
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 2 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

Beginning iOS PrOgramming

intrOductiOn . xix

chaPter 1 Building a Real-World iOS App: Bands . 1

chaPter 2 Introduction to Objective-C . 9

chaPter 3 Starting a New App . 51

chaPter 4 Creating a User Input Form . 75

chaPter 5 Using Table Views . 103

chaPter 6 Integrating the Camera and Photo Library in iOS Apps 133

chaPter 7 Integrating Social Media . 153

chaPter 8 Using Web Views . 175

chaPter 9 Exploring Maps and Local Search . 195

chaPter 10 Getting Started with Web Services . 219

chaPter 11 Creating a Universal App . 243

chaPter 12 Deploying Your iOS App . 267

aPPendiX Answers to Exercises . 287

indeX . 293

ffirs.indd 1 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 2 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

Beginning

iOS Programming

ffirs.indd 3 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 4 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

Beginning

iOS Programming
Building and deploying ioS applicationS

Nick Harris

ffirs.indd 5 31-01-2014 17:22:13

www.allitebooks.com

http://www.allitebooks.org

Beginning iOS Programming: Building and Deploying iOS Applications

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-84147-1
ISBN: 978-1-118-84160-0 (ebk)
ISBN: 978-1-118-84144-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958293

Trademarks: Wiley, the Wrox logo, Programmer to Programmer, and related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is
not associated with any product or vendor mentioned in this book.

ffirs.indd 6 31-01-2014 17:22:14

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my mom, dad, and sister for

always believing in me.

ffirs.indd 7 31-01-2014 17:22:14

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd 8 31-01-2014 17:22:14

www.allitebooks.com

http://www.allitebooks.org

aBOut the authOr

nick harriS is an independent software developer at Clifton Garage Mobile LLC. After graduating
from the Russ College of Engineering at Ohio University in 2001 with a Bachelor of Science degree
in computer science, he relocated to Denver, Colorado, where he began his professional career.
Nick began developing for iPhone in 2008 with the release of the iPhone SDK and has created and
released more than a half dozen apps using every version of iOS through iOS 7. Along with his
accomplishments as a developer, Nick enjoys giving back to the developer community by speaking at
conferences such as the 360iDev Developer Conference, as well as helping sponsor events including
iOSDevCamp Colorado. Contact Nick at nick@cliftongarage.com.

ffirs.indd 9 31-01-2014 17:22:14

creditS

acquisitions editor
Mary James

Project editor
Ami Sullivan

technical editor
Kyle Richter

Production editor
Daniel Scribner

copy editor
San Dee Phillips

editorial manager
Mary Beth Wakefield

Freelancer editorial manager
Rosemarie Graham

associate director of marketing
David Mayhew

marketing manager
Ashley Zurcher

Business manager
Amy Knies

Vice President and executive group
Publisher
Richard Swadley

associate Publisher
Jim Minatel

Project coordinator, cover
Todd Klemme

Proofreader
Mark Steven Long

indexer
Robert Swanson

cover designer
Wiley

cover image
©iStockphoto .com/photka

ffirs.indd 10 31-01-2014 17:22:14

acknOwledgmentS

when the Original iPhOne was first released, I thought my friends who lined up and waited
hours to buy one were crazy. Who would spend that much money on a phone? It wasn’t until Apple
announced the iPhone SDK that my mind began to change. Finally, I decided to take the plunge
and headed to the local AT&T store. I felt guilty for spending so much money until I got home and
started to actually use my new iPhone. I was amazed! I had to learn how to write my own apps.

Five years later I’m still amazed at the developer community that grew up around what has become
iOS development. I have met so many great people who taught me not only how to create iOS apps
but also how important it is to give back to the community. This book is partially to teach the next
crop of iOS developers as well as to thank and honor all those who helped me along the way. There
are too many to name individually and I would hate to miss someone, but you all know who you are.

I would also like to thank my acquisition editor, Mary James. I had always wanted to write a book
but didn’t know where to start. Mary was instrumental in getting the ball rolling and making this
book a reality. Ami Sullivan, who was my project editor, also deserves a huge thank-you. Being a
first-time author, I really had no idea what to expect. Ami has been a great coach, helping me get
everything done well and on time while also helping encourage me to keep going when the work
seemed overwhelming. Next, I’d like to thank my copy editor, San Dee Phillips, for catching all my
grammatical errors and making sure the ideas I’ve tried to explain make sense.

I owe a big thank you to my technical editor, Kyle Richter, for finding all my technical errors and
pointing out ways to make the code for this book easy to understand for all readers. Kyle also
helped me put the original book proposal together and has given me extremely valuable advice.
Many thanks.

Finally, a huge thank-you to my parents and sister for all their encouragement along the way. I don’t
think I could ever express how much I appreciate it.

ffirs.indd 11 31-01-2014 17:22:14

ffirs.indd 12 31-01-2014 17:22:14

Contents

IntroductIon xix

Chapter 1: Building a real-World ios app: Bands 1

Introducing Bands 2
Getting Started 3

Scoping the App 4
Defining the Features 5
Creating a Development Plan 6

Summary 6

Chapter 2: introduCtion to oBjeCtive-C 9

Exploring the History of Objective-C 9
Explaining the Basics 10

Learning About Objects and Classes 12
Instantiating Objects 16
Managing Memory 22
Introducing Automatic Reference Counting 26
Adding Properties to a Class 27
Explaining Strings 32
Using Basic Data Structures 35

Discussing Advanced Concepts 39
Explaining the Model-View-Controller Design Pattern 39
Learning About Protocols and Delegates 41
Using Blocks 44
Handling Errors 44

Summary 47

Chapter 3: starting a neW app 51

Creating a New App in Xcode 51
Discussing Xcode Templates 54
Learning About Bundle Identifiers 54
Exploring the Xcode Project Layout 55
Discussing the UIKit Framework 56
Discussing the Main Storyboard 56

Adding a Label to a Storyboard 56

ftoc.indd 13 31-01-2014 17:22:19

xiv

CONTENTS

Exploring Interface Builder 57
Setting Attributes 58
Exploring the Inspectors 59
Aligning UI Objects 59

Running in the Simulator 59
Choosing a Device 60
Learning to Test on All Device Sizes 61

Learning About Auto Layout 62
Discussing Auto Layout Basics 64
Testing Rotation 64

Exploring Application Settings 66
Setting Version and Build Numbers 66
Setting Supported Rotation Orientations 67
Setting the App Icon 68
Setting Launch Images 70

Running on a Device 71
Summary 72

Chapter 4: Creating a user input Form 75

Introducing the Band Model Object 75
Creating the Band Model Object 76
Creating Enumerations 77
Adding Properties to the Band Model Object 78

Building an Interactive User Interface 79
Learning About IBOutlet 79
Using UITextField and UITextFieldDelegate 81
Using UITextView and UITextViewDelegate 84
Using UIButton and IBAction 85
Using UIStepper 87
Using UISegmentedControl 89
Using UISwitch 90

Saving and Retrieving Data 91
Implementing the NSCoding Protocol 91
Saving Data 93
Retrieving Saved Data 95
Deleting Saved Data 97

Summary 100

ftoc.indd 14 31-01-2014 17:22:19

xv

CONTENTS

Chapter 5: using taBle vieWs 103

Exploring Table Views 104
Learning About Tables 104
Learning About Cells 107

Implementing the Bands Data Source 110
Creating the Band Storage 110
Adding Bands 113
Displaying Bands 119

Implementing Sections and Index 121
Adding Section Headers 122
Showing the Section Index 122

Editing Table Data 123
Enabling Edit Mode 124
Deleting Cells and Data 125
Modifying Data 126

Summary 130

Chapter 6: integrating the Camera and photo
liBrary in ios apps 133

Adding an Image View and Gesture Recognizer 134
Enabling User Interactions with a UIImageView 134
Learning About Gesture Recognizers 136

Selecting a Picture from the Photo Library 139
Learning About UIImagePickerController 140
Determining Device Capabilities 140
Allowing Picture Editing 141
Saving Band Images 143
Deleting Band Images 145

Taking a Picture with the Camera 147
Summary 150

Chapter 7: integrating soCial media 153

Sending E-mails and Text Messages 154
Using the E-mail Composer 154
Using the Message Composer 160

Simplifying Social Network Integration 163
Introducing the Activity View Controller 164

ftoc.indd 15 31-01-2014 17:22:19

xvi

CONTENTS

Learning About Twitter Integration 167
Learning About Facebook Integration 168
Learning About Flickr Integration 169
Limiting Sharing Options 170

Summary 172

Chapter 8: using WeB vieWs 175

Learning About Web Views 175
Loading a URL 180
Loading a URL That Contains Special Characters 182
Showing User Feedback 183

Adding Navigation 186
Creating a Toolbar 186
Opening Safari 191

Summary 193

Chapter 9: exploring maps and loCal searCh 195

Learning About Map Views 196
Getting the User’s Location 198
Changing the Map Type 201

Performing a Local Search 203
Animating Annotations 209
Interacting with Annotations 211

Summary 215

Chapter 10: getting started With WeB serviCes 219

Learning About Web Services 220
Exploring the iTunes Search API 220
Discussing JSON 221
Adding the Search View 223

Introducing NSURLSession 227
Creating and Scheduling a Data Task 227
Parsing JSON 231

Displaying Search Results 233
Previewing Tracks 236
Showing Tracks in iTunes 239

Summary 240

ftoc.indd 16 31-01-2014 17:22:19

xvii

CONTENTS

Chapter 11: Creating a universal app 243

Transitioning to a Universal App 244
Supporting Rotation Using Auto Layout 249

Learning About Popovers 250
Presenting Action Sheets in Popovers 250
Using the UIPopoverController 252

Finishing the iPad Implementation 258
Summary 265

Chapter 12: deploying your ios app 267

Deploying the App to Beta Testers 268
Registering Beta Devices 269
Generating Digital Certificates 271
Creating an App ID and Ad Hoc Provisioning Profile 274
Signing and Deploying an Ad Hoc Build 276

Submitting the App to Apple 280
Exploring iTunes Connect 280
Creating an App Store Provisioning Profile 283
Validating and Submitting an App 284

Summary 285

appendix: ansWers to exerCises 287

Index 293

ftoc.indd 17 31-01-2014 17:22:19

flast.indd 18 31-01-2014 17:22:16

www.allitebooks.com

http://www.allitebooks.org

IntroductIon

When Apple releAsed the orIgInAl Iphone In 2007, it was instantly an iconic device. No
one had created such a fluid user experience based solely on touch. Using an iPhone didn’t feel like
you were touching a flat piece of glass but instead felt as if you were touching and interacting with
physical objects. Flipping through the albums felt like you were actually flipping through albums.
Panning around a map felt like you were actually touching and moving a real map. It was truly
inspiring.

At the time I was writing Windows desktop applications and had just taken over a Windows Mobile
project. I was still skeptical of the iPhone and its price tag. After Apple announced the SDK and the
idea of the App Store, I decided to take the plunge and teach myself how to write an iPhone app. But
where would I start?

Luckily, I had friends who had been building OS X desktop applications for years. They organized
and hosted the first iPhoneDevCamp Colorado, which was my first exposure to Objective-C and
Xcode. I was a bit overwhelmed, and because everyone was new to the platform, there were no code
examples around to help. Eventually, through asking many questions and learning alongside more
experienced developers, I released my first iPhone app in January 2009. I believe in giving back to
the community that helped me get started, which is why I decided to write this book.

Through high school, college, and my professional career, I’ve had the privilege to learn how to
build software for many different platforms. In my experience I’ve found the best way for me to
understand the big picture is not through individual lessons but instead to create something I could
actually use. That’s the approach this book takes. You will learn how to build iOS apps by building
an iOS app. The app is called Bands. It’s a fairly simple app, but it will introduce you to the key con-
cepts of Objective-C and Cocoa Touch while implementing features that are found in many popular
iOS apps. When you are done you will have a real app you can actually use. By no means does it
teach you all the things you can do with the iOS SDK. Those possibilities are almost endless. But it
does give you a solid foundation you can use to begin creating your own amazing iOS apps.

Who thIs Book Is For

This book is for developers new to the iOS SDK who want to quickly learn how to build iOS apps.
Although not absolutely required, you should have some programming background with decent
knowledge of object-oriented programming. It’s also for current iOS developers who would like to
learn some of the technologies included in newer releases of iOS and Xcode such as storyboards,
auto layout, and local search.

flast.indd 19 31-01-2014 17:22:16

xx

INTRODUCTION

WhAt thIs Book covers

This book walks you through creating an iOS app from an idea all the way to submitting it to Apple
for sale in the App Store. It’s broken into 12 chapters.

Chapter 1, “Building a Real-World iOS App: Bands” introduces the app you will build throughout
the book. All apps start as an idea that gets fleshed out into features and eventually into a develop-
ment plan to get it built.

Chapter 2, “Introduction to Objective-C” takes a unique approach to explaining Objective-C by
comparing it to Java and C#. It also details the Model-View-Controller design pattern used to build
an iOS app.

Chapter 3, “Starting a New App” walks you through creating a new project in Xcode. It describes
the various editors and windows in Xcode you use to manage files, edit code, and build a user
interface.

Chapter 4, “Creating a User Input Form” shows you how to create a basic user interface to input
data. You learn how to show and hide the software keyboard as well as how to save data to disk.

Chapter 5, “Using Table Views” explains how to build a data model and display it using tables. It
also introduces the idea of segues to transition between different views in an iOS app.

Chapter 6, “Integrating the Camera and Photo Library in iOS Apps” details how to use the image
picker to either take a picture using the camera on an iOS device or to choose a picture in the photo
library. You also learn how to use gestures to make your user interface more interactive.

Chapter 7, “Integrating Social Media” explores how to send e-mails and text messages or post
messages and updates to Twitter, Facebook, and Flickr using the same user experience found in
Apple apps.

Chapter 8, “Using Web Views” builds a lightweight browser to allow users to search for bands.
You learn how the iOS SDK creates and loads URLs as well as how to call C functions from
Objective-C.

Chapter 9, “Exploring Maps and Local Search” explains how to use maps in an iOS app by
searching for record stores around a user’s current location and displaying them.

Chapter 10, “Getting Started with Web Services” looks at the new networking classes introduced
with iOS 7 to connect with a web service. You learn how to use the iTunes Search web service API
to find tracks and preview them as well as opening the iTunes Store to purchase them.

Chapter 11, “Creating a Universal App” walks you through transitioning an iPhone-only app to
also support iPad. It details the iPad-specific user interface features as well as how to effectively use
auto layout to support device rotation.

Chapter 12, “Deploying Your iOS App” explains how you can send your app to beta testers as well
as how you submit an app to Apple for review and release in the App Store.

flast.indd 20 31-01-2014 17:22:16

xxi

INTRODUCTION

hoW thIs Book Is structured

This book teaches how to build a simple iOS app in iOS 7 from concept to release. Its approach is
based on my personal experience of creating my first iOS app. You start with an idea for an app
called Bands that gets fleshed out into a set of features. You then learn about Objective-C and the
design concepts that are the foundation of Cocoa Touch and the iOS SDK. From there you start to
build the Bands app by progressively building the project from what is essentially a “Hello World”
app to a final app that includes all features you can find in many popular iOS apps.

If you are new to Objective-C and Cocoa Touch, I recommend taking the time to understand the key
concepts and design patterns explained in Chapter 2 before starting on the Bands app in Chapter 3.
If you have used Xcode before and have created a “Hello World” app or more complicated apps but
would like to learn how to use Storyboard scenes and segues, you can skip ahead to Chapter 4. The
more advanced features of the Bands app begin with Chapter 7. Because this book builds on a single
project, it is recommended beginners read the book from beginning to end. However, the features
are tackled in single chapters and can be applied to any iOS project on which you may be working.
If you’re comfortable you can use the example code in those chapters to implement those features in
your own project.

WhAt You need to use thIs Book

All iOS apps are built using Xcode, which is available free from the Mac App Store. You need a Mac
to run Xcode, because there is no Windows version. Xcode includes the iOS simulator, which you
can use to test almost all the code you write throughout the book. There are some features such as
taking a picture with the camera that you need a physical iOS device to try. To run an app that is
in development on a physical device, you need to be enrolled in the iOS Developer Program, which
costs $99/year. Though it’s not required, I would recommend enrolling as early on as possible.

The source code for the samples is available for download from the Wrox website at

www.wrox.com/go/begiosprogramming

conventIons

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

trY It out

The Try It Out is an exercise you should work through, following the text in the book.

 1. They usually consist of a set of steps.

 2. Each step has a number.

 3. Follow the steps through with your copy of the database.

flast.indd 21 31-01-2014 17:22:16

xxii

INTRODUCTION

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

Warning Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

note Notes indicate notes, tips, hints, tricks, or asides to the current discussion.

As for styles in the text:

➤➤ We italicize new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl-A.

➤➤ We show filenames, URLs, and code within the text like so: persistence.properties.

➤➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

source code

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifically for this book, the code download is on the
Download Code tab at

www.wrox.com/go/begiosprogramming

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-118-
84147-1) to find the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

At the beginning of each chapter, you can find a list of the major code files for the chapter.
Throughout each chapter, you’ll also find references to the names of code files as needed in listing
titles and text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. After you download the code, just decompress it with an appropriate
compression tool.

flast.indd 22 31-01-2014 17:22:17

xxiii

INTRODUCTION

note Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-84147-1.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

errAtA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be grateful for your feedback. By sending in errata, you may save
another reader hours of frustration, and at the same time, you can help us provide even higher qual-
ity information.

To find the errata page for this book, go to

www.wrox.com/go/begiosprogramming

And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.Wrox.com

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies, and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you can find a number of different forums that can help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

flast.indd 23 31-01-2014 17:22:17

xxiv

INTRODUCTION

 3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

note You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd 24 31-01-2014 17:22:17

Building a Real-World iOS
App: Bands

What you Will learn in this chapter:

➤➤ A brief history of the iPhone SDK

➤➤ An introduction to the Bands app

➤➤ How to scope an app and define features

The idea of mobile computing has been around since the late 1970s. The first real mobile
computer was the Psion Organiser, which was released in 1984, followed by the Psion
Organiser II in 1986. For the most part these early mobile computers looked like calculators.
Mobile computing began to pick up speed in the 1990s. That was when the Personal Digital
Assistant, or PDA, began to catch on. The phrase Personal Digital Assistant was first used
by the CEO of Apple, but not the one you may be thinking of. John Sculley became the CEO
of Apple after Steve Jobs was forced out. He made the remark while talking about the Apple
Newton, Apple’s first attempt at mobile computing. By most accounts it was not a success and
was discontinued in 1998.

Through the rest of the 1990s and early 2000s, mobile computing continued to evolve. There
were many popular PDAs such as the Palm Pilot as well as devices running Windows Mobile.
They had their users, but they didn’t have an excited developer base.

Smartphones were also coming into their own during this time. They combined the features
of a PDA with the capability to make phone calls. Palm and Windows Mobile along with the
BlackBerry dominated these early days. That changed in 2007 when Apple announced the
iPhone.

The original iPhone went on sale June 2007. It was instantly an iconic device. Using an
iPhone felt like you were using the future. Though touch screens had been around for more
than a decade, the iPhone made you feel like you were interacting with real objects, not just

1

c01.indd 1 31-01-2014 17:20:18

2 ❘ chapter 1 Building a Real-WoRld ioS app: BandS

touching buttons on a screen. The original release of the iPhone had one big limitation, though;
there was no software SDK developers could use to write native applications for it. Steve Jobs
instead recommended developers write web applications that would feel like native applications. At
the time the tech world was in the middle of the Web 2.0 craze, so the idea wasn’t that far-fetched,
but it just didn’t fly with developers.

By September 2007, the idea of “jail breaking” your iPhone began to catch on. Hackers had not only
figured out how to unlock the digital security Apple had in place but had also figured out how to
write and run their own applications on the device. You had to be pretty brave to do this, though,
because jail breaking voided the warranty of an expensive phone, and writing bad software could
easily render the device useless.

In October 2007, Apple reversed course and announced that an SDK to write native third-party
applications for the iPhone was in development. In March 2008, it was released to developers along
with an innovative new way to distribute these new applications called the App Store. That’s when
the term app becomes the preferred term for these third-party applications. It is also when the rush
to this new development platform, now called the iPhone OS, begins.

The App Store officially launched July 10, 2008. According to Apple, since then there have been
more than 1 million apps written and made available in the App Store with more than 10 billion
downloads. Having an app is like having a web page in the 1990s: Everyone wants one.

The developer industry around building apps has exploded. That’s probably why you are reading
this book. You want to know how to build an app. The best way to learn how to build an app is to
actually build an app.

introducing Bands

The app you build throughout the course of this book is named Bands.
It’s a simple app that you can use to take quick notes about bands you like
or want to remember. It won’t win an Apple Design Award, but that’s not
its purpose. It is meant to be a conduit to teach you what it’s like to take
an idea for an app and make it into a reality, teaching you skills along the
way that you can apply when building your own apps. The figures in this
section show what the Bands app will look like when you’re done.

Figure 1-1 shows the first screen of the Bands app. It’s a list of all the
bands a user adds to the app, sorted alphabetically and indexed.

When a user taps on a band, they see the details of the band, as shown in
Figure 1-2. Here they can take notes, add a picture, and set a few other
properties about each band.

From the band details, users have the option to do a few different
things, as shown in Figure 1-3. They can tell their friends about the
band in various ways, as shown in Figure 1-4, search the web for more
info about the band, as shown in Figure 1-5, find local record stores, as
shown in Figure 1-6, and even search and preview tracks from the band,
as shown in Figure 1-7.

Figure 1-1

c01.indd 2 31-01-2014 17:20:18

Getting Started ❘ 3

Figure 1-2 Figure 1-3 Figure 1-4

Figure 1-5 Figure 1-6 Figure 1-7

Now that you see what the Bands app can become, it’s time to start.

getting started

Every app starts with an idea. You may have your own idea for an app, or perhaps your boss has
the idea and you are in charge of making it a reality. The Bands app also started with an idea. Say
you are at a bar or concert hall, and a band is playing that you’ve never heard of that you want to
remember. Or perhaps you are out with friends and talking about music, and someone mentions

c01.indd 3 31-01-2014 17:20:19

4 ❘ chapter 1 Building a Real-WoRld ioS app: BandS

another band you would like to remember. It would be great to have a place where you could keep
all these bands together so that you can go back later when you have time to learn more about them.
You could use a note-taking app or send yourself an e-mail, but having a dedicated app you could
pull up and have them all together would be ideal.

Naming your app may be one of the hardest parts of app development. It needs to be catchy and
memorable yet adequately describe what the app does. The name has to be unique within the App
Store. You can search the App Store for names you like and see if there is already an app with that
name. You also need to keep in mind how the app name will look on an actual iPhone or iPad.
Typically, you have about 12 characters before the app name is truncated. Figure 1-8 shows what a
long name looks like. Apple apps, in contrast, are a great example of short names that describe the
app well (see Figure 1-9).

Figure 1-8 Figure 1-9

Note Searching the available apps in the App Store does not guarantee the
name is available. The only true way to know is when you attempt to submit
the app through iTunes Connect, which you will learn about in Chapter 12,
“Deploying Your iOS App.”

scoping the app
You now have an idea for an app that has a name. The next step is scoping what the app will do. You
want your app to be useful, but you also need to keep in mind what is realistic. Too many features
can make it hard when the first-time users open your app. Too many features also mean much more
development time. Too few features and your app won’t be useful. Finding the balance is the key.

It helps to list all the things you would like your app to do. The following list demonstrates some of
the ideas you might want to incorporate in an app like Bands.

c01.indd 4 31-01-2014 17:20:19

www.allitebooks.com

http://www.allitebooks.org

Getting Started ❘ 5

➤➤ Add any number of bands.

➤➤ Take notes about a band.

➤➤ Take pictures of a band.

➤➤ Tell your friends about a band.

➤➤ Search the web for a band.

➤➤ Find places to buy merchandise from a band.

➤➤ Plot all the tour dates of a band.

➤➤ Have reviews from publications and critics of a band.

➤➤ Have a multimedia library associated with each band.

➤➤ Preview tracks of a band.

There are many more ideas that could be added to the list, but these will do. Now you need to look
at the ideas and decide which ones are valuable and which ones are too complicated for the app. You
also need to keep in mind functions and features that are used in Apple’s native apps. Duplicating
them can cause your app to be rejected when you submit it for approval. It’s better to cut those out
right away.

With that in mind, the multimedia library for all the music of a band can be tossed first, because
Apple’s Music app does this. Plotting all the tour dates of a band sounds great, but where would you
get the information? Having a user manually enter them would be burdensome and probably seldom
used, so that idea can be cut as well. Having reviews from publications and critics has the same issue
of where you would get the data. There are also copyright issues. That idea can also be dismissed.
The rest are all great ideas that can make a useful app.

defining the Features
With a manageable and useful list of ideas, you can now define the features of the app. Defining the
features and what it takes to create them helps you get a good idea of how much time and effort the
entire app will take. It also helps you wrap your mind around the final goal, which, of course, is a
fully functional app. The features you build into the Bands app in this book are chosen more for the
lessons they can teach you to apply when building your own apps, so some of the features may not
make the most sense. The following is the list of features you will implement in the Bands app.

Adding a band—The app needs a way to add a band. A band needs to have a name, and
you need a way to take notes as well as add an optional picture. A rating would help users
remember how much they enjoyed the band. A way to record if the band is on tour, off tour,
or disbanded is useful as well as a way for users to mark if they have seen the band live. A
simple user interface that lists all these in one place and allows the users to edit them seems
like the logical choice. Having access to the camera or photo library is needed for the band
picture.

Saving multiple bands—An app that saves just one band would not be useful. Saving mul-
tiple bands means you need to implement both some sort of persistent storage as well as a
way to view all the bands and find them quickly.

c01.indd 5 31-01-2014 17:20:19

6 ❘ chapter 1 Building a Real-WoRld ioS app: BandS

Sharing bands—When users find a band they like, they will want to tell others. The app
should be able to send e-mails and text messages preformatted with information the users
add about a band. Having the ability to share a band through Facebook, Twitter, and Flickr
would be useful as well.

Searching for a band on the web—Searching the web for a band a user just learned about
will be helpful. This needs a lightweight browser to be included in the app so that users
don’t need to use Mobile Safari. It should also be user-friendly and do the initial search for
the users.

Finding local record stores—If users want to buy tickets to a local show or buy a poster for
a band they like, they may need to find a record store. This feature needs to show a map
with pins marking all the record stores close to the user’s location.

Search for tracks—Finding new tracks of a band and previewing them is a fun feature to
add to the Bands app. Users can sample new tracks, and if they like them, they can purchase
them through the iTunes Store.

creating a development plan
The development plan for the Bands app is laid out in the rest of the chapters of this book. As a
beginning developer your first task is to learn about Objective-C and Cocoa Touch, the language
and frameworks used to create all iOS apps. Next, you need to learn about Xcode, the integrated
development environment you will use to build the Bands app. From there you will implement each
feature of the app from the easiest to the most complicated. Finally, when the app’s features are
complete, you learn how to get your app in the hands of beta testers before the ultimate goal of
getting your app into the App Store.

summary

All apps start with an idea. The idea for the Bands app is an app that allows users to keep track of
bands they hear about from a friend or at a local bar. The next step is coming up with a concrete
set of features that are well defined. The Bands app will store information about multiple bands to
persistent storage as well as sharing the bands with friends, searching the web for band information,
finding local record stores, and previewing and purchasing tracks from the iTunes Store. To start
you first need to learn about Objective-C, which you do in the next chapter.

exercises

 1. What do you need to keep in mind when naming an app?

 2. Why is it important to scope your app before starting?

 3. What can happen if your app duplicates functionality found in Apple apps?

c01.indd 6 31-01-2014 17:20:19

Summary ❘ 7

 ➤ What you learned in this chapter

topic Key concepts

iphone sdK The iPhone SDK was first announced October 2007, and initially introduced
to developers March 2008. Since then it has been used to create more than 1
million apps.

the Bands
app

The Bands app is an app that users can use to remember bands they’ve seen
live or have been introduced to by a friend. Instead of keeping them in notes
or sending an e-mail, the users can have them all in one place. You learn how to
build an iOS app by building the Bands app.

scope and
Features

Scoping an app and defining its features is important before beginning
development. It helps you keep the app useful without adding too many features
that users may find hard to use.

c01.indd 7 31-01-2014 17:20:19

c01.indd 8 31-01-2014 17:20:19

Introduction to Objective-C
What you Will learn in this chapter:

➤➤ An overview of Objective-C

➤➤ Declaring classes and instancing objects

➤➤ Memory management in Objective-C

➤➤ The Model-View-Controller design pattern

➤➤ Delegates and protocols in Objective-C

➤➤ Overview of blocks

➤➤ Error handling patterns in Objective-C

The first step to creating the Bands app is to learn about the language it will be written in,
Objective-C. Objective-C is the programming language used to develop both Mac and iOS
applications. It’s a compiled language, meaning that it gets compiled down to raw machine
code as opposed to being interpreted at runtime. As its name implies, it’s based on the C pro-
gramming language. It’s actually a superset of C that adds object-oriented programming meth-
odologies. Because it’s a descendant of C, its syntax and concepts are similar to other C-based
languages. In this chapter you learn the basics of Objective-C by comparing it to Java and C#.

exploring the history of objective-c

Objective-C was developed in the early 1980s by a company called Stepstone. It was work-
ing on a legacy system built using C but wanted to add reusability to the code base by using
objects and messaging. The concept of object-oriented programming (OOP) had been around
for a while. The Smalltalk language developed by Xerox was the most prominent object-
oriented language in use at the time. Objective-C got its start by taking some of the concepts
and syntax of Smalltalk and adding it to C. This can be seen in the syntax of message passing
in Objective-C and Smalltalk.

2

c02.indd 9 31-01-2014 17:20:24

10 ❘ chapter 2 IntroductIon to objectIve-c

Message passing is another way of saying method calling. In OOP languages an object can send a
message to or call a method of another object. All object-oriented languages include this. Listing 2-1
shows how message passing is done in Smalltalk, Objective-C, Java, and C#.

listing 2-1: Message Passing in Different Languages

Smalltalk: anObject aMessage: aParameter secondParameter: bParameter
Objective-C: [anObject aMessage:aParameter secondParameter:bParameter];
Java and C#: anObject.aMessage(aParameter, bParameter);

Objective-C got its foothold in mainstream programming when it was licensed by NeXT in the late
1980s. NeXT was a computer company founded by Steve Jobs after he was forced from Apple. It
manufactured workstations for universities and big businesses. The workstations ran its proprietary
operating system called NeXTSTEP, which used Objective-C as its programming language and
runtime. This was different than other workstations sold at the time that ran the UNIX operating
system based on the C language. NeXT was eventually acquired by Apple, bringing Steve Jobs back
to the original company he founded. The acquisition also brought the NeXTSTEP operating system,
which became the basis for OS X and the Cocoa API used to create Mac applications. The Cocoa
API was then expanded to Cocoa Touch, which is the API, frameworks, and user interface libraries
used to create iOS applications.

explaining the basics

Primitive types in every programming language are the basic types used to build more complex
objects and data structures. They are typically the same from language to language. The primitive
types in Objective-C are the same as those in C and most C variants. Table 2-1 lists these types.

table 2-1: Primitive Data Types in Objective-C

Data type Description

bool Single byte representing TRUE/FALSE or YES/NO

char Integer value the size of 1 byte

short Integer value the size of 2 bytes

int Integer value the size of 4 bytes

long Integer value the size of 8 bytes

float Single precision floating-point type the size of 4 bytes

double Double precision floating-point type the size of 8 bytes

c02.indd 10 31-01-2014 17:20:25

Explaining the Basics ❘ 11

As with C and C++, Objective-C includes the typedef keyword. If you are coming from C# or Java
and have never programmed using C or C++, you may not be familiar with typedef. It gives you a
way of creating and naming a new data type using primitive data types. You can then refer to this
new data type by the name you assigned it anywhere in your code. Listing 2-2 shows a simple yet
silly example of typedef that creates a new data type called myInt, which is the same as the primi-
tive int data type that can then be used the same as int throughout the code.

listing 2-2: typedef Example in Objective-C

// Objective C
typedef int myInt;

myInt variableOne = 5;
myInt variableTwo = 10;

myInt variableThree = variableOne + variableTwo;

// variableThree == 15;

A typical use of typedef in Objective-C is naming a declared enumerated type. An enumerated
type, or enum, is a primitive type that is made up of a set of constants. Each constant is represented
by an integer. They are used in pretty much every OOP language, including Java and C#. They give
you a way to declare a variable with the enumerations name and assign its value using the constant
names. It helps to make your code easier to read. The four cardinal directions are often declared as
an enumeration. To use an enum in C, you would need to add the enum keyword before its name.
Instead of this you can typedef it, so you no longer need the enum keyword. You don’t have to do
this, but it’s a common practice. Another common practice in Objective-C is to prepend the con-
stants with the name of the enumeration. Again, you don’t have to do, this but it helps the readabil-
ity of your code. Listing 2-3 demonstrates how you declare and typedef an enum in Objective-C as
well as Java and C# (their syntax is identical) and how you would use it later in code.

listing 2-3: Declaring Enumerations

// Objective C
typedef enum {
 CardinalDirectionNorth,
 CardinalDirectionSouth,
 CardinalDirectionEast,
 CardinalDirectionWest
} CardinalDirection;

CardinalDirection windDirection = CardinalDirectionNorth;
if(windDirection == CardinalDirectionNorth)
 // the wind is blowing north

// Java and C#
public enum CardinalDirection {
 NORTH,

continues

c02.indd 11 31-01-2014 17:20:25

12 ❘ chapter 2 IntroductIon to objectIve-c

 SOUTH,
 EAST,
 WEST
}

CardinalDirection windDirection = CardinalDirectionNorth;
if(windDirection == NORTH)
 // the wind is blowing north

In C, C++, C#, and Objective-C, you can also create a struct. Java does not have this because every-
thing is a class. A struct is not a class. A struct is a compound data type made up of primitive data
types. It’s a way of encapsulating similar data. Similar to enums, they often use typedef to avoid
having to use the keyword structs when using them in code. There are three common structs you use
in Objective-C: CGPoint, CGSize, and CGRect. Listing 2-4 shows how these structs are defined.

listing 2-4: Common Structs in Objective-C

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

learning about objects and classes
Objects in Objective-C, as in any other object-oriented language, are the building blocks of the
application. They have member variables that describe the object and methods that can manipulate
the member variables, as well as any parameters that may be passed to them. Member variables can
be public or private.

Objects are defined in a class. The class acts as the template for how an object is created and behaves.
A class in Objective-C consists of two files much like classes in C++. The header file (.h) contains
the interface of the class. This is where you declare the member variables and the method signatures.
The implementation file (.m) is where you write the code for the actual methods. Listings 2-5 and
2-6 show how to define a class and its implementation in Java and C#, respectively. Listing 2-7 shows

listing 2-3 (continued)

c02.indd 12 31-01-2014 17:20:25

Explaining the Basics ❘ 13

how you declare a header file in Objective-C, while Listing 2-8 show how you define the implementa-
tion file. If you are an expert developer of either language, forgive some of the bad practices in these
examples.

listing 2-5: Defining a Class in Java

package SamplePackage;
public class SimpleClass {
 public int firstInt;
 public int secondInt;

 public int sum() {
 return firstInt + secondInt;
 }

 public int sum(int thirdInt, int fourthInt) {
 return firstInt + secondInt + thirdInt + fourthInt;
 }

 private int sub() {
 return firstInt – secondInt;
 }
}

listing 2-6: Defining a Class in C#

namespace SampleNameSpace
{
 public class SimpleClass
 {
 public int FirstInt;
 public int SecondInt;

 public int Sum()
 {
 return FirstInt + SecondInt;
 }

 public in Sum(int thirdInt, int fourthInt)
 {
 return FirstInt + SecondInt + thirdInt + fourthInt;
 }

 private int Sub()
 {
 return FirstInt – SecondInt;
 }
 }
}

c02.indd 13 31-01-2014 17:20:25

14 ❘ chapter 2 IntroductIon to objectIve-c

listing 2-7: Defining a Class Interface in Objective-C

@interface SimpleClass : NSObject
{
 @public
 int firstInt;
 int secondInt;
}

- (int)sum;
- (int)sumWithThirdInt:(int)thirdInt fourthInt:(int)fourthInt;

@end

listing 2-8: Defining a Class Implementation in Objective-C

#import "SimpleClass.h"

@implementation SimpleClass

- (int)sum
{
 return firstInt + secondInt;
}

- (int)sumWithThirdInt:(int)thirdInt fourthInt:(int)fourthInt
{
 return firstInt + secondInt + thirdInt + fourthInt;
}

- (int)sub
{
 return firstInt – secondInt;
}

@end

Note The @ symbol is special in Objective-C. It has no meaning in C. Because
Objective-C is a superset of C, a C compiler can be modified to also
compile Objective-C. The @ symbol tells the compiler when to start and stop
using the Objective-C compiler versus the straight C compiler.

All three of these classes are conceptually the same. They all have two integer member variables that
are public, a public method that adds together the member variables, a public method that adds the
member variables plus an additional two integers passed in as a parameters, and a private method

c02.indd 14 31-01-2014 17:20:25

www.allitebooks.com

http://www.allitebooks.org

Explaining the Basics ❘ 15

that subtracts Y from X. The following sections discuss the key differences between classes in Java
and C# compared to Objective-C.

There Are No Namespaces in Objective-C
The first difference is the package and namespace keywords in the Java and C# code that do not cor-
respond to anything in the Objective-C code. This is because Objective-C does not have the concept
of namespaces. A namespace is a way of grouping related classes together. C# uses namespace as the
keyword for this concept, whereas Java uses packages to accomplish the same thing.

If a class in a different namespace wants to use a class in another, it needs to link to the namespace or
package the other class is in. In Java this is done using the import keyword followed by the name of
the package. In C# this is done with the using keyword. The class must also be declared as public,
which you should note the SampleClass in both the Java and C# examples are. In Objective-C a class
is made visible to another class simply by importing the header file in which the classes interface is
declared.

The public keyword is also used to declare if member variables are visible to other classes. All
three examples declare their member variables to be public; however, this is not a common prac-
tice in modern Objective-C, as you will learn in the Adding Properties to a Class section of this
chapter.

In Objective-C, Methods Are Visible to Other Classes
Methods in a Java or C# class can also be declared public, making them visible to other objects. This
is not the case with Objective-C. In Objective-C all methods that are declared in the interface are vis-
ible to other classes. If a class needs a private method, it just adds the method to the implementation.
All code within the implementation can call that method, but it will not be visible to any classes that
import the header file.

In Objective-C, Most Classes Inherit from NSObject
Another key concept of object-oriented languages is the capability of one class to inherit from
another. In Java all classes inherit from the Object class. C# is similar with the System.Object
class. In Objective-C virtually every class inherits from NSObject. The reason all three languages
have a common root class is to provide methods and behaviors that can be assumed as members.
In Objective-C the code for managing the memory of an object is all defined in NSObject. The dif-
ference in the syntax is that in Java and C# classes that do not explicitly define their superclass, the
root class is assumed. In Objective-C you must always declare the superclass by following the name
of the class with a colon and then the name of the superclass, as shown in the example @interface
SimpleClass : NSObject.

Objective-C Uses Long and Explicit Signatures
The last difference you notice is the signatures of the methods themselves. Java and C# both use the
same type of method signatures. The return type of the method is listed first, followed by its name

c02.indd 15 31-01-2014 17:20:25

16 ❘ chapter 2 IntroductIon to objectIve-c

and then by any parameters and their type listed within parentheses. They also use method over-
loading where the same method name is used but is distinguished as different by the list of param-
eters. In Objective-C the signature is a bit different, which reflects its roots in Smalltalk.

Objective-C method signatures tend to be very long and explicit. Many developers coming from
other languages may dislike this at first but learn to love it as it enhances the readability of the
code. Instead of needing to know which method of “Sum” to use when you want to pass in two
parameters, you know by just looking that the sumWithThirdInt:fourthInt: method is the one
you want. Actually that is the full name of that method. The colons in the method name denote
the number of parameters the method takes. By having the parameters listed inline with the
method name, you can create signatures that are easier to understand. As you proceed through
this book, you will see how this type of method signature is used throughout Objective-C and
Cocoa Touch.

instantiating objects
Classes are only the template for creating objects. To use an object it needs to be instantiated and
created in memory. In Java and C# you use the new keyword and a constructor. Both languages
have a default constructor that is part of their base object class. Listing 2-9 shows how you do this
in either Java or C#.

listing 2-9: Instantiating an Object in Java or C#

SimpleClass simpleClassInstance = new SimpleClass();

In Objective-C the NSObject class has something similar to a default constructor but slightly differ-
ent. Instead of one step to instantiate an object, you do it in two steps. The first step uses the static
method alloc, which finds enough available memory to hold the object and assign it. The second
step uses the init method to set the memory. Listing 2-10 shows an example.

listing 2-10: Instantiating an Object in Objective-C

SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

If you have ever written code in C or C++, you should recognize the * operator. This is the pointer
dereference operator. It acts the same in Objective-C by dereferencing the pointer and getting or set-
ting the object in memory.

Pointers are part of C. The memory of a computer can be thought of as a bunch of little boxes that
hold values. Each of these boxes has an address. In this example the variable simpleClassInstance
is a pointer. The value it holds in memory is not the object but instead the address of where the
object exists in memory. It “points” to the object in another part of the memory. Figure 2-1 illus-
trates how this works.

c02.indd 16 31-01-2014 17:20:25

Explaining the Basics ❘ 17

In Java and C# you can also declare your own constructors that can take a list of parameters and set
the member variables of the object. Listings 2-11 and 2-12 add these constructors to the Java and C#
example classes with sample code of how they are called.

listing 2-11: Defining a Constructor in Java

package SamplePackage;
public class SimpleClass {
 public int firstInt;
 public int secondInt;

 public SimpleClass(int initialFirstInt, int initialSecondInt)
 {
 firstInt = initialFirstInt;
 secondInt = initialSecondInt;
 }

 // other methods discussed eariler
}

// sample code to create a new instance
SimpleClass aSimpleClassInstance = new SimpleClass(1, 2);

figure 2-1

0x
00

01

0x
00

02

0x
00

03

Points to the Object

0x
00

04

0x
00

05

0x
00

06

0x
00

07

0x
00

08

0x
00

09

0x
00

0A

0x
00

0B

0x
00

0C

0x
00

0D

0x
00

0E

0x
00

0F

0x
00

08
si

m
p

le
C

la
ss

In
st

an
ce

SimpleClass Object

c02.indd 17 31-01-2014 17:20:25

18 ❘ chapter 2 IntroductIon to objectIve-c

listing 2-12: Defining a Constructor in C#

namespace SampleNameSpace
{
 public class SimpleClass
 {
 public int FirstInt;
 public int SecondInt;

 public SimpleClass(int firstInt, int secondInt)
 {
 FirstInt = firstInt;
 SecondInt = secondInt;
 }

 // other methods discussed earlier
 }
}

// sample code to create a new instance
SimpleClass aSimpleClassInstance = new SimpleClass(1, 2);

To implement the same type of constructor in Objective-C, you would add your own init method,
as shown in Listing 2-13.

listing 2-13: Instantiating Objects in Objective-C

// in the SimpleClass.h file
@interface SimpleClass : NSObject
{
 @public
 int firstInt;
 int secondInt;
}

- (id)initWithFirstInt:(int)firstIntValue secondInt:(int)secondIntValue;

// other methods discussed earlier

@end

// in the SimpleClass.m file
@implementation SimpleClass

- (id)initWithFirstInt:(int)firstIntValue secondInt:(int)secondIntValue
{
 self = [super init];
 if(!self)
 return nil;

 firstInt = firstIntValue;
 secondInt = secondIntValue;

 return self;

c02.indd 18 31-01-2014 17:20:25

Explaining the Basics ❘ 19

}

// other methods discussed earlier

@end

// sample code to create a new instance
SimpleClass *aSimpleClassInstance =
 [[SimpleClass alloc] initWithFirstInt:1 secondInt:2];

There are a few things to discuss in this code sample. The first is the use of id type. Objective-C is
a dynamic language, meaning that you do not have to give a specific type to an object at compile
time. The id type can hold a pointer to any object. It is similar to the dynamic type in C#. Java
does not have anything similar. When you use the id type, its actual type is determined at runtime.
Returning id from an init method is part of a Cocoa convention, which you should always follow.

The next is the use of self. The self variable is the same in Java or this in C#. It refers to the
instance of the object that is receiving the message. When you are initializing an object, you first
want to call init on its parent class. This ensures that objects are created correctly through their
hierarchy.

The if statement, if(!self), introduces another concept that is prevalent throughout Objective-C.
If a variable does not point to anything, it has a value of nil. The nil value is essentially 0.
Figure 2-2 illustrates how this works.

figure 2-2

0x
00

01

0x
00

02

0x
00

03

0x
00

04

0x
00

05

0x
00

06

0x
00

07

0x
00

08

0x
00

09

0x
00

0A

0x
00

0B

0x
00

0C

0x
00

0D

0x
00

0E

0x
00

0F

0x
00

00
si

m
p

le
C

la
ss

In
st

an
ce

In C the value 0 is synonymous with FALSE, while any value greater than 0 is synonymous with
TRUE. If an object has failed to initialize, then its pointer will be nil. The reason you need to check
if the parent class returned nil is defensive coding. If a pointer is nil and you send it a message, it is
treated as a no op, meaning nothing will happen. In Java and C# this throws an exception.

c02.indd 19 31-01-2014 17:20:26

20 ❘ chapter 2 IntroductIon to objectIve-c

The rest of the init method works the same as the constructors in Java and C#. The member vari-
ables are set using the values passed in before returning the pointer.

Note The NSObject class also has a new method. It performs both the alloc
and init method calls and then returns the pointer. Using it means any over-
ridden init methods that take parameters will not be called. Instead you need
to set the values of the member variables after the object is instantiated.

Another approach to instantiating objects is to use a factory method. These methods are static meth-
ods. A static method does not need an instance of the class to call it. It also does not have access to
any of the member variables of a class. If you have written code in Java or C#, you are familiar with
static methods and factory methods. In Objective-C they are more of a convenience method than
anything else, which is different from their use in Java and C#. The basic idea remains the same,
though. Listings 2-14 and 2-15 show how you would implement a factory constructor in Java or C#,
whereas Listing 2-16 demonstrates the same in Objective-C. These types of convenience methods
are used often in many of the basic data structures of Objective-C, which are discussed in the Using
Basic Data Structures section of this chapter.

listing 2-14: Defining a Factory Method in Java

package SamplePackage;
public class SimpleClass {
 public int firstInt;
 public int secondInt;
 public static SimpleClass Create(int initialFirstInt, int initialSecondInt)
 {
 SimpleClass simpleClass = new SimpleClass();
 simpleClass.firstInt = initialFirstInt;
 simpleClass.secondInt = initialSecondInt;

 return simpleClass;
 }

 // other methods discussed eariler
}

// sample code to create a new instance
SimpleClass aSimpleClassInstance = SimpleClass.Create(1, 2);

listing 2-15: Defining a Factory Method in C#

namespace SampleNameSpace
{
 public class SimpleClass
 {
 public int FirstInt;

c02.indd 20 31-01-2014 17:20:26

Explaining the Basics ❘ 21

 public int SecondInt;

 public static SimpleClass Create(int firstInt, int secondInt)
 {
 SimpleClass simpleClass = new SimpleClass();
 simpleClass.FirstInt = firstInt;
 simpleClass.SecondInt = secondInt;

 return simpleClass;
 }

 // other methods discussed earlier
 }
}

// sample code to create a new instance
SimpleClass aSimpleClassInstance = SimpleClass.Create(1, 2);

listing 2-16: Defining a Factory Method in Objective-C

// in the SimpleClass.h file
@interface SimpleClass : NSObject
{
 @public
 int firstInt;
 int secondInt;
}

+ (id)simpleClassWithFirstInt:(int)firstIntValue secondInt:(int)secondIntValue;

// other methods discussed earlier

@end

// in the SimpleClass.m file
@implementation SimpleClass

+ (id)simpleClassWithFirstInt:(int)firstIntValue secondInt:(int)secondIntValue
{
 SimpleClass *simpleClass = [[SimpleClass alloc] init];
 simpleClass->firstInt = firstIntValue;
 simpleClass->secondInt = secondIntValue;

 return simpleClass;
}

// other methods discussed earlier

@end

// sample code to create a new instance
SimpleClass *aSimpleClassInstance =
 [SimpleClass simpleClassWithFirstInt:1 secondInt:2];

c02.indd 21 31-01-2014 17:20:26

22 ❘ chapter 2 IntroductIon to objectIve-c

The Java and C# implementations rely on the default constructors defined in their respective root
classes to insatiate a new object. This is the same as the init method defined in the NSObject class.
They next set the member variables of the new instance before returning it. Syntactically, the dif-
ference is how a method is declared as static. In Java and C# the static keyword is added to the
method signature. In Objective-C a static method is declared by using the + (plus) symbol instead of
the – (minus) symbol that would define it as an instance method.

Managing Memory
Memory management is important in Objective-C. Memory is a finite resource, meaning there is
only so much of it that can be used. This is particularly true on mobile devices. When a system runs
out of memory, it can no longer perform any more instructions, which is obviously a bad thing.
Running low on memory will also have a dramatic impact on performance. The system has to spend
a lot more time finding available memory to use, which slows down every process. Memory manage-
ment is controlling what objects need to remain in memory and which ones are no longer in use, so
their memory can be reused.

Memory leaks are a classic problem in computer programming. A memory leak, in the most basic
of definitions, is when memory is allocated but never deallocated. The opposite of a leak is when
memory is deallocated before it is done being used. This is what has been historically referred to as
a dangling pointer. In Objective-C it’s common to refer to these as zombie objects. These types of
memory issues are usually easier to find because the program will most likely crash if it tries to use a
deallocated object.

Languages and runtimes handle memory management in two difference ways. Java and C# use
garbage collection. It was first introduced in Lisp in the late 1950s. The implementation of garbage
collection is detailed and different depending on the runtime, but the idea is basically the same. As a
program executes it allocates objects in memory that it needs to continue. Periodically another pro-
cess runs that looks for objects that are no longer reachable, meaning they have no references left to
them in any code that is executing. This type of system works very well; though contrary to popular
belief your code can still leak memory by creating objects and keeping a reference to them but never
using them again. This system also has a bit of overhead associated with it. The system needs to
continue executing the program being used while running the garbage collection process in parallel.
This can create performance problems on systems that have limited computational power.

Objective-C on iOS does not use garbage collection. Instead it uses manual reference counting. Each
object that is allocated has a reference or retain count. If a piece of code requires that the object be
available, it increases its retain count. When it is done and no longer needs the object, it decrements
the retain count. When an object’s retain count reaches 0, it can be deallocated and the memory is
returned to the system.

Manual reference counting can be difficult to understand if you are not used to thinking about the
life cycle of objects in use. Because languages like Java and C# use garbage collection, it can be even
more difficult for developers who have used those languages for an extended time to make the tran-
sition to Objective-C. Apple recognized this and made significant improvements to the Objective-C
compiler that will be discussed later in this section. Though these improvements make manual
reference counting much easier, it’s still important for developers to understand exactly how retain
counts work and the rules around them.

c02.indd 22 31-01-2014 17:20:26

Explaining the Basics ❘ 23

The first thing to understand is how retain counts work and how they can lead to memory leaks
and zombie objects. Listing 2-17 shows one way a memory leak can occur using the SimpleClass
described previously in this chapter.

listing 2-17 Memory Leak Example in Objective-C

- (void)simpleMethod
{
 SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

 simpleClassInstance->firstInt = 5;
 simpleClassInstance->secondInt = 5;

 [simpleClassInstance sum];
}

A Java or C# developer would not see anything wrong with this code. To them there is a method
that creates an instance of the SimpleClass. When the method is done executing, the
simpleClassInstance no longer has a reference to it and is eventually deallocated by the garbage
collector. This is not the case in Objective-C.

When the simpleClassInstance is instantiated using alloc, it has a retain count of one. When the
method is done executing, its pointer goes out of scope but keeps a retain count of one. Because
the retain count stays above zero, the object is never deallocated. With no pointer still
referencing the object, there is no way to decrement its retain count so that it can be deallocated.
This is a classic memory leak illustrated in Figure 2-3.

figure 2-3

0x
00

01

0x
00

02

0x
00

03

Pointer is gone but object
is still in memory

0x
00

04

0x
00

05

0x
00

06

0x
00

07

0x
00

08

0x
00

09

0x
00

0A

0x
00

0B

0x
00

0C

0x
00

0D

0x
00

0E

0x
00

0F

0x
00

08
si

m
p

le
C

la
ss

In
st

an
ce

SimpleClass Object

c02.indd 23 31-01-2014 17:20:26

24 ❘ chapter 2 IntroductIon to objectIve-c

To fix this in Objective-C, you need to explicitly decrement the retain count before leaving the
method. You do this by calling the release method of the NSObject class, as shown in Listing 2-18.
Release decrements the count by one, which in this example sets the count to zero, which in turn
means the object can be deallocated.

listing 2-18: Using Release in Objective-C

- (void)simpleMethod
{
 SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

 simpleClassInstance->firstInt = 5;
 simpleClassInstance->secondInt = 5;

 [simpleClass sum];

 [simpleClass release];
}

Another way to fix this is to use the autorelease pool. Instead of explicitly releasing the object when
you are done with it, you can call autorelease on it. This puts the object into the autorelease pool,
that keeps track of objects within a particular scope of the program. When the program has
exited that scope, all the objects in the autorelease pool are released. This is referred to as draining
the pool. Listing 2-19 shows how you would implement this.

listing 2-19: Using Autorelease in Objective-C

- (void)simpleMethod
{
 SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

 [simpleClassInstance autorelease];

 simpleClassInstance->firstInt = 5;
 simpleClassInstance->secondInt = 5;

 [simpleClass sum];
}

Using alloc generally means that the code creating the object is its owner, which is why it gets a
retain count of one. There are other times in your code where an object was created elsewhere but
the code using needs to take ownership. The most common example of this is using factory methods
to create the object. Factory methods of Objective-C core classes always return an object that has
autorelease called on it before it is returned. Listing 2-20 shows how the SimpleClass would gener-
ally be implemented now that you understand the autorelease method.

listing 2-20: Defining a Factory Method Using Autorelease

+ (id)simpleClassWithFirstInt:(int)firstIntValue secondInt:(int)secondIntValue
{

c02.indd 24 31-01-2014 17:20:26

www.allitebooks.com

http://www.allitebooks.org

Explaining the Basics ❘ 25

 SimpleClass *simpleClass = [[SimpleClass alloc] init];
 simpleClass.firstInt = firstIntValue;
 simpleClass.secondInt = secondIntValue;

 [simpleClass autorelease];
 return simpleClass;
}

In a piece of code that creates a simpleClass using the factory method, it may want that object to
stay in memory even after the autorelease pool has been drained. To increase its retain count and
make sure it stays in memory, you would call retain on the instance. Its very important to always
call release sometime later in your code if you explicitly retain an object, or else it will cause a
memory leak. Listing 2-21 shows a simple example of this; though in a real program, you would
probably call release in some other place.

listing 2-21: Explicitly Retaining an Object

- (void)simpleMethod
{
 SimpleClass *simpleClass =
 [SimpleClass simpleClassWithFirstInt:1 secondInt:5];

 [simpleClass retain];

 // do things with the simple class knowing it will not be deallocated

 [simpleClass release];
}

The other memory management issue you can run into is referencing an object that has already been
deallocated. This is called a zombie object. Figure 2-4 illustrates this.

figure 2-4

0x
00

01

0x
00

02

0x
00

03

Points to deallocated
memory

0x
00

04

0x
00

05

0x
00

06

0x
00

07

0x
00

08

0x
00

09

0x
00

0A

0x
00

0B

0x
00

0C

0x
00

0D

0x
00

0E

0x
00

0F

0x
00

08
si

m
p

le
C

la
ss

In
st

an
ce

c02.indd 25 31-01-2014 17:20:27

26 ❘ chapter 2 IntroductIon to objectIve-c

If this happens during runtime, the execution of your app can become unpredictable or just simply
crash. It depends on if the memory address is still part of the memory allocated to your program or
if it has been overwritten with a new object. Its conceivable that the memory is still there and your
code would execute just fine even though the memory has been marked for reuse. Listing 2-22 dem-
onstrates how a zombie object could occur.

listing 2-22: Dangling Pointer Example in Objective-C

- (void)simpleMethod
{
 SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];
 [simpleClassInstance release];

 simpleClass.firstInt = 5;
 simpleClass.secondInt = 5;

 int sum = [simpleClass sum];
}

warNiNg The NSObject class has a property called retainCount. You should
never trust this value nor should you ever use it. It may be tempting to look
at this value to try and determine when an object will be released or to find a
memory leak. You should instead use the debugging instruments included in
Xcode, in this case the Leaks instrument. You can learn more about the Leaks
instrument at https://developer.apple.com/library/ios/documentation/
AnalysisTools/Reference/Instruments_User_Reference/LeaksInstrument/
LeaksInstrument.html.

introducing automatic reference counting
Manual reference counting differs from garbage collection by setting when objects are allocated
and deallocated at compile time instead of runtime. The compiler that Apple uses in its development
tools is part of the LLVM Project (llvm.org) and is called Clang (clang.llvm.org). Developers
using manual memory management can follow a strict set of rules to ensure that memory is neither
leaked nor deallocated prematurely. The developers working on the Clang compiler recognized this
and set out to build a tool that could analyze a code base and find where objects could potentially
be leaked or be used after they have been released. The tool they released is called the Clang Static
Analyzer (clang-analyzer.llvm.org).

The Clang Static Analyzer is both a standalone tool as well as integrated in Apple’s Xcode devel-
opment environment. As an example of how it works, Figure 2-5 shows the results of running the
static analyzer on the first example of a memory leak.

c02.indd 26 31-01-2014 17:20:27

Explaining the Basics ❘ 27

After building the static analyzer, the compiler developers realized that by detecting rule violations
in manual reference counting they could insert the required retain and release calls at compile
time. They implemented this in a compiler feature called Automatic Reference Counting (ARC).
Because Xcode uses the Clang compiler, iOS developers and Mac developers could use this new
feature by simply enabling it in the compiler settings and then removing all their explicit calls to
retain, release, and autorelease.

Using ARC is becoming standard practice for Mac and iOS developers. This book uses ARC in all
sample code. By using ARC you as a new developer do not need to worry about most of the details
of memory management, though there are cases in which you do need to know how an object will
be treated in memory.

adding properties to a class
The SimpleClass example in this chapter has been using public instance variables for its two inte-
ger values. In all three languages this is considered bad practice. Declaring instance variables as
public leaves your class vulnerable to bad data. There is no way to validate the value being assigned.
Instead for all three it is common practice to keep the instance variables private and then implement
getter and setter methods. By doing this you can validate the value in the setter method before actu-
ally setting the value of the instance variable. Though the concept is the same, the implementation
and syntax is different.

Listing 2-23 demonstrates how the class should be defined in Java. It’s the most straightforward
implementation. The instance variable is declared as private, and two additional methods are added
to the class to get and set their values.

figure 2-5

c02.indd 27 31-01-2014 17:20:27

28 ❘ chapter 2 IntroductIon to objectIve-c

listing 2-23: Defining Getters and Setters in Java

package SamplePackage;
public class SimpleClass {
 private int firstInt;
 private int secondInt;

 public void setFirstInt(int firstIntValue) {
 firstInt = firstIntValue;
 }

 public int getFirstInt() {
 return firstInt;
 }

 public void setSecondInt(int secondIntValue) {
 secondInt = secondIntValue;
 }

 public int getSecondInt() {
 return secondInt;
 }

 // other methods discussed previously
}

// sample code of how to use these methods
SimpleClass simpleClassInstance = new SimpleClass();

simpleClassInstance.setFirstInt(1);
simpleClassInstance.setSecondInt(2);

int firstIntValue = simpleClassInstance.getFirstInt();

In C# this type of implementation is done using properties. A property can be referred to as if it
were an instance variable but still uses getters and setters. Listing 2-24 demonstrates this in C#.

listing 2-24: Properties in C#

namespace SampleNameSpace
{
 public class SimpleClass
 {
 private int firstInt;
 private int secondInt;

 public int FirstInt
 {
 get { return firstInt; }
 set { firstInt = value; }
 }

 public int SecondInt

c02.indd 28 31-01-2014 17:20:27

Explaining the Basics ❘ 29

 {
 get { return secondInt; }
 set { secondInt = value; }
 }

 // other methods discussed earlier
 }
}

// sample code of how to use these properties
SimpleClass simpleClassInstance = new SimpleClass();

simpleClassInstance.FirstInt = 1;
simpleClassInstance.SecondInt = 2;

int firstIntValue = simpleClassInstance.FirstInt

The Objective-C implementation is a bit of a mix of the Java and C# implementations. Like C#
it has the idea of properties, but like Java the implementation of the getters and setters are actual
methods in the implementation. Listing 2-25 shows how properties are declared in the interface,
how they are implemented in the implementation, and a sample of how they are used.

listing 2-25: Properties in Objective-C

// in the SimpleClass.h file
@interface SimpleClass : NSObject
{
 int _firstInt;
 int _secondInt;
}

@property int firstInt;
@property int secondInt;

// other methods discussed earlier

@end

// in the SimpleClass.m file
@implementation SimpleClass

- (void)setFirstInt:(int)firstInt
{
 _firstInt = firstInt;
}

- (int)firstInt
{
 return _firstInt;
}

- (void)setSecondInt:(int)secondInt

continues

c02.indd 29 31-01-2014 17:20:27

30 ❘ chapter 2 IntroductIon to objectIve-c

{
 _secondInt = secondInt;
}

- (int)secondInt
{
 return _secondInt;
}

@end

// sample code to create a new instance
SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

[simpleClassInstance setFirstInt:1];
[simpleClassInstance setSecondInt:2];

int firstIntValue = [simpleClassInstance firstInt];

Because properties in Objective-C are the preferred way of exposing data members as public, they
have been made easier to use as Objective-C has evolved. The @synthesize keyword was one of
those enhancements. By using it, the getter and setter methods are generated for you at compile
time instead of you needing to add them into your implementation. You can still override the getter
or setter if you need to. As the language progressed, @synthesize became optional as well as even
declaring the private instance variables. Instead they are also generated for you. The instance vari-
ables are named the same as the property but with a leading underscore. Listing 2-26 shows what a
modern Objective-C class looks like.

listing 2-26: Properties in Modern Objective-C

// in the SimpleClass.h file
@interface SimpleClass : NSObject

@property int firstInt;
@property int secondInt;

- (int)sum;

@end

// in the SimpleClass.m file
@implementation SimpleClass

- (int)sum
{
 return _firstInt + _secondInt;
}

@end

listing 2-25 (continued)

c02.indd 30 31-01-2014 17:20:27

Explaining the Basics ❘ 31

Another enhancement made around properties was the introduction of dot notation. Instead of
needing to message the object using brackets, you can simply follow the instance of the class with a
“.” and the name of the property, as shown in Listing 2-27.

listing 2-27: Properties and Dot Notation in Objective-C

SimpleClass *simpleClassInstance = [[SimpleClass alloc] init];

simpleClassInstance.firstInt = 5;
simpleClassInstance.secondInt = 5;

int firstIntValue = simpleClassInstance.firstInt;

Note Dot notation was not a popular addition to Objective-C when it was
first introduced. Since then it has become the standard way of using proper-
ties. This book uses dot notation. Some older code and longtime Objective-C
developers may avoid its use altogether.

Properties can also be pointers to other objects. These properties need a little more attention in
Objective-C. In C# you declare properties to other objects the same as you do properties to primi-
tive data types. In Objective-C you also need to tell the compiler if your object is the owner of the
other object as well as how its value should be set and retrieved in a threaded environment. For
example, assume there is another class called SecondClass. The SimpleClass interface in
Listing 2-28 has two properties for this class.

listing 2-28: Strong and Weak Properties in Modern Objective-C

// in the SimpleClass.h file
@interface SimpleClass : NSObject

@property (atomic, strong) SecondClass *aSecondClassInstance;
@property (nonatomic, weak) SecondClass *anotherSecondClassInstance;

@end

In this example the first property has the atomic attribute, whereas the second is nonatomic.
Properties by default are atomic. Atomic properties have synthesized getter and setter methods that
guarantee that the value is fully retrieved or fully set when accessed simultaneously by different
threads. Nonatomic properties do not have this guarantee. Atomic properties have extra overhead
in their implementations to make this guarantee. Though it may sound like this makes them thread-
safe, that is not the case. A solid threading model with proper locks also creates the same guarantee,
so the use of atomic properties is limited. Most often you declare your properties as nonatomic to
avoid the extra overhead.

c02.indd 31 31-01-2014 17:20:27

32 ❘ chapter 2 IntroductIon to objectIve-c

The other attribute, strong and weak, are much more
important to understand. As you learned earlier in this
chapter, an object that has a retain count of zero will be
deallocated. The concept of strong and weak with prop-
erties is similar. An object that does not have a strong
reference to it will be deallocated. By declaring an object
property as strong, it will not be deallocated as long as
your object points to it. This implies that your object owns
the other object. An object property that is declared weak
remains in memory as long as some other object has a
strong pointer to it.

Weak properties are used to avoid strong reference cycles. These occur when two objects have prop-
erties that point at each other. If both objects have a strong reference to each other, they will never
be deallocated, even if no other objects have a reference to either of them. Figure 2-6 illustrates the
issue. The strong references between the objects are represented by the solid line arrows.

In this example there are three objects. The first is a Company object that represents some company.
Every company has employees. In this example the company has two employees represented by the
two Employee objects. Within a company there are bosses and workers. A boss needs a way to send
messages to their worker the same as the worker needs a way to send messages to their boss. This
means both need to have a reference to each other. If the Company object gets deallocated, its refer-
ences to both Employee objects go with it. This should
result in the Employee objects also being deallocated. But
if the references between the boss Employee object and the
worker Employee object are also strong references, then
they will not be deallocated. If the references are weak,
as illustrated in Figure 2-7, with dashed lines, then los-
ing the strong reference to each Employee object from the
Company object will mean there are no longer any strong
references pointing to them so they will be properly deal-
located. In this example the Company object is the owner
of the Employee objects, so it would uses a strong refer-
ence to indicate this ownership.

explaining strings
Java, C#, and Objective-C all have special classes for strings. Objective-C strings can be a bit con-
fusing when you’re first learning to use them, but comparing their use to Java and C# should help
reduce the learning curve. This section is a light overview of strings in Objective-C just to get you
started. When you understand the basics and limitations, you can easily learn how to deal with
specific situations using the class documentation provided by Apple at https://developer.apple.
com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/

Reference/NSString.html.

Listing 2-29 shows how you would declare a basic string in Java, C#, and Objective-C. These exam-
ples are, of course, just one way to create a string instance. All three languages have many other
methods, but the purpose here is just to show how a string would be commonly created.

figure 2-6

Company

Employee Employee

figure 2-7

Company

Employee Employee

c02.indd 32 31-01-2014 17:20:28

Explaining the Basics ❘ 33

listing 2-29: Declaring Strings in Java, C#, and Objective-C

// declaring a string in Java
String myString = "This is a string in Java";

// declaring a string in C#
String myString = "This is a string in C#";

// declaring a string in Objective-C
NSString *myString = @"This is a string in Objective-C";

In Java and C#, the class that represents a string is simply called String. In Objective-C it’s
called NSString. Because Objective-C is a superset of C, you cannot use only quotes to create an
NSString. Quoted strings in C create a C string. By adding the @ symbol before the quoted text, you
tell the compiler to treat the text as an NSString and not a C string.

The C language does not permit overloading operators, which means that you cannot do it in
Objective-C, either. Overloading an operator is a way to use an operator in your code instead of
calling a method to do the work. The compiler knows that when it sees that operator it uses the
method instead.

Take for example the Company and Employee objects discussed in the previous section where there is
a Company object that has Employee objects. Say you have two Company objects, each with their own
set of employees, and you want to “merge” them into a new Company object with all the Employee
objects combined. In a language like C#, you could override the + operator and then write code to
do the merge, as shown in Listing 2-30.

listing 2-30: Overloading the + Operator Pseudo Code

Company firstCompany = new Company();
Company secondCompany = new Company();

// you could write a merge method as part of the Company class
// then create a new company using it
Company thirdCompany = new Company();
thirdCompany.merge(firstCompany);
thirdCompany.merge(secondCompany);

// or you could override the + operator and do the same in a single line
Company thirdCompany = firstCompany + secondCompany;

You cannot do this in Objective-C. This difference becomes stark when comparing the NSString
class to the String classes in Java or C#. In all languages a text string is represented in memory as
an array of characters. The classes you use to handle strings in code are more or less convenience
classes so that you are not dealing with raw character arrays but instead a single object. The imple-
mentation of the classes hides that they are character arrays from you. In languages that allow oper-
ator overloading, you can do things like concatenating strings by using the overloaded + operator, as
shown in Listing 2-31, or calling a method like concat in Java.

c02.indd 33 31-01-2014 17:20:28

34 ❘ chapter 2 IntroductIon to objectIve-c

listing 2-31: Concatenating Strings in Java

// this code is correct in Java
String firstString = "This is a";
String secondString = "full sentence";
String combinedString = firstString + " " + secondString;

// or you could use concat
String combinedString = new String();
combinedString.concat(firstString);
combinedString.concat(secondString);

You cannot do either of this in Objective-C using the NSString class. First because you cannot
overload the + operator, and the second because an NSString cannot be changed after it’s created.
It has no methods like concat. It is an immutable object. To do the same in Objective-C, you would
use the NSMutableString class, a subclass of NSString. Listing 2-32 shows how you would use the
NSMutableString class to append other strings.

listing 2-32: Concatenating Strings in Objective-C

// this code is correct in Objective-C
NSString *firstString = @"This is a";
NSString *secondString = @"full sentence";

NSMutableString *combinedString = [[NSMutableString alloc] init];
[combinedString appendString:firstString];
[combinedString appendString:@" "];
[combinedString appendString:secondString];

The idea between mutable and immutable objects is used throughout Objective-C. All data structures,
which are discussed in the next section, have mutable child classes and immutable parent classes. The
reasoning behind this is to guarantee that the object will not change while you are using it.

Another difference with strings in Objective-C is string formatting. In Java and C# you can create a
string using text and integer values simply by using the + operator, as shown in Listing 2-33.

listing 2-33: Formatting Strings in Java

int numberOne = 1;
int numberTwo = 2;
String stringWithNumber = "The first number is " + numberOne +
" and the second is " + numberTwo;

This would produce the text string "The first number is 1". In Objective-C you do string
 formatting the way it’s done in C using the IEEE printf specification (http://pubs.opengroup
.org/onlinepubs/009695399/functions/printf.html). Listing 2-34 shows an example of how
to create the same text string in Objective-C. It uses the stringWithFormat: static convenience
method that allocates the string for you instead of needing to call alloc.

c02.indd 34 31-01-2014 17:20:28

www.allitebooks.com

http://www.allitebooks.org

Explaining the Basics ❘ 35

listing 2-34: Formatting Strings in Objective-C

int numberOne = 1;
NSString *stringWithNumber = [NSString stringWithFormat:
@"The first number is %d and the second is %d", numberOne, numberTwo];

The stringWithFormat: method looks for format specifiers in the actual text and then matches
them with the list of values that follows. You get a compile error if the formatter does not match the
value at the same index in the value list. For a full list of format specifiers, refer to Apples documen-
tation found at https://developer.apple.com/library/ios/documentation/cocoa/concep-
tual/Strings/Articles/formatSpecifiers.html.

One last thing to be mindful of when using strings in Objective-C is string comparison. The differ-
ence again goes back to the ability to overload operators. In Java you can compare two strings using
the == operator. This ensures that every char at every index is the same between the two strings.
In Objective-C you need to remember that the NSString instance variable holds only a pointer to
the object in memory. So using the == between two NSString instances will look to see if both are
pointing to the same place in memory. Instead you would use the isEqualToString: method, as
shown in Listing 2-35.

listing 2-35: Comparing Strings in Objective-C

NSString *firstString = @"text";
NSString *secondString = @"text";

if(firstString == secondString)
{
 NSLog(@"this will never be true");
}
else if ([firstString isEqualToString:secondString])
{
 NSLog(@"this will be true in this example");
}

tip The code in Listing 2-35 uses the NSLog() function. This is how you write
debugging information to the console in Xcode. It also uses format specifiers
followed by a list of values the same as stringWithFormat:. It’s comparable to
System.out.println() in Java or Console.WriteLine() in C#.

using basic Data structures
Data structures in programming languages are ways to organize data. An object is a data structure,
though you may not think of it that way. You are more likely to think of data structures like arrays,
sets, or dictionaries. All languages support these types of data structures in one way or another.
They typically play a major role in how software is written in various languages. Because of this it’s
important to understand them and how they are used. There are a handful of data structures avail-
able in Objective-C. This section covers only the ones you use while building the Bands app.

c02.indd 35 31-01-2014 17:20:28

36 ❘ chapter 2 IntroductIon to objectIve-c

The most basic data structure is an array. The simple definition of an array is a list of items stored in
a particular order and referenced by their index number. Arrays can be either zero-based, with the
first item being at index number 0, or 1-based. C based languages use zero-based arrays, whereas
languages such as Pascal use 1-based. Listing 2-36 shows how you would create an array of integers
in a C-based language and set the values at each index.

listing 2-36: Creating an Array of Integers

int integerArray[5];
integerArray[0] = 101;
integerArray[1] = 102;
integerArray[2] = 103;
integerArray[3] = 104;
integerArray[4] = 105;

In Java or C# you can also create arrays of objects using a similar syntax. This is not possible in
Objective-C. Instead you use the NSArray class and its subclass NSMutableArray.

NSArray is like NSString. It is immutable and its objects cannot be changed after it’s created nor
can you add or remove objects. This follows the same immutable reasoning as with NSStrings in
which your code is ensured that the objects in an NSArray will not change. For arrays that need to
change or be dynamic, you need to use the NSMutableArray class.

NSArray is a little different from your typical array in Java or C#. In those languages you always
declare what type each object is in the array. You don’t do this with NSArray. Instead it will hold
any object whose root class is NSObject. Listing 2-37 shows the different ways you can create an
NSArray instance in Objective-C. The syntax is a bit different with each, but they all create the
same thing. Also keep in mind that you can create an NSString using @"my string" syntax and
that NSString is a descendant of NSObject.

listing 2-37: Creating NSArrays

NSArray *arrayOne = [[NSArray alloc] initWithObjects:@"one", @"two", nil];
NSArray *arrayTwo = [NSArray arrayWithObjects:@"one", @"two", nil];
NSArray *arrayThree = [NSArray arrayWithObject:@"one"];
NSArray *arrayFour = @[@"one", @"two", @"three"];

NSString *firstItem = [arrayOne objectAtIndex:0];

The first array is created using the alloc/init pattern. The second creates the same array using the
arrayWithObjects: convenience method. Both of these take a C array of objects that is basically
just a list of objects followed by a nil. The third is also a convenience method but takes only one
object. The last uses NSArray literal syntax, which does not need a nil at the end.

c02.indd 36 31-01-2014 17:20:28

Explaining the Basics ❘ 37

Getting an object from an NSArray is slightly different from arrays in other languages. In Listing
2-38 the items were referenced by their index number by following the name of the array with
brackets and the index number. Because brackets are used in Objective-C to send messages to an
object, you cannot use this approach. Instead you use the objectAtIndex: method. You can
also search for objects in an NSArray using indexOfObject:, or sort them using the
sortedArrayUsingSelector:. You learn how to use these later in this book.

As mentioned before, the NSArray class is immutable, so you cannot change the values or the size
of the array after it has been created. Instead you use an NSMutableArray. Table 2-2 lists the addi-
tional methods in the NSMutableArray class that you use to modify the array.

table 2-2: NSMutableArray Methods

MethoD Description

addObject: Adds an object to the end of the array

insertObject:atIndex: Inserts an object into the array at a specific index

replaceObjectAtIndex:withObject: Replaces the object at a specific index with the object
passed in

removeObjectAtIndex: Removes an object at the specific index

removeLastObject Removes the last object in the array

Note Literal syntax as described in Listing 2-37 can be used only to cre-
ate an NSArray. You cannot use literal syntax to create an NSMutableArray.
Furthermore this book does not use literal syntax in any of the sample code;
instead it uses the methods. This is for readability. When working with the
sample code feel free to use the literal syntax if you wish.

Similar to the NSArray data structure are the NSSet and NSMutableSet classes. This type of data
structure holds a group of objects but not in any particular order. A set is used when you don’t need
to access individual objects but instead need to interact with the set as a whole. There are no
methods in the NSSet class that return an individual object in the set; however, there are ways to get
a subset of a greater set. Sets are particularly useful if you need to check only if an object is included
in it. You will not use sets while building the Bands app, so there is no need to go into further
detail on them in this chapter.

c02.indd 37 31-01-2014 17:20:28

38 ❘ chapter 2 IntroductIon to objectIve-c

The last common data structure in Objective-C is a dictionary or hash table. It uses a key/value stor-
age paradigm. The NSDictionary and NSMutableDictionary classes represent this type of data
structure in Objective-C. An NSDictionary has a set of keys that are an instance of an NSObject
descendant. Often you will use an NSString as the key. The value in a dictionary is also a descen-
dant of NSObject.

As a way to illustrate how you could use a dictionary in code, think of the company example used
previously in this chapter. A company has many employees. Because employees may have the same
first and last name, each employee is assigned a unique ID. When employees get a new title, their
information needs to be updated, but the only information you have for employees is their ID. If
you were to use only arrays or sets to keep track of employees, you would need to iterate through
all employees, checking their IDs until you found the correct employee. With a dictionary you could
simply look up employees using their unique IDs. Listing 2-38 demonstrates how this would be done
in Objective-C using an NSMutableDictionary.

listing 2-38: Using NSMutableDictionary

NSString *employeeOneID = @"E1";
NSString *employeeTwoID = @"E2";
NSString *employeeThreeID = @"E3";

Employee *employeeOne = [Employee employeeWithUniqueID:employeeOneID];
Employee *employeeTwo = [Employee employeeWithUniqueID:employeeTwoID];
Employee *employeeThree = [Employee employeeWithUniqueID:employeeThreeID];

NSMutableDictionary *employeeDictionary = [NSMutableDictionary dictionary];
[employeeDictionary setObject:employeeOne forKey:employeeOneID];
[employeeDictionary setObject:employeeTwo forKey:employeeTwoID];
[employeeDictionary setObject:employeeThree forKey:employeeThreeID];

Employee *promotedEmployee = [employeeDictionary objectForKey:@"E2"];
promotedEmployee.title = @"New Title";

In this example there are three Employee objects each with a unique ID. The NSMutableDictionary
is created using the convenience method dictionary. The Employee objects are added to the dic-
tionary using the setObject:forKey: method. To get the Employee object whose unique ID is
"E2", the code can get it quickly using the objectForKey: method.

tip Because both NSArray and NSDictionary store NSObject instances,
you cannot set primitive types such as integers or booleans as values. The
NSNumber class can be used instead. It is a descendant of NSObject, so it can
be used with both NSArray and NSDictionary and can hold any primitive
data type.

c02.indd 38 31-01-2014 17:20:28

Discussing Advanced Concepts ❘ 39

Discussing aDvanceD concepts

Objective-C is similar in syntax to other C-variant programming languages. Some of the concepts
and patterns, though, are different. The rest of this chapter discusses these concepts and patterns so
that you can see how they are used in practice while building the Bands app.

explaining the Model-view-controller Design pattern
The Model-View-Controller design pattern is another influence of Smalltalk. It’s a high-level design
pattern that can be applied to almost any programming language. In Mac and iOS programming,
it’s the predominant pattern and is ingrained deeply in Cocoa and Cocoa Touch. To begin develop-
ing iOS applications, you need to have a good understanding of how it works so that the classes and
user interface design of iOS apps makes sense.

The idea is to separate all components of a piece of software into one of three roles. This separation
helps to make the components independent of one another as well as configurable and reusable. If
done correctly it can greatly reduce the amount of code that needs to be written as well as make the
overall architecture of the software easy to understand. This helps new developers coming to a proj-
ect get up to speed quickly.

The Model
The first role is the Model. It is the knowledge or data of the application as well as the rules that
define how pieces of data interact with each other. It is responsible for loading and saving data from
persistent storage as well as validating that the data is valid. The Model role does not care nor does
it store any information about how its data is to be displayed.

The View
The second role is the View. It is the visual representation of the model. It does not act on the model
in any way nor does it save data to the model. It is strictly the user interface of the software.

The Controller
The last role is the Controller. It is the link between the model and the view. When the model
changes, it gets notified and knows if there is a view that needs to update its visual display. If a view
is interacted with by the user, it notifies the controller about the interaction. The controller then
decides if it needs to update the model.

To get a better understanding of this, think of a software that might be used by the Company exam-
ple. The software will be used by administrative assistants to keep track of employees and update
their information. Figure 2-8 illustrates how the Model-View-Controller pattern could be used to
build this software.

The model in this example would be the Employee on the left side of the figure and its underlying
database. The employee has three properties: the employee’s name, the employee’s title, and a unique
ID for the employee within the database. It is responsible only for loading the employee information
from the database and keeping its values in memory.

c02.indd 39 31-01-2014 17:20:28

40 ❘ chapter 2 IntroductIon to objectIve-c

The views in this example are the list of employees and the employee detail view on the right of the
figure. The list of employees shows the name of each employee. The administrative assistant can
use this view to select an employee. The employee detail view again shows the name and title of the
employee but gives the administrative assistant the ability to change the values displayed. It also has
a Save button the administrative assistant can click when he is done updating the information.

The controller is the circle that connects the Employee model to the employee list screen and the
employee details screen. When the employee list screen needs to be displayed to the administra-
tive assistant, the employee list asks the controller for names of all the employees. It doesn’t care
about the employee’s title or unique ID, because it does not display those. It acts as a filter of the
model data, so the administrative assistant sees only the information he needs to select the correct
employee.

When the administrative assistant selects an employee, that interaction is passed again to the con-
troller. The controller then changes the screen to the employee details screen. When this screen is
loaded, it asks the controller for the employee’s name and title. The controller retrieves this informa-
tion from the model and passes it back to the detail view for display.

The administrative assistant then changes the title of the employee in the detail view. At this point
the change is only a visual change in the employee detail view. It has not changed the value in the
model, nor has the database been updated. When the Save button is clicked, the view informs the

figure 2-8

Employee

- First Name
- Last Name
- Title

Code

Employee Name

Name:

Title:

Save

Model Controller View

Employee Name

Employee Name

Employee Name

Employee Name

c02.indd 40 31-01-2014 17:20:29

Discussing Advanced Concepts ❘ 41

controller about the user interaction. The controller then looks at the data in the view and deter-
mines that the model needs to be updated. It passes the new value to the model and tells it to save it
to the database.

The controller can also update either of the views if another administrative assistant has made a
change. Say for instance there are two administrative assistants looking at the same employee detail
view. The first changes the name of the employee from “Tom” to “Ted” and then clicks the Save
button, which tells the controller to update the model. Because the model changed it notifies the
controller that its values have been updated. The controller gets this notification and determines that
the value being displayed to the second administrative assistant is out of date, so it tells that detail
view to update the visual display of the value.

This example illustrates the usefulness of this design pattern. The employee model is independent
from the rest of the software yet very reusable. The same can be said with the views. They don’t care
what employee model object they are displaying, because they can display any of them. The control-
ler acts as the facilitator, keeping the views and the model in line with each other. In a bigger piece
of software, you could have different individuals or even different teams working on the code for
each of the layers without needing to know the specifics in the code of other teams.

learning about protocols and Delegates
Model-View-Controller is a great high-level programming pattern, but to use it in a program-
ming language, you need the tools to make it work. Objective-C has these tools. The model layer
is implemented using classes and properties to create reusable objects. The view layer is imple-
mented in the Cocoa and Cocoa Touch APIs, including reusable views and subviews such as but-
tons and text fields. The controller layer is done by using delegates and data sources to facilitate the
communication.

Delegates and data sources are used heavily in Objective-C. It’s a way of having one part of the soft-
ware ask for work to be done by another part. This fits the MVC design pattern with the communi-
cation between views and controllers. Because views interact only with controllers and never with
the model, they need a way of asking for model data from the controller. This is the role of the data
source. When a user interacts with a view, the view needs to tell the controller about it. Delegates
are used for this role. Typically, your controller will perform both of these roles.

A view needs to define all the questions it may ask its data source and what type of answer it expects
in return. It also needs to define all the tasks it may ask the delegate to perform in response to user
interaction. In Objective-C this is done through protocols. You can think of a protocol as a contract
between the view and its data source or delegate.

Consider the employee list view in the company example. This is a simplistic example in this chapter
to illustrate how a protocol and a delegate are coded. You implement a list similar to this in Chapter
5, “Using Table Views,” when you learn about table views.

In this example the employee list is called the EmployeeListView. For the EmployeeListView to
show all the employees in the company, it needs to ask its data source for them. When the admin-
istrative assistant selects an employee’s details to view, the EmployeeListView needs to tell its del-
egate which employee was selected. This calls for two different protocols to be defined: one for the
data source and one for the delegate. These protocols would be declared in an EmployeeListView.h
file. For the EmployeeListView to ask its data source for employees or tell its delegate that an

c02.indd 41 31-01-2014 17:20:29

42 ❘ chapter 2 IntroductIon to objectIve-c

employee was selected, the view needs a reference to both the delegate and the data source. The ref-
erences are added as properties with a type of ID, because the view doesn’t care what type of class it
is, just as long as it implements the protocols. Listing 2-39 shows how all this would be coded.

listing 2-39: Employee List Data Source and Delegate Protocol Declaration

@protocol EmployeeListViewDataSource

- (NSArray *)getAllEmployees;

@end

@protocol EmployeeListViewDelegate

- (void)didSelectEmployee:(Employee *)selectedEmployee;

@end

@interface EmployeeListView : NSObject

@property (nonatomic, weak) id dataSource;
@property (nonatomic, weak) id delegate;

@end

The controller in the example is called the EmployeeListViewController. In order for the Employee
ListViewController to communicate with the EmployeeListView, the EmployeeListView
Controller needs to declare that it implements the EmployeeListViewDataSource and Employee
ListViewDelegate protocols. Controllers often have a reference to the view they are controlling in a
property as well. In this example, the reference to the EmployeeListView is set through the initWith
EmployeeListView: method. Listing 2-40 shows how to do this in code.

listing 2-40: Employee List Data Source Protocol Declaration

#import "EmployeeListView.h"

@interface EmployeeListViewController : NSObject <EmployeeListViewDataSource,
EmployeeListViewDelegate>

- (id)initWithEmployeeListView:(EmployeeListView *)employeeListView;

@property (nonatomic, weak) EmployeeListView *employeeListView;

@end

Note In both the interface for the EmployeeListView and EmployeeList
ViewController, all the properties have the weak attribute. This is to prevent
the Strong Retain Cycle issue explained earlier in this chapter.

c02.indd 42 31-01-2014 17:20:29

Discussing Advanced Concepts ❘ 43

In the implementation of the EmployeeListViewController, you need to add the actual imple-
mentation of the methods listed in the protocols it declares. You also need to set it as both the data
source and the delegate of the EmployeeListView. There are a few ways to do this in Xcode, but as
a simple example, it is done in the initWithEmployeeListView: method. Listing 2-41 shows what
the EmployeeListViewController.m file would look like.

listing 2-41: Employee Controller Implementation

#import "EmployeeListViewController.h"

@implementation EmployeeListViewController
- (id)initWithEmployeeListView:(EmployeeListView *)employeeListView
{
 self.employeeListView = employeeListView;
 self.employeeListView.dataSource = self;
 self.employeeListView.delegate = self;
}

- (NSArray *)getAllEmployees;
{
 // ask the model for all the employees
 // create an NSArray of all the employees
 // return the array

 return allEmployeesArray;
}

- (void)didSelectEmployee:(Employee *)selectedEmployee;
{
 // display the employee detail view with the selected employee
}

@end

Now when the EmployeeListView needs to get the employees it needs to show or when an
employee is selected, it can simply call the methods of the protocols using its references, as shown in
Listing 2-42.

listing 2-42: Calling Methods of Delegates and Data Sources

// in the implementation of the EmployeeListView it would
// get the array of employees using this code

NSArray *allEmployees = [self.dataSource getAllEmployees];

// to tell its delegate that an employee was selected
// it would use this code

[self.delegate didSelectEmployee:selectedEmployee];

c02.indd 43 31-01-2014 17:20:29

44 ❘ chapter 2 IntroductIon to objectIve-c

using blocks
Blocks are a relatively new programming construct first introduced to iOS programming with the
release of iOS 4.0. The concept behind them has been in other languages for a longer time. C and
C++ have function pointers, C# has lambda expressions, and JavaScript has callbacks. If you have
used any of these, the idea of blocks should be relatively easy to grasp. If you have not, you may
want to research them to get a better understanding, though you don’t need to. This section gives a
quick overview of the syntax and a high-level explanation that should be enough for you to under-
stand how to use them when needed while building the Bands app.

A block in its most simple definition is a chunk of code that can be assigned to a variable or used as
a parameter to another method. The ^ operator is used to declare a block while the actual code is
contained in between curly brackets. Blocks can have their own list of parameters as well as their
own return type. Blocks in Objective-C have the special capability to use local variables declared
within the scope they are defined.

In this book you use blocks in the context of completion handlers to other methods. When you call
these methods, you pass them whatever parameters they need and then also declare a block of code that
gets invoked at some point within the method. For example, imagine a method that retrieves a string
from a URL. This example uses a fake object called networkFetcher that has a fake method called str
ingFromUrl:withCompletionHandler:, so you can get a feel for the syntax of blocks. You do this
using real Cocoa frameworks in Chapter 10, “Getting Started with Web Services,” but, as stated earlier,
this is just a quick overview of the block syntax. Listing 2-43 shows the code for this simple example.

listing 2-43: Defining an Inline Block in Objective-C

NSString *websiteUrl = @"http://www.simplesite.com/string";

[networkFetcher stringFromUrl:websiteUrl
 withCompletionHandler:^(NSString* theString) {

 NSLog("The string: %@ was fetched from %@, theString, websiteUrl);

}];

This code example defines an inline block that is passed as a parameter to the
stringFromUrl:withCompletionHandler: method. The ^ character signifies the start of the block.
The (NSString* theString) portion is the parameter list being passed into the block. The code
of the block is contained in the {} that follows. The code simply prints the string that was retrieved
along with the URL string. What happens when this is executed is the networkFetcher class makes
the network connection and does all the hard work of actually getting the string. When it’s done, it
calls the block of code with that string.

This example shows how you will use blocks in this book but barely scrapes the surface of them.
They are a powerful tool that can change how software is designed and implemented.

handling errors
One last concept that needs to be discussed is error handling in Objective-C. This is particularly
important to developers coming from a Java background. Objective-C does have exceptions and

c02.indd 44 31-01-2014 17:20:29

www.allitebooks.com

http://www.allitebooks.org

Discussing Advanced Concepts ❘ 45

try/catch/finally statements; although they are rarely used. You may have the urge to continue
using them as you learn Objective-C but you shouldn’t. It is not common practice.

An exception in most object-oriented programming (OOP) languages is a special object that gets
created when an error has occurred. This object is then “thrown” to the system runtime. The
runtime, in turn, looks for code that “catches” the exception and handles the error in some manner.
If nothing catches the exception, it is considered an uncaught exception and generally will crash the
program that is running.

In Java and C#, exceptions are a normal part of the coding process and execution. A common use is
when you want to do something but you’re not sure if you will have everything you need to accom-
plish it at runtime, such as reading from a file. If the file doesn’t exist, that’s an error and the user
should be notified. In Java or C# you would use a try/catch/finally statement to detect this situa-
tion. Listing 2-44 shows some pseudo code of what this might look like in either of those languages
without going into the implementation details.

listing 2-44: Catching Exceptions

public void readFile(string fileName)
{
 // create the things you would need to read the file
 FileReaderClass fileReader = new FileReaderClass(fileName);

 try
 {
 FileReaderClass.ReadFile();
 }
 catch(Exception ex)
 {
 // uh-oh, something happened. Alert the user!
 }
 finally
 {
 // clean up anything that needs to be cleaned up
 }
}

In Objective-C this type of coding is very rarely used. Instead it’s preferred to use the NSError class.
Reading a file into a string in Objective-C takes this approach, as shown in Listing 2-45.

listing 2-45: Using NSError in Objective-C

- (void) readFile:(NSString *)fileName
{
 NSError *error = nil;

 NSString *fileContents = [NSString stringWithContentsOfFile:fileName
encoding:NSASCIIStringEncoding error:&error];

 if(error != nil)

continues

c02.indd 45 31-01-2014 17:20:29

46 ❘ chapter 2 IntroductIon to objectIve-c

 {
 // uh-oh, something happened. Alert the user!
 }
}

In this example the code first creates an NSError pointer with a nil value. It then passes the error
instance to the method by reference instead of by value. The idea of passing a parameter by refer-
ence or by value is in both C# and Java. For typical method calls the object is passed by value, which
means the method gets a copy of the object and not the object itself. If the method modifies the
object, it modifies only its own copy of the object and not the original. When the method returns,
your object is the same and does not reflect those changes.

In this example you use the & (ampersand) symbol to pass the address of the object and not the
object itself. If an error occurs while reading the file, the method creates a new NSError object
and assigns it to that address. When the method returns you check to see if your error points to an
actual error object now or if it still points to nil. You know when to pass a parameter by reference
when you see ** in the method signature. The full signature in this example is

 + (instancetype)stringWithContentsOfFile:(NSString *)path
encoding:(NSStringEncoding)enc error:(NSError **)error

Though using try/catch is not recommended, it is possible. There are base classes that throw excep-
tions. Using the NSString class again, you could get an exception if you try to get the character
at an index that is out of bounds for the underlying character array. Listing 2-46 shows what this
looks like.

listing 2-46: Catching Exceptions in Objective-C

- (void)someMethod
{
 NSString *myString = @"012";
 @try
 {
 [myString characterAtIndex:3];
 }
 @catch(NSException *ex)
 {
 // do something with the exception
 }
 @finally
 {
 // do any cleanup
 }
}

The Objective-C way to handle this situation would be to add a check to the code making sure the
method will not fail before calling it. Listing 2-47 shows how you would use this approach instead
of a try/catch.

listing 2-45 (continued)

c02.indd 46 31-01-2014 17:20:29

Summary ❘ 47

listing 2-47: Catching Exceptions in Objective-C

- (void)someMethod
{
 NSString *myString = @"012";

 if([myString length] >= 3)
 {
 [myString characterAtIndex:3];
 }
 else
 {
 // nope, can't make that method call!
 }
}

suMMary

Objective-C can look strange if you are coming to it from other object-oriented languages such as
C# and Java. The syntax is kind of funny, but the basic concepts and programming constructs are
all similar. There are fundamental differences; the biggest being memory management. Objective-C
and its tools and compilers have come a long way, however, in recent years, making it less of a bur-
den to developers. If you are comfortable with other object-oriented programming languages, the
learning curve of Objective-C is smaller than you may think.

The more advanced topics covered in this chapter may seem difficult to understand at this point, but
as you move through the book, they will become clearer. The easiest way to understand new con-
cepts and patterns is to use them in practice to build something. In the next chapter that is exactly
what you do as you begin writing the Bands app.

exercises

 1. What language is the messaging syntax of Objective-C based on?

 2. What are the two files used to define a class in Objective-C and what are their extensions?

 3. What is the base class almost all Objective-C classes are derived from?

 4. Define the Objective-C interface for a class named ChapterExercise with one method named
writeAnswer, which takes no arguments and returns nothing.

 5. What code would you write to instantiate the ChapterExercise class?

 6. What are the keywords in Objective-C that increment and decrement the reference count of
an object?

 7. What does ARC stand for?

c02.indd 47 31-01-2014 17:20:29

48 ❘ chapter 2 IntroductIon to objectIve-c

 8. What does the strong attribute mean on a class property?

 9. Why can’t you concatenate two NSString instances using the + operator as you can in
Java or C#?

 10. How do you compare the value of two NSString instances?

 11. What is the difference between the NSArray and NSMutableArray classes?

 12. What does MVC stand for?

 13. How would you declare that the ChapterExercise class implements a theoretical Chapter
ExerciseDelegate protocol?

 14. What class is recommended in Objective-C in place of using NSException?

c02.indd 48 31-01-2014 17:20:29

Summary ❘ 49

➤ What you learneD in this chapter

topic Key concepts

objective-c The language used to develop both Mac and iOS applications is
Objective-C. First developed in the early 1980s, it has evolved into an
incredibly powered object-oriented programming language with many simi-
larities to Java and C#.

classes and
objects

The basic building block of all object-oriented programming languages are
objects and the classes that define them.

Manual reference
counting

There are two mainstream approaches to memory management.
Languages like Java and C# use Garbage Collection, whereas Objective-C
uses Manual Reference Counting, where the developer is responsible for
the life cycle of objects in use.

automatic
reference counting

A modern approach to manual reference counting takes the responsibility
of keeping track of reference counts out of the hands of developers and
passes it instead to the compiler.

class properties Object-oriented programming languages recommend using public getter
and setter methods to change member values while keeping the actual
member variables private. Objective-C implements this concept using class
properties.

Data structures Higher-level programming languages are designed with built-in data struc-
tures such as arrays and dictionaries that developers use to organize data
to make their code fast and efficient. Objective-C includes the basic data
structures NSArray, NSSet, and NSDictionary.

the Model-view-
controller Design
pattern

The Model-View-Controller design pattern is a high-level design pattern
that separates all the components in a piece of software into three roles.
These roles help to promote independence and reusability.

Delegates and
protocols

The Cocoa framework uses the concept of delegates and protocols to
facilitate the Model-View-Controller design pattern by formalizing how
components in different roles communicate and pass data to each other.

objective-c error
handling

All object-oriented programming languages include exceptions and
errors. The way they are used, however, can vary widely. Understanding
how Objective-C and Cocoa approach them is fundamental to writing iOS
applications.

c02.indd 49 31-01-2014 17:20:29

c02.indd 50 31-01-2014 17:20:29

Starting a New App
What you learn in this chapter:

➤➤ Creating a new project in Xcode

➤➤ Exploring Xcode’s layout and editors

➤➤ Using Interface Builder to edit Storyboards

➤➤ Running your app in the simulator and on a device

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at wwww.wrox.com/go/begios
programming on the Download Code tab. The code is in the chapter 03 download and indi-
vidually named according to the names throughout the chapter.

In Chapter 2, “Introduction to Objective-C,” you learned about Objective-C, the lan-
guage used to write iOS applications. In this chapter you learn about Xcode, the Integrated
Development Environment used to actually create an iOS application. Xcode is similar to
Microsoft Visual Studio or Eclipse. You start by creating a project; then you edit the code and
user interface files within Xcode. It wasn’t always this way. Just a few years ago, Xcode was
strictly for code editing while you worked on your User Interface files in Interface Builder.
Today Interface Builder is integrated within Xcode to make it more familiar to developers
coming from other platforms.

creating a neW app in xcode

Xcode is the IDE for developing both iOS applications as well as Mac OS X desktop applica-
tions. To start the Bands app, create a new iOS project in Xcode.

3

c03.indd 51 31-01-2014 17:20:36

52 ❘ chapter 3 Starting a new app

try it out Creating a Single View iOS Application

 1. In the Xcode menu, select File ➪➤New ➪➤Project.

 2. In the Templates dialog, as shown in Figure 3-1, select Application under iOS on the left; then
select the Single View Application and click Next.

figure 3-1

 3. In the Options dialog, as shown in Figure 3-2, enter Bands in the Product Name. Then select
iPhone from the Devices list, and click Next.

 4. Choose where you would like to save your project and click Create.

How It Works

The first step to any iOS application is creating a project in Xcode. The project holds all of the code
files and art assets as well as settings and configuration files used to compile and distribute the applica-
tion. Xcode offers a variety of project templates that include the code files and user interface files you
need to build an empty application.

To start the Bands app, you selected the Single View Application template. This template provides the
code files and user interface files needed for an application with only one view. This template is a nice
starting place for most applications, because you can add more views to a project as you build your
application.

The name of the project is often the name of the application you are building, though it does not have
to be. You can change the name of the application in the configuration files. In this book the project
name is Bands, which is the same name as the application.

Finally, you saved the project to disk. The project is contained in a single directory with a handful of
subdirectories. Figure 3-3 shows what the Bands project looks like in Finder.

c03.indd 52 31-01-2014 17:20:36

Creating a New App in Xcode ❘ 53

figure 3-2

figure 3-3

The code files for the project are created in a subdirectory with the same name as the project, which is
the Bands directory for your new project. Xcode projects are also created with default unit test files that
are created in a directory with the project name followed by Tests, which is the BandsTests directory.
The .xcodeproj file is a package, meaning that it’s technically a directory but presented as a single file
in Finder. It holds all of the configuration files and resource files Xcode uses.

c03.indd 53 31-01-2014 17:20:36

54 ❘ chapter 3 Starting a new app

discussing xcode templates
Xcode offers a variety of project templates you can start with. In the previous section, you created
the Bands project using the Single View Application. The Calculator app is an example of a single
view application. Table 3-1 lists the other templates included by default in Xcode 5 and an example
Apple application if one exists.

table 3-1: Xcode Default Templates

template name description example app

Master-Details
Application

An application that typically uses a table view to list
objects and a navigation controller to transition to a
details view of the object.

Contacts

Page-Based
Application

An application that contains different views and
allows the user to transition between them by swip-
ing to the left or right. These apps have a series of
dots along the bottom so the user knows how many
views there are and which one they are on.

Compass

Tabbed Application An application that has a tab bar along the bottom
that is used to switch between the different views.

Music

Utility Application An application with a main view and a secondary
view with an info button to switch between the two.

iOS 6 Weather

OpenGL Game A game application that uses OpenGL for drawing. Infinity Blade

SpriteKit Game A game application that uses SpriteKit for drawing. Disco Bees

Empty A project that contains only a window and an appli-
cation delegate file.

N/A

It’s important to think about what type of template makes sense for your application when you first
create a project, because it gives you a head start. However, that doesn’t mean you are stuck with
that application architecture. Though you started the Bands app with the Single View Application
template, you will modify it to be more of a Master Detail–type application as you add new features.

You can also modify the default templates or even add your own. If you are creating new projects
often, you may want the default template to add files with your file naming conventions. This is an
advanced topic and not recommended for beginners, but it’s nice to know the option is there as you
become an expert yourself.

learning about bundle identifiers
The Bundle Identifier is the unique identifier for your application. This identifier is used throughout
the Apple system, so you need to know it. The identifier is typically reverse-domain style with the

c03.indd 54 31-01-2014 17:20:36

Creating a New App in Xcode ❘ 55

company identifier you entered followed by your product name. An example of this using Wrox and
Bands would be wrox.Bands. Though Xcode doesn’t enable you to set this in the New Project steps,
you can edit it after you create the project. You learn how to do this in Chapter 12, “Deploying
Your iOS Apps.”

exploring the xcode project layout
After you create your project, you can see the Xcode Workspace Window. The layout is similar to
other IDEs. Figure 3-4 shows the Xcode IDE.

figure 3-4

On the left is your navigation panel. The default view for this panel is the project navigator, which
shows your project and its files, as well as any groups or folders you create. Yellow folders represent
groups. They’re used to group files together within the project, but they do not correspond to fold-
ers on disk. You can add folders, which map to folders on disk, which are shown as blue. Typically,
groups are used instead of folders, but that’s more of a developer preference. This panel also enables
you to navigate your project using symbols as well as searching all files within the project. It also
shows you all your breakpoints.

The center panel is the editor. Depending on the type of file selected, you see different editors.
Selecting the project in the navigation panel brings up the settings editor. Files bring up the text edi-
tor, whereas user interface files bring up Interface Builder.

c03.indd 55 31-01-2014 17:20:37

56 ❘ chapter 3 Starting a new app

The right panel is the utility panel. Here you see additional information that supplements the editor
panel. You can see how this panel is used as you continue the book.

The last panel is the debug area. It’s typically hidden while you use the editor and then is shown
while you debug the application. It contains your console as well as buttons to step through code
along with variable information.

discussing the uiKit framework
Before you start building the user interface it is important to understand the components and frame-
works you will use. All iOS applications are built using the UIKit framework that is part of Cocoa
Touch. Apple uses a naming convention to help you know what framework a class or protocol is
part of. The convention is to prepend the name of the class with the frameworks abbreviation. With
the UIKit framework all classes and protocols start with UI.

The application itself is represented by the UIApplication object and its companion protocol
UIApplicationDelegate. Every project you create using one of Xcode’s templates will include
a class called AppDelegate that implements the UIApplicationDelegate protocol. You use the
methods of this protocol to know when important events in the life of the application occur. This
includes when the application launches, becomes active, or is about to be terminated. The Bands app
does not do anything with these events, but it’s important for you to understand why the file
is included when the project is created.

All of the user interface objects are also part of UIKit. You use them to build your application in a
way that is visually familiar to other applications so the user knows how to interact with your appli-
cation. With that knowledge it’s time to start working on the user interface of the Bands app.

discussing the main storyboard
Main.storyboard is the user interface file for your application. Storyboards were introduced to
Xcode with the iOS 5 SDK. Storyboards enable you to build and view the entire flow of the applica-
tion. The two main components of the Storyboard are Scenes and Segues. Scenes are views in your
application’s user interface. Typically, they have their own UIViewController subclass in your
project. Segues represent how your app navigates from view to view. You learn more about using
multiple scenes and segues in Chapter 5.

adding a label to a storyboard

The most basic of user interface objects in any language is a text label. In iOS it’s called a UILabel. The
following Try It Out shows you how to add UIKit objects to a view in your Main.Storyboard.

try it out Adding a UILabel to a Scene

 1. Select the Main.storyboard from the Navigation pane.

 2. At the bottom of the Utility pane, select the Objects tab represented by the cube.

c03.indd 56 31-01-2014 17:20:37

Adding a Label to a Storyboard ❘ 57

 3. In the search box at the very bottom of the screen, type label to filter the objects in the list.

 4. Drag the label onto your scene in Interface Builder, as shown in Figure 3-5.

figure 3-5

How It Works

The storyboard is the user interface file for the project. In the Model-View-Controller design pattern
it is the “View” role. The project right now has only one scene that is represented by a single UIView
object of the UIKit framework. You build the user interface of an application by adding other
UIKit objects to the storyboard. In Xcode these objects are all listed in the Utility pane. You can use
the search bar at the bottom of the pane to filter the list and quickly find the object you are looking for.
In this Try It Out you added a UILabel object to the base UIView. This is how you will build all of the
user interfaces for the Bands app.

exploring interface builder
Interface Builder is the user interface editor in Xcode. The left side of the editor shows all the
user interface objects and their hierarchy. Notice that the Label is listed under the View because it’s
a subview. Selecting objects in the hierarchy selects them in the scene shown in the main portion of
the editor.

c03.indd 57 31-01-2014 17:20:37

58 ❘ chapter 3 Starting a new app

The Utilities pane in Interface Builder has a series of inspectors on top and the collection libraries
on bottom. The most commonly used library is the Objects library, which lists all the UIKit objects
used to build an iOS application.

setting attributes
After you add a UI object to your view, you need to set its attributes, which you learn how to do in
the following Try It Out.

try it out Setting the Labels Text Attribute

 1. Select the label.

 2. On the Utilities tab, select the Attributes Inspector represented by the slider icon.

 3. Change the text of the label by replacing Label with Bands.

 4. In the view, drag the side boundary of the label to fit the new text, as shown in Figure 3-6.

figure 3-6

How It Works

All UIKit objects have attributes. These attributes can be set either at runtime or at design time.
Changing the text from Label to Bands sets the text attribute of the label. Other attributes you can set
for a label are all your typical text attributes such as color, font, and alignment.

c03.indd 58 31-01-2014 17:20:37

Running in the Simulator ❘ 59

exploring the inspectors
There are five other inspectors. The File inspector shows you attributes of the file. The Quick Help
inspector shows you documentation of the selected object. The Identifier inspector enables you to
set the parent class of an object, which you learn about in Chapter 5. The Size inspector enables you
to change the size and origin of the object as well as its auto layout constraints. Finally, there is the
Connections inspector, which Chapter 4, “Creating a User Input Form,” discusses.

aligning ui objects
Interface Builder shows you guidelines as you add subviews. These guidelines, shown as dashed
lines, are designed by Apple to show you the recommended spacing between objects as well as how
they align to the boundaries of the view.

try it out Centering a UI Object

 1. Select the label in the view.

 2. Drag the label to the left side of the view until you see the left guideline appear.

 3. Drag the label to the right side of the view until you see the right guideline appear.

 4. Drag the label to the center of the screen until you see the horizontal and vertical centering
guidelines.

How It Works

Interface Builder shows you the various guidelines as you move UI objects around in the view. You can
use these to build place your objects in context to other objects and boundaries.

running in the simulator

Xcode includes the iOS simulator to help you quickly develop and prototype your app without need-
ing to run on a device. Debugging with the simulator is faster than on a device and enables you
access to some Xcode tools that aren’t available to the device.

The simulator runs in its own window on your Mac. You can simulate iPhone 3.5-inch and 4-inch
devices as well as iPads both in standard or retina display. You can also change the version of the
OS the simulator runs.

Note Retina displays were first introduced with the iPhone 4. They have a
higher resolution with more pixels per inch, making text and images appear
sharper without looking pixelated.

c03.indd 59 31-01-2014 17:20:37

60 ❘ chapter 3 Starting a new app

WarNiNg iOS devices are case-sensitive when using filenames. The simulator
is not. If you run into issues with resources not loading correctly, make sure you
use the case-sensitive filename.

choosing a device
To launch the simulator, you first need to select the device you would like to test with, as shown in
the following Try It Out.

try it out Running the App in the iPhone Retina (4-inch) Simulator

 1. In Xcode, locate the scheme selector next to the Run button.

 2. In the drop-down, select iPhone Retina (4-inch) in the Simulator section.

 3. Click the Run button. The simulator launches; then runs your application, as shown in Figure 3-7.

figure 3-7

How It Works

Using the scheme selector, you selected to run the application in the simulator on an iPhone Retina 4-inch
device. The app was then compiled, installed, and launched in the simulator using your selection.

c03.indd 60 31-01-2014 17:20:37

Running in the Simulator ❘ 61

learning to test on all device sizes
You must test your application on all devices you plan to support, because of the different screen
sizes. You also need to keep these different sizes in mind while designing your user interface. The
following Try It Out demonstrates a layout issue found only by testing with multiple devices.

try it out Running the App in the iPhone Retina (3.5-inch) Simulator

 1. In Xcode, select the iPhone Retina (3.5-inch) device from the simulator section.

 2. Click the Run button. The simulator switches to the iPhone Retina 3.5-inch device, as shown in
Figure 3-8.

figure 3-8

How It Works

What you have done here is switch the device type the simulator should use. As a result, the label you
centered in Interface Builder is no longer centered in the simulated application. This is because the
iPhone Retina 3.5 has less screen space. To keep the label centered, you need to use Auto Layout.

c03.indd 61 31-01-2014 17:20:37

62 ❘ chapter 3 Starting a new app

learning about auto layout

Auto Layout is a feature of Xcode that helps you define where your User Interface objects should be
no matter the size of the screen your app runs on. As shown in the previous section, iPhones with a
3.5-inch display have less screen space than iPhones with a 4-inch display. The size of the screen can
also change if the device is rotated. The following Try It Out shows how you can use Auto Layout to
ensure that your label stays centered on the screen.

try it out Setting Auto Layout Constraints

 1. In Xcode, click Main.storyboard in the Project Navigator.

 2. Select your label in Interface Builder.

 3. At the bottom of the screen, click the Align button to bring up the Alignment Constraint options,
as shown in Figure 3-9.

figure 3-9

 4. Check Horizontal Center in Container and Vertical Center in Container, and click the Add 2
Constraints button. Xcode adds lines, which represent your constraints, as shown in Figure 3-10.

 5. Run the app in the iPhone 3.5-inch simulator. Your label remains centered, as shown in Figure 3-11.

c03.indd 62 31-01-2014 17:20:38

Learning About Auto Layout ❘ 63

How It Works

By adding the center horizontally and center vertically constraints to your label, you have it set to
always be centered in the view no matter the size of the screen.

figure 3-10

figure 3-11

c03.indd 63 31-01-2014 17:20:38

64 ❘ chapter 3 Starting a new app

discussing auto layout basics
Auto Layout works by adding different constraints to your user interface objects. Constraints can be
set either between the object and its container, as you did in the Try It Out, or between two objects.

In the Try It Out, you set the constraint using the menu at the bottom of the scene. Alternatively,
you can select the object you want to add a constraint to, Control-drag a line to the other object you
want in the constraint, and highlight it, as shown in Figure 3-12. When you release the mouse but-
ton you see a dialog box with the available constraints.

figure 3-12

You can view what constraints each object has either in the Storyboard hierarchy on the left side of
Interface Builder or by selecting the size inspector in the Utilities pane, as shown in Figure 3-13.

Auto Layout is a powerful feature of Xcode that has many uses depending on the type of user
interface you build. To learn more about Auto Layout in the Interface Builder, check out the help
documentation from Apple at https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html.

testing rotation
Rotating a device also changes the screen size of your app. The simulator enables you to test
rotation.

c03.indd 64 31-01-2014 17:20:38

Learning About Auto Layout ❘ 65

try it out Rotating the Simulator

 1. Run the app in the iPhone 3.5-inch simulator.

 2. From the menu, select Hardware ➪➤Rotate
Left. The simulator rotates to the left and
moves to Landscape orientation, as shown in
Figure 3-14.

 3. From the menu, select Hardware ➪➤Rotate
Right. The simulator rotates to the right and
back to portrait.

How It Works

The simulator enables you to test rotation in
your app by giving you hardware commands
to rotate the simulated device. You can also
use the keyboard instead of the menu using the
Command-arrow key combination. Its important to test your application in all orientations you plan on
supporting. Supporting rotation in your application is an option. You set which orientations you sup-
port in the application settings.

figure 3-13

figure 3-14

c03.indd 65 31-01-2014 17:20:38

66 ❘ chapter 3 Starting a new app

exploring application settings

Now that you have your application running, it’s time to set its version number, icon, and other set-
tings to make it complete. Xcode uses property list files, known as plists, to store this information.
You can view your application’s info plist by expanding Supporting Files group in the project navi-
gator and selecting the Bands-info.plist file. Though you can edit your settings using the plist
editor, you may find it easier to use Xcode’s settings editor instead.

setting Version and build numbers
Every iOS application, just like any desktop application, has a version and build number used to
identify which version of the app is being run. The following Try It Out walks you through setting
these using Xcode’s settings editor.

try it out Setting Properties Using the Info Property Editor

 1. In the Project Navigator, select the project.

 2. In the editor, select the General tab, and bring up the info property editor, as shown in
Figure 3-15.

 3. In the Identity section, set the Version to 1.0 and Build to 0.1.

 4. Select the Bands-info.plist file from the Project Navigator. You see the Bundle Version String,
Short property set to 1.0 and the Bundle Version property set to 0.1, as shown in
Figure 3-16.

figure 3-15

c03.indd 66 31-01-2014 17:20:39

Exploring Application Settings ❘ 67

figure 3-16

How It Works

The Xcode info property editor helps you change your application settings without needing to know the
specific property names used in the underlying Bands-info.plist file.

setting supported rotation orientations
Supporting rotation in your application is optional. Designing an application that looks nice in both
portrait and landscape can be challenging and may not be worth the effort. The following Try It
Out shows how to support only Portrait orientation in your app.

try it out Setting Supported Rotation Orientations

 1. In the Project Navigator, select the project.

 2. In the Deployment Info section, check Portrait and uncheck Upside Down, Landscape Left, and
Landscape Right.

 3. Run the application in the iPhone 4-inch simulator.

 4. Rotate the simulator to Landscape orientation. You see that the app no longer rotates to this ori-
entation, as shown in Figure 3-17.

c03.indd 67 31-01-2014 17:20:39

68 ❘ chapter 3 Starting a new app

figure 3-17

How It Works

In your application settings there is an array of supported orientations, which are listed under the
Supported Interface Orientations property. By checking only Portrait in the info property editor, you
remove all other orientations, leaving just Portrait in the array.

setting the app icon
An application isn’t complete without an icon. The icon is one of the most important parts of your
application. It’s the first thing a user will see when browsing the App Store, so it needs to look nice as
well as catch the user’s eye. This book won’t go into what makes for a good icon, but Apple does lay
out some things to keep in mind in the Human Interface Guidelines at https://developer.apple
.com/library/ios/documentation/userexperience/conceptual/mobilehig/AppIcons.html. If
you can afford to, it is best to hire a designer to create your icon.

You will need icons of different sizes depending on what devices you plan on supporting. For
iPhones and iPod touches with a retina display, you need an icon that is 120 × 120 pixels in size. If
you plan on supporting non-retina display iPhones and iPod touches you need an icon that is half
that size, 60 × 60. For retina display iPads and iPad minis you need an icon that is 152 × 152 while
non-retina display iPad and iPad minis need an icon that is 76 × 76 in size. Since this book is primar-
ily about coding an iOS application and not design you can use the simple 120 × 120 icon included
with the sample code. The following Try It Out walks through setting the app icon in Xcode.

try it out Setting the Bands App Icon

 1. Download the BandsIcon.png file from www.wrox.com to your desktop.

 2. In the Project Navigator, select the project.

 3. In the App Icons section, click the arrow next to the Source drop-down to bring up the icon
settings editor, as shown in Figure 3-18.

 4. Drag the BandsIcon.png file onto Xcode, and drop it on the iPhone App iOS 7 placeholder.

c03.indd 68 31-01-2014 17:20:39

Exploring Application Settings ❘ 69

figure 3-18

 5. Run the application in the simulator.

 6. Return to the home screen in the simulator by selecting Hardware ➪➤Home from the menu. You
see the new icon on the simulator home screen, as shown in Figure 3-19.

figure 3-19

c03.indd 69 31-01-2014 17:20:40

70 ❘ chapter 3 Starting a new app

How It Works

Application icons have specific names used to identify them and show them properly. Instead of need-
ing to know these names, Xcode uses asset catalogs. By dragging the file onto the Xcode icon settings
editor, you have added the icon to the project, and Xcode has added it to its proper asset catalog, so the
system knows how to show your app icon on the home screen.

setting launch images
When iOS first launches your application, it may take a little bit of time before the app is ready to
use. Instead of showing a blank screen, Apple requires you to supply a launch image. The image can
be anything you want it to be, but it is recommended that you use an image that represents what
your app will look like when it is ready to use. This creates a seamless visual experience to the user.
You need to provide launch images for all device sizes and orientations your app supports. The fol-
lowing Try It Out shows how to create launch images and set them in your project.

try it out Creating and Setting Launch Images

 1. Run your app in the iPhone 4-inch simulator.

 2. Select File ➪➤Save Screen Shot from the simulator menu. This creates a new PNG image on your
desktop.

 3. In Xcode, select your project from the Project Navigator.

 4. In the Launch Images section, click the arrow next to the Source selector to bring up the launch
image editor, as shown in Figure 3-20.

figure 3-20

c03.indd 70 31-01-2014 17:20:40

Running on a Device ❘ 71

 5. Drag the screen shot file from your desktop and drop it on the second placeholder. The project
will automatically be saved once the image is dropped.

 6. Run your application again using the iPhone 3.5-inch simulator.

 7. Repeat step 2 to create another screen shot image on your desktop.

 8. Drag the new screen shot file from your desktop, and drop it on the first placeholder. Again the
project will automatically be saved once the image is dropped.

How It Works

Xcode determines if your application supports iPhone 4-inch displays by looking at what launch images
are included. If no images are included, it assumes the app supports the 4-inch display. By using the
screen shot feature of the simulator, you created image files that represent your user interface after the
app is loaded and ready for use. Similar to icons, iOS uses specific names to know which launch images
to use on different devices. Xcode saves you from having to know these names by again using the asset
catalog, so the system knows which images to use without you memorizing the specific filenames.

running on a deVice

Running your application in the simulator enables you to quickly prototype and test your app. But
to actually get a feel for your application, you need to test using an actual device. To do this, first,
you need to enroll in the iOS Developer Program. The developer program costs $99 a year, but it
is necessary to test on physical devices as well as getting your app into the App Store. You also get
access to all Apple’s technical resources including the Apple Developer Forums. You can enroll from
the iOS Dev Center at https://developer.apple.com/devcenter/ios/.

All apps that run on an iOS device require a provisioning profile. The provisioning profile is a form
of Digital Rights Management (DRM). When you buy an app from the App Store, it gets installed
using an App Store provisioning profile. When you test your app during development, you need
to install a developer provisioning profile. Both types of provisioning profiles require a certificate,
which is used to sign the profile. Xcode can handle this for you, as shown in the following
Try It Out.

try it out Provisioning a Device for Testing

 1. Connect your device to your Mac.

 2. In Xcode, open the Organizer by selecting Window➤➪➤Organizer from the menu.

 3. Select Devices from the top of the Organizer window, as shown in Figure 3-21.

 4. Select your connected device, and click the Use for Development button in the main part of the
window.

 5. Select your account name from the dialog box that appears, then click Choose.

c03.indd 71 31-01-2014 17:20:40

72 ❘ chapter 3 Starting a new app

 6. When the Certificate Not Found dialog displays, click Request to request a new certificate and
wait for Xcode to complete the task.

 7. In Xcode select iOS Device in the scheme selector, and click Run. Xcode installs the app on your
device and runs it.

How It Works

You have now registered your device with your developer account, created a certificate, and then cre-
ated a team provisioning profile. This profile is managed by Xcode and can now be used to test your
application on your device.

summary

In this chapter you created your first iPhone application using Xcode. You learned about Xcode’s
layout as well as how to use different editors such as Interface Builder and the info properties edi-
tor. You also learned how to use the simulator to test your app on different devices and in different
orientations, including using Auto Layout to make sure your user interface displays how you want it
depending on the screen size and orientation of the device. Finally, you learned how to register a test
device with your account in the iOS Developer Program and provisioned it to run your first iPhone
application.

figure 3-21

c03.indd 72 31-01-2014 17:20:40

Summary ❘ 73

exercises

 1. What is the name of the pane on the left side of Xcode?

 2. What is the Cocoa framework used to create an iOS applications user interface?

 3. What type of file is used to store application settings?

 4. What is the name of the Xcode feature you use to make sure your applications user interface
is displayed correctly no matter what size device it is running on?

 5. What is the name of the inspector used to change user interface object attributes in Interface
Builder?

 6. Change the color of the Bands label from black to light gray.

 7. Add a new label with text bottom aligned with the bottom and center guidelines of the scene
with an auto layout constraint keeping it at the bottom.

 8. Change the version number to 1.1.

c03.indd 73 31-01-2014 17:20:40

74 ❘ chapter 3 Starting a new app

 ➤ What you learned in this chapter

topic Key concepts

creating
an xcode
project

All iOS applications are built in Xcode. The Xcode project organizes all of the
code files, art assets, configuration files and settings.

building
a user
interface

The user interface is the “view” role in the Model-View-Controller design
pattern. It’s the part of the application the user interacts with. In Xcode the
user interface is built using storyboards with scenes and segues showing the
flow of the application.

using auto
layout

iOS devices come in different sizes. They are also handheld devices that the
user can rotate which changes the screen dimensions. Apple has designed
its Auto Layout feature in Xcode to ensure your user interface is displayed
correctly no matter what device or orientation it is being viewed in.

changing
app settings

There are many settings to an iOS application. They are stored in property list
files, also known as plist files. Xcode includes editors you can use to change
these settings so you don’t need to know the keys and valid setting options,
though you can edit the plist files directly if you choose.

running in
the simulator

The iOS simulator is an essential tool in developing iOS applications. It allows
you to test your application using any iOS device quickly without needing test
devices connected to your development machine.

running on a
device

In order to test your application on a physical iOS device, it needs to be
registered and provisioned with Apple through your developer account.
Provisioning a test device can be done within Xcode.

c03.indd 74 31-01-2014 17:20:40

4
Creating a User Input Form

What you learn in this chapter:

➤➤ Creating a model object and adding properties

➤➤ Building an interactive user interface

➤➤ Saving and retrieving data

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/begios
programming on the Download Code tab. The code is in the chapter 04 download and
 individually named according to the names throughout the chapter.

In the last chapter you learned how to create a simple iOS application. Though some applications
display only information, most require a way for the user to add and edit data. In this chapter,
you continue building the Bands app by giving the user a way to add a band and save it.

If you have created desktop applications or web apps, you’re familiar with data input forms.
You are also familiar with the objects or classes that represent this data within the code.
Typically, you present the user with an interface including text fields, switches, and selectors
they can use to enter and manipulate the data objects. iOS applications are no different. In
Visual Studio you add user interface objects to a dialog or window and then double-click them
to associate methods that handle events as the user manipulates the data. Xcode handles this a
bit differently, although the concepts are the same.

The first step is adding the model object, which represents a band.

introducing the Band model oBject

As discussed in Chapter 2, “Introduction to Objective-C,” iOS applications use the Model
View Controller design pattern. In the Bands app, the model represents a band. Eventually,
you’ll have multiple bands represented by the model, so the first step is creating a class that
encapsulates all the properties of a band within the application.

c04.indd 75 31-01-2014 17:20:47

76 ❘ chapter 4 Creating a User inpUt Form

The band object needs the following properties:

➤➤ Name — The name of the band.

➤➤ Notes — Any notes the user would like to attach to the band.

➤➤ Rating — How the user rates the band on a scale of 1–10.

➤➤ Touring Status — Whether the band is currently touring or if it is disbanded.

➤➤ Have Seen — Whether the user has seen the band in concert.

creating the Band model object
The WBABand class will represent the Band model object. The name of the class follows Apples
naming convention by adding a three letter prefix to the beginning of the class name. The prefix
is a combination of the company name Wrox and the Bands app name, as Apple suggests.
You can read more about Apple naming conventions in the Apple Developer Library at
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/

CodingGuidelines/CodingGuidelines.html.

try it out Creating the WBABand Class

 1. In Xcode, open the Bands project you created in Chapter 3.

 2. Select File ➪➤New ➪➤File; then select Objective-C class, as shown in Figure 4-1.

figure 4-1

c04.indd 76 31-01-2014 17:20:47

Introducing the Band Model Object ❘ 77

 3. In the next dialog, name the class WBABand and set its subclass to NSObject, as shown in
Figure 4-2.

figure 4-2

 4. Save the file with the rest of the project files, and ensure it’s added to the Bands target. Click
Create.

How It Works

You created a new class named WBABand, which is a subclass of NSObject. As discussed in Chapter 2,
NSObject is the base class for almost all classes in iOS applications. This enables you to use instances
of WBABand in NSArrays, which you cover in Chapter 5, “Using Table Views.”

creating enumerations
Before you add the properties to the WBABand class you need to declare an enumeration to rep-
resent the three different states of touring that a band can have: Touring, Not Touring. and
Disbanded.

Enumerations are common in most programming languages. They enable you to declare a type,
which consists of named elements. The elements represent simple integers but enable you to use their
names in the code to make it readable.

c04.indd 77 31-01-2014 17:20:47

78 ❘ chapter 4 Creating a User inpUt Form

try it out Creating an Enumeration

 1. In Xcode, select the WBABand.h file from the Project Navigator.

 2. In the code editor, add the following code to the top of the file after the imports section:

typedef enum {
 WBATouringStatusOnTour,
 WBATouringStatusOffTour,
 WBATouringStatusDisbanded,
} WBATouringStatus;

 3. Save the file and compile the application by selecting Project ➪➤Build from the menu to ensure
there are no errors.

How It Works

By adding the typedef enum to the WBABand.h file, you have created a new type named
WBATouringStatus, which you can use throughout the code by importing the WBABand.h file. The
typical naming convention for enumerations is to start with the same prefix abbreviation you are
using for class names followed by the name of the enumeration type with the differentiating value
at the end. This helps the readability of your code both for yourself and for any other developer
who may work on the application. By default the elements are assigned their integer values based on
their placement in the list. For the WBATouringStatus, WBATouringStatusOnTour has a value of 0,
WBATouringStatusOffTour has a value of 1, and WBATouringStatusDisbanded has a value of 2.

adding properties to the Band model object
Now that you have declared the WBATouringStatus enumeration, you have all the types you need
to add all the properties of the WBABand class to the code. For the properties to be accessible in the
code, add them as properties to the WBABand.h class, as described in the following Try It Out.

try it out Adding Properties to a Class

 1. Select the WBABand.h file from the Project Navigator.

 2. Add the following code to the interface:

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *notes;
@property (nonatomic, assign) int rating;
@property (nonatomic, assign) WBATouringStatus touringStatus;
@property (nonatomic, assign) BOOL haveSeenLive;

 3. Save the file and compile the application by selecting Project ➪➤Build from the menu to ensure
there are no errors.

c04.indd 78 31-01-2014 17:20:47

Building an Interactive User Interface ❘ 79

How It Works

As you learned in Chapter 2, properties enable you to add member variables to an Objective-C class. The
code you added creates all the member variables for the WBABand class. By declaring the enumeration types
in the previous section, you could declare a property using that type in the class interface.

You now have the WBABand class created and ready to be used as the model for the Bands app.
The next step you learn is how to build a user interface to allow your users to add objects and
edit them.

Building an interactive user interface

In the previous chapter you added a UILabel to a UIView and set its properties in Xcode using the
Attributes Inspector. This is known as setting properties at design time. All user interface objects
can be created and set this way, but they cannot be changed in code. To refer to the user interface
objects in code you need to learn about the IBOutlet keyword.

learning about iBoutlet
The IBOutlet keyword stands for Interface Builder Outlet. Xcode uses this keyword to connect
objects in the code to objects in the user interface. With the Model-View-Controller design pattern,
a UIView is controlled by a UIViewController. The Single View Application template you used to
create the Band project included the ViewController class, which is set as the UIViewController
for the UIView in the Storyboard. This is where you declare the IBOutlet objects you want to con-
nect to the UIKit objects you add to the UIView, as shown in the following Try It Out.

Note When referring to user interface objects, this book will use the name
you see in Xcode where appropriate but otherwise will refer to them by their
UIKit names. For instance, when you add a new user interface object from
the Object library or interact with the Storyboard hierarchy, the user interface
objects are labeled by common names such as Label or Text Field in Xcode.
In those situations the book will refer to them as Label or Text Field. In most
other situations they will be referred to by their UIKit names. If a Try It Out
connects an IBOutlet property in code to a UIKit object the How It Works
section will use the property name.

try it out Connecting an IBOutlet

 1. In Xcode, drag a UILabel onto the UIView, use the Interface Builder guidelines to align it at the
top and center of the UIView, and then set its text to Band.

 2. Select the ViewController.h file from the Project Navigator.

c04.indd 79 31-01-2014 17:20:47

80 ❘ chapter 4 Creating a User inpUt Form

figure 4-3

 3. Add the following code to the interface section:

@interface ViewController : UIViewController

@property (nonatomic, weak) IBOutlet UILabel *titleLabel;

@end

 4. Return to the Main.storyboard, and select the View Controller from the Storyboard hierarchy on
the left of the editor.

 5. Control-drag the line that is shown to the UILabel until both the View Controller and the
UILabel are highlighted and connected, as shown in Figure 4-3.

 6. Release the mouse button; then select titleLabel from the Outlets dialog.

 7. Select the ViewController.m file from the Project Navigator.

 8. Add the following code to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSLog(@"titleLabel.text = %@", self.titleLabel.text);
}

 9. Run the application in the simulator. You see titleLabel.text = Band in the console.

c04.indd 80 31-01-2014 17:20:48

Building an Interactive User Interface ❘ 81

How It Works

In the ViewController class interface you declared a UILabel property with the IBOutlet keyword
and named it titleLabel. You then used Interface Builder to connect the titleLabel in the code to
the UILabel in the UIView. Finally, you printed the text property of the titleLabel to the console at
runtime showing the connection was successfully made.

Note IBOutlet properties are always created as weak properties instead of
strong. This is because the Storyboard is the owner of the object. The code
only needs a weak reference to the object.

using uitextfield and uitextfielddelegate
UILabel is one of the most basic of UIKit objects; however, the bands app needs to enable users
to type in text of their own for the band name. For a single line of text you use a UITextField.
Keeping with the Model-View-Controller design pattern, the UITextField will ask its control-
ler how it should act. It does this using the UITextFieldDelegate protocol. In the Bands app,
the controller for the UITextField is the ViewController class, so it needs to implement the
UITextFieldDelegate, as you will see in the following Try It Out.

try it out Adding a UITextField

 1. In the Main.storyboard, add a new UILabel to the UIView and use the Interface Builder guide-
lines to align it to the left side of the UIView. Then set its text to Name:.

 2. Find and drag a new Text Field from the Objects library to the UIView, and align it under the
Name UILabel, stretched to the left and right guidelines of the UIView, as shown in Figure 4-4.

 3. Select ViewController.h from the Project Navigator, and add the following code to the interface:

#import "WBABand.h"

@interface ViewController : UIViewController <UITextFieldDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;

@end

 4. Return to the Main.storyboard, and select the View Controller from the Storyboard hierarchy
on the left of the editor.

 5. Connect the nameTextField to the UITextField following the same steps as in the previous section.

 6. Select the UITextField in the UIView. Then use the same Control-drag procedure, and drag the
line back to the View Controller in the Storyboard hierarchy.

c04.indd 81 31-01-2014 17:20:48

82 ❘ chapter 4 Creating a User inpUt Form

 7. Release the mouse button; then select delegate in the dialog.

 8. Select the ViewController.m file from the Project Navigator.

 9. Add the following code to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSLog(@"titleLabel.text = %@", self.titleLabel.text);

 self.bandObject = [[BandObject alloc] init];
}

 10. Add the following code to the implementation:

- (BOOL)textFieldShouldBeginEditing:(UITextField *)textField
{
 return YES;
}

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 self.bandObject.name = self.nameTextField.text;
 [self.nameTextField resignFirstResponder];
 return YES;
}

- (BOOL)textFieldShouldEndEditing:(UITextField *)textField

figure 4-4

c04.indd 82 31-01-2014 17:20:48

Building an Interactive User Interface ❘ 83

{
 self.bandObject.name = self.nameTextField.text;
 [self saveBandObject];
 [self.nameTextField resignFirstResponder];
 return YES;
}

 11. Run the application in the iPhone 4-inch simulator, and select the
UITextField. The software keyboard becomes visible, as shown in
Figure 4-5.

 12. Enter My Band in the UITextField; then tap the Return key on the
software keyboard. The text is entered into the UITextField and
the software keyboard is hidden.

How It Works

In the ViewController.h file you added an IBOutlet property for the
UITextField named nameTextField along with a WBABand property named
bandObject to represent the model. You also declared that the ViewController class implements the
UITextFieldDelegate protocol.

Using Interface Builder you added a UILabel and UITextField to the UIView so the user can enter the
name of a band. After connecting the UITextField to the nameTextField, you then set its delegate
as the ViewController class. You could do this because you declared that the ViewController class
implements the UITextFieldDelegate.

Finally, you added code to the ViewController class implementation. In the viewDidLoad
method you added code to initialize the bandObject. Then you added methods that implement the
UITextFieldDelegate.

The UITextFieldDelegate protocol enables you to handle events that get triggered as the user
interacts with the nameTextField. The first method of the protocol you implemented is the
textFieldShouldBeginEditing: method, which tells the system that the nameTextField should
become the first responder. Being the first responder means that it is the first object to handle any events
raised by user interaction. Because you have made a UITextField the first responder, the system shows
the software keyboard. You’re not doing any data verification in this code, so you should always return
YES. In other applications you may want to validate other pieces of data and prevent the UITextField
from becoming the first responder. In those cases, you would return NO.

The second UITextFieldDelegate protocol method you implemented was the textFieldShouldReturn:
method. This method gets triggered when the user taps the Return key on the keyboard. In that
implementation, the first thing you did was set the name property of the bandObject. The next line
resigns the nameTextField as the first responder. Because the first responder is no longer a UITextField,
the system hides the keyboard.

The last method of the UITextFieldDelegate protocol you implemented was the
textFieldShouldEndEditing: method. This gets called when another object attempts to become the first
responder. Its implementation is the same as textFieldShouldReturn:.

figure 4-5

c04.indd 83 31-01-2014 17:20:48

84 ❘ chapter 4 Creating a User inpUt Form

CoMMoN MIStAKeS If the keyboard does not hide when you test your
app and you press the Return key, make sure you have implemented the
textFieldShouldReturn: method and that it resigns the nameTextField as
the first responder. Also make sure that the delegate of the nameTextField has
been connected to the ViewController class. Missing either of those
will cause the keyboard to remain onscreen.

using uitextview and uitextviewdelegate
For the Bands app, each band has notes associated with it that the user can type in. These notes
can be multiple lines. For text that needs multiple lines you use a UITextView. A UITextView is
similar in implementation to a UITextField . It asks its controller how it should act through the
UITextViewDelegate protocol. Just like the UITextField, the ViewController class will be
the delegate for the UITextView.

try it out Adding a UITextView

 1. In the Main.storyboard, add a new UILabel to the UIView using Interface Builder guidelines to
align it to the left side of the UIView. Then set its text to Notes:.

 2. Find and drag a new Text View from the Objects library onto the UIView. Align it under the
Notes UILabel and stretch it to the left and right guidelines of the UIView; then set its height to
90 pixels.

 3. In the Attributes Inspector, change the background color of the UITextView to Light Gray.

 4. Select ViewController.h from the Project Navigator, and add the following code to the interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;

@end

 5. Return to the Main.storyboard, and select the View Controller from the Storyboard hierarchy
on the left side of the editor.

 6. Connect the notesTextView to the UITextView following the same steps as in the previous
section.

 7. Connect the delegate of the notesTextView to the ViewController using the same steps as in the
previous section.

 8. Select the ViewController.m file from the Project Navigator.

c04.indd 84 31-01-2014 17:20:48

Building an Interactive User Interface ❘ 85

 9. Add the following code to the implementation:

- (BOOL)textViewShouldBeginEditing:(UITextView *)textView
{
 return YES;
}

- (BOOL)textViewShouldEndEditing:(UITextView *)textView
{
 self.bandObject.notes = self.notesTextView.text;
 [self.notesTextView resignFirstResponder];
 return YES;
}

 10. Run the application in the iPhone 4-inch simulator. When you tap the notesTextView, the key-
board appears and enables you to enter text.

 11. Tap the Return button to add a line break to the text.

How It Works

The UITextView and UITextViewDelegate are similar to the UITextField and
UITextFieldDelegate. The textViewShouldBeginEditing: method of the UITextViewDelegate
protocol tells the system that the notesTextView should become the first responder, which will
show the keyboard. The other UITextViewDelegate protocol method you implemented was the
textViewShouldEndEditing: method, which gets triggered when another object wants to become
the first responder. In its implementation, you set the notes property of the bandObject with the text
entered in the notesTextView then resign the notesTextView as the first responder.

The difference between a UITextField and a UITextView is that the Return key in a UITextView adds
a line break to the text instead of triggering a delegate method. This presents a problem. How does the
user tell a UITextView they are done entering text?

using uiButton and iBaction
The simplest way for the user to tell a UITextView they are done entering text is to add a UIButton,
which when touched resigns the UITextView as the first responder. A UIButton, however, does not
have a corresponding UIButtonDelegate. Instead you have to connect the touch event to a method
in your code. To make that method visible in Interface Builder you use the IBAction keyword,
which is short for Interface Builder Action.

try it out Adding a UIButton

 1. Select the Main.storyboard from the Project Navigator to open Interface Builder.

 2. Find and drag a new Button from the Object library, and align it on the right side of the UIView in
line with the Notes UILabel.

 3. In the Attributes Inspector, change the text of the UIButton to Save.

 4. Also in the Attributes Inspector, uncheck the Enabled checkbox.

c04.indd 85 31-01-2014 17:20:48

86 ❘ chapter 4 Creating a User inpUt Form

 5. Select ViewController.h from the Project Navigator, and add the following code to the interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;

- (IBAction)saveNotesButtonTouched:(id)sender;

@end

 6. Select ViewController.m, and add the following code to the implementation:

- (BOOL)textViewShouldBeginEditing:(UITextView *)textView
{
 self.saveNotesButton.enabled = YES;
 return YES;
}

- (BOOL)textViewShouldEndEditing:(UITextView *)textView
{
 self.bandObject.notes = self.notesTextView.text;
 [self.notesTextView resignFirstResponder];
 self.saveNotesButton.enabled = NO;
 return YES;
}

- (IBAction)saveNotesButtonTouched:(id)sender
{
 [self textViewShouldEndEditing:self.notesTextView];
}

 7. Return to the Main.storyboard, and connect the saveNotesButton to the UIButton.

 8. Control-drag back to the View Controller in the Storyboard hierarchy, and select
saveNotesButtonTouched: from the dialog.

 9. Run the application in the iPhone 4-Inch simulator. When you select the notesTextView, the
saveNotesButton becomes enabled. When you tap the saveNotesButton, it becomes disabled
and the keyboard is hidden.

How It Works

By creating the IBAction method saveNotesButtonTouched:, you could connect it to the touch event
of the saveNotesButton. You also used the enabled attribute of the saveNotesButton to indicate to
the user that it’s associated with the notesTextView. When the saveNotesButton is enabled
and tapped, the saveNotesButtonTouched: method is called, which resigns the notesTextView as the
first responder hiding the keyboard.

c04.indd 86 31-01-2014 17:20:49

Building an Interactive User Interface ❘ 87

using uistepper
Many times while building a user interface, you need a user interface object that increases or
decreases an integer. You can use a UIStepper for this. A UIStepper is a simple control with a
minus button on the left and a plus button on the right. Tapping either adjusts its value up or down.
You can use a UIStepper to represent the rating property of the bandObject.

try it out Adding a UIStepper

 1. In the Main.storyboard add a new UILabel and use the Interface Builder guidelines to align it
on the left side of the UIView. Then set its text to Rating:.

 2. Find and drag a new Stepper from the Object library, and use the Interface Builder guidelines to
align it on the left side of the UIView underneath the Rating UILabel.

 3. In the Attributes Inspector set the minimum value to 0, the maximum value to 10, the current
value to 0, and the step value to 1.

 4. Add another UILabel to the UIView, and align it on the Interface Builder guidelines to the right
side of the UIView and vertically centered with the UIStepper; then set its text to 0, as shown in
Figure 4-6.

figure 4-6

c04.indd 87 31-01-2014 17:20:49

88 ❘ chapter 4 Creating a User inpUt Form

 5. Select ViewController.h from the Project Navigator, and add the following code to the interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;

@end

 6. Select ViewController.m and add the following code to the
implementation:

- (IBAction)ratingStepperValueChanged:(id)sender
{
 self.ratingValueLabel.text =
[NSString stringWithFormat:@"%g", self.ratingStepper.value];
 self.bandObject.rating = (int)self.ratingStepper.value;
}

 7. Return to Main.storyboard, and connect the ratingStepper to the
UIStepper and the ratingValueLabel to UILabel on the right side of
the UIView.

 8. Connect the ratingStepperValueChanged: method to the
ratingStepper.

 9. Run the application in the iPhone 4-Inch simulator. When you tap the
plus and minus buttons of the ratingStepper, its value displays in
the ratingValueLabel, as shown in Figure 4-7.

How It Works

A UIStepper has properties for its minimum and maximum values along with the amount the value
should be “stepped” when the user taps the plus and minus buttons. By setting these values you
configured the ratingStepper to go to a value as high as 10 and as low as 0, changing by a value of
1 on each step. You also created an IBAction method to connect the code to the Value Changed event
of the ratingStepper. When the ratingStepper value changes, the ratingStepperValueChanged:
is triggered and updates the text of the ratingLabel reflecting the current value. Because the value
of a UIStepper is a double, you need to cast it to an int before setting the rating property of the
bandObject.

figure 4-7

c04.indd 88 31-01-2014 17:20:49

Building an Interactive User Interface ❘ 89

using uisegmentedcontrol
The next property of the WBABand class that you add to the interface is the Touring State. For this
you use a UISegmentedControl. The UISegmentedControl has the same look as the UIStepper
you added in the last section except you have control over how many segments it has and what the
text or image of those segments should be. Each segment acts as its own button and can either stay
selected when tapped or it can be “momentary” like the buttons in the UIStepper control. For the
Touring State, use a UISegmentedControl that stays selected.

try it out

 1. In the Main.storyboard, add a new UILabel using Interface Builder guidelines to align the label
on the left side of the UIView. Then set its text to Touring Status:.

 2. Find and drag a new Segmented Control from the Object library, and use the Interface Builder
guidelines to stretch it to both the left and right sides of the UIView underneath the Touring
Status UILabel.

 3. In the Attributes Inspector, set the number of segments to 3.

 4. Set the Title of Segment 0 to On Tour.

 5. Use the segment selector to choose Segment 1, and set its title to Off Tour.

 6. Use the segment selector to choose Segment 2, and set its title to Disbanded.

 7. Select ViewController.h from the Project Navigator, and add the following code to the interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl
*touringStatusSegmentedControl;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;

@end

 8. Select ViewController.m, and add the following code to the implementation:

- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender
{
 self.bandObject.touringStatus =
self.touringStatusSegmentedControl.selectedSegmentIndex;
}

c04.indd 89 31-01-2014 17:20:49

90 ❘ chapter 4 Creating a User inpUt Form

 9. Go back to Main.Storyboard, and connect the
touringStatusSegmentedControl to the UISegmentedControl .

 10 Connect the touringStatusSegmentedControl to the
tourStatusSegmentedControlValueChanged: method.

 11. Run the application in the iPhone 4-Inch simulator. As you tap the
segments of the touringStatusSegmentedControl, you see them
become selected while deselecting the others, as shown in Figure 4-8.

How It Works

You added a UISegmentedControl to the UIView and set it to
have three segments correlating to the three touring status values in
the WBATouringStatus enumeration. You then connected it to the
touringStatusSegmentedControl in the ViewController class. Like a
UIButton, a UISegmentedControl does not have a corresponding delegate
protocol, so in order to know when the user interacts with it you added an
IBAction method named tourStatusSegmentedControlValueChanged:.
It gets triggered when the selected segment changes. In its implementation
you can use the selectedSegmentIndex property to set the touringStatus property of the bandOb-
ject because both the segments and the WBATouringStatus enumeration are 0 based.

using uiswitch
The last property of the WBABand class you need to add to the user interface is the haveSeen prop-
erty using a UISwitch. A UISwitch is what you would expect it to be: a user interface object that
is either on or off. It too does not have a corresponding delegate, so you need one more IBAction
method to know when the user interacts with it.

try it out Adding a UISwitch

 1. In the Main.storyboard, add a new UILabel using Interface Builder guidelines to align it on the
left side of the UIView. Then set its text to Have Seen:.

 2. Find and drag a new Switch from the Objects library, and add it to the UIView, aligning it with the
vertical center of the Have Seen UILabel and the right side of the UIView.

 3. Select ViewController.h from the Project Navigator, and add the following code to the interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;

figure 4-8

c04.indd 90 31-01-2014 17:20:49

Saving and Retrieving Data ❘ 91

@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl
*touringStatusSegmentedControl;
@property (nonatomic, weak) IBOutlet UISwitch *haveSeenLiveSwitch;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;
- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender;

@end

 4. Select ViewController.m from the Project Navigator, and add the following code to the
implementation:

- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender
{
 self.bandObject.haveSeenLive = self.haveSeenLiveSwitch.on;
}

 5. Return to Main.Storyboard, and connect the haveSeenLiveSwitch
property and haveSeenLiveSwitchValueChanged: method to the
UISwitch.

 6. Run the application in the iPhone 4-inch simulator. You can toggle the
haveSeenLiveSwitch off and on to change the value of the haveSeen
property of the bandObject, as shown in Figure 4-9.

How It Works

In the Storyboard you added a new UISwitch to the UIView. You then
declared an IBOutlet named haveSeenLiveSwitch and an IBAction
method named haveSeenLiveSwitchValueChanged:, that you connected to
the UISwitch. In the implementation you set the haveSeenLive property
of the bandObject to the value of the haveSeenLiveSwitch.

saving and retrieving data

Giving the user the ability to enter data into your app is great but not useful unless you can save the
data, retrieve it, and present it back to the user. There are many ways to do this in an iOS applica-
tion, but the simplest is to use NSUserDefaults. The documented use for NSUserDefaults is to save
preferences for an application, but because of its simplicity, it’s often used to save small amounts of
data as well. You can use it to save and retrieve an instance of the WBABand class.

implementing the nscoding protocol
Before you can save an instance of the WBABand class, you need to declare that the WBABand class
implement the NSCoding protocol and then add the protocol’s two methods, initWithCoder: and

figure 4-9

c04.indd 91 31-01-2014 17:20:50

92 ❘ chapter 4 Creating a User inpUt Form

encodeWithCoder:, to the WBABand class implementation. These methods give the class a way to
encode and decode itself so that it can be archived and saved to persistent storage.

try it out Implementing the NSCoding Protocol

 1. Select the WBABand.h file from the Project Navigator, and add the following code to the interface:

@interface WBABand : NSObject <NSCoding>

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *notes;
@property (nonatomic, weak) int rating;
@property (nonatomic, weak) WBATouringStatus touringStatus;
@property (nonatomic, weak) BOOL haveSeenLive;

@end

 2. Select the WBABand.m file from the Project Navigator, and add the following code to the
implementation:

static NSString *nameKey = @"BANameKey";
static NSString *notesKey = @"BANotesKey";
static NSString *ratingKey = @"BARatingKey";
static NSString *tourStatusKey = @"BATourStatusKey";
static NSString *haveSeenLiveKey = @"BAHaveSeenLiveKey";

@implementation WBABand

-(id) initWithCoder:(NSCoder*)coder
{
 self = [super init];

 self.name = [coder decodeObjectForKey:nameKey];
 self.notes = [coder decodeObjectForKey:notesKey];
 self.rating = [coder decodeIntegerForKey:ratingKey];
 self.touringStatus = [coder decodeIntegerForKey:tourStatusKey];
 self.haveSeenLive = [coder decodeBoolForKey:haveSeenLiveKey];

 return self;
}

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:self.name forKey:nameKey];
 [coder encodeObject:self.notes forKey:notesKey];
 [coder encodeInteger:self.rating forKey:ratingKey];
 [coder encodeInteger:self.touringStatus forKey:tourStatusKey];
 [coder encodeBool:self.haveSeenLive forKey:haveSeenLiveKey];
}

@end

c04.indd 92 31-01-2014 17:20:50

Saving and Retrieving Data ❘ 93

How It Works

The NSCoding protocol gives an instance of a class a way to encode itself for archiving as well as
initializing itself from an archive. In the interface of the WBABand class you declared that it implements
this protocol by adding it to its protocol list. The protocol has two methods, encodeWithCoder: and
initWithCoder: that you then added to the WBABand class implementation. Both of these methods take
an instance of an NSCoder object as an argument which does the actual archiving and unarchiving of
the data. How the archiving and unarchiving is implemented in the NSCoder object is not important
to the WBABand class. All it needs to do is call the various encode and decode methods of it to package up
its member variables using a key-value paring. The primitive data types all have their own encode and
decode methods. For the integer and enumeration member variables of the WBABand class you use the
encodeInteger:forKey: and decodeIntegerForKey: methods. For the haveSeenLive boolean prop-
erty you use the encodeBool:forKey: and decodeBoolForKey: methods. For member variables that
are instances of NSObject you use the encodeObject:forKey: and decodeObjectForKey: methods.
The keys are always an NSString instance. You declared all of the keys as static NSString instances
at the beginning of the WBABand.m file before the actual implementation of the class. With these two
methods of the NSCoding protocol implemented, the WBABand class is ready to be saved in persistent
storage.

saving data
To save an instance of the WBABand class to persistent storage you will use the standardUserDefaults,
which is a global instance of the NSUserDefaults class. It works a bit like NSCoder in that it uses
a key-value paring to save both primitive types and NSObject instances to disk. In order to save an
instance of the WBABand class it first needs to be archived into an NSData object, which is an
object-oriented wrapper around a byte buffer. To do this you use the NSKeyedArchiver class, which
is a subclass of NSCoder. When you call the archiveDataWithRootObject: method it will call the
encodeWithCoder: method you implemented in the WBABand class to create an NSData archive.
The archive is then stored in the standardUserDefaults using the setObject:forKey: method.

try it out Saving Data Using NSUserDefaults

 1. Select the ViewController.h file from the Project Navigator, and add the following code to the
interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl

c04.indd 93 31-01-2014 17:20:50

94 ❘ chapter 4 Creating a User inpUt Form

*touringStatusSegmentedControl;
@property (nonatomic, weak) IBOutlet UISwitch *haveSeenLiveSwitch;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;
- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender;

- (void)saveBandObject;

@end

 2. Select the ViewController.m file from the Project Navigator, and add the following code before
the implementation:

#import "ViewController.h"

static NSString *bandObjectKey = @"BABandObjectKey";

@implementation ViewController

 3. Add the following code to the ViewController implementation:

- (void)saveBandObject
{
 NSData *bandObjectData =
[NSKeyedArchiver archivedDataWithRootObject:self.bandObject];
 [[NSUserDefaults standardUserDefaults]
setObject:bandObjectData forKey:bandObjectKey];
}

 4. Add a call to the saveBandObject method after setting any of the properties in the previous
methods:

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 self.bandObject.name = self.nameTextField.text;
 [self saveBandObject];
 [self.nameTextField resignFirstResponder];
 return YES;
}

- (BOOL)textViewShouldEndEditing:(UITextView *)textView
{
 self.bandObject.notes = self.notesTextView.text;
 [self saveBandObject];
 [self.notesTextView resignFirstResponder];
 self.saveNotesButton.enabled = NO;
 return YES;
}

- (IBAction)ratingStepperValueChanged:(id)sender
{
 self.ratingValueLabel.text = [NSString stringWithFormat:@"%g",

c04.indd 94 31-01-2014 17:20:50

Saving and Retrieving Data ❘ 95

self.ratingStepper.value];
 self.bandObject.rating = (int)self.ratingStepper.value;
 [self saveBandObject];
}

- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender
{
 self.bandObject.touringStatus =
self.touringStatusSegmentedControl.selectedSegmentIndex;
 [self saveBandObject];
}

- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender
{
 self.bandObject.haveSeenLive = self.haveSeenLiveSwitch.on;
 [self saveBandObject];
}

 5. Build the project and make sure there are no errors.

How It Works

You first declared a new method in the ViewController class interface named saveBandObject.
In its implementation you archive the bandObject using the archivedDataWithRootObject:
method of the NSKeyedArchiver. You then set the archive in the standardUserDefaults using the
setObject:forKey: method. The key is an NSString named bandObjectKey that you declared as
static in the ViewController.m file. The standardUserDefaults saves to disk at periodic intervals so
you do not need to do anything more to get the object written to disk. Finally, you added calls to
saveBandObject to all of the IBAction methods to make sure what gets written to disk reflects any
changes the user made.

retrieving saved data
Retrieving stored data from NSUserDefaults is basically the reverse of saving. You retrieve the
object from standardUserDefaults using the objectForKey: method and the same bandObjectKey.
This returns you back the NSData archive. You then use the unarchiveObjectWithData: method
of the NSKeyedUnarchiver class to unarchive the data and get back the WBABand instance.

try it out Retrieving Data from NSUserDefaults

 1. Select the ViewController.h file from the Project Navigator, and add the following code to the
interface:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate>

@property (nonatomic, strong) WBABand *bandObject;
@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;

c04.indd 95 31-01-2014 17:20:50

96 ❘ chapter 4 Creating a User inpUt Form

@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl
*touringStatusSegmentedControl;
@property (nonatomic, weak) IBOutlet UISwitch *haveSeenLiveSwitch;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;
- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender;

- (void)saveBandObject;
- (void)loadBandObject;
- (void)setUserInterfaceValues;

@end

 2. Select the ViewController.m file from the Project Navigator, and add the following code to the
implementation:

- (void)loadBandObject
{
 NSData *bandObjectData = [[NSUserDefaults standardUserDefaults]
objectForKey:bandObjectKey];

 if(bandObjectData)
 self.bandObject =
[NSKeyedUnarchiver unarchiveObjectWithData:bandObjectData];
}

- (void)setUserInterfaceValues
{
 self.nameTextField.text = self.bandObject.name;
 self.notesTextView.text = self.bandObject.notes;
 self.ratingStepper.value = self.bandObject.rating;
 self.ratingValueLabel.text = [NSString stringWithFormat:@"%g",
self.ratingStepper.value];
 self.touringStatusSegmentedControl.selectedSegmentIndex =
self.bandObject.touringStatus;
 self.haveSeenLiveSwitch.on = self.bandObject.haveSeenLive;
}

 3. Modify the viewDidLoad method with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSLog(@"titleLabel.text = %@", self.titleLabel.text);

 [self loadBandObject];

 if(!self.bandObject)

c04.indd 96 31-01-2014 17:20:50

Saving and Retrieving Data ❘ 97

 self.bandObject = [[BandObject alloc] init];

 [self setUserInterfaceValues];
}

 4. Run the application in the iPhone 4-inch simulator, and enter some data.

 5. Restart the application. The data you entered will be reloaded.

How It Works

In the ViewController interface you declared two new methods named loadBandObject and
setUserInterfaceValues. In the implementation of the loadBandObject you first attempt to retrieve
an NSData archive from the standardUserDefaults using the bandObjectKey. If there is no archive
this call will return nil. If there is, the code then calls the unarchiveObjectWithData: method of
the NSKeyedUnarchiver class to unarchive the WBABand instance and set the bandObject property.

In the viewDidLoad method of the ViewController you added a call to loadBandObject, and
a check to see if the bandObject property was set using archived data. If the bandObject is nil,
the code instantiates a new instance of the WBABand class. Finally you added a call to the
setUserInterfaceValues method whose implementation sets up the user interface using the member
values of the bandObject.

deleting saved data
To delete data you have saved to standUserDefaults, all you need to do is set the object for the key
to nil. Adding delete to the user interface is a little more difficult. Before you delete any data you
need to verify with user that they actually want it deleted. The best way to do this in an iOS applica-
tion is to use a UIActionSheet, which has a “destructive” button that will be red when presented to
the user. This way user knows they are about to permanently delete the data.

A UIActionSheet also has its own delegate. When a user taps a button in a UIActionSheet
it tells its delegate about it using the actionSheet:clickedButtonAtIndex: method of the
UIActionSheetDelegate protocol. For the Bands app the ViewController class will act as the del-
egate so it needs to implement this protocol.

try it out Deleting Data from NSUserDefaults

 1. In the Main.storyboard, add a new UIButton to the bottom of the UIView, set its text to Delete,
and add an auto layout constraint to anchor the button to the bottom of the view, as shown in
Figure 4-10.

 2. Select ViewController.h from the Project Navigator, and add the following code:

@interface ViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate, UIActionSheetDelegate>

@property (nonatomic, strong) WBABand *bandObject;

c04.indd 97 31-01-2014 17:20:50

98 ❘ chapter 4 Creating a User inpUt Form

@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl
*touringStatusSegmentedControl;
@property (nonatomic, weak) IBOutlet UISwitch *haveSeenLiveSwitch;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;
- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender;
- (IBAction)deleteButtonTouched:(id)sender;

- (void)saveBandObject;
- (void)loadBandObject;
- (void)setUserInterfaceValues;

@end

 3. Select the WBABand.m file from the Project Navigator, and add the following code to the
implementation:

figure 4-10

c04.indd 98 31-01-2014 17:20:50

Saving and Retrieving Data ❘ 99

- (IBAction)deleteButtonTouched:(id)sender
{
 UIActionSheet *promptDeleteDataActionSheet = [[UIActionSheet alloc]
initWithTitle:nil delegate:self cancelButtonTitle:@"Cancel"
destructiveButtonTitle:@"Delete Band" otherButtonTitles:nil];
 [promptDeleteDataActionSheet showInView:self.view];
}

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 [self setUserInterfaceValues];

 [[NSUserDefaults standardUserDefaults] setObject:nil forKey:bandObjectKey];
 }
}

 4. Run the application in the iPhone 4-inch simulator. When you tap the
Delete button the UIActionSheet will be presented asking if you want
to delete the band, as shown in Figure 4-11. Tapping delete will delete
the data from standardUserDefaults.

How It Works

To allow the user to delete a WBABand instance from the
standardUserDefaults, you first added a new UIButton to the UIView. In
the ViewController interface you added a new IBAction method named
deleteButtonTouched: and connected it to the new UIButton.

The implementation of the deleteButtonTouched: method creates a
new UIActionSheet instance named promptDeleteDataActionSheet. A
UIActionSheet can have a Cancel button, a Destructive button, and any
number of other buttons you would like to add. All of these buttons are
optional. For the promptDeleteDataActionSheet you set the text of the
Cancel button to Cancel and the text of the destructive button to Delete
Band. You also set the ViewController as its delegate.

To know which button the user clicked, you implemented the actionSheet:clickedButtonAtIndex:
method of the UIActionSheetDelegate protocol. In its implementation you used the
destructiveButtonIndex property of the actionSheet argument and compared it to the
buttonIndex argument. If they are equal, you know the user selected the Delete Band button, so
the code uses the same bandObjectKey to set the object in standardUserDefaults to nil.

figure 4-11

c04.indd 99 31-01-2014 17:20:51

100 ❘ chapter 4 Creating a User inpUt Form

summary

In this chapter you implemented the WBABand class that will be the model for the Bands app, includ-
ing the code needed to save and retrieve instances of it from persistent storage. You also learned
how to use various UIKit objects to build a user interface, as well as how to use the IBOutlet and
IBAction keywords as well as delegates to both set and retrieve values from the user interface.
These are all important lessons in building an iOS application. They may be a bit much to fully
grasp at this point, but you are well on your way! The next chapter expands on these lessons by
adding multiple bands to the model, listing them in a table, and navigating between the table and
the user interface you just finished creating.

exercises

 1. What keyword do you use to connect a UIKit property in a class to a UIKit object in Interface
Builder?

 2. What keyword do you use to connect an event of a UIKit object in Interface Builder to a
method in a class?

 3. What does it mean to be the first responder?

 4. What protocol do you implement in a class that allows it to be used with the NSKeyedArchiver
class?

c04.indd 100 31-01-2014 17:20:51

Summary ❘ 101

 ➤ What you learned in this chapter

topic Key concepts

creating the WBABand
class

iOS applications are built using the Model-View-Controller design
pattern. For the Bands app the WBABand class is the model for a
Band object.

using iBoutlets To connect user interface objects in Interface Builder to code you
use the IBOutlet keyword. IBOutlet stands for Interface Builder
Outlet.

showing and hiding the
software keyboard

The software keyboard of an iOS devices is how a user inputs
text into an app. The system knows when to show and hide the
keyboard depending on what user interface object is the first
responder. The first responder in an app is the first object that has
the option to handle a user interaction.

implementing iBactions Methods that get triggered when a user interaction event occurs
use the IBAction keyword. IBAction stands for Interface Builder
Action.

storing model objects in
NSUserDefaults

There are many ways to save data to persistent storage in an iOS
app. The simplest way is to use NSUserDefaults.

c04.indd 101 31-01-2014 17:20:51

c04.indd 102 31-01-2014 17:20:51

Using Table Views
What you learn in this chapter:

➤➤ Adding a UITableView

➤➤ Creating a data source

➤➤ Editing data in a UITableView

➤➤ Presenting modal views

➤➤ Using segues

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the chapter 05 download and
individually named according to the names throughout the chapter.

In this chapter you learn how to use the UITableView. The UITableView is a little different
from what you would expect a table to be. They consist of a scroll view with single-row cells
instead of a table with multiple columns and rows. A better way to think of them is a scrolling
list of cells.

The UITableView is probably the most used view in iOS applications. This is because of their
versatility. You can use a UITableView and basic UITableViewCells for a standard look and
feel, or you can use a custom UITableViewCell with varying cell heights and content for more
complex user interfaces.

An example of a UITableView using basic UITableViewCells is Apple’s Settings app. You can
see a more complex example in popular apps such as Facebook and Twitter.

5

c05.indd 103 31-01-2014 17:20:57

104 ❘ chapter 5 Using Table Views

Apple has spent a great deal of time thinking through its implementation, so UITableViews can be
used in applications that need to display large data models but need only the visible data in memory.
This makes them scroll and animate smoothly while loading and unloading the model objects.

For the Bands app, you can implement a UITableView using basic UITableViewCells to display all
the bands stored in the application. It will be sectioned by the first letter of the band name and show
those letters as section headers and in the section index. You continue with the Bands project to
enable adding new bands, while also using the UITableView to display the bands you add.

exploring table VieWs

UITableViews have their own delegate, the UITableViewDelegate, to control their appearance
similar to the UITextViewDelegate you worked with in Chapter 4. They also have a data source
protocol, the UITableViewDataSource, which interacts with the data model of the app. Because
UITableViews are so prevalent in iOS applications, Apple supplies a UITableViewController
class, a subclass of UIViewController, which implements the UITableViewDelegate and
UITableViewDataSource along with an IBOutlet to the UITableView. You don’t need to use a
UITableViewController, but it’s much easier than adding all those to another class.

learning about tables
The best way to learn how a UITableView works is to start adding one to your Bands
app. Though you can use just a UITableView as the main view of the app, it’s more com-
mon to use a UINavigationController. This is known as a Master-Detail application.
UINavigationController is a container controller that enables different UIViewControllers
to display within it. It also adds a UINavigationItem at the top of the screen. The
UINavigationItem has the title of the view that displays and some built-in buttons to facilitate
navigation or to interact with the current view. You learn more about the navigation aspects of the
UINavigationController in the Modifying Data section of this chapter.

try it out Adding a UITableView

 1. Open the Bands project in Xcode.

 2. Select the Main.storyboard from the Project Navigator.

 3. Find and drag a new Navigation Controller from the Object library onto the Storyboard, as
shown in Figure 5-1.

 4. Move the arrow pointing to the left side of the View Controller and point it at the Navigation
Controller.

 5. Select the Navigation Item of the Bands List Table View Controller in the Storyboard hierarchy, as
shown in Figure 5-2.

c05.indd 104 31-01-2014 17:20:57

Exploring Table Views ❘ 105

figure 5-1

figure 5-2

c05.indd 105 31-01-2014 17:20:57

106 ❘ chapter 5 Using Table Views

 6. In the Attributes Inspector, change the Title from Root View Controller
to Bands.

 7. Run the app in the iPhone 4-inch simulator. You can now see the table
view, as shown in Figure 5-3.

How It Works

When you add a Navigation Controller from the Object library to a
Storyboard, it has a UITableView set as its root UIViewController by default.
The Storyboard relationship with the two dots and a line signifies this. The
arrow that you moved from the View Controller to the Navigation Controller
tells the Storyboard which scene to initially show when the app launches. By
pointing it at the Navigation Controller, the UITableView is now shown on
launch instead of the View Controller.

Now that you have the UITableView added to the Storyboard, you need to add the
UITableViewController class. When you initially created the project, the View Controller already
had its ViewController class in the project and was connected to the UIView in the Storyboard. For
the UITableView you need to do this manually.

try it out Adding a UITableViewController

 1. From the Xcode menu select File ➪➤New➤➪➤File.

 2. Select the Objective-C class from the dialog, and click Next.

 3. Name the Class WBABandsListTableViewController and set its Subclass to
UITableViewController, as shown in Figure 5-4.

 4. In the next dialog, select the Bands directory where the other class files of the project are located
to keep all the class files of the project together.

 5. Select the Main.storyboard from the Project Navigator.

 6. Select the Table View Controller from the Storyboard hierarchy.

 7. Select the Identity Inspector in the Utilities pane.

 8. Set the Class for the Table View Controller to the WBABandsListTableViewController class you
just created.

 9. Control-drag from the UITableView in the Storyboard to the Bands List Table View Controller in
the Storyboard hierarchy, and set it as the dataSource.

 10. Control-drag again from the UITableView to the Bands List Table View Controller and set it as
the delegate.

figure 5-3

c05.indd 106 31-01-2014 17:20:58

Exploring Table Views ❘ 107

How It Works

When you add a new class to your project in Xcode, you have the opportunity to set what it’s a
subclass of. When you add the WBABand class in Chapter 4, “Creating a User Input Form,” you
created it as a subclass of NSObject. In this Try It Out you add a new class that is a subclass of
UITableViewController. This means your WBABandsListTableViewController has an IBOutlet to
a UITableView and implements the UITableViewDelegate and UITableViewDataSource protocols.
For Xcode to know which class to associate with the UITableView in the Storyboard, you need to
change its Identity to the class you created. Finally, you connect the dataSource and delegate of the
UITableView to the WBABandsListTableViewContoller class. Now when the app runs, it calls your
delegate to get the information it needs to display and control the UITableView.

learning about cells
The UITableViewCell object represents a cell in a UITableView. Unlike the UITableView, though,
they do not have a delegate, and if you use a predefined style for your cell, you won’t need to add a
code file. Predefined cells are versatile, so you should consider using them first before creating a cus-
tom cell.

figure 5-4

c05.indd 107 31-01-2014 17:20:58

108 ❘ chapter 5 Using Table Views

There are four predefined cell styles you can use: basic, left detail, right
detail, and subtitle. All the predefined cells have a textLabel that is a
UILabel and an accessoryView that is a UIView.
The right detail, left detail, and subtitle styles add a UILabel named
detailsTextLabel. The basic, right detail, and subtitles also include a
UIImageView named imageView.

The basic style cell, as shown in Figure 5-5, displays the imageView on
the left. The textLabel is black text left-aligned with the cell, whereas
the accessoryView is aligned on the far right. The accessoryView can
be set using a UIView you define or one of the standard types. In the fol-
lowing figures, the accessoryView uses the standard checkmark type.

The right detail style cell, as shown in Figure 5-6, is the same as the
basic style cell but shows the detailsTextLabel as gray text right-
aligned next to the accessoryView.

The subtitle style cell, as shown in Figure 5-7, is similar to the basic
and right detail styles except it moves the detailsTextLabel under the
textLabel and is black text.

The left detail style cell, as shown in Figure 5-8, is different than the other three. It does not have an
imageView. It also shows the textLabel with blue text that is right-aligned to the first third of the
cell with the details label left-aligned next to it with black text. (Unfortunately, you won’t notice the
color difference on a figure in a black-and-white book, but you get the idea.)

For the Bands app you use a basic cell style.

figure 5-5

figure 5-6 figure 5-7 figure 5-8

c05.indd 108 31-01-2014 17:20:58

Exploring Table Views ❘ 109

Apple spent a good amount of time making sure that cells scroll smoothly. One of the features it
added to accomplish this is cell reuse. This means the system keeps only a handful of cells in mem-
ory and simply changes the data presented instead of creating and deallocating new cells each time
the user scrolls the table.

A UITableView uses methods of the UITableViewDataSource protocol to know how many sections
are in the table, how many rows are in each section as well as getting the actual UITableViewCells to
display. You will implement these methods in the WBATableViewController class in the next Try It Out.

try it out Displaying a UITableViewCell

 1. Select the Main.storyboard from the Project Navigator.

 2. Select the Table View Cell from the Storyboard hierarchy.

 3. Set the Style of the cell to Basic in the Attributes Inspector.

 4. Set the Identifier to Cell.

 5. Select the WBABandsListTableViewController.m file from the Project Navigator.

 6. Find the numberOfSectionsInTableView: method, and change the return value to 1, as shown
in the following code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 // Return the number of sections.
 return 1;
}

 7. Find the tableView:numberOfRowsInSection: method, and change the return value to 10, as
shown in the following code:

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
 // Return the number of rows in the section.
 return 10;
}

 8. Find the tableView:cellForRowAtIndexPath: method, and add the following code:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
[tableView dequeueReusableCellWithIdentifier:CellIdentifier
forIndexPath:indexPath];

 // Configure the cell...
 cell.textLabel.text = [NSString stringWithFormat:@"%d", indexPath.row];

 return cell;
}

c05.indd 109 31-01-2014 17:20:58

110 ❘ chapter 5 Using Table Views

 9. Run the app in the iPhone 4-inch simulator. You can see 10 numbered
cells (0–9) in the table, as shown in Figure 5-9.

How It Works

The UITableView in the Storyboard has a prototype cell associated with it.
The first thing you do is set its style to Basic and its identifier to Cell. Next you
modify three of the UITableViewDataSource protocol methods. The first
is the numberOfSectionsInTableView: method, which tells the UITableView
there is one section. The second, tableView:numberOfRowsInSection:,
tells the UITableView there are 10 rows in that section. The last is the table
View:cellForRowAtIndexPath: method, which dequeues a UITableViewCell
with an identifier of “Cell” if one exists, or creates a new one. The code then
sets the textLabel to the row number of the indexPath. A NSIndexPath
simply has the section number and row number of the cell the table is going to
present.

Note If you run the app and the UITableView does not display
the cells correctly, make sure you have the Identity of the table set to the
WBABandsListTableViewController class and that the dataSource and
delegate are connected correctly.

implementing the bands data source

In the last chapter you added a single WBABand data model object and used NSUserDefaults to store
it. In this section you expand on that by storing as many WBABand objects as the user wants to add
to the app. You also need to keep in mind how the bands will display in the UITableView. This way
you can use the storage as the data source for the table.

creating the band storage
The easiest storage option to use to support sections is an NSMutableDictionary. As described
in Chapter 2, “Introduction to Objective-C,” an NSMutableDictionary is a key/value data stor-
age object. For the Bands storage, the first letter of the bands is the key, and the value is an
NSMutableArray with all the bands that have that first letter.

Because you section the bands by the first letters of their names, it also makes sense to sort them
in alphabetical order. To do this you need a way to compare two bands by their first names. All
subclasses of NSObject have a compare: method. You need to override this method in the WBABand
class to compare bands by their names.

Finally, you also need to implement another NSMutableArray of first letters used. You learn why
in the Implementing Sections and Index section of this chapter, but it makes sense to implement the
code for it now while adding the code for the WBABand data storage in the following Try It Out.

figure 5-9

c05.indd 110 31-01-2014 17:20:59

Implementing the Bands Data Source ❘ 111

try it out Adding Band Object Storage

 1. Select the WBABand.m file from the Project Navigator, and add the following code to the
implementation:

- (NSComparisonResult)compare:(WBABand *)otherObject
{
 return [self.name compare:otherObject.name];
}

 2. Select the WBABandsListTableViewController.h file from the Project Navigator, and add the
following code:

@class WBABand;
@interface WBABandsListTableViewController : UITableViewController

@property (nonatomic, strong) NSMutableDictionary *bandsDictionary;
@property (nonatomic, strong) NSMutableArray *firstLettersArray;

- (void)addNewBand:(WBABand *)WBABand;
- (void)saveBandsDictionary;
- (void)loadBandsDictionary;

@end

 3. Select the WBABandsListTableViewController.m file from the Project Navigator.

 4. Add the WBABand.h file to the imports with the following code:

#import "WBABand.h"

 5. Add the following code before the implementation:

static NSString *bandsDictionarytKey = @"BABandsDictionarytKey";

 6. Add the following code to the implementation:

- (void)addNewBand:(WBABand *)bandObject
{
 NSString *bandNameFirstLetter = [bandObject.name substringToIndex:1];
 NSMutableArray *bandsForLetter = [self.bandsDictionary
objectForKey:bandNameFirstLetter];

 if(!bandsForLetter)
 bandsForLetter = [NSMutableArray array];

 [bandsForLetter addObject:bandObject];
 [bandsForLetter sortUsingSelector:@selector(compare:)];
 [self.bandsDictionary setObject:bandsForLetter forKey:bandNameFirstLetter];

 if(![self.firstLettersArray containsObject:bandNameFirstLetter])
 {
 [self.firstLettersArray addObject:bandNameFirstLetter];
 [self.firstLettersArray sortUsingSelector:@selector(compare:)];

c05.indd 111 31-01-2014 17:20:59

112 ❘ chapter 5 Using Table Views

 }

 [self saveBandsDictionary];
}

- (void)saveBandsDictionary
{
 NSData *bandsDictionaryData = [NSKeyedArchiver
archivedDataWithRootObject:self.bandsDictionary];
 [[NSUserDefaults standardUserDefaults] setObject:bandsDictionaryData
forKey:bandsDictionarytKey];
}

- (void)loadBandsDictionary
{
 NSData *bandsDictionaryData = [[NSUserDefaults standardUserDefaults]
objectForKey:bandsDictionarytKey];

 if(bandsDictionaryData)
 {
 self.bandsDictionary = [NSKeyedUnarchiver
unarchiveObjectWithData:bandsDictionaryData];
 self.firstLettersArray = [NSMutableArray
arrayWithArray:self.bandsDictionary.allKeys];
 [self.firstLettersArray sortUsingSelector:@selector(compare:)];
 }
 else
 {
 self.bandsDictionary = [NSMutableDictionary dictionary];
 self.firstLettersArray = [NSMutableArray array];
 }
}

 7. Modify the viewDidLoad method with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self loadBandsDictionary];
}

How It Works

The first code you implement overrides the compare: method for the WBABand class to compare two
instances using the name property. Next, you declare the NSMutableDictionary to hold all the bands
and the NSMutableArray for the first letters of the band names. You also declare the methods for add-
ing, saving, and loading the bands from NSUserDefaults.

In the implementation of the addNewBand: method, you get the first letter of the band name using the
substring method. Next, you look in the dictionary to see if you already have a band with that first
letter. If so, you would find an NSMutableArray for the letter. If not, you create a new one. You then
add the band to the array and sort it. You then look for the first letter in the firstLettersArray. If it
is not there, you add it in and then sort that array as well.

c05.indd 112 31-01-2014 17:20:59

Implementing the Bands Data Source ❘ 113

Finally, you add code to save and retrieve the dictionary to NSUserDefaults. The code to do this is the
same as when you save a single WBABand instance, because the WBABand class implements the NSCoding
protocol, as does the NSMutableDictionary.

adding bands
In the last chapter you built the user interface for adding a band. The scene is no longer visible,
though, since adding the Navigation Controller to the project. Instead you can present it from
the WBABandsListTableViewController. The user will tap a button you will place on the
UINavigationItem when they want to add a new band.

First you need to make some modifications to the ViewController class, starting with renaming it
following the Apple naming conventions. Xcode makes this easy using its Refactor feature.

try it out Renaming a Class Using Xcode Refactoring

 1. Select the ViewController.h class from the Project Navigator.

 2. Right click on the ViewController class name to bring up the context menu as shown in
Figure 5-10 and select Refactor ➪➤Rename…

 3. Rename the class WBABandDetailsViewController and click Preview.

 4. Review the changes then click Save.

figure 5-10

c05.indd 113 31-01-2014 17:20:59

114 ❘ chapter 5 Using Table Views

 5. Xcode will prompt you to enable snapshots, which are a lightweight type of version control.
Whether or not you want to use them is up to you.

 6. Compile the project and verify there are no errors.

How It Works

The refactor feature in Xcode is very handy. Renaming a class can be tricky, since you need to find
every place in the project where the name is used and change it. The Refactor feature finds all of them
for you. You can see how many places are being changed in the preview before you click Save.

Snapshots in Xcode give you a way to rollback the entire project should the refactoring go wrong.
The decision to use them is up to you. If you are not using any other type of source control like Git or
Mercurial, then you should use them.

Note The AppDelegate class should also be renamed to WBAAppDelegate.
You won’t be modifying any code in this class, but the sample code does have
it renamed.

Changing the name of the class to WBABandDetailsViewController also changes how its scene
appears in the Storyboard. With multiple scenes in a Storyboard, Interface Builder uses the dock of
each to show a friendly name, as shown in Figure 5-11. This book will use these friendly names to refer
to different scenes in the Storyboard for readability. For example the Band Details View Controller will
be referred to as the Band Details scene.

figure 5-11

c05.indd 114 31-01-2014 17:20:59

Implementing the Bands Data Source ❘ 115

The next step is to clean up the code and add a Save button to the Band Details scene. There is
no longer a need to store just a single WBABand instance in NSUserDefaults, so that code can be
removed. You also need a way to tell the WBATableViewController that users want to save the new
band they just added.

try it out Cleaning Up the WBABandDetailsViewController

 1. Select the Main.storyboard from the Project Navigator.

 2. In the Band Details View Controller move the Delete UIButton to be aligned with the right
guideline of the UIView.

 3. Drag a new UIButton onto the view, set its text to Save, and align it with the Delete UIButton
and the left guideline of the view, as shown in Figure 5-12.

figure 5-12

 4. Add an auto layout constraint to anchor the Save UIButton to the bottom of the UIView.

 5. Select the WBABandDetailsViewController.h file from the Project Navigator, and add the fol-
lowing code:

@interface WBABandDetailsViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate, UIActionSheetDelegate>

@property (nonatomic, strong) WBABand *bandObject;

c05.indd 115 31-01-2014 17:20:59

116 ❘ chapter 5 Using Table Views

@property (nonatomic, weak) IBOutlet UILabel *titleLabel;
@property (nonatomic, weak) IBOutlet UITextField *nameTextField;
@property (nonatomic, weak) IBOutlet UITextView *notesTextView;
@property (nonatomic, weak) IBOutlet UIButton *saveNotesButton;
@property (nonatomic, weak) IBOutlet UIStepper *ratingStepper;
@property (nonatomic, weak) IBOutlet UILabel *ratingValueLabel;
@property (nonatomic, weak) IBOutlet UISegmentedControl
*touringStatusSegmentedControl;
@property (nonatomic, weak) IBOutlet UISwitch *haveSeenLiveSwitch;
@property (nonatomic, assign) BOOL saveBand;

- (IBAction)saveNotesButtonTouched:(id)sender;
- (IBAction)ratingStepperValueChanged:(id)sender;
- (IBAction)tourStatusSegmentedControlValueChanged:(id)sender;
- (IBAction)haveSeenLiveSwitchValueChanged:(id)sender;
- (IBAction)deleteButtonTouched:(id)sender;
- (IBAction)saveButtonTouched:(id)sender;

- (void)saveBandObject;
- (void)loadBandObject;
- (void)setUserInterfaceValues;

@end

 6. Remove the following lines from the interface:

- (void)saveBandObject;
- (void)loadBandObject;

 7. Select the WBABandDetailsViewController.m file from the Project Navigator, and add the
 following code to the implementation:

- (IBAction)saveButtonTouched:(id)sender
{
 if(self.bandObject.name && self.bandObject.name.length > 0)
 {
 self.saveBand = YES;
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 else
 {
 UIAlertView *noBandNameAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:@"Please supply a name for the band"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [noBandNameAlertView show];
 }
}

 8. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {

c05.indd 116 31-01-2014 17:21:00

Implementing the Bands Data Source ❘ 117

 self.bandObject = nil;
 self.saveBand = NO;

 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

 9. Remove the saveBandObject and loadBandObject methods along with all calls to those methods
throughout the implementation.

 10. Select the Main.storyboard from the Project Navigator.

 11. Connect the Save UIButton to the saveButtonTouched: method you added to the
WBABandDetailsViewController.

How It Works

In the Storyboard you added a Save UIButton to the Band Details scene. In the
WBABandDetailsViewController class you declared a new boolean named saveBand as well as a new
IBAction method named saveButtonTouched:,which you then connected to the Save UIButton.
When users tap Save, this method validates that the bandObject has a name then sets the saveBand
flag to TRUE before calling dismissViewControllerAnimated:completion:, which does nothing at
this point but will dismiss the view after you complete the next Try It Out. If the bandObject does not
have a name, the code uses a UIAlertView to tell users that a name is required.

The code is now ready. The last step is presenting the Band Details scene from the Bands List.
In iOS apps it is customary to use a UIBarButtonItem with the + icon to add new data. You use
UIBarButtonItem when adding buttons to a UINavigationItem. The Bands app will use this
approach in the following Try It Out.

try it out Adding Band Objects

 1. Select the Main.storyboard from the Project Navigator.

 2. Drag a new Bar Button Item from the Object library to the left side of the UINavigationItem.

 3. In the Attributes Inspector, change the button style to Add, which changes the icon to a +, as
shown in Figure 5-13.

 4. Select the Band Details scene.

 5. In the Identity Inspector, set the Storyboard ID to bandDetails.

 6. Select the WBABandsListTableViewController.h file from the Project Navigator, and add the
following code:

@class WBABand, WBABandDetailsViewController;
@interface WBABandsListTableViewController : UITableViewController

@property (nonatomic, strong) NSMutableDictionary *bandsDictionary;
@property (nonatomic, strong) NSMutableArray *firstLettersArray;

c05.indd 117 31-01-2014 17:21:00

118 ❘ chapter 5 Using Table Views

@property (nonatomic, strong) WBABandDetailsViewController
*bandDetailsViewController;

- (void)addNewBand:(WBABand *)bandObject;
- (void)saveBandsDictionary;
- (void)loadBandsDictionary;

- (IBAction)addBandTouched:(id)sender;

@end

 7. Select the WBABandsListTableViewController.m file from the Project Navigator.

 8. Add the WBABandDetailsViewController.h file to the imports with the following code:

#import "WBABandsListTableViewController.h"
#import "WBABand.h"
#import "WBABandDetailsViewController.h"

 9. Add the following code to the implementation:

- (void)viewWillAppear:(BOOL)animated
{

figure 5-13

c05.indd 118 31-01-2014 17:21:00

Implementing the Bands Data Source ❘ 119

 [super viewWillAppear:animated];

 if(self.bandDetailsViewController && self.bandDetailsViewController.saveBand)
 {
 [self addNewBand:self.bandDetailsViewController.bandObject];
 self.bandDetailsViewController = nil;
 }
}

- (IBAction)addBandTouched:(id)sender
{
 UIStoryboard *mainStoryboard = [UIStoryboard storyboardWithName:@"Main"
bundle:nil];
 self.bandDetailsViewController = (WBABandDetailsViewController *)
[mainStoryboard instantiateViewControllerWithIdentifier:@"bandDetails"];

 [self presentViewController:self.bandDetailsViewController animated:YES
completion:nil];
}

 10. Select the Main.storyboard from the Project Navigator.

 11. Connect the Add button to the addBandTouched: method you added to the
WBABandsListTableViewController.

 12. Run the app in the iPhone 4-inch simulator. When you tap the Add button, the Band Details scene
displays.

How It Works

The first thing you do is add a button to the UINavigationItem. A UINavigationItem has both a left
and a right button. Typically, the left button is used for navigating back up the navigation stack, but
because this is the root UIViewController, you can use the left button for adding bands.

The main lesson is how to show and dismiss a modal view. You first set the Storyboard identity of the
Band Details scene. In the addBandTouched: method you use an instance of the Storyboard and the
scenes Storyboard ID to initialize a copy of the WBABandDetailsViewController. You set it as a prop-
erty of the WBABandsListTableViewController to get to the bandObject after the view is dismissed.
Finally, you use presentViewController:animated: and dismissViewControllerAnimated: to
show and hide the band info view.

displaying bands
Now that you have implemented the Bands data source along with a way to add new bands, it’s time
to display the bands in the UITableView. Most of the hard work is done. You just need to modify
the UITableViewDataSource methods to use the Bands dictionary and reload the UITableView
data when a new band is added.

c05.indd 119 31-01-2014 17:21:00

120 ❘ chapter 5 Using Table Views

try it out Displaying Band Names

 1. Select the WBABandsListTableViewController.m file from the Project Navigator.

 2. Modify the numberOfSectionsInTableView: method with the following code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 // Return the number of sections.
 return self.bandsDictionary.count;
}

 3. Modify the tableView:numberOfRowsInSection: method with the following code:

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
 // Return the number of rows in the section.
 NSString *firstLetter = [self.firstLettersArray objectAtIndex:section];
 NSMutableArray *bandsForLetter = [self.bandsDictionary
objectForKey:firstLetter];
 return bandsForLetter.count;
}

 4. Modify the tableView:cellForRowAtIndexPath: method with the following code:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier forIndexPath:indexPath];

 NSString *firstLetter = [self.firstLettersArray
objectAtIndex:indexPath.section];
 NSMutableArray *bandsForLetter = [self.bandsDictionary
objectForKey:firstLetter];
 WBABand *bandObject = [bandsForLetter objectAtIndex:indexPath.row];

 // Configure the cell...
 cell.textLabel.text = bandObject.name;

 return cell;
}

 5. Modify the viewWillAppear: method with the following code:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 if(self.bandDetailsViewController)
 {
 if(self.bandDetailsViewController.saveBand)

c05.indd 120 31-01-2014 17:21:00

Implementing Sections and Index ❘ 121

 {
 [self addNewBand:self.bandDetailsViewController.bandObject];
 [self.tableView reloadData];
 }
 self.bandDetailsViewController = nil;
 }
}

 6. Run the app in the iPhone 4-inch simulator. When you add a new
band, it displays in the table, as shown in Figure 5-14.

How It Works

The UITableViewDataSource methods use an NSIndexPath to refer
to rows in the table. An NSIndexPath has a section and row num-
ber. NSMutableDictionary is a key/value collection, not a sorted set,
so it doesn’t have an objectAtIndex: method you can use with an
NSIndexPath. Because of this you need to use the firstLetterArray to
get the correct key to use with the Bands dictionary. It may seem like more
work than it’s worth, but the firstLetterArray is also used to implement
section headers and the index, so it’s worth the effort.

In the code you modify the numberOfSectionsInTableView: to return the
number of items in the Bands dictionary. In the tableView:numberOfRows
InSection: method, you use the section number to get the correct key from the firstLettersArray,
then use that key to get the bands array for that key, and use its count for the number of rows. The tab
leView:cellForRowAtIndexPath: is modified to also use the section to get the correct key from the
firstLettersArray. You then use the row of the index path to get the correct WBABand instance to
configure the cell with.

Finally, you add a viewWillAppear: method to the WBATableViewController. This method is part of
the UIViewControllerDelegate and gets called when the view is about to appear. In the Bands app it
is called when the app first starts but also after the WBABandDetailsViewController is dismissed. To
know which occurred, you look at the bandDetailsViewController property you set prior to present-
ing the WBABandDetailsViewController. If it’s set, you check if the user tapped Save by looking at the
saveBand property. If true, you save the new bandObject and reload the tableView. Finally, you set
the bandDetailsViewController to nil, so the save code is not triggered twice by accident.

implementing sections and index

As users of the Bands app add more and more bands, it becomes harder to find the band they want
in the UITableView. To help them out you’ve already alphabetically ordered the bands. Adding
sections and the section index can help as well. The sections break up the bands visually while the
index gives the user a shortcut to jump to the different sections.

figure 5-14

c05.indd 121 31-01-2014 17:21:00

122 ❘ chapter 5 Using Table Views

adding section headers
Section headers are simple to add because of the data storage architecture you imple-
mented using both the dictionary and the first letters array. There is a single method in the
UITableViewDataSource protocol, which returns the section header for the section.

try it out Displaying First Letter Section Headers

 1. Select the WBABandsListTableViewController.m file from the
Project Navigator.

 2. Add the following code to the implementation:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 return [self.firstLettersArray objectAtIndex:section];
}

 3. Run the app in the iPhone 4-inch simulator. You see section headers
corresponding to the first letters of the band names, as shown in
Figure 5-15.

How It Works

As the UITableView is loaded and scrolled, it calls its data source and looks
for header titles for each section using the tableView:titleForHeaderIn
Section: method. Your code simply returns the letter in the
firstLettersArray at the index matching the section number.

showing the section index
The section index is slightly more complicated because you need to supply both the titles for the
index and the section that corresponds with the title. You need to implement two more methods of
the UITableViewDataSource to accomplish this.

try it out Displaying First Letter Section Index

 1. Select the WBABandsListTableViewController.m file from the Project Navigator.

 2. Add the following code to the implementation:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView
{
 return self.firstLettersArray;
}

- (int)tableView:(UITableView *)tableView sectionForSectionIndexTitle:

figure 5-15

c05.indd 122 31-01-2014 17:21:00

Editing Table Data ❘ 123

(NSString *)title atIndex:(NSInteger)index
{
 return [self.firstLettersArray indexOfObject:title];
}

 3. Run the app in the iPhone 4-inch simulator. You see the section index on the right side of the
UITableView, as shown in Figure 5-16.

figure 5-16

How It Works

The first method you implement is sectionIndexTitlesForTableView. This method tells the
UITableView what strings to put in the index. The tableView:sectionForSectionIndexTitle:
method tells the UITableView what section to jump to based on the title in the index that was touched.

editing table data

UITableView also give you a way to edit the underlying data source. You can control which rows
are editable along with the type of editing that can be done. The most used is deleting data, but you
could also give your user a way to reorder the data in the data model. Because the Band app dis-
plays the band names alphabetically, it doesn’t make sense to allow the user to move cells around.

c05.indd 123 31-01-2014 17:21:01

124 ❘ chapter 5 Using Table Views

Deleting a band does make sense, though. To do this you need to enable edit mode for both the table
and each individual row.

enabling edit mode
UITableView has an edit mode built in. UITableViewController also has a built-in button you
can add to the UINavigationItem to toggle into edit mode named editButtonItem. Since the
WBABandsListTableViewController is a subclass of the UITableViewController, you can access
the editButtonItem from self.

When a table goes into edit mode, it asks its delegate which rows are editable. You can control
which rows are editable by implementing the tableView:canEditRowAtIndexPath: method. If this
method is not implemented, the table will not allow any of the rows to be editable.

try it out Implementing the Allow Edit Method

 1. Select the WBABandsListTableViewController.m file from the Project Navigator.

 2. Add the following code to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self loadBandsDictionary];

 self.navigationItem.rightBarButtonItem = self.editButtonItem;
}

 3. Add the following method to the implementation:

- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:
(NSIndexPath *)indexPath
{
 return YES;
}

 4. Run the app in the iPhone 4-inch simulator. When you tap the Edit but-
ton, you see the delete option in each cell next to the band name, as
shown in Figure 5-17.

How It Works

When the view is loaded, the code you add sets the right button of the UINavigationItem to the
editButtonItem built into the UITableViewController. The tableView:canEditRowAtIndexPath:
always returns YES, meaning that all rows in the UITableView are editable.

figure 5-17

c05.indd 124 31-01-2014 17:21:01

Editing Table Data ❘ 125

deleting cells and data
You probably noticed that when the UITableView goes into edit mode and you attempt to
delete a row, nothing happens. This is because you need to implement one last method of the
UITableViewDelegate, the tableView:commitEditingStyle:forRowAtIndexPath: method.

try it out Implementing the Commit Edit Method

 1. Select the WBABandsListTableViewController.h file from the Project Navigator, and add the
following code to the interface:

@class WBABand, WBABandDetailsViewController;
@interface WBABandsListTableViewController : UITableViewController

@property (nonatomic, strong) NSMutableDictionary *bandsDictionary;
@property (nonatomic, strong) NSMutableArray *firstLettersArray;
@property (nonatomic, strong) WBABandDetailsViewController
*bandDetailsViewController;

- (void)addNewBand:(WBABand *)bandObject;
- (void)saveBandsDictionary;
- (void)loadBandsDictionary;
- (void)deleteBandAtIndexPath:(NSIndexPath *)indexPath;

- (IBAction)addBandTouched:(id)sender;

@end

 2. Select the WBABandsListTableViewController.m file from the Project Navigator, and add the
following methods to the implementation:

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete)
 {
 [self deleteBandAtIndexPath:indexPath];
 }
}

- (void)deleteBandAtIndexPath:(NSIndexPath *)indexPath
{
 NSString *sectionHeader = [self.firstLettersArray
objectAtIndex:indexPath.section];
 NSMutableArray *bandsForLetter = [self.bandsDictionary
objectForKey:sectionHeader];
 [bandsForLetter removeObjectAtIndex:indexPath.row];

 if(bandsForLetter.count == 0)
 {
 [self.firstLettersArray removeObject:sectionHeader];
 [self.bandsDictionary removeObjectForKey:sectionHeader];
 [self.tableView deleteSections:

c05.indd 125 31-01-2014 17:21:01

126 ❘ chapter 5 Using Table Views

[NSIndexSet indexSetWithIndex:indexPath.section]
withRowAnimation:UITableViewRowAnimationFade];
 }
 else
 {
 [self.bandsDictionary setObject:bandsForLetter forKey:sectionHeader];
 [self.tableView deleteRowsAtIndexPaths:@[indexPath]
withRowAnimation:UITableViewRowAnimationFade];
 }

 [self saveBandsDictionary];
}

How It Works

In the implementation you first look to see if the editing style is a delete. If it is you call the
deleteBandAtIndexPath: method. It uses the indexPath to again get the key to the bandsForLetter
array. It then removes the WBABand instance by calling the removeObjectAtIndex: method using the
row of the indextPath. Next, you check to see if there are any bands left for the first letter. If there
are no more bands, you delete the entire section from the table. If there are, you delete only the row in
the section.

WarNiNg It is very important to delete the section and not just the row if
there are no more bands for that letter. Failing to do so leaves a section in the
UITableView with no rows. This will cause the app to crash. Also be sure to
make all the changes to the data source prior to deleting the section or the
row. The app will crash in that situation as well.

modifying data
Users of the Bands app will want to modify band info along with adding and deleting it. The best
way to do this is to show the Band Details scene when the user taps the band name in
the UITableView. You can implement a segue in the Storyboard to do this.

A segue is a way of transitioning from one view to the next. Modal and push segues are the two
most common. A modal segue presents the view over the parent view, the same as using
presentViewController:animated:completion:, as you did with the Add button. You could have
used a segue for this, but learning how to present and dismiss views in code is a valuable lesson.

A push segue can be used with a UINavigationController. The view slides in from the right
and adds a UINavigationItem to the top of the view with a back button, which enables the user
to return to the parent UIViewController. It does this by using a navigation stack. As you segue
from one UIViewController to the next, the UIViewControllers get pushed onto the naviga-
tion stack. The back button pops each UIViewController off until you get back to the root
UIViewController. This makes it easy for users to know where they are in the app. Storyboards
make it easy for you as the developer to visualize how the user can navigate through the app.

c05.indd 126 31-01-2014 17:21:01

Editing Table Data ❘ 127

try it out Implementing a Push Segue

 1. Select the Main.storyboard from the Project Navigator.

 2. In the Band Details scene, move all the subviews down 20 pixels except for the Save and Delete
buttons.

 3. Control-drag from the prototype cell to the Band Details scene, and select Push from the segue
pop-up menu that appears. The segue is represented by an arrow from the Bands List scene to the
Band Details scene. The Band Details scene also now has a UINavigationItem.

 4. Select the UINavigationItem and set its title to Band in the Attributes Inspector.

 5. Select the WBABandsListTableViewController.h file from the Project Navigator, and add the
following code to the interface:

@class WBABand, WBABandDetailsViewController;
@interface WBABandsListTableViewController : UITableViewController

@property (nonatomic, strong) NSMutableDictionary *bandsDictionary;
@property (nonatomic, strong) NSMutableArray *firstLettersArray;
@property (nonatomic, strong) WBABandDetailsViewController
*bandDetailsViewController;

- (void)addNewBand:(WBABand *)bandObject;
- (void)saveBandsDictionary;
- (void)loadBandsDictionary;
- (void)deleteBandAtIndexPath:(NSIndexPath *)indexPath;
- (void)updateBandObject:(WBABand *)bandObject
atIndexPath:(NSIndexPath *)indexPath;

- (IBAction)addBandTouched:(id)sender;

@end

 6. Select the WBABandsListTableViewController.m file from the Project Navigator.

 7. Add the following code to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];

 [self loadBandsDictionary];

 self.navigationItem.rightBarButtonItem = self.editButtonItem;
 self.clearsSelectionOnViewWillAppear = NO;
}

 8. Modify the viewWillAppear: method with the following code:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 if(self.bandDetailsViewController)

c05.indd 127 31-01-2014 17:21:01

128 ❘ chapter 5 Using Table Views

 {
 NSIndexPath *selectedIndexPath = [self.tableView indexPathForSelectedRow];

 if(self.bandDetailsViewController.saveBand)
 {
 if(selectedIndexPath)
 {
 [self updateBandObject:self.bandDetailsViewController.bandObject
atIndexPath:selectedIndexPath];
 [self.tableView deselectRowAtIndexPath:selectedIndexPath
animated:YES];
 }
 else
 [self addNewBand:self.bandDetailsViewController.bandObject];
 [self.tableView reloadData];
 }
 else if (selectedIndexPath)
 {
 [self deleteBandAtIndexPath:selectedIndexPath];
 }

 self.bandDetailsViewController = nil;
 }
}

 9. Add the following methods to the implementation:

- (void)updateBandObject:(WBABand *)bandObject
atIndexPath:(NSIndexPath *)indexPath
{
 NSIndexPath *selectedIndexPath = [self.tableView indexPathForSelectedRow];
 NSString *sectionHeader = [self.firstLettersArray
objectAtIndex:selectedIndexPath.section];
 NSMutableArray *bandsForSection = [self.bandsDictionary
objectForKey:sectionHeader];
 [bandsForSection removeObjectAtIndex:indexPath.row];
 [bandsForSection addObject:bandObject];
 [bandsForSection sortUsingSelector:@selector(compare:)];
 [self.bandsDictionary setObject:bandsForSection forKey:sectionHeader];
 [self saveBandsDictionary];
}

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 NSIndexPath *selectedIndexPath = [self.tableView indexPathForSelectedRow];
 NSString *sectionHeader = [self.firstLettersArray
objectAtIndex:selectedIndexPath.section];
 NSMutableArray *bandsForSection = [self.bandsDictionary
objectForKey:sectionHeader];
 WBABand *bandObject = [bandsForSection objectAtIndex:selectedIndexPath.row];
 self.bandDetailsViewController = segue.destinationViewController;
 self.bandDetailsViewController.bandObject = bandObject;
 self.bandDetailsViewController.saveBand = YES;
}

 10. Select the WBABandDetailsViewController.m file from the Project Navigator.

c05.indd 128 31-01-2014 17:21:01

Editing Table Data ❘ 129

 11. Modify the saveButtonTouched: method with the following code:

- (IBAction)saveButtonTouched:(id)sender
{
 if(!self.bandObject.name || self.bandObject.name.length == 0)
 {
 UIAlertView *noBandNameAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:@"Please supply a name for the band"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [noBandNameAlertView show];
 }
 else
 {
 self.saveBand = YES;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

 12. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
}

 13. Run the app in the iPhone 4-inch simulator. You can now see the accessoryView for each row is
set to a chevron. When a row is selected, you can segue to the Band Details scene with all the UI
objects set according to the bandObject.

How It Works

By Control-dragging from the prototype cell to the Band Details scene, you create a segue. When the
app runs, tapping a cell starts the segue, which first calls the prepareForSegue:sender: method. In
this method you get the NSIndexPath of the selected row in the tableView and set the bandObject of
the WBABandDetailsViewController with the bandObject in the data source.

In the WBABandDetailsViewController, you change how it is dismissed based on if it has a
UINavigationController. If it does, you call popViewControllerAnimated: to return back to the
WBABandsListViewController. When it appears, it looks to see if it has a row selected. If it does, it
knows to either update a band if saveBand is true or delete the band if not.

c05.indd 129 31-01-2014 17:21:01

130 ❘ chapter 5 Using Table Views

summary

UITableViews are powerful. They can show a lot of data in a scrollable view and enable the
user to edit that data. Apple has given you many tools to do these actions. You learned how
to add a UITableView to a Storyboard and set up its UITableViewController identity class,
UITableViewDataSource, and UITableViewDelegate. You modified the Bands app to give it the
ability to store many WBABand instances in the data model and display them in the new Bands List
scene. You also learned how to use the UINavigationItem of a UINavigationController to add
data to the Bands app, enable edit mode to delete the data, and to segue from the Bands List scene to
the Band Details scene. With the UITableView as the main scene of the app that segues to a details
scene, you have transitioned the Bands app from a Single View Application to a Master-Details
application.

exercises

 1. What is the difference between the UITableViewDataSource protocol and the
UITableViewDelegate protocol?

 2. What are the four built-in UITableViewCell styles?

 3. Modify the UITableViewCell to a right detail style, and show the band rating as the
detailTextLabel.

 4. What method can you use to show a UIViewController that animates up from the bottom of
the bottom of the screen?

 5. What is the UIKit object that is added to the top of each UIView when using a
UINavigationController?

 6. What type of segue is used to transition between the Bands List scene and the Band Details
scene?

c05.indd 130 31-01-2014 17:21:01

Summary ❘ 131

 ➤ What you learned in this chapter

topic Key concepts

UITableView The UITableView is one of the most important views in iOS
development. It’s a scrollable list of cells that can show all of the
objects in your data model. The Bands app uses one to show all
of the bands the user has added to the app.

UITableViewCell Each row in a UITableView is represented by a UITableView
Cell. They can have a custom design you create, or you can use
one of the standard cell styles provided by Apple.

UITableViewDataSource The UITableView gets the data from the data model via its
controller using the UITableViewDataSource protocol. You
use this to tell the table how many sections it has and how
many rows are in each section, as well as create the actual
UITableViewCells to display.

UITableViewDelegate Users can edit the data model of an application from within a
UITableView. When in edit mode users can move or delete
rows. When this happens the table will communicate with its
controller using the UITableViewDelegate protocol.

UINavigationController The UINavigationController allows your application to push
or pop new views onto the navigation stack using segues. When
you use it with a UITableView, you can transition from the list of
data model objects to the details of a single object.

c05.indd 131 31-01-2014 17:21:01

c05.indd 132 31-01-2014 17:21:01

Integrating the Camera and
Photo Library in iOS Apps

What you learn in this chapter:

➤➤ Taking pictures with the camera

➤➤ Importing pictures from the Photo Library

➤➤ Using gesture recognizers for advanced user interactions

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/begios
programming on the Download Code tab. The code is in the chapter 06 download and indi-
vidually named according to the names throughout the chapter.

Even before the iPhone came onto the market in 2007, camera phones were already gaining in
popularity. Digital cameras had been around for a while and were far superior to any camera
phone on the market, so many people owned both. This continued even after the release of the
first iPhone, iPhone 3G, and iPhone 3GS. It began to change with improvements to the built-in
camera in the iPhone 4. Photo-sharing services started releasing data showing that the most
popular camera used to take pictures was the iPhone 4. Today, the camera on a smartphone
has become one of the top selling points, with manufacturers building far superior cameras
than digital cameras produced as recently as a few years ago.

Pictures can also add to the usability of an app. The Contacts app from Apple is a good exam-
ple of this. When you add contacts, you have the option to assign a picture to them. When
you receive a phone call from contacts, their picture displays on the screen. In the old days of
landlines and caller ID, you needed to have the phone number of a person memorized to know
who was calling. That eventually evolved to showing the name of the person or business the
number was registered to, but that still involved reading. Glancing at your phone and seeing
the face of the person who is calling can speed up recognition.

6

c06.indd 133 31-01-2014 17:21:06

134 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

The Bands app adopts this idea by adding an optional picture to each band. Users can choose a
 picture from the photo library or take a picture with the camera. To implement this, you learn not
only how to use the camera, but also how to add a UIImageView to the user interface and create
 gesture recognizers so that the user can interact with it.

adding an image VieW and gesture recognizer

Before you add the code to choose or take pictures, first you need to add a place to display the image
in the Band Details scene and give users a way to interact with it to set it. In iOS, images display
using a UIImageView. As its name implies, a UIImageView is a subclass of UIView that displays an
image. In code a UIImage represents the image. A UIImage can be a jPEG, a bitmap, a TIff, an
icon, a Windows cursor, or a PNG. Though not officially documented, the PNG format is the pre-
ferred format because it is a lossless format. This makes the image appear vivid on retina display
devices.

Images and pictures come in an endless array of sizes. UIViews have a mode attribute that dictates
how their contents display. If the content of the UIView is larger than the UIView, the system uses
the mode to determine how to adjust the aspect ratio of the content. Because UIImageView is a sub-
class of UIView, it uses this mode to determine how to resize the image. following are the modes:

➤➤ Scale to Fill — Setting the mode to Scale to fill alters the aspect ratio of the image to fill the
entire UIImageView. This can result in images looking distorted.

➤➤ Aspect Fit — The Aspect fit mode keeps the same aspect ratios of the original image but
resizes it so the entire image displays in the UIImageView. This can result in parts of the
UIImageView being empty.

➤➤ Aspect Fill — The Aspect fill mode also resizes the image but ensures there is no empty
space. This can result in parts of the image being outside the bounds of the UIImageView
and therefore not shown.

➤➤ Center — Center mode does not resize the image and simply centers the image in the
UIImageView. With pictures taken from the camera, this can result in large portions of the
picture not being shown.

for the Bands app you can use the Aspect fit mode so that the entire picture is always visible.

The UIView class also has a userInteractionEnabled property that tells the system if the user
can interact with it through touches. A UIView that has this property set to false never recognize
touches. for example, a UIButton with an IBAction connected to it can never trigger the action if
its userInteractionEnabled property is false. By default, a UIImageView has this attribute set
to false.

enabling user interactions with a uiimageView
The Bands app can have an optional picture the user can set for each band. The first step in adding
this functionality is to add a UIImageView to the Band Details scene. Because a UIImageView does
not allow user interaction by default, you also need to set its userInteractionEnabled property to
true. This is a simple check box in Interface Builder, as you see in the following Try It Out.

c06.indd 134 31-01-2014 17:21:07

Adding an Image View and Gesture Recognizer ❘ 135

try it out Adding an Image View

 1. Select the Main.storyboard from the Project Navigator.

 2. In the Band Details scene, move the Name UILabel to the right 70 pixels to make room for the
UIImageView.

 3. Resize the Name UITextField to be 210 pixels and aligned with the Name UILabel to finish
making room for the UIImageView.

 4. Drag a new Image View from the Object library onto the view, and set its size to be 64 pixels by
64 pixels.

 5. Align it with the left guideline of the UIView and the top of the Name UILabel, and set its back-
ground color to light gray.

 6. Set the Mode of the UIImageView to Aspect fit in the Attributes Inspector.

 7. Check the Allow User Interaction box in the Attributes Inspector.

 8. Drag a new UILabel onto the view, and set its boundaries to be the same as the UIImageView.

 9. In the Attributes Inspector, change its text to Add Photo, its alignment to Center using the center
alignment button, and the number of lines to 2, as shown in figure 6-1.

figure 6-1

 10. Select the WBABandDetailsViewController.h file from the Project Navigator, and add IBOutlet
properties for the UIImageView and UILabel using the following code:

c06.indd 135 31-01-2014 17:21:07

136 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

@property (nonatomic, assign) IBOutlet UIImageView *bandImageView;
@property (nonatomic, assign) IBOutlet UILabel *addPhotoLabel;

 11. Open the Storyboard again and connect the bandImageView and addPhotoLabel properties in
the WBABandDetailsViewController to the UIImageView and UILabel.

How It Works

What you did was make room for and then add the UIImageView you can use to not only display the
picture for the band but also to set it. You also set its mode to Aspect fit, so the entire picture displays.
When checked, the User Interaction Allowed property in the Attributes Inspector sets the enable
UserInteraction property of the UIImageView to true. This allows the UIImageView to accept
touches from users. The default background for a UIImageView whose image property is not set is
transparent. You change it to light gray so that the users know there is a user interface object there.
finally, you added a UILabel over the top of the UIImageView. The text for the label, “Add Photo,” lets
the users know it’s a UIImageView and that they can interact with it. The text is the same as what users
see in the Contacts app. Using the same text enables the users to easily recognize the purpose of that
part of the user interface.

learning about gesture recognizers
In previous chapters, you used IBActions to respond when the user taps various user interface
objects. Not all user interface objects allow being connected to IBActions, even though all subviews
of UIView can accept touches if their userInteractionEnable property is set to true. In the past,
you would need to implement a series of delegate methods to track which subview is being touched
and how many touches it received (which means how many fingers the user has touching the phone).
The number of taps was given to you, so detecting that a subview was tapped twice with two fingers
was relatively easy to implement but required a lot of code. Detecting if users swiped their finger
across a subview was more difficult. first, you would need to do all the math to detect that a swipe
had taken place as well as in which direction it went.

With the introduction of iPhoneOS 3.2, Apple added the UIGestureRecognizer classes to make
these user interactions easier to implement. There are seven UIGestureRecognizer classes you can
use, as listed in Table 6-1. You can add as many gesture recognizers to a single UIView as you want;
though you need to keep the user experience in mind when doing so.

table 6-1: Types of Gesture Recognizers

gesture recognizer description

UITapGestureRecognizer Detects when the user taps a UIView. You can set
how many touches and taps are required for the ges-
ture to be recognized. For example, in the Maps app
you can double-tap the map with one finger to zoom
in. You can also double-tap the map with two fingers
to zoom out.

c06.indd 136 31-01-2014 17:21:07

Adding an Image View and Gesture Recognizer ❘ 137

UIPinchGestureRecognizer Detects when the user pinches two fingers together
or spreads them apart. This is typically used for zoom-
ing in or out. In the Maps app you can pinch two
fingers together to zoom out or you can spread two
fingers apart to zoom in.

UIRotateGestureRecognizer Detects when the user uses two fingers moving in a
circular motion. In the Maps app if you use two fingers
and rotate them, the map rotates.

UISwipeGestureRecognizer Detects when the user moves any number of touches
across the view in a particular direction. The best
example of this is when you unlock an iOS device by
swiping the screen from left to right.

UIPanGestureRecognizer Detects when the user drags any number of fingers
around a view. In the Maps app you can pan around
the map by touching the screen and dragging your
finger.

UIScreenEdgePanGestureRecognizer Detects when the user begins a dragging gesture
close to the edge of the screen. In iOS 7 you use this
gesture from the bottom of the screen to bring up the
Control Center.

UILongPressGestureRecognizer Detects when the user touches one or more fingers on
the view and then holds the position for a set amount
of time. An example of this is holding a finger down in
the Maps app to add a pin to the map.

Some gesture recognizers have additional properties you can set (refer to Table 6-1). for example,
the tap gesture can be set to recognize a minimum number of times the user taps the screen and
also the minimum number of fingers doing the tapping. These default to one each, but you can
adjust that using the numberOfTapsRequired and numberOfTouchesRequired properties. If the
numberOfTapsRequired is two and the numberOfTouchesRequired is three, the user would need to
double-tap the screen using three fingers. The swipe gesture has a direction property you need to set
so that the system knows in which direction the user must swipe for the gesture to be recognized.

If a UIView has another UIView that overlaps it but does not recognize a particular gesture,
the gesture is passed down to the UIView underneath it. In the following Try It Out you add
both a UITapGestureRecognizer and a UISwipeGestureRecognizer to the UIImageView for
the band picture. Those gestures can be recognized even though there is a UILabel on top of the
UIImageView.

c06.indd 137 31-01-2014 17:21:07

138 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

try it out Implementing Gesture Recognizers

 1. Select the WBABandDetailsViewController.h file from the Project Navigator, and add the fol-
lowing method declarations to the interface:

- (void)bandImageViewTapDetected;
- (void)bandImageViewSwipeDetected;

 2. Select the WBABandDetailsViewController.m file from the Project Navigator, and add the fol-
lowing code to the implementation:

- (void)bandImageViewTapDetected
{
 NSLog(@"band image tap detected");
}

- (void)bandImageViewSwipeDetected
{
 NSLog(@"band image swipe detected");
}

 3. Add the following code to the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.

 NSLog(@"titleLabel.text = %@", self.titleLabel.text);

 if(!self.bandObject)
 self.bandObject = [[WBABand alloc] init];

 [self setUserInterfaceValues];

 UITapGestureRecognizer *bandImageViewTapGestureRecognizer =
[[UITapGestureRecognizer alloc] initWithTarget:self
action:@selector(bandImageViewTapDetected)];
 bandImageViewTapGestureRecognizer.numberOfTapsRequired = 1;
 bandImageViewTapGestureRecognizer.numberOfTouchesRequired = 1;
 [self.bandImageView addGestureRecognizer:bandImageViewTapGestureRecognizer];

 UISwipeGestureRecognizer *bandImageViewSwipeGestureRecognizer =
[[UISwipeGestureRecognizer alloc] initWithTarget:self
action:@selector(bandImageViewSwipeDetected)];
 bandImageViewSwipeGestureRecognizer.direction =
UISwipeGestureRecognizerDirectionRight;
 [self.bandImageView addGestureRecognizer:bandImageViewSwipeGestureRecognizer];
}

How It Works

You first declared two methods to the interface of the WBABandDetailsViewController named
bandImageViewTapDetected and bandImageViewSwipeDetected. In their implementation you
simply log a message to the debug console. This is just to verify that they are being called when the
UIImageView is either tapped or swiped.

c06.indd 138 31-01-2014 17:21:07

Selecting a Picture from the Photo Library ❘ 139

The main lesson of this Try It Out was creating the two UIGestureRecognizers. The first was the
UITapGestureRecognizer. When you create it you use the initWithTarget:action: method. for
the target you pass in self referring to the WBABandDetailsViewController. for the action you use the
@selector followed by the bandImageViewTapDetected method name. This code tells the system
that when the UITapGestureRecognizer is triggered, it should call the bandImageViewTapDetected
method found in the WBABandDetailsViewController. This is the code equivalent of connecting
an IBAction to a UIKit object. You then set the numberOfTapsRequired property and the
numberOfTouchesRequired property both to 1. This tells the system to trigger the gesture when
one finger taps once on the UIView to which the gesture is assigned. You assign the
bandImageViewTapGestureRecognizer to the bandImageView by calling the addGestureRecognizer:
method.

Next you declared a new UISwipeGestureRecognizer using the same initWithTarget:action:
method but using the bandImageViewSwipeDetected method for the @selector.
UISwipeGestureRecognizer requires setting its direction property, which you do using the
UISwipeGestureRecognizerDirectionRight constant. You use the addGestureRecognizer method
of the bandImageView again to add the gesture to the UIImageView. When users swipe from left to
right across the bandImageView, the bandImageViewSwipeDetected method is called.

selecting a picture from the photo library

The Bands app gives users two ways to set the picture for a band. They can either choose a picture
they have saved in the photo library or use the camera to take a picture. The photo library in the
iOS simulator is empty by default. Before you start adding code to pick a photo, you need to add a
photo to the library. The following Try It Out walks you through doing this in the iOS simulator.

Note Not all iOS devices have a camera. The iPhone has always had a cam-
era, but early versions of the iPad and iPod touch did not. The simulator also
does not support a camera. You can also restrict access to the camera using
parental controls. All iOS devices do have a photo library to which the user can
save pictures from e-mails and web pages.

try it out Save an Image from Safari to the Photo Library in the iPhone
Simulator

 1. from the Xcode menu select Xcode ➪➤Open Developer Tool➤➪ iOS Simulator.

 2. Start Safari in the simulator.

 3. from the favorites menu, select ESPN or surf to any web page that has a picture on it.

 4. After the picture loads, long-press the picture to bring up the action sheet.

 5. Select Save Image from the action sheet.

 6. Go back to the home screen by selecting Hardware➤➪ Home from the menu.

 7. Open the Photos app. You’ll see the picture you just saved.

c06.indd 139 31-01-2014 17:21:08

140 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

How It Works

iOS allows you to save pictures from other apps into your photo library. In this Try It Out you saved a
picture from Mobile Safari using a UILongPressGestureRecognizer. You can also save pictures you
receive in an e-mail or text message the same way. Third party apps can also implement a way to save
pictures they display into the photo library. You will learn how to do this in Chapter 7, “Integrating
Social Media.”

learning about uiimagepickercontroller
You use UIImagePickerController to interact with both the
camera and the photo library. This is the standard controller all
apps use, so the user experience is the same no matter which app
the user has open. The controller is self-contained but uses the
UIImagePickerControllerDelegate to let your code know what
image the user has selected or if the user canceled the action. Your app is
responsible only for presenting and dismissing the controller.

for added security, Apple has accessibility controls around the photo
library. This means users must explicitly grant your app access to their
photo library before you can import images from it. When your app
first presents the image picker and tries to access the library, users will
be prompted to allow access, as shown in figure 6-2.

If they deny access they will have no images to choose from. Instead
users need to simply cancel the image picker. The next time the image
picker is presented, it enables users to know that they have denied access
for this app, as shown in figure 6-3.

determining device capabilities
Before presenting the image picker, you need to set its source type.
The source type can be the camera, photo library, or saved photos
album represented by the UIImagePickerControllerSourceTypeCamera,
UIImagePickerControllerSourceTypePhotoLibrary, and
the UIImagePickerControllerSourceTypeSavedPhotoAlbum enumera-
tion values. If you try to present the image picker with a source type that
is not supported by the device, your app will crash. Apple will test these
scenarios when you submit your app for approval. Any crash will cause
your app to be rejected.

To determine if a source type is available, you use the
isSourceTypeAvailable: static method of
the UIImagePickerController passing in the enumeration
for the source type you would like to check. If the method returns true,
you can present the controller with that source type. If it returns false
you must do something different to prevent your app from crashing.

figure 6-2

figure 6-3

c06.indd 140 31-01-2014 17:21:08

Selecting a Picture from the Photo Library ❘ 141

allowing picture editing
A useful feature of the UIImagePickerController is that it enables users to move and scale the
picture they selected before having it returned to your code. It’s a simple boolean you can set before
presenting the picker, but it also means that you don’t have to implement your own editing inter-
face. When an image is picked, the imagePickerController:didFinishPickingMediaWithInfo:
method of the UIImagePickerControllerDelegate protocol is called. It has a dictionary that
contains both the original image and the edited image, and information about what was edited.
Table 6-2 lists the dictionary keys returned in the info dictionary.

table 6-2: Media Info Dictionary Keys

info dictionary Key description

UIImagePickerControllerMediaType The type of media picked. Its value is an
NSString that will be either the kUTTypeImage
or kUTTypeMovie constants.

UIImagePickerControllerOriginalImage A UIImage of the original image selected.

UIImagePickerControllerEditedImage A UIImage of the edited image.

UIImagePickerControllerCropRect An NSValue containing a CGRect that repre-
sents the rectangle used when editing and
cropping the original image.

UIImagePickerControllerMediaURL An NSURL of the file system URL of the movie
selected when the media type is kUTTypeMovie.

UIImagePickerControllerReferenceURL An NSURL of the file system URL of the original
image or movie.

UIImagePickerControllerMediaMetadata An NSDictionary with the meta data associ-
ated with a new picture taken by the camera.
This can be used to save the image to the photo
library.

The following Try It Out demonstrates how this works by presenting the
UIImagePickerController for the photo library.

try it out Displaying the Photo Library Image Picker

 1. Select the WBABandDetailsViewController.h file from the Project Navigator.

 2. Add the UIImagePickerControllerDelegate and UINavigationControllerDelegate proto-
cols to the interface using the following code:

@interface WBABandDetailsViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate, UIActionSheetDelegate,
UIImagePickerControllerDelegate, UINavigationControllerDelegate>

c06.indd 141 31-01-2014 17:21:08

142 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

 3. Add the following method declaration to the interface:

- (void)presentPhotoLibraryImagePicker;

 4. Select the WBABandDetailsViewController.m file from the Project Navigator.

 5. Add the following method to the implementation:

- (void)presentPhotoLibraryImagePicker
{
 UIImagePickerController *imagePickerController =
[[UIImagePickerController alloc] init];
 imagePickerController.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;
 imagePickerController.delegate = self;
 imagePickerController.allowsEditing = YES;
 [self presentViewController:imagePickerController animated:YES completion:nil];
}

 6. Add the following UIImagePickerControllerDelegate methods to the implementation:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage *selectedImage =
[info objectForKey:UIImagePickerControllerEditedImage];
 if(selectedImage == NULL)
 selectedImage = [info objectForKey:UIImagePickerControllerOriginalImage];

 self.bandImageView.image = selectedImage;
 self.addPhotoLabel.hidden = YES;

 [picker dismissViewControllerAnimated:YES completion:nil];
}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [picker dismissViewControllerAnimated:YES completion:nil];
}

 7. Modify the bandImageViewTapDetected method with the following code:

- (void)bandImageViewTapDetected
{
 if([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary])
 {
 [self presentPhotoLibraryImagePicker];
 }
 else
 {
 UIAlertView *photoLibraryErrorAlert = [[UIAlertView alloc]
initWithTitle:@"Error" message:@"There are no" delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [photoLibraryErrorAlert show];
 }
}

 8. Run the app in the iPhone 4-inch simulator. Tapping the empty image view now shows the Photo
Library Image Picker.

c06.indd 142 31-01-2014 17:21:08

Selecting a Picture from the Photo Library ❘ 143

How It Works

You first declared that the WBABandDetailsViewController implements both the
UIImagePickerControllerDelegate and the UINavigationControllerDelegate. You needed to
declare the UINavigationControllerDelegate because the UIImagePickerController implements
it. You did not need to implement any of its methods, but you will get a build error if it is not present.

Next, you declared and implemented a method to show the UIImagePickerController with its source
type set to UIImagePickerControllerSourceTypePhotoLibrary. You also set its delegate to the
WBABandDetailsViewController using self and set the allowsEditing flag to true before presenting
the UIImagePickerController modally over the WBABandDetailsViewController.

Then you implemented the two methods of the UIImagePickerControllerDelegate. The imagePicker
Controller:didFinishPickingMediaWithInfo: method is called when users select an image from
the photo library. You get the image by first looking at the UIImagePickerControllerEditedImage
value in the media info NSDictionary. If this value is NULL, you then get the image from the
UIImagePickerControllerOriginalImage value. Using that image, you set the UIImageView and hide
the addPhotoLabel using its hidden property before dismissing the UIImagePickerController.

The other delegate method you implemented, imagePickerControllerDidCancel:, gets called when
the user cancels the UIImagePickerController, in which case you simply dismiss it.

The last thing you did was modifying the bandImageViewTapDetectedMethod. In the new code you
first make sure the photo library is available on the device. If it is, call the presentPhotoLibraryIm-
agePicker to display the UIImagePickerController; if not, notify the user that no photo library is
available.

saving band images
You can now present the image picker for the photo library, choose an image, and set the
image property of the UIImageView with the picture. You need to add the code to save the pic-
ture with the rest of the WBABand instance in standardUserDefaults. Similar to the WBABand
instance, you cannot save a UIImage directly into standardUserDefaults. You first need
to serialize it into an NSData object. You can use one of two helper functions to do this. The
UIImageJPEGRepresentation can take the UIImage and a compression ratio to serialize the picture
in the jPEG format. In the Bands app you can use the UIImagePNGRepresentation method instead.
It takes the UIImage and serializes it into the PNG format. After the image is converted to NSData,
it can be saved in standardUserDefaults with the rest of the WBABand instance. To load the picture
back, you simply retrieve the NSData and create the UIImage with the initWithData method.

try it out Saving Images in NSUserDefaults

 1. Select the WBABand.h file from the Project Navigator, and add the following property:

@property (nonatomic, strong) UIImage *bandImage;

 2. Select the WBABand.m file from the Project Navigator.

c06.indd 143 31-01-2014 17:21:09

144 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

 3. Add the following key with the other static keys prior to the implementation:

static NSString *bandImageKey = @"BABandImageKey";

 4. Modify the initWithCoder: method with the following code:

-(id) initWithCoder:(NSCoder *)coder
{
 self = [super init];

 self.name = [coder decodeObjectForKey:nameKey];
 self.notes = [coder decodeObjectForKey:notesKey];
 self.rating = [coder decodeIntegerForKey:ratingKey];
 self.touringStatus = [coder decodeIntegerForKey:tourStatusKey];
 self.haveSeenLive = [coder decodeBoolForKey:haveSeenLiveKey];

 NSData *bandImageData = [coder decodeObjectForKey:bandImageKey];
 if(bandImageData)
 {
 self.bandImage = [UIImage imageWithData:bandImageData];
 }

 return self;
}

 5. Modify the encodeWithCoder: method with the following code:

- (void)encodeWithCoder:(NSCoder *)coder
{
 [coder encodeObject:self.name forKey:nameKey];
 [coder encodeObject:self.notes forKey:notesKey];
 [coder encodeInteger:self.rating forKey:ratingKey];
 [coder encodeInteger:self.touringStatus forKey:tourStatusKey];
 [coder encodeBool:self.haveSeenLive forKey:haveSeenLiveKey];

 NSData *bandImageData = UIImagePNGRepresentation(self.bandImage);
 [coder encodeObject:bandImageData forKey:bandImageKey];
}

 6. Select the WBABandDetailsViewController.m file from the Project Navigator.

 7. Modify the setUserInterfaceValues with the following code:

- (void)setUserInterfaceValues
{
 self.nameTextField.text = self.bandObject.name;
 self.notesTextView.text = self.bandObject.notes;
 self.ratingStepper.value = self.bandObject.rating;
 self.ratingValueLabel.text = [NSString stringWithFormat:@"%g",
self.ratingStepper.value];
 self.touringStatusSegmentedControl.selectedSegmentIndex =
self.bandObject.touringStatus;
 self.haveSeenLiveSwitch.on = self.bandObject.haveSeenLive;

 if(self.bandObject.bandImage)
 {

c06.indd 144 31-01-2014 17:21:09

Selecting a Picture from the Photo Library ❘ 145

 self.bandImageView.image = self.bandObject.bandImage;
 self.addPhotoLabel.hidden = YES;
 }
}

 8. Modify the imagePickerController:didFinishPickingMediaWithInfo: method with the fol-
lowing code:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 UIImage *selectedImage =
[info objectForKey:UIImagePickerControllerEditedImage];
 if(!selectedImage)
 selectedImage = [info objectForKey:UIImagePickerControllerOriginalImage];

 self.bandImageView.image = selectedImage;
 self.bandObject.bandImage = selectedImage;
 self.addPhotoLabel.hidden = YES;

 [picker dismissViewControllerAnimated:YES completion:nil];
}

 9. Run the app in the iPhone 4-inch simulator. Pictures you assign to a band will now be persisted.

How It Works

You first added a new UIImage property named bandImage to the WBABand class. When the users add a
new band, the WBABand instance they created gets added to the data model and saved to
standardUserDefaults using the savedBandsDictionary method that was implemented in Chapter
5, “Using Table Views.” In order for the bandImage to be saved, it needs to be added to the
encodeUsingCoder: and decodeUsingCoder: methods in the WBABand implementation. To archive
a UIImage, it needs to be serialized to an NSData variable. You use the UIImagePNGRepresentation
function to do this. You can then add it to the coder in the encodeUsingCoder: method using the new
bandImageKey you added to the implementation. When a WBABand instance is retrieved from
standardUserDefaults it calls decodeUsingCoder:. In this method you first get the NSData variable
back from the code using the same bandImageKey. finally you set the bandImage property using the
imageWithData: method of the UIImageClass.

In the WBABandDetailsViewController you modified the setUserInterfaceValues to set the
bandImageView with the bandImage property of the bandObject, if it exists, and also hide the
addPhotoLabel. finally, you added the code to set the bandImage property of the bandObject when
the user picks a new image.

deleting band images
for a robust user experience, you should give users the ability to delete a picture they already have
set for a band. You can use a UISwipeGestureRecognizer to do this. As discussed in Chapter 4,
“Creating a User Input form,” when you delete data you should prompt users to make sure

c06.indd 145 31-01-2014 17:21:09

146 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

it’s what they actually want to do. When deleting a band, you implemented a UIActionSheet
with a destructive button. You also implemented the UIActionSheetDelegate in the
WBABandDetailsViewController to handle whichever option users selected.

When users swipe to delete the band picture, you should again use a UIActionSheet with a
destructive button. Because the WBABandDetailsViewController already implements the
UIActionSheetDelegate, you need to know which action sheet users interact with. The
UIActionSheet has a tag property, which is an integer. You can set the tag property then check it
in UIActionSheetDelegate methods to determine the context of the UIActionSheet.

To make your code easier to follow, you should declare the values you will use for the tag property
as a constant. There are a couple ways to do this. One way is to use the #define C preprocessor com-
mand. The Coding Guidelines for Cocoa (which you can find at https://developer.apple.com/
library/mac/documentation/Cocoa/Conceptual/CodingGuidelines) discourage this approach,
although many developers use it. The recommended approach is to use an enumeration, which you
will use in the following Try It Out.

try it out Implementing the Swipe to Delete Gesture

 1. Select the WBABandDetailsViewController.h file from the Project Navigator.

 2. Add the following code before the interface:

typedef enum {
 WBAActionSheetTagDeleteBand,
 WBAActionSheetTagDeleteBandImage,
} WBAActionSheetTag;

 3. Select the WBABandDetailsViewController.m file from the Project Navigator.

 4. Modify the bandImageViewSwipeDetected method with the following code:

- (void)bandImageViewSwipeDetected
{
 if(self.bandObject.bandImage)
 {
 UIActionSheet *deleteBandImageActionSheet =
[[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:@"Delete Picture"
otherButtonTitles:nil];
 deleteBandImageActionSheet.tag = WBAActionSheetTagDeleteBandImage;
 [deleteBandImageActionSheet showInView:self.view];
 }
}

 5. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {

c06.indd 146 31-01-2014 17:21:09

Taking a Picture with the Camera ❘ 147

 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.addPhotoLabel.hidden = NO;
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBand)
 {
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }
}

 6. Run the code in the iPhone 4-inch simulator. Swiping the image view now prompts you to delete
the picture.

How It Works

You added a new enumeration named WBAActionSheetTag with two values,
WBAActionSheetTagDeleteBand and WBAActionSheetTagDeleteBandImage, to the interface file of
the WBABandDetailsViewController class to use with the tag property of a UIActionSheet when
prompting the users.

You then modified the bandImageViewSwipeDetected method to show a UIActionSheet with its tag
set to WBAActionSheetTagDeleteBandImage. This prompts users to verify that they want to delete the
picture.

In the actionSheet:clickedButtonAtIndex: method of the UIActionSheetDelegate protocol, you
can now use the tag to determine the context in which the UIActionSheet was displayed. If its tag is
WBAActionSheetTagDeleteBandImage, you know the user has swiped the band picture. If the
buttonIndex is the destructiveButtonIndex, you know the user has confirmed they would like to
delete the band picture. You set both the image property of the bandImageView and the bandImage
property of the bandObject to nil. finally you set the hidden property of the addPhotoLabel back
to false so that it again is shown to the users.

taKing a picture With the camera

Presenting the UIImagePickerController to use the camera is similar to presenting it for the photo
library. You first check to make sure the camera is available on the device and simply change the
sourceType of the UIImagePickerController to UIImagePickerControllerSourceTypeCamera.
just because the device has a camera does not mean that is what users want to use to set the band
picture. They may still want to select a picture in their photo library.

c06.indd 147 31-01-2014 17:21:09

148 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

Unfortunately, Apple does not have a built-in way to prompt users if they want to choose a saved
picture or take a new picture. Most apps that enable both have adopted prompting users with a
UIActionSheet much like you have already implemented when users try to delete something, as you
will see in the following Try It Out.

try it out Presenting the Camera

 1. Select the WBABandDetailsViewController.h file from the Project Navigator.

 2. Modify the WBAActionSheetTag enum with the following code:

typedef enum {
 WBAActionSheetTagDeleteBand,
 WBAActionSheetTagDeleteBandImage,
 WBAActionSheetTagChooseImagePickerSource,
} WBAActionSheetTag;

 3. Add a new enum using the following code:

typedef enum {
 WBAImagePickerSourceCamera,
 WBAImagePickerSourcePhotoLibrary
} WBAImagePickerSource;

 4. Add the following method declaration:

- (void)presentPhotoLibraryImagePicker;

 5. Select the WBABandDetailsViewController.m file from the Project Navigator.

 6. Modify the bandImageViewTapDetected method with the following code:

- (void)bandImageViewTapDetected
{
 if([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 {
 UIActionSheet *chooseCameraActionSheet = [[UIActionSheet alloc]
initWithTitle:nil delegate:self cancelButtonTitle:@"Cancel"
destructiveButtonTitle:nil otherButtonTitles:@"Take with Camera",
@"Choose from Photo Library", nil];
 chooseCameraActionSheet.tag = WBAActionSheetTagChooseImagePickerSource;
 [chooseCameraActionSheet showInView:self.view];
 }
 else if([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary])
 {
 [self presentPhotoLibraryImagePicker];
 }
 else
 {
 UIAlertView *photoLibraryErrorAlert = [[UIAlertView alloc]
 initWithTitle:@"Error" message:@"There are no" delegate:nil
 cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [photoLibraryErrorAlert show];
 }
}

c06.indd 148 31-01-2014 17:21:09

Taking a Picture with the Camera ❘ 149

 5. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagChooseImagePickerSource)
 {
 if(buttonIndex == WBAImagePickerSourceCamera)
 {
 [self presentCameraImagePicker];
 }
 else if (buttonIndex == WBAImagePickerSourcePhotoLibrary)
 {
 [self presentPhotoLibraryImagePicker];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.addPhotoLabel.hidden = NO;
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBand)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }
}

 6. Add the following code to the implementation:

- (void)presentCameraImagePicker
{
 UIImagePickerController *imagePickerController =
[[UIImagePickerController alloc] init];
 imagePickerController.sourceType = UIImagePickerControllerSourceTypeCamera;
 imagePickerController.delegate = self;
 imagePickerController.allowsEditing = YES;
 [self presentViewController:imagePickerController
animated:YES completion:nil];
}

 7. Run the app on a test device with a camera. When you tap the image view, you’re prompted to
take a picture with the camera or choose from the library. Selecting Take with Camera allows you
to take a new picture using the camera.

c06.indd 149 31-01-2014 17:21:09

150 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

How It Works

You first added a WBAActionSheetTagChooseImagePickerSource value to the WBAActionSheetTag
enumeration. You also added a new enumeration named WBAImagePickerSource to keep
track of the button index of the options shown when prompting users with devices that have
both a camera and a photo library. It has two values, WBAImagePickerSourceCamera and
WBAImagePickerSourcePhotoLibrary. You then declared a new method in the interface named
presentCameraImagePicker.

In the implementation you modified the bandImageViewTapDetected method to first check
if the device has a camera by using the isSourceTypeAvailable: static method of the
UIImagePickerController class and the UIImagePickerControllerSourceTypeCamera constant.
If it returns true, you prompt the users to choose either the camera or the photo library using a new
UIActionSheet with its tag property set to WBAActionSheetTagChooseImagePickerSource. This
UIActionSheet is different from ones you have used before. There is no need for a destructive button,
so you set the destructiveButtonTitle argument to nil when creating the UIActionSheet. To add
the “Take with Camera” and “Choose from Photo Library” buttons, you pass them in using a C Style
array in the otherButtonTitles argument. A C Style array lists all of the values followed by a nil.

In the actionSheet:didClickButtonAtIndex: method you added code to handle a UIActionSheet
with its tag set to WBAActionSheetTagChooseImagePickerSource. If the buttonIndex is equal to
WBAImagePickerSourceCamera, the code calls the presentCameraImagePicker method. If
the buttonIndex is equal to WBAImagePickerSourcePhotoLibrary, the code calls the
presentPhotoLibraryImagePicker method.

finally you implemented the presentCameraImagePicker method. It creates and shows the
UIImagePickerController virtually the same as the presentPhotoLibraryImagePicker, except it
sets the sourceType to UIImagePickerControllerSourceTypeCamera. When the UIImagePicker
Controller is displayed the users can now take a picture using the camera of the device.

Note To test the camera code, you need to test on a device that has a cam-
era. There is no other way to test this code. Though it can be a barrier, you
need to test any app you write on a device prior to submitting it for approval,
so it’s a good habit to get into as early in the development process as possible.

summary

The camera and the photo library are valuable features of iOS devices. They can help you add to the
user experiences of your apps, but you need to make sure that the device on which your app runs
supports them.

In this chapter you learned how to add a UIImageView to your user interface and how to implement
a UITapGestureRecognizer and UISwipeGestureRecognizer so that users can interact with it.

c06.indd 150 31-01-2014 17:21:10

Summary ❘ 151

You also learned how to use the UIImagePickerController to check what capabilities the device
has and to also interact with the camera or photo library to set the picture associated with a band.

While implementing this feature, you learned more about using the UIActionSheet. You learned
how to hide the destructive button and add your own options as well as how to tell the context in
which the UIActionSheet was shown when the actionSheet:didClickButtonAtIndex: method
of the UIActionSheetDelegate protocol gets called. In the next chapter you will expand on this by
giving users options to share their bands using e-mail, text messaging, and social media.

exercises

 1. How would you change the tap gesture recognizer to require two fingers tapping the image
to set the band picture?

 2. What are the three source types of the UIImagePickerController?

 3. What happens if you try to present the image picker on a device that does not support the
source type?

 4. What property can you set on a UIActionSheet so that your delegate method knows how to
handle the button index that was clicked?

c06.indd 151 31-01-2014 17:21:10

152 ❘ chapter 6 IntegratIng the Camera and Photo LIbrary In IoS aPPS

 ➤ What you learned in this chapter

topic Key concepts

UIImageView The UIImageView object is the UIKit object used to
display images in an iOS app. The mode property of the
UIImageView determines the aspect ratios to use when an
image is too large to be displayed.

UIGestureRecognizer The userInteractionEnabled property of the UIView
class tells the system whether or not it can accept interac-
tions for a user. When it is enabled you can use the various
UIGestureRecognizers in UIKit such as tapping, swiping,
pinching, and panning.

UIImagePickerController In all iOS apps you interact with the device’s photo library
and camera using the UIImagePickerController. Its
implementation is self-contained, which allows users to not
only select an image saved on their device or take a new
picture with the camera, but also to edit the picture before
returning it to your code. You get the image back using the
UIImagePickerControllerDelegate protocol methods.

UIActionSheet tag property The best way to prompt a user to select from a list of options
is to use the UIActionSheet. A UIViewController may
have many reasons to prompt a user, but a UIActionSheet
has only one delegate. In order to know what context the
UIActionSheet was shown in, you can use its tag property.

c06.indd 152 31-01-2014 17:21:10

Integrating Social Media
What you learn in this chapter:

➤➤ Sending e-mails and text messages

➤➤ Posting to Twitter, Facebook, and Flicker

➤➤ Creating the same sharing experience as Apple apps

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the chapter 07 download
and individually named according to the names throughout the chapter.

Social networking has become a ubiquitous term you hear everywhere today. It’s also a bit
hard to define. For some, it can be as simple as sending an e-mail or a text message. For oth-
ers, it means having a Twitter or Facebook account to share your thoughts and pictures with
friends and family or to market your business. Then there are other services such as Flickr and
YouTube or one of the hundreds of other similar services. What all these have in common is
the ability to share things with groups of people using software and services.

Integrating with social networking services is a popular feature to add to iOS apps. It gives
your app a built-in avenue for viral marketing. When users like a particular app, they’re more
likely to tell their friends how great of an app it is. Allowing them to do this easily without
needing to leave your app can help make your app a commercial success.

In the not-so-distant past, it was a daunting task to add social networking to an app. First,
developers would need to choose which networks to support. Then they needed to learn the
APIs and sometimes even register their apps with those services to add them. They would need
to learn how to authenticate with the service and store the users’ credentials in their own apps,
raising security concerns and giving hackers more places to steal passwords from. Yet develop-
ers went through all that trouble.

7

c07.indd 153 31-01-2014 17:21:16

154 ❘ chapter 7 IntegratIng SocIal MedIa

Sending e-mails was the first form of social networking Apple added in iOS 3. When iOS 5 was
introduced, it included built-in support for sending messages to Twitter. iOS 6 added Facebook sup-
port, whereas iOS 7 added both Flickr and Vimeo. Instead of developers needing to know the net-
working details of each of these services, integration with these services was instead built in to iOS.

In this chapter you add the ability to share bands through e-mail and text messages, as well as
through Facebook, Twitter, and Flickr.

sending e-mails and text messages

The most basic form of social networking is sending e-mails and text messages. Almost all users
of iOS devices have an e-mail address configured on their device. Prior to iPhone OS 3, users could
send e-mails only using the built-in Mail app. Apple began including the MessageUI.framework
with the release of iPhone OS 3, enabling all third-party apps the capability to compose and send
e-mails from within the app as well as setting the subject of the e-mail, the body, and the recipients.

Text messages are also a basic form of social networking. The first iPhone had text messaging
through the Messages app; though iPod touches and iPads did not, because text messages were
thought of more as part of your cell phone plan. That changed with the release of iMessages in iOS
5. iMessages enables anyone with an Apple account to send text messages to other Apple accounts
for free. If you use an iPhone, you can also send text messages to people who do not have an Apple
account but have a text-messaging plan. Both use the Messages app or the message composer while
inside third-party apps.

using the e-mail composer
The capability to show the e-mail composer from within a third-party app was first introduced
in iPhone OS 3 with the inclusion of the MessageUI.framework. A framework is best thought
of as a DLL in Windows or a Jar file in Java. Some frameworks such as UIKit are automatically
added to any new project you create using the project templates. Others need to be added before
you can use them. The MessageUI.framework is one that needs to be added. You will learn how
to do this in the following Try It Out. After it’s included in your project, you have access to the
MFMailComposeViewController and MFMailComposeViewControllerDelegate.

The MFMailComposeViewController, like the UIImagePickerController, is a self-contained
view. You don’t need to code your own user interface for writing e-mails nor do you need any spe-
cial networking code to send them. Instead you create the MFMailComposeViewController, set
whatever properties you want, such as the e-mail body and subject, and then present it within your
app. To know when the user either sends the e-mail or taps the Cancel button, you need to register
as the MFMailComposeViewController delegate and implement the mailComposeController:
didFinishWithResult:error method of the MFMailComposeViewControllerDelegate protocol.

The features of the Bands app, as discussed in Chapter 1, “Building a Real World iOS App — Bands,”
will eventually include searching for a band on the web, finding local record stores and searching
for tracks of a band in iTunes. These are all activity options the users will initiate from the Band
Details scene. Options in an iOS app are generally presented to the users with a UIActionSheet. In

c07.indd 154 31-01-2014 17:21:16

Sending E-mails and Text Messages ❘ 155

Chapter 6, “Integrating the Camera and Photo Library in iOS Apps,” you used a UIActionSheet to
prompt the user to choose between using the camera or selecting an image from the photo library. The
activity options will be presented in the same manner. The recommended way to do this is to add a
UIBarButtonItem to the UINavigationItem with its Identifier set to Action. The icon for this type
of UIBarButtonItem is a box with an arrow pointing up and out of it. The Bands app will implement
this approach to show the activity options to users.

try it out Presenting the MFMailComposeViewController

 1. Select the Project in the Project Navigator.

 2. Select the General tab in the editor.

 3. In the Linked Frameworks and Libraries section, click the Add button.

 4. Search for and find the MessageUI.framework, and add it to the project.

 5. Select the WBABand.h file from the Project Navigator, and add the following method declaration to
the interface:

- (NSString *)stringForMessaging;

 6. Select the WBABand.m file from the Project Navigator, and add the following method to the
implementation:

- (NSString *)stringForMessaging
{
 NSMutableString *messageString = [NSMutableString stringWithFormat:@"%@\n",
 self.name];

 if(self.notes.length > 0)
 [messageString appendString:[NSString stringWithFormat:@"Notes: %@\n",
 self.notes]];
 else
 [messageString appendString:@"Notes: \n"];

 [messageString appendString:[NSString stringWithFormat:@"Rating: %d\n",
 self.rating]];

 if(self.touringStatus == WBATouringStatusOnTour)
 [messageString appendString:@"Touring Status: On Tour\n"];
 else if (self.touringStatus == WBATouringStatusOffTour)
 [messageString appendString:@"Touring Status: Off Tour\n"];
 else if (self.touringStatus == WBATouringStatusDisbanded)
 [messageString appendString:@"Touring Status: Disbanded\n"];

 if(self.haveSeenLive)
 [messageString appendString:@"Have Seen Live: Yes"];
 else
 [messageString appendString:@"Have Seen Live: No"];

 return messageString;
}

c07.indd 155 31-01-2014 17:21:16

156 ❘ chapter 7 IntegratIng SocIal MedIa

 7. Select the WBABandDetailsViewController.h file from the Project Navigator.

 8. Add the following import to the class imports:

#import <MessageUI/MFMailComposeViewController.h>

 9. Add a new constant to the WBAActionSheetTag using the following code:

typedef enum {
 WBAActionSheetTagDeleteBand,
 WBAActionSheetTagDeleteBandImage,
 WBAActionSheetTagChooseImagePickerSource,
 WBAActionSheetTagActivity,
} WBAActionSheetTag;

 10. Add a new enumeration using the following code:

typedef enum {
 WBAActivityButtonIndexEmail,
} WBAActivityButtonIndex;

 11. Add the following protocol to the interface:

@interface WBABandDetailsViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate, UIActionSheetDelegate, UIImagePickerControllerDelegate,
UINavigationControllerDelegate, MFMailComposeViewControllerDelegate>

 12. Add the following IBAction to the interface:

- (IBAction)activityButtonTouched:(id)sender;

 13. Add the following method declaration to the interface:

- (void)emailBandInfo;

 14. Select the Main.storyboard from the Project Navigator.

 15. Add a new Bar Button Item from the Object library to the UINavigationItem of the Band Details
scene, and set its identifier to Action, as shown in Figure 7-1.

 16. Connect the button to the activityButtonTouched: method.

 17. Select the WBABandDetailsViewController.m file from the Project Navigator.

 18. Add the following methods to the implementation:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = [[UIActionSheet alloc]
initWithTitle:nil delegate:self cancelButtonTitle:@"Cancel"
destructiveButtonTitle:nil otherButtonTitles:@"Mail", @"Message", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

- (void)emailBandInfo
{

c07.indd 156 31-01-2014 17:21:16

Sending E-mails and Text Messages ❘ 157

 MFMailComposeViewController *mailComposeViewController =
[[MFMailComposeViewController alloc] init];
 mailComposeViewController.mailComposeDelegate = self;

 [mailComposeViewController setSubject:self.bandObject.name];
 [mailComposeViewController setMessageBody:
[self.bandObject stringForMessaging] isHTML:NO];

 if(self.bandObject.bandImage)
 [mailComposeViewController addAttachmentData:
UIImagePNGRepresentation(self.bandObject.bandImage)
mimeType:@"image/png" fileName:@"bandImage"];

 [self presentViewController:mailComposeViewController
animated:YES completion:nil];
}

- (void)mailComposeController:
(MFMailComposeViewController *)controller
didFinishWithResult:(MFMailComposeResult)result error:(NSError *)error
{
 [controller dismissViewControllerAnimated:YES completion:nil];
 if(error)
 {

figure 7-1

c07.indd 157 31-01-2014 17:21:16

158 ❘ chapter 7 IntegratIng SocIal MedIa

 UIAlertView *emailErrorAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:error.localizedDescription delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [emailErrorAlertView show];
 }
}

 19. Modify the activitySheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 if(buttonIndex == WBAActivityButtonIndexEmail)
 {
 [self emailBandInfo];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagChooseImagePickerSource)
 {
 if(buttonIndex == WBAImagePickerSourceCamera)
 {
 [self presentCameraImagePicker];
 }
 else if (buttonIndex == WBAImagePickerSourcePhotoLibrary)
 {
 [self presentPhotoLibraryImagePicker];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.tapToSetLabel.hidden = NO;
 }
 }
 else if (actionSheet.tag == WBAActionSheetTagDeleteBand)
 {
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }

}

c07.indd 158 31-01-2014 17:21:16

Sending E-mails and Text Messages ❘ 159

 20. Run the code in the iPhone 4-inch simulator. When selecting the Email
button, you see the MFMailComposeViewController screen prefilled
with the band message string and band image, as shown in Figure 7-2.

How It Works

You started by adding the MessageUI.framework to the project using the
General settings editor and the Linked Frameworks and Libraries section.
This tells the compiler to include the framework when building the project.
Next, you implemented a helper method in the WBABand class that returns a
string representing all the properties of the band.

In the WBABandDetailsViewController header you imported the
MFMessageComposeViewController.h file. Next you added a new
WBAActionSheetTagActivity value to the WBAActionSheetTag enu-
meration to be used with the activity options UIActionSheet. You also
added a new enumeration named WBAActivityButtonIndex with a
WBAActivityButtonIndexEmail constant to keep track of the activity
option button indexes in the UIActionSheet. You then declared that the
WBABandDetailsViewController implements the MFMessageComposeViewControllerDelegate. You
also declared a new IBAction named actionButtonTouched: and an emailBandInfo method.

In the Storyboard, you added a new UIBarButtonItem to the UINavigationItem of the Band Details scene
and set its identity to Action. The Action identifier uses the standard action icon, which signals to the user
that tapping it performs some sort of action on the data in the scene. You then connected it to the
actionButtonTapped: method you previously declared in the WBABandDetailsViewController interface.

Next, you modified code in the WBABandDetailsViewController implementation. The
actionButtonTapped: method creates a new UIActionSheet with an e-mail option button and
its tag set to the new WBAActionSheetTagActivity constant. In the actionSheet:clickedButton
AtIndex: method, you look for this tag then check to see if the buttonIndex is equal to the new
WBAActivityButtonIndexEmail. If it is, the code calls the emailBandInfo method.

The emailBandInfo method first initializes a new MFMailComposeViewController and sets
its delegate to the WBABandDetailsViewController using self. Next, it sets the subject of the
e-mail to the band’s name using the setSubject: method. You set the e-mail body using the
setMessageBody:isHTML: method using the stringForMessaging helper method of the bandObject.
Because the string is not HTML, you pass in NO for the isHTML argument. If the bandObject has the
bandImage property set, that gets added to the e-mail using the addAttachmentData:mimeType:
filename method. The bandImage property is a UIImage, which needs to be serialized to NSData to be
attached to an e-mail. You use the UIImagePNGRepresentation function to do this. The mimeType is
set to “image/png” and the fileName is set to “bandImage.”

You present the MFMailComposeViewController using the presentViewController:animated:
completion: method. When the user sends the e-mail or taps the Cancel button,
the mailComposeControllerDidFinish:withResult:error: method of the
MFMailComposeViewControllerDelegate protocol gets called. In its implementation you
dismiss the MFMailComposeViewController using the dismissViewControllerAnimated:completion:
method and then check to see if the error argument is set. If it is, you notify the users that an error
occurred using a UIAlertView.

figure 7-2

c07.indd 159 31-01-2014 17:21:17

160 ❘ chapter 7 IntegratIng SocIal MedIa

Note The MFMailComposeViewController does allow you to send an e-mail
with HTML formatting by supplying an HTML string and setting the isHTML flag
to true.

using the message composer
Sending text messages and iMessages is similar to sending e-mails. Instead of using the
MFMailComposeViewController, you use the MFMessageComposeViewController and
MFMessageComposeViewControllerDelegate. Text and iMessages also support attaching the band
image to the message, but it’s done a bit differently than with e-mail. Instead of setting the mime type
of the image, you need to use its Universal Type Identifier. These identifiers were created by Apple and
are included in the MobileCoreServices.framework. This is another framework that is not included
in the Project templates, so you need to add it manually, the same as the MessageUI.framework.

Note The ability to attach images in text and iMessages in code was intro-
duced in iOS 7. Users could attach images to text messages and iMessages
through the Photo app, but there was no way to add them in a third-party app.
If your app needs to support iOS 6, you need to check which version of iOS
the device is running before attempting to add the image. Failing to do so can
cause your app to crash in iOS 6.

try it out Presenting the MFMessageComposeViewController

 1. Add the MobileCoreServices.framework to the project following the same steps from the previ-
ous section.

 2. Select the WBABandDetailsViewController.h file from the Project Navigator.

 3. Add the following to the imports:

#import <MessageUI/MFMessageComposeViewController.h>

 4. Add the following to the protocols of the interface:

@interface WBABandDetailsViewController : UIViewController <UITextFieldDelegate,
UITextViewDelegate, UIActionSheetDelegate, UIImagePickerControllerDelegate,
UINavigationControllerDelegate, MFMailComposeViewControllerDelegate,
MFMessageComposeViewControllerDelegate>

 5. Add the following method declaration to the interface:

- (void)messageBandInfo;

 6. Add the following value to the WBAActivityButtonIndex enumeration:

typedef enum {
 WBAActivityButtonIndexEmail,
 WBAActivityButtonIndexShare,
} WBAActivityButtonIndex;

c07.indd 160 31-01-2014 17:21:17

Sending E-mails and Text Messages ❘ 161

 7. Select the WBABandDetailsViewController.m file from the Project Navigator.

 8. Add the following methods to the implementation:

- (void)messageBandInfo
{
 MFMessageComposeViewController *messageComposeViewController =
[[MFMessageComposeViewController alloc] init];
 messageComposeViewController.messageComposeDelegate = self;

 [messageComposeViewController setSubject:self.bandObject.name];
 [messageComposeViewController setBody:
[self.bandObject stringForMessaging]];

 if(self.bandObject.bandImage)
 [messageComposeViewController addAttachmentData:
UIImagePNGRepresentation(self.bandObject.bandImage)
typeIdentifier:(NSString *)kUTTypePNG filename:@"bandImage.png"];

 [self presentViewController:messageComposeViewController
animated:YES completion:nil];
}

- (void)messageComposeViewController:
(MFMessageComposeViewController *)controller
didFinishWithResult:(MessageComposeResult)result
{
 [controller dismissViewControllerAnimated:YES completion:nil];
 if(result == MessageComposeResultFailed)
 {
 UIAlertView *emailErrorAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:@"The message failed to send" delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [emailErrorAlertView show];
 }
}

 9. Modify the activityButtonTouched: method with the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = nil;

 if([MFMessageComposeViewController canSendText])
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Mail", @"Message", nil];
 else
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Mail", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

c07.indd 161 31-01-2014 17:21:17

162 ❘ chapter 7 IntegratIng SocIal MedIa

 10. Modify the activitySheet:clickedButtonAtIndex: with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 if(buttonIndex == WBAActivityButtonIndexEmail)
 {
 [self emailBandInfo];
 }
 else if (buttonIndex == WBAActivityButtonIndexMessage)
 {
 [self messageBandInfo];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagChooseImagePickerSource)
 {
 if(buttonIndex == WBAImagePickerSourceCamera)
 {
 [self presentCameraImagePicker];
 }
 else if (buttonIndex == WBAImagePickerSourcePhotoLibrary)
 {
 [self presentPhotoLibraryImagePicker];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.tapToSetLabel.hidden = NO;
 }
 }
 else if (actionSheet.tag == WBAActionSheetTagDeleteBand)
 {
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }
}

 11. Run the app on a test device that has text messaging available. When you tap the Messages
option, you can see the text message compose screen.

c07.indd 162 31-01-2014 17:21:17

Simplifying Social Network Integration ❘ 163

How It Works

Before implementing the MFMailComposeViewController you first added the MobileCoreServices
.framework to the Bands project. This framework is required in order to use the Universal
Type Identifier constants. You also added the WBAActivityButtonIndexShare constant to the
WBAActivityButtonIndex enumeration to use when presenting the e-mail and messaging options to users.

In the implementation you first imported the MobileCoreServices.h file, which allows you to use
the Universal Type Identifier constants in the code. Next you modified the activityButtonTouched:
method to use the canSendText static method of the MFMessageComposeViewController class to
make sure the users device is able to send text messages or iMessages. If it returns true, you then pres-
ent the UIActivitySheet with both the Mail and Message options. If not you only show the Mail
option. If you attempt to use the MFMessageComposeViewController on a device that does not support
it your app will crash, so this check is very important.

The method you declared for sending messages, messageBandInfo, is almost iden-
tical to the emailBandInfo method you added in the previous section. Instead
of using the MFMailComposeViewController, you initialized and presented the
MFMessageComposeViewController. You set the subject again using setSubject: and the body using
setBody:. The body of a text message or iMessage cannot be HTML, so the isHTML argument is not
present. The biggest difference is attaching the bandImage to the message. Instead of using a mime type
string, you used the kUTTypePNG Universal Type Identifier constant.

You also implemented the messageComposeViewControllerDidFinishwithResult: method of the
MFMessageComposeViewControllerDelegate protocol. In its implementation you dismiss the mes-
sage MFMessageComposeViewController using the dismissViewControllerAnimated:completion:
method and then check the result argument. If it is equal to the MessageComposeResultFailed
constant, you show an error to users using a UIAlertView.

Note The iOS simulator does not support text messaging or iMessages. You
can use it to test your code and make sure you are using the canSendText
method before attempting to present the MFMessageComposeViewController.
You will need to use a physical device to test sending a text message or
iMessage.

simplifying social netWork integration

Apple began integrating social networking directly into iOS in iOS 5. They also gave developers
access to this integration. Using the built-in integration was a big help to developers, because they
no longer needed to learn the various APIs of different social networking services. Actually, you
don’t need to add any networking code. The integration is also great for users, because they can sign
into those social networks in one place and have access to them in any app that includes the integra-
tion. Apple also gave developers a new view controller so that users would have a common experi-
ence in not only the Apple apps, but also in any third-party apps that implement it.

c07.indd 163 31-01-2014 17:21:17

164 ❘ chapter 7 IntegratIng SocIal MedIa

introducing the activity View controller
The UIActivityViewController was first introduced in iOS 6. By using it, develop-
ers can give their users a common experience not only with social networking integration,
but also with other activities, such as e-mailing, messaging, printing, and AirDrop to share
between iOS devices. Adding it into your app is similar to the UIImagePickerController,
MFMailComposeViewController, and MFMessageComposeViewController, but you don’t need to
add new frameworks to your project. The biggest benefit is no longer needing to know what capa-
bilities are available on the device. You also don’t need to know the Universal Type Identifiers for
the data in your apps. Instead you simply pass in an array of objects you would like to share, and
the system figures out what activities can be performed on them.

In the Bands app you can use the UIActivityController to replace the e-mail and message code
you added previously in this chapter. You can also use it to add integration with social networking
services.

try it out Presenting the UIActivityViewController

 1. Select the WBABandDetailsViewController.h file from the Project Navigator, and add the fol-
lowing method declaration to the interface:

- (void)shareBandInfo;

 2. Modify the WBAActivityButtonIndex enumeration with the following code:

typedef enum {
// WBAActivityButtonIndexEmail,
// WBAActivityButtonIndexMessage,
 WBAActivityButtonIndexShare,
} WBAActivityButtonIndex;

 3. Select the WBABandDetailsViewController.m file from the Project Navigator.

 4. Modify the activityButtonTouched: method with the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = nil;
 /*
 if([MFMessageComposeViewController canSendText])
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Mail", @"Message", nil];
 else
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Mail", nil];
 */

 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil

c07.indd 164 31-01-2014 17:21:17

Simplifying Social Network Integration ❘ 165

delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Share", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

 5. Modify the actionSheet:clickedButtonAtIndex: with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 /*
 if(buttonIndex == WBAActivityButtonIndexEmail)
 {
 [self emailBandInfo];
 }
 else if (buttonIndex !=actionSheet.cancelButtonIndex &&
buttonIndex == messageActivityButtonIndex)
 {
 [self messageBandInfo];
 }
 */

 if(buttonIndex == shareActivityButtonIndex)
 {
 [self shareBandInfo];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagChooseImagePickerSource)
 {
 if(buttonIndex == WBAImagePickerSourceCamera)
 {
 [self presentCameraImagePicker];
 }
 else if (buttonIndex == WBAImagePickerSourcePhotoLibrary)
 {
 [self presentPhotoLibraryImagePicker];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.tapToSetLabel.hidden = NO;
 }
 }
 else if (actionSheet.tag == WBAActionSheetTagDeleteBand)
 {

c07.indd 165 31-01-2014 17:21:17

166 ❘ chapter 7 IntegratIng SocIal MedIa

 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }
}

 6. Add the following method to the implementation:

- (void)shareBandInfo
{
 NSArray *activityItems = [NSArray arrayWithObjects:
[self.bandObject stringForMessaging], self.bandObject.bandImage, nil];

 UIActivityViewController *activityViewController =
[[UIActivityViewController alloc]initWithActivityItems:activityItems
applicationActivities:nil];
 [activityViewController setValue:self.bandObject.name forKey:@"subject"];

 [self presentViewController:activityViewController
animated:YES completion:nil];
}

 7. Run the app in the iPhone 4-inch simulator. When you tap the Share
option, you now see the Activity View Controller, as shown in
Figure 7-3.

 8. Tap the Mail button. You should see the e-mail compose view with the
subject and e-mail body set.

How It Works

The first thing you did was declare a new shareBandInfo method
in the WBABandDetailsViewController interface. You then modi-
fied the WBAActivityButtonIndex enumeration commenting out the
WBAActivityButtonIndexEmail and WBAActivityButtonIndexMessage
constants while adding WBAActivityButtonIndexShare. The
UIActivityViewController has options for both email and messaging, so
you will no longer present those options separately in the UIActionSheet.
With those buttons no longer being shown, you need to keep the
WBAActivityButtonIndex enumeration order the same as the options you
will be displaying.

In the implementation you changed the activityButtonTouched: method to show a
UIActionSheet with just a single “Share” button. In the actionSheet:didClickButtonAt
Index: method you commented out the code that checks for the WBAActivityButtonIndexEmail and
WBAActivityButtonIndexMessage and replaced it with code to compare the buttonIndex with the
WBAActivityButtonIndexShare constant. If true, the code calls the shareBandInfo method.

figure 7-3

c07.indd 166 31-01-2014 17:21:17

Simplifying Social Network Integration ❘ 167

In the shareBandInfo method you created an NSArray with its first object being the NSString
returned from the stringForMessaging method of the bandObject and its second being the bandIm-
age. This is a great example of adding different objects to an NSArray. Because both the NSString
class and UIImage class inherit from NSObject, they can both be added to the same NSArray.

In this implementation, you do not need to check whether the image is set, because the
UIActivityViewController can figure it out for you. You initialize the UIActivityViewController
using the initWithActivityItems:applicationActivities: method. For the activityItems
argument you pass in the NSArray you created with the band information. You set the
applicationActivities argument to nil. You could create your own supported activities in your
app and pass them in using that argument for display in the UIActivityViewController, but the
Bands app does not use this feature.

If the users select the Mail or Message options you still want the subject to be set. You do this by call-
ing the setValue:forKey: method, with the value being the name property of the bandObject and the
key being subject. Finally you present the UIActivityViewController using the presentView
Controller:animated:completion: method.

The UIActivityViewController does not have a UIActivityViewControllerDelegate. It will dis-
miss any other UIViewControllers that may be shown depending on what option the user selects and
return to your app when they have either completed the activity or canceled.

learning about twitter integration
The first social networking service Apple integrated was Twitter with the release of iOS 5. Twitter
is a microblogging service that enables its users to share text, links, and images to their timelines.
They can also follow other users and see posts that they can reply to, favorite, or “retweet” on their
own timelines.

Users can sign into their Twitter account or create a new one in the Settings app. The system then
downloads the user’s followers list and attempts to match e-mail addresses associated with Twitter
users to e-mail addresses in the user’s Contacts. If a match is found, the system adds the Twitter
handle to the contact. The Twitter app integration enables apps only to post new messages on the
user’s timeline. To use all the features of the services, users need to download the Twitter app. The
setup screen has a button to download the app, so users don’t need to search the app store.

try it out Sending Messages to Twitter

 1. Open the Settings app on the iPhone 4-inch simulator, and select Twitter.

 2. Enter your Twitter credentials or create a new account.

 3. Run the Bands app in the simulator. Now when you select the Share option, the UIActivity
ViewController has Twitter as an option, as shown in Figure 7-4.

 4. Selecting Twitter allows you to post the band info and band image to Twitter while staying in the
Bands app, as shown in Figure 7-5.

c07.indd 167 31-01-2014 17:21:17

168 ❘ chapter 7 IntegratIng SocIal MedIa

How It Works

The first thing you did was to go into the Settings app and either entered your Twitter credentials or
created a new account. Back in the Bands app, the UIActivityViewController now has a Twitter
option, which, if selected, enables you to compose a new message and post it to Twitter without leaving
the app.

learning about facebook integration
Facebook is the most popular social networking service in the world. Its users can post messages,
pictures, links, and videos to their walls as well as see what other users with whom they are friends
with have posted. Users can also create events or RSVP to events posted by their friends or groups of
which they are members.

Apple integrated Facebook in iOS 6. Users can sign in or create a new account in the Settings app,
the same as with Twitter. When the user’s account is added, the system downloads their friends and
adds them to the Contacts app. It also downloads any events and adds them to the Calendar app.
The in-app integration is more complex than with Twitter. Apps can request access to the user’s
Facebook profile with info such as the user’s birthday, e-mail address, and other information the
user has made public on Facebook. Apps can also request the users’ list of Facebook friends. When
an app attempts to access this information, the user is prompted and must explicitly grant access.
Facebook has had privacy issues in the past, making some users wary of letting third-party apps
access their profile and friends lists, so the Bands app will not request this information. Instead
users can post band info only to their walls.

figure 7-4 figure 7-5

c07.indd 168 31-01-2014 17:21:18

Simplifying Social Network Integration ❘ 169

try it out Sending Messages to Facebook

 1. Go to the home screen in the iPhone 4-inch simulator.

 2. Open the settings app and select Facebook.

 3. Enter your Facebook account information or create a new account,
and sign into Facebook.

 4. Run the Bands app in the simulator. Now when you select the Share
option, the UIActivityViewController has Facebook as an option.

 5. Selecting Facebook allows you to post the band info and band picture
to Facebook while staying in the Bands app, as shown in Figure 7-6.

How It Works

The integration with Facebook in the Bands app is almost identical
to the Twitter integration. If users select the Facebook option in the
UIActivityViewController, they can post the band info string and band
image to their Facebook walls from within the Bands app. They also
have can add their location and designate which friends on Facebook can
see the post.

learning about flickr integration
Flickr is a social networking service from Yahoo built around sharing pictures. Users post pictures
to their photo streams, which can be public for everyone to see or visible only to their contacts.
Contacts or other users can then comment on pictures.

Flickr integration was added with iOS 7. The user can connect to their Flickr account by signing in
with their Yahoo account in the Settings app. They can then share Band images by selecting Flickr
in the Activity View. As you see in the following Try It Out, the band image must be set for the
Flickr option to be shown.

try it out Sending a Picture to Flickr

 1. Open the Settings app on the iPhone 4-inch simulator, and select Flickr.

 2. Enter your Flickr credentials or create a new account.

 3. Run the Bands app in the iPhone 4-inch simulator.

 4. Select a Band that does not have a band image set. When you select the Share option, Flickr will
NOT be an available option.

 5. Select a Band that does have a band image set. When you select the Share option, Flickr will now
be available.

figure 7-6

c07.indd 169 31-01-2014 17:21:18

170 ❘ chapter 7 IntegratIng SocIal MedIa

How It Works

Flickr integration works the same as Facebook and Twitter integration. After the user connect the
account in the Settings app, the UIActivityViewController will have the Flickr option if the bandIm-
age property of the bandObject is set. They then can post Band images to their Flickr photo stream.

Note This chapter covered how to post a new message or status to the social
networking services integrated into iOS using the UIActivityViewController.
The iOS SDK also includes the SLRequest class, which can be used to send
requests directly to social networking services. This approach is for more
advanced iOS developers, so it is not covered in this book. You can learn more
about SLRequest in the iOS Developer Library at https://developer.apple
.com/library/iOs/documentation/Social/Reference/SLRequest_Class/.

limiting sharing options
Using the Activity View Controller does simplify your code, but it also presents users with many
options for sharing. Some of those options may not make sense for your app or your audience. The
UIActivityViewController has a setExcludedActivityTypes: method you can call with an
NSArray of activity type constants you don’t want presented. Table 7-1 lists the built-in activity type
constants.

table 7-1: Activity Types

actiVity type description

UIActivityTypePostToFacebook Enables posting strings, pictures, videos, and URLs to
the user’s Facebook wall

UIActivityTypePostToTwitter Enables posting strings, pictures, videos, and URLs to
the user’s Twitter timeline

UIActivityTypePostToWeibo Enables posting strings, pictures, videos, and URLs to
the Chinese microblogging site Weibo

UIActivityTypeMessage Enables sending strings, pictures, videos, and URLs
via text message or iMessage.

UIActivityTypeMail Enables sending strings, pictures, and URLs via e-mail

UIActivityTypePrint Enables printing images

UIActivityTypeCopyToPasteboard Enables copying strings, images, and URLs to the
pasteboard

UIActivityTypeAssignToContact Enables assigning an image to a contact

c07.indd 170 31-01-2014 17:21:18

Simplifying Social Network Integration ❘ 171

UIActivityTypeSaveToCameraRoll Enables saving an image or a video (using its URL) to
the camera roll

UIActivityTypeAddToReadingList Enables adding a URL to the reading list

UIActivityTypePostToFlickr Enables posting an image to Flickr

UIActivityTypePostToVimeo Enables posting a video to Vimeo

UIActivityTypePostToTencentWeibo Enables posting strings, images, videos, and URLs to
the Chinese microblogging site Weibo

UIActivityTypeAirDrop Enables sharing strings, images, videos, and URLs via
AirDrop

try it out Removing the Assign to Contact Option

 1. Select the WBABandDetailsViewController.m file from the Project Navigator.

 2. Modify the shareBandInfo with the following code:

- (void)shareBandInfo
{
 NSArray *activityItems = [NSArray arrayWithObjects:
[self.bandObject stringForMessaging], self.bandObject.bandImage, nil];

 UIActivityViewController *activityViewController =
[[UIActivityViewController alloc]initWithActivityItems:activityItems
applicationActivities:nil];
 [activityViewController setValue:self.bandObject.name forKey:@"subject"];

 NSArray *excludedActivityOptions = [NSArray arrayWithObjects:
UIActivityTypeAssignToContact, nil];
 [activityViewController setExcludedActivityTypes:excludedActivityOptions];

 [self presentViewController:activityViewController
animated:YES completion:nil];
}

 3. Run the app in the iPhone 4-inch simulator. When you select the Share option, you no longer see
the Assign to Contact option in the UIActivityViewController.

How it Works

The code to remove an activity from the UIActivityViewController is pretty simple. You first cre-
ate an NSArray with the UIActivityTypeAssignToContact constant. You can add as many constants
from Table 7-1 as you would like in this NSArray. You then use the NSArray with the setExcluded
ActivityTypes: method of the UIActivityViewController.

c07.indd 171 31-01-2014 17:21:18

172 ❘ chapter 7 IntegratIng SocIal MedIa

summary

Social networking can be a valuable feature to add to your apps. From simple e-mails to posting to
Twitter and Facebook, it gives your users a way to tell their friends, family, and coworkers about
your app. Apple has built integration with Facebook, Twitter, Flickr, and Vimeo directly into iOS
and gives you a simple way to add them to your app using the UIActivityViewController. The
Bands app now has the capability to share bands via e-mail or text message and Twitter, Facebook,
and Flickr.

exercises

 1. How do you add a new framework to an Xcode project?

 2. What framework needs to be added to a project in order to use the
MFMailComposeViewController?

 3. What additional framework needs to be added to a project to send text messages using the
MFMessageComposeViewController and why?

 4. What method should you call before showing the MFMessageComposeViewController and
why?

 5. What social networks are integrated with iOS?

 6. Where does a user sign into their social networking accounts in iOS?

 7. How can you keep users of the Bands app from sharing band images on Flickr using the
UIActivityViewController?

c07.indd 172 31-01-2014 17:21:18

Summary ❘ 173

 ➤ What you learned in this chapter

topic key concepts

sending e-mails
Within an app

The iOS SDK includes the MFMailComposeViewController and
MFMailComposeViewControllerDelegate, which you can add to
your app to give your users the ability to send e-mails. You can set the
subject, set the e-mail body, and add attachments with just a few lines
of code.

sending text
messages and imes-
sages with images

Similar to the MFMailComposeViewController
is the MFMessageComposeViewController and
MFMessageComposeViewControllerDelegate, which you can add to
your app to send text messages and iMessages. With the release of
iOS 7 you can also add attachments to messages similar to e-mail.

adding the same
sharing experience
found in apple
apps

Apps from Apple all have the same user experience to send emails or
iMessages as well as using AirDrop, copying to the pasteboard, and
printing. By using the UIActivityViewController you can add the
same experience to your app.

integrating with
social networking
services

Apple has been integrating with a handful of social networking services
starting with Twitter in iOS 5, then adding Facebook, Flickr, and Vimeo.
Users can sign into their accounts in the Settings app giving any third-
party app using the UIActivityViewController the ability to send
messages and status updates to these services without needing to add
any additional code.

c07.indd 173 31-01-2014 17:21:18

c07.indd 174 31-01-2014 17:21:18

Using Web Views
What you learn in this chapter:

➤➤ Displaying web pages in an app

➤➤ Calling Core Foundation methods for efficient string manipulation

➤➤ Using toolbars and buttons to create a lightweight web browser

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the chapter 08 download
and individually named according to the names throughout the chapter.

One of the first and biggest selling points of smartphones was the ability to surf the web.
Many refer to this as having the entire web in your pocket. Even before smartphones were the
norm, some flip phones also allowed you to search the web with your cellular connection.

iOS devices come with Apple’s Mobile Safari web browser, but similar to sending e-mails
and posting to social networking, it’s a better experience for users to view web pages without
leaving the app they’re in. One of the feature requirements for the Bands app gives users the
ability to search the web for information about a particular band. As the developer you could
accomplish this by simply jumping the user out of the app and into Safari. Though easy to
do, it breaks the flow of the user in your app. A better approach is to allow the user to surf
the web within the app itself. In this chapter, you add a lightweight web browser to the bands
apps, allowing users to search the web for their bands without leaving the app.

learning about Web VieWs

In the Bands app you want to give the user the ability to search the web for information about
a particular band. To do this you need a way to view web pages. UIKit has a user interface
object called UIWebView that gives you this ability.

8

c08.indd 175 31-01-2014 17:21:24

176 ❘ chapter 8 Using Web VieWs

UIWebView is an HTML rendering UIKit object that does not have all the features that Mobile
Safari does, which is by design because you can use UIWebView for many different things. Loading
web pages via a URL is one of them, but you can also use it to display static HTML strings or to
preview known file types such as PDFs, Word documents, and even Excel spreadsheets. UIWebView
has no address bar or any user interface elements to perform any kind of navigation. (Though there
are methods you can use to add them.) This gives developers the ability to use UIWebView just like
any other user interface subview in things such as in a UITableViewCell or as the main part of a
storyboard scene.

In the Bands app, you use a UIWebView in its own scene built out with navigation buttons to
create an in-app browser. In the following Try It Out, you create a new scene for the UIWebView in
the Storyboard and a manual push segue to navigate to it from the Band Details scene.

try it out Adding a UIWebView

 1. Select File➤➪➤New ➪➤File from the Xcode menu, and add a new Objective-C class named
WBAWebViewController with its parent class set to UIViewController.

 2. Select the WBAWebViewController.h class from the Project Navigator.

 3. Add an IBOutlet for a UIWebView using the following code:

#import <UIKit/UIKit.h>

@interface WBAWebViewController : UIViewController

@property (nonatomic, weak) IBOutlet UIWebView *webView;

@end

 4. Select the Main.storyboard from the Project Navigator.

 5. Add a new View Controller from the Object library to the Storyboard.

 6. Select the new View Controller in the Storyboard hierarchy.

 7. In the Identify Inspector set its class to the WBAWebViewController you created in step 1.

 8. Select the Band Details scene, and Control-drag from the View Controller in the dock to the new
View Controller, as shown in Figure 8-1, and create a Push segue to the new scene.

 9. Select the segue arrow, and set its identifier to webViewSegue in the Attributes Inspector.

 10. Select the UINavigationItem in the WBAWebViewController and set its title to Web Search in the
Attributes Inspector.

 11. Drag a new Web View from the Object library onto the Web View scene, and set its frame to the
entire UIView, as shown in Figure 8-2.

 12. Connect the UIWebView to the webView property of the WBAWebViewController class.

 13. Select the WBABandDetailsViewController.h class from the Project Navigator.

c08.indd 176 31-01-2014 17:21:24

Learning About Web Views ❘ 177

figure 8-1

figure 8-2

 14. Add a new constant to the WBAActivityButtonIndex enumeration using the following code:

typedef enum {
// WBAActivityButtonIndexEmail,
// WBAActivityButtonIndexMessage,
 WBAActivityButtonIndexShare,
 WBAActivityButtonIndexWebSearch,
} WBAActivityButtonIndex;

c08.indd 177 31-01-2014 17:21:24

178 ❘ chapter 8 Using Web VieWs

 15. Select the WBABandDetailsViewController.m class from the Project Navigator.

 16. Modify the activityButtonTouched: method with the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = nil;

 /*
 if([MFMessageComposeViewController canSendText])
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil otherButtonTitles:@"Email",
@"Message", nil];
 else
 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil otherButtonTitles:@"Email",
nil];
 */

 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil otherButtonTitles:@"Share",
@"Search the Web", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

 17. Modify the actionSheet:clickedButtonAtIndex: with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 /*
 if(buttonIndex == WBAActivityButtonIndexEmail)
 {
 [self emailBandInfo];
 }
 else if (buttonIndex == WBAActivityButtonIndexMessage)
 {
 [self messageBandInfo];
 }
 */

 if(buttonIndex == WBAActivityButtonIndexShare)
 {
 [self shareBandInfo];
 }
 else if (buttonIndex == WBAActivityButtonIndexWebSearch)
 {
 [self performSegueWithIdentifier:@"webViewSegue" sender:nil];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagChooseImagePickerSource)
 {

c08.indd 178 31-01-2014 17:21:24

Learning About Web Views ❘ 179

 if(buttonIndex == WBAImagePickerSourceCamera)
 {
 [self presentCameraImagePicker];
 }
 else if (buttonIndex == WBAImagePickerSourcePhotoLibrary)
 {
 [self presentPhotoLibraryImagePicker];
 }
 }
 else if(actionSheet.tag == WBAActionSheetTagDeleteBandImage)
 {
 if(buttonIndex == actionSheet.destructiveButtonIndex)
 {
 self.bandObject.bandImage = nil;
 self.bandImageView.image = nil;
 self.addPhotoLabel.hidden = NO;
 }
 }
 else if (actionSheet.tag == WBAActionSheetTagDeleteBand)
 {
 if(actionSheet.destructiveButtonIndex == buttonIndex)
 {
 self.bandObject = nil;
 self.saveBand = NO;

 if(self.navigationController)
 [self.navigationController popViewControllerAnimated:YES];
 else
 [self dismissViewControllerAnimated:YES completion:nil];
 }
 }
}

 18. Run the app in the iPhone 4-inch simulator. When you select the
Search Web option from the activities, you should see the new Web
View, as shown in Figure 8-3.

How It Works

The first thing you did was to create a new subclass of the
UIViewController and name it WBAWebViewController. You then added a
new UIWebView property named webView.

In the Storyboard, you added a new scene and set its identity to the
WBAWebViewController class. This is the new Web View scene. You then
created a manual segue from the Band Details scene to the Web View scene
and set the segue identifier to webViewSegue. You set the identifier of this
segue in order to initiate the segue in code.

The segue added a UINavigationItem to the Web View scene, giving you the ability to set its title.
Finally, in the Storyboard you added the UIWebView to the Web View scene and connected it to
the webView property in the WBAWebViewController class. You may have noticed that part of the

figure 8-3

c08.indd 179 31-01-2014 17:21:24

180 ❘ chapter 8 Using Web VieWs

UIWebView lies underneath the UINavigationItem. The UIWebView can detect this and make sure that
the tops of pages load underneath the UINavigationItem without you needing to add any extra code.

In the WBABandDetailsViewController class you added a new option to the UIActivitySheet
shown from the activity UIBarButtonItem and named it Search the Web. In the actionSheet:
clickedButtonAtIndex: method you added a check for the WBAActivityButtonIndexWebSearch
button index. If found, the code initiates the segue between the Band Details scene and the Web View
scene using the performSegueWithIdentifier:sender: method of the UIViewController class
(remember that WBABandDetailsViewController is a subclass of UIViewController, so you can use
self to call this method) with the webViewSegue identifier you set in the storyboard.

loading a url
The app can now show a UIWebView, but it’s not interesting without a URL to load. To implement
the search feature, you could load a site such as Google or Bing and have the user type the name
of the band into the search box and go from there. A user-friendly approach is to build a URL that
does the search right away without the user needing to type anything. The simplest search URL to
build is from Yahoo. To search for a band, you simply add it to the end of the query string.

Loading the URL in a UIWebView is a little bit more involved. UIWebView does not have a method
that takes a string and loads it as a URL. Instead, it has a loadRequest: method that takes an
NSURLRequest. The NSURLRequest object is designed to handle any protocol; though for the Bands
app, you use only HTTP. NSURLRequest, like the UIWebView, also does not have an initialization
method that takes a simple string but instead takes an NSURL. The NSURL class enables you to manip-
ulate the various aspects of a URL such as the host, port, and query string. It does have an initial-
ization method that takes a string. The string needs to be well formed for NSURL to parse it. If it fails
to parse, the initialization method returns nil.

In the bands app you create the Yahoo search URL as a string with the band name in the query
string. This means you need to have the band name in the WBAWebViewController. To accomplish
this, you need to implement the prepareForSegue:sender: method again, as you did in Chapter 5,
“Using Table Views.”

try it out Loading a URL

 1. Select the WBAWebViewController.h file from the Project Navigator, and add the following prop-
erty to the interface:

#import <UIKit/UIKit.h>

@interface WBAWebViewController : UIViewController

@property (nonatomic, weak) IBOutlet UIWebView *webView;
@property (nonatomic, strong) NSString *bandName;

@end

 2. Select the WBAWebViewController.m file from the Project Navigator, and add the following
viewDidAppear: method:

c08.indd 180 31-01-2014 17:21:25

Learning About Web Views ❘ 181

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 NSString *yahooSearchString = [NSString
stringWithFormat:@"http://search.yahoo.com/search?p=%@", self.bandName];
 NSURL *yahooSearchUrl = [NSURL URLWithString:yahooSearchString];
 NSURLRequest *yahooSearchUrlRequest = [NSURLRequest
requestWithURL:yahooSearchUrl];

 [self.webView loadRequest:yahooSearchUrlRequest];
}

 3. Select the WBABandDetailsViewController.m file from the Project Navigator.

 4. Import the WBAWebViewController.h with the following code:

#import "WBAWebViewController.h"

 5. Add the following prepareForSegue:sender: method:

-(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if([segue.destinationViewController class] == [WBAWebViewController class])
 {
 WBAWebViewController *webViewController = segue.destinationViewController;
 WBAWebViewController.bandName = self.bandObject.name;
 }
}

 6. Run the app in the iPhone 4-inch simulator. When you select the
Search the Web option, the web view displays a Yahoo search using
the band name, as shown in Figure 8-4.

How It Works

First, you added a bandName property to the WBAWebViewController.
Then in the implementation you added the UIViewControllerDelegate
method viewWillAppear:. In that method you first create an NSString for
the Yahoo search URL. Using that NSString you initialized a new NSURL
instance, which you then used to initialize an NSURLRequest instance.
The last step you added was a call to the loadRequest: method of the
UIWebView using the NSURLRequest.

You also added the prepareForSegue:sender: method to the
WBABandDetailsViewController class. In its implementation you use the
class static method, which is part of the NSObject class. You can use this
method to test if one object is the same type as another or if one object is
an instance of a class. In this code you check to see if the destinationView
Controller is an instance of the WBAWebViewController class. If it is, you
set the bandName property of the WBAWebViewController to the name prop-
erty of the bandObject prior to the WBAWebViewController being pushed onto the navigation stack.

figure 8-4

c08.indd 181 31-01-2014 17:21:25

182 ❘ chapter 8 Using Web VieWs

loading a url that contains special characters
If you have a band with a space in its name, you can notice that only the first word is searched.
This is because spaces are not allowed in URLs, along with a handful of other characters such as
ampersands, question marks, and exclamation points. To have those characters in the query string,
they need to be URL-encoded, which means replacing them with a percent character followed by the
hexadecimal value for the character in ASCII.

String manipulation can be coded in a straightforward way, but it also requires a lot of CPU time.
This can be both slow and power draining in a mobile app, which has limited CPU power and
memory. Some languages are better at string manipulation than others. The C language is low level,
which makes writing these types of methods faster and more efficient. Because it is also the base lan-
guage of Objective-C, you can write C methods into apps.

Learning C is not an easy task. Writing complex string methods is even more difficult. Fortunately
for iOS developers Apple has done the heavy lifting and made those methods available in the Core
Foundation Framework. Core Foundation is written entirely in C but can be called from Objective-C.
Core Foundation has a string method called CFURLCreateStringByAddingPercentEscapes that
can scan a string for a set of characters and replace them with their percent character/hex value.
You can use this method in the Bands app to properly encode the band name before adding it to the
query string of the URL.

Calling the method is simple but Core Foundation uses different data types than Objective-C.
For example, NSString in Core Foundation is CFStringRef. These data types are not ARC-
compliant. ARC, as explained in Chapter 2, “Introduction to Objective-C,” stands for Automatic
Reference Counting. It moves the burden of memory management from the developer to the com-
piler. The Core Foundation and Objective-C objects can be used interchangeably, but they need
to be bridged. Apple has provided a solution for this called toll-free bridging. Essentially it’s a
macro that transfers the ownership Core Foundation objects to ARC. In the Bands app, you call
the CFBridgeRelease macro that transfers total control of the CFStringRef returned by the
CFURLCreateStringByAddingPercentEscapes method back to an NSString controlled by ARC.

Why using the neW nsurlcomponents class is not alWays
the best option

iOS 7 includes a new class called NSURLComponents that you can use to build
a properly encoded URL in most situations. As you set the various components
of a URL, the class compares the characters and encodes any that are not part of
the allowed characters. The reason you cannot use NSURLComponents
with the band name is because ampersands are a valid character for the query
string component of a URL and part of the URLQueryAllowedCharacterSet used
to encode invalid characters. If there is a band with the name “this & that,”
the URL created with NSURLComponents would be http://search
.yahoo.com/search?p=this%20&%20that, which is incorrect. The correct
URL is http://search.yahoo.com/search?p=this%20%26%20that. Using the
CFURLCreateStringByAddingPercentEscapes function will escape the band name
properly.

c08.indd 182 31-01-2014 17:21:25

Learning About Web Views ❘ 183

try it out URL Encoding a String

 1. Select the WBAWebViewController.m file from the Project Navigator.

 2. Modify the viewDidAppear: method with the following code:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 NSString *urlEncodedBandName = (NSString *)
CFBridgingRelease(
CFURLCreateStringByAddingPercentEscapes(NULL,(CFStringRef)self.bandName, NULL,
(CFStringRef)@"!*'();:@&=+$,/?%#[]", kCFStringEncodingUTF8));
 NSString *yahooSearchString = [NSString
stringWithFormat:@"http://search.yahoo.com/search?p=%@", urlEncodedBandName];
 NSURL *yahooSearchUrl = [NSURL URLWithString:yahooSearchString];
 NSURLRequest *yahooSearchUrlRequest = [NSURLRequest
requestWithURL:yahooSearchUrl];

 [self.webView loadRequest:yahooSearchUrlRequest];

}

 3. Run the app in the iPhone 4-inch simulator. Searching the web for a band with an ampersand or
other special characters now works.

How It Works

Prior to adding the band name to the query string, the bandName is URL encoded using the Core
Foundation method CFURLCreateStringByAddingPercentEscapes. For example, if the bandName is
“this & that,” the urlEncodedBandName is “this%20%26%20that” with the spaces being replaced
with %20 and the ampersand replaced with %26.

The syntax for Core Foundation functions is C instead of Objective-C. This function takes five
parameters. The first is the allocator, which you do not need so you pass in NULL. The second is the
originalString to be fixed. The third is a CFStringRef with the characters to leave alone. If the
bandName had characters already escaped, you would list them in this parameter. Because it doesn’t, you
can again pass in NULL. The fourth parameter is the list of characters that should be escaped. For this
you pass in all the characters that are not valid in a query string or which are part of building a query
string, such as ampersands and question marks. The last parameter is the character encoding. The code
passes in the kCFStringEncodingUTF8 constant because UTF8 is the correct encoding for URLs.

The code also uses casts to both cast the CFStringRef result back to an NSString as well as cast the
NSString bandName and the NSString of characters to escape to CFStringRefs. The last thing this code
does is use the toll-free bridging macro CFBridgingRelease to make the result compatible with ARC.

showing user feedback
When making a network connection and transferring data, it is important to let users know that
this activity is taking place. iOS uses the Network Activity Indicator to give this feedback. The
Network Activity Indicator is the tiny spinning icon in the status bar that you see when you surf

c08.indd 183 31-01-2014 17:21:25

184 ❘ chapter 8 Using Web VieWs

around in Mobile Safari or check your e-mail in Mail. It’s available in your apps through the shared
UIApplication object. You need to show this indicator in the Bands app (or any app that makes
any type of network connection, for that matter) while the search is performed and the page loads.
If you don’t, your app may be rejected by Apple.

For a UIWebView you need to implement three methods in the UIWebViewDelegate protocol to
achieve this. As a web page loads, it does so with a series of requests. These requests happen
asynchronously, so there can be any number of them loading at the same time. In your app, you
want the Network Activity Indicator visible from the time the first request starts to when the last
request finishes. The easiest way to keep track of this is to use a counter. When a request starts to
load, the webViewDidStartLoad: method is called in the delegate. The webViewDidFinishLoad:
method is called when a request finishes loading. Your code should increment and decrement the
counter when these methods are invoked. When the count gets back to 0, your app knows that all
the requests that have started have now completed, and the Network Activity Indicator can be hid-
den. Some requests may fail. When a request fails, the webViewDidFinishLoad: method is not
called. If you don’t handle these failures, the load count never gets back to 0, and the Network
Activity Indicator remains visible indefinitely. To handle this you also need to implement the
webView:didFailLoadWithError: method to decrement the load count.

try it out Showing the Network Activity Indicator

 1. Select the WBAWebViewController.h file from the Project Navigator.

 2. Declare that the class implements the UIWebViewDelegate using the following code:

@interface WBAWebViewController : UIViewController <UIWebViewDelegate>

@property (nonatomic, weak) IBOutlet UIWebView *webView;
@property (nonatomic, strong) NSString *bandName;

@end

 3. Add the following property and method declaration to the interface:

@interface WBAWebViewController : UIViewController <UIWebViewDelegate>

@property (nonatomic, weak) IBOutlet UIWebView *webView;
@property (nonatomic, strong) NSString *bandName;
@property (nonatomic, assign) int webViewLoadCount;

- (void)webViewLoadComplete;

@end

 4. Select the Main.storyboard and connect the delegate of the UIWebView to the
WBAWebViewController.

 5. Select the WBAWebViewController.m file from the Project Navigator.

 6. Modify the viewDidLoad method with the following code:

- (void)viewDidLoad
{

c08.indd 184 31-01-2014 17:21:25

Learning About Web Views ❘ 185

 [super viewDidLoad];
 self.webViewLoadCount = 0;
}

 7. Add the following UIWebViewDelegate methods to the implementation:

- (void)webViewDidStartLoad:(UIWebView *)webView
{
 self.webViewLoadCount++;
 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
}

- (void)webViewDidFinishLoad:(UIWebView *)webView
{
 self.webViewLoadCount--;

 if(self.webViewLoadCount == 0)
 [self webViewLoadComplete];
}

- (void)webView:(UIWebView *)webView didFailLoadWithError:(NSError *)error
{
 self.webViewLoadCount--;

 if(self.webViewLoadCount == 0)
 [self webViewLoadComplete];
}

 8. Add the webViewLoadComplete method to the implementation:

- (void)webViewLoadComplete
{
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;
}

 9. Run the app in the iPhone 4-inch simulator. As the web page loads, you can now see the Network
Activity Indicator visible in the status bar.

How It Works

In the WBAWebViewController interface file, you declared that it implements the UIWebViewDelegate
protocol and then added a property named webViewLoadCount to keep track of the load count.
You also declared the webViewLoadComplete method. Then in the Storyboard you connected the
UIWebView delegate to the WBAWebViewController.

In the WBAWebViewController implementation you initialized the webViewLoadCount to zero in
the viewDidLoad method. Next, you implemented three methods of the UIWebViewDelegate
protocol. In the webViewDidStartLoad: method you incremented the webViewLoadCount and
set the Network Activity Indicator to be visible using the networkActivityIndicatorVisible
property of the sharedApplication. In the webViewDidFinishLoad: method you decremented the
webViewLoadCount and checked to see if it’s back to 0. If it is, you call the webViewLoadComplete method
that sets the Network Activity Indicator back to being hidden. The webView:didFailLoadWithError:
method does the same thing as the webViewDidFinishLoad method, making sure that the Network
Activity Indicator is hidden when all the requests either finish or fail.

c08.indd 185 31-01-2014 17:21:25

186 ❘ chapter 8 Using Web VieWs

adding naVigation

The Bands app can now search the web and show the results in the UIWebView. When users click
a search result link, they can go to that page, but they have no way of getting back to the search
results to look at another. Web browsers give you navigation buttons that enable you to go back to
the previous page or go forward to a page you just visited. They typically have a backward naviga-
tion stack where the current page URL is added prior to loading the linked page. When a user goes
back, the current URL is added to a forward navigation stack before being removed from the back-
ward stack and reloaded. Though the UIWebView does not give you a user interface to navigate these
stacks, it does keep track of them for you and gives you methods to know if they have items as well
as methods to perform the navigation. To add navigation to the Bands app, you need to build your
own user interface. You do that using a UIToolbar.

creating a toolbar
A UIToolbar is similar to the UINavigationItem you’ve been using in previous chapters. It
takes the entire width of the screen and enables you to add UIBarButtonItems. Unlike the
UINavigationItem, the UIBarButtonItems do not have a set place. By default they are left-aligned
with no spacing between them. To get UIBarButtonItems arranged in a UIToolbar with proper
spacing, you use either fixed space or flexible space UIBarButtonItems. These are special imple-
mentations of UIBarButtonItem that do not enable user interaction and appear as blank space.
Fixed-space UIBarButtonItems have a set width you can set. Flexible-space UIBarButtonItems
can expand to the right, taking as much space as they can before encountering another
UIBarButtonItem. For example, if you have two regular UIBarButtonItems with a single flexible
UIBarButtonItem in between them, you will have one button on the left of the toolbar and the
other all the way on the right.

UIBarButtonItems in a UIToolbar work the same as they do in the UINavigationItem. You can
connect them with IBOutlets in your code to do things such as setting whether they are enabled.
You can also connect them to IBActions so that they actually do something when touched.

In the Bands app you can add a UIToolbar that enables the user to navigate forward and back
as well as stop a page from loading or reload the page after it has been loaded. To start, you first
get the UIToolbar and UIBarButtonItems added to the scene and connected to IBOutlets and
IBActions.

try it out Adding a Toolbar and Buttons

 1. Select the WBAWebViewController.h file from the Project Navigator.

 2. Add the following IBOutlets to the interface:

@property (nonatomic, weak) IBOutlet UIBarButtonItem *backButton;
@property (nonatomic, weak) IBOutlet UIBarButtonItem *stopButton;
@property (nonatomic, weak) IBOutlet UIBarButtonItem *refreshButton;
@property (nonatomic, weak) IBOutlet UIBarButtonItem *forwardButton;

 3. Add the following IBActions to the interface:

- (IBAction)backButtonTouched:(id)sender;
- (IBAction)stopButtonTouched:(id)sender;

c08.indd 186 31-01-2014 17:21:25

Adding Navigation ❘ 187

- (IBAction)refreshButtonTouched:(id)sender;
- (IBAction)forwardButtonTouched:(id)sender;

 4. Select the WBAWebViewController.m file from the Project Navigator, and add the following meth-
ods to the implementation:

- (IBAction)backButtonTouched:(id)sender
{
 NSLog(@"backButtonTouched");
}

- (IBAction)stopButtonTouched:(id)sender
{
 NSLog(@"stopButtonTouched");
}

- (IBAction)refreshButtonTouched:(id)sender
{
 NSLog(@"refreshButtonTouched");
}

- (IBAction)forwardButtonTouched:(id)sender
{
 NSLog(@"forwardButtonTouched");
}

 5. Select the Main.storyboard from the Project Navigator.

 6. Drag a Toolbar from the Object library onto the bottom of the Web View scene.

 7. Adjust the UIWebView so that the bottom aligns with the top of the UIToolbar, as shown in
Figure 8-5.

 8. Select the default UIBarButtonItem on the UIToolbar, and set its Identifier to Rewind in the
Attribute Inspector.

 9. Drag a new Bar Button Item from the Object library to the UIToolbar and set its Identifier to
Stop in the Attribute Inspector.

 10. Drag a new Bar Button Item from the Object library to the UIToolbar and set its Identifier to
Refresh.

 11. Drag one more Bar Button Item from the Object library to the UIToolbar, and set its Identifier to
Fast Forward.

 12. Drag a Flexible Space Bar Button Item from the Object library, and place it in between the
Rewind and Stop buttons.

 13. Drag another Flexible Space Bar Button Item from the Object library, and place it between the
Stop and Refresh buttons.

 14. Drag one more Flexible Space Bar Button Item from the Object library, and place it between the
Refresh and Fast Forward buttons, as shown in Figure 8-6.

 15. Connect the buttons with their appropriate IBOutlets and IBActions.

c08.indd 187 31-01-2014 17:21:25

188 ❘ chapter 8 Using Web VieWs

figure 8-5

figure 8-6

c08.indd 188 31-01-2014 17:21:26

Adding Navigation ❘ 189

 16. Run the app in the iPhone 4-inch simulator. You now see the
UIToolbar with the UIBarButtonItems equally spaced, as shown in
Figure 8-7.

How It Works

The first thing you did was to declare the IBOutlets for the four
UIBarButtonItems you will be adding to the UIToolbar in the
WBAWebViewController interface. Next, you declared the IBActions that
will be called when the UIBarButtonItems are tapped. In the implementa-
tion you added simple implementations of each IBAction that write which
one was called to the console.

You did the work for this Try It Out in the Storyboard. First, you added
the actual UIToolbar to the Web View scene. Next, you adjusted the frame
of the UIWebView to align to the top of the UIToolbar. This differs from
the UINavigationItem. The UINavigationItem is designed to be semi-
transparent, so when users scroll the page, they see a blurred representation
under the UINavigationItem. UIToolbar is not designed to be transparent,
so any part of the UIWebView that lies underneath it will never be visible to
users. You may have noticed, though, that you did not need to add auto-layout constraints to either the
UIWebView or the UIToolbar to keep them anchored to the bottom of the UIView. Those constraints
are built in for you.

Next, you added the four UIBarButtonItems and set their identifiers to show an appropriate icon. You
then added the three flexible-space UIBarButtonItems so that all the UIBarButtonItems are spaced
equally across the UIToolbar. Finally, you connected the appropriate IBOutlets and IBActions to the
UIBarButtonItems.

With the UIToolbar user interface in place, you can now add the calls for navigation. The
UIBarButtonItems can add a little more user feedback so that users know when the page is
loading, when it’s complete, and when they can navigate back and forth. To do this you disable
UIBarButtonItems depending on what state the UIWebView is in.

The back and forward UIBarButtonItems should be enabled only when there is a URL on their
respective stacks. The UIWebView has methods you can call to determine this. The canGoBack
method returns true if there’s a URL on the back navigation stack. The canGoForward does the
same for the forward navigation stack. You can use the isLoading property of the UIWebView to
determine when the stop and reload UIBarButtonItems should be enabled. Stop should be enabled
only when the isLoading property is true. The reload button is enabled only when the isLoading
property is false.

UIWebView also gives you the goBack and goForward methods to load URLs off the navigation
stacks. There is also the stopLoading method that stops the current page that is loading. The
UIWebView has a request property that holds the initial NSURLRequest made to load the page.
Reloading simply loads the UIWebView using the current request.

figure 8-7

c08.indd 189 31-01-2014 17:21:26

190 ❘ chapter 8 Using Web VieWs

try it out Controlling the Web View

 1. Select the WBAWebViewController.h file from the Project Navigator, and add the following
method declaration:

- (void)setToolbarButtons;

 2. Select the WBAWebViewController.m file from the Project Navigator.

 3. Add the setToolbarButtons method to the implementation:

- (void)setToolbarButtons
{
 self.backButton.enabled = self.webView.canGoBack;
 self.forwardButton.enabled = self.webView.canGoForward;
 self.stopButton.enabled = self.webView.isLoading;
 self.refreshButton.enabled = !self.webView.isLoading;
}

 4. Modify the webViewDidStartLoad: method with the following code:

- (void)webViewDidStartLoad:(UIWebView *)webView
{
 self.webViewLoadCount++;
 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
 [self setToolbarButtons];
}

 5. Modify the webViewLoadComplete: with the following code:

- (void)webViewLoadComplete
{
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;
 [self setToolbarButtons];
}

 6. Modify the backButtonTouched: method with the following code:

- (IBAction)backButtonTouched:(id)sender
{
 NSLog(@"backButtonTouched");
 [self.webView goBack];
}

 7. Modify the forwardButtonTouched: method with the following code:

- (IBAction)forwardButtonTouched:(id)sender
{
 NSLog(@"forwardButtonTouched");
 [self.webView goForward];
}

 8. Modify the stopButtonTouched: method with the following code:

- (IBAction)stopButtonTouched:(id)sender
{
 NSLog(@"stopButtonTouched");

c08.indd 190 31-01-2014 17:21:26

Adding Navigation ❘ 191

 [self.webView stopLoading];
 self.webViewLoadCount = 0;
 [self webViewLoadComplete];

}

 9. Modify the refreshButtonTouched: method with the following code:

- (IBAction)refreshButtonTouched:(id)sender
{
 NSLog(@"refreshButtonTouched");
 [self.webView loadRequest:self.webView.request];
}

 10. Run the app in the iPhone 4-inch simulator. You can now navigate back and forth through the
UIWebView navigation stacks as well as stop and reload web pages.

How It Works

In the WBAWebViewController interface you declared the setToolbarButtons method. In the imple-
mentation you implemented the method so that the back button is enabled when canGoBack returns
true, the forward button when canGoForward returns true, the stop button when the isLoading
property is true, and the reload button when the isLoading property is false. Next, you modified the
IBActions to call their corresponding methods in UIWebView. In the backButtonTouched: and
forwardButtonTouched: methods you call the goBack and goForward methods of the UIWebView. The
stopButtonTouched: method first calls the stopLoading method of the UIWebView. Next it resets
the webViewLoadCount to 0, then calls the webViewLoadComplete method to reset the UIToolbar and
hide the Network Activity Indicator. The reloadButtonTouched: method calls the same
loadRequest: method you call in the viewDidAppear:, using the request property of the UIWebView.

opening safari
UIWebViews are a nice addition to an app, but they do not give users all the functionality they have
in Mobile Safari. Apple gives third-party developers access to some of its native apps using URL
schemes and the openURL method in the shared UIApplication. Opening a URL in Mobile Safari
requires only passing the URL into openURL. You can remember from early in this chapter, though,
that the UIWebView can load many URL requests while loading the page. To get the main URL, you
again use the NSURLRequest stored in the request property of the UIWebView. It has a property
named mainDocumentURL that holds the URL for the main page.

To add this feature to the Bands app, you implement another Action UIBarButtonItem in the
UINavigationItem as you did in the Band Details scene. When tapped, it shows a UIActionSheet
with Open in Safari and Cancel as options. This approach makes users aware that they are about to
leave the app and gives them an option to cancel.

c08.indd 191 31-01-2014 17:21:26

192 ❘ chapter 8 Using Web VieWs

try it out Opening Safari

 1. Select the WBAWebViewController.h file from the Project Navigator.

 2. Add a new enumeration to track the UIActionSheet button indexes using the following code:

typedef enum {
 WBAWebViewActionButtonIndexOpenInSafari,
} WBAWebViewActionButtonIndex;

 3. Declare that the WBAWebViewController class implements the UIActionSheetDelegate with the
following code:

@interface WBAWebViewController : UIViewController <UIWebViewDelegate,
UIActionSheetDelegate>

 4. Add the following IBAction to the interface:

- (IBAction) webViewActionButtonTouched:(id)sender;

 5. Select the Main.storyboard file from the Project Navigator.

 6. Drag a new Bar Button Item from the Object library to the UINavigationItem of the
WBAWebViewController and set its Identifier to Action.

 7. Connect the Action UIBarButtonItem to the webViewActionButtonTouched: method in the
WBAWebViewController.

 8. Select the WBAWebViewController.m file and add the following methods to the implementation:

- (IBAction)webViewActionButtonTouched:(id)sender
{
 UIActionSheet *webViewActionSheet = [[UIActionSheet alloc]
initWithTitle:nil delegate:self cancelButtonTitle:@"Cancel"
destructiveButtonTitle:nil otherButtonTitles:@"Open in Safari", nil];
 [webViewActionSheet showInView:self.view];
}

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(buttonIndex == WBAWebViewActionSheetButtonIndexOpenInSafari)
 {
 [[UIApplication sharedApplication]
openURL:self.webView.request.mainDocumentURL];
 }
}

 9. Run the app in the iPhone 4-inch simulator. When you tap the Action button and select Open in
Safari, the system switches from the Bands app to Mobile Safari and loads the current web page.

How It Works

First, you declared a new enumeration named WBAWebViewActionSheetButtonIndex with the value
WBAWebViewActionSheetButtonIndexOpenInSafari to keep track of the UIActionSheet button
indexes. Though it only has one value, it is best to continue using the same approach you used with

c08.indd 192 31-01-2014 17:21:26

Summary ❘ 193

other UIActionSheet button indexes. You do not need a UIActionSheet tag enumeration, though, since
only one is shown in the WBAWebViewController. Next you declared that the WBAWebViewController
implements the UIActivitySheetDelegate protocol as well as declaring a new IBAction. In the
Storyboard you added a UIBarButtonItem to the UINavigationItem. You then set its identifier to
Action to get the appropriate icon and connected it to its webViewActionButtonTouched: method in the
WBAWebViewController.

In the WBAWebViewController implementation you added the webViewActionButtonTouched: method
that displays the UIActionSheet with the Open in Safari option. In the actionSheet:clickedButton
AtIndex: method of the UIActionSheetDelegate protocol, you checked to see if the buttonIndex
is equal to the WBAWebViewActionSheetButtonIndexOpenInSafari constant. If it was, you added
code to call the openURL method of the shared UIApplication using the mainDocumentURL of the
UIWebViews current request.

summary

Surfing the web is a popular feature of mobile devices. It enables users to search the web without
needing a laptop or desktop computer. Adding the ability to search and load web content is also a
popular feature in third-party apps. In this chapter, you added the web search feature to the Bands
app by building a lightweight browser using the UIWebView and UIWebViewDelegate protocol, as
well as a UIToolbar and UIBarButtonItems. You also learned how to call C-level Core Foundation
methods to perform complex string manipulations in an efficient way and then pass the results back
to Objective-C.

exercises

 1. How do you trigger a manually created segue in code?

 2. Which framework can you use to call low-level C-language methods?

 3. How do you show the Network Activity Indicator?

 4. What UIWebViewDelegate protocol method gets called if a request fails to load?

 5. What method of the shared UIApplication object can you call to open Safari from your app?

c08.indd 193 31-01-2014 17:21:27

194 ❘ chapter 8 Using Web VieWs

 ➤ What you learned in this chapter

topic Key concepts

UIWebView The UIWebView is the UIKit object used to render HTML or to preview
well-known file types such as PDFs and Word documents. They can load a
web page using a network connection or display an HTML string or a file
included with the app.

core foundation
framework

The Core Foundation Framework is a collection of functions written in C,
which you can call from an Objective-C class. Because string manipula-
tion is resource intensive, it is better to use Core Foundation Frameworks
when performing complex tasks.

network activity
indicator

When an app is making a network connection and sending or download-
ing data, it needs to let the user know this activity is taking place. All
iOS devices include a spinning icon in the status bar called the Network
Activity Indicator. The Bands app needs to show the Network Activity
Indicator while the UIWebView is loading a request.

uitoolbar The UIToolbar UIKit object is how you implement a toolbar in an app.
It has a set of UIBarButtonItems that act as both the visible buttons as
well as the blank space separating buttons.

open in safari The shared UIApplication has a method named openURL that you can
use to launch built in Apple apps such as Mobile Safari. When used in
combination with a UIWebView, you give users the ability to open the web
page they are viewing in your app directly in Mobile Safari.

c08.indd 194 31-01-2014 17:21:27

Exploring Maps and
Local Search

What you learn in this chapter:

➤➤ Displaying a map in an app

➤➤ Getting and showing the user’s current location

➤➤ Using Apple’s local search to display points of interest on a map

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the chapter 09 download
and individually named according to the names throughout the chapter.

The availability of maps and showing a user’s location are very handy features of mobile
devices. Apple’s Maps app has been part of iOS since the launch of the iPhone. When the iOS
SDK became public, Apple included its Map Kit framework for developers to build their own
location-based apps, and they’ve been popular ever since.

Location-based search has become a popular feature in iOS apps as well. Urban Spoon was
one of the first to use this type of location awareness by enabling you to view restaurants
near your current location. Urban Spoon had spent a great deal of time building its database
and search infrastructure to support its app and make it one of the most popular apps ever
released.

Apple saw how popular location-based search had become. It partnered with the popular local
search service Yelp and created new search classes and protocols that it released with iOS 6.
With the new additions to Map Kit, developers can search and show local search results with
just a few lines of code.

9

c09.indd 195 31-01-2014 17:21:34

196 ❘ chapter 9 Exploring Maps and local sEarch

In this chapter you add the Find Local Record Stores feature to the Bands app. It displays a map
with pins showing record stores around the user’s current location.

learning about map VieWs

Adding an interactive map to an iOS app is done using the MKMapView. It is similar to the UIWebView
you added in the previous chapter in that it’s a standalone subview you can add to any other UIView.
Though it’s available in the Object library in Interface Builder, it does require adding the
MapKit.framework to the project. The Bands project will compile just fine without the framework,
but running the app causes a crash on launch. To start on the Find Record Store feature, you first
add a new scene to the Bands app to present the MKMapView, as in the following Try It Out

try it out Adding a Map View

 1. Select the Project in the Project Navigator.

 2. On the General tab in the Linked Frameworks and Libraries section, add the MapKit.framework
as you did in Chapter 7, “Integrating Social Media.”

 3. From the Xcode menu, select File ➪➤New ➪➤File, and create a new UIViewController subclass
named WBAMapSearchViewController.

 4. Select the WBAMapSearchViewController.h file in the Project Navigator.

 5. Add the MapKit.h file to the imports with the following code:

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interface WBAMapSearchViewController : UIViewController

@end

 6. Add an IBOutlet for an MKMapView with the following code:

@interface WBAMapSearchViewController : UIViewController

@property (nonatomic, assign) IBOutlet MKMapView *mapView;

@end

 7. Select the Main.storyboard from the Project Navigator.

 8. Drag a new View Controller from the Object library onto the storyboard.

 9. Select the new View Controller, and set its class in the Identity Inspector to the
WBAMapSearchViewController class. This is now the Map Search scene.

 10. Select the Band Details scene, and add a manual push segue from it to the new Map Search scene.

 11. Select the new segue, and set its identifier to mapViewSegue in the Attributes Inspector.

 12. Select the UINavigationItem of the Map Search scene, and set its title to Record Stores in the
Attributes Inspector.

c09.indd 196 31-01-2014 17:21:34

Learning About Map Views ❘ 197

 13. Drag a Map View from the Objects library onto the WBAMapSearchViewController.

 14. Connect the MKMapView to the mapView IBOutlet in the WBAMapSearchViewController.

 15. Select the WBABandDetailsViewController.h file from the Project Navigator.

 16. Add a new value to the WBAActivityButtonIndex using the following code:

typedef enum {
// WBAActivityButtonIndexEmail,
// WBAActivityButtonIndexMessage,
 WBAActivityButtonIndexShare,
 WBAActivityButtonIndexWebSearch,
 WBAActivityButtonIndexFindLocalRecordStores,
} WBAActivityButtonIndex;

 17. Select the WBABandDetailsViewController.m file from the Project Navigator and modify the
activityButtonTouched: method with the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = nil;

 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
 cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil otherButtonTitles:
 @"Share", @"Search the Web", @"Find Local Record Stores", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

 18. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 if(buttonIndex == WBAActivityButtonIndexShare)
 {
 [self shareBandInfo];
 }
 else if (buttonIndex == WBAActivityButtonIndexWebSearch)
 {
 [self performSegueWithIdentifier:@"webViewSegue" sender:nil];
 }
 else if (buttonIndex == WBAActivityButtonIndexFindLocalRecordStores)
 {
 [self performSegueWithIdentifier:@"mapViewSegue" sender:nil];
 }
 }

 // the rest of this method is available in the sample code
 }

c09.indd 197 31-01-2014 17:21:34

198 ❘ chapter 9 Exploring Maps and local sEarch

 19. Run the app in the iPhone 4-inch simulator. When you select the
Search Map option, you now see the MKMapView, as shown in
Figure 9-1.

How It Works

The first thing you did was to add the MapKit.framework to the
project. Next you created a new UIViewController subclass called
WBAMapSearchViewController. The class is quite simple with just an
IBOutlet for an MKMapView, which requires importing the MKMapKit.h file.

In the Storyboard you added a new view controller and set its class to
the new WBAMapSearchViewController. This is now the Map Search
scene. You then created a new manual push segue to the Map Search
scene from the Band Details scene. After that you added the MKMapView
to the Map Search scene and set its IBOutlet to the mapView in the
WBAMapSearchViewController.

In the WBABandDetailsViewController you added a new
WBAActivityButtonIndexFindLocalRecordStores value to the
WBAActivityButtonIndex enumeration. In the actionSheet:clickedButtonAtIndex:
method you looked for the new WBAActivityButtonIndexFindLocalRecordStores value and called
performSegueWithIdentifier:sender: method, using the mapViewSeque identifier to show the new
Map Search scene.

getting the user’s location
To perform a local search, you need to get the user’s location. There are a few ways of doing this
depending on the needs of the app, but all use the Location Service of the system. The Location
Service is part of the CoreLocation.framework and uses hardware on the device to get an approxi-
mate location. For iPod touches and Wi-Fi-only iPads, the service can look up the location using the
Wi-Fi hotspot to which the device is connected. iPads and iPhones that have a cellular connection
can use the location of the cell tower. iPhones also have a GPS antenna for the most accurate loca-
tion information.

figure 9-1

design your apps to conserVe battery poWer

When adding location-aware features to an app, you need to keep battery life in
mind. All these methods require the system to power on one of the antennas of the
device. When an antenna is on, it consumes a good amount of battery power until
the antenna gets powered back off. For location-aware apps you need to decide how
accurate the location data needs to be and how often your app needs to be updated
about changes.

c09.indd 198 31-01-2014 17:21:34

Learning About Map Views ❘ 199

Location information also brings with it privacy concerns. Some apps in the past have passed the
user’s location on to other services without notifying the user. Because of this Apple added the
Location Service to the privacy section of the Settings app. Users can turn off Location Services for
either the entire device or per app. Some users may turn them off simply to boost their battery life.
As the developer you need to keep this in mind. The CLLocationManager class has a static method
called locationServicesEnabled that you can call to determine if Location Services are indeed
available to your app. If they are not, you should at least tell the user why the location feature is
not available. You do this in the following Try It Out using a UIAlertView.

For the Find Local Record Stores feature, showing the user’s location on the map is useful only
when it’s zoomed in. As the developer, you can set the region of the map to show, as you see in the
following Try It Out.

try it out Displaying the User’s Current Location

 1. Select the Project from the Project Navigator.

 2. On the General tab in the Linked Frameworks and Libraries section, add the CoreLocation
.framework.

 3. Select the WBAMapSearchViewController.h file from the Project Navigator.

 4. Declare that the class implements the MKMapViewDelegate and also add a property for the
MKUserLocation using the following code:

@interface WBAMapSearchViewController : UIViewController <MKMapViewDelegate>

@property (nonatomic, assign) IBOutlet MKMapView *mapView;
@property (nonatomic, strong) MKUserLocation *userLocation;

@end

 5. Select the WBAMapSearchViewController.m file from the Project Navigator.

Apps that need greater control over how accurate the location information is and
how often it’s delivered can use an instance of the CLLocationManager class in
the Core Location framework and the CLLocationManagerDelegate. Using these
you can set how accurate the location data needs to be and control how often the
Location Service sends updates to the app. Developers using this method need to
choose their settings wisely so that they can implement the feature they want while
conserving as much battery life as possible.

Apps that use the MKMapView and need location data only when the device moves a
significant distance can skip using the CLLocationManagerDelegate and instead
use the MKMapViewDelegate. This method shifts the burden of conserving battery
life back to the system. It still uses Core Location, but you as the developer don’t
need to worry about the details. This is the approach you take with the Bands app.

c09.indd 199 31-01-2014 17:21:34

200 ❘ chapter 9 Exploring Maps and local sEarch

 6. Add the viewDidAppear: method of the UIViewControllerDelegate using the following code:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 if(![CLLocationManager locationServicesEnabled])
 {
 UIAlertView *noLocationServicesAlert = [[UIAlertView alloc]
initWithTitle:@"The Find Local Record Stores feature is not available"
message:@"Location Services are not enabled" delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [noLocationServicesAlert show];
 }
 else
 {
 self.mapView.showsUserLocation = YES;
 }
}

 7. Add the mapView:didUpdateUserLocation method of the MKMapViewDelegate using the follow-
ing code:

- (void)mapView:(MKMapView *)mapView
didUpdateUserLocation:(MKUserLocation *)userLocation
{
 self.userLocation = userLocation;

 MKCoordinateSpan coordinateSpan;
 coordinateSpan.latitudeDelta = 0.3f;
 coordinateSpan.longitudeDelta = 0.3f;

 MKCoordinateRegion regionToShow;
 regionToShow.center = userLocation.coordinate;
 regionToShow.span = coordinateSpan;

 [self.mapView setRegion:regionToShow animated:YES];
}

 8. From the Xcode menu select Xcode➤➪➤Open Developer Tool➤➪➤iOS
Simulator.

 9. From the iOS Simulator menu, select Debug➤➪➤Location➤➪➤Apple.

 10. Run the app in the iPhone 4-inch simulator. When you select the Find
Local Record Stores option, you can now zoom into the San Francisco
area with the user location annotation near Cupertino, as shown in
Figure 9-2.

How It Works

The first thing you did was to declare that the
WBAMapSearchViewController implements the MKMapViewDelegate proto-
col as well as add a property for the MKUserLocation. Locations are shown
on an MKMapView using a class that implements the MKAnnotation protocol.
It’s a simple protocol that has three required properties. The coordinate figure 9-2

c09.indd 200 31-01-2014 17:21:35

Learning About Map Views ❘ 201

property is a CLLocationCoordinate2d struct that holds the latitude and longitude for the location.
The title and subtitle properties are NSStrings that describe the location. The MKUserLocation is
shown as a pulsing dot that automatically gets added to the map when the user’s location is determined.
You want to store the MKUserLocation in its own property so that your code knows that the location
has been determined.

In the Storyboard you connected the delegate of the MKMapView to the WBAMapSearchViewController. In
the WBAMapSearchViewController implementation you added the viewDidAppear:animated:
method. It calls the locationServicesEnable static method of the CLLocationManager class to check
if Location Services are enabled. If they are not, you show a UIAlertView to users letting them know
that the feature is not available.

If they are available, you set the showUserLocation property of the mapView to YES. This tells the
MKMapView to use Core Location to get the current location. When it determines the location, the
mapView:didUpdateUserLocation: method of the MKMapViewDelegate is called.

In your implementation of the mapView:didUpdateUserLocation:, you first save the MKUserLocation
in the userLocation property of the WBAMapSearchViewController. Next, you create an
MKCoordinateSpan and an MKCoordinateRegion. The coordinate region determines the region of the
map to show while the span determines how big of an area is visible. The latitude and longitude deltas
are measured in degrees, with 1 degree equaling approximately 69 miles. In this implementation the
map shows approximately 20 miles around the user’s location.

Finally, you call the setRegion:animated: method of the MKMapView using the MKCoordinateRegion
you created for the region parameter and pass YES for the animated parameter. With the animated
parameter set to YES the user will see the MKMapView zoom in to their location.

Note The iOS Simulator may reset its debug location setting back to None. If
you run the app in the simulator and no location is found, check to make sure
that the location debug setting is still set to Apple.

changing the map type
If you have used Apple’s Maps app, you have probably noticed the three different view types. Maps
can be shown as the standard map with all the roads, highways, cities, and towns labeled, as a satel-
lite view showing just satellite images, or as a hybrid with satellite images and all the labels. Some
users may prefer the hybrid view when searching for record stores, so the Bands app you build gives
them the option to change how the map displays.

try it out Showing the Satellite and Hybrid Map Types

 1. Select the WBAMapSearchViewController.h file from the Project Navigator.

 2. Add a new enumeration named WBAMapViewActionButtonIndex using the following code:

typedef enum {
 WBAMapViewActionButtonIndexMapType,

c09.indd 201 31-01-2014 17:21:35

202 ❘ chapter 9 Exploring Maps and local sEarch

 WBAMapViewActionButtonIndexSatelliteType,
 WBAMapViewActionButtonIndexHybridType,
} WBAMapViewActionButtonIndex;

 3. Declare the class implements the UIActionSheetDelegate using the following code:

@interface WBAMapSearchViewController : UIViewController <MKMapViewDelegate,
UIActionSheetDelegate>

 4. Add the following IBAction:

- (IBAction)actionButtonTouched:(id)sender;

 5. Select the Main.storyboard from the Project Navigator.

 6. Drag a new Bar Button Item from the Object library to the right side of the UINavigationItem in
the Map View scene.

 7. Select the UIBarButtonItem and set its Identifier to Action in the Attributes Inspector.

 8. Connect the UIBarButtonItem to the actionButtonTouched: method in the
WBAMapSearchViewController.

 9. Select the WBAMapSearchViewController.m file from the Project Navigator.

 10. Add the actionButtonTouched: method to the implementation using the following code:

- (IBAction)actionButtonTouched:(id)sender
{
 UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Map View", @"Satellite View", @"Hybrid View", nil];
 [actionSheet showInView:self.view];
}

 11. Add the actionSheet:clickedButtonAtIndex: with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
 clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(buttonIndex == WBAMapViewActionButtonIndexMapType)
 {
 self.mapView.mapType = MKMapTypeStandard;
 }
 else if (buttonIndex == WBAMapViewActionButtonIndexSatelliteType)
 {
 self.mapView.mapType = MKMapTypeSatellite;
 }
 else if (buttonIndex == WBAMapViewActionButtonIndexHybridType)
 {
 self.mapView.mapType = MKMapTypeHybrid;
 }
}

c09.indd 202 31-01-2014 17:21:35

Performing a Local Search ❘ 203

 12. Run the app in the iPhone 4-inch simulator. You can now switch the
Map view between the map, satellite, or hybrid views, as shown in
Figure 9-3.

How It Works

The first thing you did was to declare that the
WBAMapSearchViewController implements the UIActionSheetDelegate
as well as add an IBAction called actionButtonTouched:. In the
Storyboard you added a new UIBarButtonItem to the UINavigationItem
of the Map View scene, set its identity to Action, and connected it to the
actionButtonTouched: method.

In the WBAMapSearchViewController you added a new enu-
meration named WMAMapViewActionButtonIndex with
three values: WBAMapViewActionButtonIndexMapType,
WBAMapViewActionButtonSatelliteType, and
WBAMapViewActionButtonHybridType. Next, you implemented the
actionButtonTouched: method, which shows a UIActionSheet
with the three map types as options in the same order of the
WBAMapViewActionButtonIndex enumeration. Finally, you implemented the actionSheet:clicked
ButtonAtIndex: method, which changes the mapType property of the MKMapView using one of the
three map type constants. The MKMapTypeStandard shows the standard map, the MKMapTypeSatellite
shows the satellite view, and the MKMapTypeHybrid shows the satellite view with the road and city labels.

performing a local search

Now that you have the MKMapView added to the app and the user location shown, you can
add the code to actually search for record stores. The search is done by first creating an
MKLocalSearchRequest. This class has two properties. The naturalLanguageQuery property is
a string of what you want to search for. The region property is the region of the world you would
like to search. For the Bands app the query is simply “Record Store,” and the region is whatever the
region of the map is set to when the search is performed.

To send the request to Apple, you initialize a new instance of the MKLocalSearch class with an
MKLocalSearchRequest, as you will implement in the following Try It Out.

try it out Sending a Local Search Request to Apple

 1. Select the WBAMapSearchViewController.h file from the Project Navigator.

 2. Declare the following method in the interface:

- (void)searchForRecordStores;

figure 9-3

c09.indd 203 31-01-2014 17:21:35

204 ❘ chapter 9 Exploring Maps and local sEarch

 3. Modify the mapView:didUpdateUserLocation: with the following code:

- (void)mapView:(MKMapView *)mapView
didUpdateUserLocation:(MKUserLocation *)userLocation
{
 self.userLocation = userLocation;

 MKCoordinateSpan coordinateSpan;
 coordinateSpan.latitudeDelta = 0.3f;
 coordinateSpan.longitudeDelta = 0.3f;

 MKCoordinateRegion regionToShow;
 regionToShow.center = userLocation.coordinate;
 regionToShow.span = coordinateSpan;

 [self.mapView setRegion:regionToShow animated:YES];
 [self searchForRecordStores];
}

 4. Add the searchForRecordStores method to the implementation using the following code:

- (void)searchForRecordStores
{
 if(!self.userLocation)
 return;

 MKLocalSearchRequest *localSearchRequest = [[MKLocalSearchRequest alloc] init];
 localSearchRequest.naturalLanguageQuery = @"Record Store";
 localSearchRequest.region = self.mapView.region;

 MKLocalSearch *localSearch = [[MKLocalSearch alloc]
initWithRequest: localSearchRequest];

 [localSearch startWithCompletionHandler:nil];
}

How It Works

You first declared the searchForRecordStores method in the WBAMapSearchViewController
interface. In the implementation of the WBAMapSearchViewController you modified the
mapView:didUpdateUserLocation: to call the searchForRecordStores method when the user’s
location is determined.

The searchForRecordStores method is where the actual search is performed. The code first makes
sure the userLocation property of the WBAMapSearchViewController is set. Without the
userLocation set, the MKMapView is most likely showing the entire United States. You can perform a
search of the entire United States, but it would not be very useful.

If the userLocation property is set, then the region of the MKMapView has been set to the area around
the user’s location. Next you initialized the MKLocalSearchRequest class instance. You set its
naturalLanguageQuery property to “Record Store” and the region property to the region property
of the MKMapView. This sets up the search to look for record stores within the visible region of the

c09.indd 204 31-01-2014 17:21:35

Performing a Local Search ❘ 205

MKMapView. Next you initialized the MKLocalSearch class instance using the MKLocalSearchRequest.
Finally you called the startWithCompletionHandler: method of the MKLocalSearch class with a nil
completion handler to send the request to Apple.

Unlike most of what you’ve coded up to this point, the MKLocalSearch class does not have a delegate
protocol associated with it. Instead it uses a block passed into the startWithCompletionHandler:
method.

Blocks, as you may recall from Chapter 2, “Introduction to Objective-C,” are a way of passing a
chunk of code into a method like any other parameter. The implementation of that method can then
execute the code when it’s appropriate. With the local search implementation you define an inline
block as the completion handler to the startWithCompletionHandler: method. When the search
is complete and the results have been retrieved, the block will be executed. The following Try It Out
shows how this is implemented.

try it out Implementing a Completion Handler Using an Inline Block

 1. Select the WBAMapSearchViewController.m file from the Project Navigator.

 2. Modify the call to startWithCompletionHandler: in the searchForRecordStores method
using the following code:

[localSearch startWithCompletionHandler:
^(MKLocalSearchResponse *response, NSError *error)
{
 if(error)
 {
 NSLog(@"An error occured while performing the local search");
 }
 else
 {
 NSLog(@"The local search found %d record stores", [response.mapItems count]);
 }
 }];

 3. Run the app in the iPhone 4-inch simulator. You will see the count from the local search result
printed in the Xcode debugger console.

How It Works

The startWithCompletionHandler: method takes only one parameter, which is an inline block.
You declare the start of the block with the ^ character. This block has two parameters: The first is an
MKLocalSearchResponse object named response and the second is an NSError named error. You can
think of the inline block as a method that gets called when the search completes. Instead of declaring a
separate method and adding its implementation somewhere else in the file, you define the implementation
inline. The implementation gets passed in the MKLocalSearchResponse and the NSError. In this Try It
Out the code first checks to see if the NSError parameter is set. If it is, then the search results in an error.
If the search was successful the NSError will be nil and the response parameter will have the search
results stored in its mapItems property. This code writes the count of mapItems to the console.

c09.indd 205 31-01-2014 17:21:35

206 ❘ chapter 9 Exploring Maps and local sEarch

The Bands app can now perform a local search and get the results in the inline block. The next
step is showing the record stores on the MKMapView. The actual search results are returned as
MKMapItems. These items hold data about each record store found, including their name, a URL,
and a phone number if available. To show them on the map, you need to create a class that
 implements the MKAnnotation protocol. For the Bands app you use an MKPointAnnotation, as
demonstrated in the following Try It Out.

try it out Implementing Local Search

 1. Select the WBAMapSearchViewController.h file from the Project Navigator.

 2. Add the following property to the interface:

@property (nonatomic, strong) NSMutableArray *searchResultMapItems;

 3. Select the WBAMapSearchViewController.m file from the Project Navigator.

 4. Modify the viewDidLoad method with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];
 self.searchResultMapItems = [NSMutableArray array];
}

completion handlers and threading

The MKLocalSearch completion handler allows for hiding the lower-level network-
ing code that actually sends the request to Apple and receives the results. That
lower-level networking may not be performed on the main thread, however.

Threads are a programming construct that enables multiple execution paths to be
performed in parallel. The main thread in an app is almost always responsible for
the user interface. When an app needs to perform a method that takes some time to
complete, such as a networking call in this case, it’s better to call it on a background
thread to keep the user interface from freezing up while the task is performed. If the
task results in the user interface needing an update, that update must be performed
back on the main thread.

When using completion handlers you should assume that the code will not be
executed on the main thread unless specifically stated in the Apple documentation.
The documentation for the startSearchWithCompletionHandler: method of the
MKLocalSearch class, found at https://developer.apple.com/library/ios/
documentation/MapKit/Reference/MKLocalSearch/Reference/Reference

.html, includes the sentence “The provided completion handler is always executed
on your app’s main thread.” This is very important, as you do not need to add your
own code to make sure the completion handler is called on the main thread.

c09.indd 206 31-01-2014 17:21:36

Performing a Local Search ❘ 207

 5. Modify the searchForRecordStores method to the implementation using the following code:

- (void)searchForRecordStores
{
 if(!self.userLocation)
 return;

 MKLocalSearchRequest *localSearchRequest = [[MKLocalSearchRequest alloc] init];
 localSearchRequest.naturalLanguageQuery = @"Record Store";
 localSearchRequest.region = self.mapView.region;

 MKLocalSearch *localSearch = [[MKLocalSearch alloc]
initWithRequest: localSearchRequest];

 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;

 [localSearch startWithCompletionHandler:
 ^(MKLocalSearchResponse *response, NSError *error)
 {
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

 if (error != nil)
 {
 UIAlertView *mapErrorAlert = [[UIAlertView alloc]
initWithTitle:@"Error" message:[error localizedDescription] delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

 [mapErrorAlert show];
 }
 else
 {
 NSMutableArray *searchAnnotations = [NSMutableArray array];
 for(MKMapItem *mapItem in response.mapItems)
 {
 if(![self.searchResultMapItems containsObject:mapItem])
 {
 [self.searchResultMapItems addObject:mapItem];

 MKPointAnnotation *point = [[MKPointAnnotation alloc] init];
 point.coordinate = mapItem.placemark.coordinate;
 point.title = mapItem.name;

 [searchAnnotations addObject:point];
 }
 }
 [self.mapView addAnnotations:searchAnnotations];
 }
 }];
}

c09.indd 207 31-01-2014 17:21:36

208 ❘ chapter 9 Exploring Maps and local sEarch

 6. Run the app in the iPhone 4-inch simulator. When you select Find
Record Stores, you see pins representing the search results for the
record stores, as shown in Figure 9-4.

How It Works

In order to keep track of what record stores are found and added to
the MKMapView you first declared an NSMutableArray property named
searchResultMapItems in the WBAMapSearchViewController interface.
You initialize it in the viewDidLoad method. The reason you do this in
viewDidLoad and not in viewDidAppear:animated: is to make sure it
is only initialized once. The viewDidAppear:animated: method will
be called whenever the WBAWebSearchViewController becomes visible.
This will be important in the Interacting with Annotations section on this
chapter.

Next you modified the searchForRecordStores method. Before starting
the local search you first set the Network Activity Indicator visible using the
sharedApplication and networkActivityIndicatorVisible property. It
is important to do this because the search is a network call. You then hide
the Network Activity Indicator in the completion handler, because it gets invoked when the search
has completed. Next the code looks at the error parameter, which when set means an error
occurred during the search. The code now uses a UIAlertView to tell users what happened using the
 localizedDescription property of the NSError class.

If there is no error, you create an NSMutableArray that will hold all the new record store locations
you will add to the MKMapView. You then use a for-loop to go through each MKMapItem returned in
the mapItems property of the response parameter. You check to see if the MKMapItem is already in
searchResultMapItems, which tells you if the search result has already been added to the MKMapView.
If not, you add the MKMapItem to the searchResultMapItems.

To show the record stores on the MKMapView you need to use a class that implements the MKAnnotation
protocol. The MKMapItem class has an MKPlacemark property named placemark that implements the
MKAnnotation protocol. You could add the MKPlacemark to the MKMapView. It is displayed as a pin that
shows the title in a callout when tapped by users. The title, however, is read-only and is set to the
street address of the record store. The name of the record store is more useful, so instead you create an
MKPointAnnotation.

The MKPointAnnotation also implements the MKAnnotation protocol and is also displayed as a pin.
The title property, however, is not read-only. You set its coordinate property using coordinate from
the MKPlacemark. You set its title to the name property of the MKMapItem, which is the actual name of
the record store. Now when a user taps on the pin the callout will show the record store name. Finally
you add all the new MKPointAnnotations to the MKMapView using the addAnnotations: method.

As the app is coded now, the local search is performed only when the user’s location changes. If user
is physically moving around, they see new results loaded. If they are staying still but panning around
in the map, the search isn’t triggered again, so no new search results display. To fix this you imple-
ment the mapView:regionDidChangeAnimated delegate method in the following Try It Out.

figure 9-4

c09.indd 208 31-01-2014 17:21:36

Performing a Local Search ❘ 209

try it out Updating Search Results After Panning

 1. Select the WBAMapSearchViewController.m file from the Project Navigator.

 2. Add the mapView:regionDidChangeAnimated method to the implementation with the following
code:

- (void)mapView:(MKMapView *)mapView regionDidChangeAnimated:(BOOL)animated
{
 [self searchForRecordStores];
}

 3. Modify the mapView:didUpdateUserLocation with the following code:

- (void)mapView:(MKMapView *)mapView
didUpdateUserLocation:(MKUserLocation *)userLocation
{
 self.userLocation = userLocation;

 MKCoordinateSpan coordinateSpan;
 coordinateSpan.latitudeDelta = 0.3f;
 coordinateSpan.longitudeDelta = 0.3f;

 MKCoordinateRegion regionToShow;
 regionToShow.center = userLocation.coordinate;
 regionToShow.span = coordinateSpan;

 [self.mapView setRegion:regionToShow animated:YES];
 //[self searchForRecordStores];

}

 4. Run the app in the iPhone 4-inch simulator. As you pan around the map view or zoom in and out,
you should see new pins added to the map.

How It Works

First, you implemented the mapView:regionDidChangeAnimated: delegate method of the
MKMapViewDelegate protocol. This method gets called when users pan the MKMapView or zoom
in and out. The implementation simply calls the searchForRecordStores method, which per-
forms the local search again using the new region of the MKMapView. You then modified the
mapView:didUpdateUserLocation: method to no longer call searchForRecordStores. Its implemen-
tation calls setRegion:animated: on the MKMapView, which triggers the mapView:regionDidChangeA
nimated: delegate method. If you do not remove the call to searchForRecordStores, the local search
will be performed twice.

animating annotations
Animations can add some polish to an app and help make the user interface more aesthetically
pleasing. With map pin annotations, it’s common to see the pins fall into place from the top of the
screen rather than just showing them, as the Bands app now does. To animate the pins you need to
change how you are adding them to the MKMapView.

c09.indd 209 31-01-2014 17:21:36

210 ❘ chapter 9 Exploring Maps and local sEarch

You can recall from earlier in this chapter that all locations on a map are represented using a class
that implements the MKAnnotation protocol. Both the MKUserLocation object used to show the
user’s location and the MKPointAnnotation objects you create to show the results of the record store
search implement this protocol.

These annotations are represented visually on an MKMapView using an MKAnnotationView. Up
to this point the MKMapView has used the default MKAnnotationView for both the user’s location
and record store locations. The default MKAnnotationView for the MKUserLocation annotation
is the pulsing dot. This MKAnnotationView is private and not made available to you. The default
MKAnnotationView for an MKPointAnnotation is an MKPinAnnotationView that you can use.

The MKPinAnnotationView has a property named animatesDrop that when set to true performs the
drop animation. The default MKPinAnnotationView sets this property to false. In order to set it, you
need to create and supply your own MKPinAnnotationView for the MKMapView to display. You do
this using the mapView:viewForAnnotation: method of the MKMapViewDelegate protocol.

Before any annotation is displayed on an MKMapView it calls the mapView:viewForAnnotation:
method of its delegate. If this method is not implemented or if it returns nil, the MKMapView uses the
default MKAnnotationView for the annotation. This is important for the MKUserLocation annota-
tion, because you want the default pulsing dot to be shown. For an MKPointAnnotation used for a
record store location, you want to return your own MKPinAnnotationView with the animatesDrop
property set to true.

Creating, adding, and deallocating subviews is expensive and can cause jittery animations
when a user pans around an MKMapView. To combat this, the MKMapView attempts to reuse
MKAnnotationViews that are already created and added to the MKMapView but are no longer vis-
ible. This is the same approach you learned about with UITableViewCells in Chapter 5, “Using
Table Views.” Before creating a new MKPinAnnotationView, you first try to dequeue one from the
MKMapView using a reuse identifier. Only if none are available do you create a new one.

This approach may sound difficult, but the code to implement it is fairly straightforward, as you will
see in the following Try It Out.

try it out Animating Pin Drops

 1. Select the WBAMapSearchViewController.m file from the Project Navigator.

 2. Add the mapView:viewForAnnotation: method to the implementation using the following code:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 if(annotation == self.userLocationAnnotation)
 return nil;

 MKPinAnnotationView *pinAnnotationView = (MKPinAnnotationView *)
[mapView dequeueReusableAnnotationViewWithIdentifier: @"pinAnnotiationView"];
 if (pinAnnotationView)
 {
 pinAnnotationView.annotation = annotation;
 }

c09.indd 210 31-01-2014 17:21:36

Performing a Local Search ❘ 211

 else
 {
 pinAnnotationView = [[MKPinAnnotationView alloc]
initWithAnnotation:annotation reuseIdentifier: @"pinAnnotiationView"];
 pinAnnotationView.canShowCallout = YES;
 pinAnnotationView.animatesDrop = YES;
 }

 return pinAnnotationView;
}

 3. Run the app in the iPhone 4-inch simulator. When results are retrieved, their pins will be
 animated onto the map.

How It Works

When the mapView:viewForAnnotation: method gets called you first check to see if the annotation
being passed in is the MKUserLocation annotation. If it is you return nil, which tells the MKMapView to
use the default pulsing dot.

If it is not, you can assume the annotation is an MKPointAnnotation for a record store location that
needs an MKPinAnnotationView. Before creating a new MKPinAnnotationView, you attempt to reuse
one by calling the dequeueReusableAnnotationViewWithIdentifier: method of the MKMapView.
If an MKPinAnnotationView is available, you only need to associate it with the MKPointAnnotation
by setting its annotation property using the annotation passed into mapView:viewForAnnotation:
method. The other properties will remain set as they were when the MKPinAnnotationView was
created.

If no reusable MKPinAnnotationView is found, you initialize a new one using the initWithAnnotation:
reuseIdentifier: method. Next you set the canShowCallout property to YES so that the callout with
the record store name is displayed when the pin is tapped. You also set the animatesDrop property to
YES so that the drop animation is performed. Finally you return the MKPinAnnotationView to be dis-
played on the MKMapView.

interacting with annotations
One of the properties returned by the local search is a URL of the record store, if it is available. In
the previous chapter, you learned how to display web pages, so to round out the record store search
feature, you can also show the web page of record stores found.

When the callout of an MKPinAnnotation is shown, you can add accessory views to the left and
right side. You can then implement the mapView:annotationView:calloutAccessoryControl
Tapped: method of the MKMapKitDelegate protocol to know when the user taps the accessory. In
the Bands app, you add an info button to the left side of the callout if the record store search result
contains a URL. When the user taps the button, the app pushes the WBAWebViewController into
view and displays that record store’s web page.

c09.indd 211 31-01-2014 17:21:36

212 ❘ chapter 9 Exploring Maps and local sEarch

try it out Displaying Local Search Result Web Pages

 1. Select the Main.storyboard from the Project Navigator.

 2. Select the Map Search scene, and add a new manual push segue to the Web View scene as shown
in Figure 9-5.

figure 9-5

 3. Select the new segue and set its identifier to recordStoreWebSearchSegue in the Attributes
Inspector.

 4. Select the WBAWebViewController.h file from the Project Navigator, and add the following prop-
erty to the interface:

@property (nonatomic, strong) NSString *recordStoreUrlString;

 5. Select the WBAWebViewController.m file from the Project Navigator, and modify the
viewDidAppear: method with the following code:

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 if(self.bandName)
 {
 NSString *urlEncodedBandName = (NSString *)
CFBridgingRelease(CFURLCreateStringByAddingPercentEscapes(NULL,

c09.indd 212 31-01-2014 17:21:37

Performing a Local Search ❘ 213

(CFStringRef)self.bandName, NULL, (CFStringRef)@"!*'();:@&=+$,/?%#[]",
kCFStringEncodingUTF8));
 NSString *yahooSearchString = [NSString
stringWithFormat:@"http://search.yahoo.com/search?p=%@", urlEncodedBandName];
 NSURL *yahooSearchUrl = [NSURL URLWithString:yahooSearchString];
 NSURLRequest *yahooSearchUrlRequest =
[NSURLRequest requestWithURL:yahooSearchUrl];

 [self.webView loadRequest:yahooSearchUrlRequest];
 }
 else if (self.recordStoreUrlString)
 {
 NSURL *recordStoreUrl = [NSURL URLWithString:self.recordStoreUrlString];
 NSURLRequest *recordStoreUrlRequest =
[NSURLRequest requestWithURL:recordStoreUrl];

 [self.webView loadRequest:recordStoreUrlRequest];
 }
}

 6. Select the WBAMapSearchViewController.m file from the Project Navigator.

 7. Modify the inline block for the startWithCompletionHandler: in the searchForRecordStores
method with the following code:

[localSearch startWithCompletionHandler:^(MKLocalSearchResponse *response,
 NSError *error)
 {
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

 if (error != nil)
 {
 UIAlertView *mapErrorAlert = [[UIAlertView alloc]
 initWithTitle:@"Error" message:[error localizedDescription]
 delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [mapErrorAlert show];
 }
 else
 {
 NSMutableArray *searchAnnotations = [NSMutableArray array];
 for(MKMapItem *mapItem in response.mapItems)
 {
 if(![self.searchResultMapItems containsObject:mapItem])
 {
 [self.searchResultMapItems addObject:mapItem];

 MKPointAnnotation *point = [[MKPointAnnotation alloc] init];
 point.coordinate = mapItem.placemark.coordinate;
 point.title = mapItem.name;

 if(mapItem.url)
 {
 point.subtitle = mapItem.url.absoluteString;

c09.indd 213 31-01-2014 17:21:37

214 ❘ chapter 9 Exploring Maps and local sEarch

 }

 [searchAnnotations addObject:point];
 }
 }
 [self.mapView addAnnotations:searchAnnotations];
 }
 }];

 8. Modify the mapView:viewForAnnotation: method with the following code:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
viewForAnnotation:(id<MKAnnotation>)annotation
{
 if(annotation == self.userLocationAnnotation)
 return nil;

 MKPinAnnotationView *pinAnnotationView = (MKPinAnnotationView *)
[mapView dequeueReusableAnnotationViewWithIdentifier: @"pinAnnotiationView"];
 if (pinAnnotationView)
 {
 pinAnnotationView.annotation = annotation;
 }
 else
 {
 pinAnnotationView = [[MKPinAnnotationView alloc]
initWithAnnotation:annotation reuseIdentifier: @"pinAnnotiationView"];
 pinAnnotationView.canShowCallout = YES;
 pinAnnotationView.animatesDrop = YES;
 }

 if(((MKPointAnnotation *)annotation).subtitle)
 {
 pinAnnotationView.leftCalloutAccessoryView =
[UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 }
 else
 {
 pinAnnotationView.leftCalloutAccessoryView = nil;
 }

 return pinAnnotationView;
}

 9. Add the mapView:annotationView:calloutAccessoryControlTapped: method of the
MKMapViewDelegate using the following code:

- (void)mapView:(MKMapView *)mapView annotationView:(MKAnnotationView *)view
calloutAccessoryControlTapped:(UIControl *)control
{
 [self performSegueWithIdentifier:@"recordStoreWebSearchSegue" sender:view];
}

 10. Add the prepareForSegue:sender: method to the implementation using the following code:

c09.indd 214 31-01-2014 17:21:37

Summary ❘ 215

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 MKAnnotationView *annotiationView = sender;
 MKPointAnnotation *pointAnnotation =
(MKPointAnnotation *)annotationView.annotation;
 WebViewController *webViewController =
(WebViewController *)segue.destinationViewController;
 webViewController.recordStoreUrlString = pointAnnotation.subtitle;
}

 11. Run the app in the iPhone 4-inch simulator. When a local search result
has a URL associated with it, you see the URL and the info button
added to the callout, as shown in Figure 9-6. Tapping the info button
loads the URL in the Web Search view.

How It Works

The first thing you did was add a new manual segue from the Map Search
scene to the Web View scene and set its identifier to recordStoreWeb
SearchSegue. In the WBAWebViewController interface you declared
a new recordStoreUrlString property. You then added code in the
viewDidAppear:animated: method of the WBAWebViewController to cre-
ate a new NSURL and NSURLRequest using the recordStoreUrlString and
then asked the webView to load the new request.

In the WBAMapSearchViewController, you added code to the local
search completion handler to look for a URL in the MKMapItems returned
by the search. If one is found you set the subtitle property of the
MKPointAnnotation using the URL string.

In the mapView:viewForAnnotation: method, you check to see if the annotation has
its subtitle property set. If it does, you create a new UIButton with a button type
of UIButtonTypeDetailDisclosure and set the leftCalloutAccessoryView of the
MKPinAnnotationView. If it does not, you need to set the leftCalloutAccessoryView to nil in case
the MKPinAnnotationView was reused.

Next you implemented the mapView:annotationView:calloutAccessoryControlTapped: method
which calls performSegueWithIdentifier:sender using the recordStoreWebSearchSegue identi-
fier. Finally, you added the prepareForSegue:sender method. It gets the MKPinAnnotationView as its
sender. The MKPinAnnotatoinView has its subtitle property set to the URL string of the record store,
which you then use to set the recordStoreUrlString of the WBAWebViewController.

summary

Local search is a powerful feature that can be used in many apps. Although location-based searches
used to require your own backend service and low-level networking code, new versions of the iOS
SDK make performing these searches much easier. With Apple Maps you can show users points
of interest around them that relate to your app. In the Bands app, users can now search for record

figure 9-6

c09.indd 215 31-01-2014 17:21:37

216 ❘ chapter 9 Exploring Maps and local sEarch

stores near their current locations as well as browse each store’s web page while never needing to
leave the app.

exercises

 1. What framework is required to use an MKMapView in an app?

 2. What framework is used to get the current location of an iOS device?

 3. What delegate method of the MKMapViewDelegate protocol is called when a user’s location is
determined?

 4. What are the two classes used to perform a local search?

 5. What type of object is returned in local search results?

 6. What character is used to denote the beginning of a block?

 7. What subclass of MKAnnotation can you use to show a pin on an MKMapView?

 8. What property of an MKPinAnnotationView do you set to animate the pin onto the
MKMapView?

c09.indd 216 31-01-2014 17:21:37

Summary ❘ 217

 ➤ What you learned in this chapter

topic Key concepts

map Kit The MapKit.framework is used in iOS apps to display a map using
an MKMapView. You can use this framework in conjunction with the
CoreLocation.framework to get the current location of an iOS device.

local search The iOS SDK includes two classes you can use to search for locations in a
given region. The MKLocalSearchRequest class is used to build the request,
while the MKLocalSearch class is used to send the request to Apple.

completion
handlers

Some of the newer classes being added to the iOS SDK use completion han-
dlers instead of delegates and protocols. A completion handler is an inline
block of code that gets passed to a method like any other parameter. When
the method completes, it will invoke the block of code. You use them to pro-
cess the results returned from a local search.

map
annotations

To mark locations on an MKMapView you use an instance of the MKAnnotation
class. The MKPointAnnotation, which is the most common, shows a pin
on the MKMapView. When users tap the pin it shows a callout with more
information.

c09.indd 217 31-01-2014 17:21:37

c09.indd 218 31-01-2014 17:21:37

10
Getting Started with
Web Services

What you Will learn in this chapter:

➤➤ Making simple networking calls

➤➤ Parsing JSON web service responses

➤➤ Streaming media from a URL using the Media Player

➤➤ Opening iTunes from within an application

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the Chapter 10 download
and individually named according to the names throughout the chapter.

In the 1999, the phrase Web 2.0 was coined to describe the slew of new websites and services
being created. Websites in the past had been static and required new files to be uploaded to serv-
ers to change the content of the site. Web 2.0 sites use dynamic content with a back-end data
store to update content on the site without needing to update the files on the server. Blogging
sites are a simple example, whereas sites such as Facebook and Twitter are examples of more
complex services. Users can see new content on the site without having to even reload the page.
These sites typically use a set of API calls made using the Hyper Text Transfer Protocol, better
known as HTTP, to get new content. The set of API calls are known as web services.

Mobile apps have become an extension of these Web 2.0 sites. Using the same set of APIs,
mobile apps can move away from needing new builds and releases to update their content and
instead connect to these web services to get new data. This gives developers an endless amount
of new data they can add to their apps.

In this chapter you use the iTunes Search web service to add the Search for Tracks feature to
the Bands app.

c10.indd 219 31-01-2014 17:21:44

220 ❘ chapter 10 GettinG Started with web ServiceS

learning about Web services

Web services enable two computers to exchange data over the web, typically using HTTP. Early
web services used documented protocols that the data exchange conformed to. One of the first web
service protocols was the Simple Object Access Protocol (SOAP), which was designed by Microsoft.
SOAP uses the Extensible Markup Language (XML) to create messages that can be sent over HTTP.
It was a popular choice of those developing software using Microsoft developer tools, because
of its integration into those tools. Developers who were not using Microsoft tools found it to be
overly complicated and hard to implement. As an alternative, developers began creating REST web
services.

REST, which stands for Representational State Transfer, is a design pattern. Instead of creating a
new protocol, REST web services build on documented aspects of HTTP. Because it’s a design pat-
tern and not a protocol, implementations of REST web services vary greatly, though the basic con-
cept remains the same. In a REST web service the URL is used in conjunction with the four main
HTTP verbs to perform basic tasks. The GET verb is used to request and retrieve data from the
service, while the DELETE verb is used to delete data. The PUT and POST verbs both send data to a
web service with PUT meaning to update data, while POST creates new data.

exploring the itunes search api
The iTunes Search API (www.apple.com/itunes/affiliates/resources/documentation/
itunes-store-web-service-search-api.html) is a REST API that does not require a username
and password, making it a great tool to learn about web services. You can use the service to search
iTunes for music, videos, books, and even other apps. In the Bands app you use it to search for
tracks by band.

The search uses a well-formed URL and the HTTP GET verb to ask for data. This is the basic struc-
ture of the URL:

https://itunes.apple.com/search

You then add query parameters to the end of the URL the same way you built the Yahoo search
URL in Chapter 8, “Using Web Views.” In the Bands app you want to search for tracks only by art-
ist. Table 10-1 describes the parameters and values you can use to build the search request.

table 10-1: iTunes Search Parameters

parameter Key value description

media music Tells the service you would like to search for music only.

entity musicTrack Tells the service you would like to search for music tracks
only and not music videos.

term (band name) The name of the band you would like to search for

c10.indd 220 31-01-2014 17:21:44

Learning About Web Services ❘ 221

Using these parameters and the band Rush as an example, the search URL would look like this:

https://itunes.apple.com/search?media=music&entity=musicTrack&attribute=artistTerm&
term=Rush

Using Safari on your desktop or laptop, you can enter that URL into the address bar and view the
results, as shown in Figure 10-1.

figure 10-1

discussing Json
The results from the iTunes Search API are returned in JavaScript Object Notation, or JSON.
Originally designed for communicating between a web browser and server, it has become the most
popular way of sending data in web services. It’s a human-readable format that uses brackets and
curly brackets to denote arrays and objects as well as key-value data with the key first, followed by
a comma and then the data. Listing 10-1 shows a subset of the JSON returned by the iTunes Search
API using the example URL in the previous section.

c10.indd 221 31-01-2014 17:21:44

222 ❘ chapter 10 GettinG Started with web ServiceS

listing 10-1: JSON Results Sample

{
 "resultCount":50,
 "results":
 [
 {
 "wrapperType":"track",
 "kind":"song",
 "artistId":50526,
 "collectionId":643419092,
 "trackId":643419201,
 "artistName":"Rush",
 "collectionName":"Moving Pictures (Remastered)",
 "trackName":"Tom Sawyer",
 "collectionCensoredName":"Moving Pictures (Remastered)",
 "trackCensoredName":"Tom Sawyer",
 "artistViewUrl":"https://itunes.apple.com/us/artist/rush/id50526?uo=4",
 "collectionViewUrl":"https://itunes.apple.com/us/album/
tom-sawyer/id643419092?i=643419201&uo=4",
 "trackViewUrl":"https://itunes.apple.com/us/album/
tom-sawyer/id643419092?i=643419201&uo=4",
 "previewUrl":"http://a1005.phobos.apple.com/us/r1000/061/Music2/
v4/4b/a1/aa/4ba1aa72-a6f5-4ac3-1b66-ca747aa490f8/
mzaf_4660742303953455851.aac.m4a",
 "artworkUrl30":"http://a2.mzstatic.com/us/r30/Music/
v4/17/ce/bc/17cebc97-e0cb-4774-8503-d7980e27f509/
UMG_cvrart_00602527893426_01_RGB72_1498x1498_12UMGIM19114.30x30-50.jpg",
 "artworkUrl60":"http://a1.mzstatic.com/us/r30/Music/
v4/17/ce/bc/17cebc97-e0cb-4774-8503-d7980e27f509/
UMG_cvrart_00602527893426_01_RGB72_1498x1498_12UMGIM19114.60x60-50.jpg",
 "artworkUrl100":"http://a3.mzstatic.com/us/r30/Music/
v4/17/ce/bc/17cebc97-e0cb-4774-8503-d7980e27f509/
UMG_cvrart_00602527893426_01_RGB72_1498x1498_12UMGIM19114.100x100-75.jpg",
 "collectionPrice":9.99,
 "trackPrice":1.29,
 "releaseDate":"2013-05-14T07:00:00Z",
 "collectionExplicitness":"notExplicit",
 "trackExplicitness":"notExplicit",
 "discCount":1,
 "discNumber":1,
 "trackCount":7,
 "trackNumber":1,
 "trackTimeMillis":276880,
 "country":"USA",
 "currency":"USD",
 "primaryGenreName":"Rock",
 "radioStationUrl":https://itunes.apple.com/us/station/idra.643419201
 }
]
}

c10.indd 222 31-01-2014 17:21:44

Learning About Web Services ❘ 223

The first data field in this sample is the resultCount whose value is 50. The next is an array of
result objects. Only one is shown in the listing, although the full result set has 50 objects in the
array. The result objects themselves have more than 30 fields, depending on what type of media it
is. For the Bands app you can search for tracks. Table 10-2 lists the fields in the search results the
Bands app will use.

 table 10-2: iTunes Search Result Keys

result Key description

collectionName The name of the album or collection the track is part of

trackName The name of the track

trackViewUrl The URL of the track in the iTunes store

previewUrl The URL to a preview of the track provided by Apple

adding the search view
To start the iTunes search feature, you first need to add a new scene to the Bands app to perform
the search and display the results. In this scene you use a UISearchBar and UITable view. A
UISearchBar is similar to a UITextField in the way it uses the software keyboard, which you
learned about in Chapter 4, “Creating a User Input Form.” When it becomes the first responder the
keyboard is shown with a button labeled “Search.” You then use the UISearchBarDelegate proto-
col to know when users tap the search button, as you will implement in the following Try It Out.

try it out Using a Search Bar

 1. From the Xcode menu select File ➪➤New ➪➤File and create a new subclass of the
UITableViewController class named WBAiTunesSearchViewController.

 2. Select the WBAiTunesSearchViewController.h file from the Project Navigator.

 3. Declare the class implements the UISearchBarDelegate with the following code:

@interface WBAiTunesSearchViewController : UITableViewController
<UISearchBarDelegate>

 4. Add an IBOutlet for a UISearchBar and a property for the band name using the following code:

@property (nonatomic, assign) IBOutlet UISearchBar *searchBar;
@property (nonatomic, strong) NSString *bandName;

 5. Select the WBAiTunesSearchViewController.m file from the Project Navigator, and add the
viewWillAppear: method using the following code:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 self.searchBar.text = self.bandName;
}

c10.indd 223 31-01-2014 17:21:44

224 ❘ chapter 10 GettinG Started with web ServiceS

 6. Add the searchBarSearchButtonClicked: method of the UISearchBarDelegate using the
following code:

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar
{
 NSLog(@"Search Button Tapped");
}

 7. Select the Main.storyboard from the Project Navigator.

 8. Drag a new Table View Controller from the Object Library onto the Storyboard.

 9. Select the new Table View Controller, and set its class to the WBAiTunesSearchViewController
in the Identity Inspector. This is now the iTunes Search scene.

 10. Create a new push segue from the Band Details scene to the iTunes Search scene, and set its
identity to iTunesSearchSegue in the Attributes Inspector.

 11. Select the UINavigationItem in the iTunes Search scene, and set its title to iTunes Track
Search.

 12. Drag a new Search Bar from the Object library, and add it to the top of the UITableView in
the iTunes Search scene. You will know if it’s a subview of the UITableView by looking at the
Storyboard hierarchy, as shown in Figure 10-2.

figure 10-2

c10.indd 224 31-01-2014 17:21:45

Learning About Web Services ❘ 225

 13. Connect the UISearchBar to the IBOutlet in the WBAiTunesSearchViewController.

 14. Connect the delegate for the UISearchBar to the WBAiTunesSearchViewController.

 15. Select the WBABandDetailsViewController.h file and add a new value to the
WBAActivityButtonIndex enumeration using the following code:

typedef enum {
// WBAActivityButtonIndexEmail,
// WBAActivityButtonIndexMessage,
 WBAActivityButtonIndexShare,
 WBAActivityButtonIndexWebSearch,
 WBAActivityButtonIndexFindLocalRecordStores,
 WBAActivityButtonIndexSearchForTracks,
} WBAActivityButtonIndex;

 16. Select the WBABandDetailsViewController.m file from the Project Navigator.

 17. Add the WBAiTunesSearchViewController.h file to the imports using the following code:

#import "WBABandDetailsViewController.h"
#import <MessageUI/MFMailComposeViewController.h>
#import <MobileCoreServices/MobileCoreServices.h>
#import "WebViewController.h"
#import "WBAiTunesSearchViewController.h"

 18. Modify the activityButtonTouched: method using the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 UIActionSheet *activityActionSheet = nil;

 activityActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Share", @"Search the Web", @"Find Local Record Stores",
@"Search iTunes for Tracks", nil];

 activityActionSheet.tag = WBAActionSheetTagActivity;
 [activityActionSheet showInView:self.view];
}

 19. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if(actionSheet.tag == WBAActionSheetTagActivity)
 {
 if(buttonIndex == WBAActivityButtonIndexShare)
 {
 [self shareBandInfo];
 }
 else if (buttonIndex == WBAActivityButtonIndexWebSearch)
 {
 [self performSegueWithIdentifier:@"webViewSegue" sender:nil];
 }
 else if (buttonIndex == WBAActivityButtonIndexFindLocalRecordStores)
 {

c10.indd 225 31-01-2014 17:21:45

226 ❘ chapter 10 GettinG Started with web ServiceS

 [self performSegueWithIdentifier:@"mapViewSegue" sender:nil];
 }
 else if (buttonIndex == WBAActivityButtonIndexSearchForTracks)
 {
 [self performSegueWithIdentifier:@"iTunesSearchSegue" sender:nil];
 }
 }

 // the rest of this method is available in the sample code
}

 20. Modify the prepareForSegue:sender: method with the following code:

-(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if([segue.destinationViewController class] == [WebViewController class])
 {
 WebViewController *webViewController = segue.destinationViewController;
 webViewController.bandName = self.bandObject.name;
 }
 else if ([segue.destinationViewController class] ==
[WBAiTunesSearchViewController class])
 {
 WBAiTunesSearchViewController *WBAiTunesSearchViewController =
segue.destinationViewController;
 WBAiTunesSearchViewController.bandName = self.bandObject.name;
 }
}

 21. Run the app in the iPhone 4-inch simulator. When you select the
Search iTunes for Tracks option activity, you now see the iTunes
Search scene with the UISearchBar containing the band name, as
shown in Figure 10-3.

How It Works

The first thing you did was to create a new subclass of
UITableViewController called WBAiTunesSearchViewController. In its
interface, you declared that it implements the UISearchBarDelegate
protocol and added an IBOutlet to a UISearchBar as well as a property for
the band name to search for. In the implementation you added the
viewDidAppear: method to set the text property of the UISearchBar using
the bandName property.

In the Main.storyboard you added a new table view controller and set its
class to the new WBAiTunesSearchViewController. This is now the iTunes
Search scene. Because its parent class is UITableViewController, the
delegate and dataSource of the UITableView and the tableView property
are automatically connected.

Next, you created a manual push segue to the iTunes Search scene from the Band Details scene. With
the segue added, the iTunes Search scene gets a UINavigationItem whose title you set to iTunes Track

figure 10-3

c10.indd 226 31-01-2014 17:21:45

Introducing NSURLSession ❘ 227

Search. You then added a new UISearchBar to the scene, making sure to add it to the UITableView.
This allows the UISearchBar to scroll off screen while the user looks at search results. Finally, you
connected the UISearchBar and its delegate to the WBAiTunesSearchViewController.

In the WBABandDetailsViewController implementation, you added one more option to the UIAction
Sheet, as you have done in previous chapters. You also updated the prepareForSegue:sender: method
to set the bandName property of the WBAiTunesSearchViewController before the segue is performed.
When selected this new option segues to the new iTunes Search scene.

introducing nsurlsession
The iOS SDK has a rich set of networking classes and protocols. Developers can control everything
from caching and authentication to processing data as it is streamed in. This is great for applications
that need that level of detail in their networking code, but it adds a lot of complexity for apps that
need to make only simple network calls.

To address some of these complexities, Apple added the NSURLSession class and its companion
classes and delegates to iOS 7. Using these classes developers can create different tasks that the sys-
tem then handles, executing instead of having to implement all the lower-level details.

You can create three basic types of tasks. These tasks can then use either delegates to get the
response and data or they can use completion handlers, as you did in the previous chapter.

➤➤ Data task: A data task is a simple http GET call that downloads data into memory.

➤➤ Download task: A download task is similar to a data task, except that the data is saved to a
file on disk.

➤➤ Upload task: The third is an upload task that uploads a file from disk.

Note For apps that require authentication, you need to implement the
delegates that handle authentication challenges. This is beyond the scope
of this book. To learn more about NSURLSession and its various delegates,
refer to the URL Loading System Programming guide provided by Apple
at https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/URLLoadingSystem/URLLoadingSystem.html#//apple_ref/doc/
uid/10000165i.

creating and scheduling a data task
In the Bands app, the app needs to make a GET request then process the data that is returned. You
will use an NSURLSessionDataTask to do this. The iTunes search API does not require a username
and password, so there is no need to add any authentication capabilities. This means that you do
not need to implement any delegates to handle authentication challenges. It also means that you can
use the shared NSURLSession that uses the system defaults for its configuration. Because the results
returned from the iTunes search API are relatively small, you also do not need to handle data as it’s

c10.indd 227 31-01-2014 17:21:45

228 ❘ chapter 10 GettinG Started with web ServiceS

streamed from the network connection. Instead you can use a completion handler to process the
data after it has been completely downloaded.

In Chapter 9 the documentation for MKLocalSearch explicitly stated the completion handler code
would be executed on the main thread. This is not the case for NSURLSession. Since the code in the
completion handler will be updating the user interface, you will need to code it in a way that ensures
it is executed on the main thread. There are a handful of ways to do this. In the Bands app you will
use Grand Central Dispatch.

Grand Central Dispatch, or GCD, was created by Apple and included in iOS 4. It was designed to
remove much of the complexity of threading. The implementation of GCD still uses threads, but you
as the developer no longer need to worry about them. Instead you dispatch blocks of code to different
queues, which then schedule them to run on threads the system maintains. You use the dispatch_
async function to do this. This function takes two parameters. The first is the system queue to perform
the block on and the second is the block itself. To get the main queue you use the dispatch_get_
main_queue function, which takes no parameters. Listing 10-2 shows a simple example of this syntax.

 listing 10-2: Using dispatch_async

dispatch_async(dispatch_get_main_queue(),
^{
 NSLog(@"This will be scheduled and executed on the main thread");
});

The NSURLSession method you will use to call the iTunes search API is the dataTaskWithRequest:
completionHandler: method. The request you pass in is an NSURLRequest, which you learned
about in Chapter 8. You will build this request in the same manner as the Yahoo search request.

The block for the completion handler gets three parameters passed to it. The first is an NSData object
that holds the data being returned from the request. The second is an NSURLResponse object, which
holds the HTTP response. The last is an NSError object that will be set if the system encounters an
error while performing the task. In the following Try It Out you will implement the call to the iTunes
search API using the dataTaskWithRequest:completionHandler: method and print the response in
the completion handler, using Grand Central Dispatch to make sure it executes on the main thread.

try it out Calling the iTunes Search API

 1. Select the WBAiTunesSearchViewController.h file from the Project Navigator.

 2. Declare the following method in the interface:

- (void)searchForTracks;

 3. Select the WBAiTunesSearchViewController.m file from the Project Navigator.

 4. Add the searchForTracks method using the following code:

- (void)searchForTracks
{
 [self.searchBar resignFirstResponder];

c10.indd 228 31-01-2014 17:21:45

Introducing NSURLSession ❘ 229

 NSString *bandName = self.searchBar.text;
 NSString *urlEncodedBandName = (NSString *)
CFBridgingRelease(CFURLCreateStringByAddingPercentEscapes(
NULL,(CFStringRef)bandName, NULL, (CFStringRef)@"!*'();:@&=+$,/?%#[]",
kCFStringEncodingUTF8));

 NSString *iTunesSearchUrlString = [NSString
stringWithFormat:@"https://itunes.apple.com/
search?media=music&entity=musicTrack&term=%@", urlEncodedBandName];
 NSURL *iTunesSearchUrl = [NSURL URLWithString:iTunesSearchUrlString];
 NSURLRequest *iTunesSearchUrlRequest = [NSURLRequest
requestWithURL:iTunesSearchUrl];

 NSURLSession *sharedUrlSession = [NSURLSession sharedSession];
 NSURLSessionDataTask *searchiTunesTask =
 [sharedUrlSession dataTaskWithRequest:iTunesSearchUrlRequest completionHandler:
 ^(NSData *data, NSURLResponse *response, NSError *error)
 {
 dispatch_async(dispatch_get_main_queue(),
 ^{
 [UIApplication sharedApplication].networkActivityIndicatorVisible
= NO;

 if(error)
 {
 UIAlertView *searchAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:error.localizedDescription delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [searchAlertView show];
 }
 else
 {
 NSString *resultString = [[NSString alloc] initWithData:data
encoding:NSUTF8StringEncoding];
 NSLog(@"Search results: %@", resultString);
 }
 });
 }];

 [UIApplication sharedApplication].networkActivityIndicatorVisible = YES;
 [searchiTunesTask resume];
}

 5. Modify the viewWillAppear method with the following code:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 self.searchBar.text = self.bandName;
 [self searchForTracks];
}

c10.indd 229 31-01-2014 17:21:45

230 ❘ chapter 10 GettinG Started with web ServiceS

 6. Modify the searchBarSearchButtonClicked: method of the UISearchBarDelegate using the
following code:

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar
{
 [self searchForTracks];
}

 7. Run the app in the iPhone 4-inch simulator. When you select the Search iTunes for Tracks option,
you see information about the search in the Xcode debug console, as shown in Figure 10-4.

figure 10-4

How It Works

In the interface of the WBAiTunesSearchViewController, you declared a new method called
searchForTracks. In its implementation the first thing the code does is resign the UISearchBar
as the first responder. This hides the keyboard if it is visible. Next, it gets the band name from the
UISearchBar and URL encodes it using the same Core Foundation method you used in Chapter 8 to
create the Yahoo search request. The code then builds the iTunes search URL string using the param-
eters discussed earlier in this chapter. Creating the NSURL and NSURLRequest are also the same as you
implemented in Chapter 8.

Before creating the networking task, the code first gets the shared NSURLSession using the static
sharedSession method of the NSURLSession class. You then use this instance to create a new
NSURLSessionDataTask using the NSURLRequest and passing in a completion handler block.

The completion handler uses Grand Central Dispatch to make sure its code is executed on the main
thread. It then hides the Network Activity Indicator and checks for any errors that may have occurred.
If there is an error, the user is alerted; otherwise, the NSData returned from the data task is converted
to an NSString using the initWithData:encoding: method and written to the debug console.

c10.indd 230 31-01-2014 17:21:46

Introducing NSURLSession ❘ 231

Creating the NSURLSessionDataTask does not start the request like the MKLocalSearch did. Instead
you initiate the network request by calling the resume method of the NSURLSessionDataTask. The
code does this after making the Network Activity Indicator visible.

parsing Json
A big advantage JSON has over XML in iOS is that it already conforms to data structures in
Objective-C. Because all data in JSON is key-value formatted, NSDictionary is a natural match for
mapping the data to Objective-C. The JSON returned from the iTunes Search API can be mapped to
an NSDictionary with two keys: resultCount and results. The object stored for the
resultCount key is an NSNumber with a value of 50. The object stored for the results key is an
NSArray which contains NSDictionary objects that represent each track in the search results.

Parsing the actual data returned from the service may seem complicated, but fortunately Apple
has already created a parser for you with the NSJSONSerialization class. It has a static method
called JSONObjectWithData:options:error:, which returns the NSDictionary representing
the JSON. The options tell the parser if you would like the data structures to be mutable. Since
the Bands app won’t be modifying the search results, you can pass 0 for the options. The method
also takes an NSError parameter. It gets passed by reference which, as you learned in Chapter 2,
“Introduction to Objective-C,” means you are passing the address for an NSError object and not
the object itself. If an error occurs while parsing, the parser will create an actual NSError object
and set the address you passed in to point to it. The following Try It Out shows you how to use the
NSJSONSerialization class to parse the results for the iTunes search.

try it out Parsing iTunes Search Results

 1. Select the WBAiTunesSearchViewController.m file from the Project Navigator.

 2. Modify the completion handler for the NSURLSessionDataTask with the following code:

NSURLSessionDataTask *searchiTunesTask =
[sharedUrlSession dataTaskWithRequest:iTunesSearchUrlRequest completionHandler:
^(NSData *data, NSURLResponse *response, NSError *error)
{
 dispatch_async(dispatch_get_main_queue(),
 ^{
 [UIApplication sharedApplication].networkActivityIndicatorVisible = NO;

 if(error)
 {
 UIAlertView *searchAlertView = [[UIAlertView alloc]
initWithTitle:@"Error" message:error.localizedDescription delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

 [searchAlertView show];
 }
 else
 {

c10.indd 231 31-01-2014 17:21:46

232 ❘ chapter 10 GettinG Started with web ServiceS

 NSString *resultString = [[NSString alloc] initWithData:data
encoding:NSUTF8StringEncoding];
 NSLog(@"Search results: %@", resultString);

 NSError *jsonParseError = nil;
 NSDictionary *jsonDictionary = [NSJSONSerialization
JSONObjectWithData:data options:0 error:&jsonParseError];

 if(jsonParseError)
 {
 UIAlertView *jsonParseErrorAlert = [[UIAlertView alloc]
initWithTitle:@"Error" message:jsonParseError.localizedDescription delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

 [jsonParseErrorAlert show];
 }
 else
 {
 for(NSString *key in jsonDictionary.keyEnumerator)
 {
 NSLog(@"First level key: %@", key);
 }
 }
 }
 });
}];

 3. Run the app in the iPhone 4-inch simulator. When searching for tracks you now see more infor-
mation in the Xcode console, as shown in Figure 10-5.

figure 10-5

c10.indd 232 31-01-2014 17:21:46

Displaying Search Results ❘ 233

How It Works

If the data task returns successfully, the code now attempts to parse the data using the
NSJSONSerialization class. The code first creates a pointer to an NSError and sets its value to nil,
meaning it doesn’t point to anything. It then passes the data from the NSURLSessionDataTask, 0 for
the options (meaning it’s OK to use immutable data structures) and the NSError pointer to the
JSONObjectWithData:options:error: method. When the parse completes, the code checks to see if
the NSError pointer was set to an actual NSError object. If so, an error has occurred during the pars-
ing and the user is alerted. Otherwise, it prints the first-level keys of the dictionary—resultCount and
results—to the debug console.

displaying search results
The last part of the iTunes Track Search feature is to display all the tracks in alphabetical order then
give the user the ability to preview the track or to view the track in iTunes. The data source for the
UITableView uses the same approach you implemented to display the bands. First, you need to cre-
ate an object to hold the properties of each track returned from the search. You can then create the
same first letters NSMutableArray to create the table index and a tracks NSMutableDictionary to
hold the track objects for each of the results.

try it out Creating the Data Source

 1. Select the Main.storyboard from the Project Navigator.

 2. Select the prototype cell in the iTunes Search view.

 3. Set its style to subtitle in the Attributes Inspector.

 4. Set its reuse identifier to trackCell in the Attributes Inspector.

 5. From the Xcode menu select File ➪➤New ➪ File, and create a new subclass of NSObject called
WBATrack.

 6. Select the WBATrack.h file, and add properties for the track name, collection name, track preview
URL, and iTunes URL using the following code:

@interface WBATrack : NSObject

@property (nonatomic, strong) NSString *trackName;
@property (nonatomic, strong) NSString *collectionName;
@property (nonatomic, strong) NSString *previewUrlString;
@property (nonatomic, strong) NSString *iTunesUrlString;

@end

 7. Select the WBATrack.m file, and add the compare method using the following code:

- (NSComparisonResult)compare:(WBATrack *)otherObject
{
 return [self.trackName compare:otherObject.trackName];
}

c10.indd 233 31-01-2014 17:21:46

234 ❘ chapter 10 GettinG Started with web ServiceS

 8. Select the WBAiTunesSearchViewController.h file from the Project Manager.

 9. Add properties for the tracks NSMutableDictionary and first letters NSMutableArray using the
following code:

@property (nonatomic, strong) NSMutableArray *firstLettersArray;
@property (nonatomic, strong) NSMutableDictionary *tracksDictionary;

 10. Select the WBAiTunesSearchViewController.m file from the Project Manager.

 11. Import the WBATrack.h class using the following code:

#import "WBAiTunesSearchViewController.h"
#import "WBATrack.h"

 12. Modify the viewDidLoad method with the following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.firstLettersArray = [NSMutableArray array];
 self.tracksDictionary = [NSMutableDictionary dictionary];
}

 13. In the completion handler for the NSURLSessionDataTask add the following code to the else
statement after the JSON has been successfully parsed:

for(NSString *key in jsonDictionary.keyEnumerator)
{
 NSLog(@"First level key: %@", key);
}

[self.firstLettersArray removeAllObjects];
[self.tracksDictionary removeAllObjects];

NSArray *searchResultsArray = [jsonDictionary objectForKey:@"results"];
for(NSDictionary *trackInfoDictionary in searchResultsArray)
{
 WBATrack *track = [[WBATrack alloc] init];
 track.trackName = [trackInfoDictionary objectForKey:@"trackName"];
 track.collectionName = [trackInfoDictionary objectForKey:@"collectionName"];
 track.previewUrlString = [trackInfoDictionary objectForKey:@"previewUrl"];
 track.iTunesUrlString = [trackInfoDictionary objectForKey:@"trackViewUrl"];

 NSString *trackFirstLetter = [track.trackName substringToIndex:1];
 NSMutableArray *tracksWithFirstLetter = [self.tracksDictionary
objectForKey:trackFirstLetter];

 if(!tracksWithFirstLetter)
 {
 tracksWithFirstLetter = [NSMutableArray array];
 [self.firstLettersArray addObject:trackFirstLetter];
 }

 [tracksWithFirstLetter addObject:track];
 [tracksWithFirstLetter sortUsingSelector:@selector(compare:)];

c10.indd 234 31-01-2014 17:21:46

Displaying Search Results ❘ 235

 [self.tracksDictionary setObject:tracksWithFirstLetter forKey:trackFirstLetter];
}

[self.firstLettersArray sortUsingSelector:@selector(compare:)];
[self.tableView reloadData];

 14. Modify the numberOfSectionsInTableView: method with the following code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return self.firstLettersArray.count;
}

 15. Modify the tableView:numberOfRowsInSection: method with the following code:

- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section
{
 NSString *firstLetter = [self.firstLettersArray objectAtIndex:section];
 NSArray *tracksWithFirstLetter =
 [self.tracksDictionary objectForKey:firstLetter];
 return tracksWithFirstLetter.count;
}

 16. Modify the tableView:cellForRowAtIndexPath: method with the following code:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath)indexPath
{
 static NSString *CellIdentifier = @"trackCell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier
 forIndexPath:indexPath];

 NSString *firstLetter = [self.firstLettersArray objectAtIndex:indexPath.section];
 NSArray *tracksWithFirstLetter = [self.tracksDictionary objectForKey:firstLetter];
 WBATrack *track = [tracksWithFirstLetter objectAtIndex:indexPath.row];

 cell.textLabel.text = track.trackName;
 cell.detailTextLabel.text = track.collectionName;

 return cell;
}

 17. Add the tableView:titleForHeaderInSection: method using the following code:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 return [self.firstLettersArray objectAtIndex:section];
}

 18. Add the sectionIndexTitlesForTableView: method using the following code:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView
{
 return self.firstLettersArray;
}

c10.indd 235 31-01-2014 17:21:46

236 ❘ chapter 10 GettinG Started with web ServiceS

 19. Add the tableView:sectionForSectionIndexTitle:atIndex method using the following
code:

- (int)tableView:(UITableView *)tableView sectionForSectionIndexTitle:
(NSString *)title atIndex:(NSInteger)index
{
 return [self.firstLettersArray indexOfObject:title];
}

 20. Run the app in the iPhone 4-inch simulator. Searching for tracks now
shows results in the Table view, as shown in Figure 10-6.

How It Wo rks

The first thing you did was change the type of the prototype cell in the
Storyboard to the subtitle type. This way you can display both the name
of the track and the album or collection it is on in the same cell. You also
set the reuse identifier of the cell.

Next, you created a new WBATrack object with four properties for the track
name, collection name, iTunes URL string, and preview URL string. To sort
the tracks by name, you also override the compare: method to use the track
names as the comparison property.

In the WBAiTunesSearchViewController interface you declared the
 firstLettersArray and the tracksDictionary. These are analogous to
firstLettersArray and bandsDictionary you implemented in Chapter 5, “Using Table Views.” In
the implementation you initialize the array and dictionary when the view appears.

The main focus of the Try It Out is processing the results of the search and creating the data source for
the UITableView. Once the JSON result has been successfully parsed, you first clear all the objects in the
firstLettersArray and the tracksDictionary. This is so users do not see mixed results if they type
their own search term into the UISearchBar. Next you get the NSArray of search results from the
jsonDictionary using the results key. This NSArray contains NSDictionary objects for each track
returned from the search. The keys for a track NSDictionary correspond to the keys in the JSON response
(refer to Table 10-2). The code uses a for loop to iterate through each track NSDictionary, creating WBATrack
objects for each and then using them to repopulate the firstLettersArray and the tracksDictionary.

The rest of the Try It Out implements the UITableViewDataSource protocol methods. The code is the
same pattern you implemented in Chapter 5 for the bands UITableView using the firstLettersArray as
an index into the tracksDictionary. The only notable difference is in the tableView:cellForRowAt
IndexPath: method. Because you set the type of the prototype cell to subtitle, the detailsTextLabel
will be visible in the cell. You set its text property to the collectionName property of the WBATrack.

previewing tracks
The iTunes Search API includes a preview URL in the results. This URL points to a media file with a
preview of the track that can be streamed using the MPMoviePlayerViewController. This is a spe-
cial view controller similar to the UIImagePickerController and MFMailComposeViewController

figure 10-6

c10.indd 236 31-01-2014 17:21:47

Displaying Search Results ❘ 237

you have implemented in previous chapters. It does require the MediaPlayer.framework
to be added to the project. You can then import the MediaPlayer.h file to access the
MPMoviePlayerViewController and the presentMoviePlayerViewControllerAnimated: method
it adds to the UIViewController class. When created and presented, the movie player handles all
the network connections to stream the track preview from iTunes.

To give the user the option to preview a track, your code needs to know when the user has selected a
track in the UITableView. You can use the tableView:didSelectRowAtIndexPath: method of the
UITableViewDelegate protocol for this. When the user selects a track, this method is called. You can
then show the track options using a UIActionSheet, as you will implement in the following Try It Out.

try it out Using the Media Player

 1. Select the Project from the Project Manager, and add the MediaPlayer.framework to the linked
libraries and frameworks.

 2. Select the WBAiTunesSearchViewController.h file.

 3. Declare that the class implements the UIActionSheetDelegate using the following code:

@interface WBAiTunesSearchViewController : UITableViewController
<UISearchBarDelegate, UIActionSheetDelegate>

 4. Create a new enumeration named WBATrackOptionButtonIndex using the following code:

typedef enum {
 WBATrackOptionButtonIndexPreview,
} WBATrackOptionButtonIndex;

 5. Select the WBAiTunesSearchViewController.m file from the Project Manager.

 6. Add the MediaPlayer.h file to the imports using the following code:

#import "WBAiTunesSearchViewController.h"
#import "WBATrack.h"
#import <MediaPlayer/MediaPlayer.h>

 7. Add the tableView:didSelectRowAtIndexPath: method to the implementation using the fol-
lowing code:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 UIActionSheet *trackActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Preview Track", nil];

 [trackActionSheet showInView:self.view];
}

 8. Add the actionSheet:clickedButtonAtIndex: method using the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 NSIndexPath *selectedIndexPath = self.tableView.indexPathForSelectedRow;

c10.indd 237 31-01-2014 17:21:47

238 ❘ chapter 10 GettinG Started with web ServiceS

 NSString *trackFirstLetter = [self.firstLettersArray
objectAtIndex:selectedIndexPath.section];

 NSArray *tracksWithFirstLetter = [self.tracksDictionary
objectForKey:trackFirstLetter];

 WBATrack *trackObject = [tracksWithFirstLetter
objectAtIndex:selectedIndexPath.row];

 if(buttonIndex == WBATrackOptionButtonIndexPreview)
 {
 NSURL *trackPreviewURL = [NSURL URLWithString:trackObject.previewUrlString];
 MPMoviePlayerViewController *moviePlayerViewController =
[[MPMoviePlayerViewController alloc] initWithContentURL:trackPreviewURL];

 [self presentMoviePlayerViewControllerAnimated:moviePlayerViewController];
 }
 else if (buttonIndex == WBATrackOptionButtonIndexOpenIniTunes)
 {
 NSURL *iTunesURL = [NSURL URLWithString:trackObject.iTunesUrlString];
 [[UIApplication sharedApplication] openURL:iTunesURL];
 }
}

 9. Run the app in the iPhone 4-inch simulator. Selecting a search result
now previews the track in the application using the Media Player, as
shown in Figure 10-7.

How It Works

The first thing you did was to add the MediaPlayer.framework to the proj-
ect. Next you declare that the WBAiTunesSearchViewController imple-
ments the UIActionSheetDelegate. You also added a new enumeration
named WBATrackOptionButtonIndex, which maps to the options that will
be shown in the UIActionSheet.

In the implementation you added the MediaPlayer.h file to the imports
so you can access the MPMoviePlayerViewController. You then added
the tableView:didSelectRowAtIndexPath: method that creates a new
UIActionSheet with Preview Track as the only option.

Finally, you added the actionSheet:didClickButtonAtIndex: method.
It first gets the WBATrack object correlating to the NSIndexPath of the cur-
rently selected row in the UITableView. If the preview button is clicked, it
creates a new NSURL using the trackPreviewUrl property of the WBATrack object. It then
creates a new instance of the MPMoviePlayerViewController using the initWithContentURL:
method and the NSURL. The MPMoviePlayerViewController is then presented using the
presentMoviePlayerViewControllerAnimated method.

figure 10-7

c10.indd 238 31-01-2014 17:21:47

Displaying Search Results ❘ 239

showing tracks in itunes
The last part of the Search iTunes for Tracks feature is opening iTunes to the track so that the user
can purchase it. You do this the same way you opened Safari in Chapter 8. The system knows to
pass URLs pointing to http://itunes.apple.com to the iTunes app, so all you need to do in code
is call the openURL method of the shared application.

try it out Opening iTunes

 1. Select the WBAiTunesSearchViewController.h file and add another value to the
WBATrackOptionButtonIndex enumeration using the following code:

typedef enum {
 WBATrackOptionButtonIndexPreview,
 WBATrackOptionButtonIndexOpenIniTunes,
} WBATrackOptionButtonIndex;

 2. Select the WBAiTunesSearchViewController.m file from the Project Navigator.

 3. Modify the tableView:didSelectRowAtIndexPath: method with the following code:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 UIActionSheet *trackActionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Preview Track", @"Open in iTunes", nil];

 [trackActionSheet showInView:self.view];
}

 4. Modify the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 NSIndexPath *selectedIndexPath = self.tableView.indexPathForSelectedRow;
 NSString *trackFirstLetter = [self.firstLettersArray
objectAtIndex:selectedIndexPath.section];

 NSArray *tracksWithFirstLetter = [self.tracksDictionary
objectForKey:trackFirstLetter];

 WBATrack *trackObject = [tracksWithFirstLetter
objectAtIndex:selectedIndexPath.row];

 if(buttonIndex == WBATrackOptionButtonIndexPreview)
 {
 NSURL *trackPreviewURL = [NSURL URLWithString:trackObject.previewUrlString];
 MPMoviePlayerViewController *moviePlayerViewController =
[[MPMoviePlayerViewController alloc] initWithContentURL:trackPreviewURL];
 [self presentMoviePlayerViewControllerAnimated:moviePlayerViewController];
 }
 else if (buttonIndex == WBATrackOptionButtonIndexOpenIniTunes)
 {

c10.indd 239 31-01-2014 17:21:47

240 ❘ chapter 10 GettinG Started with web ServiceS

 NSURL *iTunesURL = [NSURL URLWithString:trackObject.iTunesUrlString];
 [[UIApplication sharedApplication] openURL:iTunesURL];
 }
}

 5. Run the app on an iOS test device. Selecting Open in iTunes now opens iTunes and scrolls to the track.

How It Works

First, you added the WBATrackOptionButtonIndexOpenIniTunes value to the
WBATrackOptionButtonIndex enumeration, which maps to the option in the UIActionSheet. Next,
you added the option to the UIActionSheet that is displayed when the user selects a track. Finally, in
the actionSheet:clickedButtonAtIndex: method you created a new NSURL using the iTunesUrl
String property of the WBATrack object and passed it into the openURL method of the shared
UIApplication.

Note The iOS simulator does not include the iTunes app. If you try the Open
in iTunes option for a track in the simulator, it will attempt to open the URL in
Safari. This results in a Cannot Open Page error. This is not an error with your
code, but a limitation of the iOS Simulator. To test the Open in iTunes option
you need to use a physical device.

summary

Web services add a whole new dynamic to mobile apps. They can be used to build all kinds of new
and interesting features for your users. To lower the barrier for developers, Apple has put a lot of
effort into its networking classes and protocols to make simple tasks easy while still providing the
flexibility for developers to get to the lower-level details. In this chapter you implemented the Search
iTunes for Tracks feature of the Bands app. It uses an NSURLSessionDataTask to query the iTunes
Search API. The results are passed back using a completion handler that parses the JSON response
and displays the results in a UITableView. When users select a track, they are given the option to
either preview the track using the MPMoviePlayerViewController or view them in iTunes.

exercises

 1. What are the three types of NSURLSession tasks?

 2. What is the name of the technology Apple introduced in iOS 4 to reduce the complexity of
threading for developers?

 3. What class and method can you use to parse JSON into Objective-C objects?

 4. What framework is required to use the MPMoviePlayerViewController?

c10.indd 240 31-01-2014 17:21:47

Summary ❘ 241

 ➤ What you learned in this chapter

topic Key concepts

Web services Using applications that connect to web services to add dynamic features

networking Making network connections using NSURLSession to reduce the complexity
of an application so that simple tasks can be performed with just a few lines
of code

Json parsing Using JSON, the most popular format for passing data between web ser-
vices, which structure maps nicely with Objective-C data objects, making it
easy to work within iOS applications

itunes search
api

Using the iTunes Search API to query for different media types on sale in
the iTunes store, as well as providing ways to preview them or open them in
iTunes for purchase

c10.indd 241 31-01-2014 17:21:47

c10.indd 242 31-01-2014 17:21:47

11
Creating a Universal App

What you Will learn in this chapter:

➤➤ Creating an iPad Storyboard

➤➤ Supporting Rotation Using Auto Layout

➤➤ Implementing Popovers

Wrox.com code doWnloads for this chapter

You can find the wrox.com code downloads for this chapter at www.wrox.com/go/
begiosprogramming on the Download Code tab. The code is in the chapter 11 download
and individually named according to the names throughout the chapter.

The Bands app you have created so far is designed to run on an iPhone or an iPod Touch.
You can also run the app on an iPad using the iPads compatibility mode. Compatibility
mode displays the app on an iPad as though it is running on an iPhone, even using the
same dimensions. You can use the 2x button in compatibility mode to double the size of
the app so that it uses the full screen, but apps tend to look pixilated when doing this,
deteriorating the user experience. iPad users typically choose to run apps that were
designed for iPad. Developers have the option to create a separate iPad app or they can
create a universal app.

The guts of a typical iOS app will be the same no matter what device they run on. Therefore,
universal apps can share much of the code between their iPhone and iPad implementations.
The big difference is the user interface. Universal apps are a single build that contains user
interfaces and code for both iPhone/iPod touch and iPads. iPads are obviously bigger and thus
have more screen real estate. Designers can use that space to create a user interface that is
much different from their iPhone design.

The Bands app, as discussed in Chapter 1, “Building a Real-World iOS App: Bands,” is not
meant to be an example of a well-designed user interface. Instead it is meant to be a tool

c11.indd 243 31-01-2014 17:21:54

244 ❘ chapter 11 Creating a Universal app

to teach you how you code an iOS app. The last part of that is learning how to create an iPad
implementation. The user interface you will implement for iPad is almost identical to the iPhone
version. There are user interactions that need to be changed to comply with Apple’s Human
Interface Guidelines. The other major difference is it will support rotation. To start, you need a new
Storyboard with new scenes designed for iPad.

transitioning to a universal app

The first step in creating a universal app is to transition from an iPhone project to a universal
project. This can be done in the project settings with just a few clicks. The other aspect is creating
a new user interface for iPad. Instead of adding to the iPhone Storyboard, you need to create a new
Storyboard designed for iPad. This is all straightforward, as you see in the next Try It Out.

try it out Adding an iPad Storyboard

 1. From the Xcode menu select File ➪ New ➪ File.

 2. Select the User Interface section on the left side of the dialog, select Storyboard, and click next.

 3. On the next screen, select iPad as the Device Family.

 4. Name the new Storyboard Main-iPad, and save it in the Base.lproj directory with the Main
.storyboard file.

 5. Select the Main-iPad.storyboard from the Project Navigator if it’s not already selected.

 6. Drag a new Navigation Controller from the Object
library onto the new Storyboard.

 7. Select the Project from the Project Navigator.

 8. In the Deployment Info section, change the Devices
setting to Universal.

 9. Select Don’t Copy in the dialog that appears after.

 10. Under the Devices setting you now see iPhone and
iPad. Select iPad.

 11. Change the Main Interface to the Main-iPad
.storyboard.

 12. Check all the Device Orientation options.

 13. Run the app in the iPad simulator. You now see an
empty UITableView, as shown in
Figure 11-1.

figure 11-1

c11.indd 244 31-01-2014 17:21:54

Transitioning to a Universal App ❘ 245

How It Works

The first thing you did was to create a new Storyboard targeted for iPad. When new view control-
lers are added to this storyboard, they will be the size of the iPad screen, as you saw after creating the
Navigation Controller scene. You then changed the project to be a universal project. This gives you
deployment settings for both iPhone and iPad. In those settings you can set which Storyboard is used
when running on an iPad and which is used when running on an iPhone. You also have device orienta-
tion settings for both iPhone and iPad. iPad apps typically support rotation, so you need to design the
iPad interface for the Bands app this way. Running the Bands app on the iPad simulator now uses the
new Storyboard and iPad version instead of the iPhone version.

A large majority of the code you wrote for the Bands app on iPhone can also be used on an iPad.
The major difference for the Bands app is how some things are presented on an iPad as opposed to
an iPhone. Because the code is mostly the same, the best way to add an iPad implementation is to
subclass the iPhone code and override only the parts that need to change. By subclassing, the code
you have already written will still be executed. This keeps the amount of code in the project to a
minimum. It also means that bug fixes will typically need to be made only in the original file.

try it out Subclassing for iPad

 1. From the Xcode menu select File ➪ New ➪ File.

 2. Select the Cocoa Touch section on the left side of the dialog, select Objective-C class, and click
Next.

 3. Name the new class WBABandsListTableViewController_iPad and set the Subclass of selection
to the WBABandsListTableViewController class.

 4. Select the WBABandsListTableViewController_iPad.m file from the Project Navigator.

 5. Override the addBandTouched: method using the following code:

- (IBAction)addBandTouched:(id)sender
{
 NSLog(@"addBandTouched iPad File");
}

 6. Select the Main-iPad.storyboard file from the Project Navigator.

 7. Select the Table View and set its Class to the WBABandsListTableViewController_iPad in the
Identity Inspector. This Bands List scene is now the same as the Bands List scene in the iPhone
Storyboard.

 8. Select the UINavigationItem and set its title to Bands in the Attributes Inspector.

 9. Select the Prototype Cell and set its Style to Basic and its Identifier to Cell.

 10. Drag a UIBarButtonItem to the left side of the UINavigationItem.

 11. Set the Identifier of the UIBarButtonItem to Add; then connect it to the addBandTouched:
IBAction.

c11.indd 245 31-01-2014 17:21:54

246 ❘ chapter 11 Creating a Universal app

 12. Run the app in the iPad simulator. You now see the
Bands list, as shown in Figure 11-2. Tapping the add
button prints to the Xcode debug console.

How It Works

When creating new Objective-C classes in Xcode,
you can set its parent class. In previous chapters you
have used classes created by Apple. In this Try It
Out you created a new class that is a subclass of the
WBABandsListTableViewController class you created in
Chapter 5, “Using Table Views.” By subclassing the new
class has all the public properties and methods, including
IBOutlets and IBActions, declared in the parent class as
well as any protocols you declared in the parent class. You
then set the class of the UITableView in the iPad Storyboard
to use the iPad class. When the app runs on an iPad, it first
looks for methods implemented in the iPad class. Methods
that are not overridden use the methods implemented in
the parent class instead. For the new iPad UITableView to
work with the original class, you needed to set the cell type
and reuse identifier. Finally, you added an override for the
addBandTouched: method that for now simply writes to the
debug console. When running the code in the iPad simulator, the UITableView appears as it does on an
iPhone with all the UITableViewDelegate and UITableViewDataSource methods working but with
the Add UIBarButtonItem now executing the overridden method instead of the original method.

Note When creating the new file you may have noticed the Target for iPad
check box. This is for projects that use Mac OS X Interface Builder files, better
known as XIB files. Because the Bands app is built using Storyboards instead
of XIB files, this check box has no affect. If you were using XIB files and
checked the “With XIB for User Interface” box, the XIB would be sized for
an iPad.

The next step to creating the universal app is to create the Band Details scene for iPad. The scene
will be laid out the same as for iPhone, just a little bigger. Some of the interactions need to be
changed for the iPad. You do this in the Learning About Popovers section of this chapter, but to
keep the app from crashing while testing, you can override the methods in this Try It Out.

try it out Adding the Band Info View

 1. From the Xcode menu select File ➪ New ➪ File and create a new subclass of the
WBABandDetailsViewController named WBABandDetailsViewController_iPad.

 2. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

figure 11-2

c11.indd 246 31-01-2014 17:21:54

Transitioning to a Universal App ❘ 247

 3. Override the activityButtonTouched: method using the following code:

- (IBAction)activityButtonTouched:(id)sender
{
 NSLog(@"activityButtonTouched iPad File");
}

 4. Override the deleteButtonTouched: method using the following code:

- (IBAction)deleteButtonTouched:(id)sender
{
 NSLog(@"deleteButtonTouched iPad File");
}

 5. Select the Main-iPad.storyboard from the Project Navigator.

 6. Drag a new View Controller onto the storyboard, and set its Class to the
WBABandDetailsViewController_iPad class in Identity Inspector. This is now the Band Details
scene, same as in the iPhone Storyboard.

 7. Set the Storyboard ID to bandDetails_iPad in the Identity Inspector.

 8. Re-create the Band Details scene as you did in Chapter 4, “Creating a User Input Form,” without
adding the Save and Delete buttons.

 9. Drag a new UIToolbar to the bottom of the view, and add the Save and Delete buttons as
UIBarButtonItems separated using a flexible space UIBarButtonItem. The view should look like
Figure 11-3 when you finish.

figure 11-3

c11.indd 247 31-01-2014 17:21:55

248 ❘ chapter 11 Creating a Universal app

 10. Create the segue from the prototype cell in the Bands List scene to the Band Details scene, as you
did in Chapter 4.

 11. Set the title in the UINavigationItem to Band in the Band Details scene.

 12. Add the activity UIBarButtonItem to the UINavigationItem.

 13. Connect all the IBOutlets, IBActions, and delegates between the Band Details scene and the
WBABandDetailsViewController_iPad.

 14. Select the WBABandsListTableViewController_iPad.m file from the Project Navigator.

 15. Import the WBABandDetailsViewController_iPad.h file using the following code:

#import "WBABandDetailsViewController_iPad.h"

 16. Modify the addBandTouched: method using the following code:

- (IBAction)addBandTouched:(id)sender
{
 NSLog(@"addBandTouched iPad File");

 UIStoryboard *iPadStoryBoard =
[UIStoryboard storyboardWithName:@"Main-iPad" bundle:nil];
 self.bandInfoViewController = (WBABandDetailsViewController_iPad *)
[iPadStoryBoard instantiateViewControllerWithIdentifier:@"bandInfo_iPad"];

 [self presentViewController:self.bandInfoViewController
animated:YES completion:nil];
}

 17. Run the app in the iPad simulator. You can now use the
Band Details scene, as shown in
Figure 11-4.

How It Works

First, you created a new subclass of the
WBABandDetailsViewController class as you did in the
previous Try It Out. In the iPad implementation you added
override methods for the activityButtonTouched: and the
deleteButtonTouched: methods. Right now these meth-
ods write only to the debug console. Next, you created the
Band Details scene in the storyboard, set its class to the new
WBABandDetailsViewController_iPad class, and set its
Storyboard ID. You then recreated the user interface of the
Band Details scene using the bigger dimensions of the iPad.
The reason you used a UIToolbar instead of standalone
UIButtons for Save and Delete will become clear in the
Learning About Popovers section of this chapter. Because the
WBABandDetailsViewController_iPad class is a subclass
of WBABandDetailsViewController, all the IBOutlets,
IBActions, and protocol declarations are available in Interface
Builder to connect to without needing to add any additional
code to the WBABandDetailsViewController_iPad class.

figure 11-4

c11.indd 248 31-01-2014 17:21:55

Transitioning to a Universal App ❘ 249

In the WBABandsListTableViewController_iPad implementation, you first imported the
WBABandDetailsViewController_iPad.h file. Next you modified the addBandTouched: method to
get an instance of UIStoryboard, using the new iPad Storyboard identifier in order to present the cor-
rect iPad Band Details scene instead of the iPhone version.

supporting rotation using auto layout
If you run the app in the iPad simulator at this point and rotate to landscape, you can see that parts
of the user interface of the Band Details scene are out of place. To support rotation you need to
add auto layout constraints so that everything adjusts to the new screen size. You first learned about
auto layout constraints in Chapter 3, “Starting a New App.” Though auto layout constraints can be
complex, you need to know about only three of them to support rotation in the Band Details scene.

The first is the Leading Space to Container constraint. You use this to set a static amount of space
between the user interface object and the left edge of the screen. When the device is rotated and the screen
size changes, the object continues to be that distance. The second is the Trailing Space to Container
constraint that does the same except to the right side of the screen. The other is the Bottom Space to
Bottom Layout Guideline. This sets the static space between an object and the bottom of the screen.

try it out Using Auto Layout for Rotation

 1. Select the Main-iPad.storyboard from
the Project Navigator.

 2. Select the nameTextField, and Control-
drag to the left edge of the UIView. When
you release the mouse, select a Leading
Space to Container auto layout constraint
from the dialog.

 3. Add Leading Space to Container auto
layout constraints to the notesTextField,
touringStatusSegmentedController,
and the bottom UIToolbar.

 4. Select the nameTextField, Control-drag
to the right edge of the UIView, and add
a Trailing Space to Container auto layout
constraint.

 5. Add Trailing Space to Container
auto layout constraints to the saveNotesButton, notesTextView, ratingsValueLabel,
touringStatusSegmentedController, haveSeenLiveSwitch, and the bottom UIToolbar.

 6. Select the bottom UIToolbar, Control-drag to the bottom of the UIView, and add a Bottom
Space to Bottom Layout Guide auto layout constraint.

 7. Run the app in the iPad simulator. Rotating to landscape now displays the user interface correctly,
as shown in Figure 11-5.

figure 11-5

c11.indd 249 31-01-2014 17:21:55

250 ❘ chapter 11 Creating a Universal app

How It Works

What you did here was make sure the various user interface objects of the Band Details scene adjust their
size when the app is rotated to landscape. The Leading Space to Container layout constraint
keeps the same amount of space between the left edge of the screen and the user interface object.
The Trailing Space to Container layout constraint does the same but to the right edge of the view. The
UIToolbar also requires a Bottom Space to Bottom Layout Guide to keep it anchored to the bottom of
the UIView. Now when the iPad is rotated, those user interface objects grow and shrink while keeping
those distances the same.

learning about popovers

The bigger screen of an iPad brings with it new user interaction challenges. iPhone apps, as you
have implemented in previous chapters, show scenes that encompass the entire screen. They
also show user options that do not display over the entire height of the screen but do stretch the
entire width. Because the iPhone screen is smaller, these transitions are comfortable to the user.
These types of transitions can be rather jarring on an iPad, leading to a less-than-optimal user
experience.

With the release of the iPad, Apple added a new user interface paradigm to the iOS SDK called the
UIPopover. A UIPopover is a type of UIView that appears to float over the UIView from which it
is displayed. They take up only a small portion of the screen while leaving the rest of the UIView
displayed. They also have an arrow pointing back to the part of the UIView the user tapped. This
gives users a better user experience because they can concentrate just on the portion of the screen
with which they are interacting, yet still keep context of where they are at in the app. To keep apps
consistent, Apple’s Human Interface Guidelines require that developers use popovers in iPad apps,
so you need to implement them where necessary in the Bands app.

presenting action sheets in popovers
The first change you need to make is to present the UIActionSheet in a UIPopover. In iPhone
apps, UIActionSheets stretch the entire width of the screen and animate from the bottom
up. In iPad apps UIActionSheets are shown in a UIPopover with the arrow pointing back
to the button or other user interface object the user tapped. To display a UIActionSheet in
a UIPopover, you need to modify the code so that the system knows where the arrow should
point. The first UIActionSheet you implement is the Delete Band confirmation. By modifying
the Band Details scene to use a UIBarButtonItem for the Delete and Save buttons, you can now
use the showFromBarButtonItem:animated: method of the UIActionSheet class to present the
UIActionSheet in a UIPopover.

One major difference with a UIActionSheet displayed in a UIPopover is that it no longer shows the
Cancel button even if you pass in a title for it in the initWithTitle:delegate:cancelButton
Title:destructiveButtonTitle:otherButtonTitle: method. Instead users can “cancel” by
tapping anywhere outside the UIPopover. This is expected behavior.

c11.indd 250 31-01-2014 17:21:55

Learning About Popovers ❘ 251

try it out Presenting Action Sheets in Popovers

 1. Select the WBABandDetailsViewController_iPad.h file from the Project Navigator.

 2. Add new IBOutlet for the delete UIBarButtonItem using the following code:

@property (nonatomic, weak) IBOutlet UIBarButtonItem *deleteBarButtonItem;

 3. Add a property for a UIActionSheet using the following code:

@property (nonatomic, strong) UIActionSheet *actionSheet;

 4. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

 5. Modify the deleteButtonTouched: method using the following code:

- (void)deleteButtonTouched:(id)sender
{
 NSLog(@"deleteButtonTouched iPad File");

 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:@"Delete Band"
otherButtonTitles:nil];
 self.actionSheet.tag = WBAActionSheetTagDeleteBand;

 [self.actionSheet showFromBarButtonItem:self.deleteBarButtonItem animated:YES];
}

 6. Override the actionSheet:clickedButtonAtIndex: method using the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 self.actionSheet = nil;
 [super actionSheet:actionSheet clickedButtonAtIndex:buttonIndex];
}

 7. Select the Main-iPad.storyboard from
the Project Navigator, and connect the
Delete button to the deleteBarButtonItem
IBOutlet.

 8. Run the app in the iPad simulator.
Tapping the Delete button now shows the
UIActionSheet in a UIPopover from
the Delete UIBarButtonItem, as shown in
Figure 11-6.

figure 11-6

c11.indd 251 31-01-2014 17:21:56

252 ❘ chapter 11 Creating a Universal app

How It Works

The first thing you did was to add an IBOutlet for the delete UIBarButtonItem as well as a new prop-
erty for a UIActionSheet to the WBABandDetailsViewController_iPad interface. In its implementa-
tion you then modified the deleteButtonTouched: method to first look and see if the UIActionSheet
property is set. You need this check to prevent showing the delete UIActionSheet multiple times. In the
iPhone version of the Bands app the delete UIButton is covered when the UIActionSheet is
displayed. This is not the case in the iPad version of the Bands app, so users can continue to tap
the delete UIBarButtonItem. This check makes sure your code does not create and show another
UIActionSheet should that happen.

The code then creates and presents the UIActionSheet using the showFromBarButtonItem:animated:
method. By passing in the deleteBarButtonItem, the UIActionSheet will be displayed in a
UIPopover with the arrow pointing back to the deleteBarButtonItem.

You also needed to override the actionSheet:clickedButtonAtIndex: method in order to set
the activitySheet property back to nil. Without this override the user would never see another
UIActionSheet if they cancel the one shown by tapping outside the UIPopover or if they select an
option. Instead of duplicating the code to handle whichever option was selected, you can call the
actionSheet:clickedButtonAtIndex: method on super, which will execute the code you have
written in the WBABandDetailsViewController parent class.

using the uipopovercontroller
UIActionSheets are not the only user interfaces to be shown in a UIPopover. According to Apple’s
Human Interface Guidelines, other things must use a UIPopover when used in an iPad interface.
One of those is the UIImagePickerController.

In Chapter 6, “Integrating the Camera and Photo Library in iOS Apps,” you implemented the
UIImagePickerController by presenting it over the entire scene. This still works in the iPad
implementation, but it could get your app rejected when submitted to Apple. Instead you need to
display the UIImagePickerController in a UIPopover by using a UIPopoverController.

The UIPopoverController class can show any subclass of UIViewController. When you
present the UIPopover, you need to tell it both where its arrow should point to as well as what
direction the arrow should be pointing. You tell the UIPopover what to point to by either
displaying it from a UIBarButtonItem or from a CGRect on the screen. A CGRect, as you can
recall from Chapter 2, “Introduction to Objective-C,” is a common struct containing a CGPoint
and a CGSize (refer to Listing 2-4). It’s a way of denoting a rectangle by its origin point,
width, and height. All user interface objects have a frame that is a CGRect, which you can use
when displaying a UIPopover.

You tell a UIPopover which direction its arrow should point by using a value of the
UIPopoverArrowDirection enumeration. Table 11-1 describes these values. When designing
an iPad apps user interface, you may want to specifically tell the system which direction the
arrow should point. The Bands app iPad design does not require this, so you can use the
UIPopoverArrowDirectionAny constant, as you will see in the following Try It Out.

c11.indd 252 31-01-2014 17:21:56

Learning About Popovers ❘ 253

table 11-1: Popover Arrow Constants

constant description

UIPopoverArrowDirectionUp An arrow that points up with the content
shown underneath

UIPopoverArrowDirectionDown An arrow that points down with the content
shown above

UIPopoverArrowDirectionLeft An arrow that points left with the content
shown on the right

UIPopoverArrowDirectionRight An arrow that points right with the content
shown on the left

UIPopoverArrowDirectionAny The system determines which arrow direction
should be used based on the frame or button
the popover is displayed from.

UIPopoverArrowDirectionUnknown There arrow direction is not known. Used
when getting the popoverArrowDirection
property of the UIPopoverController when
the popover is not presented.

try it out Using a Popover Controller

 1. Select the WBABandDetailsViewController_iPad.h file from the Project Navigator, and add a
new property for a UIPopoverController using the following code:

@property (nonatomic, strong) UIPopoverController *popover;

 2. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

 3. Override the bandImageViewTapDetected method using the following code:

- (void)bandImageViewTapDetected
{
 if([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
 {
 UIActionSheet *chooseCameraActionSheet = [[UIActionSheet alloc]
initWithTitle:nil delegate:self cancelButtonTitle:@"Cancel"
destructiveButtonTitle:nil otherButtonTitles:@"Take with Camera",
@"Choose from Photo Library", nil];
 chooseCameraActionSheet.tag = WBAActionSheetTagChooseImagePickerSource;

 [chooseCameraActionSheet showFromRect:self.bandImageView.frame
inView:self.view animated:YES];
 }
 else if([UIImagePickerController
isSourceTypeAvailable:UIImagePickerControllerSourceTypePhotoLibrary])

c11.indd 253 31-01-2014 17:21:56

254 ❘ chapter 11 Creating a Universal app

 {
 [self presentPhotoLibraryImagePicker];
 }
 else
 {
 UIAlertView *photoLibraryErrorAlert = [[UIAlertView alloc]
initWithTitle:@"Error" message:@"There are no photo libraries available"
delegate:nil cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [photoLibraryErrorAlert show];
 }
}

 4. Override the bandImageSwipeDetected method using the following code:

- (void)bandImageViewSwipeDetected
{
 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:@"Delete Band Image"
otherButtonTitles:nil];
 self.actionSheet.tag = WBAActionSheetTagDeleteBandImage;
 [self.actionSheet showFromRect:self.bandImageView.frame inView:self.view
animated:YES];
}

 5. Override the presentPhotoLibraryImagePicker method using the following code:

- (void)presentPhotoLibraryImagePicker
{
 UIImagePickerController *imagePickerController =
[[UIImagePickerController alloc] init];
 imagePickerController.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;
 imagePickerController.delegate = self;
 imagePickerController.allowsEditing = YES;

 self.popover = [[UIPopoverController alloc]
 initWithContentViewController:imagePickerController];
 [self.popover presentPopoverFromRect:self.bandImageView.frame inView:self.view
permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
}

 6. Override the imagePicker:didFinishPickingMediaWithInfo: method using the following
code:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 [super imagePickerController:picker didFinishPickingMediaWithInfo:info];
 [self.popover dismissPopoverAnimated:YES];
 self.popover = nil;
}

c11.indd 254 31-01-2014 17:21:56

Learning About Popovers ❘ 255

 7. Add the imagePickerControllerDidCancel: method using the following code:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker
{
 [self.popover dismissPopoverAnimated:YES];
 self.popover = nil;
}

 8. Run the app in the iPad simulator. The
image picker is now shown in a popover,
as shown in Figure 11-7.

How It Works

When tapping the band image on a device with
both a camera and a photo library, you need to
ask users which one they would like to use. In
Chapter 6 you did this using a UIActionSheet.
For the iPad version you need to show the
UIActionSheet in a UIPopover pointing to
the UIImageView. By overriding the
bandImageViewTapped method, you can
present the UIActionSheet by using the frame
property of the UIImageView. The
bandImageSwipeDetected method also needs
to present the UIActionSheet in a UIPopover,
so you override it as well.

Next, you override the presentPhotoLibraryImagePicker to present the UIImagePickerController
using a UIPopoverController. You do this by first initializing the UIPopoverController using the
initWithContentViewController: method and passing in the UIImagePickerController. You pres-
ent the UIPopover using the presentPopoverFromRect:inView:permittedArrowDirections:
animated: method. For the CGRect you pass in the frame property of the UIImageView. For the view
parameter you use the view property of the WBABandDetailsViewController_iPad. Because you don’t
care what direction the arrow points, you used the UIPopoverArrowDirectionAny constant. For a
better user experience you set the animated property to YES so that the UIPopover animates into view
instead of appearing instantly.

After the user picks an image, your code needs to dismiss the UIPopover. You do this by overriding the
imagePicker:didFinishPickingMediaWithInfo: method. Because this is an overridden method, you
can still execute the code in the parent class by calling the imagePicker:didFinishPickingMediaWith
Info: method on super. After the parent classes code is executed, it returns to the code in the subclass
where you dismiss the UIPopover by calling dismissPopoverAnimated:, again passing YES for the
animated parameter so that the UIPopover animates out of view instead of disappearing immediately.

In the iPhone version you needed to dismiss the UIImagePickerController if the user taps the Cancel
button. In the iPad version you need to dismiss the UIPopover, so you need to override the
imagePickerControllerDidCancel: method and call dismissPopoverAnimated: there as well.

figure 11-7

c11.indd 255 31-01-2014 17:21:56

256 ❘ chapter 11 Creating a Universal app

Another view controller that should be shown in a UIPopover is the UIActivityViewController.
You do this the same way as the UIImagePickerController; by first initializing the
UIActivityViewController and then initializing the UIPopoverController using the
initWithContentViewController: method.

In the Bands app you have an activity UIBarButton for the Band Details scene. When
tapped in the iPhone version, you show a UIActionSheet with the activity options. In the
iPad app you need to display the UIActionSheet in a UIPopover pointing to the activity
UIBarButtonItem. You do this by using the showFromBarButtonItem:animated: method.
If the user selects the share option, you also want the UIActivityViewController in the
UIPopoverController to point to the activity UIBarButtonItem. You do this by using the
presentPopoverFromBarButtonItem:permittedArrowDirections:animated: method.
Again, you can use the UIPopoverArrowDirectionAny constant, though you could use the
UIPopoverArrowDirectionUp constant, because that’s the only direction the arrow can point.

UIPopoverController also has a delegate that can tell your code when important things happen
with the UIPopover. If users tap outside of the UIPopover, it’s the same as if they had tapped
a Cancel button. When this happens, it’s up to your code to actually dismiss the UIPopover.
You do this by implementing the popoverControllerDidDismissPopover method of the
UIPopoverControllerDelegate.

try it out Showing the UIActivityViewController in a Popover

 1. Select the WBABandDetailsViewController_iPad.h file from the Project Navigator.

 2. Declare, the class implements the UIPopoverControllerDelegate using the following code:

@interface WBABandDetailsViewController_iPad : WBABandDetailsViewController
<UIPopoverControllerDelegate>

 3. Add a new IBOutlet for the activity UIBarButtonItem using the following code:

@property (nonatomic, weak) IBOutlet UIBarButtonItem *activityBarButtonItem;

 4. Select the Main-iPad.storyboard from the Project Navigator, and connect the activity
UIBarButtonItem to the new IBOutlet.

 5. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

 6. Modify the activityButtonTouched: method using the following code:

- (void)activityButtonTouched:(id)sender
{
 NSLog(@"activityButtonTouched iPad File");

 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
 cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Share", nil];
 self.actionSheet.tag = WBAActionSheetTagActivity;
 [self.actionSheet showFromBarButtonItem:self.activityBarButtonItem
animated:YES];
}

c11.indd 256 31-01-2014 17:21:56

Learning About Popovers ❘ 257

 7. Override the shareBandInfo method using the following code:

- (void)shareBandInfo
{
 NSArray *activityItems = [NSArray arrayWithObjects:[self.bandObject
stringForMessaging], self.bandObject.bandImage, nil];

 UIActivityViewController *activityViewController =
[[UIActivityViewController alloc]initWithActivityItems:activityItems
applicationActivities:nil];
 [activityViewController setValue:self.bandObject.name forKey:@"subject"];

 NSArray *excludedActivityOptions =
[NSArray arrayWithObjects:UIActivityTypeAssignToContact, nil];
 [activityViewController setExcludedActivityTypes:excludedActivityOptions];

 self.popover = [[UIPopoverController alloc]
initWithContentViewController:activityViewController];
 self.popover.delegate = self;
 [self.popover presentPopoverFromBarButtonItem:self.activityBarButtonItem
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
}

 8. Add the popoverControllerDidDismissPopover method using the following code:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)popoverController
{
 [self.popover dismissPopoverAnimated:YES];
 self.popover = nil;
}

 9. Run the app in the iPad simulator. The UIActivityViewController is now displayed in a
popover, as shown in Figure 11-8.

How It Works

You first declare that the
WBABandDetailsViewController_

iPad class implements the
UIPopoverControllerDelegate. Next,
you added an IBOutlet for the activity
UIBarButtonItem so that you can use
it when presenting the UIActionSheet
as well as the UIActivityViewController
popover.

In the implementation you override the
activityButtonTouched: method to
show the UIActionSheet from the activity
UIBarButtonItem. You allow only the Share
option at this point, because the other scenes
have not been added to the iPad implementation. figure 11-8

c11.indd 257 31-01-2014 17:21:56

258 ❘ chapter 11 Creating a Universal app

You then override the shareBandInfo method. Creating the UIActivityViewController is the same
as in the iPhone implementation. You then create and display it using the UIPopoverController
displayed from the activity UIBarButtonItem. You also set its delegate to self, so your code is notified
when the user taps outside the UIPopover while it is shown. Finally, you implemented the
popoverControllerDidDismissPopover: method to dismiss the UIPopover if the user taps anywhere
outside the UIPopover.

finishing the ipad implementation

You now have all the tools you need to complete the iPad version of the Bands app. The remainder
of this chapter will walk you through adding the remaining three scenes to the iPad Storyboard.

The next scene to add to the iPad Storyboard is the Web View scene. This scene shows the Open in
Safari option in a UIActionSheet, which will need to be displayed in a UIPopover from the activity
UIBarButtonItem. You will use the same approach for this that you implemented in the Band
Details scene. The prepareForSegue:sender: method needs to be overridden to use the new iPad
class for the Web View scene.

The user interface will almost be identical to the iPhone version except for one difference. In
the iPad version the UIWebView needs to be displayed between the UINavigationItem and the
UIToolbar. This is because the page will not adjust to display under the UINavigationItem like it
does in the iPhone version. You will also learn a new technique for adding auto layout constraints in
the following Try It Out.

try it out Adding the Web Search Scene for the iPad

 1. From the Xcode menu select File ➪ New ➪ File, and create a subclass of the
WBAWebViewController called WBAWebViewController_iPad.

 2. Select the WBAWebViewController_iPad.h file from the Project Navigator.

 3. Add an IBOutlet for the action UIBarButtonItem using the following code:

@property (nonatomic, weak) IBOutlet UIBarButtonItem *actionBarButtonItem;

 4. Add a property for a UIActionSheet using the following code:

@property (nonatomic, strong) UIActionSheet *actionSheet;

 5. Select the WBAWebViewController_iPad.m file and override the webViewActionButtonTouched:
method using the following code:

- (IBAction)webViewActionButtonTouched:(id)sender
{
 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Open in Safari", nil];
 [self.actionSheet showFromBarButtonItem:self.actionBarButtonItem animated:YES];
}

c11.indd 258 31-01-2014 17:21:57

Finishing the iPad Implementation ❘ 259

 6. Override the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 self.actionSheet = nil;
 [super actionSheet:actionSheet clickedButtonAtIndex:buttonIndex];
}

 7. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

 8. Import the WBAWebViewController_iPad.h file using the following code:

#import "WBAWebViewController_iPad.h"

 9. Add the prepareForSegue:sender: method using the following code:

-(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if([segue.destinationViewController class] == [WBAWebViewController_iPad class])
 {
 WBAWebViewController_iPad *webViewController =
segue.destinationViewController;
 webViewController.bandName = self.bandObject.name;
 }
}

 10. Modify the activityButtonTouched: method using the following code:

- (void)activityButtonTouched:(id)sender
{
 NSLog(@"activityButtonTouched iPad File");

 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Share", @"Search the Web", nil];
 self.actionSheet.tag = WBAActionSheetTagActivity;
 [self.actionSheet showFromBarButtonItem:self.activityBarButtonItem
animated:YES];
}

 11. Select the Main-iPad.storyboard from the Project Navigator.

 12. Drag a new View Controller onto the Storyboard, and set its class to the
WBAWebViewController_iPad class in the Identity Inspector. This is the iPad version of the Web
View scene.

 13. Create a push segue named webViewSegue from the Band Details scene to the Web View scene.

 14. Create the Web View scene user interface as you did in Chapter 8, “Using Web Views,” by adding
the UIWebView along with the UIToolbar and UIBarButtonItems for navigation.

 15. Adjust the UIWebView so that it sits between the UINavigationItem and the UIToolbar.

c11.indd 259 31-01-2014 17:21:57

260 ❘ chapter 11 Creating a Universal app

 16. Select the UIWebView and then click the Pin auto layout button. In the dialog, select the lines at
the top of the dialog for all four sides of the UIWebView. This will change the lines from dashed to
solid as shown in Figure 11-9.

figure 11-9

figure 11-10

c11.indd 260 31-01-2014 17:21:57

Finishing the iPad Implementation ❘ 261

 17. Select the UIToolbar, click the Pin auto layout button, select the lines for the left, right, and
bottom. Then, click the Add 3 Constraints button.

 18. Connect the IBOutlets, IBActions, and delegate to the WBAWebViewController_iPad.

 19. Run the app in the iPad simulator. The Search the Web feature now works, as shown in
Figure 11-10.

How It Works

The first step in creating the iPad version of the Web Search scene is creating a new
WBAWebViewController_iPad class as a subclass of the WBAWebViewController you implemented
in Chapter 8, “Using Web Views.” The iPad implementation needs to show the UIActionSheet in a
UIPopover. You implemented this in the iPad Web View scene the same as the activity options
in the Band Details scene. In the WBAWebViewController_iPad you added an IBOutlet for the
activity UIBarButtonItem as well as a property for the UIActionSheet. You then override
the webViewActionButtonTouched: method to perform the same check on the UIActionSheet prop-
erty to prevent multiple UIPopovers before creating and displaying the UIActionSheet in a UIPopover
from the activity UIBarButtonItem. You also added an override of the actionSheet:
clickedButtonAtIndex: method to set the UIActionSheet property back to nil so that it can be dis-
played again. In the WBABandDetailsViewController_iPad implementation you added an override for
the prepareForSegue:sender: method to check for the WBAWebSearchViewController_iPad class.
Without this override the iPhone implementation that checks for the WBAWebSearchViewController
class to set the bandName would be called. This would fail, because it’s a different class in the iPad
implementation, so the bandName would not be set.

You re-created the user interface for the Web View scene the same as it appears in the iPhone version.
To support rotation you added the auto layout constraints using the Pin auto layout constraint dialog.
Instead of needing to Control-drag to the various sides of the UIView, you can use this dialog to quickly
add all the constraints you need by simply clicking the sides you want the constraints to be added to.

The next scene to add is the Map Search scene. This scene needs the same implementation of
the UIActionSheet in a UIPopover as well as auto layout constraints to support rotation. The
following Try It Out is close to identical to the previous Try It Out.

try it out Adding the Find Local Record Store Feature for iPad

 1. From the Xcode menu select File ➪ New ➪ File, and create a new subclass of the
WBAMapViewController called WBAMapViewController_iPad.

 2. Select the WBAMapViewController_iPad.h file from the Project Navigator.

 3. Add an IBOutlet for the action bar button item using the following code:

@property (nonatomic, weak) IBOutlet UIBarButtonItem *actionBarButtonItem;

 4. Add a property for an action sheet using the following code:

@property (nonatomic, strong) UIActionSheet *actionSheet;

c11.indd 261 31-01-2014 17:21:57

262 ❘ chapter 11 Creating a Universal app

 5. Select the WBAMapViewController_iPad.m file from the Project Navigator, and override the
actionButtonTouched: method using the following code:

- (IBAction)actionButtonTouched:(id)sender
{
 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Map View", @"Satellite View", @"Hybrid View", nil];
 [self.actionSheet showFromBarButtonItem:self.actionBarButtonItem animated:YES];
}

 6. Override the actionSheet:clickedButtonAtIndex: method with the following code:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 self.actionSheet = nil;
 [super actionSheet:actionSheet clickedButtonAtIndex:buttonIndex];
}

 7. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator, and modify
the activityButtonTouched: method using the following code:

- (void)activityButtonTouched:(id)sender
{
 NSLog(@"activityButtonTouched iPad File");

 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Share", @"Search the Web",
@"Find Local Record Stores", nil];
 self.actionSheet.tag = WBAActionSheetTagActivity;
 [self.actionSheet showFromBarButtonItem:self.activityBarButtonItem
animated:YES];
}

 8. Select the Main-iPad.storyboard from the Project Navigator.

 9. Drag a new View Controller onto the storyboard, and set its class to the WBAMapViewController_
iPad class in the Identity Inspector. This is now the iPad version of the Map Search scene.

 10. Create a push segue named mapViewSegue from the Band Details scene to the Map View scene.

 11. Create a push segue named recordStoreWebSearchSegue from the Map View scene to the Web
View scene.

 12. Create the Map View scene user interface as you did in Chapter 9 , “Exploring Maps and Local
Search.”

 13. Connect the IBOutlets, IBActions, and delegates to the WBAMapViewController_iPad class.

 14. Select the MKMapView, click the Pin auto layout button, select the lines for all four sides of the
MKMapView, then click the Add 4 Constraints button.

c11.indd 262 31-01-2014 17:21:57

Finishing the iPad Implementation ❘ 263

 15. Run the app in the iPad simulator. The Find
Local Record Stores feature now works, as
shown in Figure 11-11.

How It Works

This Try It Out follows the same pattern you imple-
mented in both the Band Details scene and the Web
View scene. The UIActionSheet to change the map
type needs to be shown in a UIPopover from the
activity UIBarButtonItem. You added properties
for the UIActionSheet and UIBarButtonItem to
achieve this. In the actionButtonTouched: imple-
mentation you again check if a UIActionSheet is
already being displayed before creating and display-
ing a new one from the UIBarButtonItem. You also
override the actionSheet:clickedButtonAtIndex:
to set the UIActionSheet back to nil.

The only user interface object that needs auto layout constraints to support rotation is the MKMapView.
You added the four constraints using the Pin auto layout constraint dialog.

The last feature you need to add to the iPad implementation is the Search iTunes for Tracks feature.
In the iPhone implementation you show a UIActionSheet with the Preview and Open in iTunes
options. In the iPad implementation you need to show this in a UIPopover that points to the selected
row in the UITableView. You do this by overriding the tableView:didSelectRowAt
IndexPath: method and then using the rectForRowAtIndexPath: method of the UITableView
class to get the CGRect of the selected row that the UIPopover should point to. Because the
user cannot tap the UITableView multiple times and continue to have the UIActionSheet
displayed, you do not need to check if one is visible before displaying it. This means you do
not need a property for the UIActionSheet as you have implemented in the other scenes. The
WBABandDetailsViewController_iPad needs its prepareForSegue:sender: method updated again
in order to set the bandName, same as you implemented for the iPad version of the Web View scene.

For the user interface, the UITableView already has the auto layout constraints it needs to support
rotation, so you do not need to add any in the following Try It Out.

try it out Adding the iTunes Search Feature for an iPad

 1. From the Xcode menu select File ➪ New➤➪ File, and create a new subclass of the
WBAiTunesSearchViewController called WBAiTunesSearchViewController_iPad.

 2. Select the WBAiTunesSearchViewController_iPad.m file from the Project Navigator.

 3. Override the tableView:didSelectRowAtIndexPath: method using the following code:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{

figure 11-11

c11.indd 263 31-01-2014 17:21:57

264 ❘ chapter 11 Creating a Universal app

 UIActionSheet *actionSheet = [[UIActionSheet alloc] initWithTitle:nil
delegate:self cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil
otherButtonTitles:@"Preview Track", @"Open in iTunes", nil];
 CGRect selectedRowRect = [self.tableView rectForRowAtIndexPath:indexPath];
 [actionSheet showFromRect:selectedRowRect inView:self.view animated:YES];
}

 4. Select the Main-iPad.storyboard from the Project Navigator.

 5. Drag a new Table View Controller onto the Storyboard, and set its class to the
WBAiTunesSearchViewController_iPad class in the Identity Inspector. This is now the iPad
version of the iTunes Search scene.

 6. Create a push segue named iTunesSearchSegue from the Band Details scene to the iTunes Search
scene.

 7. Select the prototype cell; then set its style to Subtitle and its reuse identifier to trackCell.

 8. Add a UISearchBar to the top of the UITableView as you did in the previous chapter.

 9. Connect the IBOutlet and delegate of the search bar to the
WBAiTunesSearchViewController_iPad.

 10. Select the WBABandDetailsViewController_iPad.m file from the Project Navigator.

 11. Import the WBAiTunesSearchViewController_iPad.h file using the following code:

#import "WBAiTunesSearchViewController_iPad.h"

 12. Modify the prepareForSegue:sender: method using the following code:

-(void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 if([segue.destinationViewController class] == [WebViewController_iPad class])
 {
 WebViewController_iPad *webViewController =
segue.destinationViewController;
 webViewController.bandName = self.bandObject.name;
 }
 else if ([segue.destinationViewController class] ==
[WBAiTunesSearchViewController_iPad class])
 {
 WBAiTunesSearchViewController_iPad *iTunesSearchViewController =
segue.destinationViewController;
 iTunesSearchViewController.bandName = self.bandObject.name;
 }
}

 13. Modify the activityButtonTouched: method using the following code:

- (void)activityButtonTouched:(id)sender
{
 NSLog(@"activityButtonTouched iPad File");

 if(self.actionSheet)
 return;

 self.actionSheet = [[UIActionSheet alloc] initWithTitle:nil delegate:self
cancelButtonTitle:@"Cancel" destructiveButtonTitle:nil

c11.indd 264 31-01-2014 17:21:58

Summary ❘ 265

otherButtonTitles:@"Share", @"Search the Web", @"Find Local Record Stores",
@"Search iTunes for Tracks", nil];
 self.actionSheet.tag = WBAActionSheetTagActivity;
 [self.actionSheet showFromBarButtonItem:self.activityBarButtonItem
animated:YES];
}

 14. Run the app in the iPad simulator. The iTunes
Track Search feature is now available, as shown
in Figure 11-12.

How It Works

For the iPad implementation you override table
View:didSelectRowAtIndexPath: to call the
rectForRowAtIndexPath: method of the
UITableView to get the CGRect of the selected
row. You then use the CGRect of the row to pres-
ent the UIActionSheet in a UIPopover using
the showFromRect:inView: method of the
UIActionSheet.

Next, you created the iPad scene and re-created
the segues and cell identifiers so that the iPhone
code continues to work. You then modified the prepareForSegue:sender: method to look for the
WBAiTunesSearchViewController_iPad class to set the bandName. Finally you added the option back
to the Band Details activity options.

summary

Creating a universal app can increase your user base by giving iPad users an app designed for their
device. Your project and code do not need to change dramatically to do this. By adding a new
Storyboard designed for the iPad and subclassing your iPhone implementation code, you can add
support for the iPad and its design patterns quickly and efficiently.

exercises

 1. What is the name of the auto layout constraint that keeps a static amount of space between a
user interface object and the right edge of the screen?

 2. What method of the UIActionSheet class presents the action sheet in a UIPopover pointing
to a UIBarButtonItem in a toolbar?

 3. How can your code know when a user taps outside of a UIPopover presented from a
UIPopoverController?

figure 11-12

c11.indd 265 31-01-2014 17:21:58

266 ❘ chapter 11 Creating a Universal app

 ➤ What you learned in this chapter

topic Key concepts

universal
apps

Apps can be written as a single project designed to appear differently,
depending on if it’s running on an iPhone or an iPad.

popovers The iOS SDK includes a user interface paradigm for iPads that displays a user
prompt or another view hovering over the main content of the app.

auto layout When an iOS device is rotated, the screen size changes. The iOS SDK includes
the concept of auto layout constraints that set the rules for how the user
interface should adjust when the user rotates their device.

c11.indd 266 31-01-2014 17:21:58

12
Deploying Your iOS App

What you Will learn in this chapter:

➤➤ Registering beta devices

➤➤ Creating and deploying ad hoc builds

➤➤ Using iTunes Connect

➤➤ Submitting to the Apple App Store

You have now created a universal iOS application. The next step is to send the app to beta
testers and ultimately submit it to Apple for release in the App Store. Both of these processes
are complex and highly specific to the application you are developing. They involve using
Xcode and the iOS Developer portal as well as using the iTunes Connect portal, so you need
to be a registered iOS developer. The iOS Developer program costs $99/year. You can enroll in
the iOS Developer program by executing the following steps:

 1. Going to http://developer.apple.com/register.

 2. Signing in with an existing Apple ID or creating a new one.

 3. Selecting either an individual developer account or a company account (you can
change an individual account to a company account at any time by contacting Apple
and providing additional information).

 4. Entering all the information required and completing the purchase with a valid credit
card (you must use a valid credit card to enroll. There are no other payment options).

This chapter walks you only through the steps you would follow to create beta versions of an
iOS app as well as the steps you would follow to submit the app to Apple. It is based loosely on
the Bands app you created in this book, but the details will be up to you when you create your
own app and are ready to test and deploy. Technically, you can use this chapter to create a

c12.indd 267 31-01-2014 17:22:04

268 ❘ chapter 12 Deploying your ioS App

beta version of the Bands app, but you cannot release the Bands app you have built throughout this
book to the App Store. Doing so would be stealing the intellectual property of this book as well as a
violation of copyright.

Beta testing iOS applications is extremely important. Testing only in the simulator or on your
own device is not enough. The simulator does not mimic all the system software and processes
that are always running on an actual device. Similarly, when you run a debug version of an app
on a device, it disables some of the processes the system uses to terminate apps that have gone
afoul.

Warning This is mentioned again for emphasis: Do not submit an app to be
sold in the App Store without doing beta testing on actual devices.

Also many legacy devices do not have the same capabilities as more modern devices. Older devices
have much less memory available. If your app uses too much memory or does not properly handle its
allocation, the system will force your application to exit. Older devices also have older processors. If
your application has complex animations, they may be choppy on older devices. If your application
uses table views like the Bands app and does not create or reuse the cells fast enough, the scrolling
will not be smooth.

It is always a good idea to see how others use your application. You may find that parts of your app
that seem simple to you are difficult for others. You may also find that some users never find features
or even touch gestures you think are obvious. These can lead to bad ratings and reviews, which
ultimately means fewer purchases and downloads.

When you are happy with your app and have found all the bugs and usability issues, it’s time to
submit it to Apple for release in the App Store. Apple reviews all apps before they are released. Even
though you may think there are no other issues, your app could still be rejected. The two most
common reasons for rejection are crashes and bugs, which is why beta testing is so important before
submitting to Apple for approval.

If your app is rejected the first time you submit it, don’t panic. It is a common thing. Just read the
rejection reasons carefully and make the appropriate changes. If you don’t understand a reason, you
can contact Apple for more details. After all the issues are fixed and your app is accepted, you can
smile and know you are now a published iOS app developer. Then you can start planning your next
version!

Deploying the app to Beta testers

Beta or developer preview releases of an iOS app are called ad hoc builds. The process for creating
an ad hoc build is more involved for iOS apps than for other platforms you may have developed for.
Any device on which you would like your ad hoc build to run must be registered with Apple to use
Apple’s digital rights management system (popularly referred to as DRM). Ad hoc builds include a
provisioning profile that contains all the devices on which the app is allowed to run. They are also
signed with a digital certificate that must also be registered with Apple. It may sound complicated;

c12.indd 268 31-01-2014 17:22:04

Deploying the App to Beta Testers ❘ 269

that’s because it is. In the early versions of the iOS SDK and developer portal you needed to follow
many detailed steps to get it right. As the SDK and portal have matured, there have been significant
improvements to the different processes. When you get everything right a couple times, it almost
becomes second nature.

registering Beta Devices
The first step to deploying an ad hoc version of your app is to invite beta testers and ask for the
Universally Unique Identifier (UUID) of their device or devices. Every iOS device has a UUID that is
unique to it out of all devices ever created. When you invite beta testers, you need to tell them how
they can get the UUID of their device so that you can register them with Apple and include them in
your app’s ad hoc provisioning profile.

try it out Getting an iOS Device’s Universally Unique ID

 1. Open iTunes on either a Mac or a PC.

 2. Connect the device to the computer.

 3. Select the device from the iTunes menu bar.

 4. In the device information, click the Serial Number label to reveal the Identifier, as shown in
Figure 12-1.

Figure 12-1

 5. Right-click the Identifier to copy to the pasteboard.

c12.indd 269 31-01-2014 17:22:04

270 ❘ chapter 12 Deploying your ioS App

How It Works

iTunes is used to manage iOS devices for all users. Included in that is the ability to get the UUID of the
device. Because the UUID is not something the casual user needs to see, it’s hidden until revealed using the
Control-click procedure. The UUID is long and can be difficult to transcribe, so Apple added the right-
click option to copy it to the pasteboard where it can be pasted into an e-mail and sent to a developer.

When you have a beta tester’s UUID, you need to register it with Apple in the iOS Dev Center. You
are allowed to register only 100 devices. Though you can disable a device, you can delete them
only once a year when your developer membership is renewed. With that in mind, you should be
judicious in whom you invite to beta test your apps. Having a beta tester who constantly upgrades
or exchanges devices may not be the best choice because the old device IDs still count against your
device limit for that year. Also be wary of beta testers who never give you any feedback.

try it out Registering Test Devices

 1. Go to the iOS Dev Center in the web browser of your choice using the following URL:
https://developer.apple.com/devcenter/ios/

 2. Sign in using your iOS Developer Program username and password.

 3. Click the Certificates, Identifiers & Profiles link on the right side of the page.

 4. On the next page, click the Devices link in the iOS Apps section, as shown in Figure 12-2.

Figure 12-2

c12.indd 270 31-01-2014 17:22:04

Deploying the App to Beta Testers ❘ 271

 5. On the next page, click the + button to bring up the Registering a New Device or Multiple
Devices page, as shown in Figure 12-3.

Figure 12-3

 6. Select the Register Device radio button and enter a name for the device along with the UUID.
Click Continue at the bottom of the page.

 7. Review the information. If everything is correct, click the Submit button.

How It Works

The iOS Dev Center is where you manage all your devices and ultimately generate your provisioning
profiles. Registering device IDs makes them eligible to be included in a provisioning profile. Be sure the
UUID is correct. After it’s registered it counts against your device limit even if it’s incorrect. You can
disable a UUID once it is registered, but it will still count against your 100 device IDs per year. When
you renew your developer account after one year, you will be able to delete any disabled devices.

generating Digital certificates
When you build your ad hoc app, it needs to be signed with a digital certificate. Signing software
with digital certificates has been around for a long time. They are used to create a chain of trust, so
users know that the software they are installing was indeed created by the company or developer
who created the software and that it has not been altered. When the app is signed, it creates a digital
hash using the binary that can then be calculated and checked when being installed. If the hash does
not match what is included in the signing information, the software is considered dangerous. It may
contain malicious code added after the developer genuinely created the app.

c12.indd 271 31-01-2014 17:22:05

272 ❘ chapter 12 Deploying your ioS App

To protect users from installing malicious software on iOS devices, all apps must be signed. The
certificate information is specified in the provisioning profile and must match a certificate you have
installed on your development machine. Because the provisioning profile is generated in the iOS Dev
Center, you need to register there. The Mac operating system enables you to generate certificates
and import them into Keychain. In the past you would need to use the Keychain Access app on
your Mac to generate the certificate and then upload it to the iOS Dev Center. To make this process
easier, Apple has included a feature in Xcode that can generate the certificate for you, install it on
your development machine, and upload it to the iOS Dev Center.

note There are two types of certificates used while developing and deploy-
ing an iOS app. The development certificate, created in Chapter 3, “Starting a
New App,” is used only to run an app on a device from Xcode. A deployment
certificate, discussed in this chapter, is used to deploy an app either as an ad
hoc or through the App Store.

try it out Creating a Distribution Certificate

 1. From the Xcode menu select Xcode ➪➤Preferences.

 2. Select the Accounts tab at the top of the dialog, as shown in Figure 12-4.

Figure 12-4

 3. Enter your iOS Dev Center username and password.

 4. Click the Details button at the bottom of the view.

c12.indd 272 31-01-2014 17:22:05

Deploying the App to Beta Testers ❘ 273

 5. In the next dialog your Signing Certificates are listed in the top part of the dialog, and your
Provisioning Profiles are listed underneath, as shown in Figure 12-5.

Figure 12-5

 6. Click the + button under the Signing Certificates and select iOS Distribution. You see a prompt
when the certificate has been created and submitted to Apple.

How It Works

When you click the Details button, Xcode logs into the iOS Dev Center and downloads your existing
Certificates and Provisioning Profiles. When you click the + button and iOS Distribution option, first
Xcode generates a new certificate on your development machine. It then installs the certificate in the
development machine’s Keychain and then uploads it to the iOS Dev Center, making it available to your
ad hoc provisioning profile.

note When the certificate is generated, it should also be imported into your
development machine’s Keychain. You can verify this by opening the Keychain
Access app (Applications ➪ Utilities ➪ Keychain Access) and looking for a cer-
tificate that starts with iPhone Distribution followed by either your team name
or your developer name.

c12.indd 273 31-01-2014 17:22:05

274 ❘ chapter 12 Deploying your ioS App

creating an app iD and ad hoc provisioning profile
The last piece of information that gets included in the provisioning profile is the App ID. There are
two types of App IDs. An explicit App ID is used to identify a single app, while a wildcard App ID
is used for sets of apps. An App ID is made up of two parts:

➤➤ The Apple-generated ID for your development account or development team.

➤➤ The bundle ID of the app.

The Bands app is not included in a set with other apps, so it would use an explicit App ID. The
following Try It Out walks you through creating an explicit App ID you can use if you want to try
and generate an ad hoc build of the Bands app.

try it out Registering an App ID

 1. In the iOS Dev Center, click the App IDs link on the left side of the Certificates, Identities &
Profiles page.

 2. Click the + button toward the top right of the page to bring up the Register iOS App ID page, as
shown in Figure 12-6.

Figure 12-6

 3. Set the Name of the new App ID.

 4. Select the Team ID for the App ID Prefix.

c12.indd 274 31-01-2014 17:22:05

Deploying the App to Beta Testers ❘ 275

 5. Select the Explicit App ID radio button and set the Bundle ID using the recommended reverse-
domain name style with the name of the app at the end (com.wrox.Bands, for example). Be sure to
use the correct capitalization.

 6. Click the Continue button at the bottom of the page.

 7. Verify all the information is correct; then click the Submit button at the bottom of the page.

How It Works

The first part of the App ID is the team ID generated by Apple. You select it from the drop-down selec-
tion in the iOS Dev Center. The second part is the bundle ID. For the Bands app it’s the bundle ID you
used when you first created the project in Chapter 3, “Creating a New App.”

The iOS Dev Center now has all the information it needs to create the ad hoc provisioning profile.
You can create and manage your provisioning profiles in the iOS Dev Center. Xcode has some
capabilities to manage them as well but its best to use the iOS Dev Center.

try it out Creating and Downloading an Ad Hoc Distribution Provisioning Profile

 1. In the iOS Dev Center, click the Provisioning Profiles link on the left side of the Certificates,
Identities & Profiles page.

 2. Click the + button toward the top right of the page to bring up the Add iOS Provisioning Profile
page, as shown in Figure 12-7.

Figure 12-7

c12.indd 275 31-01-2014 17:22:06

276 ❘ chapter 12 Deploying your ioS App

 3. Select the Ad Hoc radio button toward the bottom of the page, and click Continue.

 4. On the Select App ID page, select the App ID you created in the previous Try It Out.

 5. On the Select certificates page, select the radio button next to the distribution certificate you
created earlier in this chapter. Then click Continue.

 6. On the Select devices page, select the devices you would like to test on; then click Continue.

 7. On the Generate page give your new profile a name (Bands Ad Hoc, for example) and click
Generate.

 8. On the Download page, click the Download button to download the new provisioning profile.

 9. With Xcode open, drag the downloaded file and drop it onto the Xcode icon in the Dock.

How It Works

There are three pieces of information in an ad hoc provisioning profile. The first step in the process is
selecting which App ID should be included. Next is information about the certificate that will be used
to sign the app when it’s built in Xcode. The last is the list of UUIDs of devices the app will be
allowed to run on. After the provisioning profile is generated, you can download and install it in Xcode
so that it’s available when you’re building your ad hoc beta release.

note You can also download the new provisioning profile by going to
Xcode ➪ Preferences ➪ Accounts ➪ Details as you did when generating
the signing certificate.

signing and Deploying an ad hoc Build
With the deployment certificate installed on your development machine and the ad hoc provisioning
profile added to Xcode, you are now ready to create your ad hoc build. Xcode can build a binary in
debug mode that includes all the debug symbols, or in release, which strips the symbols. Stripping
the symbols not only makes it much harder for someone to reverse-engineer your binary (as well as
shrink the size of the binary), but it also makes crash logs unreadable.

When your app is running on a device and crashes, it creates a crash log. Crash logs can be
invaluable when tracking down bugs. When you build a release binary, Xcode creates a file that
maps the debug symbols to the binary. You can use this file to make crash logs readable again.
Because these files are important to you as the developer, Xcode has an Archive feature that helps
you not only keep track of release builds you send to beta testers, but also saves the symbols file so
any crash logs you receive you can read. Archives can be managed in the Organizer window. From
the Organizer you can also create and save the iPhone Application file (.ipa) that you send to your
beta testers to install on their device. The .ipa file includes both the binary of your app as well as
the ad hoc provisioning profile needed to successfully install the app on test devices.

c12.indd 276 31-01-2014 17:22:06

Deploying the App to Beta Testers ❘ 277

try it out Creating an Ad Hoc .ipa File

 1. In Xcode select the Project from the Project Navigator.

 2. Select the Info tab from the top of the screen.

 3. In the Custom iOS Target Properties section locate the Bundle identifier key, and then set its value
to the App ID you registered in the iOS Dev Center, as shown in Figure 12-8.

Figure 12-8

 4. Select the Build Settings tab from the top of the screen.

 5. Scroll down to the Code Signing section and locate the Provisioning Profile setting then expand it,
as shown in Figure 12-9.

 6. Click the None setting next to Release, and select the ad hoc provisioning profile you created in
the previous section.

 7. Change the scheme next to the Play button to iOS Device or any of the devices you have
connected to the development machine.

 8. From the Xcode menu select Product ➪➤Archive.

 9. When the build is complete, the Organizer opens with the new archive listed, as shown in
Figure 12-10.

 10. Select the new archive and click the Distribute button on the top right of the dialog.

c12.indd 277 31-01-2014 17:22:06

278 ❘ chapter 12 Deploying your ioS App

Figure 12-9

Figure 12-10

c12.indd 278 31-01-2014 17:22:06

Deploying the App to Beta Testers ❘ 279

 11. Select the Save for Enterprise or Ad Hoc Deployment radio button, as shown in Figure 12-11; then
click Next.

 12. On the next screen, verify the Provisioning Profile is correctly set to the ad hoc profile you created
in the previous section. Then click the Export button.

 13. Save the new Bands.ipa file to your desktop. You can now send this file to your beta testers.

How It Works

The first thing you did was set the bundle ID to match the bundle ID in the App ID you registered in
the iOS Dev Center. That bundle ID is included in the provisioning profile and must match or else you
cannot create the binary. You then changed the build settings, telling Xcode which provisioning profile
should be used when creating a release binary. Keep in mind that the signing certificate used to generate
the provisioning profile must also be installed in your development machine’s Keychain. You then cre-
ate the archive. This builds the binary and signs it using the signing certificate. After the binary is built,
the archive is created and is shown in the Organizer window. From there you can distribute the app by
creating the actual iPhone Application (.ipa) file.

note If the Archive option is disabled in the Xcode menu, be sure you have
changed the scheme to be iOS Device or that of a connected device. If it is set
to any of the iOS simulator settings, the Archive option will be disabled.

Figure 12-11

c12.indd 279 31-01-2014 17:22:07

280 ❘ chapter 12 Deploying your ioS App

When you send the ad hoc .ipa file to your beta testers, you need to tell them how to install it.
They will again use iTunes. The iTunes library includes all the apps a user has purchased through
the App Store. Ad hoc builds will also be added to that library. When an app is in the library, it can
be synced and installed on any device; though for ad hoc builds, the UUID of the device must be
included in the provisioning profile. Otherwise the app will not run.

try it out Installing a Beta Build on a Provisioned Device

 1. Open iTunes.

 2. Double-click the .ipa file to add the app to iTunes.

 3. Connect the test device to the computer.

 4. Select the device and then select the Apps tab at the top of the screen.

 5. Find the ad hoc app in the Apps list, and click the Install button.

 6. Click the Apply button on the bottom right of the window.

 7. After iTunes has completed syncing the device, the app will be installed.

How It Works

The iTunes library contains all the apps the user has bought from the App Store and any ad hoc apps.
Ad hoc apps are added simply by double-clicking the .ipa file. When an app is in the library, it can by
synced and installed on any device managed by iTunes.

suBmitting the app to apple

You now have built an iOS application, tested it not only on your own device and in the simulator
but also with beta testers, and worked out all the bugs and issues. It’s now time to release it to the
rest of the world through Apple’s App Store.

Creating an App Store release is similar to creating an ad hoc release. Instead of using an ad
hoc provisioning profile, you will need to create and use an app store provisioning profile. App store
provisioning profiles do not contain a list of UUIDs. Instead the App Store handles the DRM that
allows the app to run only on devices for users who have purchased the app. But before your users
can buy your app, it needs to be in the App Store. You manage your app in the App Store through
iTunes Connect.

exploring itunes connect
iTunes Connect is the portal everyone uses to manage their creations in iTunes and the App Store.
This includes musicians and recording labels as well as books, audio books, and, of course, app
developers. When you purchase your iOS Developer Membership, you have access to iTunes
Connect. In the portal you can not only manage your apps but also agree to Apple’s contracts, see
your sales reports, and manage your bank information so you can get paid. You will need to accept
all the required contracts before you can submit. You will also need to add your banking and tax
information. This chapter won’t detail those steps, but keep in mind they are required.

c12.indd 280 31-01-2014 17:22:07

Submitting the App to Apple ❘ 281

Before you can submit an app to the App Store for approval, it needs to be added through iTunes
Connect. This is where you set the price and availability of the app as well as the description,
copyright information, and screen shots users see when browsing the App Store.

try it out Adding an App to iTunes Connect

 1. Go to iTunes Connect in the web browser of your choice using the following URL: https://
itunesconnect.apple.com.

 2. Sign in using your developer program username and password.

 3. On the landing page, click the Manager Your Apps link, as shown in Figure 12-12.

Figure 12-12

 4. On the Manage Your Apps page, click the Add New App button on the top left to start the
process.

 5. In the App Information page, as shown in Figure 12-13, enter the name of the app, assign it a
SKU number of your choosing, and select the appropriate Bundle ID.

 6. On the next page shown in Figure 12-14, select when you want the app to become available as
well as the pricing information.

c12.indd 281 31-01-2014 17:22:07

282 ❘ chapter 12 Deploying your ioS App

 7. On the next page, as shown in Figure 12-15, you need to fill out all the fields that are not labeled
as Optional and click Save. You are required to upload a Large App Icon that is 1024×1024 in
size as well as at least one screen shot for all devices the app supports.

 8. Your app is now in the Prepare for Upload stage. Click the View Details button.

Figure 12-13

Figure 12-14

c12.indd 282 31-01-2014 17:22:07

Submitting the App to Apple ❘ 283

Figure 12-15

 9. On the details page, click the Ready to Upload Binary button.

 10. On the Cryptography page make the appropriate selection referring to cryptography in the app,
and click the Save button. You can now upload your binary after it’s created.

How It Works

You manage your apps in the App Store through iTunes Connect. When you are ready to submit a new
app, or when you are ready to submit an update, you log in to iTunes Connect and set not only all the
information Apple needs to display your app in the App Store, but also information reviewers may need
to approve your app for sale.

creating an app store provisioning profile
Similar to the ad hoc build, your App Store build needs a special provisioning profile. Creating it is
practically the same process as well. The only difference is you don’t need to select which devices
will be allowed to run the app.

try it out Creating and Downloading an App Store Provisioning Profile

 1. In the iOS Dev Center, click the Provisioning Profiles link on the left side of the Certificates,
Identities & Profiles page. Then click the + button toward the top right of the page.

 2. Select the App Store radio button, and click Continue.

 3. On the Select App ID page, select the appropriate App ID, and click Continue.

c12.indd 283 31-01-2014 17:22:07

284 ❘ chapter 12 Deploying your ioS App

 4. On the Select certificates page, select the radio button next to the iOS Distribution certificate
you created and used with the ad hoc provisioning profile earlier in this chapter, and click
Continue.

 5. On the Generate page, name the profile appropriately, and click Generate.

 6. After the certificate is generated, click the download button and add the new Provisioning Profile
to Xcode as you did with the ad hoc profile.

How It Works

This process is almost identical to creating the ad hoc provisioning profile. The only difference is the
step where you select the devices on which the app is allowed to run.

Validating and submitting an app
The final step to getting your app into the App Store is to submit it to Apple for review. The
review process ensures that all apps for sale in the App Store meet Apple’s standards. There are
many reasons your app can be rejected. The most common are crashes and bugs. This is why the
beta testing process is so important. To help you understand the other reasons your app could be
rejected, Apple provides a detailed review guidelines document located at https://developer.
apple.com/appstore/resources/approval/guidelines.html. You should familiarize yourself
with this document prior to submitting an app for approval.

Having an app rejected can be frustrating. The review process can take up to two weeks
to complete, so getting rejected and having to resubmit can delay the release of your app
considerably. To help both developers and reviewers, Apple first runs a series of checks to make
sure your app meets the minimum requirements for submission. These checks are made as soon
as your binary is uploaded; however, you can run the same checks from the Xcode organizer
using the Validate feature. The list of checks that are performed is not documented, but common
mistakes such as using the wrong provisioning profile or signing certificate will be caught by these
checks. It is worth your time to run the validate feature in Xcode prior to uploading your binary
to catch those issues quickly.

Creating your App Store build is exactly the same as building the ad hoc build. Because the App
Store is a release binary, it will also have the debug symbols stripped, so keeping the archive is
important to read any crash logs. You can then use the Organizer to upload the binary to Apple
for review.

try it out Building and Submitting to the App Store

 1. In Xcode, select the Project from the Project Navigator.

 2. Select the Build Settings tab from the top of the screen.

 3. Change the Provisioning Profile for Release to the App Store Provisioning Profile you created.

 4. From the Xcode menu select Product ➪ Archive.

 5. When the app is done building and the Organizer window displays, click the Validate button.

c12.indd 284 31-01-2014 17:22:08

Summary ❘ 285

 6. Enter your developer program username and password in the dialog, and click Next.

 7. On the next screen verify or select the appropriate app as well as the appropriate App Store
Provisioning Profile. Then click Validate.

 8. If any issues were found, fix them and repeat steps 1 through 7 until there are no issues found.

 9. From the Organizer window, click the Distribute button.

 10. In the dialog, select the Submit to the iOS App Store option, and click Next.

 11. Enter your developer program username and password in the dialog, and click Next.

 12. On the final screen, verify or select the appropriate app as well as the appropriate App Store
Provisioning Profile; then click Submit. If no issues are found, your binary will be uploaded,
processed, and queued for review.

How It Works

Before you create your App Store build, you need to change the provisioning profile used to sign the
app. After you do that, follow the same steps to archive the build as you did with the ad hoc build.
You can then validate the app to make sure everything is correct. When it is, you can submit the app
to Apple for review. It should be noted that simply getting the app uploaded does not mean it will be
queued for review. There is some additional processing that happens after the app is uploaded. If there
are any issues, you will receive an e-mail telling you what needs to be fixed. If the review process finds
any issues, you will also receive an e-mail with issues that need to be fixed. After the app has passed all
reviews, it will be added to the App Store and ready for sale.

summary

Creating an iOS application is great, but getting it into the hands of your users is the ultimate goal.
Before you start selling your app, you need to make sure you have fixed all the bugs and usability
issues. To beta test your app, you need to gather your beta testers’ device IDs and register them
with Apple. From there you can create an ad hoc build and have your beta testers install it on their
devices and send you feedback. When you are ready, you submit your app to Apple for its final
review. If all goes well, your app will be approved and ready for sale in the App Store!

exercises

 1. What is the common name for beta or developer preview builds?

 2. What is the difference between a debug build and a release build?

 3. What are the three pieces of information you need to add to the iOS Dev Center to create a
provisioning profile for your beta build?

 4. What is the name of the portal used to manage your apps in the App Store?

c12.indd 285 31-01-2014 17:22:08

286 ❘ chapter 12 Deploying your ioS App

 ➤ What you learneD in this chapter

topic Key concepts

creating ad hoc Builds Creating an ad hoc build when your app is ready for beta testers

using itunes connect Developers, musicians, and authors managing the things they sell
in iTunes and the App Store through the iTunes Connect Portal

submitting an app for app
store approval

Apple must approve all apps in the App Store. Before your app is
available for sale, it must be submitted and reviewed.

c12.indd 286 31-01-2014 17:22:08

Appendix

Answers to Exercises

At the end of each chapter, there were some exercises to help you determine if you understood
the material in that chapter correctly. Here are the answers to those questions.

ChApter 1 Answers

 1. You need to keep in mind how your app’s name will look when displayed on the home
screen of an iPhone or iPad. Typically, you have approximately 12 characters before
the name is abbreviated.

 2. You need to scope your app to keep it useful without adding too many features that
users may find confusing. You don’t want a feature list that would take years to
implement.

 3. If you app duplicate features that are in Apple apps, your app may be rejected when
submitted for the App Store. It is best to avoid almost any overlap.

ChApter 2 Answers

 1. Smalltalk.

 2. The interface or header file with a .h file extension and the implementation file with a
.m file extension.

 3. The NSObject class.

 4. The following code defines the ChapterExercise class with a single method named
writeAnswer, which takes no arguments and returns nothing:

bapp01.indd 287 31-01-2014 17:20:07

288 ❘ Appendix Answers to exercises

@interface ChapterExercise : NSObject

- (void)writeAnswer;

@end

 5. You would use this code to instantiate the ChapterExercise class:

ChapterExercise *anInstance = [[ChapterExercise alloc] init];

 6. The retain keyword increments the reference count, whereas the release keyword decre-
ments it.

 7. ARC stands for Automatic Reference Counting.

 8. The strong keyword indicates the class owns the instance of the object, and it will not be
deallocated as long as the strong reference is in place.

 9. Overloading an operator is not permitted in Objective-C as it is in Java and C#.

 10. To compare to NSString instances, you use the isEqualToString: method.

 11. An instance of an NSArray cannot be modified after it’s created, whereas an
NSMutableArray can be.

 12. MVC stands for Model-View-Controller.

 13. The following code shows how you declare the ChapterExercise class implements the
ChapterExerciseDelegate protocol:

@interface ChapterExercise : NSObject <ChapterExerciseDelegate>

 14. The NSError class.

ChApter 3 Answers

 1. The pane on the left side of Xcode is the Navigator pane.

 2. The Cocoa framework used to create an iOS applications user interface is the UIKit
framework.

 3. Application settings are stored in a plist file.

 4. The Xcode feature you use to make sure your user interface is displayed correctly on all
devices is Auto Layout.

 5. The name of the inspector used to change user interface object attributes in Interface Builder
is the Property Inspector.

 6. To change the color of text:

 1. In the Project Navigator select Main.storyboard.

 2. In Interface Builder, select the Band label.

 3. In the Attributes Inspector, use the Color selector, and choose Light Gray Color.

bapp01.indd 288 31-01-2014 17:20:07

Chapter 5 Answers ❘ 289

 7. To add the bottom label and set its auto layout constraint:

 1. In the Project Navigator, select Main.storyboard.

 2. Drag a new label onto the scene.

 3. In the attributes inspector, set its text to Bottom.

 4. Drag the label to the bottom of the scene until the bottom guideline appears.

 5. Drag the label to the middle of the scene until the center guideline appears.

 6. Select the label; then Control-drag to the bottom of the view.

 7. Release the mouse button; then select the Bottom Space to Bottom Layout
constraint.

 8. To change the version number in the settings:

 1. In the Project Navigator, select the project.

 2. In the editor, select the General tab and bring up the info property editor.

 3. In the Identity section, set the Version to 1.1.

ChApter 4 Answers

 1. IBOutlet is the keyword you use to connect a UIKit property in a class to a UIKit object in
Interface Builder.

 2. IBAction is the keyword you use to connect an event of a UIKit object in Interface Builder
to a method in a class.

 3. Being the first responder means the user interface object is the first to handle events caused
by user interaction.

 4. The NSCoding protocol is implemented to allow a class to be used with the
NSKeyedArchiver class.

ChApter 5 Answers

 1. The UITableViewDataSource tells the table how many sections and rows are in
the table, and what the section headers and indexes are, along with configuring the
UITableViewCells. The UITableViewDelegate manages the editing of the UITableView.

 2. Basic, Right Detail, Left Detail, and Subtitle.

 3. To modify the UITableViewCell to a right detail style and show the band rating as the
detailTextLabel:

 1. Open the Main.storyboard.

 2. Select the prototype cell and change its style to Right Detail.

bapp01.indd 289 31-01-2014 17:20:07

290 ❘ Appendix Answers to exercises

 3. Open the WBABandsListTableViewController.m file and modify the tableView:
cellForRowAtIndexPath: with the following code:

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier forIndexPath:indexPath];

 NSString *firstLetter = [self.firstLettersArray
objectAtIndex:indexPath.section];
 NSMutableArray *bandsForLetter = [self.bandsDictionary
objectForKey:firstLetter];
 WBABand *bandObject = [bandsForLetter objectAtIndex:indexPath.row];

 // Configure the cell...
 cell.textLabel.text = bandObject.name;
 cell.detailTextLabel.text = [NSString stringWithFormat:@"%d",
bandObject.rating];

 return cell;
}

 4. You can show a UIViewController that animates up from the bottom on the screen using
the presentViewController:animated:completion:method.

 5. The UIKit item added to the top of a view when using a UINavigationController is the
UINavigationItem.

 6. The push segue is used to transition between the Bands List scene and the Band Details
scene.

ChApter 6 Answers

 1. Set the numberOfTouchesRequired to 2.

 2. UIImagePickerControllerSourceTypeCamera,

UIImagePickerControllerSourceTypePhotoLibrary, and
UIImagePickerControllerSourceTypeSavedPhotoAlbum.

 3. The system throws an exception that causes your app to crash.

 4. The tag property.

ChApter 7 Answers

 1. To add a new framework to a project:

 1. Select the Project from the Project Navigator.

 2. Select the General settings editor.

bapp01.indd 290 31-01-2014 17:20:07

Chapter 9 Answers ❘ 291

 3. In the Linked Frameworks and Libraries section click the + button and select the
desired framework from the dialog.

 2. The MFMailComposeViewController requires the MessageUI.framework to be added to the
project.

 3. The MFMessageComposeViewController requires the MobileCoreServices.framework to
be added to the project in order to use the Universal Type constants when attaching images
or other media types to a text message or iMessage.

 4. You need to call the canSendText method to verify the device can send text messages or
iMessages. If you do not and try presenting the MFMessageComposeViewController, the
app will crash.

 5. The social networking services integrated in iOS are Twitter, Facebook, Flickr, and Vimeo,
as well as Weibo in Asia.

 6. Users sign into their social networking accounts in the Settings app.

 7. To prevent the Bands app from sharing the band picture on Flickr using the
UIActivityViewController:

 1. Create an NSArray that includes the UIActivityTypePostToFlickr constant.

 2. Call the setExcludedActivityTypes: method of the UIActivityViewController
and pass in the NSArray.

ChApter 8 Answers

 1. You can trigger a manually created segue by first setting the identifier of the segue in
Interface Builder and then calling the performSegueWithIdentifier:sender method of
UIViewController using that identifier.

 2. The Core Foundation framework.

 3. You can set the Network Activity Indicator to be visible with the following code:

[UIApplication sharedApplication].networkActivityIndicatorVisible = YES;

 4. The webView:didFailLoadWithError: method.

 5. The openURL method.

ChApter 9 Answers

 1. The framework required to use an MKMapView is the MapKit.framework.

 2. The framework used to get the current location of an iOS device is the CoreLocation
.framework.

 3. The mapView:didUpdateUserLocation: method of the MKMapViewDelegate is called when
the user’s location is determined.

bapp01.indd 291 31-01-2014 17:20:07

292 ❘ Appendix Answers to exercises

 4. The MKLocalSearchRequest class is used to create the request, while the MKLocalSearch
class is used to perform the search and process the results.

 5. Local search results are returned using MKMapItem objects.

 6. The ^ character is used to denote the beginning of a block.

 7. The subclass of MKAnnotation you can use to show a pin on an MKMapView is the
MKPointAnnotation class.

 8. The property of the MKPinAnnotationView class you can set to animate the pin onto the
MKMapView is the animateDrop property.

ChApter 10 Answers

 1. The three types of NSURLSession tasks are NSURLSessionDataTask,
NSURLSessionDownloadTask, and NSURLSessionUploadTask.

 2. The name of the technology Apple introduced in iOS 4 to reduce the complexity of thread-
ing for developers is Grand Central Dispatch.

 3. The class you can use to parse JSON into Objective-C objects is the NSJSONSerialization
class and its JSONObjectWithData:options:error: method.

 4. The framework required to use the MPMoviePlayerViewController is the MediaPlayer
.framework.

ChApter 11 Answers

 1. The Trailing Space to Container auto layout constraint.

 2. The showFromBarButtonItem:animated: method.

 3. By implementing the popoverControllerDidDismissPopover: method of the
UIPopoverControllerDelegate protocol.

ChApter 12 Answers

 1. The common name for beta or developer preview builds is an ad hoc build.

 2. The difference between a debug build and a release build is that a release build has the
debug symbols removed.

 3. You need an App ID, a Signing Certificate, and a list of UUIDs the app is permitted to run on.

 4. The name of the portal is iTunes Connect.

bapp01.indd 292 31-01-2014 17:20:07

293

Symbols

: (colon), method signatures, 16
. (period), dot notation, 31
& (ampersand), error handling, 46
* (asterisk), pointer dereference operator, 16
@ (at symbol)

compiler, 14
NSString, 33

== (equals sign/double), Java strings, 35
() (parentheses), method signatures, 16
+ (plus sign), static methods, 22
+ operator, 33–34

A

accessibility controls, photo library, 140
accessoryView, 108
actionButtonTapped:, 159
actionButtonTouched:, 159
actionSheet:clickedButtonAtIndex:, 116,

146, 147, 166, 178–179, 180, 193, 251, 252
camera, 149
iPad, 259
iTunes Search, 225, 239
map views, 197, 202
push segues, 128
UIActivityViewController, 165–166

activity view controller, social networking,
164–167

activityButtonTouched:, 161, 163, 166
iPad, 247, 248, 259
iTunes Search, 225
UIActivityViewController, 164,

256, 257

activitySheet:clickedButtonAtIndex:,
158, 162

ad hoc builds, 268–269
deployment, 276–280
provisioning profiles, 274–276

addAnnotations, 208
addBandTouched:, 119, 248
addGestureRecognizer, 139
addObject:, 37
addPhotoLabel, 147
Align button, Alignment Constraint, 62
alloc, 20, 23, 24, 34
allocator, 183
alloc/init, 36
Allow User Interaction, Attributes

Inspector, 135
annotations, 209–215
App IDs, 274–276
App Store, 2, 4, 71

Bands, 268
provisioning profile, 283–284
submitting to Apple, 280–285

AppDelegate, 56, 114
Apple Developer Forums, 71, 76
application settings, Xcode, 66–67
apps, 2. See also Bands; universal apps

beta testing, 268–271
deployment, 267–286
digital certificates, 271–273
features, 5–6
icon, 68–70
names, 4
rotation

setting, 67–68
testing, 64–65

Index

bindex.indd 293 31-01-2014 17:20:10

294

bandsForLetter – classesapps (continued) – Bands

apps (continued)
running on device, 71–72
scoping, 4–5
starting new, 51–74
submitting to Apple, 280–285
testing, 61
validating, 284–285
Xcode, 51–74

ARC. See Automatic Reference Counting
Archive, Xcode, 279
archivedDataWithRootObject:, 94
arrays, 36–37
arrayWithObjects:, 36
Aspect Fill mode, 134
Aspect Fit mode, 134, 135
asset catalogs, Xcode, 70
atomic, 31
attributes, 58
Attributes Inspector, 85, 89, 106, 127, 135, 202

segues, 176
UITextView, 84
User Interaction Allowed, 136
Xbox, 58

authentication, 227
Auto Layout, 62–65, 249–250
Automatic Reference Counting (ARC), 26–27,

182, 183
autorelease, 24–25
autorelease pool, 24

B

backButtonTouched:, 191
Band Details, 127, 176, 179, 259

iPad simulator, 248, 250
iTunes Search, 224

bandImage, 144, 147, 159
bandImageSwipeDetected, 254
bandImageView, 139, 147
bandImageViewSwipeDetected, 139, 147
bandImageViewTapDetected, 138, 142, 148,

150, 253
bandName, 181, 183, 227
bandObject, 117, 121, 129, 144, 147, 167, 181
Bands

ad hoc provisioning profile, 274–276

adding bands, 5, 117–119
App IDs, 274–276
App Store, 268
Aspect Fit mode, 134
attributes, 58
basic cell style, 108
bundle identifiers, 55
completion handlers, 205–209
data source, 110–121
data structures, 35–39
deleting pictures, 145–147
deployment, 267–286
development plan, 6
displaying bands, 119–121
editing table data, 123–129
e-mail, 154–163
Facebook, 168–169
finishing implementation, 258–265
Flickr, 169–170
GET, 227
icon, 68–69
index, 121–123
introduction, 2–6
iTunes Search, 219–241
local search, 203–215
map views, 196–203
Mobile Safari, 191–193
MobileCoreServices.framework, 163
modifying data, 126–129
navigation, 186–193
NavigationController, 113
Network Activity Indicator, 184
NSMutableArray, 110, 112
NSMutableDictionary, 112
NSURLSession, 227–233
Objective-C, 9–48
photo library, 139–147
pictures, 133–151
popovers, 250–258
record stores, 6
saving multiple, 5–6
saving pictures, 143–145
scoping, 4–5
search, 6
sections, 121–123
sharing, 6

bindex.indd 294 31-01-2014 17:20:10

295

bandsForLetter – classesapps (continued) – Bands

Single View Application, 52–53
storage, 110–113
table views, 110–121
tracks, 6
UIButton, 115
UITableView, 104, 119–121
UITableViewCells, 104
UITableViewDataSource, 119–121
UIView, 115
universal apps, 243–266
user input form, 75–101
web services, 219–241
web views, 175–194

bandsForLetter, 126
Bar Button Item, Object library, 187, 202
basic cell style, 108
battery power conservation, 198–199
beta testing, 268–271
blocks, Objective-C, 44
bool, 10
bundle identifiers, 54–55
buttonIndex, 159, 166

C

C, 12, 14, 16, 182
Core Foundation, 183
operator overloading, 33
Stepstone, 9
typeof, 11

C#, 15–16, 17, 18
arrays, 36
classes, 13
Console.WriteLine(), 35
enum, 11
error handling, 45
factory methods, 20–21
garbage collection, 22
lambda expressions, 44
message passing, 10
nil, 19
properties, 28–29, 31
SampleClass, 15
static, 22
static methods, 20
String, 33

strings, 32–33
structs, 12
System.Object, 15
this, 17
using, 15

C++, 11, 12, 44
callbacks, 44
camera

integrating, 133–151
pictures, 147–150
UIImagePickerController,

147, 150
Cancel button, e-mail, 154, 159
canGoBack, 189, 191
canGoForward, 191
canSendText, 163
case-sensitivity, 60
cells

deleting, 125–126
reuse, 109
scrolling, 109
table views, 107–110

Center mode, UIImageView, 134
CFBridgingRelease, 183
CFStringRef, 182, 183
CFURLCreateStringByAddingPercent

Escapes, 182, 183
CGPoint, 12, 252
CGRect, 12, 141, 252
CGSize, 12, 252
char, 10
character encoding, 183
Clang Static Analyzer, 26–27
classes, 113–115

C#, 13
C++, 12
Java, 13, 27–28
methods, 15
NSObject, 15
Objective-C, 12–16

properties, 27–32
public, 15
strings, 33
subclasses, 245–246
superclasses, 15
Xcode Refactor, 113–115

adding bands, 5, 117–119
App IDs, 274–276
App Store, 268
Aspect Fit mode, 134
attributes, 58
basic cell style, 108
bundle identifiers, 55
completion handlers, 205–209
data source, 110–121
data structures, 35–39
deleting pictures, 145–147
deployment, 267–286
development plan, 6
displaying bands, 119–121
editing table data, 123–129
e-mail, 154–163
Facebook, 168–169
finishing implementation, 258–265
Flickr, 169–170
GET, 227
icon, 68–69
index, 121–123
introduction, 2–6
iTunes Search, 219–241
local search, 203–215
map views, 196–203
Mobile Safari, 191–193
MobileCoreServices.framework, 163
modifying data, 126–129
navigation, 186–193
NavigationController, 113
Network Activity Indicator, 184
NSMutableArray, 110, 112
NSMutableDictionary, 112
NSURLSession, 227–233
Objective-C, 9–48
photo library, 139–147
pictures, 133–151
popovers, 250–258
record stores, 6
saving multiple, 5–6
saving pictures, 143–145
scoping, 4–5
search, 6
sections, 121–123
sharing, 6

bindex.indd 295 31-01-2014 17:20:10

296

entity – integer valuesCLLocationCoordinate2d – encodeWithCoder

CLLocationCoordinate2d, 200–201
CLLocationManager, 199
CLLocationManagerDelegate, 199
Cocoa Touch, 6, 10, 16
coder, 144
collectionName, 223
compare:, 110, 112
compiler, 14, 26, 27, 33
completion handlers, 205–209, 228, 231
concat, 33–34
Connections inspector, 59
Console.WriteLine(), 35
constraints, Auto Layout, 62
constructors, 17, 18
Contacts app, 133, 136
convenience methods, 20, 34, 36
coordinate, 200–201
copyright, 5
Core Foundation, 182, 183
Core Location framework, 199
CoreLocation.Framework, 198
count, 205

d

data source
Bands, 110–121
UITableView, 123

data structures, Objective-C, 35–38
data task, NSURLSession, 227–231
dataSource, 226
dataTaskWithRequest:completionHandler:,

228
debugging, 26, 35, 59, 201
decodeIntegerForKey:, 93
delegate, 226
delegates

authentication, 227
NSURLSession, 227
Objective-C, 41–43
UIPopoverController, 256
UITableViews, 104
webViewDidStartLoad:, 184

DELETE, HTTP, 220
deleteBandAtIndexPath:, 126

deleteButtonTouched:, 99, 247
deployment

ad hoc builds, 276–280
apps, 267–286

deployment certificate, 272
detailsTextLabel, 108
development certificate, 272
development plan, Bands, 6
Device Orientation, 244
dictionary, 38, 141
digital certificates, 271–273
digital rights management (DRM), 71, 268
dismissPopoverAniamted:,

UIPopoverController, 255
dismissViewControllerAnimated:complet

ion:, 117, 159, 163
dispatch_sync, NSURLSession, 228
dot notation, 31
double, 10
draining the pool, 24
DRM. See digital rights management
dynamic, 17
dynamic languages, 17

e

edit mode, UITableView, 124
editButton, 124
editButtonItem, 124
else, 234
e-mail

Bands, 154–163
Cancel button, 154, 159
Network Activity Indicator, 184
NSData, 159
social networking, 154–163
UIActivityViewController, 166

emailBandInfo, 159
Empty template, 54
enabled, 86
enableUserInteraction, 136
encodeBool:forKey:, 93
encodeInteger:forKey:, 93
encodeUserCoder:, 144
encodeWithCoder:, 92–93, 144

bindex.indd 296 31-01-2014 17:20:11

297

entity – integer valuesCLLocationCoordinate2d – encodeWithCoder

entity, 220
enum, 11–12, 77–78
error handling, 44–47
Extensible Markup Language (XML),

220, 231

F

Facebook, 168–169, 219
factory methods, 20–21, 24–25
features, apps, 5–6
feedback, web views, 183–185
File inspector, 59
fileName, 159
firstLettersArray, 112, 121, 122, 236
Flexible Space Bar Button Item, 187
Flickr, 169–170
float, 10
forwardButtonTouched:, 191
function pointers, C++, 44

G

garbage collection, 22, 26
General settings editor, MessageUI.framework,

159
gesture recognizers, 134–139
GET, HTTP, 220, 227
getter methods, Java, 28
goBack, 189, 191
goForward, 189, 191

H

.h, 12
hash table, 38
haveSeenLivesSwitch, 91
hidden, 147
HTML, 160, 163, 176
HTTP. See Hyper Text Transfer Protocol
Human Interface Guidelines, 250
hybrid maps, 201–203
Hyper Text Transfer Protocol (HTTP), 219,

220, 227

I

IBAction, 134, 136, 191, 192
iPad, 248, 261
saveBand, 117
toolbars, 186, 187
user input form, 85–86

IBOutlet, 135, 176, 196, 198
iPad, 248, 258, 261
toolbars, 186, 187
UIBarButtonItem, 189, 252, 256
UISearchBar, 223, 225
UITableView, 104
user input form, 79–81
ViewController.h, 83

icons, apps, 68–70
id, 17
Identity Inspector, 176, 196
if, 17
imagePickerControllerDidCancel:, 143, 255
imagePickerController:didFinishPicking

MediaWithInfo:, 141, 143, 145
imagePicker:didFinishPickingMediaWith

Info:, 254, 255
imageView, 108
iMessage, 154, 160, 163
index, table views, 121–123
indexOfObject:, 37
indexPath, 110, 126
info property editor, Xcode, 67
init, 17, 20, 22
initWithActivityItems:application

Activities:, 167
initWithCoder:, 91–93, 144
initWithContentViewController:, 256
initWithData, 143
initWithData:encoding:, 230
initWithTarget:action:, 139
initWithTitle:delegate:cancelButton

Title, 250
insertObject:atIndex:, 37
instance methods, Objective-C, 22
instance variables, 27–28, 30
int, 10
integer values, 78

deleteButtonTouched:, 99, 247
deployment

ad hoc builds, 276–280
apps, 267–286

deployment certificate, 272
detailsTextLabel, 108
development certificate, 272
development plan, Bands, 6
Device Orientation, 244
dictionary, 38, 141
digital certificates, 271–273
digital rights management (DRM), 71, 268
dismissPopoverAniamted:,

UIPopoverController, 255
dismissViewControllerAnimated:complet

ion:, 117, 159, 163
dispatch_sync, NSURLSession, 228
dot notation, 31
double, 10
draining the pool, 24
DRM. See digital rights management
dynamic, 17
dynamic languages, 17

e

edit mode, UITableView, 124
editButton, 124
editButtonItem, 124
else, 234
e-mail

Bands, 154–163
Cancel button, 154, 159
Network Activity Indicator, 184
NSData, 159
social networking, 154–163
UIActivityViewController, 166

emailBandInfo, 159
Empty template, 54
enabled, 86
enableUserInteraction, 136
encodeBool:forKey:, 93
encodeInteger:forKey:, 93
encodeUserCoder:, 144
encodeWithCoder:, 92–93, 144

bindex.indd 297 31-01-2014 17:20:11

298

Interface Builder – Keychain Access kUTTypeMovie – MessageComposeResultFailed

Interface Builder, 89, 90, 196
iPad, 246
UI objects, 59
Xcode, 57–58

Interface Builder Outlet. See IBOutlet
interface objects, IBActions, 136
iOS Developer Membership, 280
.ipa, 276–279
iPad

adding Band info view, 246–249
Auto Layout, 249–250
finishing implementation, 258–265
Interface Builder, 246
iTunes Search, 263–265
popovers, 250–258
subclasses, 245–246
UITableView, 246
universal apps, 243–266

iPad simulator, 244, 248, 249, 250, 261
iPhone, 1–2
iPhone simulator, 59–61

annotations, 211
debugging, 59, 201
iMessage, 163
iPhone Retina, 59–61
iTunes Search, 226, 232, 236, 240
JSON parsing, 232
local search, 208, 209
map views, 203
MKMapView, 198
NSURLSession, 230
photo library, 139–140
Share option, 165–166, 171
text messages, 163
UIActivityViewController,

165–166
UITextField, 83
UIToolbar, 189
user location, 200
Xcode, 59–61

isEqualToString, 35
isHTML, 160
isLoading, 189
isSourceTypeAvailable:, 140

iTunes Connect, 280–283
iTunes Search

Bands, 219–241
displaying results, 233–240
iPad, 263–265
JSON, 221–227, 231–233
previewing tracks, 236–238
search views, 223–227
showing tracks, 239–240

iTunesSearchSegue, 224
iTunesUrlString, 240

J

jail breaking, 2
Java, 11, 19

arrays, 36
classes, 13, 27–28
constructors, 17
error handling, 45
factory methods, 20
garbage collection, 22
getter methods, 28
instantiating objects, 16
message passing, 10
method signatures, 15–16
self, 17
setter methods, 28
static, 22
static methods, 20
String, 33
strings, 32–34
System.out.println(), 35

JavaScript, 44
JavaScript Object Notation (JSON), 221–227,

231–233
Jobs, Steve, 1, 2, 10
JSON. See JavaScript Object Notation
JSONObjectWithData:options:error:, 233

K

kCFStringEncodingUTF8, 183
Keychain Access, 272, 273, 279

bindex.indd 298 31-01-2014 17:20:11

299

Interface Builder – Keychain Access kUTTypeMovie – MessageComposeResultFailed

kUTTypeMovie, 141
kUTypeImage, 141

L

lambda expressions, 44
launch images, Xcode, 70–71
Leading Space to Container, 249–250
Leaks instrument, 26
left detail cells, 108
Libraries section, MessageUI.framework,

159
Linked Frameworks, 159
Lisp, 22
literal syntax, 37
LLVM Project, 26
loadRequest:, 181, 191
local search, 203–215

annotations, 209–215
completion handlers, 205–209

localizedDescription, 208
Location Service, 198
locationServicesEnabled, 199
long, 10

M

.m, 12
Mail app, 154
mailComposeController:didFinish

WithResult:error, 154
mailComposeControllerDidFinish:

withResult:error:, 159
mainDocumentURl, 193
Main-iPad, 244
Main-iPad.storyboard, 244, 247, 249,

251, 259
Main.storyboard, 56

annotations, 212
haveSeenLivesSwitch, 91
IBOutlet, 80
iTunes Search, 224, 226, 233
map views, 196, 202
MFMailComposeViewController, 156

Project Navigator, 62, 85, 104, 109, 115, 117,
127, 135, 156, 176, 187, 196, 202, 212,
224, 233

push segues, 127
ratingStepper, 87
toolbars, 187
UIImageView, 135
UILabel, 81, 89, 90
UITableViewCell, 109
WBAiTunesSearchViewController, 226

manual reference counting, Objective-C, 22–26
Map Kit, 195
Map Search, 196
map views, 196–203

changing map type, 201–203
user’s location, 198–201

mapItems, 205
MapKit.framework, 198
MapKit.h, 196
Maps app, 195
mapView, 198
mapView:annotationView:calloutAccessory

ControlTapped:, 211, 214, 215
mapView:didUpdateUserLocation:, 200, 201,

204, 209
mapView:regionDidChangeAnimated, 208, 209
mapViewSegue, 198
mapView:viewForAnnotation:, 211, 214, 215
Master-Details Application template, 54, 104
media, 220
MediaPlayer.framework, 237–238
MediaPlayer.h, 237
member variables, 20
memory

leaks, 22–25
Clang Static Analyzer, 26–27
retain counts, 23–24

management
memory leaks, 22–25
Objective-C, 22–26
zombie objects, 25–26

objects, 22
message passing, OOP, 10
MessageComposeResultFailed, 163

iTunes Connect, 280–283
iTunes Search

Bands, 219–241
displaying results, 233–240
iPad, 263–265
JSON, 221–227, 231–233
previewing tracks, 236–238
search views, 223–227
showing tracks, 239–240

iTunesSearchSegue, 224
iTunesUrlString, 240

J

jail breaking, 2
Java, 11, 19

arrays, 36
classes, 13, 27–28
constructors, 17
error handling, 45
factory methods, 20
garbage collection, 22
getter methods, 28
instantiating objects, 16
message passing, 10
method signatures, 15–16
self, 17
setter methods, 28
static, 22
static methods, 20
String, 33
strings, 32–34
System.out.println(), 35

JavaScript, 44
JavaScript Object Notation (JSON), 221–227,

231–233
Jobs, Steve, 1, 2, 10
JSON. See JavaScript Object Notation
JSONObjectWithData:options:error:, 233

K

kCFStringEncodingUTF8, 183
Keychain Access, 272, 273, 279

bindex.indd 299 31-01-2014 17:20:11

300

MessageUI.framework – notesTextView NSArray – Objective-C

MessageUI.framework, 154, 159, 160
methods

convenience, 20, 34, 36
factory, 20–21, 24–25
getter, 28
instance, 22
NSMutableArray, 37
overloading, 16
private, 14–15, 27–28
public, 14, 27
setter, 27, 28
signatures, 15–16, 22
static, 20, 22

MFMailComposeViewController, 154, 155–160
iTunes Search, 236
MobileCoreServices.framework, 163
presentViewController:animated:

completion:, 159
MfMailComposeViewController, 159
MFMailComposeViewControllerDelegate, 154
MFMessageComposeViewController, 160–163
MFMessageComposeViewControllerDelegate,

159
MFMessageComposeViewController.h, 159
mimeType, 159
MKAnnotation, 200, 208, 210
MKAnnotationViews, 210
MKCoordinateRegion, 201
MKLocalSearch, 203–205
MKLocalSearchRequest, 203–205
MKLocalSearchResponse, 205
MKMapItem, 208, 215
MKMapKitDelegate, 211
MKMapKit.h, 198
MKMapView, 196–203, 208

IBOutlet, 196, 198
iPhone simulator, 198
MKAnnotation, 200
MKAnnotationViews, 210
MKMapKit.h, 198
region, 204
setRegion:animated:, 201
Storyboard, 201
userLocation, 204
WBAMapSearchViewController, 197, 201

MKMapViewDelegate, 199, 200
MKPinAnnotationView, 210–211
MKPlacemark, 208
MKPointAnnotation, 208, 210
MKUserLocation, 201, 210, 211
Mobile Safari

Network Activity Indicator, 184
UILongPressGestureRecognizer, 140
URL, 191
web pages, 175
web views, 191–193

MobileCoreServices.framework, 160, 163
MobileCoreServices.h, 163
modal segues, 126
Model-View-Controller, 39–41, 57, 81
MPMoviePlayerViewController, 236,

237
myInt, 11

n

name, 167
names

apps, 4
convention for, 76

namespace, 15
nameTextField, 83, 84, 249
naturalLanguageQuery, 203
navigation

Mobile Safari, 191–193
toolbars, 186–191
web views, 186–193

Navigation Controller, 104, 106, 113
Network Activity Indicator, 183–185, 208
networkActivityIndicatorVisible, 185,

208
new, 20
NeXT, 10
NeXTSTEP, 10
nil, 17, 19

NSArray, 36
NSError, 46, 205, 233

nonatomic, 31
notesTextField, 249
notesTextView, 84, 85, 86

bindex.indd 300 31-01-2014 17:20:11

301

MessageUI.framework – notesTextView NSArray – Objective-C

NSArray, 36, 37, 38, 167
NSCoding, 91–93, 113
NSData, 159, 230
NSDictionary, 38, 141, 231
NSError

JSON, 231
JSONObjectWithData:options:error:,

233
localizedDescription, 208
MKLocalSearchResponse, 205
nil, 46, 205, 233
NSJSONSerialization, 233
Objective-C, 45–46

NSImage, 167
NSIndexPath, 110, 121
NSJSONSerialization, 231, 233
NSKeyedArchiver, 94
NSKeyedUnarchiver, 95
NSLog(), 35
NSMutableArray, 36, 37, 110, 112, 208, 233
NSMutableDictionary, 38, 110, 112, 121,

233
NSMutableSet, 37
NSMutableString, 34
NSNumber, 38
NSObject, 38

classes, 15
compare:, 110
init, 22
new, 20
NSImage, 167
NSString, 36, 167
Objective-C, 15
release, 24
retainCount, 26
WBATrack, 233

NSSet, 37
NSString, 201

CFStringRef, 183
CFURLCreateStringByAddingPercent

Escapes, 182
initWithData:encoding:, 230
NSCoding, 93
NSData, 230
NSObject, 36, 167

NSURL, 181
Objective-C, 33, 34, 35
pointers, 35
String, 33
stringForMessaging, 167
UIImagePickerControllerMediaType,

141
NSURL, 141, 181
NSURLComponents, 182–183
NSURLRequest, 181, 189
NSURLResponse, 228
NSURLSession

data task, 227–231
web services, 227–233

NSURLSessionDataTask, 231, 234
NSUserDefaults, 93–95, 113, 115, 143–145
NSValue, 141
numberOfSectionsInTableView:, 110, 120,

121, 235
numberOfTapsRequired, 137, 139
numberOfTouchesRequired, 137,

139

O

Object, 15
Object library, 58, 89, 196

Bar Button Item, 187, 202
UIView, 84

objectAtIndex:, 37, 121
objectForKey:, 95
Objective-C, 6

ARC, 26–27
arrays, 36–37
Bands, 9–48
basics, 10–38
blocks, 44
classes, 12–16
compiler, 14
convenience methods, 20
data structures, 35–38
delegates, 41–43
dictionary, 38
dot notation, 31
dynamic languages, 17

MKMapViewDelegate, 199, 200
MKPinAnnotationView, 210–211
MKPlacemark, 208
MKPointAnnotation, 208, 210
MKUserLocation, 201, 210, 211
Mobile Safari

Network Activity Indicator, 184
UILongPressGestureRecognizer, 140
URL, 191
web pages, 175
web views, 191–193

MobileCoreServices.framework, 160, 163
MobileCoreServices.h, 163
modal segues, 126
Model-View-Controller, 39–41, 57, 81
MPMoviePlayerViewController, 236,

237
myInt, 11

n

name, 167
names

apps, 4
convention for, 76

namespace, 15
nameTextField, 83, 84, 249
naturalLanguageQuery, 203
navigation

Mobile Safari, 191–193
toolbars, 186–191
web views, 186–193

Navigation Controller, 104, 106, 113
Network Activity Indicator, 183–185, 208
networkActivityIndicatorVisible, 185,

208
new, 20
NeXT, 10
NeXTSTEP, 10
nil, 17, 19

NSArray, 36
NSError, 46, 205, 233

nonatomic, 31
notesTextField, 249
notesTextView, 84, 85, 86

bindex.indd 301 31-01-2014 17:20:11

302

placemark – push seguesObjective-C (continued) – pictures

Objective-C (continued)
error handling, 44–47
factory methods, 21
hash table, 38
history, 9–10
if, 17
instance methods, 22
instantiating objects, 16–22
introduction, 9–48
manual reference counting, 22–26
memory management, 22–26
message passing, 10
methods, 15

signatures, 15–16
Model-View-Controller, 39–41
namespaces, 15
NeXT, 10
NSArray, 36
NSDictionary, 38, 231
NSError, 45–46
NSMutableArray, 36
NSMutableDictionary, 38
NSMutableSet, 37
NSObject, 15
NSSet, 37
NSString, 33, 34, 35
objects, 12–22
primitive types, 10
properties, 28–32

to classes, 27–32
protocols, 41–43
release, 24
self, 17
sets, 37
Smalltalk, 16
static methods, 22
strings, 32–35
strong properties, 31–32
structs, 12
superclasses, 15
typedef, 11
weak properties, 31–32
Xcode, 246

object-oriented programming (OOP), 9, 10,
11, 45

objects, 24, 37
instantiating, 16–22
interface, 136
memory, 22
Objective-C, 12–22
UI, Interface Builder, 59
zombie, 22, 25–26

OOP. See object-oriented programming
Open Developer Tool, Xcode, 200
OpenGL Game template, 54
openURL, 191, 193, 240
operator overloading, 33
originalString, 183
overloading operators, 33

P

packages, Java, 15
Page-Based Application template, 54
Palm Pilot, 1
parameters, method overloading, 16
PDA. See Personal Digital Assistant
performSegueWithIdentifier:sender:,

180, 198
persistent storage, 5
Personal Digital Assistant (PDA), 1
Photo app, iMessage, 160
photo library

accessibility controls, 140
Bands, 139–147
deleting pictures, 145–147
device capabilities, 140
displaying image picker, 141–143
editing, 141–143
integrating, 133–151
iPhone simulator, 139–140
pictures, 139–147
saving pictures, 143–145
UIImagePickerController, 140

pictures
Bands, 133–151
camera, 147–150
Contacts app, 133
editing, 141–143
Flickr, 169–170
iMessage, 160

bindex.indd 302 31-01-2014 17:20:12

303

placemark – push seguesObjective-C (continued) – pictures

photo library, 139–147
UIImageView, 134–139

placemark, 208
pointer dereference operator, 16
pointers, 16, 17, 19, 20, 23, 35
popoverControllerDidDismissPopover,

256, 257
popovers, universal apps, 250–258
popViewControllerAnimated:, 129
POST, HTTP, 220
prepareForSegue:sender:, 129, 180, 181,

214–215
iPad, 259
iTunes Search, 226, 227

presentCameraImagePicker, 150
presentMoviePlayerViewController

Animated:, 237
presentPhotoLibraryImagePicker, 143,

254, 255
presentViewController:animated:

completion:, 126, 159, 167
previewUrl, 223
primitive types, 10, 11, 12, 38
Prison Organiser, 1
privacy, 199
private methods, 14–15, 27–28
Project, Project Navigator, 196, 244
project layout, Xcode, 55–56
Project Navigator, 66–67, 225

IBOutlet, 79
Main-iPad.storyboard, 244, 247, 249,

251, 259
Main.storyboard, 62, 85, 104, 109, 115,

117, 127, 135, 156, 176, 187, 196, 202,
212, 224, 233

Project, 196, 244
UISegmentedControl, 89
ViewController.h, 84, 86, 87, 89, 90,

93, 113
ViewController.m, 84, 91, 94, 96
WBABandDetailsController.h,

156
WBABandDetailsController.m, 160
WBABandDetailsViewController.h, 135,

137, 141, 146, 148, 160, 164, 176

WBABandDetailsViewController_

iPad.h, 253
WBABandDetailsViewController_

iPad.m, 246
WBABandDetailsViewController.m,

128, 142, 144, 146, 148, 178, 197,
225, 253

WBABand.h, 143, 155
WBABandListTableViewController.m,

127
WBABand.m, 143
WBABandsListTableViewController.h,

125
WBABandsListTableViewController.m,

125
WBAiTunesSearchViewController.h, 223,

228, 234
WBAiTunesSearchViewController.m, 223,

228, 231, 234, 239
WBAMapSearchViewController.h, 196,

201, 203, 206
WBAMapSearchViewController.m, 202,

206, 209, 210, 213
WBAWebViewController.h, 176, 180,

186, 192
WBAWebViewController.m, 180, 183,

187, 212
promptDeleteDataActionSheet,

99
properties

C#, 28–29, 31
classes, Objective-C, 27–32
dot notation, 31
IBOutlet, 81
Objective-C, 28–32
strong, 31–32
user input form, 78–79
weak, 31–32, 81

protocols, Objective-C, 41–43
provisioning profiles

ad hoc builds, 274–276
App Store, 283–284

public, 15
public methods, 14, 27
push segues, 126, 127–129

objects, 24, 37
instantiating, 16–22
interface, 136
memory, 22
Objective-C, 12–22
UI, Interface Builder, 59
zombie, 22, 25–26

OOP. See object-oriented programming
Open Developer Tool, Xcode, 200
OpenGL Game template, 54
openURL, 191, 193, 240
operator overloading, 33
originalString, 183
overloading operators, 33

P

packages, Java, 15
Page-Based Application template, 54
Palm Pilot, 1
parameters, method overloading, 16
PDA. See Personal Digital Assistant
performSegueWithIdentifier:sender:,

180, 198
persistent storage, 5
Personal Digital Assistant (PDA), 1
Photo app, iMessage, 160
photo library

accessibility controls, 140
Bands, 139–147
deleting pictures, 145–147
device capabilities, 140
displaying image picker, 141–143
editing, 141–143
integrating, 133–151
iPhone simulator, 139–140
pictures, 139–147
saving pictures, 143–145
UIImagePickerController, 140

pictures
Bands, 133–151
camera, 147–150
Contacts app, 133
editing, 141–143
Flickr, 169–170
iMessage, 160

bindex.indd 303 31-01-2014 17:20:12

304

ratingStepper – setToolbarButtons setUserInterfaceValues – tableView:canEditRowAtIndexPath:

R

ratingStepper, 87
ratingStepperValueChanged:, 87
ratingValueLabel, UILabel, 87
record stores, Bands, 6
recordStoreUrlString,

WBAWebViewController, 215
Refactor, Xcode, classes, 113–115
reference cycles, weak properties, 32
region, 203, 204
regionDidChangeAnimated, mapView:, 208
release, 24
reloadButtonTouched:, 191
removeLastObject:, 37
removeObjectAtIndex:, 126
replaceObjectAtIndex:withObject:, 37
Representational State Transfer (REST), 220
request, UIWebView, 191
response, mapItems, 205
REST. See Representational State Transfer
resultCount, 223
resume, NSURLSessionDataTask, 231
retain, 25
retain counts

manual reference counting, 22–26
memory leaks, 23–24
pointers, 23
release, 24
retain, 25

retainCount, 26
right detail cells, 108
rotation

apps
setting, 67–68
testing, 64–65

Auto Layout, 249–250
runtime, 22, 45

S

SampleClass, 15
satellite maps, 201–203
saveBand, IBAction, 117
saveBandObject, 117

saveButtonTouched:, 117, 128
saveNotesButton, 86, 249
saveNotesButtonTouched:, 86
Scale to Fill mode, UIImageView, 134
Scene, storyboard, 56–57
scoping, apps, 4–5
scrolling, 109, 189, 227
Sculley, John, 1
search. See also iTunes Search; local search

App Store, 4
Bands, 6
Map Search, 196
tracks, 6
web, 6

search views, iTunes Search, 223–227
searchBarSearchButtonClicked:, 224, 230
searchForRecordStores, 204, 207, 208, 209
searchForTracks, 228–229, 230
searchResultMapItems,

WBAMapSearchViewController, 208
sectionIndexTitlesForTableView, 123, 235
sections

Bands, 121–123
deleting, 126
table views, 121–123

headers, 122
index, 122–123

UITableView, 126
segues, 126–129

annotations, 212
Attributes Inspector, 176
iTunes Search, 224
map views, 196
UINavigationItem, 179

@selector, bandImageViewSwipeDetected,
139

self, 17, 159, 258
setBody:, 163
setExcludedActivityTypes:, 170–171
setMessageBody:isHTML, 159
setRegion:animated:, 201
sets, Objective-C, 37
setSubject:, 159, 163
setter methods, 27, 28
setToolbarButtons, 191

bindex.indd 304 31-01-2014 17:20:12

305

ratingStepper – setToolbarButtons setUserInterfaceValues – tableView:canEditRowAtIndexPath:

setUserInterfaceValues, 97, 144
setValue:forKey:, 167
Share option, simulator, 165–166, 171
shareBandInfo, 167, 257, 258
sharedApplication, 185, 208
sharedSession, 230
short, 10
showFromBarButtonItem:animated:, 250, 252
Simple Object Access Protocol (SOAP), 220
simpleClassInstance, alloc, 23
simulator. See iPad simulator; iPhone simulator
Single View Application, 52–53
Size inspector, 59
SLRequest, social networking, 170
Smalltalk, 9, 10, 16
smartphones, 1
snapshots, Xcode, 114
SOAP. See Simple Object Access Protocol
social networking, 153–172

activity view controller, 164–167
e-mail, 154–163
Facebook, 168–169, 219
Flickr, 169–170
simplifying, 163–171
SLRequest, 170
text messages, 154–163
Twitter, 167–168, 219
UIActivityViewController, 164–167

sortedArrayUsingSelector, 37
SpareKit Game template, 54
SpriteKit Game template, 54
standardUserDefaults, 94, 95, 99, 143
startWtihCompletionHandler:,

MKLocalSearch, 205
static, 22
static methods, 20, 22
Stepstone, C, 9
stopLoading, UIWebView, 189
storage

Bands, 110–113
persistent, 5

Storyboard
addBandTouched, 119
iTunes Search, 236
map views, 198

MKMapView, 201
push segues, 126
UIBarButtonItem, 159
UIToolbar, 189
UIWebView, 185
View Controller, 81, 247
WBAWebViewController, 179
Xcode, 56–59

String, 33
stringForMessaging, 159, 167
strings

C, 182
C#, 32–33
classes, 33
concatenation, 33–34
formatting, 34, 35
Java, 32–33
Objective-C, 32–35
URL, 182–183

stringWithFormat:, 34, 35
strong properties, Objective-C, 31–32
structs, 12
subclasses, iPad, 245–246
substring, 112
subtitle, NSString, 201
subtitle style cells, 108
superclasses, Objective-C, 15
@synthesize, 30
System.Object, C#, 15
System.out.println(), Java, 35

T

Tabbed Application template, 54
table views, 103–131

Bands, 110–121
cells, 107–110
deleting cells, 125–126
deleting sections, 126
editing table data, 123–129
index, 121–123
modifying data, 126–129
sections, 121–123

tableView, 121, 129, 226
tableView:canEditRowAtIndexPath:, 124

saveButtonTouched:, 117, 128
saveNotesButton, 86, 249
saveNotesButtonTouched:, 86
Scale to Fill mode, UIImageView, 134
Scene, storyboard, 56–57
scoping, apps, 4–5
scrolling, 109, 189, 227
Sculley, John, 1
search. See also iTunes Search; local search

App Store, 4
Bands, 6
Map Search, 196
tracks, 6
web, 6

search views, iTunes Search, 223–227
searchBarSearchButtonClicked:, 224, 230
searchForRecordStores, 204, 207, 208, 209
searchForTracks, 228–229, 230
searchResultMapItems,

WBAMapSearchViewController, 208
sectionIndexTitlesForTableView, 123, 235
sections

Bands, 121–123
deleting, 126
table views, 121–123

headers, 122
index, 122–123

UITableView, 126
segues, 126–129

annotations, 212
Attributes Inspector, 176
iTunes Search, 224
map views, 196
UINavigationItem, 179

@selector, bandImageViewSwipeDetected,
139

self, 17, 159, 258
setBody:, 163
setExcludedActivityTypes:, 170–171
setMessageBody:isHTML, 159
setRegion:animated:, 201
sets, Objective-C, 37
setSubject:, 159, 163
setter methods, 27, 28
setToolbarButtons, 191

bindex.indd 305 31-01-2014 17:20:12

306

tableView:cellForRowAtIndexPath: – UIActivityViewController UIAlertView – UILabel

tableView:cellForRowAtIndexPath:, 109,
110, 120, 121, 235

tableView:commitEditingStyle:forRowAt

IndexPath:, 125
tableView:didSelectRowAtIndexPath:,

iTunes Search, 237
tableView:numberOfRowsInSection:, 109,

120, 121, 235
tableView:sectionForSectionIndexTitle:,

123, 236
tableView:titleForHeaderInSection:,

122, 235
tag, UIActionSheet, 146
templates, Xcode, 54
term, iTunes Search, 220
text messages

iPhone simulator, 163
social networking, 154–163
UIActivityViewController, 166

textFieldShouldEndEditing:, 83
textFieldShouldReturn:, 83
textLabel, 108
textViewShouldBeginEditing:, 85
this, C#, 17
title, 201
titleLabel, 81
toll-free bridging, 183
toolbars, navigation, 186–191
touch screens, 1
touringStatusSegmentedController, Auto

Layout, 249
trackName, 223
tracks, 6
tracksDictionary,

WBAiTunesSearchViewController, 236
trackViewUrl, iTunes Search, 223
try/catch/finally, 45, 46
Twitter, 167–168, 219
typedef, 11–12

U

UI. See user interface
UIActionSheet

actionButtonTapped:, 159

activityButtonTouched:, 166
bandImageViewSwipeDetected, 147
deleteButtonTouched:, 99
iTunes Search, 237
Mobile Safari, 192–193
showFromBarButtonItem:animated:, 252
tag, 146
UIActivityViewController, 257
UIPopover, 250–252, 261
WBAActionSheetTag, 159
WBABandDetailsViewController, 146
WBABandDetailsViewController_iPad,

252
WBAWebViewController, 193

UIActionSheetDelegate, 146, 147, 192, 202
actionSheet:clickedButtonAtIndex:,

193
WBAMapSearchController, 203

UIActionSheets, UIPopoverController,
252

UIActivitySheet,
WBABandDetailsViewController, 180

UIActivityTypeAddToReadingList, 171
UIActivityTypeAirDrop, 171
UIActivityTypeAssignToContact, 170
UIActivityTypeCopyToPasteboard, 170
UIActivityTypeMail, 170
UIActivityTypeMessage, 170
UIActivityTypePostToFacebook, 170
UIActivityTypePostToFlickr, 171
UIActivityTypePostToTencentWeibo, 171
UIActivityTypePostToTwitter, 170
UIActivityTypePostToVimeo, 171
UIActivityTypePostToWeibo, 170
UIActivityTypePrint, 170
UIActivityTypeSaveToCameraRoll, 171
UIActivityViewController

Facebook, 169
Flickr, 170
initWithActivityItems:application

Activities:, 167
presentViewController:animated:

completion:, 167
setExcluded ActivityTypes:,

170–171

bindex.indd 306 31-01-2014 17:20:12

307

tableView:cellForRowAtIndexPath: – UIActivityViewController UIAlertView – UILabel

sharing options, 170–171
social networking, 164–167
Twitter, 167–168
UIPopover, 256
UIPopoverController, 256–258

UIAlertView, 117, 159, 163, 208
UIApplication, 56, 184, 191, 193
UIApplicationDelelegate, 56
UIBarButtonItem, 189

Attributes Inspector, 202
IBOutlet, 252, 256
iPad, 247
Storyboard, 159
UIActivityViewController, 257
UINavigationItem, 117, 155, 191,

193, 203
UIPopover, 251
UIPopoverController, 256
UIToolbar, 186

UIButton

Attributes Inspector, 85
Bands, 115
saveButtonTouched:, 117
saveNotesButton, 86
user input form, 85–86
userInteractionEnabled, 134

UIGestureRecognizer, 136
UIImage

bandImage, 144, 159
initWithData, 143
UIImageJPEGRepresentation, 143
UIImagePickerControllerEdited

Image, 141
UIImagePickerControllerOriginal

Image, 141
UIImageJPEGRepresentation, 143
UIImagePickerController

camera, 147, 150
isSourceTypeAvailable:, 140
iTunes Search, 236
photo library, 140
presentPhotoLibraryImagePicker,

143
UIImagePickerControllerSource

TypeCamera, 147

UIImagePickerControllerSource

TypePhotoLibrary, 143
UIPopoverController, 252, 255

UIImagePickerControllerCropRect, 141
UIImagePickerControllerDelegate, 140, 141,

142, 143
UIImagePickerControllerEditedImage,

141
UIImagePickerControllerMediaMetadata,

141
UIImagePickerControllerMediaType, 141
UIImagePickerControllerMediaURL, 141
UIImagePickerControllerOriginalImage,

141
UIImagePickerControllerSourceTypeCamera,

147
UIImagePickerControllerSourceType

PhotoLibrary, 140, 143
UIImagePickerControllerSourceType

SavedPhotoAlbum, 140
UIImagePNGRepresentation, 143, 159
UIImageView

Attributes Inspector, 135
Contacts app, 136
enableUserInteraction, 136
gesture recognizer, 134–139
IBOutlet, 135
Main.storyboard, 135
pictures, 134–139
UILabel, 135
UIPopover, 255
user interactions, 134–136

UIKit, 56
attributes, 58
automatic adding, 154
Object library, 58
UILabel, 81
UIWebView, 175–176
Xcode, 79

UILabel, 56, 89, 90
IBOutlet, 79, 80, 81
ratingValueLabel, 87
textLabel, 108
UIImageView, 135
UIView, 84, 135

activityButtonTouched:, 166
bandImageViewSwipeDetected, 147
deleteButtonTouched:, 99
iTunes Search, 237
Mobile Safari, 192–193
showFromBarButtonItem:animated:, 252
tag, 146
UIActivityViewController, 257
UIPopover, 250–252, 261
WBAActionSheetTag, 159
WBABandDetailsViewController, 146
WBABandDetailsViewController_iPad,

252
WBAWebViewController, 193

UIActionSheetDelegate, 146, 147, 192, 202
actionSheet:clickedButtonAtIndex:,

193
WBAMapSearchController, 203

UIActionSheets, UIPopoverController,
252

UIActivitySheet,
WBABandDetailsViewController, 180

UIActivityTypeAddToReadingList, 171
UIActivityTypeAirDrop, 171
UIActivityTypeAssignToContact, 170
UIActivityTypeCopyToPasteboard, 170
UIActivityTypeMail, 170
UIActivityTypeMessage, 170
UIActivityTypePostToFacebook, 170
UIActivityTypePostToFlickr, 171
UIActivityTypePostToTencentWeibo, 171
UIActivityTypePostToTwitter, 170
UIActivityTypePostToVimeo, 171
UIActivityTypePostToWeibo, 170
UIActivityTypePrint, 170
UIActivityTypeSaveToCameraRoll, 171
UIActivityViewController

Facebook, 169
Flickr, 170
initWithActivityItems:application

Activities:, 167
presentViewController:animated:

completion:, 167
setExcluded ActivityTypes:,

170–171

bindex.indd 307 31-01-2014 17:20:12

308

UILongPressGestureRecognizer – UIToolbar UIView – user input form

UILongPressGestureRecognizer, 137, 140
UINavigationController, 104, 126, 129
UINavigationControllerDelegate, 143
UINavigationItem, 104

Attributes Inspector, 127
Band Details, 127
editButtonItem, 124
iPad, 248, 258, 259
iTunes Search, 224, 226
Map Search, 196
scrolling, 189
segues, 179
UIBarButtonItem, 117, 155, 191, 193, 203
UITableViewController, 124
UIViewController, 119, 126
UIWebView, 180
WBAWebViewController, 176

UIPanGestureRecognizer, 137
UIPinchGestureRecognizer, 137
UIPopover, 255, 258

UIActionSheet, 250–252, 261
UIActivityViewController, 256

UIPopoverArrowDirection, 252
UIPopoverArrowDirectionAny, 253
UIPopoverArrowDirectionDown, 253
UIPopoverArrowDirectionLeft, 253
UIPopoverArrowDirectionRight, 253
UIPopoverArrowDirectionUnknown, 253
UIPopoverArrowDirectionUp, 253
UIPopoverController, 252–255

delegates, 256
initWithContentViewController:, 256
UIActivityViewController, 256–258
UIBarButtonItem, 256

UIPopoverControllerDelegate, 256
UIRotateGestureRecognizer, 137
UIScreenEdgePanGestureRecognizer, 137
UISearchBar, 223, 225, 227
UISearchBarDelegate, 223, 224, 230
UISegmentedControl, 89–90
UIStepper, ratingStepper, 87
UISwipeGestureRecognizer, 137, 139, 145
UISwitch, 90–91
UITableView

Attributes Inspector, 106
Bands, 104, 119–121
data source, 123
dataSource, 226
delegate, 226
edit mode, 124
IBOutlet, 104
iPad, 246
iPad simulator, 244
iTunes Search, 237
Master-Details Application template, 104
Navigation Controller, 106
section headers, 122
sections, 126
tableView:sectionForSectionIndex

Title:, 123
UINavigationController, 104
UISearchBar, 227
UITableViewCell, 107–110
UITableViewDataSource, 109
UIViewController, 106

UITableViewCell, 103, 104, 107–110
UITableViewController, 104, 106–107, 124

WBAiTunesSearchViewController,
223, 226

UITableViewDataSource, 110
Bands, 119–121
iPad, 246
NSIndexPath, 121
section headers, 122
section index, 122
UITableView, 109

UITableViewDelegate, 104, 125, 237, 246
UITapGestureRecognizer,

initWithTarget:action:, 139
UITextField, 81–84, 135
UITextFieldDelegate, 81, 83
UITextView, 84–85
UITextViewDelegate, user input form, 84–85
UIToolbar

Auto Layout, 249
iPad, 247, 248, 259, 261
iPhone simulator, 189
navigation, 186–191

bindex.indd 308 31-01-2014 17:20:13

309

UILongPressGestureRecognizer – UIToolbar UIView – user input form

Storyboard, 189
UIBarButtonItem, 186, 189
UIView, 189
UIWebView, 187, 189
WBAWebViewController, 189

UIView

accessoryView, 108
Auto Layout, 249
Bands, 115
gesture recognizer, 137
IBOutlet, 79, 81
Interface Builder, 90
Object library, 84
popovers, 250
UILabel, 84, 135
UISegmentedControl, 90
UISwitch, 91
UITextField, 81
UIToolbar, 189
userInteractionEnabled, 134
ViewController, 106

UIViewController, 56
IBOutlet, 79
map views, 196
performSegueWithIdentifier:sender:,

180
UINavigationItem, 119, 126
UIPopoverController, 252
UITableView, 106
WBAWebViewController, 176, 179

UIViewControllerDelegate

viewDidAppear:, 200
viewWillAppear:, 181

UIWebView, 175–194
adding, 176–180
goBack, 189, 191
goForward, 189, 191
HTML, 176
IBAction, 191
IBOutlet, 176
iPad, 258, 259, 260
isLoading, 189
loadRequest:, 181
Mobile Safari, 191–193

navigation, 186
Network Activity Indicator, 184
NSURLRequest, 189
request, 191
stopLoading, 189
Storyboard, 185
UI, 176
UIKit, 175–176
UINavigationItem, 180
UIToolbar, 187, 189
URL, 180–183
viewDidAppear:, 191
WBAWebViewController, 176, 185

UIWebViewDelegate, 184, 185
unarchiveObjectWithData:,

NSKeyedUnarchiver, 95
universal apps

finishing implementation, 258–265
iPad, 243–266
popovers, 250–258
transitioning, 244–250

Universal Type Identifier, 160, 163
Universally Unique Identifier (UUID), 269–271
Urban Spoon, 195
URL

canGoBack, 189
HTTP, 220
Mobile Safari, 191
special characters, 182–183
strings, 182–183
UIBarButtonItems, 189
UIWebView, 180–183
UTF8, 183
web views, 180–183

URLQueryAllosedCharacterSet, 192
user input form, 75–101

deleting saved data, 97–99
enum, 77–78
IBAction, 85–86
IBOutlet, 79–81
integer values, 78
NSCoding, 91–93
NSUserDefaults, 93–95
properties, 78–79

Attributes Inspector, 106
Bands, 104, 119–121
data source, 123
dataSource, 226
delegate, 226
edit mode, 124
IBOutlet, 104
iPad, 246
iPad simulator, 244
iTunes Search, 237
Master-Details Application template, 104
Navigation Controller, 106
section headers, 122
sections, 126
tableView:sectionForSectionIndex

Title:, 123
UINavigationController, 104
UISearchBar, 227
UITableViewCell, 107–110
UITableViewDataSource, 109
UIViewController, 106

UITableViewCell, 103, 104, 107–110
UITableViewController, 104, 106–107, 124

WBAiTunesSearchViewController,
223, 226

UITableViewDataSource, 110
Bands, 119–121
iPad, 246
NSIndexPath, 121
section headers, 122
section index, 122
UITableView, 109

UITableViewDelegate, 104, 125, 237, 246
UITapGestureRecognizer,

initWithTarget:action:, 139
UITextField, 81–84, 135
UITextFieldDelegate, 81, 83
UITextView, 84–85
UITextViewDelegate, user input form, 84–85
UIToolbar

Auto Layout, 249
iPad, 247, 248, 259, 261
iPhone simulator, 189
navigation, 186–191

bindex.indd 309 31-01-2014 17:20:13

310

WBABandDetailsViewController – Web 2.0user input form (continued) – WBABandDetailsController.m

user input form (continued)
retrieving data, 95–97
saving data, 93–95
UI, 79–91
UIButton, 85–86
UISegmentedControl, 89–90
UISwitch, 90–91
UITextField, 81–84
UITextView, 84–85
UITextViewDelegate, 84–85

User Interaction Allowed, Attributes
Inspector, 136

user interactions, UIImageView, 134–136
user interface (UI)

Auto Layout, 62
objects, Interface Builder, 59
UIKit, 56
UIWebView, 176
user input form, 79–91

user location, map views, 198–201
userInteractionEnabled, 134
userLocation, 201, 204
using, C#, 15
UTF8, URL, 183
Utility Application template, 54
UUID. See Universally Unique Identifier

V

variables
instance, 27–28, 30
member, 20

View Controller
Band Details, 176
iPad, 247, 259
Navigation Controller, 104
Storyboard, 81, 247
UITableViewController, 106

ViewController

IBOutlet, 79, 81
nameTextField, 84
setuserInterfaceValues, 97
UITextFieldDelegate, 83
UIView, 106
viewDidLoad, 97

ViewController.h, 83, 84, 86, 87, 89, 90,
93, 113

ViewController.m, 80, 84, 86, 87, 91,
94, 96

viewDidAppear:, 183, 191, 200
viewDidAppear:animated:, 208
viewDidLoad, 80, 96, 97, 127, 137
viewWillAppear:, 120–121, 127, 223

NSURLSession, 229
UIViewControllerDelegate, 181

W

WBAActionSheetTag

MFMailComposeViewController,
156

UIActionSheet, 159
WBAActionSheetTagChooseImage

PickerSource, 150
WBAActionSheetTagDeleteBand, 147
WBAActionSheetTagDeleteBandImage,

147
WBAActionSheetTagChooseImagePicker

Source, 150
WBAActionSheetTagDeleteBand, 147
WBAActionSheetTagDeleteBandImage,

147
WBAActivityButtonIndex, 159, 160, 163,

164, 177
WBAActivityButtonIndexEmail, 159, 166
WBAActivityButtonIndexFindRecord

Stores, 198
WBAActivityButtonIndexMessage, 166
WBAActivityButtonIndexShare, 163, 166
WBAActivityButtonIndexWebSearch,

180
WBABand, 110–121

compare:, 112
NSCoding, 113
NSUserDefaults, 115
removeObjectAtIndex:, 126
standardUserDefaults, 143

WBABandDetailsController, 252
WBABandDetailsController.h, 156
WBABandDetailsController.m, 160

bindex.indd 310 31-01-2014 17:20:13

311

WBABandDetailsViewController – Web 2.0user input form (continued) – WBABandDetailsController.m

WBABandDetailsViewController, 114, 144, 248
bandImageViewTapDetected, 138
cleaning, 115–117
MFMessageComposeViewController

Delegate, 159
MFMessageComposeViewController.h, 159
prepareForSegue:sender:, 181
self, 159
UIActionSheet, 146
UIActivitySheet, 180
UIImagePickerControllerDelegate, 143
UINavigationController, 129
UINavigationControllerDelegate, 143
WBAActivityButtonIndexFind

RecordStores, 198
WBABandDetailsViewController.h

camera, 148
gesture recognizers, 137
image picker, 141
MFMessageComposeViewController, 160
Project Navigator, 135, 137, 141, 146, 148,

160, 164, 176
UIActivityViewController, 164

WBABandDetailsViewController_iPad,
252, 255

WBABandDetailsViewController_iPad.h, 253
WBABandDetailsViewController_iPad.m, 246
WBABandDetailsViewController.m, 128, 142,

144, 146, 148, 178, 197, 225, 253
WBABand.h, 143, 155
WBABandListTableViewController.m, 127
WBABand.m, 143
WBABandsListTableViewController, 113, 119
WBABandsListTableViewController.h, 125
WBABandsListTableViewController.m, 125
WBABandsListViewController, 129
WBAImagePickerSourceCamera, 150
WBAImagePickerSourcePhotoLibrary, 150
WBAiTunesSearchViewController, 225

bandName, 227
firstLtterArray, 236
Main.storyboard, 226
searchForTracks, 230
tracksDictionary, 236
UITableViewController, 223, 226

WBAiTunesSearchViewController.h, 223,
228, 234, 239

WBAiTunesSearchViewController.m, 223,
228, 231, 234, 239

WBAMapSearchController, 203
WBAMapSearchViewController, 196, 197, 200,

201, 208
MKMapItems, 215
searchForRecordStores, 204

WBAMapSearchViewController.h, 196, 201,
203, 206

WBAMapSearchViewController.m, 202, 206,
209, 210, 213

WBAMapViewActionButtonHybridType, 203
WBAMapViewActionButtonIndex, 201
WBAMapViewActionButtonIndexMapType, 203
WBAMapViewButtonSatelliteType, 203
WBATableViewController, 121
WBATrack, 233, 240
WBATrack.h, 233
WBATrackOptionButtonIndex, 239
WBATrackOptionButtonIndexOpenIniTunes,

240
WBAWebSearchViewController, 208
WBAWebViewActionSheetButtonIndex, 192
WBAWebViewActionSheetButton

IndexOpenInSafari, 192
WBAWebViewController, 181

Identity Inspector, 176
recordStoreUrlString, 215
setToolbarButtons, 191
Storyboard, 179
UIActionSheet, 193
UIActionSheetDelegate, 192
UINavigationItem, 176
UIToolbar, 189
UIViewController, 176, 179
UIWebView, 176, 185
webView, 179
webViewLoadCount, 185

WBAWebViewController.h, 176, 180, 186, 192
WBAWebViewController.m, 180, 183, 187,

192, 212
weak properties, 31–32, 81
Web 2.0, 2, 219

ViewController.h, 83, 84, 86, 87, 89, 90,
93, 113

ViewController.m, 80, 84, 86, 87, 91,
94, 96

viewDidAppear:, 183, 191, 200
viewDidAppear:animated:, 208
viewDidLoad, 80, 96, 97, 127, 137
viewWillAppear:, 120–121, 127, 223

NSURLSession, 229
UIViewControllerDelegate, 181

W

WBAActionSheetTag

MFMailComposeViewController,
156

UIActionSheet, 159
WBAActionSheetTagChooseImage

PickerSource, 150
WBAActionSheetTagDeleteBand, 147
WBAActionSheetTagDeleteBandImage,

147
WBAActionSheetTagChooseImagePicker

Source, 150
WBAActionSheetTagDeleteBand, 147
WBAActionSheetTagDeleteBandImage,

147
WBAActivityButtonIndex, 159, 160, 163,

164, 177
WBAActivityButtonIndexEmail, 159, 166
WBAActivityButtonIndexFindRecord

Stores, 198
WBAActivityButtonIndexMessage, 166
WBAActivityButtonIndexShare, 163, 166
WBAActivityButtonIndexWebSearch,

180
WBABand, 110–121

compare:, 112
NSCoding, 113
NSUserDefaults, 115
removeObjectAtIndex:, 126
standardUserDefaults, 143

WBABandDetailsController, 252
WBABandDetailsController.h, 156
WBABandDetailsController.m, 160

bindex.indd 311 31-01-2014 17:20:13

312

web pages – zombie objects

web pages, Mobile Safari, 175
web services

iTunes Search
Bands, 219–241
displaying results, 233–240
JSON, 221–227, 231–233
previewing tracks, 236–238
search views, 223–227
showing tracks, 239–240

NSURLSession, 227–233
Web View, Band Details, 179
web views, 175–194

feedback, 183–185
Mobile Safari, 191–193
navigation, 186–193
Network Activity Indicator, 183–185
URL, 180–183

webView, 179
webViewActionButtonTouched:, 193
webView:didFailLoadError:, 184, 185
webViewDidFinishLoad:, 184, 185
webViewDidStartLoad:, 184
webViewLoadComplete, 185, 191
webViewLoadCount, 185, 191
webViewSegue, 176, 179
Windows Mobile, 1

x

Xcode, 6
ad hoc provisioning profile, 276
application settings, 66–67

apps, 51–74
icon, 68–70
running on device, 71–72

Archive, 279
asset catalogs, 70
attributes, 58
Attributes Inspector, 58
Auto Layout, 62–65
bundle identifiers, 54–55
Clang Static Analyzer, 26–27
debugging, 26, 35
info property editor, 67
Interface Builder, 57–58
iPhone simulator, 59–61
launch images, 70–71
Objective-C, 246
Open Developer Tool, 200
project layout, 55–56
Refactor, classes, 113–115
Single View Application, 52–53
snapshots, 114
Storyboard, 56–59
templates, 54
UIKit, 79

Xerox, 9
XIB files, 246
XML. See Extensible Markup Language

Z

zombie objects, 22, 25–26

bindex.indd 312 31-01-2014 17:20:13

Programmer to Programmer™

Contact Us.
We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

Connect with Wrox.
Participate
Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community
Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com
Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program
Become a member and take advantage of all
the benefits

Wrox on
Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on
Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well
as upcoming programmer conferences
and user group events

	Beginning iOS Programming: Building and Deploying iOS Applications
	Copyright
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: Building a Real-World iOS App: Bands
	Introducing Bands
	Getting Started
	Scoping the App
	Defining the Features
	Creating a Development Plan
	Summary

	Chapter 2: Introduction to Objective-C
	Exploring the History of Objective-C
	Explaining the Basics
	Learning About Objects and Classes
	Instantiating Objects
	Managing Memory
	Introducing Automatic Reference Counting
	Adding Properties to a Class
	Explaining Strings
	Using Basic Data Structures

	Discussing Advanced Concepts
	Explaining the Model-View-Controller Design Pattern
	Learning About Protocols and Delegates
	Using Blocks
	Handling Errors

	Summary

	Chapter 3: Starting a New App
	Creating a New App in Xcode
	Discussing Xcode Templates
	Learning About Bundle Identifiers
	Exploring the Xcode Project Layout
	Discussing the UIKit Framework
	Discussing the Main Storyboard

	Adding a Label to a Storyboard
	Exploring Interface Builder
	Setting Attributes
	Exploring the Inspectors
	Aligning UI Objects

	Running in the Simulator
	Choosing a Device
	Learning to Test on All Device Sizes

	Learning About Auto Layout
	Discussing Auto Layout Basics
	Testing Rotation

	Exploring Application Settings
	Setting Version and Build Numbers
	Setting Supported Rotation Orientations
	Setting the App Icon
	Setting Launch Images

	Running on a Device
	Summary

	Chapter 4: Creating a User Input Form
	Introducing the Band Model Object
	Creating the Band Model Object
	Creating Enumerations
	Adding Properties to the Band Model Object

	Building an Interactive User Interface
	Learning About IBOutlet
	Using UITextField and UITextFieldDelegate
	Using UITextView and UITextViewDelegate
	Using UIButton and IBAction
	Using UIStepper
	Using UISegmentedControl
	Using UISwitch

	Saving and Retrieving Data
	Implementing the NSCoding Protocol
	Saving Data
	Retrieving Saved Data
	Deleting Saved Data

	Summary

	Chapter 5: Using Table Views
	Exploring Table Views
	Learning About Tables
	Learning About Cells

	Implementing the Bands Data Source
	Creating the Band Storage
	Adding Bands
	Displaying Bands

	Implementing Sections and Index
	Adding Section Headers
	Showing the Section Index

	Editing Table Data
	Enabling Edit Mode
	Deleting Cells and Data
	Modifying Data

	Summary

	Chapter 6: Integrating the Camera and Photo Library in iOS Apps
	Adding an Image View and Gesture Recognizer
	Enabling User Interactions with a UIImageView
	Learning About Gesture Recognizers

	Selecting a Picture from the Photo Library
	Learning About UIImagePickerController
	Determining Device Capabilities
	Allowing Picture Editing
	Saving Band Images
	Deleting Band Images

	Taking a Picture with the Camera
	Summary

	Chapter 7: Integrating Social Media
	Sending E-mails and Text Messages
	Using the E-mail Composer
	Using the Message Composer

	Simplifying Social Network Integration
	Introducing the Activity View Controller
	Learning About Twitter Integration
	Learning About Facebook Integration
	Learning About Flickr Integration
	Limiting Sharing Options

	Summary

	Chapter 8: Using Web Views
	Learning About Web Views
	Loading a URL
	Loading a URL That Contains Special Characters
	Showing User Feedback

	Adding Navigation
	Creating a Toolbar
	Opening Safari

	Summary

	Chapter 9: Exploring Maps and Local Search
	Learning About Map Views
	Getting the User’s Location
	Changing the Map Type

	Performing a Local Search
	Animating Annotations
	Interacting with Annotations

	Summary

	Chapter 10: Getting Started with Web Services
	Learning About Web Services
	Exploring the iTunes Search API
	Discussing JSON
	Adding the Search View

	Introducing NSURLSession
	Creating and Scheduling a Data Task
	Parsing JSON

	Displaying Search Results
	Previewing Tracks
	Showing Tracks in iTunes

	Summary

	Chapter 11: Creating a Universal App
	Transitioning to a Universal App
	Supporting Rotation Using Auto Layout

	Learning About Popovers
	Presenting Action Sheets in Popovers
	Using the UIPopoverController

	Finishing the iPad Implementation
	Summary

	Chapter 12: Deploying Your iOS App
	Deploying the App to Beta Testers
	Registering Beta Devices
	Generating Digital Certificates
	Creating an App ID and Ad Hoc Provisioning Profile
	Signing and Deploying an Ad Hoc Build

	Submitting the App to Apple
	Exploring iTunes Connect
	Creating an App Store Provisioning Profile
	Validating and Submitting an App

	Summary

	Appendix: Answers to Exercises
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers

	Index
	Advertisement

