. This data can be exchanged between applications
and programming languages without issue. It’s also easy for the human eye to read
and understand.

SHRINKING JSON FOR TRANSPORTING ACROSS THE INTERNET

The spacing and indentation in listing D.26 are purely to aid human readability; pro-
gramming languages don’t need them. You can reduce the amount of information
being transmitted if you remove unnecessary whitespace before sending the code.

 The following code snippet shows a minimized version of listing D.26, which is
more along the lines of what you’d expect to exchange between applications:

{"firstname":"Simon","fullname":"","age":37,"married":true,"has-own-
hair":null,"children":[{"firstname":"Erica"},{"firstname":"Isobel"}]}

The content is exactly the same as that of listing D.26, but much more compact.

Why is JSON so good?

The popularity of JSON as a data exchange format predates the development of Node
by quite some time. JSON began to flourish as the ability of browsers to run complex
JavaScript increased. Having a data format that was (almost) natively supported was
extremely helpful and made life considerably easier for front-end developers.

 The previous preferred data exchange format was XML. Compared with JSON,
XML is harder to read at a glance, much more rigid, and considerably larger to send
across networks. As you saw in the JSON examples, JSON doesn’t waste much space on
syntax. JSON uses the minimum amount of characters required to accurately hold
and structure the data, not a lot more.

Sending strings containing double quotes
JSON specifies that all strings must be wrapped in double quotes. What if your string
contains double quotes? The first double quote that an interpreter comes across will
be seen as the end delimiter for the string, so it will most likely throw an error when
the next item isn’t valid JSON.

The following code snippet shows an example. There are two double quotes inside
the string, which isn’t valid JSON and will cause errors:

"line": "So she said "Hello Simon""

The answer to this problem is to escape nested double quotes with the backslash
character (\). Applying this technique produces the following:

"line": "So she said \"Hello Simon\""

This escape character tells JSON interpreters that the following character shouldn’t
be considered to be part of the code; it’s part of the value and can be ignored.

433Formatting practices

 When it comes to the MEAN stack, JSON is the ideal format for passing data
through the layers of the stack. MongoDB stores data as binary JSON (BSON). Node
and Express can interpret this natively and also push it out to Angular, which also uses
JSON natively. Every part of the MEAN stack, including the database, uses the same
data format, so you have no data transformations to worry about.

Formatting practices
The code samples in this book use some of our personal preferences for laying out
code. Some of these practices are necessary best practices; others increase readability.
If you have different preferences, as long as the code remains correct, that’s absolutely
fine; the important thing is to be consistent.

 The main reasons for being concerned about formatting are

 Ensuring syntactically correct JavaScript
 Ensuring that your code functions correctly when minified
 Improving readability for yourself and/or others on your team

Start with an easy formatting practice: indentation.

Indenting code

The only real reason to indent your code is to make it considerably easier for mere
humans to read. JavaScript interpreters don’t care about it and will happily run code
without any indentation or line breaks.

 Best practice for indentation is to use spaces, not tabs, as there’s still no standard
for the placement of tab stops. How many spaces you choose is up to you; we person-
ally prefer two spaces. We find that using one space can make code difficult to follow
at a glance, as the difference isn’t all that big. Four spaces can make your code unnec-
essarily wide (again, in our opinion). We like to balance the readability gains of inden-
tation against the benefits of maximizing the amount of code you can see onscreen at
any time—well, for that reason and a dislike of horizontal scrolling.

Position of braces for functions and blocks

A best practice you should get into is placing the opening bracket of a code block at
the end of the statement that starts the block. What? All the code snippets so far have
been written this way. The following code listing shows the right way and the wrong
way of placing braces.

const firstname = 'Simon';
let surname;
if (firstname === 'Simon') {
 surname = 'Holmes';
 console.log(`${firstname} ${surname}`);
}

Listing D.27 Brace placements

Right way: opening
bracket on the same
line as the statement

434 APPENDIX D Reintroducing JavaScript

if (firstname === 'Simon')
{
 surname = 'Holmes';
 console.log(`${firstname} ${surname}`);
}

At least 99% of the time, the second approach won’t cause you a problem. The first
approach won’t cause you a problem 100% of the time. We’ll take that over wasting
time debugging; how about you?

 What’s the 1% of the time when the wrong approach will cause you a problem?
Consider a code snippet that uses the return statement:

return
{
 name : 'name'
};

If you put your opening bracket on a different line, JavaScript assumes that you’ve
missed a semicolon after the return command itself and adds one for you. JavaScript
evaluates it like this:

return;
{
 name:'name'
};

Due to JavaScript’s semicolon insertion, it doesn’t return the object you intended;
instead, JavaScript returns undefined.

 Next, we’ll look at semicolon use and JavaScript semicolon insertion in more
detail.

Using the semicolon correctly

JavaScript uses the semicolon character to denote the end of statements. It tries to be
helpful by making this character optional and injects its own semicolons at runtime if
it deems it necessary to do so, which isn’t a good thing at all.

 When using semicolons to delimit statements, you should return to the goal of see-
ing in the code what the JavaScript interpreter sees and not let it make any assump-
tions. We treat semicolons as not optional, and we’re now at a point where code looks
wrong to us if they’re not there.

 Most lines of your JavaScript have a semicolon at the end, but not all; that would be
too easy! All the statements in the following listing should end with a semicolon.

const firstname = 'Simon';
let surname;
surname = 'Holmes';
console.log(`${firstname} ${surname}`);
const addSurname = function () {};
alert('Hello');
const nameSetup = { firstname : 'Simon', fullname : ''};

Listing D.28 Examples of semicolon use

Wrong way: opening
bracket on its own line

JavaScript inserts a semicolon
after the return statement and
so ignores the following code.

Use a semicolon
at the end of
most statements.

435Formatting practices

But code blocks shouldn’t end with a semicolon. We’re talking about blocks of code
associated with if, switch, for, while, try, catch, and function (when not being
assigned to a variable). The following listing shows a few examples.

if (firstname === 'Simon') {
 …
}
function addSurname () {
 …
}
for (let i = 0; i < 3; i++) {
 …
}

The rule isn’t quite so straightforward as “don’t use a semicolon” after curly braces.
When assigning a function or object to a variable, you do have a semicolon after the
curly braces. You’ve seen a couple of examples, which we’ve been using throughout
the book.

const addSurname = function () {
 …
};
const nameSetup = {
 firstname : 'Simon'
};

Putting semicolons after blocks can take a little while to get used to, but it’s worth the
effort and eventually becomes second nature.

Placing commas in a list

When you’re defining a long list of variables at the top of a scope, the most common
approach is to write one variable name per line. This practice makes it easy to see at a
glance what variables you’ve set up. The classic placement for the comma that sepa-
rates variables is at the end of the line.

let firstname = 'Simon',
 surname,
 initial = '',
 fullname;

This approach is Simon’s preferred approach, as he’s been using it for about 15 years.
Clive, on the other hand, advocates putting the comma at the front of each line.

Listing D.29 Using code blocks without semicolons

Listing D.30 Semicolon placement for assigned blocks

Listing D.31 Comma-last placement

No semicolon used at
end of code block

Semicolons after curly
braces when assigning
to a variable

Uses a comma at the end of
each line, separating it from
the next variable declaration

436 APPENDIX D Reintroducing JavaScript

let firstname = 'Simon'
 , surname
 , initial = ''
 , fullname;

This JavaScript is perfectly valid and when minified to one line, reads exactly the same
as the first code snippet. Simon has tried to get used to it, but he can’t; it looks wrong
to him. Clive thinks that comma-first is a good idea, but he thinks Elm is great too.

 There are arguments for and against both approaches. Your choice comes down to
personal preference. The critical thing is to have a standard and stick to it.

Don’t be afraid of whitespace

Adding a bit of whitespace between sets of braces can help readability and won’t cause
any problems for JavaScript. Again, you’ve seen this approach in all the code snippets
so far. You can also add or remove whitespace from between a lot of JavaScript opera-
tors. Take a look at the following code snippet, showing the same piece of code with
and without extra whitespace.

const firstname = 'Simon';
let surname;
if (firstname === 'Simon') {
 surname = 'Holmes';
 console.log(`${firstname} ${surname}`);
}
const firstname='Simon';
let surname;
if(firstname==='Simon'){
 surname='Holmes';
 console.log(firstname+" "+surname);
}

As humans, we read by using whitespace as the delimiters for words, and the way we
read code is no different. Yes, you can figure out the second part of the code snippet
here, as many syntactic pointers act as delimiters, but it’s quicker and easier to read
and understand the first part. JavaScript interpreters don’t notice the whitespace in
these places, and if you’re concerned about increasing the file size for browser-based
code, you can always minimize it before pushing it live.

Tools to help you write good JavaScript

A couple of online code-quality checkers called JSHint and ESLint check the quality
and consistency of your code. Even better, most IDEs and good text editors have
plugins or extensions for one or the other, so your code can be quality-checked as you
go. These tools are useful for spotting the occasional missed semicolon or a comma in
the wrong place.

Listing D.32 Comma-first placement

Listing D.33 Examples of whitespace formatting

Uses a comma at start of each
line, separating it from next
variable declaration

JavaScript snippet using
whitespace for readability

Same snippet with
whitespace removed
(excluding indentation)

437Understanding callbacks

 Of the two tools, ESLint is geared more toward linting ES2015 code. TypeScript
has its own linter, TSLint, which Angular installs by default.

String formatting
ES2015 introduced an alternative way of formatting strings akin to string interpola-
tion, as you’d find in many different languages. JavaScript calls this type of formatting
template literals.

 A template literal is denoted with backticks where you’d ordinarily use single or
double quotes to define a string. To perform the interpolation, the element (variable
or function call result) that you wish inserted into the string needs to be wrapped by
‘${}’.The following listing shows how this works.

const value = 10;
const square = x => x * x;
console.log(`Squaring the number ${value} gives a result of

➥${square(value)}`);
// Squaring the number 10 gives a result of 100

Understanding callbacks
The next aspect of JavaScript programming that we’ll look at is callbacks. Callbacks often
seem to be confusing or complicated at first, but if you take a look under the hood, you’ll
find that they’re fairly straightforward. Chances are that you’ve already used them.

 Callbacks are typically used to run a piece of code after a certain event has hap-
pened. Whether this event is a link being clicked, data being written to a database, or
another piece of code finishing executing isn’t important, as the event could be
almost anything. A callback function itself is typically an anonymous function—a func-
tion declared without a name—that’s passed directly to the receiving function as a
parameter. Don’t worry if this seems like jargon right now; we’ll look at code examples
soon, and you’ll see how easy it is.

Using setTimeout to run code later

Most of the time, you use callbacks to run code after something happens. To get accus-
tomed to the concept, you can use a function that’s built into JavaScript: setTime-
out(). You may have already used it. In a nutshell, setTimeout() runs a callback
function after the number of milliseconds that you declare. The basic construct for
using it as follows:

Listing D.34 Using template literals

Template
literal

Result of the
interpolation

Function to run
after the timeout

Length of timeout
(milliseconds)

Variable to hold
the timeout

438 APPENDIX D Reintroducing JavaScript

First, setTimeout() is declared inside a variable so that you can access it again to can-
cel it, should you want to. As we mentioned earlier, a callback is typically an unnamed
anonymous function. If you wanted to log your name to the JavaScript console after 2
seconds, you could use this code snippet.

const waitForIt = setTimeout(function () {
 console.log("My name is Simon");
}, 2000);

NOTE Callbacks are asynchronous. They run when they’re required, not nec-
essarily in the order in which they appear in your code.

Keeping in mind this asynchronous nature, what would you expect the output of the
following code snippet to be?

console.log("Hello, what's your name?");
const waitForIt = setTimeout(function () {
 console.log("My name is Simon");
}, 2000);
console.log("Nice to meet you Simon");

If you read the code from top to bottom, the console log statements appear to make
sense. But because the setTimeout() callback is asynchronous, it doesn’t hold up the
processing of code, so you end up with this:

Hello, what's your name?
Nice to meet you Simon
My name is Simon

As a conversation, this result clearly doesn’t flow properly. In code, having the correct
flow is essential; otherwise, your applications quickly fall apart.

 Because this asynchronous approach is so fundamental to working with Node,
we’ll look into it a little deeper.

Listing D.35 Capturing setTimeout reference

Canceling a setTimeout
If a setTimeout declaration has been assigned to a variable, you can use that vari-
able to clear the timeout and stop it from completing, assuming that it hasn’t already
completed. You use the clearTimeout() function, which works like so:

const waitForIt = setTimeout(function () {
 console.log("My name is Simon Holmes");
}, 2000);
clearTimeout(waitForIt);

This code snippet wouldn’t output anything to the log, as the waitForIt timer is
cleared before it has the chance to complete.

439Understanding callbacks

Asynchronous code

Before you look at some more code, reminding yourself of the bank-teller analogy
from chapter 1. Figure D.3 shows how a bank teller can deal with multiple requests by
passing any time-consuming tasks to other people.

The bank teller is able to respond to Sally’s request because she passed responsibility
for Simon’s request to the safe manager. The teller isn’t interested in how the safe
manager does what he does or how long it takes. This approach is asynchronous.

Simon

Safe manager

Cashier

SallyBank teller

Put $500 in the
safe. Tell me how
much I have.

Your total is
$5,000.

Here is
your $100.

Goes to safe,
deposits $500,

and counts total

Gets
$100

Withdraw
$100.

Figure D.3 Handling multiple requests

440 APPENDIX D Reintroducing JavaScript

 You can mimic this approach in JavaScript by using the setTimeout() function to
demonstrate the asynchronous approach. All you need are some console.log() state-
ments to demonstrate the bank teller’s activity and a couple of timeouts to represent
the delegated tasks. You can see this approach in the following code listing, where it’s
assumed that Simon’s request will take 3 seconds (3,000 ms), and Sally’s will take 1
second.

console.log("Taking Simon's request");
const requestA = setTimeout(function () {
 console.log("Simon: money's in the safe, you have $5000");
}, 3000);
console.log("Taking Sally's request");
const requestB = setTimeout(function () {
 console.log("Sally: Here's your $100");
}, 1000);
console.log("Free to take another request");
// ** console.log responses, in order **
// Taking Simon's request
// Taking Sally's request
// Free to take another request
// Sally: Here's your $100
// Simon: money's in the safe, you have $5000

This code has three distinct blocks: taking the first request from Simon and sending it
away B; taking the second request from Sally and sending it away C; and ready to
take another request D. If this code were synchronous code like you’d see in PHP or
.NET, you’d deal with Simon’s request in its entirety before taking Sally’s request 3 sec-
onds later.

 With an asynchronous approach, the code doesn’t have to wait for one of the
requests to complete before taking another one. You can run this code snippet in your
browser to see how it works. Put it in an HTML page and run it, or enter it directly in
the JavaScript console.

 We hope that you see how this code mimics the scenario we talked through as we
kicked off this section. Simon’s request was first in, but as it took some time to com-
plete, the response didn’t come back immediately. While somebody was dealing with
Simon’s request, Sally’s request was taken. While Sally’s request was being dealt with,
the bank teller became available again to take another request. As Sally’s request took
less time to complete, she got her response first, whereas Simon had to wait a bit lon-
ger for his response. Neither Sally nor Simon got held up by the other.

 Now go one step further by looking at what might be happening inside the set-
Timeout() function.

Running a callback function

We’re not going show you the source code of setTimeout() here, but a skeleton func-
tion that uses a callback. Declare a new function called setTimeout() that accepts the

Listing D.36 Asynchronous flow

B Takes first request

C Takes second request

D Ready for another request

Sally’s response
appears after 1
second. Simon’s response

appears after
another 2 seconds.

441Understanding callbacks

parameters callback and delay. The names aren’t important; they can be anything
you want. The following code listing demonstrates this function. (Note that you won’t
be able to run this function in a JavaScript console.)

const setTimeout = (callback, delay) => {
 ...
 ...
 callback();
};
const requestB = setTimeout (() => {
 console.log("Sally: Here's your $100");
}, 1000);

The callback parameter is expected to be a function, which can be invoked at a spe-
cific point in the setTimeout() function B. In this case, you’re passing it a simple
anonymous function C that will write a message to the console log. When the set-
Timeout() function deems it appropriate to do so, it invokes the callback, and the
message is logged to the console. That’s not so difficult, is it?

 If JavaScript is your first programming language, you’ll have no idea how weird this
concept of passing anonymous functions around looks to those who are coming in
from different backgrounds. But the ability to operate this way is one of JavaScript’s
great strengths.

 Typically, you won’t generally look inside the function running the callbacks,
whether it’s setTimeout(), jQuery’s ready(), or Node’s createServer(). The docu-
mentation for these functions tells you what the expected parameters are and what
parameters may be returned.

CALLBACK SCOPE

Something to bear in mind when passing anonymous functions around this way is that
the callback doesn’t inherit the scope of the function it’s passed into. The callback
function isn’t declared inside the destination function, merely invoked from it. A call-
back function inherits the scope in which it’s defined.

 Figure D.4 depicts scope circles. Here, you see that the callback has its own local
scope inside the global scope, which is where requestB is defined. This is all well and
good if your callback needs access only to its inherited scope, but what if you want it to be
smarter? What if you want to use data from your asynchronous function in your callback?

Listing D.37 setTimeout skeleton

B Delays processing for specified number of ms

Runs callback function

Sends anonymous
function and delaysC

Why setTimeout() is unusual
The setTimeout() function is unusual in that you specify a delay after which the call-
back will fire. In a more typical use case, the function itself decides when the callback
should be triggered. In jQuery’s ready() method, this is when jQuery says the DOM
has loaded; in a save() operation in Node, this is when the data is saved to the data-
base and a confirmation is returned.

442 APPENDIX D Reintroducing JavaScript

Currently, the example callback function has a dollar amount hardcoded into it, but
what if you want that value to be dynamic—to be a variable? Assuming that this value is
set in the setTimeout() function, how do you get it into the callback? You could save
it to the global scope, but as you know by now, doing so would be bad. You need to
pass the value as a parameter into the callback function. You should get something
like the scope circles shown in figure D.5.

Scope: Global

Scope:
Function

Scope:
Function

Figure D.4 A callback has its own local scope.

Scope: Global

Scope:
Function

Scope:
Function

Figure D.5 Setting a variable and passing it to the callback

443Understanding callbacks

The same thing in code would look like the following code listing.

const setTimeout = (callback, delay) => {
 const dollars = 100;
 ...
 callback(dollars);
};
const requestB = setTimeout((dollars) => {
 console.log("Sally: Here's your $" + dollars);
}, 1000);

This code snippet outputs the same message to the console that you’ve already seen.
The big difference now is that the value of dollars is being set in the setTimeout()
function and being passed to the callback.

 It’s important that you understand this approach, as the vast majority of Node code
examples on the internet use asynchronous callbacks this way. But there are a couple
of potential problems with this approach, particularly when your codebase gets larger
and more complex. An overreliance on passing around anonymous callback functions
can make the code hard to read and follow, especially when you find that you have
multiple nested callbacks. It also makes running tests on the code difficult, as you
can’t call any of these functions by name; they’re all anonymous. We don’t cover unit
testing in this book, but in a nutshell, the idea is that every piece of code can be tested
separately with repeatable and expected results.

 Let’s look at a way that you can achieve this result with named callbacks.

Named callbacks

Named callbacks differ from inline callbacks in one fundamental way. Instead of putting
the code you want to run directly into the callback, you put the code inside a defined
function. Then, rather than passing the code directly as an anonymous function, you
can pass the function name. Rather than passing the code, you’re passing a reference to
the code to run.

 Sticking with the ongoing example, add a new function called onCompletion()
that will be the callback function. Figure D.6 shows how this function looks in the
scope circles.

 This figure looks like the preceding example, except that the callback scope has a
name. As with an anonymous callback, a named callback can be invoked without any
parameters, implied in figure D.6. The following code snippet shows how to declare
and invoke a named callback, putting into code what you see in figure D.6.

Listing D.38 setTimeout with passing data

Declares a variable in
the function scope

Passes the variable as a
parameter to the callback

Accepts the variable as a parameter
in the callback and uses it

444 APPENDIX D Reintroducing JavaScript

const setTimeout = (callback, delay) => {
 const dollars = 100;
 ...
 callback();
};
const onCompletion = () => {
 console.log("Sally: Here's your $100");
};
const requestB = setTimeout(
 onCompletion,
 1000
);

The named function B now exists as an entity in its own right, creating its own scope.
Notice that there’s no longer an anonymous function, but the name of the function
C is passed as a reference.

PASSING VARIABLES
Listing D.39 uses a hardcoded dollar value in the console log again. As with anony-
mous callbacks, passing a variable from one scope to another is straightforward. You
can pass the parameters you need into the named function. Figure D.7 shows how this
looks in the scope circles.

 You need to pass the variable dollars from setTimeout() to the onCompletion()
callback function. You can do so without changing anything in your request, as the fol-
lowing code snippet shows.

Listing D.39 Named callbacks

Scope: Global

Scope:
Function

Scope:
Function

Figure D.6 Change in scope when using a named callback

Declares a
named function
in distinct scope

B

C
Sends the function
name as a callback

445Understanding callbacks

const setTimeout = function (callback, delay) {
 const dollars = 100;
 ...
 callback(dollars);
};
const onCompletion = function (dollars) {
 console.log("Sally: Here's your $" + dollars);
};
const requestB = setTimeout(
 onCompletion,
 1000
);

Here, the setTimeout() function sends the dollars variable to the onCompletion()
function as a parameter. You’ll often have no control of the parameters sent to your
callback, because asynchronous functions like setTimeout() are provided as is. But
you’ll often want to use variables from other scopes inside your callback, not what
your asynchronous function provides. Next, we’ll look at how to send the parameters
you want to your callback.

USING VARIABLES FROM A DIFFERENT SCOPE

Suppose that you want the name in the output to come through as a parameter. The
updated function looks like the following:

const onCompletion = function (dollars, name) {
 console.log(name + ": Here's your $" + dollars);
};

Listing D.40 setTimeout variable passing

Scope: Global

Scope:
Function

Scope:
Function

Figure D.7 Passing the required parameter into the new function scope

Sends the dollars variable as
a parameter to the callback

Named function accepts
and uses the parameter

No change is made when
sending the callback.

446 APPENDIX D Reintroducing JavaScript

The problem is that the setTimeout() function passes only a single parameter,
dollars, to the callback. You can address this problem by using an anonymous func-
tion as a callback again, remembering that it inherits the scope in which it’s defined.
To demonstrate this function outside the global scope, wrap the request in a new func-
tion, getMoney(), that accepts a single parameter, name.

const getMoney = function (name) {
 const requestB = setTimeout(function (dollars) {
 onCompletion(dollars, name);
 }, 1000);
};
getMoney('Simon');

In the scope circles, this code looks like figure D.8.

Listing D.41 Variable scoping in setTimeout

Anonymous function
accepts only the
dollars parameter

Named callback accepts dollars
from the anonymous function and
name from the getMoney scope

1. Send callback
to function

3. Callback evaluates
in the scope it was
defined in

4. Callback passes inherited
name variable and dollars
parameter to the named function

2. Send dollars
back to callback

Scope:
Function

Scope:
Function

Scope:
Function

Scope:
Function

Scope: Global

Figure D.8 The process of sending variables from different scopes to a named callback function

447Understanding callbacks

The next listing puts all the code together for the sake of completeness.

const setTimeout = (callback, delay) => {
 const dollars = 100;
 ...
 callback(dollars);
};
const onCompletion = (dollars, name) => {
 console.log(name + ": Here's your $" + dollars);
};
const getMoney = (name) => {
 const requestB = setTimeout((dollars) => {
 onCompletion(dollars, name);
 }, 1000);
};
getMoney('Simon');

The simple way to think of it is that calling the named function from inside the anony-
mous callback enables you to capture anything you need from the parent scope (get-
Money(), in this case) and explicitly pass it to the named function (onCompletion()).

Remember that you normally won’t have access to the code inside the function that
invokes the callback and that the callback is often invoked with a fixed set of parame-
ters (or none, as with setTimeout()). Anything extra that you need to add must be
added inside the anonymous callback.

Listing D.42 Complete setTimeout example

Sends a callback to the
setTimeout function

Calls a callback function
sending dollars variable

Calls a named function
passing dollars and
name parameters

Seeing the flow in action
If you want to see this flow in action, you can add a debugger statement, run it in your
browser, and step through the functions to see which variables and values are set
where and when. Altogether, you have something like this:

const mySetTimeout = function (callback, delay) {
 const dollars = 100;
 callback(dollars);
};
const onCompletion = function (dollars, name) {
 console.log(name + ": Here's your $" + dollars);
};
const getMoney = function (name) {
 debugger;
 const requestB = mySetTimeout(function (dollars) {
 onCompletion(dollars,name);
 }, 1000);
};
getMoney('Simon');

Note that when adding a debugger statement, you’ll want to change the name of the
setTimeout() function so that it doesn’t interfere with the native function.

448 APPENDIX D Reintroducing JavaScript

BETTER FOR READING AND TESTING

Defining a named function in this way makes the scope and code of the function eas-
ier to comprehend at a glance, especially if you name your functions well. With a
small, simple example like this one, you could think that the flow is harder to under-
stand when you move the code into its own function, and you could well have a point.
But when the code becomes more complex and you have multiple lines of code inside
multiple nested callbacks, you’ll definitely see the advantage of doing it this way.

 Another advantage of being able to easily see what the onCompletion() function
should do and what parameters it expects and requires to work is that the function
becomes easier to test. Now you can say, “When the function onCompletion() is
passed a number of dollars and a name, it should output a message to the console,
including this number and name.” This case is a simple one, but we hope that you can
see its value.

 That brings us to the end of discussing callbacks from a code perspective. Now that
you’ve got a good idea of how callbacks are defined and used, look at Node to see why
callbacks are so useful.

Callbacks in Node

In the browser, many events are based on user interaction, waiting for things to hap-
pen outside what the code can control. The concept of waiting for external things to
happen is similar on the server side. The difference on the server side is that the
events focus more on other things happening on the server or indeed on a different
server. In the browser, the code waits for events such as a mouse click or form submit,
whereas the server-side code waits for events such as reading a file from the file system
or saving data to a database.

 The big difference is that in the browser, it’s generally an individual user who initi-
ates the event, and it’s only that user who’s waiting for a response. On the server side,
the central code generally initiates the event and waits for a response. As discussed in
chapter 1, only a single thread is running in Node, so if the central code has to stop
and wait for a response, every visitor to the site gets held up—not a good thing! This is
why it’s important to understand callbacks, because Node uses callbacks to delegate
the waiting to other processes, making it asynchronous.

 Next, we’ll look at an example of using callbacks in Node.

A NODE CALLBACK

Using a callback in Node isn’t any different from using it in the browser. If you want to
save some data, you don’t want the main Node process doing this, as you didn’t want
the bank teller going with the safe manager and waiting for the response. You want to
use an asynchronous function with a callback. All database drivers for Node provide
this ability. We get into the specifics about how to create and save data in the book, so
for now, we’ll use a simplified example. The following code snippet shows an example
of asynchronously saving data using the save() method of the mySafe object and out-
putting a confirmation to the console when the database finishes and returns a
response.

449Understanding callbacks

mySafe.save(
 function (err, savedData) {
 console.log(`Data saved: ${savedData}`);
 }
);

Here, the save function expects a callback func-
tion that can accept two parameters, an error
object (err), and the data returned from the
database following the save (savedData). There’s
normally a bit more to functionality in the call-
back than this, but the basic construct is simple.

RUNNING CALLBACKS ONE AFTER ANOTHER

You get the idea of running a callback, but what
do you do if you want to run another asynchro-
nous operation when the callback is finished?
Returning to the banking metaphor, suppose that
you want to get a total value from all of Simon’s
accounts after the deposit is made to the safe.
Simon doesn’t need to know that multiple steps
and multiple people are involved, and the bank
teller doesn’t need to know until everything is
complete. You’re looking to create a flow like the
one shown in figure D.9.

 Clearly, two operations will be required, with
another asynchronous call to the database. You
know from what we’ve already discussed that you
can’t put it in the code after the save function, as
in the following code snippet.

Listing D.43 Basic Node callback

Customer Bank teller

Put $500 in the
safe. Tell me how much
I have in all accounts.

Safe manager

Goes to safe,
deposits $500,
and counts total

Gets totals of all
of customer’s accounts

Accounts manager

Counts
totals

Done. Your
total is $5,000.

Figure D.9 Required flow when using
two asynchronous operations, one
after another

450 APPENDIX D Reintroducing JavaScript

mySafe.save(
 function (err, savedData) {
 console.log(`Data saved: ${savedData}`);
 }
);
myAccounts.findTotal(
 function (err, accountsData) {
 console.log(`Your total: ${accountsData}`);
 }
);
// ** console.log responses, in probable order **
// Your total: 4500
// Data saved: {dataObject}

That’s not going to work, because the myAccounts.findTotal() function will run
immediately rather than when the mySafe.save() function has finished. The return
value is likely to be incorrect, because it won’t take into account the value being added
to the safe. You need to ensure that the second operation runs when you know that
the first one has finished. The solution is simple: invoke the second function from
inside the first callback, a process known as nesting the callbacks.

 Nested callbacks are used to run asynchronous functions one after another. Put
the second function inside the callback from the first, as in the following listing.

mySafe.save(
 function (err, savedData) {
 console.log(`Data saved: ${savedData}`);
 myAccounts.findTotal(
 function (err, accountsData) {
 console.log(`Your total: ${accountsData.total}`);
 }
);
 }
);
// ** console.log responses, in order **
// Data saved: {dataObject}
// Your total: 5000

Now you can be sure that the myAccounts.findTotal() function will run at the
appropriate time, which in turn means that you can predict the response.

 This ability is important. Node is inherently asynchronous, jumping from request
to request and from site visitor to site visitor. But sometimes, you need to do things in
a sequential manner. Nesting callbacks gives you a good way of doing this by using
native JavaScript.

 The downside of nested callbacks is the complexity. You can probably see that with
one level of nesting, the code is already a bit harder to read, and following the sequen-
tial flow takes a bit more mental effort. This problem is multiplied when the code gets

Listing D.44 Node callback issues

Listing D.45 Nesting callbacks

The second function will fire before
the save function has finished, so
the returned accountsData will
likely be incorrect.

Second asynchronous
operation nested
inside callback of first

451Understanding callbacks

more complex and you end up with multiple levels of nested callbacks. The problem
is so great that it has become known as callback hell. Callback hell is why some people
think that Node (and JavaScript) is particularly hard to learn and difficult to main-
tain, and they use it as an argument against the technology. In fairness, many code
samples you can find online do suffer from this problem, which doesn’t do much to
combat this opinion. It’s easy to end up in callback hell when you’re developing Node,
but it’s also easy to avoid if you start in the right way.

 We’ve already discussed the solution to callback hell: using named callbacks. Next,
we’ll show you how named callbacks help with this problem.

USING NAMED CALLBACKS TO AVOID CALLBACK HELL

Named callbacks can help you avoid nested callback hell because you can use them to
separate each step into a distinct piece of code or functionality. Humans tend to find
this type of code easier to read and understand.

 To use a named callback, you need to take the content of a callback function and
declare it as a separate function. The nested callback example has two callbacks, so
you’re going to need two new functions: one for when the mySafe.save() operation
has completed and one for when the myAccounts.findTotal() operation has com-
pleted. If these functions are called onSave() and onFindTotal(), respectively, you
can create some code like the following listing.

mySafe.save(
 function (err, savedData) {
 onSave(err, savedData);
 }
);
const onSave = function (err, savedData) {
 console.log(`Data saved: ${savedData}`);
 myAccounts.findTotal(
 function (err, accountsData) {
 onFindTotal(err, accountsData);
 }
);
};
const onFindTotal = function (err, accountsData) {
 console.log(`Your total: ${accountsData.total}`);
};

Now that each piece of functionality is separated into a separate function, it’s easier to
look at each part in isolation and understand what it’s doing. You can see what param-
eters it expects and what the outcomes should be. In reality, the outcomes are likely to
be more complex than simple console.log() statements, but you get the idea. You
can also follow the flow relatively easily and see the scope of each function.

 By using named callbacks, you can reduce the perceived complexity of Node and
also make your code easier to read and maintain. An important second advantage is

Listing D.46 Refactor of callback code

Invokes the first named function
from mySafe.save operation

Starts the second
asynchronous operation from
within the first named callback

Invokes the second
named function

452 APPENDIX D Reintroducing JavaScript

that individual functions are much better suited to unit testing. Each part has defined
inputs and outputs, with expected and repeatable behavior.

Promises and async/await
A Promise is like a contract: it states that a value will be available in the future when a
long-running operation has completed. In essence, a Promise represents the result of
an asynchronous operation. When that value has been determined, the Promise exe-
cutes the given code or handles any error associated with not having received the
expected value.

 Promises are first-class citizens of the JavaScript specification. They have three
states:

 Pending—The initial state of the Promise
 Fulfilled—The asynchronous operation successfully resolved
 Rejected—The asynchronous operation did not successfully resolve

Promises

When a Promise has been resolved, successfully or not, its value can’t change; it
becomes immutable. We’ll discuss immutability in the section on functional program-
ming later in this appendix.

 To set up a Promise, you create a function that accepts two callback functions: one
that executes on success and one that executes on failure. These callbacks fire when
called by the Promise execution. Then, execution of the callbacks is transferred to
then() functions (which are chainable) on success or a catch() function when not.

const promise = new Promise((resolve, reject) => {
 // set up long running, possibly asynchronous operation,
 // like an API query
 if (/* successfully resolved */) {
 resolve({data response});
 } else {
 reject();
 }
});

promise
 .then((data) => {/* execute this on success */})
 .then(() => {/ * chained next function, and so on */})
 .catch((err) => {/* handle error */});

Listing D.47 Setting up/using a Promise

Creates a
Promise,

passing in
the expected

callback
function

On success, calls the resolve() function,
optionally passing data forward

On failure, calls the reject() function, optionally
passing data or the Error object forward

The then() function is
called; it performs the
desired operation,
optionally returning a
value to next then().

The next then()
function in the chain,
which can be as long

as necessaryCatches the error. If this is at
the end of a chain of then()
functions, any error thrown

is caught by this handler.

453Promises and async/await

We use Promises in the Loc8r application, but not in a complicated way. The Promises
API provides some static functions that help if you’re trying to execute multiple
Promises.

 Promise.all() accepts an iterable of Promises and returns a Promise when all
items in the array fulfill or reject. The resolve() callback receives an array of
responses: a mixture of Promise-like objects and other objects in order of fulfillment.
If one of the executed Promises rejects, the reject() callback receives a single value.

const promise1 = new Promise((resolve, reject) => resolve());
const promise2 = new Promise((resolve, reject) => resolve());
const promise3 = new Promise((resolve, reject) => reject());
const promise4 = new Promise((resolve, reject) => resolved());

Promise.all([
 promise1,
 promise2,
 promise3,
 promise4
])
.then(([]) => {/* process success data iterable */})
.catch(err => console.log(err));

Promise.race() also accepts an iterable, but the output of Promise.race() is differ-
ent. Promise.race() executes all provided Promises and returns the first response
value that it receives whether this value is a fulfillment or a rejection.

const promise1 = new Promise((resolve, reject) =>

➥setTimeout(resolve, 1000, 'first'));
const promise2 = new Promise((resolve, reject) =>

➥setTimeout(reject, 200, 'second'));

Promise.race([promise1, promise2])
 .then(value => console.log(value))
 .catch(err => console.log(err));

Because Promises rely on callbacks, due to their asynchronous nature, you can get
into a muddle if several callbacks are nested. Finding yourself in a deeply nested call-
back structure is often referred to as callback hell. Promises somewhat mitigate this
problem by providing a structure and making the asynchronicity explicit.

async/await

Promises have their drawbacks. They’re difficult to use in a synchronous manner, and
you usually have to wade through a bunch of boilerplate code before getting to the
good stuff.

 async/await functions are there to simplify the behavior of using Promises syn-
chronously. The await expression is valid only in an async function; if used outside an

Listing D.48 Promise.all()

Listing D.49 Promise.race()

Promise 3 rejects,
so this is ignored
(in this example).

The reject() call on
Promise 3 ends up
here, although all
Promises are
executed.

The expected response here is second,
because the rejection happens before
the resolve of promise1 resolves.

454 APPENDIX D Reintroducing JavaScript

async function, the code throws a SyntaxError. When an async function is declared,
the definition returns an AsyncFunction object. This object operates asynchronously
via the JavaScript event loop and returns an implicit Promise as its result. The way the
syntax is used and how it allows the code to be structured gives the impression that
using async functions is much like using synchronous functions.

The next listing shows async/await in use.

function resolvePromiseAfter2s () {
 return new Promise(resolve => setTimeout(() =>
 ➥resolve('done in 2s'), 2000));
}

const resolveAnonPromise1s = () => new Promise(resolve =>

➥setTimeout(() => resolve('done in 1s'), 1000));

async function asyncCall () {
 const result1 = await resolvePromiseAfter2s();
 console.log(result1);
 const result2 = await resolveAnonPromise1s();
 console.log(result2);
}

asyncCall();

You can find more details on async/await at https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Statements/async_function.

Writing modular JavaScript
Someone anonymously tweeted a great quote:

The secret to writing large apps in JavaScript is not to write large apps. Write many small
apps that can talk to each other.

This quote makes great sense in a number of ways. Many applications share several
features, such as user login and management, comments, reviews, and so on. The eas-
ier it is for you to take a feature from one application you’ve written and drop it into

Listing D.50 async/await

await
The await expression causes the execution of the async function to pause and wait
until the passed Promise resolves. Then, function execution resumes.

One thing to point out is that await is not the same as Promise.then(). As await
pauses the execution, causing code to execute synchronously, it isn’t chainable in
the same way as Promise.then().

Defines
an async
function

Pauses execution for
2 seconds while the
Promise resolves

result1
prints
‘done
in 2s’

Pauses execution for
1 second while the
Promise resolvesresult2 prints

‘done in 1s’

Calls the async function. This function pauses
the execution for a total of 3 seconds.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

455Writing modular JavaScript

another, the more efficient you’ll be, particularly as you’ll already have (we hope)
tested the feature in isolation, so you know it works.

 This is where modular JavaScript comes in. JavaScript applications don’t have to be
in one never-ending file with functions, logic, and global variables flying loose all over
the place. You can contain functionality within enclosed modules.

Closures

A closure essentially gives you access to the variables set in a function after the function
has completed and returned. Then the closure offers you a way to avoid pushing vari-
ables into the global scope. It also offers a degree of protection to the variable and its
value, because you can’t overwrite it, as you could a global variable.

 Sound a bit weird? Look at an example. The following listing demonstrates how
you can send a value to a function and later retrieve it.

const user = {};
const setAge = function (myAge) {
 return {
 getAge: function () {
 return myAge;
 }
 };
};
user.age = setAge(30);
console.log(user.age);
console.log(user.age.getAge());

Here’s what’s happening. The getAge() function is returned as a method of the
setAge() function. The getAge() method has access to the scope in which it was cre-
ated. So getAge(), and getAge() alone, has access to the myAge() parameter. As you
saw earlier in this appendix, when a function is created, it also creates its own scope.
Nothing outside this function has access to the scope.

 myAge() isn’t a one-off shared variable. You can call the function again—creating a
second new function scope—to set (and get) the age of a second user. You could hap-
pily run the following code snippet after the preceding one, creating a second user
and giving them a different age.

const usertwo = {};
usertwo.age = setAge(35);
console.log(usertwo.age.getAge());
console.log(user.age.getAge());

Listing D.51 Example closure

Listing D.52 Continuing the closure example

Returns a function that
returns a parameter

Invokes the function, assigns a return
value to the age property of user

Outputs “Object {getAge: function}”

Retrieves a value using the
getAge() method; outputs “30”

Assigns the setAge() function to
a new user with a different age

Outputs “usertwo’s age: 35”

Outputs the original user’s age: 30

456 APPENDIX D Reintroducing JavaScript

Each user has a different age that isn’t aware of or affected by the other. The closure
protects the value from outside interference. The important takeaway here is that the
returned method has access to the scope in which it was created.

 This closure approach is a great start, but it has evolved into more useful patterns.
For example, take a look at the module pattern.

Module pattern

The module pattern extends the closure concept, typically wrapping a collection of
code, functions, and functionality into a module. The idea is that the module is self-
contained, uses only data that’s explicitly passed into it, and reveals only data that it’s
asked for directly.

This is made possible by using an IIFE. (See the sidebar in this section for a bit more
information on IIFE.) Like the basic closure, the module pattern returns functions
and variables as properties of the variable it’s assigned to. Unlike the basic closure, the
module pattern doesn’t have to be manually initiated; the module immediately calls
itself as soon as it has been defined.

 The following listing shows a small but usable example of the module pattern.

const user = {firstname: "Simon"};
const userAge = (function () {
 let myAge;
 return {

Listing D.53 Module pattern example

Immediately Invoked Function Expression
The module pattern uses what is known as the Immediately Invoked Function Expres-
sion (IIFE). The functions we’ve been using in this book up until now have been func-
tion declarations, creating functions that you can call on later in the code. The IIFE
creates a function expression and immediately invokes it, typically returning some
values and/or methods.

The syntax for an IIFE wraps the function in parentheses and immediately invokes it
by using another pair of parentheses (see the bold sections of this code snippet):

const myFunc = (function () {
 return {
 myString: "a string"
 };
})();
console.log(myFunc.myString);

This example is a typical use but not the only one. The IIFE has been assigned to a
variable B. When you do this, the returned methods from the function become prop-
erties of the variable C.

B Assigns IIFE to a variable

C Accesses the returned
methods as properties
of a variable

Assigns a module
to a variable

Defines the variable
in the module scope

457Writing modular JavaScript

 setAge: function (initAge) {
 myAge = initAge;
 },
 getAge: function () {
 return myAge;
 }
 };
})();
userAge.setAge(30);
user.age = userAge.getAge();
console.log(user.age);

In this example, the myAge variable exists within the scope of the module and is never
directly exposed to the outside. You can interact with the myAge variable only in the
ways defined by the exposed methods. In listing D.53, you get and set, but it’s possible
to modify the age property directly. You can add a happyBirthday() method to the
userAge module that will increase the value of myAge by 1 and return the new value.
The following listing shows the new parts in bold.

const user = {firstname: "Simon"};
const userAge = (function () {
 let myAge;
 return {
 setAge: function (initAge) {
 myAge = initAge;
 },
 getAge: function () {
 return myAge;
 },
 happyBirthday: function () {
 myAge += 1;
 return myAge;
 }
 };
})();
userAge.setAge(30);
user.age = userAge.getAge();
console.log(user.age);
user.age = userAge.happyBirthday();
console.log(user.age);
user.age = userAge.getAge();
console.log(user.age);

The new happyBirthday() method increments the myAge value by 1 and returns the
new value. This result is possible because the myAge variable exists in the scope of the
module function, as does the returned happyBirthday() function. The new value of
myAge continues to persist inside the module scope.

Listing D.54 Adding the happyBirthday method to the module

Defines a method to be returned that can take
parameter and modify the module variable

Defines a method to be returned
that can access the module variable

Calls the methods set and
get for the module variable

Outputs “30”

New method to
increment myAge by 1
and return a new value

Calls the new method
and assigns it to user.age

Outputs “31”

458 APPENDIX D Reintroducing JavaScript

Revealing module pattern

What we’ve looked at in the module pattern is heading close to the revealing module
pattern. The revealing module pattern is essentially some syntax that sugarcoats the mod-
ule pattern. The aim is to make obvious what is exposed as public and what remains
private to the module.

TAKING DECLARATIONS OUT OF THE RETURN STATEMENT

Providing a return in the aforementioned way is also a stylistic convention but is again
one that helps you and others understand your code when you come back to it after a
break. When you use this approach, the return statement contains a list of the func-
tions that you’re returning without any of the actual code. The code is declared in
functions above the return statement, although within the same module. The follow-
ing code listing shows an example.

const userAge = (function () {
 let myAge;
 const setAge = function (initAge) {
 myAge = initAge;
 };
 return {
 setAge
 };
})();

You can’t see the benefit of this approach in such a small example. We’ll look at a lon-
ger example soon that will get you part of the way there, but you’ll see the benefits
when you have a module that runs to several hundred lines of code. As gathering all
the variables at the top of the scope makes it obvious which variables are being used,
taking the code out of the return statement makes it obvious at a glance which func-
tions are being exposed. If you had a dozen or so functions being returned, each with
a dozen or more lines of code, chances are that you wouldn’t to be able to see the
entire return statement on one screen of code without scrolling.

 What’s important in the return statement, and what you’ll be looking for, is which
methods are being exposed. In the context of the return statement, you aren’t inter-
ested in the inner workings of each method. Separating your code like this makes
sense and sets you up to have great, maintainable, and understandable code.

A FULL EXAMPLE OF THE PATTERN

In this section, we’ll take a look at a larger example of the pattern, using the userAge
module. The following listing shows an example of the revealing module pattern and
removing code from the return statement.

Listing D.55 Revealing module pattern, short example

setAge function has
been moved outside
the return statement

return statement now references the
setAge function and contains no code

459Writing modular JavaScript

const user = {};
const userAge = (function () {
 let myAge;
 const setAge = function (initAge) {
 myAge = initAge;
 };
 const getAge = function () {
 return myAge;
 };
 const addYear = function () {
 myAge += 1;
 };
 const happyBirthday = function () {
 addYear();
 return myAge;
 };
 return {
 setAge,
 getAge,
 happyBirthday
 };
})();
userAge.setAge(30);
user.age = userAge.getAge();
user.age = userAge.happyBirthday();

This demonstrates a few interesting things. First, notice that the variable myAge B
itself is never exposed outside the module. The value of the variable is returned by var-
ious methods, but the variable itself remains private to the module.

 As well as private variables, you can have private functions such as addYear() C in
the listing. Private functions can easily be called by public methods D.

 The return statement E is kept nice and simple and is now an at-a-glance refer-
ence to the methods being exposed by this module.

 Strictly speaking, the order of the functions inside the module isn’t important so
long as they’re above the return statement. Anything below the return statement
never runs. When writing large modules, you may find it easier to group related func-
tions. If it suits what you’re doing, you could also create a nested module or even a
separate module with a public method exposed to the first module so that they can
talk to each other.

 Remember the quote from the beginning of this section:

The secret to writing large apps in JavaScript is not to write large apps. Write many small
apps that can talk to each other.

This quote applies not only to large-scale applications, but also to modules and func-
tions. If you can keep your modules and functions small and to the point, you’re on
your way to writing great code.

Listing D.56 Revealing module pattern, full example

B Has an underscore, as it’s
never directly exposed
outside the module

Private function
that isn’t exposed

C

D
Can be called by a public
function that’s exposed

The return statement
acts as a reference for
exposed methods.

E

user.age and
myAge are now 31.

460 APPENDIX D Reintroducing JavaScript

Classes
An extension to the modularity of JavaScript is the class syntax introduced with
ES2015. Classes are syntactic sugar over JavaScript’s prototypal inheritance model, but
they work as you mostly expect classes to work, if you have object-oriented program-
ming (OOP) experience.

 Note, though, that JavaScript classes, at least up until ES2017, have public proper-
ties and public and static methods. Private and protected class visibility are due to be
added to the specification at some undetermined point. They do have an inheritance
hierarchy that uses the extends keyword, but there are no interfaces. Accessing func-
tions from a parent involves the super function, and initialization uses a constructor
function.

 We’re not going to cover the whys and wherefores of OOP, which is an exercise
best left to you. (See https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Classes for starters.) Here, we’ll cover the basics of the syntax.

// Parent class
class Rectangle {
 width = 0;
 height = 0;

 constructor (width, height) {
 this.width = width;
 this.height = height;
 }

 get area() {
 return this.determineArea();
 }

 determineArea () {
 return this.width * this.height;
 }

}

// Child class of Rectangle
class Square extends Rectangle {
 constructor (side) {
 super(side, side);
 }
}

const square = new Square(10);
console.log(`Square area: ${square.area()}`);
// prints Square area: 100;

There’s plenty more to classes than this, and in this book, you’ll have used them
mostly in Angular as TypeScript classes to build components.

Listing D.57 Class syntax examples

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

461Functional programming concepts

Functional programming concepts
Functional programming as a concept has been around longer than object orienta-
tion. For a long time, the concept was relegated to academia, because some of the lan-
guages used have steep learning curves, which raised the barrier to entry artificially
high. Who wants to spend time learning obscure concepts only to be confused by the
syntax when all you want to do is get information from the users of your site and push
it into a database?

 Recently, though, all mainstream object-oriented languages have been pulling in
and integrating concepts of functional programming languages, because these con-
cepts provide surety of data, reduce cognitive load, and allow for composition of
functionality.

 Concepts that you can apply to your JavaScript work include immutability, purity,
declarative style, and function composition.

 A bunch of other stuff may or may not be available, depending on which version of
the language you’re using. We’ll cover these concepts one at a time.

IMMUTABILITY

Although immutability isn’t strictly enforced at a language level, through a little bit of
forward planning and some rigor, you can implement it simply and effectively. Be
aware that npm packages are available to help, such as immutable.js from Facebook
(https://github.com/facebook/immutable-js).

 The point is that data/state that you’re operating on isn’t mutated. Mutation is an
in-place operation and can be the cause of hard-to-track bugs.

 The concept as it applies to JavaScript means that the state isn’t altered; it’s copied,
transformed, and assigned to an alternative variable. This concept can also be applied
to collections of data and objects; although slightly more rigor needs to be applied,
the outcome should be the same.

 For simple scalar-type variables, applying immutability is simple: declare it with
const. That way, the JavaScript execution context can’t overwrite the variable, and it
throws an exception if you try by mistake. We covered this topic earlier.

 For object types (Arrays, Objects, Maps, Sets), declaring with const isn’t massively
helpful. The issue is that const creates a reference to the object being created. As it’s
a reference, the data within the object can be altered. This is where the rigor comes
in. Instead of using looping constructs like for to manipulate the collection directly,
use the iterators provided by that type; they’re prototype methods and should be avail-
able in both the browser and in Node.js. For functionality you want that isn’t supplied,
there are always libraries such as Lodash.js and Ramda.js.

https://github.com/facebook/immutable-js

462 APPENDIX D Reintroducing JavaScript

const names = ['s holmes', 'c harber', 'l skywalker', 'h solo'];
const uppercasedNames = names.map(name => name.toUpperCase());
const shortNames = names.filter(name => name.length < 10);
const values = [1, 2, 3, 4, 5, 6, 7, 8, 9];
const total = values.reduce((value, acc) => acc + value, 0);
const product = values.reduceRight((value, acc) => value * acc, 1);

PURITY

Pure functions are functions that don’t exhibit side effects or use data that hasn’t been
supplied. A side effect is a change to the program state that’s external to the function
and differs from the return value of the function. Typical side effects include changing
global variables’ values, sending text to the screen, and printing. Some of these side
effects are unwanted and harmful, but some are unavoidable and necessary. As Java-
Script programmers, we should strive to reduce side effects as much as possible. This
way, program state is predictable and therefore easy to reason about if bugs occur.

 Functions should operate only on the data that they’ve been provided. External
data, such as global window state, shouldn’t be changed unless absolutely necessary,
and even then, only in a controlled manner by a dedicated function. If your code is
reliant on global state, that’s a bad code smell that you should investigate.

 Pure functions are predictable, and more often than not, they exhibit a property
called idempotency: given a set of inputs, the expected output of a function is always the
same.

 A simple, somewhat contrived example is a function that adds two numbers
together:

const sum = (a, b) => a + b;

If you supply 1 and 2 to such a function, you always expect 3 to be returned.
 What if this function also relied on a value that was maintained outside the func-

tion—such as const sumWithGlobal = (a, b) => a + b + window.c—and that this
value (window.c) was generally 0 but sometimes 1 or maybe something random like a
string? What would you expect in that instance when you supplied 1 and 2 as function
arguments? You couldn’t rely on the result to be 3; it might be 4 or something wildly
different or even an exception.

Listing D.58 Examples of applying the concept of immutability

A simple collection of four
names assigned to const

Uses the map function to iterate over the names
in the collection and assign to a new variable Uses the filter function to remove

those items from the collection
that fail the given criteria

A new array of integers

Reduces the values to a single total
value by summing them together Reduces from the right,

creating a product of the
values in the provided list

463Functional programming concepts

 This example is a simple one, but what if it involved thousands of lines of code? As
you can see, this makes the size of the issue magnitudes larger. Try to keep functions
pure; being able to predict outputs makes everyone’s lives easier.

DECLARATIVE CODE STYLE

We don’t want to speak for everybody, but we guess that most code you write is imper-
ative in style. You set out what you want the computer to do line by line, much like a
recipe. You might overlay this code with notes of object orientation, but it’s still a rec-
ipe. There’s nothing wrong with this approach; it works and mostly works well.

 With declarative programming, you state the logic of what you’re looking to
achieve but leave the execution details up to the computer. In essence, you don’t care
how the outcome of your program is achieved so long as it’s achieved.

 In this style of JavaScript, code should favor the following:

 Array iterators over for loops
 Recursion
 Partially applicable and composable functions
 Ternary operators over if statements to ensure return values
 Avoiding changing state, mutating data, and side effects

We stress “should” because JavaScript doesn’t support things like tail call recursion
due to an internal stack frame limit. Also, partial application and function composi-
tion are things that you build into your code, not things that are natively supported.

const compose = (...fns) => fns.reduce((f, g) => (...args) =>

➥f(g(...args)));
const url = '...';
const parse = item => JSON.parse(item);
const fetchDataFromApi = url => data => fetch(url, data);
const convertData = item => item.toLowerCase();
const convert = (...data) => data.map(item => convertData(item));

const items = [...dataList];

const getProcessableList = compose(
 parse,
 fetchDataFromApi(url),
 convert
);

const list = getProcessableList(items);

In this code, the important part is the instruction to getProcessableList(). All the
other elements are boilerplate required to present this contrived example. The point
is that the intention is declared, but how it gets done isn’t.

Listing D.59 Declarative programming example

Creates a compose function

Creates a list of items

Composes functions
together

Executes the composed
functions by passing in data

464 APPENDIX D Reintroducing JavaScript

PARTIAL APPLICATION AND FUNCTION COMPOSITION

Pure functions provide predictable outcomes. If you can predict outcomes, you can
combine your functions in innovate ways. Smaller functions can become parts of
larger functions, and you don’t have to worry about intermediary results. To help you
understand function composition, we’ll discuss partial application.

 Partial application , or currying, means applying fewer arguments to a function than
it requires, each time returning a new function and therefore holding off completing
execution until all arguments are available.

 Unfortunately, JavaScript has no native support for currying, but through use of
syntax, you can emulate this feature. The following listing shows how.

const simpleSum (x, y) => x + y;

const curriedSum x => y => x + y;

const simpleResult = simpleSum(2, 3);

const curriedResult = curriedSum(2)(3);

const intermediary = curriedSum(2);
const finalCurried = intermediary(3);

Currying isn’t special. All you’re doing is taking a multiargument function and return-
ing a new function after the application of a single argument.

 With this knowledge in place, you can look at composition. Composition is combin-
ing multiple functions to create complex flows. This technique allows you to avoid
code that uses looping code structures that read like streams of instructions. Instead,
you abstract away the complexity of the processing by combining the operations into
simple, descriptive functions.

 To work properly, the functions need to be small and pure, free of side effects. The
functions that are being composed need the inputs and outputs to match, so applying
currying is helpful but not mandatory. Having the inputs and outputs match means
that a function that takes an integer shouldn’t be composed with a function that takes
a string. Although input mismatch is technically acceptable in JavaScript due to the
language’s ability to implicitly typecast, it can be a source of bugs that may be difficult
to track down.

 A simple way to look at this is an example. The next listing takes the curriedSum()
function from the preceding listing.

Listing D.60 Currying example

Simple standard noncurried function

Curried equivalent

All arguments collected
together and applied at once

Currying requires multiple
function calls.

Applies the last required argument
to return the expected value of 5Here, the intermediary call applies 2 to

the x argument, returning a function
that requires another argument to
create a result (y => 2 + y).

465Final thoughts

const add = x => y => x + y;
const multiplyFactor = fac => num => num * fac;

const multiplyBy10 = multiplyFactor(10);

const result = multiplyBy10(add(2)(5));

This example is simple and contrived but illustrates the point.
 Some libraries provide a function called compose that allows you to handle compo-

sition in a more elegant way, although this function isn’t difficult to build by hand.
The basic principle is the simple application of the mathematical formula g(f(x)).

const compose = (g, f) => x => g(f(x));

const composedCompute = compose(
 multiplyBy10,
 add(2)
);

const result = composedCompute(5);

Beyond these small examples, composition is a tool that can make your code cleaner
and easier to understand.

Final thoughts
JavaScript is a forgiving language, which makes it easy to learn, but it’s also easy to pick
up bad habits. If you make a little mistake in your code, JavaScript sometimes thinks,
“Well, I think you meant to do this, so that’s what I’ll go with.” Sometimes it’s right,
and sometimes it’s wrong. This isn’t acceptable for good code, so it’s important to be
specific about what your code should do, and you should try to write your code in the
way that the JavaScript interpreter sees it.

 A key to understanding the power of JavaScript is understanding scope: global
scope and function scope and lexical scope. There are no other types of scope in
JavaScript. You want to avoid using the global scope as much as possible, and when
you do use it, try to do it in a clean and contained way. Scope inheritance cascades
down from the global scope, so it can be difficult to maintain if you’re not careful.

 JSON is born of JavaScript but isn’t JavaScript; it’s a language-independent data
exchange format. JSON contains no JavaScript code and can quite happily be passed
between a PHP server and a .NET server; JavaScript isn’t required to interpret JSON.

 Callbacks are vital to running successful Node applications, because they allow the
central process to effectively delegate tasks that could hold it up. To put it another

Listing D.61 Simple composition

Listing D.62 compose function

Add function
Simple curryable
factor function

Composes the functions
to return a result of 100

Simple compose function

Uses the composition function

Obtains the result

466 APPENDIX D Reintroducing JavaScript

way, callbacks enable you to use sequential synchronous operations in an asynchro-
nous environment. But callbacks aren’t without their problems. It’s easy to end up in
callback hell, having multiple nested callbacks with overlapping inherited scopes mak-
ing your code hard to read, test, debug, and maintain. Fortunately, you can use
named callbacks to address this problem on all levels so long as you remember that
named callbacks don’t inherit scope like their inline anonymous counterparts.

 Closures and module patterns provide ways to write code that’s self-contained and
reusable between projects. A closure enables you to define a set of functions and vari-
ables within its own distinct scope, which you can come back to and interact with
through the exposed methods. This leads to the revealing module pattern, which is
convention-driven to draw specific lines between what’s private and what’s public.
Modules are perfect for writing self-contained pieces of code that can interact well
with other code, not tripping up over any scope clashes.

 Recent changes to the JavaScript specification, such as the addition of class syntax
and greater emphasis on functional programming, flesh out the available toolkit to
suit whichever style of code you want to use.

 A great many other additions to the JavaScript specification aren’t covered here:
the rest operator, the spread operator, and generators, to name a few. It’s an exciting
time to be working with the JavaScript language.

467

Symbols

../ character 267
@Input decorator 289
@NgModule decorator 265,

276
* character 258, 269
\n character 299, 407, 409
^ (caret) 56, 58
+ (plus) sign 114
= (assignment operator) 424
= (equal sign) 109
= symbols 427
> character 146
| (pipe character) 104, 260,

300
~ (tilde) 56, 58
$ character 146
$geoNear aggregate 179, 181
$geoNear method 179–181
$push command 150

Numerics

200 status code 166, 183
200 success code 211
201 status code 166
204 status code 166
2d sphere index 136, 143, 181
400 status code 166, 233–234
401 status code 166
403 status code 166
404 error code 166, 211, 214,

224, 340
405 status code 166
409 status code 166
500 status code 166

A

<a> tag 309
about component 279
about controller 86, 104
About page 104–105
about.component.ts 298
Access-Control-Allow-Headers

269, 360
Access-Control-Allow-Origin

header 253, 269
ACID (atomicity, consistency,

isolation, durability)
16

ActivatedRoute 311
active class 282
Active Server Pages (ASP) 9
addReview controller 102,

227–228, 237, 408
addReview function 86
addReviewByLocationId()

function 325, 329,
338, 394

addSurname() function
417–418, 420, 422

AJAX calls 253
Amazon Web Services (AWS)

9
analytics, browser history and

28
Angular apps

boilerplate, using com-
mand line to create
242–243

components, working with
home-list component

250–252

HTML template 252–254
HTML template, using

class member data in
257–263

getting data from API
creating data service

264–267
using data service

267–270
putting into production

270–273
running 244–245
source code behind

245–250
build process 249–250
default bootstrapped

component 247–248
main module 245–246
overview 245

testing 243
Angular authentication

service 371–377
managing user session

372–373
registration 373–375
sign in 373–375
sign out 376
using JWT data in 376–377

Angular framework
disadvantages of 19–20
installing 398
jQuery vs. 18
loading new pages using 19
overview 18–20
release cycles 4
versions 4

index

468 INDEX

Angular SPAs 105
adding geolocation to find

places near you
291–298

adding geolocation ser-
vices to the app 293

creating Angular geoloca-
tion service 292

using geolocation service
from home-list
component 293–298

building modular app using
multiple nested
components 283–291

creating and using reus-
able subcomponents
285, 291

creating main homepage
component 284–285

improving architecture
331–338

improving location class
definition 334–338

using separate routing-
configuration file 331–
334

navigation in, adding
275–283

adding active navigation
styles 282–283

creating component for
framework and
navigation 277–278

defining where to display
content using router-
outlet 279

importing Angular router
and defining first route
276

navigating between pages
279–282

routing configuration
276–277

safely binding HTML
content 298–301

adding About page con-
tent to app 298–299

creating pipe to transform
line breaks 299–301

using property binding
301

using instead of server-side
application 338–341

making sure deep URLs
work 340–341

Routing Express requests
to build folder 339–340

working with forms and han-
dling submitted
data 321–331

creating review form
321–325

sending submitted for data
to API 325–331

working with more-complex
views and routing
parameters 305–320

building Details page
view 315–320

creating required
components 306–308

passing data to Details
page component
314–315

planning layout 305–306
setting up and defining

routes with URL
parameters 308–310

using URL parameters in
components and
services 310–314

anonymous function 437
Any data type 255
API (application program

interface) 26, 162
API key 100
apiOptions.server 203
app.component.css file 247
app.component.html file 247
app.component.ts file 247
app.js file 63
app.module.ts file 332–334
app_api/routes/index.js file

365
AppComponent class 246, 248,

251, 270
<app-framework> tag 278
<app-home-list> tag 279
app-home-list component 251,

284
<app-home-list> tag 272
application program interface

(API) 26, 162
apply() function 423
<app-root> tag 245, 251
app-routing.module.ts file 331
app_server/controllers/loca-

tions.js file 203
app_server/controllers/oth-

ers.js file 409

<app-sidebar> tag 290
APT system 396
Array data type 255
Array schema type 132
arrayLength variable 429
arrow function expressions 423
arrow functions 423–424
ASP (Active Server Pages) 9
assignment operator (=) 424
async/await functions 453–454
AsyncFunction object 454
asynchronous code, in

JavaScript 439–440
atob() function 354, 376
atomicity, consistency, isolation,

durability (ACID) 16
authentication

Angular authentication
service 371–377

managing user session
372–373

registration 373–375
sign in 373–375
sign out 376
using JWT data in

376–377
creating authentication API

with Passport 357–364
adding Passport and config

to application 359–360
configuring local strategy

358–359
creating API endpoints to

return JWTs 360–364
creating Passport config

file 357
installing and configuring

Passport 357
creating user schema for

MongoDB 350–357
basic user schema

351–352
building Mongoose

schema 351
generating JSON Web

Token 354–357
one-way password

encryption 350
setting encrypted paths

using Mongoose
methods 352–353

validating submitted
password 353–354

full MEAN stack approach
348–350

469INDEX

authentication (continued)
in Angular app 385–394
login page 382–385
register page 379–382

building template for
379–380

creating registration com-
ponent skeleton
380–382

rejection of 366
securing relevant API

endpoints 364–370
adding authentication

middleware to Express
routes 365–366

using JWT information
inside controller
367–370

traditional server-based appli-
cation approach
346–348

AuthenticationService 376,
383, 391

author field 232
Authorization header 394
AuthResponse class 373–375
autoincrementing in code 429
await expression, in JavaScript

454
AWS (Amazon Web Services) 9
Azure 9

B

backslash character 432
<base href> tag 276
Bearer token 393
binary JSON (BSON) 15, 433
block content area 73
block scope 421
block scripts 271
blocking vs. nonblocking code

12–13
blog engine

architecture of 31–34
requirements for 30–31

<body> tag 73
boolean data type 255
Boolean schema type 132
Bootstrap

downloading 72
installing 400–402
overview 20–21, 88–90
setting up HTML framework

with Pug templates
and 90–94

using in application 72–74

 tag 299, 301, 308,

407–410
braces, for functions and blocks

in JavaScript 433–434
breakpoints 89
BrowserModule 246
BSON (binary JSON) 433
btoa() function 354
Buffer schema type 132
buffered code 109

C

call() function 423
callbacks, in JavaScript

437–452
asynchronous code 439–440
callback hell, avoiding

451–452
named callbacks 443–448
running callback function

440–443
setTimeout function

437–438
in Node 448–452

caret (^) 56, 58
Cascading Style Sheets (CSS) 5
catch() function 452
cd gettingMean2 command 82
CDN (content delivery

network) 72
classes

in JavaScript 460
multiple instances of

262–263
in JavaScript 460

Classic ASP 9
clearTimeout() function 438
CLI (command-line interface),

installing 404
closed Boolean flag 140
closures 455–456
col classes 290
col-12 class 89
collections 130
col-md-6 class 89
Colors utility 13
col-sm-6 class 89
command line, using to create

boilerplate Angular
app 242–243

commas in lists, in JavaScript
435–436

compare function 319
component property 276
components 245
compose function 465
composition 464
connect() method 124
connections to databases, open-

ing and closing 123
console.log() statement 176,

205, 428, 440, 451
const keyword 68, 416, 421
container class 92
content area 73
content block 92
content delivery network

(CDN) 72
content property 289
controllers

building 85–88
moving data from view to

107–109
moving data to, from views

405–410
About page 409–410
Add Review page 408–409
Details page 406–408

updating 117
coords path 136
coords property 335
CORS (cross-origin resource

sharing) 253, 269–270
create, read, update, and

delete. See CRUD
create() method 186, 188
createdOn timestamp 220, 329
createServer() function 441
credentials object 380
CRUD (create, read, update,

and delete) 160, 162,
164

crypto module 353
CSS (Cascading Style Sheets) 5
CSS classes

in Bootstrap 21
setting, using Angular

expressions 258–259
curly braces 425, 427, 435
curriedSum() function 464
currying 464

470 INDEX

D

dash (hyphen) 113
data dump command 154
database, getting live 151–158
date pipe 319
Date schema type 132
dates, formatting using Pug

mixin 221
db.js file 127, 132
db.locations.find() command

155, 175, 179
db.locations.find().pretty()

command 150
db.startup_log.find()

command 147
DEBUG=loc8r:* npm start

command 62–63
declarative code style 463
decorators 246
delay parameter 441
DELETE method 161, 164,

166, 168, 171, 197, 200,
204

dependency injection 246
dependency versions, in

package.json 56
destructuring, in JavaScript

424–425
Details page 99–102
DigitalOcean 9
displayName field 232
distance parameter 210
distance.pipe.spec.ts file 260
distance.pipe.ts file 260
distanceField object option

179
<div> tag 60, 324
doAddReview controller 230
doAddReview() function 191,

225, 229, 233, 367–369
Docker, installing 403
Document Object Model

(DOM) 18
document stores, vs. relational

databases 15
Dojo 5
dollars variable 444–445
doLogin() function 390
doLoginSubmit() method 383
doLogout() function 386
DOM (Document Object

Model) 18
don’t repeat yourself (DRY)

approach 227–228

doRegister() function 384, 390
doRegisterSubmit() method

383
dot notation 430
dot syntax 108, 257
dotenv module 356
double quotes 431–432
DRY (don’t repeat yourself)

227–228

E

each location in locations
section 272

each/in syntax, Pug 111
else statement 175
email property 368
empty function 170
encoded JSON object 354
encryption, using crypto mod-

ule for 353
enum data type 255
environment.ts file 338
equal sign (=) 109
err parameter 234
error messages, updating view

to display 213
error object 449
error pages, status-specific

222–224
error.pug file 72
escape character 432
escaped methods 109
events property 388
exec method 174
Express

building static sites with
Node and

building basic controllers
85–88

creating views 88–105
defining routes 83–85
overview 81
taking data out of views

and making
smarter 106–118

calling API from 202–205
connecting Express applica-

tion to MongoDB using
Mongoose

adding Mongoose connec-
tion to application
123–125

adding Mongoose to
application 122–123

overview 121–122
creating project 58–62

configuring installation
59–61

installing pieces 58
project folder, creating 59
restarting application with

nodemon 63–65
trying out 61–62
verifying installations 59

installing globally 396–397
middleware 63
modifying for MVC 65–71

folder structure, changing
66

splitting controllers from
routes 68–69

using new routes folder
location 67–68

using new views folder
location 67

overview 13–14
validating at application level

with 235–236
express command 59
express-jwt module 365
extends keyword 460

F

facilities array 112
filter function 388
find command 149
find query method 173
find() function 193
findById() method 173–174,

176, 180
findByIdAndRemove() method

197
findOne method 173, 358
firstname variable 417,

420–421, 426
Font Awesome 72–73, 113, 258,

402–403
for loops 416, 425, 427, 463
<form> tag 324
formatDate mixin 221
formatDistance() function

209–210, 261
FormsModule 323
formVisible property 324–325,

330
forRoot method 276
Framework component 386

471INDEX

framework component
277–278, 283

FrameworkComponent 278
Fulfilled state 452
fullname variable 417–418
full-stack development

benefits of 7–8
reasons for learning 4–8
trend toward 7

function keyword 423
function property 431
function scope 416
functional programming

declarative code style 463
immutability 461
overview 461
partial application and func-

tion composition
464–465

purity 462–463
functions and blocks, braces

for, in JavaScript
433–434

G

generateJwt method 355, 362
generic-text view 104
generic-text.pug file 104, 410
GeoJSON 136, 143
geoNear query method 173
geoOptions object 181
geoSearch query method 173
geospatial queries, finding mul-

tiple documents with
179–186

$geoNear aggregate output
182–183

constructing geoJSON point
180–181

limiting geoNear results by
distance 181–182

limiting geoNear results by
number 181

processing $geoNear output
183–184

spherical option in Aggrega-
tion specification 181

GET method 160, 163–164,
166, 168, 171, 173, 200

get method 102
get() method 411
getAge() function 455
getAuthor function 367–368

getCurrentUser() method 377
getLastNonLoginUrl() method

390
getLocationById method 310
getLocationInfo() function

227
getLocations() method

267–268, 294–295, 297,
310, 410

getLocationsById method 312
getMoney() function 446
getPosition method 292–293,

295, 297
getPreviousUrl function 389
getProcessableList() function

463
getToken() method 373,

376–377
getUsername() function 386,

392
Git

branches 78
installing 403
overview 21–22
pushing site live using 77
storing application in 77

.gitignore file 60
global scope 416
gracefulShutdown function

126

H

<h1> tag 73, 245, 248
happyBirthday() method 457
<head> tag 73
Header part, JWT 354
headless browsers 27
Heroku

creating application 77–78
deploying application to 78
Local utility 76, 404
overview 22
production mode 156
setting up 75–77, 404
testing on 158
Toolbelt 404
web dynamics on 79

heroku addons:create mongo-
lab command 152

heroku addons:open mongolab
command 152

heroku config:get MONGODB_
URI command 153

heroku config:get NODE_ENV
command 156

heroku config:set command
157

heroku create command 77
heroku local command 76
heroku login command 404
heroku logs command 158
heroku open command 79
HistoryService 388
Homebrew package manager

396
home-list component 251, 267,

283, 285, 293, 311
homelist controller 95, 107,

110, 115, 133, 206, 209
homelist() function 86, 107,

183
HomeListComponent class

251, 268, 276, 278
homepage component 286
href attributes 281, 309
href property 281
href value 226
HTML responses, Express

framework 14
HTML template

creating 252–254
looping through array of

items in 257–258
moving data out of, and into

code 254–257
HTML5 history API 28
htmlLineBreaks pipe 300–301,

308, 315–316
HTTP requests, enabling

264–266
HTTP status codes 166–167
HttpClient get() method 411
HTTPClient service 265
HttpClientModule 265
hyphen (dash) 113

I

<i> tag 259
_id entry 16
_id field 226
id method 178, 198
ID parameter 163
_id path 131, 139
_id property 150
_id value 175
identity operator 427

472 INDEX

if statement 175–176, 211, 317,
425, 427, 463

if-else statement 407
IIFE (Immediately Invoked

Function Expression)
456

IIS (Internet Information
Services) 8, 10

immutability 461
import block 339
import statement 246, 255
imports array 265
include keyword 115
indenting code, in JavaScript

433
index method 70
index.html file 245, 251
index.js file 85, 169
index.pug file 72
index.pug view 95
Injectable decorator 264, 372
innerHTML property 301, 308
installing

Angular 398
Bootstrap framework

400–402
CLI (command-line

interface) 404
Docker 403
Express globally 396–397
Font Awesome 402–403
Git 403
MongoDB 397
Node and npm 395–396

Internet Information Services
(IIS) 8, 10

interpolation 108
isLoggedIn() method

376–377, 386
isNumeric function 261
ISODate object 132

J

JavaScript
arrow functions 423–424
async/await functions

453–454
callbacks 437–452

asynchronous code
439–440

named callbacks 443–448
running callback

function 440–443

setTimeout function
437–438

classes 460
declarative code style 463
destructuring in 424–425
formatting practices

433–437
commas in lists 435–436
functions and blocks,

braces for 433–434
indenting code 433
semicolons 434–435
strings 437
whitespace 436

good and bad habits with
416–423

immutability 461
knowledge of, testing

414–416
logic flow and looping

425–429
conditional statements

425–426
for loops 427–428
for loops, using with arrays

428–429
modular 454–459

closures 455–456
module patterns 456–459

Promises 452–453
JavaScript data store 15–16
jQuery 6, 18–19, 73
JSON (JavaScript Object

Notation) 15, 429–433
benefits of 432–433
differences from JavaScript

431–432
object literals 429–431
returning from Express

request 170
JSON body parameter 206
json option 204
JSON pipe 260
jsonwebtoken library 355
jsonweb-token module 355
jwt.sign method 355
JWTs (JSON Web Tokens)

creating API endpoints to
return 360–364

generating 354–357
generating from Express

355–356
getting user information

from 377
parts of 354

using in Angular authentica-
tion service 376–377

using JWT information
inside controller
367–370

K

key-value pairs 430

L

latitude 136, 143, 214, 407
layout.pug file 72–73, 91
layout.pug template 271
layout.pug view 237
lazy-loading modules 29
let keyword 68, 416, 421
lexical scope 416
libraries, history of 5–6
Loc model 186
Loc8r example application

architecting 37–38
homepage

building API request
206–207

catching errors returned
by API 211–213

modifying data before dis-
playing it 209–210

moving rendering into
named function
205–206

overview 205
using API response

data 207–209
overview 23
planning 35–37
screens 36–37
source code, getting 54
steps to build 42–46

loc8r-data.service.ts file 264,
339, 410

Loc8rDataService class
266–267, 311, 374–375

loc8r-public command 245
loc8r-token 382
local getLocations method 269
localStorage 372
Location class 256, 266, 311,

315, 335–336
location class 256–257
location data object 226, 260
location ID parameter 163

473INDEX

Location model 145, 148, 171
location.facilities array 258
location.rating variable 114
location-details template 391
location-details.component

.html 318, 391
location-details.component.ts

file 392
locationid parameter 168, 174,

176, 215, 217, 225
locationId variable 308
locationInfo controller 99,

138, 217, 227, 406
locationInfo function 86
location-info view 99
location-info.pug view template

407
location-review-form view 102,

235
location-review-form.pug file

102, 409
locations array 111
locations collection 148–149
locations variable 111, 213
locations.js file 86, 107, 132,

170
locationSchema function

133–134, 139–140, 142,
145

locationsCreate() controller
187

locationsDeleteOne()
controller 197

location-details.component
.ts 390

locations-list.pug file 95–96,
111, 114

locations-list.pug view 107–108
locationsListByDistance

controller 214
locationsReadOne() method

174, 177–178
locationsUpdateOne()

controller 194
log files 61
logDB object 128
logic flow and looping, in

JavaScript 425–429
conditional statements

425–426
for loops 427–429

login component 386
login controller, creating

362–363
login function 363

login nav option 386
login page 382–385
login process, managing 349
login template 383
login() method 374–375, 383
logout method 376
logThis function 70
longitude 136, 143, 407

M

makeAuthApiCall() method
375

map() 185, 209–211, 462
max validator 135
maxDistance option 179, 181
MEAN stack

architecture of
common 26
flexible 29–35
hardware 48–50
wrapping everything in

Express project 38–39
breaking development into

stages 40–46
components of 4
installing

Angular 398
Express globally 396–397
MongoDB 397
Node and npm 395–396

reasons for using 8
See also Angular framework

method option 204
Method parameter 206
methods object 352
min validator 135
Mixed schema type 132
MJONGODB_URI variable 157
mLab, setting up 151–153
MLAB_URI setting 152
model command 144
models 131
modular JavaScript 454–459

closures 455–456
module patterns 456–459

module patterns 456–459
module template 331
module.exports method 70
modules 245
mongo command 146
mongo --version command 397
mongod --version command

397

MongoDB
adding data to 186–192

creating documents
186–187

creating subdocuments
188–192

validating data using
Mongoose 188

connecting Express applica-
tion to, using Mongoose

adding Mongoose connec-
tion to application
123–125

adding Mongoose to
application 122–123

creating user schema for
350–357

building Mongoose
schema 351

generating JSON Web
Token 354–357

one-way password
encryption 350

setting encrypted paths
using Mongoose
methods 352–353

validating submitted
password 353–354

validating user password
353

deleting data from 197–200
deleting documents

197–198
deleting subdocuments

198–200
installing 397
JavaScript data store 15–16
overview 15–17
reading data from

finding multiple docu-
ments with geospatial
queries 179–186

finding single document in
MongoDB using
Mongoose 173–176

finding single subdocu-
ment based on IDs
177–179

setting URLs and routes to
access specific
MongoDB documents
215–217

shell, using to create
MongoDB database
146–151

474 INDEX

MongoDB, shell, using to create
MongoDB database (continued)

listing all local databases
146

listing collections in
database 147

seeing contents of
collection 147

starting MongoDB shell
146

using specific database
147

updating data in 192–197
updating existing

subdocument 195–197
using Mongoose save

method 193–195
using Mongoose to update

documents 193
mongodump command 154
Mongoose 16–17

connecting Express applica-
tion to MongoDB
using 121–128

adding Mongoose connec-
tion to application
123–125

adding Mongoose to
application 122–123

connecting Express applica-
tion to MongoDB using

overview 122
finding single document in

MongoDB using
173–176

how models data 131
overview 130–131
save method 193–195
schemas, defining 132–145

basics of 133–135
compiling into into models

144–145
complex, creating with

subdocuments 137–142
using geographic data in

MongoDB and
Mongoose 135–137

setting encrypted paths using
Mongoose methods
352–353

using to find a specific
subdocument 178

using to update document in
MongoDB 193

validating at schema level
with 231–235

validating data using 188
Mongoose connected to logs

158
Mongoose connected to

message 158
mongoose.connect method

128
mongoose.connection method

128
mongoose.createConnection

method 128
mongorestore command 154
multithreaded web servers 10
MVC (model-view-controller)

54
myAccounts.findTotal()

function 450
myAccounts.findTotal()

operation 451
myAge variable 457
myAge() parameter 455
myArray 429
mySafe object 448
mySafe.save() function

450–451

N

name form field 230
name property 257
named callbacks, in JavaScript

443–448
nameSetup object 422
navigation, adding right-side

section to 385–394
NavigationEnd event 388
navigator object 292
nesting callbacks 450
new Date() function 151
newLocation class 314
newReview object 323, 326,

337
ng build command 250, 270,

339
ng build --prod --output-path

build command 270,
339

ng help command 243, 270
ng new command 243
ng new your-app-name

command 242
ng serve command 244,

250–251, 270, 278, 335

*ngFor directive 257, 263, 315
*ngIf directive 317, 324, 327
ngModel 323, 379
ngOnInit() method 269, 295
[ngSwitch] binding 317
ngSwitch directive 392
*ngSwitchCase directive 317
*ngSwitchDefault directive 317
No ENV file found warning 77
Node.js

building static site with
Express and

building basic controllers
85–88

creating views 88–105
overview 81

installing 395–396
installing Node dependen-

cies with npm 56–57
overview 8–13
validating at application level

with 235–236
NODE_ENV environment

variable 156–157, 203
Nodejitsu 9
nodemon 65, 87, 278, 340
nonblocking code vs. blocking

code 12–13
npm package manager 13,

395–396
npm --version command 59,

75, 396
null error object 204
number data type 255
Number schema type 132, 136

O

Object context 423
object types 461
ObjectId schema type 132
ObjectId() function 150
object-oriented programming

(OOP) 460
Observables 265, 410–412
onCompletion() function

443–445, 448
one-to-one relationship 145
onFindTotal() function 451
onRegisterSubmit() function

380
onReviewSubmit() function

326–327, 392
onSave() function 451

475INDEX

onSubmit event handler 326
OOP (object-oriented

programming) 460
openingTimes array 187
OpeningTimes class 335–336
openingTimeSchema 140
opinionated framework, Angu-

lar as 18
<option> tag 324
orderBy filter 318
other module 87
others.js file 87, 104
outputRating mixin 114–115,

117, 221, 407
outputRatings mixin 115

P

<p> tag 73, 114
PaaS (Platform as a Service) 49
package managers 396
package.json

defining packages using
55–56

working with dependency
versions in 56

package-lock.json file 58
pageContent member 298
pageContent.header 307
pageContent.sidebar 307
page-header component 286
pageHeader object 108
pageHeader.strapline 108
pageHeader.title 108
ParamMap 311–312
parseFloat() function 180
Passport, creating authentica-

tion API with 357–364
adding Passport and config

to application 359–360
configuring local strategy

358–359
creating API endpoints to

return JWTs 360–364
creating Passport config

file 357
installing and configuring

Passport 357
passport.authenticate method

362
passport.js file 348, 357
passport.use method 358
password-based key derivation

function 2 (pbkdf2)
353

passwords, validating 353–354
path property 276
pathnames 132
paths 130
Payload part, JWT 354
pbkdf2 (password-based key

derivation function 2)
353

pbkdf2Sync method 353
Pending state 452
PhantomJS 27
pipe character (|) 104, 260,

300
custom 260–262
formatting data using

259–260
pipe method 388
Platform as a Service (PaaS) 9,

49
plus (+) sign 114
pm install --save express-jwt

command 365
Popper.js 73
POST method 160, 163–164,

166, 168, 171, 186, 200,
204

post method 102, 226
POST request 226
POST route 225
Postman REST Client

application 171, 175,
184

_ prefix 115
pretty() function 150
process.env.NODE_ENV 156
process.on 127
process.once 127
Promise.all() function 453
Promise.race() function 453
Promise.then() function 454
Promises 264–267

handling 452–453
switching to Observables

from 410–412
properties object 132
providedIn value 264
Pug mixins 114–115, 221
Pug templates 90–94, 108
Pug views 111–112
pure functions 462
purity 462–463
push() method 190
PUT method 161, 164, 166,

168, 171, 200, 204

Q

qs option 204
query object 147, 234
Query string parameter 206
querying API, using unique ID

from URL parameter
217–218

R

randomBytes method 353
rapid prototype style 20
rating form field 230
rating path 134–135, 232
rating-stars component 302,

315
ReactiveFormsModule 323
readline package 125
ready() function 441
reduce() 192, 462
reduceRight() 462
ReferenceError 421
register component 379, 389
register controller 361–362
register page 379–382

building template for
379–380

creating registration compo-
nent skeleton 380–382

register template 383
register() method 374–375,

383
registration 373–375
reject() function 453
Rejected state 452
relational databases, vs. docu-

ment stores 15
remove method 198
render function 69, 107, 110
renderDetailPage()

function 217–219,
227–228

renderHomepage() function
206–207, 209, 212

rendering, moving into named
function 217

renderReviewForm() function
226, 228, 234

replace function 299, 407–408
REpresentational State Transfer

(REST) 26, 161
req object 234, 365, 367
req parameter 206, 222
req.body 186

476 INDEX

req.params 186
req.payload.email 368
req.query 186
req.query.lng 180
request callback, making more

robust 211
request module

adding to project 202
using 203–205

request() function 204
requestB 441
requestOptions 213
require crypto 353
require function 69–71, 84,

123, 132, 169
required attribute 326
required function 128
required: true flag 134
res object 367
res parameter 206, 222
res.render() function 205
resolve() function 453
response.statusCode 222
responseBody parameter 208,

213
REST (REpresentational State

Transfer) 26, 161
REST API

consuming
adding data to database via

API 224–231
calling API from Express

202–205
getting single documents

from API 215–224
overview 201
protecting data integrity

with data
validation 231–238

using lists of data from API
205–215

rules of 161–167
Request methods 163–165
Request URLs 162–163
response and status codes

165–167
setting up in Express

167–172
creating controller

placeholders 170
creating routes 167–169
including model 171
returning JSON from

Express request 170
testing API 171–172

return statement 175–176, 377,
434, 458–459

revealing module pattern
458–459

Review class 336
review form field 230
Review page 102–103
review variable 178
reviewid parameter 168, 177
reviews.js file 170, 191
reviewSchema 142
reviewsCreate controller 367
reviewsCreate() controller 188
reviewsDeleteOne() controller

198
reviewsReadOne() controller

177–178
reviewsUpdateOne() controller

195
reviewText field 232
Router module 388
router.get function 71
routerLink directive 281
routerLinkActive attribute 282
RouterModule class 276, 332
routerModule.forRoot 332
<router-outlet> tag 279–280
routes

creating 167–169
defining in Express 83–85
setting to access specific

MongoDB documents
215–217

setting up 225–228
Ruby on Rails 6
running callback function, in

JavaScript 440–443

S

same-origin policy 253
save command 148, 150, 233
save method, Mongoose 193,

195
save() method 190, 193, 195,

441, 448–449
savedData 449
saveToken() method 373
schema path 131–132
schema type 132
schemas 17, 130
scope inheritance 416
screens, Loc8r example

application 36–37

<script> tag 271, 301
search engines 27
select statement 195
select() method 178, 195
semicolons, in JavaScript

434–435
SEO (search engine optimiza-

tion) pitfalls 27
setAge() function 455
setPassword method 352–353,

361
setTimeout() function

437–438, 440–445, 447
showError() function 222–223
SIGINT 125–126
sign in, Angular authentication

service 373–375
sign method 355
sign out, Angular authentica-

tion service 376
Signature part, JWT 354
SIGTERM event 126
SIGUSR2 event 126–127
single-threaded web servers

10–11
<small> tag 221
sort method 318
 tag 257
SPAs

initial load, speed of 28–29
making crawlable 27
whether to use 29
See also Angular SPAs

spread operator 180–181
square braces 430
startup_log collection 147
static path, defining 271
status-specific error pages

222–224
strapline content 286
strategies, in authentication

357
String data type 255
String method 140
String schema type 132, 134
strings, in JavaScript 437
style.css 102
sudo npm install -g express-

generator command
397

super function 460
surname variable 417, 426
switchMap 311–312
Symfony for PHP 6

477INDEX

T

template literals 437
templates, building 94–99
themes, in Bootstrap 21
then() function 452
this variable 423–424
this.hash 352
this.salt 352
tilde (~) 56, 58
title property 86
<title> tag 245
title variable 247
transform function 261–262,

319
two-way data binding 18–19
TypeScript

overview 20
types in 255

U

undefined statement 156
unique ID, querying API

using 217–218
unshift method 330
update command 150
updateAverageRating()

function 200
url option 204

URL parameter 206, 217–218
URL paths 83
urlAfterRedirects property 388
URLs, setting to access specific

MongoDB documents
215–217

use command 147
User class 373, 386
User model 365
user routes 167
userAge module 458
userSchema 351

V

validation
at application level with

Node and Express
235–236

in browser with jQuery
236–238

at schema level with
Mongoose 231–235

validPassword method 358
value option 324
var keyword 68, 416, 419, 421
variables

defining 68
passing 444–445
using from different scope

445–447

views
errors in, debugging and

fixing 220
moving data to controllers

from 405–410
About page 409–410
Add Review page 408–409
Details page 406–408

passing data from API to
218–220

setting up 225–228
VM (virtual machine) 48
Void data type 255

W

waitForIt 438
web development, history of 5
welcome mixin 114
whitespace, in JavaScript 436
window object 418
window.fullname variable 419

X

x-www-form-urlencoded data
type 188, 363

Y

yourModule variable 70

For ordering information go to www.manning.com

Angular in Action
by Jeremy Wilken

ISBN: 9781617293313
320 pages, $44.99
March 2018

Angular Development with Typescript,
Second Edition
by Yakov Fain and Anton Moiseev

ISBN: 9781617295348
560 pages, $49.99
December 2018

Testing Angular Applications
by Jesse Palmer, Corinna Cohn, Michael

Giambalvo, Craig Nishina

ISBN: 9781617293641
240 pages, $44.99
November 2018

MongoDB in Action, Second Edition
Covers MongoDB version 3.0
by Kyle Banker, Peter Bakkum, Shaun Verch,

Douglas Garrett, and Tim Hawkins

ISBN: 9781617291609
480 pages, $44.99
March 2016

RELATED MANNING TITLES

https://www.manning.com/books/angular-in-action
https://www.manning.com/books/angular-development-with-typescript-second-edition
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/mongodb-in-action-second-edition

Holmes ● Harber

J
uggling languages mid-application can radically slow down
a full-stack web project. The MEAN stack—MongoDB,
Express, Angular, and Node—uses JavaScript end to end,

maximizing developer productivity and minimizing context
switching. And you’ll love the results! MEAN apps are fast,
powerful, and beautiful.

Getting MEAN, Second Edition teaches you how to develop full-
stack web applications using the MEAN stack. Practical from
the very beginning, the book helps you create a static site in
Express and Node. Expanding on that solid foundation, you’ll
integrate a MongoDB database, build an API, and add an
authentication system. Along the way, you’ll get countless
pro tips for building dynamic and responsive data-driven
web applications!

What’s Inside
● MongoDB 4, Express 4, Angular 7, and Node.js 11
● MEAN stack architecture
● Mobile-ready web apps
● Best practices for effi ciency and reusability

Readers should be comfortable with standard web application
designs and ES2015-style JavaScript.

Simon Holmes and Clive Harber are full-stack developers with
decades of experience in JavaScript and other leading-edge
web technologies.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/books/getting-mean-

with-mongo-express-angular-and-node-second-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Getting MEAN
with Mongo, Express, Angular, and Node, Second Edition

WEB DEVELOPMENT

M A N N I N G

“Wonderfully detailed
walk-through from front end

to back end, from UI to
data—and all the

connectivity in between.”
—Joseph Tingsanchali, Netspend

“Provides an accelerated
learning process through

building an application that
mimics a realistic/useful

application.”
—Foster Haines, Rhodes Group

“Great project-based
approach to the material,

covering every aspect of the
stack from responsive layout to

live database deployment.”
—Tony Mullen

Northeastern University

“Holmes and Harber
make it easy!”—James McGinn

Bull Valley Software

See first page

	Getting MEAN
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 Setting the baseline
	1 Introducing full-stack development
	1.1 Why learn the full stack?
	1.1.1 A brief history of web development
	1.1.2 The trend toward full-stack developing
	1.1.3 Benefits of full-stack development
	1.1.4 Why the MEAN stack specifically?

	1.2 Introducing Node.js: The web server/platform
	1.2.1 JavaScript: The single language through the stack
	1.2.2 Fast, efficient, and scalable
	1.2.3 Using prebuilt packages via npm

	1.3 Introducing Express: The framework
	1.3.1 Easing your server setup
	1.3.2 Routing URLs to responses
	1.3.3 Views: HTML responses
	1.3.4 Remembering visitors with session support

	1.4 Introducing MongoDB: The database
	1.4.1 Relational databases vs. document stores
	1.4.2 MongoDB documents: JavaScript data store
	1.4.3 More than just a document database
	1.4.4 What is MongoDB not good for?
	1.4.5 Mongoose for data modeling and more

	1.5 Introducing Angular: The front-end framework
	1.5.1 jQuery vs. Angular
	1.5.2 Two-way data binding: Working with data in a page
	1.5.3 Using Angular to load new pages
	1.5.4 Are there any downsides?
	1.5.5 Developing in TypeScript

	1.6 Supporting cast
	1.6.1 Twitter Bootstrap for user interface
	1.6.2 Git for source control
	1.6.3 Hosting with Heroku

	1.7 Putting it together with a practical example
	1.7.1 Introducing the example application
	1.7.2 How the MEAN stack components work together

	Summary

	2 Designing a MEAN stack architecture
	2.1 A common MEAN stack architecture
	2.2 Looking beyond SPAs
	2.2.1 Hard to crawl
	2.2.2 Analytics and browser history
	2.2.3 Speed of initial load
	2.2.4 To SPA or not to SPA?

	2.3 Designing a flexible MEAN architecture
	2.3.1 Requirements for a blog engine
	2.3.2 A blog engine architecture
	2.3.3 Best practice: Building an internal API for a data layer

	2.4 Planning a real application
	2.4.1 Planning the application at a high level
	2.4.2 Architecting the application
	2.4.3 Wrapping everything in an Express project
	2.4.4 The end product

	2.5 Breaking the development into stages
	2.5.1 Rapid prototype development stages
	2.5.2 The steps to build Loc8r

	2.6 Hardware architecture
	2.6.1 Development hardware
	2.6.2 Production hardware

	Summary

	Part 2 Building a Node web application
	3 Creating and setting up a MEAN project
	3.1 A brief look at Express, Node, and npm
	3.1.1 Defining packages with package.json
	3.1.2 Working with dependency versions in package.json
	3.1.3 Installing Node dependencies with npm

	3.2 Creating an Express project
	3.2.1 Installing the pieces
	3.2.2 Verifying the installations
	3.2.3 Creating a project folder
	3.2.4 Configuring an Express installation
	3.2.5 Creating an Express project and trying it out
	3.2.6 Restarting the application

	3.3 Modifying Express for MVC
	3.3.1 A bird?s-eye view of MVC
	3.3.2 Changing the folder structure
	3.3.3 Using the views and routes relocated folders
	3.3.4 Splitting controllers from routes

	3.4 Importing Bootstrap for quick, responsive layouts
	3.4.1 Downloading Bootstrap and adding it to the application
	3.4.2 Using Bootstrap in the application

	3.5 Making it live on Heroku
	3.5.1 Getting Heroku set up
	3.5.2 Pushing the site live using Git

	Summary

	4 Building a static site with Node and Express
	4.1 Defining the routes in Express
	4.1.1 Different controller files for different collections

	4.2 Building basic controllers
	4.2.1 Setting up controllers
	4.2.2 Testing the controllers and routes

	4.3 Creating some views
	4.3.1 A look at Bootstrap
	4.3.2 Setting up the HTML framework with Pug templates and Bootstrap
	4.3.3 Building a template

	4.4 Adding the rest of the views
	4.4.1 Details page
	4.4.2 Adding the Review page
	4.4.3 Adding the About page

	4.5 Taking the data out of the views and making them smarter
	4.5.1 Moving data from the view to the controller
	4.5.2 Dealing with complex, repeating data patterns
	4.5.3 Manipulating the data and view with code
	4.5.4 Using includes and mixins to create reusable layout components
	4.5.5 Viewing the finished homepage
	4.5.6 Updating the rest of the views and controllers

	Summary

	5 Building a data model with MongoDB and Mongoose
	5.1 Connecting the Express application to MongoDB by using Mongoose
	5.1.1 Adding Mongoose to your application
	5.1.2 Adding a Mongoose connection to your application

	5.2 Why model the data?
	5.2.1 What is Mongoose and how does it work?
	5.2.2 How does Mongoose model data?
	5.2.3 Breaking down a schema path

	5.3 Defining simple Mongoose schemas
	5.3.1 The basics of setting up a schema
	5.3.2 Using geographic data in MongoDB and Mongoose
	5.3.3 Creating more complex schemas with subdocuments
	5.3.4 Final schema
	5.3.5 Compiling Mongoose schemas into models

	5.4 Using the MongoDB shell to create a MongoDB database and add data
	5.4.1 MongoDB shell basics
	5.4.2 Creating a MongoDB database

	5.5 Getting your database live
	5.5.1 Setting up mLab and getting the database URI
	5.5.2 Pushing up the data
	5.5.3 Making the application use the right database

	Summary

	6 Writing a REST API: Exposing the MongoDB database to the application
	6.1 The rules of a REST API
	6.1.1 Request URLs
	6.1.2 Request methods
	6.1.3 Responses and status codes

	6.2 Setting up the API in Express
	6.2.1 Creating the routes
	6.2.2 Creating the controller placeholders
	6.2.3 Returning JSON from an Express request
	6.2.4 Including the model
	6.2.5 Testing the API

	6.3 GET methods: Reading data from MongoDB
	6.3.1 Finding a single document in MongoDB using Mongoose
	6.3.2 Finding a single subdocument based on IDs
	6.3.3 Finding multiple documents with geospatial queries

	6.4 POST methods: Adding data to MongoDB
	6.4.1 Creating new documents in MongoDB
	6.4.2 Validating the data using Mongoose
	6.4.3 Creating new subdocuments in MongoDB

	6.5 PUT methods: Updating data in MongoDB
	6.5.1 Using Mongoose to update a document in MongoDB
	6.5.2 Using the Mongoose save method
	6.5.3 Updating an existing subdocument in MongoDB

	6.6 DELETE method: Deleting data from MongoDB
	6.6.1 Deleting documents in MongoDB
	6.6.2 Deleting a subdocument from MongoDB

	Summary

	7 Consuming a REST API: Using an API from inside Express
	7.1 How to call an API from Express
	7.1.1 Adding the request module to your project
	7.1.2 Setting up default options
	7.1.3 Using the request module

	7.2 Using lists of data from an API: The Loc8r homepage
	7.2.1 Separating concerns: Moving the rendering into a named function
	7.2.2 Building the API request
	7.2.3 Using the API response data
	7.2.4 Modifying data before displaying it: fixing the distances
	7.2.5 Catching errors returned by the API

	7.3 Getting single documents from an API: The Loc8r Details page
	7.3.1 Setting URLs and routes to access specific MongoDB documents
	7.3.2 Separating concerns: Moving the rendering into a named function
	7.3.3 Querying the API using a unique ID from a URL parameter
	7.3.4 Passing the data from the API to the view
	7.3.5 Debugging and fixing the view errors
	7.3.6 Formatting dates using a Pug mixin
	7.3.7 Creating status-specific error pages

	7.4 Adding data to the database via the API: add Loc8r reviews
	7.4.1 Setting up the routing and views
	7.4.2 POSTing the review data to the API

	7.5 Protecting data integrity with data validation
	7.5.1 Validating at the schema level with Mongoose
	7.5.2 Validating at the application level with Node and Express
	7.5.3 Validating in the browser with jQuery

	Summary

	Part 3 Adding a dynamic front end with Angular
	8 Creating an Angular application with TypeScript
	8.1 Getting up and running with Angular
	8.1.1 Using the command line to create a boilerplate Angular app
	8.1.2 Running the Angular app
	8.1.3 The source code behind the application

	8.2 Working with Angular components
	8.2.1 Creating a new home-list component
	8.2.2 Creating the HTML template
	8.2.3 Moving data out of the template into the code
	8.2.4 Using class member data in the HTML template

	8.3 Getting data from an API
	8.3.1 Creating a data service
	8.3.2 Using a data service

	8.4 Putting an Angular application into production
	8.4.1 Building an Angular application for production
	8.4.2 Using the Angular application from the Express site

	Summary

	9 Building a single-page application with Angular: Foundations
	9.1 Adding navigation in an Angular SPA
	9.1.1 Importing the Angular router and defining the first route
	9.1.2 Routing configuration
	9.1.3 Creating a component for the framework and navigation
	9.1.4 Defining where to display the content using router-outlet
	9.1.5 Navigating between pages
	9.1.6 Adding active navigation styles

	9.2 Building a modular app using multiple nested components
	9.2.1 Creating the main homepage component
	9.2.2 Creating and using reusable subcomponents

	9.3 Adding geolocation to find places near you
	9.3.1 Creating an Angular geolocation service
	9.3.2 Adding the geolocation service to the application
	9.3.3 Using the geolocation service from the home-list component

	9.4 Safely binding HTML content
	9.4.1 Adding the About page content to the app
	9.4.2 Creating a pipe to transform the line breaks
	9.4.3 Safely binding HTML by using a property binding

	9.5 Challenge
	Summary

	10 Building a single-page application with Angular: The next level
	10.1 Working with more-complex views and routing parameters
	10.1.1 Planning the layout
	10.1.2 Creating the required components
	10.1.3 Setting up and defining routes with URL parameters
	10.1.4 Using URL parameters in components and services
	10.1.5 Passing data to the Details page component
	10.1.6 Building the Details page view

	10.2 Working with forms and handling submitted data
	10.2.1 Creating the review form in Angular
	10.2.2 Sending submitted form data to an API

	10.3 Improving the architecture
	10.3.1 Using a separate routing-configuration file
	10.3.2 Improving the location class definition

	10.4 Using the SPA instead of the server-side application
	10.4.1 Routing Express requests to the build folder
	10.4.2 Making sure that deep URLs work

	Summary

	Part 4 Managing authentication and user sessions
	11 Authenticating users, managing sessions, and securing APIs
	11.1 How to approach authentication in the MEAN stack
	11.1.1 Traditional server-based application approach
	11.1.2 Using the traditional approach in the MEAN stack
	11.1.3 Full MEAN stack approach

	11.2 Creating a user schema for MongoDB
	11.2.1 One-way password encryption: Hashes and salts
	11.2.2 Building the Mongoose schema
	11.2.3 Basic user schema
	11.2.4 Setting encrypted paths using Mongoose methods
	11.2.5 Validating a submitted password
	11.2.6 Generating a JSON Web Token

	11.3 Creating an authentication API with Passport
	11.3.1 Installing and configuring Passport
	11.3.2 Creating API endpoints to return JWTs

	11.4 Securing relevant API endpoints
	11.4.1 Adding authentication middleware to Express routes
	11.4.2 Using the JWT information inside a controller

	Summary

	12 Using an authentication API in Angular applications
	12.1 Creating an Angular authentication service
	12.1.1 Managing a user session in Angular
	12.1.2 Allowing users to sign up, sign in, and sign out
	12.1.3 Using the JWT data in the Angular service

	12.2 Creating the Register and Login pages
	12.2.1 Building the Register page
	12.2.2 Building the Login page

	12.3 Working with authentication in the Angular app
	12.3.1 Updating the navigation
	12.3.2 Adding a right-side section to the navigation

	Summary

	appendix A: Installing the stack
	Installing Node and npm
	Installing Express globally
	Installing MongoDB
	Installing Angular

	appendix B: Installing and preparing the supporting cast
	Twitter Bootstrap
	Font Awesome
	Installing Git
	Installing Docker
	Installing a suitable command-line interface
	Setting up Heroku

	appendix C: Dealing with all the views
	Moving the data from the views to the controllers
	Details page
	Add Review page
	About page

	Switching from Promises to Observables

	appendix D: Reintroducing JavaScript
	Everybody knows JavaScript, right?
	Good habits or bad habits
	Variables, scope, and functions
	Working with scope and scope inheritance
	Pushing from local to global scope: The wrong way
	Pushing from local to global scope: The right way
	Referencing global variables from local scope
	Implied global scope
	The problem of variable hoisting
	Lexical scope
	Functions are variables
	Limiting use of the global scope

	Arrow functions
	Destructuring
	Logic flow and looping
	Conditional statements: Working with if
	Running loops: Working with for
	Using for loops with arrays

	Getting to know JSON
	JavaScript object literals
	Differences with JSON
	Why is JSON so good?

	Formatting practices
	Indenting code
	Position of braces for functions and blocks
	Using the semicolon correctly
	Placing commas in a list
	Don?t be afraid of whitespace
	Tools to help you write good JavaScript

	String formatting
	Understanding callbacks
	Using setTimeout to run code later
	Asynchronous code
	Running a callback function
	Named callbacks
	Callbacks in Node

	Promises and async/await
	Promises
	async/await

	Writing modular JavaScript
	Closures
	Module pattern
	Revealing module pattern

	Classes
	Functional programming concepts
	Final thoughts

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

