
Getting Started
with Istio
Service Mesh

Manage Microservices in Kubernetes
—
Rahul Sharma
Avinash Singh

www.allitebooks.com

http://www.allitebooks.org

Getting Started with
Istio Service Mesh

Manage Microservices
in Kubernetes

Rahul Sharma
Avinash Singh

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Istio Service Mesh

ISBN-13 (pbk): 978-1-4842-5457-8 ISBN-13 (electronic): 978-1-4842-5458-5
https://doi.org/10.1007/978-1-4842-5458-5

Copyright © 2020 by Rahul Sharma, Avinash Singh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5457-8.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Rahul Sharma
Delhi, India

Avinash Singh
Gurgaon, Haryana, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5458-5
http://www.allitebooks.org

To my wife Neha and my daughter, Avyanna, without
whom this book would never have been completed.

—Avinash Singh

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Quick Tour of Kubernetes ��1

K8s Architecture/Components ��2

Kubernetes Master ��3

Kubernetes Workers ��5

Kubernetes Terminology ���9

Set Up a Kubernetes Cluster ���11

Set Up VirtualBox ���11

Install Kubectl ��11

Set Up Minikube ��12

Set Up Docker ��13

Set Up Python ��15

Set Up Java ��15

Our First Kubernetes Cluster ���15

Run an Application on Kubernetes ��17

Application Details ���17

Deploy the Application ���19

Kubernetes Service ���24

Kubernetes Is Self-Healing ��30

Table of Contents

About the Authors ��xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Add a Microservice ���32

Application Setup ��32

Release and Deployment ���34

Readiness Probes ���37

Summary���45

Chapter 2: Introduction to the Service Mesh ��������������������������������������47

Microservice Architecture ���47

Agility ���51

Innovation ��52

Scalability ��52

Maintainability ���53

Challenges ���53

Language Libraries ��62

Service Mesh ��77

Traffic Control ��78

Security ���79

Analytics ��80

Sidecar Pattern ���82

Envoy, the Sidecar Provider ��84

Configuring Envoy ��88

Verifying the Service ���95

Summary���98

Chapter 3: Installing Istio ���99

Istio Service Mesh ���99

Istio Architecture ���102

Data Plane ���103

Control Plane ���104

Table of ConTenTsTable of ConTenTs

vii

Mixer ���106

Pilot ���111

Citadel ���114

Galley ���114

Setting Up Istio ��114

Installation Using Helm ��115

Demo Installation Without Helm ��118

GKE Installation ���120

Verifying the Installation ��120

Istio Services ���122

Working with Istio ���123

Using the Istio CLI ���124

authn ���124

deregister ��124

register ��125

experimental ��125

kube-inject ��128

proxy-config bootstrap|cluster|endpoint|listener|route �������������������������������135

validate ��135

Summary���136

Chapter 4: Istio VirtualService ��137

Request Routing ��137

Kubernetes Practices ��141

Naming Service Ports ��142

Pods with Version Labels ���143

Declared Pod Ports ��144

Table of ConTenTsTable of ConTenTs

viii

Destination Rules ��146

Connection Pool ���148

Load Balancing ��151

Outlier Detection ��151

VirtualService ��153

Forwarding ��154

Rewrite ��156

HTTP Attributes Lookup ���158

Weighted Distribution ��160

Canary Releases ���163

Summary���168

Chapter 5: Istio Gateway ��169

Ingress ��169

Secure Sockets Layer ���176

Configure istio-ingressgateway-certs ���178

Configure istio-ingressgateway-ca-certs ��181

External Service Access ��182

Service Entry ���185

Egress ��188

Summary���192

Chapter 6: Service Resiliency ���193

Application Setup ��195

Load Balancing ���201

Retry Requests ��205

Timeout Requests ���212

Circuit Breaker ��219

Table of ConTenTsTable of ConTenTs

ix

Connection Pool Circuit Breaker ��222

Load Balancer Circuit Breaker ���229

Resiliency ��231

Summary���232

Chapter 7: Application Metrics ���233

Application Monitoring ��233

Istio Mixer ���236

Prometheus ���237

Installation ���238

Prometheus Dashboard ���240

Custom Metrics ���245

Grafana ���249

Installation ���249

Grafana Dashboard ��251

Grafana Alert ��253

Summary���258

Chapter 8: Logs and Tracing ���259

Distributed Tracing ��259

Application Logs ��266

Mixer ���271

Handler ��273

Instance ���274

Rules ��278

Summary���279

Table of ConTenTsTable of ConTenTs

x

Chapter 9: Policies and Rules ���281

Authentication ���281

Transport Authentication ���282

User Authentication ���289

Authorization ���297

Rules ���301

Summary���304

Chapter 10: Troubleshooting ���305

Configmaps ���305

Proxy ���307

Routes ���309

Summary���313

Index ���315

Table of ConTenTsTable of ConTenTs

xi

About the Authors

Rahul Sharma is a seasoned Java developer

with more than 14 years of industry

experience. During his career, he has worked

with companies of various sizes, from

enterprises to startups, and has developed

and managed microservices on the cloud

(AWS/GCE/DigitalOcean) using open source

software. He is an open source enthusiast and

shares his experience at local meetups. He is

also the co-author of Java Unit Testing with

JUnit 5 (Apress, 2017).

Avinash Singh is an IIT-Kanpur alumnus

with more than ten years of experience in

architecture, design, and developing scalable

and distributed cloud applications. He has

hands-on experience in technologies such as

AWS Cloud, J2EE, ROR, MySQL, MongoDB,

Spring, and Hibernate. Avinash has a strong

understanding of SOA and microservices

architecture, with a good handle on resource

capacity planning.

xiii

About the Technical Reviewer

Harish Oraon is an experienced professional

from Bangalore, India, with almost a decade

of experience developing scalable and

distributed systems. He has worked with

multiple technologies and stacks. Currently,

he is leading the technology arm at a startup.

Previously he was associated with Edureka,

an ed-tech company, and played a key role

in shaping the technology and infrastructure.

He has also been associated with these giants: Roofandfloor by the Hindu

Media, Koovs Fashion, and Sportskeeda.

Harish holds a UG degree from BIT Mesra, a premier institute in

India. When he is not working, he loves to contribute to the open source

community. He writes articles on Medium.com and answers questions on

Stack Overflow and Google Groups. In his spare time, he loves spending

time with his family.

xv

Acknowledgments

This book would not have been possible without the support of my family.

I want to thank my parents, my loving and supportive wife Swati, and my

son, Rudra. They are a constant source of encouragement and inspiration.

Thanks for providing the time and for listening to my gibberish when

things were not going according to plan. I would also like to thank my

co-author, Avinash Singh, for his knowledge and support. Your experience

and willingness has made this a successful project.

I am grateful to Nikhil Karkal for believing in me and providing this

wonderful opportunity. I would also like to thank Divya Modi and her

editorial team for the constant push throughout the process. It would have

been difficult to finish the project without her support. I would like to

thank Harish Oraon and Matthew Moodie for sharing valuable feedback.

Your advice has helped me to deliver my ideas in a better manner.

—Rahul Sharma

1© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_1

CHAPTER 1

Quick Tour of
Kubernetes
Kubernetes originated from the Greek word κυβερνήτης, meaning

“governor,” “helmsman,” or “pilot.” That’s what the founders Joe Beda,

Brendan Burns, and Craig McLuckie had in mind. They wanted to “drive

a container ship” leading to the creation of a container orchestration

platform, which these days is becoming the de facto standard for running

microservices in the cloud.

In late 2013, the declarative configuration of IaaS started to gain strength

over bash scripts for cloud infrastructure. Though companies like Netflix

were popularizing immutable infrastructures, that came with the cost of

heavyweight virtual machine images. Docker became a savior by offering

a lightweight container. It allowed a simple way to package, distribute, and

deploy applications on a machine as compared to heavyweight VM images.

But running Docker containers on a single machine was not a solution for

scaling applications, which required deploying Docker containers across

multiple machines. This created a need for an orchestrator.

Kubernetes development started by focusing on the key features of an

orchestrator, such as replication of an application with load balancing and

service discovery, followed by basic health checks and repair features to

ensure availability. Kubernetes was also released as an open source version

of Borg, a large-scale cluster manager at Google running hundreds of

thousands of jobs for different applications across clusters, with each cluster

2

having tens of thousands of machines. In the middle of 2015, Kubernetes

was committed to GitHub and opened for developers to start contributing.

In no time, big players like Microsoft, Red Hat, IBM, Docker, Mesosphere,

CoreOS, and SaltStack joined the community and started contributing. In

time, multiple modules were developed in and on Kubernetes, ensuring the

basic orchestrator was intact and optimized over time.

With the increasing popularity of Kubernetes in the developer

community, developers started making the deployment process even

simpler. Helm, a package manager for Kubernetes, was launched in

early 2016, aimed at simplifying how one defines, installs, and upgrades

complex Kubernetes applications. Sometime in the middle of 2016,

Minikube was released; Minikube brought the Kubernetes environment

to a developer’s local system. We will be using Minikube later in the

chapter for our example Kubernetes application. One of the popular

applications featuring Kubernetes in production was PokemonGo. At

the time, it was one of the largest Kubernetes deployments on Google

Container Engine. They released a case study explaining how Kubernetes

helped the company scale when the traffic on the application was way

beyond expectations.

Later, in 2017 and early 2018, cloud players like AWS and DigitalOcean

made room for Kubernetes on their stacks. Kubernetes today is a

portable, extensible, open source platform for managing containerized

applications. It has micro components taking care of the basic features of

the orchestrator. Let’s start by taking a look at what K8s, an abbreviation for

the word Kubernetes, consists of.

 K8s Architecture/Components
Kubernetes follows a client-server architecture where the master is

installed on a machine and nodes are distributed across multiple

machines accessible via the master. Figure 1-1 shows the building blocks

Chapter 1 QuiCk tour of kubernetes

3

of the Kubernetes architecture. The K8s master and K8s workers are part

of the Kubernetes control plane, whereas the container registry may lie

outside of the control plane.

Figure 1-1. Kubernetes architecture overview

 Kubernetes Master
The Kubernetes master is the main node responsible for managing the

entire cluster. The orchestration of the K8s workers is handled by this node.

This node is replicable to avoid any single point of failure. The control

panel accesses the master only to make modifications to the cluster. The

master comprises four major components.

• API server: This is the front end of a Kubernetes

control plane. It maintains RESTful web services to

define and configure a Kubernetes cluster.

Chapter 1 QuiCk tour of kubernetes

4

• etcd: This is a highly available component maintaining

a record of all the objects running in the system. Any

changes in the configuration of Kubernetes are stored

here, and the changes are allowed to be watched for

immediate action.

• Scheduler: This schedules workloads on Kubernetes

workers in the form of pods. We will cover pods in the

next section. The scheduler reads through the resource

requirements of each pod and distributes the pods

throughout the cluster based on availability. By default,

it also tries to distribute pod replicas to different nodes

to maintain high availability.

• Controller manager: This runs controllers in the

background that are responsible for different important

tasks in the cluster. Controllers keep watch on etcd

for configuration changes and take the cluster to the

desired state; on the other end, the control loops watch

for the changes in the cluster and work to maintain

the desired state as per etcd. Let’s visit a few controller

examples to understand what controllers do in the

cluster.

• Node controller: This monitors the nodes in the

cluster and responds when a node comes up or

goes down. This is important so the scheduler

can align pods per the availability of a node and

maintain state per etcd.

• Endpoint controller: This joins services and pods

by creating endpoint records in the API, and it

alters the DNS configuration to return an address

pointing to one of the pods running the service.

Chapter 1 QuiCk tour of kubernetes

5

• Replication controller: Replication is a general

practice to maintain the high availability of an

application. The replication controller makes

sure the desired number of pod replicas/copies is

running in the cluster.

We will be looking at these controllers in action later in this chapter. In

addition, there is a cloud controller manager, which allows cloud providers

to integrate with Kubernetes easily by using plugins.

 Kubernetes Workers
It might be clear by now that the actual application runs on worker nodes.

Earlier these were also referred to as minions. The terms minions and

nodes are still used interchangeably in some documentation. Each node

has three major components.

• Kubelet: Kubelet is the primary node agent running on

each node and monitoring that the containers on the

node are running and healthy. Kubelet takes a set of

PodSpecs, which is a YAML or JSON object describing

a pod, and monitors the containers described in those

specs only. Note that there can be other containers,

other than the containers listed in PodSpecs, running on

the node, but Kubelet does not monitor these containers.

• Kube-proxy: The Kubernetes master scheduler usually

runs multiple services on a node. Kube-proxy creates a

network proxy and load balancer for these services. It

can do simple TCP, UDP, and SCTP stream forwarding

or round-robin TCP, UDP, and SCTP forwarding across

a set of back ends. It also allows, if configured, nodes to

be exposed to the Internet.

Chapter 1 QuiCk tour of kubernetes

6

• Pods: A pod is the smallest unit of the Kubernetes

object model that can be created, deployed, or

destroyed. A Kubernetes pod usually has a single

container but is allowed to contain a group of tightly

coupled containers as well. A pod represents a running

process on a cluster. It can be used in two broad ways.

 a. Single-container pod: This was the most

common Kubernetes use case, also called one

container per pod. The pod wraps the container

and provides an abstract layer to Kubernetes to

access or modify the container.

 b. Multiple-container pod: There are scenarios

when an application requires multiple tightly

coupled containers that are sharing resources.

In such scenarios, a pod builds a wrapper on

these containers and treats them as a single

service. An example would be one container

serving REST APIs to end users, with a sidecar

counting the number of requests implementing

the API limitation. The containers inside a pod

share the same IP that was given to the pod and

share the same set of storage. In the following

chapters, we will be looking at sidecars in action

with Istio.

Containers, as stated earlier, deployed inside each

pod run the service. The container packaging and

storage depend on the container runtime and

registry.

Chapter 1 QuiCk tour of kubernetes

7

• Container runtime: To understand this, let’s try to

understand what a container is. A container is a unit

of code packaged with its dependencies that creates

an artifact that can run quickly on different computing

environments. The container runtime lets someone

run containers by providing a basic set of resources

and libraries, which combined with the container’s

package boots up an application. An application in

a container has the liberty of its own environment

including storage, network, etc., with the restriction of

how much of each resource can be used. The container

runtime also manages container images on a node.

There are multiple container runtimes available, so let’s

go through a couple of them.

 a. Rocket: Rocket, also referred to as rkt, is a

container runtime provided by coreOS. Rkt uses

a few similar terms as Kubernetes. A pod is the

core execution unit of Rkt. Please note, though,

that this pod is different from a Kubernetes pod.

Rocket allows a container configuration at a

more granular level; in other words, one may

set the memory limit of an application running

inside the pod. Rocket follows the app container

specification in its containers but supports

Docker images as well. The main difference

brought in by Rocket is that it runs in daemon-

less mode; the containers launched don’t run

under the umbrella of a daemon but are given

separate process IDs on the base machine. This

allows it to run multiple processes inside the

same container and restart any of them without

killing the parent container.

Chapter 1 QuiCk tour of kubernetes

8

 b. Docker: Docker is one of the most popular

container runtimes these days. As stated earlier,

its solution to provide lightweight containers

was the reason orchestration was required,

which led to the need for Kubernetes. The

Docker community is vast because one may

easily get any common package available as a

Docker image in the registry.

Which container runtime to choose is a matter

of personal preference and also depends on how

complex your codebase is and the kind of resources

it depends on. Using Rocket, you may be able to

pass on file descriptors from one process to another

with the file descriptions still listening. Though

these kinds of scenarios are not common, they

are important ones to consider before choosing a

container runtime. In this book, we will be using

Docker as our container runtime.

• Container registry: Each container generation

requires code development, adding libraries from

different package managers and creating the basic

environment to run the code. A container can be built

every time when deploying, but getting the latest code,

getting new libraries, and preparing the environment

every time is time-consuming. To simplify this,

developers store their once-created container and

use it whenever required. The container registry is the

place that allows developers to save their container

images and use them as and when required. Individual

Chapter 1 QuiCk tour of kubernetes

9

providers such as Azure, Docker, and Google have their

own container registries that host images in a highly

available environment with access-level restrictions.

Kubernetes uses the Container Runtime Interface (CRI) to interact

with the container runtime. Since Kubernetes 1.5, container runtimes are

expected to implement CRI, which acts as a bridge between Kubernetes

Kubelet and the container runtime. CRI provides an abstraction between

Kubernetes and the container runtimes and enables Kubernetes to run

independent of the container runtimes.

Now that you understand the architecture of Kubernetes, let’s try to

understand a few important terminologies used in Kubernetes.

 Kubernetes Terminology
There are a few terms that we may be using frequently throughout this

book. Let’s go through a few of them to avoid any confusion in future

references.

• Deployment: A deployment is an abstract unit built on

pods. To deploy an application or a microservice, one

needs to run it inside a pod. To do so, a deployment

configuration is created where one states what needs

to be deployed along with the number of replicas of

the application. On submitting this configuration

to Kubernetes, a set of pods is spawned by the

deployment controller deploying the application with

the configured replicas.

• Image: An image is the software/container that will be

deployed on the cluster. In this book, we will be using

image interchangeably with Docker image.

Chapter 1 QuiCk tour of kubernetes

10

• Kubectl: This is a CLI to interact with a Kubernetes

cluster. We will be using this to deploy clusters, check

the status of them, and update our clusters.

• Namespace: As the name suggests, this is used to

group multiple virtual clusters on the same Kubernetes

instance or organize the resources within the same

cluster. It allows each resource to be identified

uniquely.

• Replicaset: This is the same as a replication controller

with an additional support of a set-based selector

rather than an equality-based selector. This will be

clearer in the example later in this chapter.

• Service: This is a description of how an application

deployed on one or multiple pods can be accessed

internally or externally. Since pods are not permanent

and Kubernetes may relocate pods from time to

time based on availability, relying on direct access to

pods is not recommended. The service discovers the

application running in pods and provides access to

them via ports, load balancers, or other mechanisms.

• StatefulSet: This is similar to a deployment managing

the ordering and uniqueness of the pods. In other

words, if a pod dies, a new pod is spawned by the

StatefulSet controller with the same identity and

resources as the dead pod.

These are not all the terms used in this book, but the list should be

sufficient to get us started on creating our first Kubernetes cluster. Before

we do that, we need to set up the Kubernetes environment.

Chapter 1 QuiCk tour of kubernetes

11

 Set Up a Kubernetes Cluster
As mentioned, Minikube is a tool to run a Kubernetes cluster locally. Since

it’s local, it provides a single-node Kubernetes cluster. Minikube starts a

server of its own on a hypervisor. For simplicity, we will use VirtualBox as a

hypervisor, which is available for Windows, Linux, and macOS.

 Set Up VirtualBox
Before starting, make sure AMD-v or VT-x virtualization is enabled in your

system BIOS. This allows you to run VirtualBox instances on the machine.

Download and install VirtualBox by following the steps at https://www.

virtualbox.org/wiki/Downloads. Once the installation is complete, let’s

install Kubectl.

 Install Kubectl
Kubectl, as stated earlier, is the CLI to interact with a Kubernetes cluster.

Setting up Kubectl across different platforms is a bit different on each one.

Let’s go through them one by one.

 Linux Installation

The latest release of Kubectl can be downloaded with this:

curl -LO https://storage.googleapis.com/kubernetes-release/

release/$(curl -s https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/linux/amd64/kubectl

Make the downloaded file executable and move it to your PATH.

chmod +x ./kubectl

sudo mv ./kubectl /usr/local/bin/kubectl

Chapter 1 QuiCk tour of kubernetes

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

12

 macOS Installation

Installation on macOS is similar to the Linux setup.

curl -LO https://storage.googleapis.com/kubernetes-release/

release/$(curl -s https://storage.googleapis.com/kubernetes-

release/release/stable.txt)/bin/darwin/amd64/kubectl

Make the downloaded file executable and move it to your PATH.

chmod +x ./kubectl

sudo mv ./kubectl /usr/local/bin/kubectl

 Windows Installation

Download the latest release using the following:

curl -LO https://storage.googleapis.com/kubernetes-release/

release/v1.14.0/bin/windows/amd64/kubectl.exe

Add the binary EXE file to the PATH in Windows.

 Set Up Minikube
Installing Minikube requires different steps on different OSs.

 Linux Installation

The latest release of Kubectl can be downloaded using this:

curl -Lo minikube https://storage.googleapis.com/minikube/

releases/latest/minikube-linux-amd64

Make the downloaded file executable and move it to your PATH.

chmod +x minikube

sudo mv ./minikube /usr/local/bin/minikube

Chapter 1 QuiCk tour of kubernetes

13

 macOS Installation

Installation on macOS is similar to the Linux setup.

curl -Lo minikube https://storage.googleapis.com/minikube/

releases/latest/minikube-darwin-amd64

Make the downloaded file executable and move it to your PATH.

chmod +x minikube

sudo mv ./minikube /usr/local/bin/minikube

 Windows Installation

For Windows, it’s better to use a package manager to take care of the

installation overhead. A popular package manager for Windows is

Chocolatey (https://chocolatey.org). It allows quick installation of

Minikube. After Chocolatey is installed, run choco as an administrator.

choco install minikube kubernetes-cli

That’s it.

 Set Up Docker
Installing Docker on your local system allows Minikube to access images

from your local system. Similar to Minikube, the Docker setup is a little

different for different OSs.

 Linux Installation

We will install Docker using a Ubuntu repository. For other Linux

installations, please visit https://docs.docker.com/install/linux/

docker-ce/centos/.

 1. Update the local repository.

sudo apt-get update

Chapter 1 QuiCk tour of kubernetes

https://chocolatey.org
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/

14

 2. Install the dependency packages.

> sudo apt-get install \

 apt-transport-https \

 ca-certificates \

 curl \

 gnupg-agent \

 software-properties-common

 3. Add Docker’s GPG key.

> curl -fsSL https://download.docker.com/linux/ubuntu/

gpg | sudo apt-key add -

 4. Add the repository to apt.

> sudo add-apt-repository \

 "deb [arch=amd64] https://download.docker.com/linux/

ubuntu \

 $(lsb_release -cs) \

 stable"

 5. Update the local repository to pull the Docker

package.

> sudo apt-get update

 6. Install Docker using the following command:

> sudo apt-get update

 7. Install docker-ce and cli.

> sudo apt-get install docker-ce docker-ce-cli

containerd.io

Chapter 1 QuiCk tour of kubernetes

15

 macOS Installation

The simplest way to install on macOS is by downloading and installing the

DMG file, available here:

https://hub.docker.com/editions/community/docker-ce-desktop-mac

 Windows Installation

Similar to macOS, Docker provides an installer, available here:

https://hub.docker.com/editions/community/docker-ce-desktop-

windows

We will be developing and deploying a few applications in Java and

Python. Therefore, we will be needing the SDK for both languages.

 Set Up Python
The Python setup can be easily done by following the steps at https://

www.python.org/downloads/.

 Set Up Java
Similar to Python, the Java setup can be easily done by following the steps

at https://www.oracle.com/technetwork/java/javase/downloads/

jdk8-downloads-2133151.html.

 Our First Kubernetes Cluster
Once the setup is done, let’s start our first Kubernetes server. For

simplicity, we will be showing the output from the Ubuntu terminal.

Chapter 1 QuiCk tour of kubernetes

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

16

> minikube start

Starting local Kubernetes v1.13.2 cluster...

Starting VM...

Getting VM IP address...

Moving files into cluster...

Setting up certs...

Connecting to cluster...

Setting up kubeconfig...

Stopping extra container runtimes...

Starting cluster components...

Verifying kubelet health ...

Verifying apiserver health ...

Kubectl is now configured to use the cluster.

Loading cached images from config file.

Everything looks great. Please enjoy minikube!

This will spawn a new virtual machine on VirtualBox with a few

network settings, allowing it to be accessible by the base system. The

Kubernetes cluster will be limited to this virtual machine. At any time

during development and deployment, if the cluster seems to be slow or

your local system starts consuming more than the expected resources, you

can shut down the VM using this:

> minikube stop

Further, you can tweak the resources used by this virtual machine from

the VirtualBox UI. Please note for the scope of this book, it is advisable to allow

this virtual machine to use a minimum of two CPU cores and 4 GB of RAM.

You can look at the brief of Kubernetes cluster by running the following

command:

> minikube dashboard

Enabling dashboard ...

Verifying dashboard health ...

Chapter 1 QuiCk tour of kubernetes

17

Launching proxy ...

Verifying proxy health ...

Opening http://127.0.0.1:58969/api/v1/namespaces/kube-system/

services/http:kubernetes-dashboard:/proxy/ in your default

browser...

Figure 1-2 shows the Minikube dashboard. If you are able to see the

dashboard, your cluster is up and running and ready to deploy an application.

 Run an Application on Kubernetes
We have our Kubernetes cluster ready, so let’s try to deploy an application

on it and understand how it happens.

 Application Details
Let’s start by creating a simple web application in Python using Flask. pip

is a package manager for Python. It can be installed with this:

> curl https://bootstrap.pypa.io/get-pip.py | python

Figure 1-2. Minikube dashboard

Chapter 1 QuiCk tour of kubernetes

18

Once pip is installed, Flask can be installed with this:

> pip install flask

Let’s create a project called WebApp with app.py inside to handle web

requests. The app structure should look like this:

.

|____WebApp

| |____app.py

| |____requirement.txt

| |____Dockerfile

Edit app.py to create a simple listener. Refer to Listing 1-1 for the file.

Listing 1-1. Web Requests Handler: app.py

from flask import Flask

app = Flask(__name__)

@app.route("/")

def main():

 return "Welcome!"

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Let’s create a Dockerfile to containerize the application. Listing 1-2

explains the container creation.

Listing 1-2. Dockerfile to Containerize the Application

FROM ubuntu:18.04

RUN apt-get update -y && apt-get install -y python-pip python- dev

COPY ./requirement.txt /app/requirement.txt

WORKDIR /app

Chapter 1 QuiCk tour of kubernetes

19

RUN pip install -r requirement.txt

COPY . /app

ENTRYPOINT ["python"]

CMD ["app.py"]

The Docker environment and images stored are different for Minikube.

Instead of storing images to our local environment, sending them to the

registry, and bringing them back on Minikube, we will be storing the

container image directly on the Minikube instance.

> eval $(minikube docker-env)

Build the WebApp application container with the name web-app and

assign version 1.0.

> docker build -t web-app:1.0 .

Figure 1-3 shows the new container image created.

 Deploy the Application
Let’s create our first deployment configuration. This tells Kubernetes

to create a container for our application. Listing 1-3 shows the webapp-

deployment.yaml file for our webapp.

Figure 1-3. Images available on Minikube server after creation of
web-app

Chapter 1 QuiCk tour of kubernetes

20

Listing 1-3. webapp-deployment.yaml File for Web App

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: webapp-deployment

 labels:

 app: webapp

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:1.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

Let’s try to understand the YAML file.

• apiVersion: This is the API version used to create this

object.

• kind: This explains that we are creating a Kubernetes

deployment.

Chapter 1 QuiCk tour of kubernetes

21

• metadata: This specifies the name of deployment (a

must-have key) and optional labels one may want to

put on the deployment.

• replicas: This specifies the number of pods to be

created for this deployment.

• selector: This is how the deployment manages to

locate the pods.

• template.metadata: The pods created from this

deployment will be named from these labels.

• containers: This specifies the containers that need to

be deployed in this pod. In our case, we are deploying

one container with the image we created in the

previous section. Since we made sure in the previous

section that the image is available to the Kubernetes

cluster, we haven’t uploaded the image to any registry,

and therefore imagePullPolicy is set to Never.

• ports: This is the port of the container exposed to

the cluster.

Let’s deploy the application on the cluster using this:

> kubectl apply -f webapp-deployment.yaml

The previous command applies the configuration defined in YAML

on the Kubernetes cluster. In other words, it creates a deployment named

webapp-deployment. Figure 1-4 shows all the deployments on the cluster

with their status and the number of running and active replicas.

Figure 1-4. Deployments running on the Kubernetes cluster

Chapter 1 QuiCk tour of kubernetes

22

The figure shows there is a pod running the WebApp application. The

deployment spawns a ReplicaSet, which tries to maintain the state of

having one pod running at all times. Figure 1-5 and Figure 1-6 show the

running ReplicaSets and pods on the cluster.

The pod details include an IP address. The pod is accessible to the

internal network using this IP address, but as stated earlier, accessing

pods directly via IP addresses is discouraged since pods are expendables

and a new pod might have a different IP address. It is clear from the IP

address that though the pod is accessible through this IP address inside

the Kubernetes network, one may not be able to access it from the host

machine. Kubectl provides a way to use a proxy for the pod and access the

application from the host machine.

> kubectl port-forward webapp-deployment-7946f7db77-gtsbg

5000:5000

webapp-deployment-7946f7db77-gtsbg is our pod name (refer

to Figure 1-6), and 5000 is the port exposed on the pod to access the

application. Figure 1-7 shows the output of port forwarding.

Figure 1-5. Replicaset started from deployment

Figure 1-6. Pods running on the cluster

Chapter 1 QuiCk tour of kubernetes

23

Now the application is accessible from the host machine. Figure 1-8

shows the application running on the host machine browser.

The application logs can be accessed from the pod using this:

> kubectl log -f webapp-deployment-7946f7db77-gtsbg 5000:5000

Figure 1-9 shows the output of the pod logs.

Figure 1-7. Port forwarding the host port to the pod port

Figure 1-8. Application port forwarded to the host machine and
accessible in the browser

Figure 1-9. Pod logs visible via log -f

Chapter 1 QuiCk tour of kubernetes

24

 Kubernetes Service
Kubernetes pods are expendable. ReplicaSet creates and destroys pods

in the process of scaling up and down; therefore, accessing the pods

via an IP address is not a reliable solution. Then how do microservices

inside Kubernetes communicate with other microservices? The answer is

Kubernetes services. Let’s try to understand the concept of services.

Kubernetes services provide a virtual IP-based bridge to access the

pods. One may access a single pod or may refer to a group of pods at the

same time. There can be two types of interactions.

• Pods accessing services

• Services exposed publicly

Before explaining this, let’s expose our web application via a service.

Listing 1-4 shows a simple service with the selector pointing to our webapp.

Listing 1-4. webapp-service.yaml File for Our Web App

apiVersion: v1

kind: Service

metadata:

 name: webservice

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 5000

Chapter 1 QuiCk tour of kubernetes

25

The service is named webservice and points to the deployments with

a selector as app:webapp. The service is exposed on port 80 and proxies the

request to port 5000 of the result pods. Apply the service using this:

> kubectl apply -f webapp-service.yaml

Verify that the service is created successfully using this:

> kubectl describe service webservice

Figure 1-10 shows a description of the created service.

The service is assigned a cluster IP address of 10.107.243.100. Any

microservice inside the cluster will be able to access the service using this

IP address via port 80.

Now, let’s try to understand the two types of service interactions

possible in a Kubernetes cluster.

 Pods Accessing Services

Any microservices architecture requires a service to access multiple

microservices within the private network. The access to other services

is possible either through their IP address or through a DNS request.

Kubernetes supports both of them.

Figure 1-10. Service created pointing to pods with selector
app:webapp

Chapter 1 QuiCk tour of kubernetes

26

• Environment variables: When a pod is launched in a node,

Kubectl declares all the running services to be accessed

as environment variables for the pod. But this forces a

sequence to be followed; if new service is defined after the

first service is booted, the first one doesn’t get access to the

new service. Try to log in to the Docker container of the

webapp pod and check the environment variables. The new

service is not visible. If the developer deletes the existing

deployment and re-creates the deployment, the service is

visible in the environment variables. Figure 1-11 shows the

environment variables for the second case.

Figure 1-11. Environment variables with the service endpoints defined

Chapter 1 QuiCk tour of kubernetes

27

• DNS: Though this is not a default setup, it is an

optional but recommended add-on for Kubernetes.

As the name says, each service registers a DNS record

for itself as soon as it is created. The DNS record

follows the pattern <service-name>.<namespace>.

Any pod in the same namespace can access the

service directly via <service-name>, whereas pods

outside the namespace must include .<namespace>

to access the service.

 Services Exposed Publicly

There are multiple ways to expose a service to external world. Kubernetes

provides multiple ways of achieving this.

ClusterIP

This allows a service to be exposed via a cluster’s internal IP. As shown

earlier, a cluster’s internal IP address is exposed and can be accessed by

the pods inside the cluster.

NodePort

This allows a service to be exposed at the node IP address on a specific

port. This allows the service to be accessed via the <NodeIP>:<PORT>

address. Internally Kubernetes creates a ClusterIP service that acts as a

connection between the node IP and the actual service. The port number

can be between 30000 and 32767. Each node proxies the selected port to

the service pod.

Chapter 1 QuiCk tour of kubernetes

28

LoadBalancer

This creates a public IP on top of NodePort. So, the service is accessible

via a public IP, which is routed to NodePort and then is further routed to

ClusterIP. Its implementation varies between cloud providers. A small

addition to the configuration creates a LoadBalancer type. Listing 1-5

shows the addition of a LoadBalancer type in the service.

Listing 1-5. webapp-service-loadbalancer.yaml File for Our

Web App

apiVersion: v1

kind: Service

metadata:

 name: webservice

spec:

 type: LoadBalancer

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 5000

Once a service is created using this configuration, a developer can

check the external IP address of the service using this:

> kubectl get service webservice

Figure 1-12 shows our example. We do not get the external IP address

since we are running our application on Minikube. On the cloud, the

external IP is populated with a value.

Chapter 1 QuiCk tour of kubernetes

29

ExternalName

This simply maps the service to an address using a CNAME record. These

are typically used when using an external service from within a cluster and

abstracting out the actual link of the external service. Listing 1-6 shows a

simple service with the type ExternalName.

Listing 1-6. database-external-name.yaml Showing ExternalName

Configuration

apiVersion: v1

kind: Service

metadata:

 name: db1

spec:

 type: ExternalName

 externalName: mysql01.database.test.com

When internal pods look for the service db1, they receive a CNAME

record of mysql01.database.text.com. There is no forwarding involved;

only a single redirection happens at the DNS level.

ExternalName also allows a developer to add a custom IP address to

a service through which the service can be accessed by clients. The IP

assignment is the sole responsibility of the cluster manager; it doesn’t

come from Kubernetes. Listing 1-7 shows an example of an external IP

assignment to a service.

Figure 1-12. LoadBalancer type service deployed

Chapter 1 QuiCk tour of kubernetes

30

Listing 1-7. External IP Assigned to a Service

apiVersion: v1

kind: Service

metadata:

 name: externalIpAssignedService

spec:

 selector:

 app: externalIpService

 ports:

 - name: http

 protocol: TCP

 port: 80

 targetPort: 9000

 externalIPs:

 - 70.34.1.23

Kubernetes, as defined earlier, is a self-healing platform. Let’s try to

play around a bit with the cluster and see the role of Kubernetes services

in it.

 Kubernetes Is Self-Healing
In any application, it’s difficult to assure 100 percent uptime or availability

of a single node. Kubernetes provides a means to create replicas of a

service and also ensures the number of replicas are intact. Let’s modify our

deployment and increase the number of replicas.

> kubectl scale --replicas=2 deployment webapp-deployment

> kubectl get deployments

Figure 1-13 shows the result of the deployment

Chapter 1 QuiCk tour of kubernetes

31

> kubectl get pods

Figure 1-14 shows the running pods.

If one tries to kill any of the pods, the replication controller tries to

reinstate the state and spawn a new pod. Let’s try killing one of the pods to

see the state of the application. Figure 1-15 shows the deletion of a pod.

Figure 1-16 shows how a new pod is autospawned to match the

replication number.

Figure 1-13. Deployment State After Increasing the Replicas

Figure 1-14. Deployment state after increasing the replicas

Figure 1-15. A pod is forcefully deleted from the cluster

Figure 1-16. A new pod is spawned while the deleted pod is
terminating

Chapter 1 QuiCk tour of kubernetes

32

Through this, Kubernetes tries to keep the service available at all times.

 Add a Microservice
Now you have seen how to deploy and run a microservice on Kubernetes,

and you have seen the theory of how microservices interact with each

other. Let’s create a new microservice that consumes a response from the

webapp and renders it to the UI. Let’s call this app istio-frontend. We

have already created a Docker file.

 Application Setup
istio-frontend is a Java application that makes a request to the webapp

service and populates its web page with the received data. In case the

data is not received or the web-app service is not available, it populates

ERROR RECEIVED as a response. We have created a Docker file with the

tag frontend-app:1.0. Let’s follow the same approach as the previous

application and create a deployment and service for the application.

Listing 1-8 and Listing 1-9 show the deployment and service file.

Listing 1-8. frontend-deployment.yaml Configuration

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-deployment

 labels:

 app: frontend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: frontend

Chapter 1 QuiCk tour of kubernetes

33

 template:

 metadata:

 labels:

 app: frontend

 spec:

 containers:

 - name: frontend

 image: frontend:1.0

 imagePullPolicy: Never

 ports:

 - containerPort: 8080

Listing 1-9. frontend-service.yaml Configuration

apiVersion: v1

kind: Service

metadata:

 name: frontendservice

spec:

 selector:

 app: frontend

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

Figure 1-17 shows the new services available. Let’s try to proxy to the

new service to get the app running.

Figure 1-17. New front-end service available

Chapter 1 QuiCk tour of kubernetes

34

Figure 1-18 shows the output page.

Reducing the replica count to 0 for the webapp service gives the state

shown in Figure 1-19 and Figure 1-20.

Figure 1-18. Output of proxy port to the front-end pod

Figure 1-19. Replicas of webapp reduced to 0

Figure 1-20. Front end shows error if unable to communicate with
back-end service

 Release and Deployment
In a large organization, any application going to production requires

regular development and maintenance. With new methodologies like agile

firmly in place, release frequency has increased to multiple releases a day

Chapter 1 QuiCk tour of kubernetes

35

and so have release rollbacks. The traditional process of shutting down an

application, redeploying, and restarting results in downtime. In the world

of 99.99 percent availability, the scope of downtime means one minute

or less in a seven-day period, so a single release a week violates the agile

methodology.

To minimize downtime, multiple deployment techniques are used,

such as blue-green, canary, and rolling deployments. We will cover these

techniques in later chapters. Kubernetes by default follows a rolling

deployment. In other words, it creates two identical environments, and

once the new environment is up, traffic is routed to the new environment,

and later the old environment is terminated.

Let’s upgrade our webapp to 2.0 and see the deployment on

Kubernetes in action. Listing 1-10 shows the changes in the file. We will

simply add time to the welcome message.

Listing 1-10. Updated Web Requests Handler: app.py

from flask import Flask

import datetime

app = Flask(__name__)

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 return "Welcome user! current time is " + str(currentDT)

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Create a new container by following the same process as stated earlier.

Listing 1-11 shows the modified deployment file with the upgraded

container details.

Chapter 1 QuiCk tour of kubernetes

36

Listing 1-11. Updated webapp-deployment-v2.yaml for webapp 2.0

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment

 labels:

 app: webapp

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:2.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

Let’s deploy the application on a cluster using this:

> kubectl apply -f webapp-deployment-v2.yaml

A new pod is spawned, and the earlier one is terminated once the

new pod is ready. Figure 1-21 shows the output of the newly deployed

application.

Chapter 1 QuiCk tour of kubernetes

37

What has happened in the background is a new environment with

a single machine and version 2.0 is spawned while the webapp service

was still pointing to the old environment. Once the new spawned pods

returned the running status, the webapp service pointed the traffic to the

new environment, and the earlier pods were terminated.

Here’s the catch: what happens when a new pod is spawned but the

application inside is still deploying and not yet up? The pod at this point

returns a running status, but the application is still down, and at the same

time the service starts directing traffic to the new environment. This adds

downtime to the service until the application is up and running. To solve

this issue, Kubernetes uses a readiness probe.

 Readiness Probes
Updating deployments with new ones can result in downtime as old

pods are replaced by new ones. If for some reason the new deployment is

misconfigured or has some error, the downtime continues until the error

is detected. When a readiness probe is used, the service doesn’t forward

traffic to new pods until the probe is successful. It also ensures that the old

pods are not terminated until the new deployment pods are ready. This

ensures that the deployment with the error doesn’t receive any traffic at all.

To incorporate a readiness probe, we need to add a health link to our

webapp. Listing 1-12 shows the change in the app.py code. A /health link

is added, which will be available once the app is up and running. A delay of

60 seconds has been added in the code, which will help demonstrate this

behavior of Kubernates.

Figure 1-21. Front end showing the new response from the back-end
service

Chapter 1 QuiCk tour of kubernetes

38

Listing 1-12. Addition of Health Link to app.py

from flask import Flask

import datetime

import time

time.sleep(60)

app = Flask(__name__)

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 return "Welcome user! current time in v3 is " + str(currentDT)

@app.route("/health")

def health():

 return "OK"

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Create a new container with the tag web-app:3.0 and add it to the

deployment file, as shown in Listing 1-13.

Listing 1-13. Updated webapp-deployment-v3.yaml for web-app 3.0

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment

 labels:

 app: webapp

Chapter 1 QuiCk tour of kubernetes

39

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:3.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

 readinessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 40

The readiness probe initializes with an initial delay of 40 seconds.

If one already knows that an application deployment takes some time,

this can be stated in initialDelaySeconds to avoid unnecessary checks

on the application. After the initial delay, Kubelet does regular checks

on the /health link, and when the link is up, the pod is moved to a

ready state to accept traffic. Figure 1-22 shows the status of deployment

at different times.

Chapter 1 QuiCk tour of kubernetes

40

Let’s see what happened in the background.

 1. Checked the available deployments. A frontend-

deployment and a webapp-deployment are working,

each having one available pod in a ready state.

 2. Applied the new version 3 configuration.

 3. The ready pods number remains the same.

 4. On getting the pod’s details, we can see two webapp-

deployment pods. The old one is ready, and the

latest one is running but still not ready to accept

traffic.

 5. At 40 seconds, no request to the readiness probe is

triggered by Kubernetes; therefore, the pod remains

in a ready-pending state. By default the health check

is done every 10 seconds.

Figure 1-22. Deployment with readiness state checks

Chapter 1 QuiCk tour of kubernetes

41

 6. After 60 seconds of deployment, the new pod

upgrades to a ready state, and the old pod is moved

to a terminating state.

This ensures that until the new deployment becomes ready, the

earlier deployment is not scrapped, and the traffic is routed to the older

one. This is helpful when an application is being upgraded or when a

new application is deployed. But this isn’t useful after the deployment

is complete and the old deployment pods are terminated. If after that

the deployment pods fail for known/unknown reasons, the readiness

probe fails, and the traffic is not sent to the pod. This, on one hand,

ensures that the application is not down, but the number of pods

available to serve the traffic goes down. A corner case would be if the

same issue happens to all the pods in the deployment; your complete

application may go down.

There is no ideal way to deal with such issues, but Kubernetes provides

a common solution of restarting the application if the application becomes

irresponsive. The liveness probe, similar to the readiness probe, keeps a

check on the application, and in case the application stops responding, it

restarts the pod.

Let’s make a small change in our application to kill the application in

60 seconds and see the behavior of the liveness probe. Listing 1-14 shows

the change.

Listing 1-14. Autostopping the Application After Some Time in

app.py

from flask import Flask

import datetime

import time

import threading

import os

Chapter 1 QuiCk tour of kubernetes

42

time.sleep(60)

app = Flask(__name__)

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 return "Welcome user! current time is " + str(currentDT)

@app.route("/health")

def health():

 return "OK"

def exit_after():

 time.sleep(60)

 os._exit(1)

exit_thread = threading.Thread(target=exit_after)

exit_thread.start()

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Create a new container with the tag web-app:4.0 and add it to

deployment file, as shown in Listing 1-15.

Listing 1-15. Updated webapp-deployment-v4.yaml for web-app 4.0

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment

 labels:

 app: webapp

Chapter 1 QuiCk tour of kubernetes

43

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:4.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

 readinessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 40

 livenessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 120

The liveness probe initializes with a delay of 120 seconds. Since

we already know the application bootup time takes 60 seconds, it’s

no use to restart the app before it even boots up. The same process as

redinessProbe is followed to check the health of the application. Let’s see

the changes in action in Figure 1-23.

Chapter 1 QuiCk tour of kubernetes

44

Assuming our application fails at some point after the deployment, this

is how Kubernetes tries to recover it:

 1. When the application goes down, the readiness

probe fails.

 2. Kubernetes stops the traffic on that pod and

restrains itself to the rest of the replicas. In our case,

since we have only one replica, the application is

bound to have downtime.

 3. The liveness probe goes down since it’s on the same

health link.

 4. Kubernetes tries to restart the pod and restore the

application state.

Figure 1-23. Deployment with readiness and liveliness state checks

Chapter 1 QuiCk tour of kubernetes

45

 5. After restarting, the application comes up, and the

readiness probe is successful.

 6. Traffic is restored to this pod.

 Summary
In this chapter, we went through a brief history of Kubernetes. You now

understand its basic components and learned the terminology used in

it. We set up Kubernetes locally with Minikube and the Docker container

runtime. We also created an example application and showed how

application deployment happens in a cluster and how the Kubernetes

application heals itself.

In the next chapter, we will go through the microservice architecture,

its challenges, and how they can be solved using a service mesh.

Chapter 1 QuiCk tour of kubernetes

47© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_2

CHAPTER 2

Introduction to the
Service Mesh
In the previous chapter, we took a quick tour of Kubernetes, the container

orchestration engine. Leveraging such an infrastructure effectively requires

the adoption of a microservice-based application architecture. But this

type of architecture imposes a new set of development and operational

challenges. In this chapter, we will discuss how a service mesh helps to

mitigate these challenges.

 Microservice Architecture
Monolith architectures have been the development model traditionally

used. In a monolith architecture, the complete software is a unified,

self-contained application. The application has discrete subsystems/

capabilities that are tightly coupled with the rest of the application.

Changes to one part of the application require a complete release of the

software. See Figure 2-1.

48

An example of such a system is a trading application that takes care of

the following functions:

• A trade capture system using a desktop client. These

clients are also known as application views. There can

be a web view enabling traders to use a browser-based

user interface. The system is responsible for running a

few validations and then booking a trade in the system.

These validation are expressed and executed using a

rule engine.

• A mobile app and a browser-based trade blotter.

The blotters shows the current set of booked trades.

Additionally, the application can have a mobile view

that can be used to view the available reports.

Figure 2-1. Monolith architecture

Chapter 2 IntroduCtIon to the ServICe MeSh

49

• Trade risk analytics reports shown in a browser. The

risk subsystem shows the near-real-time risk exposure

after a trade booking.

• A book transfer system used to transfer money from

one account to another account in the system.

• An asset allocation system used to allocate money

across different investment instruments currently

available.

• An instrument and market golden source (known

as reference data) used to define which financial

instruments are used by the application. This helps in

directly selecting an instrument/market with an alias

rather providing complete details every time.

Besides this set of major functions, there are other features such as risk

alerts, book validations, and so on. All this functionality is compiled and

deployed as a single software application.

A monolith application starts small. Everything is quick to develop in

the early stages because the complete application has high cohesion. The

complete application is easier to deploy and test because it is one single unit.

But as the application grows organically, it becomes harder to maintain

and operate. Over time such an application is usually maintained by

multiple development teams. These teams are responsible for each of the

subsystems of the application. These subsystems get highly coupled, and

over a period of time there is an interdependence of development teams

for making new features available. But because of a single unit, each team

faces the following set of issues:

• Quick feature roll-out: The teams are dependent, so

they can rarely release features independently. Usually

such application releases are one big coordinated effort,

which can be done only a couple of times in a quarter.

Chapter 2 IntroduCtIon to the ServICe MeSh

50

• Deprecated stack: Since the technologies are widely

used, a team can rarely independently change/update

a subsystem. It often requires a complete rewrite of

multiple subsystems, which is risky to the business.

• Steep learning curve: Since the complete system

is tightly coupled, none of the developers can work

without understanding other subsystems. This leads

to a steep learning curve for the new developers.

Often such applications have a large codebase, and a

developer is interested in only a particular subset. This

causes an overall slow development cycle.

• Scaling issues: A monolith application can be scaled

only vertically. If there is load on a particular subsystem

by a large number of requests, it is impossible to deploy

more units of the subsystem or scale the particular

subsystem only. It is an all-or-none scenario with a

monolith application, and this is often a very costly affair.

Often these challenges require organizations to look at other

paradigms. A microservice architecture is an alternative to a monolith

architecture. It often requires breaking the application into various

independent, loosely coupled units. The aim is to have independent

business services with well-defined interfaces and operations. Each of

these services has its own independent context. These services can interact

with other services to perform the required task. Looking back at our trade

processing application, individual services can be built for risk computing,

trade transfers, and golden data sources. Additionally, there can be

reporting services that consume data from each of the basic services for

delivering the correct reports. The reports can be rendered to the Web and

mobile devices using another set of services. Thus, the complete monolith

can be broken into different components, as shown in Figure 2-2.

Chapter 2 IntroduCtIon to the ServICe MeSh

51

Adopting such an architecture not only requires a change in software

design but also requires a change in organization interaction. Teams reap

the following benefits of such an application design.

 Agility
Agility is one of the biggest driving factors for an organization to adopt the

microservice architecture. The loose coupling offered by the architecture

allows accelerated development. The model dictates small independent

development teams working within their defined boundaries. Each team

can work with complete freedom within their context. This speeds up

development.

Figure 2-2. Microservice architecture

Chapter 2 IntroduCtIon to the ServICe MeSh

52

The architecture also promotes resilience and fault isolation. In the

case of failures, the fault can be localized to one particular service. As a

result, the rest of the system can be operational, which leads to improved

uptime. The particular service can be fixed and deployed independently,

leading to a better quality of service.

 Innovation
A microservice architecture promotes small independent development

teams working with complete ownership within their service boundary.

These teams are responsible for keeping their system up and running

at all times. This leads to a culture of service ownership within the

organization.

Development teams are usually well aware of their service

shortcomings. Service ownership leads to autonomous decision-making

with regard to addressing service issues. They can fix the issues and

deploy the improved service as per their service milestones. They are fully

empowered to select the appropriate tools and framework for this. This

ultimately leads to an improved technical stack and innovation with the

organization.

 Scalability
In a monolith system, as load increases, not all subsystems get

proportional increased traffic. It is often the case that some parts of the

system get more traffic, which affects the service performance. Often it is

a subset of the services that govern the performance of the overall system.

Thus, the growth in load on the overall system is not linear across all of its

subsystems. But when a monolith system is under load, the system can be

scaled by adding more hardware. This will often result in under-utilization

of the additional hardware as we need to add more hardware for the

complete software rather than only for the subsystem under load.

Chapter 2 IntroduCtIon to the ServICe MeSh

53

The decoupling offered by microservices enables the organization to

understand the traffic that each microservice is serving. Developers can

make decisions isolated to the service in demand and make it more efficient.

They can adopt appropriate programming languages and frameworks,

fine-tuned with the best possible configuration and deployed to production.

Moreover, in times of load, it is a matter of scaling the underlying hardware

of the service on demand rather than scaling the entire ecosystem.

 Maintainability
As discussed earlier, there is steep learning curve while working with

monolith software. Often there are parts that no one on the current team

will understand, and the team will be uncomfortable to work on them. This

is often termed technical debt. Addressing technical debt in a monolith

architecture is difficult because people can fear breaking one of the working

features. There have been cases where unwanted dead code was made alive

by addressing technical debt in a particular monolith architecture.

The microservice architecture can help to mitigate the problem

by following the principle of divide and conquer. The benefits can be

correlated to object-oriented application design where a system is broken

into objects. Each object has a defined contract that leads to improved

maintenance of the overall system. A developer can unit test each of

the objects being refactored to validate the correctness of it. Similarly, a

microservice created around a business context has a defined contract.

Developers can address the technical debt of the service while validating

the service contract.

 Challenges
Microservices solve a number of existing issues with monolith

architecture, but they also bring new challenges to the table. It is

important to be aware of these challenges. A microservice breaks a single

Chapter 2 IntroduCtIon to the ServICe MeSh

54

system into a distributed system. A distributed architecture needs to be

modeled carefully. Care must be taken for various points of failures, and

a microservice is no exception. In the late 1990s, James Gosling compiled

a list of false assumptions that can make a distributed system inefficient,

insecure, and harder to maintain. Let’s cover them in context of a

microservices architecture.

 The Network Is Reliable

According to Murphy’s law, “Anything that can go wrong will go wrong.”

In a distributed architecture, there are many moving parts, and it is

highly probable that one of the services could fail at any time. The failure

can be caused by a software issue, a hardware fault like a network switch,

or a DNS issue. This would result in failed delivery of the consumer

service and could lead to a stale state of the system. As software designers,

we need to be prepared to handle such scenarios by putting enough

redundancy into the system.

Specifically, for cloud-native microservices, Kubernetes provides an

out-of-the-box solution for this challenge. We usually deploy services to

the Kubernetes cluster with a replication factor. Kubernetes makes sure

that a service is deployed with the specified redundancy, and in the case

of failures, all service calls are routed to the secondary service deployed in

the cluster. Meanwhile, Kubernetes tries to bring in a new instance, and it

maintains the replication factor for the said service. Let’s look at a sample

Kubernetes configuration.

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

 name: spring-gs

spec:

 replicas: 1

Chapter 2 IntroduCtIon to the ServICe MeSh

55

 template:

 metadata:

 labels:

 app: spring-gs

 version: v0.1.0

 spec:

 containers:

 - name: spring-gs

 image: k8s-sample /spring-gs:0.1.0

 imagePullPolicy: IfNotPresent

 ports:

 - containerPort: 8080

In the previous configuration, we have specified replicas : 1. This

will make sure that Kubernetes deploys at least two instances of the

service. This mechanism is a server-side solution for recovering from an

application crash. On the client side, we need to add a retry mechanism to

handle network failures. A request must be sent a couple of times before

the client can drop it completely. This way, an application will be able

to handle transient failures. This is just one example; as microservice

architecture adopters, we need to add required resilience patterns while

building our services.

 Latency Is Zero

Nowadays each language generates stubs for web service/remote

invocations. The generated clients mask the boilerplate logic required

to invoke the function calls. But at the same time, developers

sometimes assume the client invocation is on par with local service

invocations. This is not true; a call over a network is much slower than

a local call. If not handled properly, it can block an application for a

Chapter 2 IntroduCtIon to the ServICe MeSh

56

large amount of time. Service outages are extreme scenarios that occur

rarely. A much more common scenario is that services are responding

slowly because of load. Testing for service response delays is quite

difficult. In a unit test case, most external dependencies are mocked;

thus, building a test for this involves a certain level of developer

maturity. In an acceptance environment where there is not enough

load replicating, this is quite difficult.

The Circuit Breaker pattern, proposed by Michael Nygard, is aimed

at handling these scenarios. The pattern is all about encapsulating the

remote function call in an object that keeps track of failures. If there are

more failures, then the service no longer invokes the external call; instead,

it returns immediately with an error code. The circuit breaker keeps track

of the connection in the following three states (see Figure 2-3):

• Closed: This is the state when external service calls

are working fine without any reported failures. The

circuit breaker keeps track of failures. This makes

the circuit breaker more resilient against service

performance blips. But when the number of failures

exceeds a threshold, the breaker trips, and it goes into

the Open state.

• Open: In this state, the circuit breaker returns an error

without invoking the external call.

• Half-Open: After a configured time interval, the circuit

breaker goes into a half-open state and validates if

the external invocation still fails. If a call fails in this

half-open state, the breaker is once again tripped. If

it succeeds, the circuit breaker resets to the normal,

closed state.

Chapter 2 IntroduCtIon to the ServICe MeSh

57

An efficient circuit breaker strategy is also essential for releasing new

versions of existing services. Upgrading the entire system at one time is

a futile exercise. It often leads to a large amount of overhead. Instead,

it is much more effective to have periodic rolling updates for existing

 services, but this is possible only if the dependent services handle failures

in an effective manner. Teams adopting a microservice architecture need

to embrace outages and must not regard them as extreme scenarios. If

unaddressed, these failures can have a cascading effect in the complete

ecosystem. This would lead to an avalanche of unnecessary service spikes.

Caching application data is another manner in which we can handle

failures. This is applicable to situations where we can operate with stale

data. Applications can cache the last response they have received. Next

invocations either can get new data or can serve the older cached data.

 Bandwidth Is Infinite

In a microservice architecture, we have exponential growth in the number

of services deployed in production. Usually whenever we are addressing

a new use case, we question if we need a new service or the function

Figure 2-3. Circuit breaker states

Chapter 2 IntroduCtIon to the ServICe MeSh

58

can be built in an existing one. In greenfield cases, more often we reach

a conclusion of building it as a new service. But this has a cost on the

existing deployed services. Let’s say there is an SSO service; if every new

service invokes the SSO validation, the SSO team starts running into issues

if there is a single rogue service. To overcome this, applications need to

have a mechanism of quota allocation and consumption tracking.

The explosive growth also creates issues for server-side load balancers.

A large number of calls in load balancers often saturate them with traffic

and thereby degrade their performance. Client-side load balancing is often

a good approach when facing such situations.

 The Network Is Secure

In distributed architectures like microservices, the onus of security is on

every team. First, there are many technical choices, so teams need to keep

track of bug fixes/issues in each of them. Each of these technologies must

be configured correctly to avoid any security concerns. Second, interservice

communication needs to be controlled. Service-level authorization is

a must to filter out rouge or unknown service connections. Moreover,

applications performing plain-text exchanges are exposing sensitive data.

Thus, the communication needs to happen using a secured protocol.

 Topology Doesn’t Change

Agility is one of the reasons for adopting a microservice architecture.

Agility means being able to quickly build, release, and deploy. This means

a low coupling between dependent services. This is easier said than done.

Let’s say because of load, a new instance of an existing service is deployed

in production. Other services must connect to this new dynamically

added instance. This in turn means that services can no longer have hard-

coded/fixed address locations of their dependencies. There needs to be

an effective service resolution mechanism that can help determine the

current location of services.

Chapter 2 IntroduCtIon to the ServICe MeSh

59

Adding the capabilities of service discovery also enables the overall

system resilience. In production there are unexpected failures. Systems

go down, and topology changes happen. Service discovery enables all

running services to discover each of these changes, rather than painfully

making configuration changes to each of them.

 There Is One Administrator

Operations is another area of concern while working with distributed

systems like microservices. Traditionally there was a single system that

could be monitored and administrated by a couple of people. But this

model fails as soon as there is an explosive growth of microservices. It is

next to impossible for a handful of people to have complete operational

knowledge for all microservices running in the ecosystem. Microservices

aim to make teams autonomous. So, each team is responsible for

maintaining and administrating their own services. This asks for providing

production system access for each team member. Thus, to be successful in

this approach, there needs to be efficient role-based access, which can be

federated in development teams.

 Transport Cost Is Zero

In microservices, we make lots of calls to dependent services. It is

important to note that the data exchange incurs a cost. Data must be

serialized at one end and deserialized at the other end. Thus, the cost is in

terms of CPU resources consumed and amount of data transferred. The

protocol of communication has an impact on our service performance.

Traditional protocols like SOAP/XML exchange are highly inefficient. JSON

is considered a better choice than SOAP. But binary protocols like protocol

buffers have outperformed JSON. Considering that the information

exchange is occurring between applications, it is better to select a binary

protocol for the complete ecosystem.

Chapter 2 IntroduCtIon to the ServICe MeSh

60

 The Network Is Homogeneous

A network would be classified as homogeneous if it had the same set

of hardware running on all the systems and all the applications are

communicating on a standard protocol. Running the same hardware on

all the systems is next to impossible, but with Kubernetes we can limit the

resources so that every time an application container is deployed, it gets

the same amount of resources.

apiVersion: v1

kind: Pod

metadata:

 name: frontend

spec:

 containers:

 - name: gs

 image: istio-ks/spring-gs

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "128Mi"

 cpu: "500m"

In the previous code, the spring-gs application container asks for a

specified number of CPU and memory resources. It has also defined an

upper bound of the CPU and memory consumed.

Similarly, it is not possible to run a single communication protocol for

the entire ecosystem. This idea is futile for the microservice philosophy of

independent autonomous teams.

Chapter 2 IntroduCtIon to the ServICe MeSh

61

James pointed out that building a distributed system without explicitly

handling these issues is a setup for failures. Enterprise-grade systems

are always going to have issues in all these areas. Thus, mitigating

these challenges is essential to a successful adoption of microservice

architecture. Besides the earlier generic distributed system challenges,

microservices have their own set of issues. These issues are due to the

philosophy of agility and autonomous teams.

 Infrastructure

A microservice architecture is much more complex than a monolith

architecture. There are many moving parts, and each is dependent on one

or more microservices. Since each team can choose the technology behind

their microservice, it is challenging to support all these infrastructure

requirements.

The infrastructure team first needs to find ways to provision the

infrastructure on-demand in a cost-effective manner. On the microservice

adoption journey, the hardware demand increases as we deploy more

services. The granularity dictated by microservices enable us to scale

individual services in times of load. For this to happen, infrastructure

should be available when required. Infrastructure can no longer be the

bottleneck as was the case with monolith versions.

Provisioning hardware is not just about making it available. It is also

about getting the correct set of libraries and frameworks. The wide choice

of technology makes it challenging to support the new needs without

breaking existing services. There needs to be much closer collaboration

between the development and infrastructure teams.

 Monitoring and Debugging

Monitoring microservices is completely different from monitoring a

monolith architecture. The techniques used to monitor a monolith

architecture do not work for microservices. There are many moving parts

Chapter 2 IntroduCtIon to the ServICe MeSh

62

for one functionality. Thus, it needs to be more automated. Capturing

effective metrics is also an important aspect. This influences how a service

is scaled up or scaled down. As services are scaled up or scaled down, the

monitoring should discover them and take relevant actions.

Traditional log handling mechanisms do not work well with

microservices. First, there is much more logging done by the entire system.

An effective log archiving is required as the system will quickly run out

of space. Second, we must be able to quickly look up and correlate logs

between multiple services. In times of a production outage, we do want

to be in a position where it is hard to connect the dots between two

interdependent services.

Until this point we have discussed major operational challenges.

We will look at ways to address issues. There are other challenges like a

service testing approach, knowledge distribution, etc. These challenges

are beyond the scope of this book. If we inspect closely, then all the

operational challenges are related to the mismatch between the federated

application architecture and the traditional approaches to application

management. Implementing a container orchestrator like Kubernetes

helps to address some challenges related to infrastructure. Teams can

provision resources quickly using Kubernetes. It can help services to scale

on demand. But it cannot solve the remaining concerns. More tooling is

required to address each of these challenges in an effective manner.

 Language Libraries
In the early 2010s, companies like Netflix and Twitter started adopting a

microservices architecture for their solutions. They faced all the previously

discussed challenges. Each of these companies started building tools and

infrastructure libraries for solving the challenges. The libraries are made

up of the technologies used in each of these companies; for example,

Netflix services are mostly based on Java, so Netflix created the following

Java libraries to address the concerns:

Chapter 2 IntroduCtIon to the ServICe MeSh

63

• Eureka: This tool is aimed at service discovery. It

consists of two components: a service registry and a

service client. Services at bootstrap register them with

the Eureka server using the service client. The service

client is also used by the applications to discover the

instances of their dependencies.

• Hystrix: This tool is a Java library providing fault

tolerance between service interactions.

• Ribbon: This tool is a Java library supporting client-side

load balancing.

• Zuul: This tool is an application gateway that supports

dynamic routing based on service discovery.

These solutions were open sourced around 2012 and were adapted by

developers. Over time Spring Boot was released, and these projects were

combined with it as Spring Cloud Netflix.

Let’s now build a simple microservice example with these libraries.

 Hands-on Examples

This book follows a hands-on approach where you will learn by working

through an example. We have chosen a simple example to understand the

takeaways from the previously discussed issues. In-depth details of the

libraries are beyond the scope of the book.

We will build a simple greetings service. The service has a simple

offering. We can invoke the service using a userName, and it will respond

with a greeting for the specified user. Thus, as a contract, users can invoke

the following HTTP GET call: http://localhost:8080/greeting/Rahul.

The service will respond with the following response:

Hello ! Rahul

Chapter 2 IntroduCtIon to the ServICe MeSh

64

To get the solution working, we will have to do some basic setup. Install

the following on your machine:

 1. Java: We need Java 8 or above. Please download

the latest update of Java from the official Oracle

web site at http://www.oracle.com/technetwork/

java/javase/downloads/index.html. At the time of

writing, the latest Java version is 12.01. You can check

your Java version by running the following command:

$ java --version

openjdk 11.0.3 2019-04-16

OpenJDK Runtime Environment (build 11.0.3+7-Ubuntu-

1ubuntu218.04.1)

OpenJDK 64-Bit Server VM (build 11.0.3+7-Ubuntu-

1ubuntu218.04.1, mixed mode, sharing)

 2. IDE: The code in this chapter is built using

IntelliJ. But you can use any Java IDE of your choice.

 3. Maven: Maven is a popular build tool in the JVM

ecosystem. It is used for dependency management

and running automated tasks. You don’t need to

install Maven on your local machine. Download

the latest version of Apache Maven from https://

maven.apache.org/. To learn more about Maven,

you can refer to the Maven documentation. You

can check the Maven version by using the following

command:

$ mvn -version

Apache Maven 3.6.0 (97c98ec64a1fdfee7767ce5ffb2091

8da4f719f3; 2018-10-25T00:11:47+05:30)

Maven home: /home/home/Tools/apache-maven-3.6.0

Chapter 2 IntroduCtIon to the ServICe MeSh

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/
https://maven.apache.org/

65

Java version: 1.8.0_201, vendor: Oracle Corporation,

runtime: /usr/lib/jvm/java-8-oracle/jre

Default locale: en_IN, platform encoding: UTF-8

OS name: "linux", version: "4.15.0-50-generic", arch:

"amd64", family: "unix"

Now, that we have all the prerequisites, let’s create a Maven project

using the following command:

$ mvn archetype:generate greeting-rest-service

Now update POM.xml to add the Spring Boot dependencies.

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>eureka-client</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>jar</packaging>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.1.4.RELEASE</version>

 <relativePath/> <!-- lookup parent from

repository -->

 </parent>

 <properties>

 <project.build.sourceEncoding>UTF-8

</project.build.sourceEncoding>

Chapter 2 IntroduCtIon to the ServICe MeSh

66

 <java.version>1.8</java.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web

</artifactId>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot

</groupId>

 <artifactId>spring-boot-maven-

plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

In the POM file, we have done the following:

• Added spring-boot-starter-parent:20104.RELEASE

as our parent. This makes sure we get correct versions

of the required Spring Boot dependencies.

• Added spring-boot-starter-web as a starter to make

sure we have the required dependencies for creating a

REST-based service.

Chapter 2 IntroduCtIon to the ServICe MeSh

67

• Added spring-boot-maven-plugin, which can enable

us to run our project from the command line as an

executable by using mvn spring-boot:run.

Now let’s add a REST controller for our functionality in the following

manner:

@RestController

class ApplicationRestController {

 @RequestMapping("/greeting/{user}")

 public String greeting(@PathVariable String user) {

 return "Hello! " + user;

 }

}

In the previous code, we have done the following:

• Created an ApplicationRestController and

annotated it with RestController to provide REST API

endpoints.

• Added a greeting method to handle a "/greeting/

{user}" location and send back a String response to it.

To run this application, we need to add the following main class:

@SpringBootApplication

public class ApplicationMain {

 public static void main(String[] args) {

 SpringApplication.run(ApplicationMain .class, args);

 }

}

Chapter 2 IntroduCtIon to the ServICe MeSh

68

In the previous code, we have done the following:

• Annotated ApplicationMain with the

SpringBootApplication annotation. It will bootstrap

Spring with the required configuration.

• The main method invokes SpringApplication using

the annotated main class.

Let’s now run this in an IDE (Eclipse/IntelliJ). Validate in the browser

by looking up http://localhot:8080/greeting/Rahul. See Figure 2-4.

Now we have a simple REST service in place that can be used to get

some experience with the various Netflix libraries.

 Enable the Circuit Breaker

Now, let’s build a service that can be one of the clients for our web service.

@Service

class GreetingService {

 private final RestTemplate restTemplate;

 public GreetingService(RestTemplate rest) {

 this.restTemplate = rest;

 }

Figure 2-4. Greeting service output

Chapter 2 IntroduCtIon to the ServICe MeSh

69

 public String greet(String username) {

 URI uri = URI.create("http://localhost:8080/greeting/"

+username);

 return this.restTemplate.getForObject(uri, String.class);

 }

}

In the previous code, we have done the following:

• Added a GreetingService that is making a REST call to

our greeting{User} location.

• The greet() method abstracts the REST call, making it

appear as a local invocation to other components.

The method can be invoked in a test as follows:

@Test

public void testGreetingService() {

 String response = greetingService.greet("user");

 then(response).contains("Hi! User");

}

In the previous test case, we are invoking greetingService and

validating the response. But if the greeting service is unavailable or facing

performance issues, this test would fail with the following error:

I/O error on GET request for "http://localhost:8080/greeting/

user": Connection refused (Connection refused); nested

exception is java.net.ConnectException: Connection refused

(Connection refused)

 at org.springframework.web.client.RestTemplate.doExecute

(RestTemplate.java:744)

 at org.springframework.web.client.RestTemplate.execute

(RestTemplate.java:710)

Chapter 2 IntroduCtIon to the ServICe MeSh

70

 at org.springframework.web.client.RestTemplate.

getForObject(RestTemplate.java:329)

 at hello.GreetingService.greet(RestTemplateClientTest.

java:87)

Let’s now configure the Hystrix circuit breaker to handle these

common production issues. Before we can proceed, we need to add the

spring-cloud-starter-netflix-hystrix dependencies. To do so, update

the POM.xml file as follows:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dependencies</artifactId>

 <version>Finchley.SR2</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

<dependencies>

.....

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>

</dependency>

...

</dependencies>

Chapter 2 IntroduCtIon to the ServICe MeSh

71

In the previous code, we have done the following:

• Added the spring-cloud-dependencies BOM that

configures the right versions of the spring-cloud

dependencies.

• Added the spring-cloud-starter-netflix-hystrix

dependency.

Now let’s configure the Hystrix circuit breaker for our

GreetingService.

@HystrixCommand(fallbackMethod = "fallbackGreeting",

commandProperties = {

 @HystrixProperty(name = "execution.isolation.thread.

timeoutInMilliseconds", value = "1000")

})

public String greet(String username) {

 URI uri = URI.create("http://localhost:8080/greeting/"

+username);

 return this.restTemplate.getForObject(uri, String.class);

}

public String fallbackGreeting(String username) {

 return "Hi! there";

}

In the previous code, we have configured the Hystrix circuit breaker in

the following manner:

• We enabled the circuit breaker by using the

HystrixCommand annotation.

• The fallbackGreeting method is used to provide the

fallback method for failures. It is configured by using

the fallbackMethod attribute of HystrixCommand.

Chapter 2 IntroduCtIon to the ServICe MeSh

72

• We configured a timeout by using the execution.

isolation.thread.timeoutInMilliseconds property.

Now when we run the test case, we no longer see the exception. We

get a response from the fallbackGreeting method instead of the original

greet method.

 Enable Service Discovery

Now let’s configure service discovery using Netflix Eureka. As a first step,

we need to run the Eureka server. This is accomplished by adding the

spring-cloud-starter-netflix-eureka-server dependency.

<dependencies>

....

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>

</dependency>

....

</dependencies>

Now, the Eureka server can be started from the Spring Boot application

in the following manner:

@EnableEurekaServer

@SpringBootApplication

public class EurekaServiceApplication {

 public static void main(String[] args) {

 SpringApplication.run(EurekaServiceApplication.class,

args);

 }

}

Chapter 2 IntroduCtIon to the ServICe MeSh

73

• The EnableEurekaServer annotation starts the Eureka

service.

• The server can be configured with the following

additional application properties:

 server.port=8761

 eureka.client.register-with-eureka=false

Let’s run the application and look up http://localhost:8671/.

See Figure 2-5.

Now we need to configure the previously created REST service to use

this Eureka server for service registry and then use service discovery for

our greetingService. To enable service registry, add the spring-cloud-

starter-netflix-eureka-client dependency.

Figure 2-5. Eureka server for service discovery

Chapter 2 IntroduCtIon to the ServICe MeSh

74

<dependencies>

....

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-eureka-

client</artifactId>

 </dependency>

...

</dependencies>

This dependency will configure a service registry with the configured

spring.application.name property name. Start the service and look up

the Eureka server. It lists a registered service. See Figure 2-6.

Figure 2-6. Service registered with the Eureka server

Chapter 2 IntroduCtIon to the ServICe MeSh

75

Now, let’s use service-discovery in our greeting-rest-service.

There are many ways we can configure it. Spring Boot provides a native

EurekaClient to interact with the Eureka server. Alternatively, if we are

using restTemplate, the same thing can be achieved by enabling client-

side load balancing using Netflix Ribbon.

@Bean

@LoadBalanced

public RestTemplate restTemplate() {

 return new RestTemplate();

}

// Rest removed for Brevity

public String greet(String username) {

 URI uri = URI.create("http://A-BOOTIFUL-CLIENT/greeting/"+username);

 return this.restTemplate.getForObject(uri, String.class);

}

In the previous code, we have done the following:

• Annotated the RestTemplate configuration with the

LoadBalancer annotation. This will enable the Ribbon

if spring-cloud-starter-netflix-ribbon is in our

classpath.

• Used the service name to connect to the service instead

of a host and port address. The service name is first

looked into the Eureka server to determine the address

of the registered service.

In the previous section, we discovered how Netflix OSS solved

the various issues with the microservice architecture. Similarly, other

companies like Google and Twitter have built stacks around their

frameworks like Stubby and Finagle.

Chapter 2 IntroduCtIon to the ServICe MeSh

76

But there are problems while working with the infrastructure libraries.

First the application code gets coupled with its infrastructure. This makes

services dependent on infrastructure components. Also, since every

call is fine-tuned in the application, the team must collaborate with the

operations teams to tweak and fine-tune timeouts.

Potentially, infrastructure libraries make it difficult for application

teams to update their frameworks. Also, these frameworks are language-

oriented. The Netflix stack is Java based, while Twitter is based in Scala.

Each of these stacks offers a different set of features. If we are looking for

a feature not available in the stack of choice, we can’t change it. Thus,

in a nutshell, if we truly want the flexibility of selecting our choice of

technologies, then we cannot get bound to any of these frameworks. Lastly,

building services around each of these frameworks requires a learning

curve for developers. See Figure 2-7.

Figure 2-7. Language-specific libraries

Chapter 2 IntroduCtIon to the ServICe MeSh

77

 Service Mesh
Previously, we discussed the challenges faced while adopting

a microservice architecture. If we deep dive into each of these

challenges, we’ll find they are not related to microservices business

logic but to the way services interact with each other. In a cloud-native

ecosystem like Kubernetes, these challenges can be addressed by

deploying a service mesh.

A service mesh is defined as a distributed system to address the

microservice networking challenges in an integrated way. The complete

system provides functions that are complementary to Kubernetes. It

is built on the foundation of a dedicated layer that controls all service

interaction in a Kubernetes cluster. The layer is usually composed of

lightweight network proxies deployed along with the service, without the

service knowing about it. See Figure 2-8.

The aim of deploying a service mesh is to have an integrated

platform that can actively monitor all service traffic. In doing so, a

service mesh can address concerns related to fault tolerance, service

security, and application monitoring. As discussed in the previous

Figure 2-8. Service mesh

Chapter 2 IntroduCtIon to the ServICe MeSh

78

section, there are independent libraries that can solve these issues.

But a service mesh provides a new nonobtrusive way of doing things

efficiently in a cloud-native environment. Compared to language-

specific frameworks, a service mesh addresses the challenges outside

of the services. The services are not aware that they are working with a

service mesh.

Service meshes are protocol-agnostic and operate on layer 5. This

way, they can be deployed in a polygot environment. This abstraction

allows developers to focus on their application business logic and allows

system engineers to efficiently operate the infrastructure. This is a win-

win situation for both of them. Overall, a service mesh addresses concerns

about these challenges and adds the following benefits.

 Traffic Control
In a monolith application, the traffic flow is in a north-to-south

direction. But in a microservice application, services communicate

with each other to provide the complete functionality. Thus, there is

more east-to-west traffic. Services need to discover newly deployed

services and route calls to them.

In a Kubernetes cluster, deployed services can be resolved using

DNS. Kubernetes also acts as a load balancer and divides all traffic

equally between all the available service nodes. This is quite useful

when we want to update our service. We can update all instances by

doing one at a time. But Kubernetes does not allow a fine-grained

traffic control mechanism, where traffic can be routed using various

other means. See Figure 2-9.

Chapter 2 IntroduCtIon to the ServICe MeSh

79

On the other hand, a service mesh allows us to fine-tune traffic

flow to each of the deployed instances of a service. A server mesh

enables lookup of layer 7 request headers and then routes a request

to a particular service instance. This process of dark launch/cannery

deployment can be used to release the service for a subset of users. The

process allows us to gain confidence in a new version before releasing it

to the entire user base. This creates a smooth release process from one

version to another, with automated rollback if a new version creates new

errors or issues.

 Security
Service-level security is another key benefit of having a service mesh in a

Kubernetes cluster. Applications deployed in a Kubernetes cluster perform

an SSL-based handshake before proceeding. The SSL protocol validates

the service identity and authorizes it accordingly. Security issues are well

beyond the scope of Kubernetes, which aim to have maximum service

uptime. See Figure 2-10.

Figure 2-9. Service mesh traffic routing

Chapter 2 IntroduCtIon to the ServICe MeSh

80

We can also apply a fine-grained policy that can look for application

user attributes. Since a service mesh is built on L4 communication, it can

apply all security policies without understanding the service protocol. A

service mesh also allows us to configure rate limits so as to limit a rogue

service user.

 Analytics
A service mesh allows us to systematically track and correlate interactions

between various services. It presents this information in the form of

request timelines. This capability is called tracing. Tracing enables us to

debug how a request flows from one service to another. In a monolith

application, we used to have a request log that could point to the request

being a service. But in a service mesh where each service is calling the

next one, it is hard to debug a request lifecycle. Tracing enables us to

reconstruct a request flow and determine performance issues in our

application. See Figure 2-11.

Figure 2-10. TLS security

Chapter 2 IntroduCtIon to the ServICe MeSh

81

Microservices in a service mesh achieve this by forwarding tracing

context headers. This way, distributed tracing can help to visualize

interservice dependencies. A service mesh also captures metrics around

request volumes and failure rates.

Another important aspect is service log handling. In a traditional

application, there is often one log file that is logging everything. In a

microservice architecture, where we have a number of services logging,

we need to look up all of them to understand the applicable behavior.

A service mesh provides centralized logging and graphical dashboards

built over logs. The aim there is to provide operational visibility within the

microservices.

In summary, a service mesh allows us to decouple the infrastructure

from the application code. It also simplifies the underlying network

topology as the network is just providing the physical connection. All

firewalls, load balancers, and subnets can be removed as they do not

want to control any service interaction. Instead, all such things can be

configured using the service mesh.

Figure 2-11. Distributed tracing

Chapter 2 IntroduCtIon to the ServICe MeSh

82

 Sidecar Pattern
The service mesh is usually implemented by following the Sidecar pattern.

As discussed previously, a separate process, aka a sidecar, is deployed

along with the application code. This pattern is named Sidecar because it

resembles a sidecar attached to a motorcycle. The sidecar is responsible

for providing features such as networking, monitoring, tracing, logging,

and so on. The sidecar is dependent on the parent application. It has

the same lifecycle as that of the parent application. This way we can

extend applications across different technology stacks, including legacy

applications that offer no extensibility.

In a Kubernetes cluster, a sidecar runs alongside every service running

in the cluster. The sidecar proxies all traffic to and from the service.

The sidecar communicates with other sidecars and is managed by the

Kubernetes framework. See Figure 2-12.

It is important to note that the pattern is applicable to application

cross-cutting concerns without any consideration to performance

overhead. If performance is a consideration, then network overhead by the

pattern will make it not suitable. Since the sidecar has the same lifecycle

Figure 2-12. Sidecar pattern

Chapter 2 IntroduCtIon to the ServICe MeSh

83

as that of the parent, it is scaled up along with the parent application.

The pattern does not allow scaling up the sidecar in isolation. In a service

mesh, the sidecar proxy performs the following tasks:

• Service discovery: The proxy determines the list of

upstream and downstream service instances that are

available.

• Health checks: The proxy checks whether the

upstream service instances returned by service

discovery are healthy and ready to accept network

traffic. These checks can include lookup to the /health

endpoint. It could also be based on service failure

rates (e.g., using three consecutive 5xx values as an

indication of an unhealthy state).

• Routing: Given a REST request for /foo from a service

of the service mesh, the proxy determines to which

cluster it should route the request.

• Load balancing: Once an upstream service cluster

has been selected during routing, to which upstream

service instance should the request be sent? The proxy

is also responsible for applying a circuit breaker (maybe

with a timeout) and retrying.

• Authentication and authorization: It validates service

interactions by using mTLS or any other mechanism.

• Observability: For each request, detailed statistics,

logging, and distributed tracing data are generated so

that operators can understand distributed traffic flow

and debug problems as they occur.

Chapter 2 IntroduCtIon to the ServICe MeSh

84

All of the previous items are responsibilities of the service mesh

sidecar. Said another way, the sidecar is responsible for conditionally

translating, forwarding, and observing every network packet that flows to

and from a service instance. The sidecar is also known as a service mesh

data plane.

 Envoy, the Sidecar Provider
The network should be transparent to applications. When
network and application problems do occur, it should be easy
to determine the source of the problem.

—Envoy design goal

Now that we understand the role of sidecar, let’s create one using Envoy.

Envoy is a high-performance L7 proxy and communication bus written

in C++. It has been battle-tested in large, modern, service-oriented

architectures. The Envoy architecture offers the following benefits:

• Highly optimized out-of-process service proxy written

in a native language

• Pluggable at L3/L4 to perform various tasks on the TCP

messages received

• Pluggable at HTTP L7 to perform tasks such as request

routing, rate limiting, and so on

• Versatile application observability, enabling it to

capture and report statistics across all components

• Support for various applications like MongoDB,

DynamoDB, MySQL, Thrift, and so on

Chapter 2 IntroduCtIon to the ServICe MeSh

85

Since its release, Envoy has gained popularity among the community

and has become the de facto standard for application sidecars. At its core,

the Envoy architecture consists of the following components:

• Port listener: The listener allows Envoy to listen

to network traffic at a specified address. Envoy

supports only TCP-based listeners. As a practice, it

is recommended to run a single instance of Envoy

configured with multiple listeners.

• Filters: Filters enable Envoy to perform various

operations such as routing, translating protocols,

generating statistics, etc., on a received message. Each

port listener configures its own set of filters. All these

filters are combined for a filter chain, which is invoked

for every TCP message. Envoy has a large set of out-of-

the-box filters. These filters can be broadly classified as

follows:

• Listener filters: Listener filters are invoked as part

of a handshake in a connection request. These are

responsible for things like TLS inspection or service

remote destination, etc. These filter access raw data

and manipulate the metadata of L4 connections

during the initial phase.

• Network filters: Network filters are invoked in

for every TCP message after a connection. They

perform a wide array of tasks such as application

authorization, rate limiting, TLS authentication,

etc. They are not limited to generic things. There

are filters for application- specific protocols like

MySQL and MongoDB, which are invoked to gather

statistics, perform role-based access, etc.

Chapter 2 IntroduCtIon to the ServICe MeSh

86

• HTTP filters: Envoy comes bundled with a large

set of HTTP filters. The filters can do various things

like gzip compression, grpc to JSON translation,

etc. These filters can manipulate HTTP requests

received by the Envoy proxy. These filters are

created by the HTTP network connection manager

network filter.

• Cluster: A cluster is defined as a group of logically

similar hosts that Envoy connects to. Envoy clusters

can be defined as static configuration, or they can

be generated dynamically using the built-in service

discovery.

Figure 2-13 summarizes the Envoy components for each service.

Figure 2-13. Envoy filter chain

Chapter 2 IntroduCtIon to the ServICe MeSh

87

It is important to note that these components are defined statically in

a configuration file. Alternatively, Envoy can be configured with a dynamic

service configuration. The configuration gets generated by the following

components:

• Endpoint Discovery Service (EDS): Envoy can add/

remove services to/from a cluster by using this service.

The service offers alternative to DNS and can be used

to address DNS bottlenecks.

• Cluster Discovery Service (CDS): The service enables

Envoy to dynamically discover application clusters that

are used in routing. After discovering a cluster, Envoy

gracefully adds, updates, and removes it to/from the

configuration.

• Route Discovery Service (RDS): The service enables

Envoy to dynamically build a filter chain to the HTTP

connection manager filter.

• Listener Discovery Service (LDS): The service enables

Envoy to dynamically build a complete listener chain to

the HTTP connection manager filter.

• Secret Discovery Service (SDS): The service

enables Envoy to discover application secrets like

TLS certificates, private keys, etc. The service is also

responsible for providing client’s public certificate.

Now that we have a brief understanding of how Envoy works, let’s try to

configure it for our Spring Boot greeting service.

Chapter 2 IntroduCtIon to the ServICe MeSh

88

 Configuring Envoy
Before we can work with Envoy, we need to install it on our box. At the

time of this writing, 1.10.0 is the latest version. Envoy is an open source

application; it needs to be compiled and built for a particular system. It

can be built using the instructions at https://www.envoyproxy.io/docs/

envoy/latest/install/building.

Alternatively, we can work with Docker images published by the Envoy

project. To do that, we need to make sure Docker is installed, as shown here:

$ docker --version

Docker version 18.09.6, build 481bc77

Download the latest version of Docker at https://docs.docker.com/

install.

official release versions of envoy are also published as docker
images. these images are available in the following repositories:

envoyproxy/envoy: Contains an envoy binary on top of an ubuntu
Xenial base

envoyproxy/envoy-alpine: Contains an envoy binary on top of a glibc
alpine base

envoyproxy/envoy-alpine-debug: Contains an envoy binary with
debug symbols on top of a glibc alpine base

Once we have Docker installed, let’s download the Envoy proxy

alpine image.

$ docker run -it envoyproxy/envoy-alpine envoy –version

envoy version: e95ef6bc43daeda16451ad4ef20979d8e07a5299/1.10.0/

Clean/RELEASE/BoringSSL

Chapter 2 IntroduCtIon to the ServICe MeSh

https://www.envoyproxy.io/docs/envoy/latest/install/building
https://www.envoyproxy.io/docs/envoy/latest/install/building
https://docs.docker.com/install
https://docs.docker.com/install

89

Envoy has a command-line interface that can be used to configure it.

Let’s look at some of the commonly used options.

• --version: This describes the released version of the

Envoy.

• -c: This provides the configuration file used for Envoy.

The configuration can be provided as YAML or YSON.

• --mode: Envoy can be involved to start a proxy server

or validate a proxy configuration. This is accomplished

by invoking validate mode. Envoy runs in server mode

by default.

• -l, --log-level: This is used to set the Envoy logging

level. There are additional options that can be used to

configure the log path and log format.

• --service-node: This defines the local service node

where Envoy is running.

• --service-cluster: This defines the local cluster node

where Envoy is running.

The Envoy CLI has a large number of options. Most of them are

optional values. We have discussed only the ones that are quite often

used. You should read the official documentation to get to know each of

them in detail.

Let’s now configure Envoy to proxy our greeting service. To do so,

let’s first run our greeting service and verify it by looking up http://

localhost:8080/greeting/Rahul. See Figure 2-14.

Chapter 2 IntroduCtIon to the ServICe MeSh

90

Now, let’s configure Envoy using the following configuration:

static_resources:

 listeners:

 - address:

 socket_address:

 address: 0.0.0.0

 port_value: 80

 filter_chains:

 - filters:

 - name: envoy.http_connection_manager

 typed_config:

 "@type": type.googleapis.com/envoy.config.filter.

network.http_connection_manager.v2.HttpConnection

Manager

 codec_type: auto

 stat_prefix: ingress_http

 route_config:

 name: local_route

 virtual_hosts:

 - name: service

 domains:

 - "*"

Figure 2-14. Spring Boot greeting service

Chapter 2 IntroduCtIon to the ServICe MeSh

91

 routes:

 - match:

 prefix: "/greeting"

 route:

 cluster: greeting_service

 http_filters:

 - name: envoy.router

 typed_config: {}

 clusters:

 - name: local_service

 connect_timeout: 0.25s

 type: strict_dns

 lb_policy: round_robin

 load_assignment:

 cluster_name: greeting_service

 endpoints:

 - lb_endpoints:

 - endpoint:

 address:

 socket_address:

 address: 172.17.0.1

 port_value: 8080

admin:

 access_log_path: "/dev/null"

 address:

 socket_address:

 address: 0.0.0.0

 port_value: 8081

There are many parts in this configuration, as covered here:

• The listeners section specifies that Envoy is listening

to port 80 of our container.

Chapter 2 IntroduCtIon to the ServICe MeSh

92

• The listener is associated with a filter_chain. The

filter chain has a layer 7 HTTP filter.

• The filter has a route configuration, which matches

all domain names that are going to the /greeting

location. The configuration routes all such requests to a

greeting_service.

• The greeting_service location is defined by clusters.

It can be used to define multiple instances of a service

and the possible load balancing mechanism between

them. In the previous configuration, we are running

the service on port 8080. The IP address of the machine

specifies the address of the Docker gateway. We can

determine the Docker gateway address with the

following command:

$ docker network inspect bridge

[

 {

 "Name": "bridge",

 "Id": "93196df71406f690bf83ba65d7556

a4ba9fae676b828e578c53832f8b59608ef",

 "Created": "2019-05-30T07:42:54.43279813+05:30",

 "Scope": "local",

 "Driver": "bridge",

 "EnableIPv6": false,

 "IPAM": {

 "Driver": "default",

 "Options": null,

 "Config": [

Chapter 2 IntroduCtIon to the ServICe MeSh

93

 {

 "Subnet": "172.17.0.0/16",

 "Gateway": "172.17.0.1"

 }

]

 },

 // Removed for Brevity

 }

]

• Lastly, Envoy has an admin service that can be

used to get stats, configure the proxy, etc. In the

above- configuration, the admin service runs on 8081

port of the container.

Now run Envoy with the previous configuration by using the following

Docker commands:

$ docker run -v /home/rahul/Projects/envoy-conf:/envoy-conf -p

80:80 -p 8081:8081 -it envoyproxy/envoy-alpine envoy -c /envoy-

conf/service-envoy.yaml

[2019-05-30 06:03:17.152][1][info][main] [source/

server/server.cc:205] initializing epoch 0 (hot restart

version=10.200.16384.127.options=capacity=16384, num_slots=8209

hash=228984379728933363 size=2654312)

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:207] statically linked extensions:

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:209] access_loggers: envoy.file_access_log,envoy.http_

grpc_access_log

[2019-05-30 06:03:17.152][1][info][main] [source/server/

server.cc:212] filters.http: envoy.buffer,envoy.cors,envoy.

ext_authz,envoy.fault,envoy.filters.http.grpc_http1_reverse_

Chapter 2 IntroduCtIon to the ServICe MeSh

94

bridge,envoy.filters.http.header_to_metadata,envoy.filters.

http.jwt_authn,envoy.filters.http.rbac,envoy.filters.http.

tap,envoy.grpc_http1_bridge,envoy.grpc_json_transcoder,envoy.

grpc_web,envoy.gzip,envoy.health_check,envoy.http_dynamo_

filter,envoy.ip_tagging,envoy.lua,envoy.rate_limit,envoy.

router,envoy.squash

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:215] filters.listener: envoy.listener.original_dst,envoy.

listener.original_src,envoy.listener.proxy_

protocol,envoy.listener.tls_inspector

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:218] filters.network: envoy.client_ssl_auth,envoy.

echo,envoy.ext_authz,envoy.filters.network.dubbo_

proxy,envoy.filters.network.mysql_proxy,envoy.

filters.network.rbac,envoy.filters.network.

sni_cluster,envoy.filters.network.thrift_

proxy,envoy.filters.network.zookeeper_proxy,envoy.

http_connection_manager,envoy.mongo_proxy,envoy.

ratelimit,envoy.redis_proxy,envoy.tcp_proxy

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:220] stat_sinks: envoy.dog_statsd,envoy.metrics_

service,envoy.stat_sinks.hystrix,envoy.statsd

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:222] tracers: envoy.dynamic.ot,envoy.lightstep,envoy.

tracers.datadog,envoy.zipkin

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:225] transport_sockets.downstream: envoy.transport_

sockets.alts,envoy.transport_sockets.tap,raw_

buffer,tls

Chapter 2 IntroduCtIon to the ServICe MeSh

95

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:228] transport_sockets.upstream: envoy.transport_sockets.

alts,envoy.transport_sockets.tap,raw_buffer,tls

[2019-05-30 06:03:17.152][1][info][main] [source/server/server.

cc:234] buffer implementation: old (libevent)

[2019-05-30 06:03:17.160][1][info][main] [source/server/server.

cc:281] admin address: 0.0.0.0:8081

In the previous Docker command, we are doing the following:

• -v /home/rahul/Projects/envoy-conf:/envoy-conf:

The -v option mounts the /home/rahul/Projects/

envoy-conf location in the host to the /envoy-conf

location in the container.

• -p 80:80 -p 8081:8081: The -p option binds the ports

80 and 8081 in the container to the host.

• envoy -c /envoy-conf/service-envoy.yaml: This

Envoy command runs the configuration specified in

the configuration file.

The command runs the Envoy proxy on port 80 and binds it to the

localhost port 80.

 Verifying the Service
Let’s verify the service by looking up http://localhost/greeting/rahul.

See Figure 2-15.

Chapter 2 IntroduCtIon to the ServICe MeSh

96

Envoy is now the proxy for our service. It is monitoring all requests

made to our greetings service. If we shut down the greeting service and

look up http://localhost/greeting/rahul, we get a 503 error instead of

404. See Figure 2-16.

Now let’s do a lookup for the Envoy admin UI on port 8081, as in

http://localhost:8081/. The interface enables us to not only view the

state of the proxy but also modify it. See Figure 2-17.

Figure 2-15. Greeting service via Envoy proxy

Figure 2-16. Envoy service 503

Chapter 2 IntroduCtIon to the ServICe MeSh

97

We can find service stats under the /stats location. We can also find

circuit-breaker stats being reported. The stats are in Prometheus format,

which can be injected into the Prometheus server for detailed monitoring.

cluster.local_service.bind_errors: 0

cluster.local_service.circuit_breakers.default.cx_open: 0

cluster.local_service.circuit_breakers.default.cx_pool_open: 0

cluster.local_service.circuit_breakers.default.rq_open: 0

cluster.local_service.circuit_breakers.default.rq_pending_open: 0

cluster.local_service.circuit_breakers.default.rq_retry_open: 0

cluster.local_service.circuit_breakers.high.cx_open: 0

cluster.local_service.circuit_breakers.high.cx_pool_open: 0

cluster.local_service.circuit_breakers.high.rq_open: 0

Figure 2-17. Envoy admin UI

Chapter 2 IntroduCtIon to the ServICe MeSh

98

cluster.local_service.circuit_breakers.high.rq_pending_open: 0

cluster.local_service.circuit_breakers.high.rq_retry_open: 0

In the previous configuration, we built a simple front-end proxy based

on Envoy. We can add services to the configuration for scaling and canary

deployment. Envoy is a versatile framework that is employed in various

tools like Ambassador, Istio, and so on. The aim here was to give you a brief

understanding of Envy. Comprehensive Envoy knowledge is beyond the

scope of the book.

 Summary
In this chapter, we explained the need for a service mesh. The chapter

started by covering the microservice architecture and its challenges.

Because a microservice architecture is a distributed system, it succumbs to

the “fallacies of distributed computing.” Enterprises like Netflix and Twitter

that have pioneered microservice architecture have built language-specific

frameworks to handle the microservice challenges. These frameworks,

being language oriented, do not offer a clean solution to the issues at

hand. Next, we looked at how Kubernetes with a service mesh can help in

handling these challenges in a language-neutral manner. We also looked

at the various benefits offered by a service mesh. Going forward in our

journey, we looked at the service mesh architecture using the Sidecar

pattern. The chapter concluded with a brief tour of Envoy, the de facto

sidecar proxy framework. In the next chapter, we will look at the Istio

service mesh and configure it for various use cases.

Chapter 2 IntroduCtIon to the ServICe MeSh

99© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_3

CHAPTER 3

Installing Istio
In the previous chapter, we went through the microservice architecture

and its challenges. You learned how an orchestration engine can solve

these challenges, but to make a solution more elegant and reusable, you

need a service mesh. In this chapter, we will show you how to set up the

Istio environment and understand the basics of Istio.

 Istio Service Mesh
As discussed in the previous chapter, when using a microservices

architecture, calling services over the network is a little less reliable when

you want to provide a response. To streamline the process, clients should

be able to discover the services dynamically with the surety of service

availability. The service must be discovered in such a way that the calling

service agrees to an API version contract of the discovered service. On top

of this, the calling service should handle any errors during the network call

and retry any failed calls and also time out when necessary. These steps

are necessary to create smooth network interactions in a microservices

architecture. In addition, an application is required to log the calls and

instrument transactions and also limit the access for different services. All

this brings additional redundant work to be done inside an application

and does not have much to do with the application logic.

100

When you look closely, all these issues and challenges are directly or

indirectly related to network communication. The Istio service mesh offers

an infrastructure layer for service-to-service communication, abstracting

away the network complexity and challenges. The following are the core

features offered by Istio:

• Service discovery: One of the primary needs of an

application running in a production environment is

to be highly available. This requires one to scale up

a service with increasing load and scale down when

it’s not needed to save costs. Service discovery keeps

track of the nodes of a service that are available and

ready to pick up new tasks. If a node is unavailable,

service discovery removes it from the list of available

nodes and stops sending new tasks/requests to

the node.

• Routing: Istio provides flexibility so one can finely

control the traffic among the available nodes of a

service. The following list highlights the basic support

offered by Istio:

 a. Load balancing: Istio allows load balancing

based on different algorithms such as round-

robin, random, weighted, and least request.

 b. Health checks: Istio focuses not just on node

availability but also on whether the service

is up, running, and still responding, before

including it in the available nodes.

 c. Automatic deployments: Based on the

deployment type used, Istio drives traffic to new

nodes in a weighted pattern.

Chapter 3 InstallIng IstIo

101

• Resilience: Istio removes the need for coding circuit

breakers within an application. It also takes care of

the timeouts to a service and the retries to be made,

without the application knowing about them.

• Security: Istio takes care of access control by

supporting TLS-based encryption including key

management.

• Telemetry: Since Istio is an abstraction on the network

layer, it can keep track of the network calls, hence

tracing calls across multiple services initiated from a

single source, and it can also collect the metrics around

the calls.

Figure 3-1 gives you a glimpse of what happens between a service and

its node using Istio.

Figure 3-1. Istio features

Chapter 3 InstallIng IstIo

102

These features are must-haves for an application, and taking this

functionality out of the application code makes the code much cleaner

and removes unnecessary modules and redundancy across multiple

languages. Let’s see how Istio achieves this functionality by going through

its architecture.

 Istio Architecture
The Istio features, as stated, can be implemented inside an application too.

Istio uses the Sidecar pattern, which extracts these features out as small

components and wraps each service such that any inbound and outbound

requests are observed, validated, and accounted for. All of the traffic is

directed to the proxy, which follows rules or a policy to decide how, when,

or if that traffic should be deployed to the service. Using these rules, it also

enables techniques such as fault injections, circuit breaking, and canary

deployments without the services worrying about all that.

Figure 3-2 shows the different components of the Istio architecture.

Chapter 3 InstallIng IstIo

103

Istio is logically divided into two broad components, the data plane

and the control plane.

 Data Plane
The data plane is responsible for translating, forwarding, and monitoring

every network packet flowing to and from an instance. As the name

suggests, it is responsible for gathering metadata in a service mesh. It owns

the key features such as health checking, routing, service discovery, load

balancing, security, and telemetry. As discussed in the previous chapter,

the sidecar takes care of all these key features using the Envoy proxy.

Essentially, the data plane can be seen as a sidecar proxy deployed across

the service mesh. Figure 3-3 shows an overview of the data plane.

Figure 3-2. Istio components

Chapter 3 InstallIng IstIo

104

If the data plane takes care of all the essential items, what does the

control plane do?

 Control Plane
The data plane is a set of independent nodes interacting with each other,

and the control plane creates a distributed system out of them. When a

network request is initiated, the proxy doesn’t know which other proxy to

connect to. The control plane is the one providing this information in the

mesh. When a new service is discovered, the control plane populates the

existing list of services, which is then used by the proxies to figure out the

presence of a new service and direct the traffic. The basic configurations

Figure 3-3. Data plane services with Envoy sidecar

Chapter 3 InstallIng IstIo

105

of circuit breaking, load balancing, timeouts, security information, and so

on, are stored with the control plane. When a new deployment happens,

the data plane has the information when a new node is ready to accept

requests, but whether to do blue/green deployment or to shift traffic

gradually is defined by the control plane.

The control plane provides policy and configuration to the data plane

without touching any network packet in the mesh. Figure 3-4 shows the

flow of network packets and metadata in the system. The configurations

are referred to from the control plane while all the action happens in the

data plane.

Figure 3-4. Control plane guiding the requests and receiving
metadata from the data plane

Chapter 3 InstallIng IstIo

106

The data plane has always been there in any architecture. Most of

the features stated in the data plane are available in popular projects like

Nginx, HAproxy, and Envoy, as stated in the previous chapter. But these

require configurations to be set up manually or through self-written

scripts or by using multiple other tools. Istio clubs all these and provides

a single platform, removing boilerplate configurations and offering

durability in the solution. Istio uses four major components to simplify

these tedious tasks.

 Mixer
Mixer is a platform-independent component. It provides a mechanism

to collect telemetry for the services and also enforces the authorization

policy. It abstracts out the basic support functionalities such as telemetry

capture, quota enforcement, billing systems, and so on, provided by

infrastructure back ends, from the Istio system. Services usually are

tightly bound with the infrastructure back ends to get these details,

which leads to following specific protocols and increasing limitations

and dependencies.

Consider an example where a service is writing logs to the file system.

Since containers are volatile, the service logs may be lost with time. To

solve this, one starts sending the logs to a cloud service. A few months later,

one wants to introduce a new log capturer that has the ability to search

through the logs. Traditionally the service would be modified to send

logs to both these log services, but ideally a service should be concerned

only about its task and not about the logs. Istio takes the responsibility of

collecting this data, and Mixer provides a uniform abstraction for Istio to

interact with the infrastructure back ends.

Chapter 3 InstallIng IstIo

107

Figure 3-5 shows the topology that Mixer follows. All requests are sent

for a policy check, and afterward, the request telemetry data is reported to

Mixer. The process is optimized using caching and buffering.

The infrastructure back end may depend on infrastructure providers.

To make Mixer a modular and extensible component, it would not

be correct to bind it to a specific protocol and ask the infrastructure

providers to follow that. Instead, Mixer provides general-purpose plug-

ins called adapters.

Figure 3-5. Request sent to be policy checked with telemetry data
reported

Chapter 3 InstallIng IstIo

108

 Adapters

Adapters allow Mixer to interact with infrastructure back ends and keep

the rest of the Istio abstracted from the provider. The adapters to be used

are driven through the Mixer configuration to target any infrastructure

back end at runtime. Here are a few popular adapters that interact with

different back ends:

• Logging Backends: This adapter helps process and

save logs from services.

 a. CloudWatch: This allows Mixer to deliver

metrics to Amazon CloudWatch and sends logs

to Amazon CloudWatchLogs.

 b. Fluentd: This delivers logs to the Fluentd

daemon.

• Quota Backends: This helps keep track of different

endpoint quotas.

 a. Redis Quota: This supports the rate-limiting

quota for a fixed or rolling window algorithm.

As the name suggests, it uses Redis to store data.

• Authorization Backend: This helps authorize any

request within and outside the Istio mesh.

 a. List: This performs simple whitelist and

blacklist checks of IP addresses or regex

patterns.

• Telemetry back end: This helps process telemetry data

collected from pods.

 a. StatsD: This delivers metric data to a StatsD

monitoring back end.

Chapter 3 InstallIng IstIo

109

Figure 3-6 depicts the interaction of Mixer with the infrastructure

back ends.

Since Mixer interacts with different infrastructure back ends, how

does it decide which back end to send data to or request data from? Mixer

essentially depends on attributes available with it to make this call.

 Attributes

Attributes are the smallest data chunk that defines a property of a request.

Attributes include the request path, IP address to which a request is

directed to, response code, response size, request size, and so on. Mixer

processes these attributes and, based on the configuration, triggers calls

Figure 3-6. Istio interacting with back-end services via the Mixer
adapter

Chapter 3 InstallIng IstIo

110

to different infrastructure back ends. As shown in Figure 3-7, the data flow

starts from the data plane and goes to the infrastructure back ends via

Mixer.

The Mixer receives the attributes and has the adapters call the

infrastructure back ends, but as stated, there are configurations to define

active adapters, how to map the input attributes to adapter attributes, and

which instances attributes should be given to which adapters. This comes

under the configuration model of Mixer.

 Configuration Model

The configuration model is based on adapters and templates. Templates

define how attributes are fed into the adapters. Combines, they do three

types of configurations.

• Handlers: This is responsible for defining the

configuration of an adapter. In the case of StatsD, the

requests count can be one attribute to be fed into an

adapter. This needs to be defined in the configuration.

• Instances: This defines how instance attributes should

be mapped to adapter inputs. For the request count, an

instance configuration metric can define the value to

be 1 (i.e., count each request one time).

Figure 3-7. Data plane sending attributes to the attribute processor
or Mixer

Chapter 3 InstallIng IstIo

111

• Rules: Now we know the attributes to be read from

an instance and how they can be mapped to adapter

attributes. Rules define when to run this flow. Let’s

assume we want to push a request count for only one

service; then that check needs to be placed in the

match spec of the configuration, as in destination.

service.name == <Service Name>.

This provides granular control to operators to know which

infrastructure back end to use and add and remove it when required

without making any changes to the service, which makes life much easier

for developers.

 Pilot
Pilot drives the traffic. It figures out the new path, manages traffic, and

handles dead ends. In other words, it does the routing, provides service

discovery, and facilitates timeouts, retries, circuit breakers, and so

on. Pilot separates out the platform-specific way of service discovery

from Istio, thus allowing Istio to run on multiple environments such as

Kubernetes, Nomad, and so on. Istio uses the Envoy proxy in sidecars

in all the pods to handle traffic and configuration. Pilot translates the

traffic-related configuration to the Envoy configuration and pushes it

to the sidecar at runtime. Figure 3-8 shows the architecture of Pilot and

how it works.

Chapter 3 InstallIng IstIo

112

To enable traffic control for each service, the pilot maintains a model

for each of them in the mesh. Any update to replicas and service discovery

is tracked in the model service-wise. This helps in following a consistent

protocol to keep data in models across multiple environments. This

also means that environment adapters must act upon the data available

through their resources to convert it to the Pilot services model.

Let’s consider an example of a mesh deployed on Kubernetes. When

a new pod is created by Kubernetes, it informs its adapter, which stores

the information about a new replica of the service in a service-specific

model. This, as per the network rules and configuration, creates an Envoy-

specific configuration, and the Envoy API informs the sidecars of a new

service discovery. The important thing here is since the environment

Figure 3-8. Pilot architecture

Chapter 3 InstallIng IstIo

113

adapters are responsible for service discovery, the services may lie in

multiple environments, which means Istio can deploy the mesh across

multiple environments. Figure 3-9 shows the flow of metadata from the

environment to Istio.

Within a service model, Pilot stores the number of replicas and

configures Envoy to support different types of load balancing such as

round-robin, weighted, random, and so on, which are not available out of

the box by the environment providers.

The services are able to call each other, ensuring availability and

responsiveness. However, should all the services be able to call other

services? Should these services be communicating over unencrypted

connections? All these questions are taken care of by Citadel.

Figure 3-9. Services discovery in Istio

Chapter 3 InstallIng IstIo

114

 Citadel
We saw how bringing in microservices can improve an application’s

development time and performance, but it also comes with security

issues since the network connection becomes part of the application. This

connection has to safeguarded against common security issues like man-

in- the-middle attacks; therefore, TLS support is needed. Citadel provides

the features to encrypt requests within the Istio mesh. It also provides role-

based access control for services within the mesh. Please note that Citadel

only enables encryption (in other words, provides certificates to enable

secure connections between services), but this configuration is pushed to

Envoy by Pilot.

 Galley
Galley can be considered a management plane. Its core responsibility is to

abstract the Istio mesh of a configuration’s input from the user as well as

from the underlining environment. Galley stores the user configuration,

validates it, and then sends it to Pilot for further action.

Since you have a basic understanding of the Istio architecture, let’s see

how to set up Istio in different environments.

 Setting Up Istio
Istio, as stated earlier, is supported in multiple environments like

Kubernetes, Nomad, and so on. We will be restricting our setup to

Kubernetes. There are two ways to install Istio on a machine; one uses

the Helm chart, and the other is a quick demo installation. Let’s go

through these.

Chapter 3 InstallIng IstIo

115

 Installation Using Helm
Helm is a package manager running on Kubernetes. It allows us to define

the application structure through Helm charts. This installation is the one

that should be used for a production environment. It provides flexibility

for customizing the data plane and control plane components. Helm

helps us to generate the configuration file, which can then be used by the

Kubernetes controller to do the installation.

 Download the Istio Release

Download the Istio release from GitHub and set up the Istio path.

 1. Pull Istio from GitHub and install it. Version 1.2.2 is

the latest version as of this writing.

curl -L https://git.io/getLatestIstio | ISTIO_

VERSION=1.2.2 sh -

 2. Add the Istio path to the environment variable. The

current Istio folder is istio-1.2.2.

export PATH=$PWD/bin:$PATH

Figure 3-10 shows the output of installing Istio on a Mac machine.

Figure 3-10. Installing the Istio release

Chapter 3 InstallIng IstIo

116

 Install Helm

Setting up Helm is different on different platforms but quite

straightforward in all cases.

 1. Installation on macOS: On a Mac, one can use

Homebrew to install Helm.

brew install kubernetes-helm

 2. Installation on Ubuntu: On Ubuntu, use Snap to

install Helm.

sudo snap install helm --classic

 3. Initialize Helm as a client to fetch the remote

repositories.

helm init --client-only

Once Helm is installed, we need to add the istio-release repository

to Helm. This will include the charts provided by Istio.

 4. Add the Istio repository to Helm.

helm repo add istio.io https://storage.googleapis.com/

istio- release/releases/1.2.2/charts/

Figure 3-11 shows the installation process.

Figure 3-11. Installing Helm

Chapter 3 InstallIng IstIo

117

 Install Istio

Let’s install Istio using Helm. We will be using the Minikube Kubernetes

cluster created in Chapter 1. Please ensure that Minikube is up and

running. Figure 3-12 shows how to check the status and start Minikube in

case it’s down.

 1. We will create a namespace called istio-system

under which the Istio services will be deployed.

kubectl create namespace istio-system

 2. Istio comes with 23 custom resource definitions

(CRDs) that can be used when configuring Istio.

Let’s install them using kubectl. Make sure you are

inside the istio folder since the install folder is

expected in the current location.

Figure 3-12. Starting Minikube Kubernetes

Chapter 3 InstallIng IstIo

118

helm template install/kubernetes/helm/istio-init

--name istio- init --namespace istio-system |

kubectl apply -f -

 3. Verify if all the CRDs are installed correctly.

kubectl get crds | grep 'istio.io\|certmanager.

k8s.io' | wc -l

 4. There are multiple profiles available in the install

folder. Check out install/kubernetes/helm/istio.

We will be using the demo profile, which allows us

to experiment with most of the Istio features.

helm template install/kubernetes/helm/istio --name

istio --namespace istio-system \

 --values install/kubernetes/helm/istio/values-

istio-demo.yaml | kubectl apply -f -

Figure 3-13 shows the installation output.

 Demo Installation Without Helm
This installation is quicker and easier and allows use of most of the

istio features. This can be done without installing any other third-party

software. Make sure you are inside the istio folder.

Figure 3-13. Installing Istio using Helm

Chapter 3 InstallIng IstIo

119

 1. All Istio custom resource definitions are present

inside the Istio init folder.

for i in install/kubernetes/helm/istio-init/

files/crd*yaml; do kubectl apply -f $i; done

 2. We allow Istio to use both mutual TLS and non-TLS

mode. Istio-demo.yaml inside the istio folder

allows this setup.

kubectl apply -f install/kubernetes/istio-demo.yaml

Refer to Figure 3-14 for this installation and the expected result.

Figure 3-14. Setting up Istio without Helm using demo.yaml

Chapter 3 InstallIng IstIo

120

 GKE Installation
Installing Istio on GKE is similar to the other two installation methods with

an additional tool installation. It is assumed that Kubernetes is enabled for

the GKE project. Follow these steps:

 1. Install gcloud on the local machine. This tool helps

manage the resources on GKE. The installation steps

are in the Google cloud documentation at https://

cloud.google.com/sdk/docs/#deb.

 2. Kubectl can be installed using gcloud.

kubectl get svc -n istio-system

 3. Set the project ID and region on which Kubernetes

is enabled and Istio is supposed to be installed.

gcloud config set project [PROJECT_ID]

gcloud config set compute/zone [COMPUTE_ENGINE_ZONE]

 4. Create a new cluster.

gcloud container clusters create istio-installation

--machine- type=n1-standard-2 --num-nodes=2

 5. A Kubernetes cluster is now available to install Istio.

Use any of these two methods to set up Istio.

 Verifying the Installation
After installation, let’s verify that the installation was done properly,

meaning all the services are running and their pods are live.

 1. Find all the running services in the Istio namespace.

kubectl get svc -n istio-system

Chapter 3 InstallIng IstIo

https://cloud.google.com/sdk/docs/#deb
https://cloud.google.com/sdk/docs/#deb

121

Figure 3-15 shows the running services.

 2. Ensure all the pods are up and running in the Istio

system.

kubectl get pods -n istio-system

Figure 3-16 shows the expected output.

Figure 3-15. Running services in Istio

Figure 3-16. Running pods in Istio

Chapter 3 InstallIng IstIo

122

Now we have an Istio environment ready to deploy an application.

Let’s take a look at the services.

 Istio Services
Most of the services are straightforward and can be associated with the

components discussed earlier in this chapter. Citadel, Galley, Pilot, Policy,

and Telemetry are a few of them. The demo installation provides the

following additional services:

• Grafana: This presents the data collected from different

services in a dashboard for analytics and monitoring.

It is an excellent tool to monitor what’s going on in the

cluster.

• Kiali: This tracks the services that are part of the service

mesh, how they are connected with each other, the flow

of data, and their respective performance. This is an

excellent tool to check when a microservice is down or

is affecting the overall performance of the mesh.

• Jaeger: This monitors and troubleshoots transactions

in a distributed system. It helps to do performance and

latency optimizations.

• Prometheus: This is a popular open source metrics-

based systems monitoring and alerting toolkit. It has a

powerful data model and query language that allows

the analysis of applications and infrastructure.

• Tracing and Zipkin: These tools track requests across

the distributed system.

Now we have an Istio environment ready to deploy an application,

but before we go ahead and create a deployment, let’s go through a few

important Istio commands and CRDs.

Chapter 3 InstallIng IstIo

123

 Working with Istio
During the installation, we installed a lot of custom resource definitions

on top of our Kubernetes cluster, which we will be using in later chapters

to see Istio in action. Let’s visit a few of them and get an understanding of

what they are.

• Virtualservices: This defines a set of traffic rules to be

used when a service makes a call to another host. The

rules define what criteria to match before applying the

rules on the call.

• DestinationRules: This comes into play when the

routing is done. It covers the basic configurations like

load balancing, connection pool size, and so on.

• ServiceEntries: This adds additional entries to the Istio

service registry such that the autodiscovered services

can have access to the manually defined ones. It

configures the basic details of a service like its address,

protocol, ports, and so on. It is helpful when there are

services external to the service mesh.

• Gateways: This can be seen as a load balancer sitting

at the entry of the service mesh and listening to

the external connection at a specific port and then

distributing traffic inside the mesh.

• EnvoyFilters: Using this tool, one can define Envoy

proxy–specific filters on top of what Pilot already

generates. In other words, it can modify the mesh

traffic without Istio being able to autocorrect the faults;

hence, it needs to be used with care.

Chapter 3 InstallIng IstIo

124

• Policies: This tool enforces rules such as rate-limiting

traffic to a service, header rewrites, blacklisting, and

whitelisting access to services.

There are many other CRDs defined in the installation step, but these

are the most common and frequently used ones. We will be using them in

later chapters of the book.

 Using the Istio CLI
We have now used Kubectl to deploy services and have set up Istio to do

all the tasks related to a service mesh. Istio comes with its own CLI, which

provide flexibility to configure Istio settings. The first approach to debug

an application is to go through logs, but to dive in further, istioctl allows

us to debug and diagnose each deployment in the mesh. Let’s go through

some istioctl commands that help in application debugging and setup.

 authn
This is a command-line argument used to interact with the Istio

authentication policies. For example, let’s check the tls-authentication

setting on one of the Istio pods. We will cover more about authentication in

Chapter 10.

istioctl authn tls-check <pod-name>

 deregister
This is a command-line argument to deregister an existing IP address from

the service it was registered to. This is required when one forcefully wants

to remove a pod from a service.

istioctl deregister <service-name> <ip-to-be-removed>

Chapter 3 InstallIng IstIo

125

 register
This is a command-line argument to register a pod to a service.

istioctl register <service-name> <ip-to-be-added> <port>

 experimental
This allows playing around with istioctl and generating experimental

commands that can be modified or deprecated. It allows experimenting

across four areas.

 experimental auth

This allows interaction with the authentication and authorization policies

in the mesh.

istioctl experimental auth check <pod-name>

 experimental convert-ingress

This converts the Kubernetes ingress into a VirtualService configuration

on a best-effort basis. The result is the beginning of the Istio configuration.

A few scenarios will generate warnings where the conversion might have

failed, which may require manual intervention. Consider the example

ingress in Listing 3-1. We will try to convert it to VirtualService.

Listing 3-1. Sample Ingress Config ingress-smaple.yaml

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: gateway

spec:

 rules:

Chapter 3 InstallIng IstIo

126

 - http:

 paths:

 - path: /

 backend:

 serviceName: frontendservice

 servicePort: 80

Figure 3-17 shows the output generated by converting the ingress to an

Istio VirtualService.

Figure 3-17. Converting an ingress config to an Istio VirtualService

Chapter 3 InstallIng IstIo

127

 experimental dashboard grafana

Viewing the Grafana dashboard is easy using istioctl.

istioctl experimental dashboard grafana

This sets up a proxy to the Grafana service and makes it accessible in a

web browser through a random port. Figure 3-18 and Figure 3-19 show the

command and dashboard.

Figure 3-18. Request to show Grafana dashboard

Figure 3-19. Grafana dashboard visible on a random port, here 53869

Chapter 3 InstallIng IstIo

128

Similar dashboards are available for Envoy, Jaegar, Kiali, Promethus,

and Zipkin in our current setup.

 experimental metrics

This prints the metrics of the stated service in Kubernetes. This is

dependent on Prometheus. When a service metric is requested, this

command fires a series of requests to Prometheus about metrics and

prints them.

istioctl experimental metrics <service-name>

 kube-inject
This tool converts the Kubernetes configuration to an Istio configuration

by injecting the Envoy sidecar into any existing Kubernetes resource.

For unsupported resources, the configurations are left as is. Let’s

pick a deployment from Chapter 1 and try to convert the Kubernetes

configuration to the Istio config (see Listing 3-2).

Listing 3-2. Sample Ingress Config ingress-smaple.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment

 labels:

 app: webapp

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

Chapter 3 InstallIng IstIo

129

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:4.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

 readinessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 40

 livenessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 120

Listing 3-3 shows the transformed configuration.

Listing 3-3. Sidecar Injected into Kubenetes Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

 creationTimestamp: null

 labels:

 app: webapp

 name: webapp-deployment

Chapter 3 InstallIng IstIo

130

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 strategy: {}

 template:

 metadata:

 annotations:

 sidecar.istio.io/status: '{"version":"761ebc5a6397675

4715f22fcf548f05270fb4b8db07324894aebdb31fa81d960","

initContainers":["istio-init"],"containers":["istio-

proxy"],"volumes":["istio-envoy","istio-certs"],"imageP

ullSecrets":null}'

 creationTimestamp: null

 labels:

 app: webapp

 spec:

 containers:

 - image: web-app:4.0

 imagePullPolicy: Never

 livenessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 120

 name: webapp

 ports:

 - containerPort: 5000

 readinessProbe:

 httpGet:

Chapter 3 InstallIng IstIo

131

 path: /health

 port: 5000

 initialDelaySeconds: 40

 resources: {}

 - args:

 - proxy

 - sidecar

 - --domain

 - $(POD_NAMESPACE).svc.cluster.local

 - --configPath

 - /etc/istio/proxy

 - --binaryPath

 - /usr/local/bin/envoy

 - --serviceCluster

 - webapp.$(POD_NAMESPACE)

 - --drainDuration

 - 45s

 - --parentShutdownDuration

 - 1m0s

 - --discoveryAddress

 - istio-pilot.istio-system:15010

 - --zipkinAddress

 - zipkin.istio-system:9411

 - --dnsRefreshRate

 - 300s

 - --connectTimeout

 - 10s

 - --proxyAdminPort

 - "15000"

 - --concurrency

 - "2"

Chapter 3 InstallIng IstIo

132

 - --controlPlaneAuthPolicy

 - NONE

 - --statusPort

 - "15020"

 - --applicationPorts

 - "5000"

 env:

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: INSTANCE_IP

 valueFrom:

 fieldRef:

 fieldPath: status.podIP

 - name: ISTIO_META_POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: ISTIO_META_CONFIG_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: ISTIO_META_INTERCEPTION_MODE

 value: REDIRECT

 - name: ISTIO_META_INCLUDE_INBOUND_PORTS

 value: "5000"

 - name: ISTIO_METAJSON_LABELS

Chapter 3 InstallIng IstIo

133

 value: |

 {"app":"webapp"}

 image: docker.io/istio/proxyv2:1.2.2

 imagePullPolicy: IfNotPresent

 name: istio-proxy

 ports:

 - containerPort: 15090

 name: http-envoy-prom

 protocol: TCP

 readinessProbe:

 failureThreshold: 30

 httpGet:

 path: /healthz/ready

 port: 15020

 initialDelaySeconds: 1

 periodSeconds: 2

 resources:

 limits:

 cpu: "2"

 memory: 1Gi

 requests:

 cpu: 10m

 memory: 40Mi

 securityContext:

 readOnlyRootFilesystem: true

 runAsUser: 1337

 volumeMounts:

 - mountPath: /etc/istio/proxy

 name: istio-envoy

 - mountPath: /etc/certs/

 name: istio-certs

 readOnly: true

Chapter 3 InstallIng IstIo

134

 initContainers:

 - args:

 - -p

 - "15001"

 - -u

 - "1337"

 - -m

 - REDIRECT

 - -i

 - '*'

 - -x

 - ""

 - -b

 - "5000"

 - -d

 - "15020"

 image: docker.io/istio/proxy_init:1.2.2

 imagePullPolicy: IfNotPresent

 name: istio-init

 resources:

 limits:

 cpu: 100m

 memory: 50Mi

 requests:

 cpu: 10m

 memory: 10Mi

 securityContext:

 capabilities:

 add:

 - NET_ADMIN

 runAsNonRoot: false

 runAsUser: 0

Chapter 3 InstallIng IstIo

135

 volumes:

 - emptyDir:

 medium: Memory

 name: istio-envoy

 - name: istio-certs

 secret:

 optional: true

 secretName: istio.default

status: {}

 proxy-config bootstrap|cluster|endpoint|listener|
route
This tool retrieves information about Bootstrap, a cluster, an endpoint, a

listener, or a route-specific configuration of an Envoy instance in a pod.

 validate
This validates an Istio configuration before it can be applied to a mesh.

Let’s validate the output in Listing 3-3. Figure 3-20 shows a warning

generated from the file because we haven’t added a version to the

deployment.

These commands help in creating, modifying, injecting into, and

playing around with an Istio configuration in the service mesh.

Figure 3-20. Validation of generated Istio configuration

Chapter 3 InstallIng IstIo

136

 Summary
In this chapter, we went through the Istio architecture, and you learned

how decoupling the control plane and data plane helps to organize

the configuration and data flow. We went through the control plane

components Mixer, Pilot, Citadel, and Galley, which take care of

configuration, and we showed how they organize the flow of data and

convert a number of pods into a distributed system. We also went through

how to set up Istio on a local machine and on GKE via a Helm chart and

without any third-party software. We briefly went through a few important

CRDs of Istio. We also had a small overview of the Istio CLI tool, which will

be extensively used in later chapters. In the next chapter, we will be diving

into the Istio CRD VirtualService and provide some examples of how to

create an Istio mesh.

Chapter 3 InstallIng IstIo

137© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_4

CHAPTER 4

Istio VirtualService
In previous chapter, we discussed the Istio architecture in detail.

We worked with the control plane to configure the data plane. The

decoupling between the two components allows both of them to operate

independently, which leads to improved failure handling. The architecture

enables a centralized operations team to configure the infrastructure with

generic rules. Istio has different types of rules for different purposes. In

this chapter, we will show how to work with the traffic management rules

of Istio. Specifically, we will take an existing Kubernetes service and route

traffic through it.

 Request Routing
In this chapter, we will incrementally develop our application from

Chapter 1, so let’s recap what has been done so far. In Chapter 1, we

developed a polyglot application and deployed it to a Kubernetes

cluster. The application had a Java-based front end and a Python-

based back end. Both these applications were deployed in the same

Kubernetes namespace. The webapp was deployed by using the following

configuration:

apiVersion: apps/v1

kind: Deployment

metadata:

138

 name: webapp-deployment

 labels:

 app: webapp

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 spec:

 containers:

 - name: webapp

 image: web-app:4.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

apiVersion: v1

kind: Service

metadata:

 name: webservice

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 5000

Chapter 4 IstIo VIrtualserVICe

139

This configuration creates a pod and a service in the Kubernetes cluster.

A similar configuration was used to deploy the front-end Java application.

Both these applications can refer to each other by using DNS names,

as they belong to the same namespace. Similarly, services in different

namespaces can refer to each other by using a fully qualified service name.

Up to now we have always updated our Kubernetes deployment with

a new version. Thus, there has been one version of our application. But

this is an edge use case and does not conform to a regular Kubernetes

deployment. Practically, a Kubernetes cluster would have many versions

of the same application running. This would help us to meet different use

cases like application rollout, A/B testing, and so on. But once we have

many versions of the deployed application, we run into various request

handling issues.

As we extend our example, we need to add a version identifier to

the application response. This can be done by either adding version

information to the response headers or by adding a version prefix to the

response. Let’s modify our Python application to prefix its version to the

welcome message (as this is easily identifiable).

app = Flask(__name__)

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 return "[{}]Welcome user! current time is {} ".format(os.en

viron['VERSION'],str(currentDT))

removed for Brevity

We now need to set the VERSION environment variable via our

Dockerfile.

FROM python:3.7-alpine

COPY ./requirement.txt /app/requirement.txt

WORKDIR /app

Chapter 4 IstIo VIrtualserVICe

140

RUN pip install -r requirement.txt

COPY . /app

ENTRYPOINT ["python"]

ARG ver=NA

ENV VERSION=$ver

CMD ["app.py"]

To validate the previous behavior, we need to deploy a couple of

versions of this application to our cluster. Thus, first build some Docker

images for different versions using the following command lines:

$docker build . -t web-app:6.0 --build-arg ver=6.0

$docker build . -t web-app:6.1 --build-arg ver=6.1

$docker build . -t web-app:6.2 --build-arg ver=6.2

Now deploy all the previous versions to the Kubernetes cluster.

This is done by using the previously discussed webapp-deployment

command, with different Docker images. Moreover, the webapp

Kubernetes service is configured with the selector app: webapp. This

will select all pods matching these attributes and route the request to

one of them. If we request the webapp service, we get responses from

all versions of the service.

Figure 4-1 shows multiple versions of webapp running in Kubernetes.

Let’s do a lookup for http://10.152.183.146/, which is the front-end

service.

Figure 4-1. Kubernetes deployed services

Chapter 4 IstIo VIrtualserVICe

141

Figure 4-2, Figure 4-3, and Figure 4-4 show the responses.

In the rest of the chapter, we will configure the Istio request routing

rules for the required versions. Istio can handle TCP and HTTP services

quite well. Istio also provides support for the L4 and L7 attributes lookups

for request routing.

 Kubernetes Practices
Before we can configure Istio request routing, we need to make sure our

Kubernetes cluster adheres to the following listed practices. If there are

services that do not meet these requirements, then invocations to such

services will not be governed by Istio. Such requests will be resolved by

Kubernetes components instead.

Figure 4-2. Response from 6.1

Figure 4-3. Response from 6.2

Figure 4-4. Response from 6.0

Chapter 4 IstIo VIrtualserVICe

142

 Naming Service Ports
Istio routing requires names for ports that are defined in the Kubernetes

services in the <protocol>[<-suffix>] format. The following are the Istio-

supported protocols:

• http

• http2

• https

• grpc

• mysql

• mongo

• redis

• tcp

• tls

• udp

In our example, we must name ports for the web service as http-

webapp or as http. Different services can have the same name for their

ports, but the same service can’t have identical names for different ports.

It is important to note that this is a naming convention followed by

Istio and does not add any additional protocol values to the Kubernetes

specification. So, let’s update our web service with the following

configuration:

apiVersion: v1

kind: Service

metadata:

 name: webservice

Chapter 4 IstIo VIrtualserVICe

143

spec:

 selector:

 app: webapp

 ports:

 - name: http-webservice

 protocol: TCP

 port: 80

 targetPort: 5000

In the previous configuration, we have added a name attribute with

a value of http-webservice. Apply the previous configuration with the

following command:

$kubectl apply -f ../config/webservice.yaml

 Pods with Version Labels
Istio will do routing based on application versions. To select nodes of a

version, they must be labeled accordingly. Thus, all our deployments and

pods must have app and version labels applied. Istio also uses these labels

in metrics and telemetry data collection. Let’s now label our web service.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment-6.2

 labels:

 app: webapp

 version: v6.2

spec:

 replicas: 1

Chapter 4 IstIo VIrtualserVICe

144

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 version: v6.2

 spec:

 containers:

 # REMOVED FOR BREVITY

In the previous configuration, we have added version: v6.2 to the

deployment and template. Kubernetes tags only support string values;

thus, the version of our application is defined as v6.2. Lastly, apply the

previous configuration with the following command:

$kubectl apply -f ../config/webapp-deployent.yaml

 Declared Pod Ports
Istio routing can be applied only if the port exposed by the pod is declared

in the deployment template. Ports can be declared as a list for the

containerPort field in the deployment template. According to the Kubernetes

documentation, the containerPort field is for information purposes. A

container can run a service listening on 0.0.0.0 and a port. This port will be

accessible from all containers in the cluster. Istio routing will be bypassed if it

is applicable to ports that are not part of the deployment template.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment-6.2

Chapter 4 IstIo VIrtualserVICe

145

Removed FOR BREVITY

 containers:

 - name: webapp

 image: web-app:6.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

 readinessProbe:

 httpGet:

 path: /health

 port: 5000

 initialDelaySeconds: 40

In the previous configuration, we declared 5000 as the port exposed

by our container. Apply the previous configuration with the following

command:

$kubectl apply -f ../config/webapp-deployent.yaml

So far we have looked at the prerequisites for Istio routing. Let’s

now understand how it works before configuring it. Request routing

is configured in a service mesh using the VirtualService and

DestinationRule components. Figure 4-5 depicts the interactions

between the various involved components.

Figure 4-5. Destination resolution

Chapter 4 IstIo VIrtualserVICe

146

The following interactions are involved, as noted in Figure 4-5:

 1. Service X tries to connect to service Y using a fully

qualified domain name.

 2. The service Y FQDN is looked up by a virtual service

to determine whether it needs to be handled.

 3. If so, then DestinationRule is matched to

determine the end Kubernetes services.

 4. Lastly, the call is forwarded to the required service Y.

 Destination Rules
DestinationRule resolves a request destination location into a network

address in the Kubernetes cluster. In the previous section, you learned that

Istio prescribes version numbers to be part of pod labels. These labels can

then be matched in DestinationRule to define a version-based service

subset for request handling. Let’s now configure some destination rules for

our web service.

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webapp-destination

spec:

 host: webservice

 subsets:

 - name: v1

 labels:

 version: v6.2

Chapter 4 IstIo VIrtualserVICe

147

The previous defined rule configures a simple destination rule v1. The

host: webservice is used to select pods configured with the web service

Kubernetes service. It then selects the nodes matching version: v6.2

labels from these sets of nodes to define subset v1. We can create the rule

by using this:

$kubectl create -f ../config/webapp-destinationrules.yaml

After this, validate the created destination rules by using the following,

as shown in Figure 4-6:

$istioctl get destinationrules:

In the previous configuration, the subsets section can be used to define

multiple named subsets. Each of these subsets can then be configured with

various VirtualService components.

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webapp-destination

spec:

 host: webservice

 subsets:

 - name: v1

 labels:

 version: v6.2

 - name: v0

 labels:

 version: v6.0

Figure 4-6. Destination rules

Chapter 4 IstIo VIrtualserVICe

148

Update the rule by using the following command and then validate it

using istioctl (see Figure 4-7):

$kubectl apply -f ../config/webapp-destinationrules.yaml

The DestinationRule component is supposed to be configured by

service owners. The service owners not only can create distinct subsets

but also can define connectionPool, load balancing, and outlier detection

attributes for each of them. These settings determine how the consumer

services connect to each of the respective nodes.

 Connection Pool
Needless to say, pooling connections have benefits. In a service mesh

where we have enabled a TLS handshake, the cost for every new

connection is relatively high. Traditionally, we have added various

connection pool drivers to our consumer application. But Istio provides

out-of-the-box support for connection pools. The connectionPool

configuration determines how a consumer service connects to this

provider service. These settings must be fine-tuned by service owners.

The connection pool settings are applicable to each host of the

consumer service.

Istio connection pooling supports the keepAlive TCP method. Thus,

not only can we use a pool but can reuse unused connections. The settings

have a separate set of attributes to configure HTTP and TCP connection

pools. These attributes enable us to fine-tune the HTTP connection reuse.

The following are the most important attributes. We will not cover all of the

attributes; refer to the Istio docs to learn more.

Figure 4-7. Multiple destination rules

Chapter 4 IstIo VIrtualserVICe

149

• maxConnections: This setting defines the upper limit

for the number of connections to the service. The

default value is set to 1024. This setting is applicable to

TCP and HTTPv1.0 services.

• connectionTimeout: This setting defines the TCP

connection timeout.

• Http2MaxRequets: This setting is applicable to

HTTPv2.0. In HTTP 2.0 we make a single connection

and reuse it for multiple requests. The settings define

the upper limit for the number of requests that can be

performed over a connection.

• Http1MaxPendingRequests: This setting defines the

upper limit for the number of HTTP requests pending

over a connection. This is also applicable to HTTPv2.0/

GRPC services.

We can configure connectionPool attributes for each of the

defined subsets.

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webapp-destination

spec:

 host: webservice

 subsets:

 - name: v0

 labels:

 version: v6.0

 trafficPolicy:

 connectionPool:

Chapter 4 IstIo VIrtualserVICe

150

 tcp:

 maxConnections: 100

 connectTimeout: 30ms

 tcpKeepalive:

 time: 7200s

 interval: 75s

In the previous code, we have configured connectionPool for v6.0

version of the service. The settings configure the maximum number of

pooled resources as well as the connection and keepalive timeouts.

Note It is important to note that the connection pool is monitored
by the envoy proxy. envoy initiates the following circuit breakers if the
configured limits are breached:

• upstream_cx_overflow: this circuit breaker
is thrown when a service in the cluster breaches
the maximum number of connections. this is often
applicable to tCp and http/1 services. since http/2
reuses the same connection, the limit is not applicable
to it.

• upstream_rq_pending_overflow: this circuit
breaker is thrown when a service in the cluster makes
more http requests than the configured limits. this is
often applicable to http/2.

• upstream_rq_retry_overflow: this circuit
breaker is thrown when a service in the cluster makes
more http requests than the configured limits.

Chapter 4 IstIo VIrtualserVICe

151

 Load Balancing
Load balancing is the process of distributing requests among the different

hosts of the selected destination. There are various mechanisms to achieve

this. It can be configured with the loadBalancer settings. Istio supports the

following types of load balancers:

• Round robin: This selects a host at random. This

performs better if there is no health checking enabled

for the selected pods.

• Least connection: The method performs O(1) lookup

to determine two healthy hosts. It picks the one that is

serving the least number of connections.

• Random: The method selects a host randomly. It

performs better if there is no health checking enabled

for the selected pods.

• Consistent hash: This method configures hashing

based on request headers or cookies.

Since we are running a single instance of our web service, we will not

configure load balancing for it.

 Outlier Detection
Outlier detection is the process of determining unhealthy hosts in a load-

balanced cluster. The process is then followed by removing the hosts from

the load-balanced set. In Istio, Envoy circuit breakers are used to keep

track of errors caused by the destination host. These errors can be caused

by the service or the respective sidecar. In both cases, the host will be

marked as unhealthy.

Chapter 4 IstIo VIrtualserVICe

152

Istio only records consecutive errors thrown by a service. The default

value is set to five consecutive errors. For TCP-based services, connection

timeouts are counted as errors. While HTTP-based services, 5xx HTTP

responses are also recorded as errors. When recording these errors, Istio,

by default, evicts a service for 30 seconds from the load-balanced set.

After the elapsed interval, the host is back in the load-balanced set and is

re- evaluated at an interval of 10 seconds (by default). These timings can be

altered by configuring the various attributes available.

In summary, we have configured subsets in DestinationRule. The

subsets select nodes by matching the configured selectors. Istio then

applies the connectionPool, load balancing, and outlier detection settings

to them. These settings can be configured at the DestinationRule level.

The settings will then be applied to each and every subset created under it.

But if there is any configuration at the subset level, it will then override the

DestinationRule-level configuration.

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webapp-destination

spec:

 host: webservice l

 trafficPolicy:

 connectionPool:

 tcp:

 maxConnections: 100

 connectTimeout: 30ms

 subsets:

 - name: v1

 labels:

 version: v6.2

Chapter 4 IstIo VIrtualserVICe

153

 - name: v0

 labels:

 version: v6.0

In the previous code, we have configured connectionPool for all

subsets (v0 and v1) defined in the webapp-destination DestinationRule

component. The settings configure a maximum number of pooled

resources and connection timeouts. As discussed previously, a

DestinationRule component is effective only when a virtualService

sends a request to it. In the next section, we will cover how we can define a

virtualService and work with different configurations of it.

 VirtualService
The Istio VirtualService component has a behavior that is similar to

the Service component in Kubernetes. Basically a VirtualService is an

abstraction that maps a request to a service defined in the service mesh.

The service can be either a Kubernetes service or a service defined by Istio.

The destination resolution by a VirtualService component is performed

using DestinationRule. A VirtualService component can perform

destination resolution to handle the following use cases:

• Single version of the service

• Lookup based on HTTP headers to select a service

• Weighted comparison between a set of selected service

versions

The VirtualService abstraction decouples request routing from

application deployment. Thus, in a cluster, we can deploy many versions of

the same service and distribute the load among them in a finely controlled

manner.

Chapter 4 IstIo VIrtualserVICe

154

 Forwarding
In our previous example, we defined v0 and v1 subsets. The following

configuration sends all requests to the v1 subset:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-vs

spec:

 hosts:

 - webservice

 http:

 - route:

 - destination:

 host: webservice

 subset: v1

The previous configuration is one of the simplest forms of

VirtualService. It routes all requests from our virtual service to only a

specific version of the destination service. See Figure 4-8.

Figure 4-8. Single service

Chapter 4 IstIo VIrtualserVICe

155

The VirtualService behavior is configured using the following

attributes:

• The hosts attribute defines the list of hostnames or

host and port that must be matched for a request. The

host address can be a service name that resolves into

an FQDN using DNS (Kubernetes DNS in our example).

It can also be a host IP and port.

• After the request is matched, it is then forwarded to the

subset v1 of the destination host.

We can create the virtual service as shown in Figure 4-8 by using this:

$kubectl create -f ../config/webapp-simple-vs.yaml

After this, validate the created virtual service by using this (see

Figure 4-9):

$istioctl get virtualservices

The previous configuration sends all requests to v6.2 of the

web service. Let’s validate this by loading the front-end web service

(http://10.152.183.146/) a couple of times. We can see that all our

responses are from 6.2 version of webapp (see Figure 4-10).

Figure 4-9. v1 virtual service

Figure 4-10. Request routing to 6.2 versions

Chapter 4 IstIo VIrtualserVICe

156

 Rewrite
In the previous example, we created request forwarding, but a virtual

service is also capable of performing request rewrites. This behavior is

configured using the following attributes:

• The match attribute defines which requests will

perform the rewrite. The matching can be based on

a URI, HTTP headers, query parameters, an HTTP

method, scheme, etc. To perform the rewrite, we must

specify the URI, along with other selectors (if required).

• The rewrite attribute defines the new URI patch to

which the request needs to be sent. Depending on

the type of match, the rewrite will replace only the

matching URI part. This means if we are matching the

URI prefix, then the rewrite will only change the prefix.

If the complete URI is matched, then a rewrite will

change the complete URI.

• The subset attribute defines the destination host to

which the rewritten request is forwarded.

The following configuration matches the /hello request and sends it

to the / path of our web service version 6.2:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-rewrite-vs

spec:

 hosts:

 - webservice

 http:

 - match:

Chapter 4 IstIo VIrtualserVICe

157

 - uri:

 prefix: /hello

 rewrite:

 uri: /

 route:

 - destination:

 host: webservice

 subset: v1

We can create the virtual service by using this:

$kubectl create -f ../config/webapp-rewrite-vs.yaml

Now there are two virtual services that are handling the webservice

host. This will create issues, so let’s first delete the previously created

virtual service by using this:

$kubectl delete -f ../config/webapp-simple-vs.yaml

But how do we validate our changes? We can change our front-end

container every time. Alternatively, we can use the exec command

provided by Kubernetes. The exec command allows us to execute

commands in one of our containers. Thus, we can execute the wget

command to validate the request routing.

$kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -- wget

-O - http://webservice/hello

Defaulting container name to frontend.

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t

-n default' to see all of the containers in this pod.

[6.0]Welcome user! current time is 2019-07-21 07:15:59.395367

Connecting to webservice (10.152.183.230:80)

- 100% |********************************| 62 0:00:00 ETA

Chapter 4 IstIo VIrtualserVICe

158

 HTTP Attributes Lookup
Istio is capable of performing an HTTP attributes lookup. As discussed in

the previous section, the match attribute supports URIs, HTTP headers,

query parameters, HTTP methods, schemes, etc. We can match any of the

previously mentioned attributes and forward the request to a matching

host.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-httplookup-vs

spec:

 hosts:

 - webservice

 http:

 - match:

 - headers:

 x-upgrade:

 exact: "TRUE"

 route:

 - destination:

 host: webservice

 subset: v1

 - route :

 - destination:

 host: webservice

 subset: v0

In the previous configuration, we have configured the match attribute

to look for an x-upgrade header. If the header is available, then it is

forwarded to the newer version of the service. We have also added a

default route to which all nonmatching requests are forwarded.

Chapter 4 IstIo VIrtualserVICe

159

Note an Istio configuration takes a string for all configuration
parts of the match attribute. string likes true, TRUE, 25, etc., are
converted to the appropriate data type and thus can’t be directly
passed. these values can be converted to strings by enclosing them
in double quotes, as we have done in the previous configuration.

Let’s apply the configuration.

$kubectl create -f code/config/webservice-httplookup-vs.yaml

After this, validate the created virtual service by using the following

(see Figure 4-11):

$istioctl get virtualservices

Let’s make sure we do not have any of our previously created virtual

services.

Let’s first make a request without setting the headers.

$kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -- wget

-O - http://webservice/

Defaulting container name to frontend.

Use 'kubectl describe pod/ frontend-deployment-c9c975b4-p8z2 -n

default' to see all of the containers in this pod.

[6.0]Welcome user! current time is 2019-07-21 11:19:35.349452

Connecting to webservice (10.152.183.230:80)

Figure 4-11. HTTP-based virtual service

Chapter 4 IstIo VIrtualserVICe

160

Now pass the appropriate header in the wget command line.

$kubectl exec frontend-deployment-c9c975b4-p8z2t -- wget -O -

--header='x-upgrade: TRUE' http://webservice/

Defaulting container name to frontend.

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

[6.2]Welcome user! current time is 2019-07-21 11:19:28.565401

Connecting to webservice (10.152.183.230:80)

 Weighted Distribution
Istio has the capability to distribute requests among various versions

of a service in a configured ratio. The ratio is determined by the weight

attribute of a destination. See Figure 4-12.

The following configuration distributes traffic between the v0 and v1

subsets. For every four requests, we want to send three of them to the older

versions and one to the new version.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-wtdist-vs

Figure 4-12. Weight-distributed service

Chapter 4 IstIo VIrtualserVICe

161

spec:

 hosts:

 - webservice

 http:

 - route:

 - destination:

 host: webservice

 subset: v1

 weight: 25

 - destination:

 host: webservice

 subset: v0

 weight: 75

Apply the configuration using the following:

$kubectl create -f code/config/webservice-wtdist-vs.yaml

After this, validate the created virtual service by using the following:

$istioctl get virtualservices

Let’s make sure we do not have any of our previously created virtual

services. See Figure 4-13.

Now make a wget request a couple of times. We can see that every fourth

request is routed to v6.2, while the remaining ones are served from v6.0.

 $kubectl exec pod/frontend-deployment-c9c975b4-p8z2t

-it -- sh -il

Defaulting container name to frontend.

Figure 4-13. Weighted distribution virtual service

Chapter 4 IstIo VIrtualserVICe

162

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice

[6.0]Welcome user! current time is 2019-07-22 17:52:24.164478

frontend-deployment-c9c975b4-p8z2t:/#

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice

[6.0]Welcome user! current time is 2019-07-22 17:52:28.977615

frontend-deployment-c9c975b4-p8z2t:/#

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice

[6.0]Welcome user! current time is 2019-07-22 17:52:33.068721

frontend-deployment-c9c975b4-p8z2t:/#

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice

[6.2]Welcome user! current time is 2019-07-22 17:52:41.291074

frontend-deployment-c9c975b4-p8z2t:/#

frontend-deployment-c9c975b4-p8z2t:/#

In this example, we have an interactive session unlike the previous

examples where we were executing a command in the container. The

interactive session allows us to execute multiple commands one after

another.

Note up to now we have configured the destination as a
Kubernetes service and version-based subsets. But we can also
distribute requests among different Kubernetes services, without the
subset definition. In our example, the host attribute can refer to the
Kubernetes services prod.webservice and test.webservice.

Chapter 4 IstIo VIrtualserVICe

163

 Canary Releases
A canary release is the process of releasing software to a subset of users.

The process allows developers to validate the new version with a subset of

users before rolling it out to the entire user base. If there are issues found

with the new version, the release can be rolled back to a smaller set of

servers. This helps in mitigating the impact and improving service uptime.

Kubernetes also supports canary testing by managing the instance/

replication counts of the application. But this process of managing a pod

instance quickly becomes complicated and difficult to support. Istio, on

the other hand, has rich support for selecting requests and thus can do the

job quite easily.

A canary release is supplementary to the blue-green deployment

discussed in the first chapter. As a general process, the following steps are

undertaken:

 1. Using a blue-green deployment process, we deploy

the new version on a small number of containers.

 2. When the services are marked as healthy, instead

of routing all requests, we start with a percentage of

requests.

 3. We continue testing the newer version until we are

satisfied with the results.

 4. Lastly, this change is deployed on the entire fleet

serving all users.

In the previous sections, we discussed simple request matching. The

match method validates a simple attribute and does request forwarding.

But this is not good enough for a fairly advanced use case like a canary

Chapter 4 IstIo VIrtualserVICe

164

release. The matching needs to handle multiple clauses joined together

with operations like AND/OR. The Istio match attribute supports both

these operations in the following manner:

• The AND operation is performed by nesting multiple

conditions under a single match attribute.

• The OR operation is performed by having separate

conditions under a single match attribute.

Note In YaMl syntax, the values for a list are created by placing a
hyphen (-) before each value. this means a condition with a prefixed
hyphen is a different value.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-and-or-vs

spec:

 hosts:

 - webservice

 http:

 - match:

 - headers:

 x-upgrade:

 exact: "TRUE"

 - queryParams:

 ver:

 exact: v1

 method:

 exact: GET

Chapter 4 IstIo VIrtualserVICe

165

 route:

 - destination:

 host: webservice

 subset: v1

 - route :

 - destination:

 host: webservice

 subset: v0

The previous configuration would try to match either (OR operation) of

the following two conditions:

• The HTTP header has the correct value for x-upgrade.

• queryString has ver=v1 and the HTTP method is GET.

Deploy and validate the previous configuration.

$kubectl exec frontend-deployment-c9c975b4-p8z2t -- wget -O -

--header='x-upgrade: TRUE' http://webservice/

Defaulting container name to frontend.

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

[6.2]Welcome user! current time is 2019-07-21 18:09:25.296747

Connecting to webservice (10.152.183.230:80)

$kubectl exec frontend-deployment-c9c975b4-p8z2t -- wget -O –

http://webservice/?ver=v1

Defaulting container name to frontend.

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

[6.2]Welcome user! current time is 2019-07-21 18:10:03.728678

Connecting to webservice (10.152.183.230:80)

Chapter 4 IstIo VIrtualserVICe

166

Since we are making new multiple rules, it is important to

understand how Istio evaluates them. Istio evaluates all matching rules

based on the order of their declaration. The first declared matching

condition is evaluated first. If the condition fails, Istio evaluates the next

condition. In the following configuration, we have added the default

route in the first position:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-httplookup-vs

spec:

 hosts:

 - webservice

 http:

 - route :

 - destination:

 host: webservice

 subset: v0

 - match:

 - headers:

 x-upgrade:

 exact: "TRUE"

 route:

 - destination:

 host: webservice

 subset: v1

Let’s deploy and validate the previous configuration.

$ kubectl exec frontend-deployment-c9c975b4-p8z2t -- wget -O -

--header='x-upgrade: TRUE' http://webservice/

Defaulting container name to frontend.

Chapter 4 IstIo VIrtualserVICe

167

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

[6.0]Welcome user! current time is 2019-07-21 18:19:55.581391

Connecting to webservice (10.152.183.230:80)

This means that service owners must always make sure that the most

specific rule is declared first. All rules for matching should be declared

from the most specific to the generic.

A production-ready Istio configuration would have match conditions,

rule precedence, and weighted distribution of requests. Thus, for our

sample web service, the following configuration includes all these aspects:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-canary-vs

spec:

 hosts:

 - webservice

 http:

 - match:

 - headers:

 host:

 exact: "user1.com"

 route:

 - destination:

 host: webservice

 subset: v1

 weight: 10

 - destination:

 host: webservice

 subset: v0

 weight: 90

Chapter 4 IstIo VIrtualserVICe

168

 - route :

 - destination:

 host: webservice

 subset: v0

As per the previous configuration, all requests are served by the v0

service except the ones that originate from user1.com. Also, 10 percent of

the requests originating from user1.com are served by the v1 web service;

all the remaining ones are routed to the v0 version.

 Summary
In this chapter, we worked with VirtualService and DestinationRule

to perform request routing. We started the discussion by deploying

multiple versions of our webapp to the Kubernetes cluster. Next, we

made sure that we followed Istio’s prescribed naming conventions for

ports and pods. After this, we defined version subsets using destination

rules. The defined destination rules are evaluated when connected by a

virtual service. Thus, we built different virtual service configurations for

single service routing, HTTP attributes routing, and weighted routing.

Lastly, we looked at canary deployment. We found out how the process

can help to mitigate application downtime and improve application

stability. We built canary deployment examples using multiple match

conditions, destination precedence, and weighted request distribution.

In this chapter, the focus was on service request routing. In the

next chapter, we will look at configuring the Ingress, Egress, and

ServiceEntry components for interacting with the world outside of the

Kubernetes cluster.

Chapter 4 IstIo VIrtualserVICe

169© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_5

CHAPTER 5

Istio Gateway
In the previous chapter, we discussed Istio request routing. We showed

how to configure a virtual service and deployment rules to interact with

different versions of our application. Up to now, all our services have been

deployed in the Kubernetes cluster. But in real-world scenarios, we need to

interact with components outside the Kubernetes cluster. There are many

applicable use cases. For example, applications running inside the cluster

may interact with a database deployed outside the cluster. Similarly, there

can be user applications deployed in the cluster. These applications will

need to be accessed from the Internet. In this chapter, we will show how to

configure the Istio gateway and service entry, which will enable us to fulfill

the discussed behaviors.

 Ingress
The term ingress is defined as an entry facade. It is a location that

provides service access to all externally originated requests. The ingress is

configured using an Istio gateway. It is an edge component that is used to

expose services outside the cluster. It can be used to expose HTTP as well

as TCP services. The gateway provides capabilities such as TLS termination

and request forwarding.

In most production clusters, a gateway is configured in conjunction

with a Kubernetes load balancer service. In such scenarios, the Kubernetes

service creates a cloud-based L4 load balancer. The load balancer has a

170

public IP address that can be accessed by the world outside the Kubernetes

cluster. When the load balancer receives a request, then it delegates the

request to the matching Istio gateway. The gateway then uses Istio traffic

routing and dispatches the request to the appropriate service version.

Istio also applies the necessary telemetry and security to the gateway. See

Figure 5-1.

The Istio gateway can be compared to the Kubernetes ingress
resource, but unlike the ingress resource, the gateway does not
have any traffic routing rules configured with it. The gateway
delegates all inbound traffic to a virtual service and applies the
relevant routing configuration. In summary, the gateway works at
L4, L5, and L6 only.

Figure 5-1. Istio ingress

ChapTer 5 IsTIo GaTeway

171

Let’s now extend the web service example from Chapter 4.

Previously, in Chapter 1, we developed a polyglot application and

deployed it to a Kubernetes cluster. The application had a Java-based

front end and a Python-based back end. Both these applications

were deployed in the same Kubernetes namespace. In Chapter 4, we

extended the web service application. We deployed two versions of our

web service to the Kubernetes cluster. Lastly, we routed the requests

to both versions using the following virtual service and the associated

distinationRules:

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-wtdist-vs

spec:

 hosts:

 - webservice

 http:

 - route:

 - destination:

 host: webservice

 subset: v1

 weight: 25

 - destination:

 host: webservice

 subset: v0

 weight: 75

ChapTer 5 IsTIo GaTeway

172

The previous configuration sends one out of four requests to v1

versions and the remaining three to the v0 version. But this is applicable

only to the services inside the Istio mesh. If we want to send requests from

the external world, we need to create the following ingress gateway:

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: webapp-gateway

spec:

 selector:

 istio: ingressgateway

 servers:

 - port:

 number: 80

 name: http

 protocol: HTTP

 hosts:

 - "*.greetings.com"

The previous gateway configures a load balancer to allow external

HTTP traffic for *.greetings.com into the mesh. Next, we must configure

the associated virtual service for handling the requests from the configured

gateway.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice-wtdist-vs

spec:

 hosts:

 - webservice

 - webservice.greetings.com

ChapTer 5 IsTIo GaTeway

173

 gateways :

 - webapp-gateway

 http:

##REST REMOVED FOR BREVITY

In the previous configuration, we have modified the webservice-

wtdist- vs virtual service to handle webapp-gateway. This is done by

adding the gateway name to the gateways field. Additionally, the virtual

service must match the host gateway it is configured for. It can be an exact

match or a subset of the wildcard supported by the gateway. Thus, we have

added webservice.greetings.com to the hosts list.

Now we need to test the configuration. To do so, we need the address

of the load balancer. Execute the following command to determine the

address (see Figure 5-2):

$kubectl get svc istio-ingressgateway -n istio-system

The EXTERNAL-IP value shows the IP address of the load balancer.

This works in cloud-based environments like AWS, Azure, and so on.

In our case, since we have deployed our application to Minikube, the

EXTERNAL-IP column says <PENDING>. In such scenarios, we can skip the

load balancer and use the nodePort address of istio-ingressgateway. In

our case, the node IP address is the address of the Minikube server, and the

port is 31380. We can determine the IP address using this:

$ minikube ip

192.168.1.27

Figure 5-2. Ingress gateway address

ChapTer 5 IsTIo GaTeway

174

Since we have exposed the service to the outside world, we can validate

it by executing curl commands on a host outside the cluster. Since we do

not own greetings.com, we will be unable to handle any of its subdomains.

But this is not required. The gateways checks for the Host header field. We

can set the header field by using the appropriate curl options.

$curl -v -HHost:webservice.greetings.com

http://192.168.1.27:31380/

* Trying 192.168.1.27...

* TCP_NODELAY set

* Connected to 192.168.1.27 port 31380 (#0)

> GET / HTTP/1.1

> Host:webservice.greetings.com

> User-Agent: curl/7.58.0

> Accept: */*
>

< HTTP/1.1 200 OK

< content-type: text/html; charset=utf-8

< content-length: 62

< server: istio-envoy

< date: Sun, 04 Aug 2019 08:04:22 GMT

< x-envoy-upstream-service-time: 8

<

* Connection #0 to host 192.168.1.27 left intact

[6.0]Welcome user! current time is 2019-08-04 08:04:22.383137

In the previous output, we can see that the gateway matches the

header field and routes the request appropriately. We can try executing

curl a couple of times. We can see that every fourth request is served from

the new version of the web service.

[6.0]Welcome user! current time is 2019-08-04 14:18:13.330905

[6.0]Welcome user! current time is 2019-08-04 14:18:13.359514

ChapTer 5 IsTIo GaTeway

175

[6.0]Welcome user! current time is 2019-08-04 14:18:13.381638

[6.2]Welcome user! current time is 2019-08-04 14:18:13.402238

In the previous chapter, we configured a virtual service for sidecar

proxies in the mesh. But once a virtual service is configured using

gateways, the virtual service is removed from each of the Istio service

proxies. We can validate this by using our tests from Chapter 4, as

shown here:

$kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -it -- sh -il

Defaulting container name to frontend.

Use 'kubectl describe pod/frontend-deployment-c9c975b4-p8z2t -n

default' to see all of the containers in this pod.

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice/

[6.2]Welcome user! current time is 2019-08-04 16:55:03.230895

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice/

[6.0]Welcome user! current time is 2019-08-04 16:55:07.876481

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice/

[6.0]Welcome user! current time is 2019-08-04 16:55:12.130989

frontend-deployment-c9c975b4-p8z2t:/# wget -qO - http://

webservice/

[6.2]Welcome user! current time is 2019-08-04 16:55:14.911224

In the previous output, we executed wget commands from our front-

end pod. We can see that the requests are handled in a round-robin

manner across the two versions of our web service. If we want to apply the

same routing to all service proxies inside the mesh, we need to add the

mesh keyword to the gateways field.

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

ChapTer 5 IsTIo GaTeway

176

metadata:

 name: webservice-wtdist-vs

spec:

 hosts:

 - webservice

 - webservice.example.com

 gateways :

 - webapp-gateway

 - mesh

 http:

REMOVED for BREVITY

We can validate the previous configuration using the previously

executed commands. Our requests should be handled in terms of the

configured weights.

mesh is the default behavior when the gateways attribute is omitted.

 Secure Sockets Layer
Istio gateways provide complete support for SSL exchange. We can set up

an SSL certificate exchange in the gateway. Alternatively, the gateway can

act as a pass-through medium. This way, SSL termination can be handled

by HAProxy or Nginx running in the Kubernetes cluster.

Before we can enable SSL, we need a certificate and a private key. In

this section, we will use a self-signed certificate. Self-signed certificates

can be generated using openssl. We will cover a few essential steps, but

certification generation is beyond the scope of the book. You can proceed

to the next section if you already have the certificate.

ChapTer 5 IsTIo GaTeway

177

We will generate a self-signed certificate using the following openssl

command. It will be followed by prompts asking for a few more details.

$openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.

pem -days 365

Generating a RSA private key

...++++

...++++

writing new private key to 'key.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished

Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: US

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty

Ltd]:packt

Organizational Unit Name (eg, section) []:istio-book

Common Name (e.g. server FQDN or YOUR name) []:*.greetings.com

Email Address []:email@greetings .com

ChapTer 5 IsTIo GaTeway

178

Let’s make sure that the common name has the *.greetings.

com wildcard, which will allow us to use the certificate for our different

services. One more thing to note is that Kubernetes will be unable to read

the generated key as it is protected by a passphrase. We can remove the

passphrase by using the following command:

$ openssl rsa -in key.pem -out key2.pem

Enter pass phrase for key.pem:

writing RSA key

Now we have the required cert.pem and key2.pem files. We can use

them to configure SSL in different ways.

 Configure istio-ingressgateway-certs
Kubernetes provides good support for secret management. We can create a

named secret in the cluster. A pod can then be configured with the .spec.

volumes[].secret.secretName attribute. Kubernetes will mount the

named secret on the specified file location of the pod.

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 containers:

 - name: mypod

 image: redis

 volumeMounts:

 - name: foo

 mountPath: "/etc/foo"

 readOnly: true

 volumes:

 - name: foo

ChapTer 5 IsTIo GaTeway

179

 secret:

 secretName: mysecret

In our case, we are not going to configure istio-ingressgateway.

Alternatively, the Istio gateway has been configured with the istio-

ingressgateway- certs named secret. Thus, all we need is to create a

Kubernetes secret with that name.

$ kubectl create -n istio-system secret tls istio-

ingressgateway- certs --key key2.pem --cert cert.pem

secret "istio-ingressgateway-certs" created

We can validate the secret using the following (see Figure 5-3):

$kubectl describe secret istio-ingressgateway-certs -n istio-

system

The istio-ingressgateway-certs secret has been configured for the

/etc/istio/ingressgateway-certs file path. This means that Kubernetes

mounts the key and certificate files at the previous specified path. Now we

can configure the certificate in the following manner:

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

Figure 5-3. Istio secret

ChapTer 5 IsTIo GaTeway

180

metadata:

 name: webapp-gateway

spec:

 selector:

 istio: ingressgateway

 servers:

 - port:

 number: 443

 name: https

 protocol: HTTPS

 tls:

 mode: SIMPLE

 serverCertificate: /etc/istio/ingressgateway-certs/tls.crt

 privateKey: /etc/istio/ingressgateway-certs/tls.key

 hosts:

 - "*.greetings.com"

In the previous configuration we have configured the HTTPS protocol

on port 443. We have also provided the certificate with the key. The key

and the certificate are named tls.key and tls.crt, respectively. We have

enabled tls.mode as SIMPLE. This is the standard SSL configuration, where

the gateway is not validating the identity of the client. This is all that is

required; we can now validate the gateway using curl.

$for i in 1 2 3 4; do curl -HHost:webservice.greetings.com

--resolve webservice.greetings.com:31390:127.0.0.1 -k https://

webservice.greetings.com:31390/; echo "; done

[6.0]Welcome user! current time is 2019-08-10 18:16:05.814646

[6.0]Welcome user! current time is 2019-08-10 18:16:05.843160

[6.0]Welcome user! current time is 2019-08-10 18:16:05.872700

[6.2]Welcome user! current time is 2019-08-10 18:16:05.901381

ChapTer 5 IsTIo GaTeway

181

In the previous curl command, we have used a couple of options

besides the -HHost header.

• --resolve webservice.greetings.

com:31390:127.0.0.1: This will set webservice.

greetings.com:31390: to localhost as we are using

NodePort.

• -k: Since we have added a self-signed certificate, the

curl will fail unless we enable insecure access.

 Configure istio-ingressgateway-ca-certs
Up to now we have configured server-side TLS. This is good for end-user

applications. But often there is a need for mutual TLS authentication.

The Istio gateway can be configured for mutual TLS using client-side SSL

certificates. Here as well the certificate chain can be loaded into the istio-

ingressgateway- ca-certs named Kubernetes secret .

$ kubectl create -n istio-system secret tls istio-

ingressgateway- ca-certs --cert cert.pem

secret "istio-ingressgateway-ca-certs" created

The istio-ingressgateway-ca-certs secret has been configured

for the /etc/istio/ingressgateway-ca-certs file path. Now we can

configure the client’s certificate chain in the following manner:

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: webapp-gateway

 # REMOVED FOR BREVITY

 tls:

 mode: MUTUAL

ChapTer 5 IsTIo GaTeway

182

 serverCertificate: /etc/istio/ingressgateway-certs/tls.crt

 privateKey: /etc/istio/ingressgateway-certs/tls.key

 caCertificates: /etc/istio/ingressgateway-ca-certs/ca-chain.

cert.pem

 hosts:

 - "*.greetings.com"

In the previous configuration, we enabled MUTUAL TLS authentication.

The client certificate chain is named ca-chain.cert.pem. We can now

validate the gateway using curl. We will pass a client certificate and key by

using the cacerts and key options, respectively.

$for i in 1 2 3 4; do curl -HHost:webservice.greetings.com

--resolve webservice.greetings.com:31390:127.0.0.1 --cacerts

client.certs.pem --key client.key.pem https://webservice.

greetings.com:31390/; echo "; done

[6.0]Welcome user! current time is 2019-08-10 19:16:05.814646

[6.0]Welcome user! current time is 2019-08-10 19:16:05.843160

[6.0]Welcome user! current time is 2019-08-10 19:16:05.872700

[6.2]Welcome user! current time is 2019-08-10 19:16:05.901381

Up to now we have configured TLS termination in our gateway. But

the gateway also has a PASSTHROUGH mode in which it does not perform

any termination. The responsibility of the termination is delegated to the

virtual service. We will leave it to you to try to configure TLS termination

with Nginx or HAProxy.

 External Service Access
So far, we have exposed our services to the external world. But how about

consuming services running outside the cluster? Services running inside

an Istio mesh can access services outside the cluster. The default Istio

configuration does not apply any restrictions to external service access.

ChapTer 5 IsTIo GaTeway

183

This looks like it’s a simple default setup, but it may not be what we want.

Often businesses have requirements to monitor and control traffic going

outside the organization. Previously we saw all traffic flowing through

the sidecar proxy. Thus, depending on how the mesh is configured, the

following things can be accomplished:

• Allow/deny all external access

• Allow access to limited services

• Control permissions to allow access

By default Istio is configured in ALLOW_ANY mode. This configuration

will bypass the proxy for all services unknown to the mesh. In this mode,

the requests are not routed to sidecars. Instead, they are directly handled

by the application pod network. See Figure 5-4.

We can validate Istio mode by using the following command:

$kubectl get configmap istio -n istio-system -o yaml |grep -o

"mode: .*"

mode: ALLOW_ANY\n\nlocalityLbSetting:\n {}\n \n\n# The

namespace to treat

Figure 5-4. Sidecar bypass

ChapTer 5 IsTIo GaTeway

184

We can now try to access Wikipedia from one of our mesh nodes. We

can execute wget commands to determine the behavior.

$ kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -it -- sh -il

frontend-deployment-c9c975b4-p8z2t:/# wget -qSO - http://

en.wikipedia.org/ >/dev/null

 HTTP/1.1 301 Moved Permanently

 Date: Sun, 11 Aug 2019 14:36:07 GMT

 Content-Type: text/html; charset=utf-8

We can see that we are able to get to en.wikipedia.org with a 301

response code. Now let’s change the mode to REGISTRY_ONLY. Istio

configuration is stored in istio named configmap. Let’s update it and

check the behavior.

$ kubectl get configmap istio -n istio-system -o yaml | sed

's/mode: ALLOW_ANY/mode: REGISTRY_ONLY/g' | kubectl replace -n

istio-system -f -

configmap/istio replaced

$ kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -it -- sh -il

Defaulting container name to frontend.

frontend-deployment-c9c975b4-p8z2t:/# wget -qSO - http://

en.wikipedia.org/

 HTTP/1.1 502 Bad Gateway

wget: server returned error: HTTP/1.1 502 Bad Gateway

We can see that the location is no longer accessible. It returns a 502

response, signaling that the proxy configuration needs to be looked at.

We need to have controlled access to a limited set of locations. We can

configure this using the following components.

ChapTer 5 IsTIo GaTeway

185

 Service Entry
A ServiceEntry is a manner by which services external to the mesh can

be configured in the Istio service registry. Often it is helpful to configure

externally running business components. Once a service entry is

configured, all traffic to the service is monitored by Istio. See Figure 5-5.

Let’s continue our previous example and enable access for en.

wikipedia.org. We can configure its service entry endpoint with the

following configuration:

apiVersion: networking.istio.io/v1alpha3

kind: ServiceEntry

metadata:

 name: wikipedia

spec:

 hosts:

 - en.wikipedia.org

 ports:

 - number: 443

 name: https

Figure 5-5. Service entry

ChapTer 5 IsTIo GaTeway

186

 protocol: HTTPS

 resolution: DNS

 location: MESH_EXTERNAL

The previous configuration has the following attributes:

• spec.hosts: This attribute defines the list of hosts that

are configured using this service entry.

• spec.ports: This attribute defines the ports configured.

• spec.resolution: This attribute defines how the

address lookup needs to performed. It can be DNS

based or static if the host IP address is defined in the

configuration.

• spec.location: This attribute defines where the

service is located. The service location can be defined

as INTERNAL or EXTERNAL. In the case of an EXTERNAL

service, Istio disables the mutual TLS behavior.

Now apply the configuration to the Kubernetes cluster. We should be

allowed to access Wikipedia.

$ kubectl create -f config/service-entry.yaml

serviceentry.networking.istio.io/wikipedia configured

virtualservice.networking.istio.io/wikipedia configured

$ kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -it --

sh -il

Defaulting container name to frontend.

frontend-deployment-c9c975b4-p8z2t:/# wget -qSO - https://

en.wikipedia.org/

 HTTP/1.1 302 Found

 Date: Sun, 11 Aug 2019 16:44:19 GMT

 Content-Type: text/html; charset=utf-8

ChapTer 5 IsTIo GaTeway

187

 Content-Length: 0

 Connection: close

........

frontend-deployment-c9c975b4-p8z2t:/# wget -qSO - http://

en.wikipedia.org/

 HTTP/1.1 502 Bad Gateway

wget: server returned error: HTTP/1.1 502 Bad Gateway

We can see that only access to the HTTPS service is allowed. Access to

the HTTP service fails with error. We can have the following configuration,

which would allow access to both protocols:

apiVersion: networking.istio.io/v1alpha3

kind: ServiceEntry

metadata:

 name: wikipedia

spec:

 hosts:

 - en.wikipedia.org

 ports:

 - number: 80

 name: http

 protocol: HTTP

 - number: 443

 name: https

 protocol: HTTPS

 resolution: DNS

 location: MESH_EXTERNAL

ChapTer 5 IsTIo GaTeway

188

 Egress
In the previous section, we have restricted access to a limited set of

external services. But still all services running in the mesh can connect to

the available external services. Sometimes businesses have requirements

that all external traffic must be evaluated to ensure that it follows the

authorization rules. Every request must be inspected to restrict access

to only authorized ones. Moreover, all traffic flowing outside the mesh

must pass from a single location that is monitored. Istio defines an egress

gateway for this purpose. This is a component that can intercept traffic

exiting the service mesh. See Figure 5-6.

In our previous example, we configured direct access to en.

wikipedia.org. Now in the following configuration, we have defined the

egress host and intercepted all requests in it:

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: wikipedia-egressgateway

spec:

Figure 5-6. Egress

ChapTer 5 IsTIo GaTeway

189

 selector:

 istio: egressgateway

 servers:

 - port:

 number: 80

 name: http

 protocol: HTTP

 hosts:

 - en.wikipedia.org

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: wiki-egress-gateway

spec:

 hosts:

 - en.wikipedia.org

 gateways:

 - wikipedia-egressgateway

 - mesh

 http:

 - match:

 - gateways:

 - mesh

 port: 80

 route:

 - destination:

 host: istio-egressgateway.istio-system.svc.cluster.local

 port:

 number: 80

 weight: 100

ChapTer 5 IsTIo GaTeway

190

 - match:

 - gateways:

 - wikipedia-egressgateway

 port: 80

 route:

 - destination:

 host: en.wikipedia.org

 port:

 number: 80

 weight: 100

apiVersion: networking.istio.io/v1alpha3

kind: ServiceEntry

metadata:

 name: wikipedia

spec:

 hosts:

 - en.wikipedia.org

 ports:

 - number: 80

 name: http

 protocol: HTTP

 resolution: DNS

 location: MESH_EXTERNAL

The previous configuration makes full use of the Istio routing

capabilities. We have defined the following behavior in it:

• The service entry for en.wikipedia.org is configured

so that it can be accessed by services inside the mesh.

• We defined wikipedia-egressgateway, which can

handle the requests matching the specified host and

port.

ChapTer 5 IsTIo GaTeway

191

• We defined a wiki-egress-gateway virtual service. The

service is the glue between the two components. It was

configured for the following things:

• The virtual service handles all requests for en.

wikipedia.org. It is applicable to the gateway and

all sidecar proxies.

• Requests originating from sidecars are routed to

istio- egressgateway. The gateway is deployed in

the istio- system namespace.

• The gateway matches these incoming requests for

wikipedia-egressgateway. The virtual service then

routes requests made by the gateway to the service

entry host.

This way, all traffic leaving for en.wikipedia.org gets captured in the

istio-egress gateway. Let’s apply the configuration and test it using the

wget command, as shown here:

$ kubectl create -f config/egress-gateway.yaml

gateway.networking.istio.io/wikipedia-egressgateway created

virtualservice.networking.istio.io/wiki-egress-gateway created

serviceentry.networking.istio.io/wikipedia created

$kubectl exec pod/frontend-deployment-c9c975b4-p8z2t -it -- sh

-il

frontend-deployment-c9c975b4-p8z2t:/# wget -qSO - http://

en.wikipedia.org/

 HTTP/1.1 301 Moved Permanently

 date: Sun, 11 Aug 2019 17:53:52 GMT

 server: envoy

ChapTer 5 IsTIo GaTeway

192

We can check the logs in the egressgateway. It should have captured

the request.

$microk8s.kubectl logs -l istio=egressgateway -c istio-proxy -n

istio-system

......

[2019-08-11T17:53:52.214Z] "GET / HTTP/2" 301 - "-" "-" 0 0 395

355 "10.1.1.8" "Wget" "e2766b89-6b38-9744-9b02-fe9a32c6deea"

"en.wikipedia.org" "103.102.166.224:80" outbound|80||en.

wikipedia.org - 10.1.1.7:80 10.1.1.8:49880 -

 Summary
In this chapter, we exposed our Kubernetes cluster to the external world.

At the beginning, we defined the ingress gateway to allow external

clients to connect to services running in the cluster. We also configured

SSL termination on the edge gateway. Next we tried to control access to

services running outside the cluster. We modified the default ALLOW_ANY

policy to RESTRICTED_ONLY. Next, we configured the access to Istio services

using the service entry. The service entry helped to monitor the external

connection. Istio has provided egress gateways to have logging and access

control for services defined by the service entry. Lastly, we worked with

egress gateways to control service entry access.

ChapTer 5 IsTIo GaTeway

193© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_6

CHAPTER 6

Service Resiliency
In the previous chapter, we went through how to configure the Ingress,

Egress, and ServiceEntry components for interacting with the world

outside of the Kubernetes cluster. We also went through how to encrypt

requests between the microservices. So now we can deploy a secure

application on Kubernetes with the ability and control to interact with the

external network. In an ideal scenario, this setup should be sufficient to

run a production application, but developers tend to forget the fallacies

of distributed computing, as rightly pointed out by Peter Deutsch and the

people at Sun Microsystems.

One must look at the fallacies in a distributed system and work on

these while developing an application.

• The network is assumed to be reliable. This assumption

leads to the development of little to no error handling

on network errors. The results of this are network

issues, application stalls, and long response times.

When the network is restored, the stalled applications

may not resume their regular functions and may

require a restart.

• When using the network as a channel of

communication, all responses are spontaneous;

in other words, no latency is introduced in an

operation.

194

• There is no cap on bandwidth available for

communication. In a real-world scenario, if a

bandwidth threshold is crossed, the service is unable to

communicate.

Figure 6-1 shows the challenges in a distributed system.

In addition, there are failures if one of the service nodes is down or

not responding, even if the other ones are working fine. This leads to the

failure of a few of the requests and impacts end users. To resolve these

scenarios, one must do the following:

• Make an application handle network failures in the

service to such an extent that it should recover with a

network restore.

• The applications should adapt if latency increases and

ultimately should not affect the end customer.

• In the case of a bandwidth block or other node failure,

the service should retry or have a handler similar to a

network outage scenario.

Earlier, developers used popular frameworks like CORBA, EJB, RMI, and

so on, to make network calls appear like a local method call, but this made

the system susceptible to cascading failure where one service failure was

propagated to all the calling services. Istio offers resilience implementations

via sidecars, helping developers to focus on the business logic.

Figure 6-1. Challenges in a distributed system

Chapter 6 ServiCe reSilienCy

195

 Application Setup
Let’s continue with the example from Chapters 4 and 5. See Figure 6-2.

Let’s do a quick walk-through of the config describing the istio-

frontent deployment and service, webapp deployment, and service.

See Listing 6-1, Listing 6-2, Listing 6-3, and Listing 6-4.

Listing 6-1. WebApp-deployment-v7.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment-7.0

 labels:

 app: webapp

 version: v7.0

spec:

 replicas: 2

 selector:

 matchLabels:

 app: webapp

 version: v7.0

 template:

 metadata:

 labels:

Figure 6-2. Istio example application

Chapter 6 ServiCe reSilienCy

196

 app: webapp

 version: v7.0

 spec:

 containers:

 - name: webapp

 image: web-app:7.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

Listing 6-2. frontend-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-deployment

 labels:

 app: frontend

spec:

 replicas: 1

 selector:

 matchLabels:

 app: frontend

 template:

 metadata:

 labels:

 app: frontend

 spec:

 containers:

 - name: frontend

 image: frontend-app:1.0

Chapter 6 ServiCe reSilienCy

197

 imagePullPolicy: Never

 ports:

 - containerPort: 8080

Listing 6-3. webapp-service.yaml to Expose Web App Deployment

apiVersion: v1

kind: Service

metadata:

 name: webservice

spec:

 selector:

 app: webapp

 ports:

 - name: http-webservice

 protocol: TCP

 port: 80

 targetPort: 5000

Listing 6-4. frontend-service.yaml to Expose Front-End

Deployment

apiVersion: v1

kind: Service

metadata:

 name: frontendservice

spec:

 selector:

 app: frontend

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

Chapter 6 ServiCe reSilienCy

198

Now a destination rule as an intermediate layer to interact with

webapp-service. It has policies to allow the distribution of traffic across

pods. See Listing 6-5.

Listing 6-5. Destination-rule.yaml

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webapp-destination

spec:

 host: webservice

 subsets:

 - name: v0

 labels:

 version: v7.0

Now define a gateway to make a front-end service accessible outside

the Kubernetes cluster in Minikube. Without this, the pods and services are

accessible only inside the private network via private IPs or domain names.

See Listing 6-6.

Listing 6-6. gateway.yaml

apiVersion: networking.istio.io/v1alpha3

kind: Gateway

metadata:

 name: webapp-gateway

spec:

 selector:

 istio: ingressgateway # use istio default controller

 servers:

 - port:

Chapter 6 ServiCe reSilienCy

199

 number: 80

 name: http

 protocol: HTTP

 hosts:

 - "*"

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: frontendservice

spec:

 hosts:

 - "*"

 gateways:

 - webapp-gateway

 http:

 - match:

 - uri:

 prefix: /

 route:

 - destination:

 host: frontendservice

With the services deployed, the output when we hit the gateway using

an Minikube IP is shown in Figure 6-3.

Figure 6-3. Output of application

Chapter 6 ServiCe reSilienCy

200

We have a running application now; let’s see what all could go wrong

as per the fallacies explained earlier.

• One of the nodes of the webapp service goes down. The

front-end service makes calls to the webapp service

and sees UNKNOWN ERROR in response.

• A webapp node has a longer response time than

expected. This could be because of a slow network or

the node itself has issues. The front-end service waits

for the time that the response is not received.

• A webapp node is now overloaded with more requests

than expected, and new requests keep coming, which

further complicates the issue.

How do we solve these issues in an environment?

 1. If the front-end service gets an error stating the

service is down, retry the request and check if some

other node can serve the same request.

 2. The front-end service should add a timeout to the

request to avoid users waiting for a long time. After

that, it can either retry the request or show an error

to the user, based on the product flow, without

wasting their time.

 3. If a node or service is overloaded and repeatedly

returning an error, it should be given some time to

cool down or recover from it. To make this possible,

further incoming requests should directly be

returned with an error instead of actually going to

the service. The process is called circuit breaking,

similar to how we have in households to prevent

permanent damage to appliances.

Chapter 6 ServiCe reSilienCy

201

Let’s go through these scenarios and figure out how Istio can help solve

these challenges.

 Load Balancing
Load balancing is a common concept meaning to distribute load among

several nodes to increase throughput and efficiency. A load balancer is the

node to which all the requests come in, and it forwards/proxies the load

to distributed nodes. Though this seems like a good approach, it creates

a single point of failure that we are trying to avoid in the first place. It also

creates a bottleneck since all the requests are routed through this single

entry point.

Istio comes with the concept of client-side load balancing. The

requesting service can decide where to send the request based on load

balancing criteria. This means no single point of failure and higher

throughput. Istio supports the following load balancing techniques:

• Round-robin: Requests are evenly distributed across

all the nodes one after the other.

• Random: A random node is picked to serve the

request. It eventually becomes similar to round-robin

but without any order.

• Weighted: Weightage can be added to instances, and

requests can be forwarded based on the percentage.

• Least requests: This seems to be an effective technique

but depends on the use case. It forwards the request to

the node that has received the least number of requests

up to that time.

Chapter 6 ServiCe reSilienCy

202

Istio uses the service discovery feature of the platform to get details of

new nodes and distribute its presence to the rest of the nodes. The rest of the

nodes include the new service in their load balancing. Let’s use webapp 4.0

to see the load balancer in action. Refer to Listing 6-7 for the configuration.

Listing 6-7. Deployment Configuration and Load Balancing Config

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment-4

 labels:

 app: webservice

 version: v4

spec:

 replicas: 1

 selector:

 matchLabels:

 app: webservice

 version: v4

 template:

 metadata:

 labels:

 app: webservice

 version: v4

 spec:

 containers:

 - name: webapp

 image: web-app:4.0

 imagePullPolicy: Never

 ports:

 - containerPort: 5000

Chapter 6 ServiCe reSilienCy

203

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webservice

spec:

 host: webservice

 subsets:

 - name: v0

 labels:

 version: v7.0

 - name: v1

 labels:

 version: v4

 trafficPolicy:

 loadBalancer:

 simple: ROUND_ROBIN

apiVersion: v1

kind: Service

metadata:

 name: webservice

spec:

 selector:

 app: webservice

 ports:

 - name: http-webservice

 protocol: TCP

 port: 80

 targetPort: 5000

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

Chapter 6 ServiCe reSilienCy

204

metadata:

 name: webservice

spec:

 hosts:

 - "*"

 gateways:

 - webapp-gateway

 http:

 - route:

 - destination:

 host: webservice

 match:

 - uri:

 prefix: /

Figure 6-4 shows the output of request distribution on the service.

Since round-robin balancing is done, alternate requests are sent to

each of the versions for most of the cases.

Figure 6-4. Round-robin load balancing

Chapter 6 ServiCe reSilienCy

205

 Retry Requests
When a service call fails because of latency or a temporary glitch in

a service, the end user sees an error, for which we assume that the

user may retry the request. In a microservice architecture, this retrial

is multiplied at each layer of network call. With users retrying the

requests, the combination of request failures at each layer increases.

In Figure 6-2, assume calls fail between the gateway and front-end

service, with a second chance of failure between the front-end service

and the webapp service. Relying on the user to not to give up until

nothing fails is an unrealistic expectation. The solution is to build

automatic retries at each network call.

In a microservice architecture, one can either incorporate retries and

time out in every network call, which increases the development effort and

coding time and has nothing to do with business logic, or it can be left to

the network layer to handle the failures.

Let’s make a small change in our webapp service to randomly return

the 503 error code, which states the service is down. This happens if a

service is overloaded and unable to accept new requests and fails for a few

existing ones. Refer to Listing 6-8 for the change.

Listing 6-8. Change in Web App Service to Return Error in About 50

Percent of Cases

from flask import Flask

import datetime

import time

import os

import random

Chapter 6 ServiCe reSilienCy

206

app = Flask(__name__)

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 status = 200

 if random.random() > 0.5:

 status = 503

 return "[{}]Welcome user! current time is {} ".format(os.en

viron['VERSION'],str(currentDT)), status

@app.route("/health")

def health():

 return "OK"

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Now let’s send some traffic on the gateway and see the result.

We will be using siege to make continuous requests on the application.

See Figure 6-5.

Chapter 6 ServiCe reSilienCy

207

The downtime or failure of a service is propagated to the user. The

availability can be increased by simply retrying the failed request one

more time. Instead of changing the code, let’s achieve this via the Istio

VirtualService component. VirtualService allows us to retry a request

in the case of failure. By default, Envoy retries one time in the case of a

request failure. Let’s add this configuration as per Listing 6-9.

Figure 6-5. Request output if service node returns an error

Chapter 6 ServiCe reSilienCy

208

Listing 6-9. Changing webapp-virtualservice to Allow One Retry

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice

spec:

 hosts:

 - webservice

 http:

 - route :

 - destination:

 host: webservice

 retries:

 attempts: 1

Simply apply the configuration using istioctl, and let’s send the same

traffic again and look at the failed requests to users.

As visible in Figure 6-6, the availability has improved from 40 percent

to 80 percent. We can further increase the retries, resulting in even fewer

failures, but this comes at the cost of response time. Every failed request

takes time, and that time is added to the total response time of the calling

service. See Figure 6-7.

Chapter 6 ServiCe reSilienCy

209

Figure 6-6. With retries, the end user gets better availability

Figure 6-7. The response time of the calling service increases with
each retry

Chapter 6 ServiCe reSilienCy

210

Though retrying seems to be a good way to improve the availability,

there are obvious scenarios where retries should be avoided.

• Retries should be idempotent. Retry request should be

avoided where the response would change based on

the request count.

• If a request is known to take a lot of time, in other

words, is an expensive request, then retries should be

avoided. This can cause failures of the next requests as

well and may lead to a consumption of extra resources.

We made changes to the code to test the durability of the application to

withstand errors in one microservice. There is a simpler way of doing this

via fault injection. We can configure the virtual service such that a fault is

intentionally inserted to test the durability. Let’s revert our webapp code to

the previous version and inject a fault in the service using VirtualService.

Listing 6-10 shows the abort injection forcing 50 percent of the requests to fail.

Listing 6-10. Modified VirtualService Component to Forcefully

Inject Fault

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice

spec:

 hosts:

 - webservice

 http:

 - fault:

 abort:

 httpStatus: 503

 percent: 50

Chapter 6 ServiCe reSilienCy

211

 route :

 - destination:

 host: webservice

 retries:

 attempts: 0

The retries are intentionally made zero to demonstrate the failed

requests using siege. Figure 6-8 shows the output of failed requests.

Figure 6-8. Siege response with Istio fault injection

Chapter 6 ServiCe reSilienCy

212

Here the number of failures is more than 50 percent since the requests

to webapp are also failing from inside the code. Changing the retries to 1

results in better availability of the application.

Though retries resolve the issue when a few pods of a service are not

responding or are down, it tries to serve the request using the available

pod, but what happens if a pod is overloaded and has put a request in the

queue? The result could be that a response is served after a long time or

that the calling service receives an error after a long time. In both cases,

the end user is affected with the delay in response. Timeouts become an

important factor here before the user gives up.

 Timeout Requests
Timeout is an important component to make systems available. During

a network call to a service, if a call is taking a lot of time, it is difficult to

determine whether the service is down or is simply slow or overloaded. In

such scenarios, the calling service cannot sit idle waiting for the request

to complete since the end user is affected by this latency. An alternative

to this is to fail fast instead of keeping the user waiting. Istio provides a

feature to time out a request if the response time crosses a threshold.

Let’s inject a fault in the webapp service to increase the response time

beyond five seconds for 50 percent of the requests. Listing 6-11 shows the

modified VirtualService configuration.

Chapter 6 ServiCe reSilienCy

213

Listing 6-11. Modified Virtual Service to Forcefully Inject a Delay

for Some Requests

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: webservice

spec:

 hosts:

 - webservice

 http:

 - fault:

 delay:

 fexedDelay: 5s

 percent: 50

 route :

 - destination:

 host: webservice

 retries:

 attempts: 0

The average response time of the request has increased to 2.5 seconds,

making 50 percent of the users wait for five seconds for a response.

Figure 6-9 shows the performance using siege. This is a common scenario

if the service keeps waiting for the response.

Chapter 6 ServiCe reSilienCy

214

Now one way is to time out the request if no response is received

within one second. Since we have injected a fault in webapp service, we

will add a timeout to the front-end service. The modified VirtualService

config looks like Listing 6-12.

Listing 6-12. Modified Front-End Virtual Service to Set Timeout to 1

Second

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: frontendservice

Figure 6-9. Siege response with delay injection

Chapter 6 ServiCe reSilienCy

215

spec:

 hosts:

 - "*"

 gateways:

 - webapp-gateway

 http:

 - match:

 - uri:

 prefix: /

 route:

 - destination:

 host: frontendservice

 timeout: 1s

 retries:

 attempts: 0

The siege output for the application shows some errors, but the upper

cap on the response time is one second. See Figure 6-10.

Chapter 6 ServiCe reSilienCy

216

We have successfully fulfilled one criterion that the user will not have

to wait for response. Let’s try to work on the criteria that the user receives

an OK response. For this, simply retry the failed request one more time.

Please note this means the error response time now will increase to 1.5

seconds, or 0.5 seconds for each try. The change in configuration is shown

in Listing 6-13.

Figure 6-10. Siege response with timeout of one second

Chapter 6 ServiCe reSilienCy

217

Listing 6-13. Modified Web App Virtual Service to Set Timeout to 1

Second and Add Retries to 1

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: frontendservice

spec:

 hosts:

 - "*"

 gateways:

 - webapp-gateway

 http:

 - match:

 - uri:

 prefix: /

 route:

 - destination:

 host: frontendservice

 port:

 number: 80

 retries:

 attempts: 1

 perTryTimeout: 0.5s

Figure 6-11 shows the siege result of all requests being successful,

but this comes at the cost of three hits in a few cases. From the figure, it

is easily identifiable that any request with a response time close to 1.5

seconds has been hit three times.

Chapter 6 ServiCe reSilienCy

218

With the increasing number of hits, we ensure that the user gets a

response but at the supply end; in other words, the service providing the

response may have to serve way more requests than expected. There are

scenarios when the service becomes overloaded with requests and may

start failing for consecutive requests. Even though the timeout saves the

Figure 6-11. Siege response with three retries and 0.5 seconds of
timeout for each try

Chapter 6 ServiCe reSilienCy

219

end user from facing the issue, even with timeout the service continues

to process the requests that lead to the further consumption of resources.

Under such circumstances, the service will always be overloaded with

requests and may never be able to recover if the application is consumed

throughout the day.

To solve this, the service needs a cooldown time to finish all the

pending requests, even though timed out, and start serving new requests.

This is done using a circuit breaker.

 Circuit Breaker
Circuit breakers are quite common in electrical appliances. It ensures

that any one device does not overdraw the electric current. Overdrawing

the current could result in heating up the circuit and can result in fire and

overall breakdown. To avoid this scenario, the circuit breaker kills the

power supply of the current-overdrawing appliance.

In a microservice architecture, the most common problem is the

cascading of service failures. If a service is not responding for any reason,

repeatedly sending requests to the service increases latency and puts

unnecessary load on the service. Circuit breakers allow the overloaded

service to get some cooldown time before it can start reserving new

requests. Figure 6-12 shows the request behavior before and after the

circuit breaker in action.

Chapter 6 ServiCe reSilienCy

220

When the number of consecutive failures crosses a threshold in

Service C, the circuit breaker trips, and for some period of time, all the

calls to Service C fail immediately. After a period of time, a few requests are

allowed to go through the circuit to test whether Service C has recovered.

If the requests are successful, Service C is restored or the service remains

in a circuit-broken state for another period of time. Figure 6-13 shows the

recovery of the service after the circuit breaker.

Figure 6-12. Circuit breaker in action

Chapter 6 ServiCe reSilienCy

221

Circuit breakers in software can be implemented using the popular

client-side circuit breaker libraries. If Java is the development language,

one example of a client-side circuit breaker is the Netflix library Hysterix,

but again, this requires developers to take care of circuit breaking within

the application, which doesn’t have much to do with the application

logic. At the same time, it needs to be implemented in multiple languages

Figure 6-13. Circuit breaker released after service recovery

Chapter 6 ServiCe reSilienCy

222

for polyglot applications. Istio abstracts out the circuit breaker and uses

an Envoy configuration to handle the process. Envoy enforces circuit

breaking at the network layer rather than having it at the application

code layer.

Istio implements a circuit breaker at the connection pool level and at

the load balancer level.

 Connection Pool Circuit Breaker
Creating a new connection to each service on each call can be an

expensive process. It requires creating a socket, negotiating the security

parameters, and then communicating over the network and closing

the connection safely. Instead of doing this for each request, keeping

a connection pool can reduce the expensive process of creating a new

connection each time. Envoy provides this out of the box for Istio; in other

words, it supports an abstract connection pool on top of a wire protocol

such as HTTP/1.1 and HTTP/2.

 HTTP/1.1 Connection Pool

It creates a number of connections up to a threshold stated in the

configuration. Requests are bound to connections as and when available.

The availability of a connection can be based on the existing connection

becoming free or the spawning of a new connection since the number

of connections is still below the configured threshold. If a connection is

broken, a new connection is established to replace it.

 HTTP/2 Connection Pool

It creates a single connection to an upstream host and requires that all

requests be multiplexed over it. If the host resets the connection or the

connection reaches its maximum stream limit, the pool creates a new

connection and releases the earlier one.

Chapter 6 ServiCe reSilienCy

223

Istio abstracts the above pools at the Envoy layer and optimizes the

connections. Now let’s look at an example to see a circuit breaker in action.

We will create a new version of the webapp service and create a new

deployment of it in the mesh. To differentiate it from the old version, we

are adding a delay of 0.5 seconds to the code. Listing 6-14 introduces the

new method to the service, which will add a fault to the service.

Listing 6-14. Addition of a Fault to the Webapp Application

from flask import Flask

import datetime

import time

import os

import random

app = Flask(__name__)

global status

status = 200

@app.route("/")

def main():

 currentDT = datetime.datetime.now()

 if (status == 200):

 time.sleep(0.5)

 return "[{}]Welcome user! current time is {} ".format

(os.environ['VERSION'],str(currentDT)), status

@app.route("/health")

def health():

 return "OK"

@app.route("/addfault")

def addfault():

 global status

Chapter 6 ServiCe reSilienCy

224

 if (status == 200):

 status = 503

 else:

 status = 200

 return "OK"

if __name__ == "__main__":

 app.run(host='0.0.0.0')

Listing 6-15 shows the new deployment.

Listing 6-15. Webapp-deployment-v7.1.yaml

apiVersion: networking.istio.io/v1alpha3

kind: VirtualService

metadata:

 name: frontendservice

spec:

 hosts:

 - "*"

 gateways:

 - webapp-gateway

 http:

 - match:

 - uri:

 prefix: /

 route:

 - destination:

 host: frontendservice

 port:

 number: 80

Chapter 6 ServiCe reSilienCy

225

 retries:

 attempts: 1

 perTryTimeout: 0.5s

Let’s change the destination rule to accommodate both v7.0 and v7.1

(see Listing 6-16).

Listing 6-16. Destination rule modified to add v7.1

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webservice

spec:

 host: webservice

 subsets:

 - name: v0

 labels:

 version: v7.0

 - name: v1

 labels:

 version: v7.1

With these changes, let’s check the performance of the application

using siege. Refer to Figure 6-14.

Chapter 6 ServiCe reSilienCy

226

We can easily differentiate that v7.1 is the one responding in 0.5+

seconds. All the calls seem to be successful in the experiment, but in a

live environment, the 0.5-second delays may keep piling up, keeping the

calling service (front-end service) in the queue if the concurrent users

increase. This will increase the response time of the service, leading to

the timeouts that we configured in earlier steps, but at the same time

still making the service process the request. So assuming after a certain

Figure 6-14. Application performance with v7.0 and v7.1 webapp

Chapter 6 ServiCe reSilienCy

227

number of response failures, the service will fail, we can configure a circuit

breaker to prevent the service from being bombarded with further requests

that it cannot handle. Let’s create a rule to demonstrate the failure of

requests and see the circuit breaker in action.

Listing 6-17 shows a destination rule restricting the number of

connections and max requests per connection to v7.1.

Listing 6-17. Destination Rule for v7.1 Restricting Number of

Connections

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webservice-circuitbreaker

spec:

 host: webservice

 subsets:

 - name: v1

 labels:

 version: v7.1

 trafficPolicy:

 connectionPool:

 tcp:

 maxConnections: 1

 http:

 http1MaxPendingRequests: 1

 maxRequestsPerConnection: 1

With this configuration, we will bombard the service with concurrent

requests. The result of this restriction is shown in Figure 6-15.

Chapter 6 ServiCe reSilienCy

228

As compared to the previous result, most of our requests are

completed in 0.1 seconds. From a user’s perspective, there is an increase

in the number of errors, but the service gets a cooldown period to settle

below the threshold. In our case, since we have set the max connection

limit to 1, we are easily able to demonstrate this in the example.

Figure 6-15. Bombarding service with four concurrent requests

Chapter 6 ServiCe reSilienCy

229

 Load Balancer Circuit Breaker
So far we have seen how a service is saved from traffic bombardment in the

case of low performance, but this increases the number of errors that users

get. This can be fine as long as it’s a temporary glitch, but if the glitches

go on for a long time, the end users will keep receiving these errors. In

such a scenario, the way out should be to remove the service node from

the cluster until it recovers. Istio tries to detect the outperforming node or

outlier and removes that from the load balancer.

Let’s reconfigure our destination rule to add a check for the outlier

and remove that from the load balancer if required. Listing 6-18 shows the

modified configuration.

Listing 6-18. Destination Rule for v7.1 Adding Configuration to

Remove Outliers

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

 name: webservice-circuitbreaker

spec:

 host: webservice

 subsets:

 - name: v1

 labels:

 version: v7.1

 trafficPolicy:

 connectionPool:

 tcp:

 maxConnections: 1

 http:

 http1MaxPendingRequests: 1

 maxRequestsPerConnection: 1

Chapter 6 ServiCe reSilienCy

230

 outlierDetection:

 baseEjectionTime: 10s

 consecutiveErrors: 1

 interval: 1s

 maxEjectionPercent: 100

In this configuration, a faulty node is ejected if more than one

consecutive error occurs. It keeps checking if the node is back or not at an

interval frequency. We are also allowing the ejection of all the replicas of

the service if required. Refer to Figure 6-16 for fault addition to the service

and the complete result. Now the outlier has been popped out, and every

request’s maximum response time is less than 0.15 seconds.

Figure 6-16. Outlier removed from the load balancer and all requests
going to v7.0 of the webapp service

Chapter 6 ServiCe reSilienCy

231

The circuit breaker in itself is sufficient to save a disaster but not solve

the complete problem of a distributed system.

 Resiliency
The overall architecture of the system should be not only to serve an end

user’s request but also to keep the application up and running for future

requests. Combining all these Istio features should give you a stable

system, as follows:

 1. The end user requests a service to respond. If the

response takes a lot of time, the request times out.

 2. Once the request is timed out, instead of making the

end user retry the request, retry it at each network

hop. This time, the request should go to a different

pod, assuming the earlier one might have had a

temporary glitch.

 3. Distribute further requests to different pods of the

service via load balancing, making sure no single

pod is overloaded.

 4. There’s no overload of the load balancer since a

client-side load balancer is used. If the client goes

down, its replica can take over in the meantime until

a replacement is spawned.

 5. If one of the nodes is not responding, give it a cool-

off period using a circuit breaker, while the calling

service can try the request to a different node.

 6. If the cool-off period is not sufficient, eject the node

from the service pool to avoid any future requests

until the service recovers.

Chapter 6 ServiCe reSilienCy

232

 Summary
In this chapter, we went through Istio resiliency. We saw how retries and

timeouts can hide the errors and latency in the application from the end

user. Load balancing can be important since retries may re-fail for the

same instance. Client-side load balancing with the concept of no single

point of failure prevents throttling of requests directed to a single node

for balancing. Circuit breakers and connection pools try to keep the

application services in a healthy state, saving them from overloading and

from the overhead of network connections. In the next chapter, we will

look into application metrics and monitoring using tools like Grafana and

Prometheus.

Chapter 6 ServiCe reSilienCy

233© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_7

CHAPTER 7

Application Metrics
In the previous chapter, we went through the resiliency offered by Istio to

improve service availability and durability by abstracting the complexity

out from the code to the Envoy proxy. In a production environment,

there is always a time when it might fail. This can be determined by the

data collected from the system, which can then be prepared accordingly.

Metrics collection is an important part of any system, but in a distributed

system, it is difficult to simply read the data and make sense out of it

quickly. There are open source tools that help in the collection and

visualization of data. We will go through a couple of them in this chapter.

 Application Monitoring
Monitoring is subjective for the different use cases of an application. For

a static web site, a mere check of whether the web site is running or not is

sufficient. This can be done with popular service providers like Pingdom

since a web site is exposed publicly. Whereas for a web application

running using a microservices architecture, a lot of services including the

database may not be public. For such scenarios, the external check may say

that the web application is not running but will not be able to determine

the point of failure. An internal check on which service is failing could be

a little more helpful in this scenario. This is why we need monitoring tools

inside the private network on which application is running. K8s, which we

234

have been using in this book, provides the automatic recovery of failing

services. Figure 7-1 shows the monitoring mechanisms in different types of

applications.

Figure 7-1. Monitoring of static web site and monitoring of a
distributed system

Identifying and fixing failing components is fine, but this process

creates some downtime. These days, all applications are targeting 99.9

percent availability, which can be possible by following precautions rather

than curing a failed system after the fact. Before any application reaches

production, one works on the load capacity and identifies the threshold at

which the system might fail. Still, there are scenarios where a system may

fail because of unknown circumstances. Keeping this in mind, developers

capture basic metrics of a service such as the number of requests, response

time, response status, etc., and the basic metrics of the node on which the

services are running such as CPU utilization and memory consumption.

The load capacity helps to determine the request- and response-related

Chapter 7 appliCation MetriCs

235

thresholds, and there are standards around when a node gets overloaded

or runs out of memory. Once we have these metrics and threshold details,

we can monitor the application by collecting and analysing these metrics.

Based on analysis, we can determine when an application is about to fail.

When an application is about to fail, a message to the developer or

DevOps or respective stakeholder might help to prepare them or rescue the

system before the application crashes. This is where alerting comes into the

picture. Alerting can use different channels from simple e-mail to phone

calls depending upon the severity of the alert and use case of the application.

Figure 7-2 demonstrates the threshold of a couple of parameters and

the action when the threshold is crossed.

As shown in Figure 7-2, the whole monitoring process can be divided

into three major steps.

Figure 7-2. Alerts sent to stakeholders after threshold has been
reached

Chapter 7 appliCation MetriCs

236

 1. Application metrics collection

 2. Analysis of metrics

 3. Alerting stakeholders when required

Let’s see how Istio can help in the three-step process.

 Istio Mixer
We saw in previous chapters how Mixer gets telemetry data from the Istio

data plane. The data collected is about how the services interact with each

other and the CPU and memory consumption of instances. Figure 7-3

shows the flow of data from Mixer to the back-end service; in this case, we

are using Prometheus.

Figure 7-3. Metrics flowing from the data plane to Prometheus

Chapter 7 appliCation MetriCs

237

The metrics flow from the data plane to Mixer, which extracts the

attributes and passes them through the configuration model, which

determines what needs to go through and in what form to the adapter.

The adapter communicates the data to the back-end service, in this

case Prometheus. Before we get into this further, let’s take a look at how

Prometheus works.

 Prometheus
Prometheus is an open source monitoring and alerting tool. It

fundamentally stores all data as a time series grouped together on the

basis of metric name and key-value pairs called labels. Prometheus offers

the following:

• Time-series data of different metrics

• A query language to analyze the data

• An alerting system to send notifications based on

analysis done in the second step

Prometheus collects metrics via a pull model over HTTP. In other

words, endpoints need to be provided to a Prometheus configuration

to scrape the metrics data. It stores all data locally and runs rules over

the data either to conclude new time-series data or to generate alerts.

Figure 7- 4 shows the flow of data across all the stakeholders.

Figure 7-4. Prometheus metrics flow

Chapter 7 appliCation MetriCs

238

Let’s start by setting up Prometheus on the K8s cluster.

 Installation
Prometheus comes preconfigured with Istio. Mixer has a built-in

Prometheus adapter exposing endpoints serving the generated metric

values. A Prometheus server is present as an add-on in the Istio cluster that

is installed. It can also be installed using a Helm chart in a single step.

helm install --name prometheus stable/prometheus

This can be further configured to provide different storage, ingress

rules, and so on, but we are not covering those here. Please refer to the

Prometheus documentation for more configuration information.

The Prometheus add-on for Istio is preconfigured to scrape Mixer

endpoints to collect exposed metrics. The available endpoints are as follows:

• istio-telemetry.istio-system:42422/metrics: This

returns all Mixer-generated metrics.

• istio-telemetry.istio-system:15014/metrics:

This returns all Mixer-specific metrics. This returns the

metrics from Mixer.

• istio-proxy:15090/metrics: This returns raw stats

generated by Envoy. Prometheus is configured to look

for pods with the envoy-prom endpoint exposed. The

add-on configuration filters out a large number of

Envoy metrics during collection in an attempt to limit

the scale of data by the add-on processes.

• istio-pilot.istio-system:15014/metrics: This

returns the Pilot-generated metrics.

• istio-galley.istio-system:15014/metrics This

returns the Galley-generated metrics.

Chapter 7 appliCation MetriCs

239

• istio-policy.istio-system:15014/metrics: This

returns all policy-related metrics.

• istio-citadel.istio-system:15014/metrics: This

returns all Citadel-generated metrics.

The add-on saves the time-series data in its file system. This works

well for us. For a production environment, it may be better to set up

Prometheus separately or define a different data store for it.

As shown in Figure 7-3, the metrics reach Prometheus via the

configuration model that has instances and handlers connected by rules.

The predefined instances provided by the Istio Prometheus configuration

are as follows:

• accesslog: Captures the log entry for request source

and destination details

• attributes: Captures source and destination pod,

workload, and namespace details

• requestcount: Captures the number of source to

destination requests

• requestduration: Captures the response time of all the

calls in the mesh

• requestsize: Captures the request size of the payload

sent from the source to the destination

• responsesize: Captures the response size of the

payload sent from the source to the destination

• tcpaccesslog: Captures metrics of the TCP request

• tcpbytereceived: Captures bytes received by the

destination in the TCP request

• tcpbytesent: Captures bytes sent by the source in the

TCP request

Chapter 7 appliCation MetriCs

240

• tcpconnectionsclosed: Captures the number of times

the TCP connection is closed

• tcpconnectionsopened: Captures the number of times

TCP connection is opened

Each instance data is pushed into Prometheus via its handlers. Let’s

access the Prometheus node in the mesh and look at the dashboard before

moving further.

 Prometheus Dashboard
The Prometheus node resides inside the istio-system namespace and as

stated earlier saves time-series data on the local file system. Getting access

to the pod is simple by port forwarding the requests, as shown in Figure 7-5

and Figure 7-6. One may configure a gateway and rules to access it, but we

are not describing those steps here.

Figure 7-5. Port forwarding to Prometheus instance in Istio mesh

Chapter 7 appliCation MetriCs

241

Figure 7-6 shows how to access the dashboard on localhost:9090.

The dashboard allows us to query through different metrics collected

from the mesh. Let’s see a simple example of request count metrics. For

that, let’s put some requests into our service, as shown in Figure 7-7.

Figure 7-6. Prometheus dashboard running inside the Istio mesh

Figure 7-7. siege request to front-end service

Chapter 7 appliCation MetriCs

242

The metrics of these requests are collected by Mixer and passed on to

the Prometheus back-end service. The metrics collected are now visible in

the dashboard, as shown in Figure 7-8.

We made only four requests, but a lot of request metrics are available

in the console. This is because Prometheus has tracked all the requests

including the request sent to istio-system to record telemetry. Let’s try to

limit the requests to our namespace using the Prometheus query language,

also known as PromQL. Figure 7-9 shows the filtered result.

Figure 7-8. All requests metrics recorded by Prometheus

Chapter 7 appliCation MetriCs

243

This may not look readable, but the graph section gives a fair estimate

that the number of requests to the mesh is increasing. We are bombarding

the service with more requests to make the changes visible on the graph,

as shown in Figure 7-10.

Figure 7-9. Limiting the metrics to the default namespace

Chapter 7 appliCation MetriCs

244

The request to individual services can be filtered using queries as

follows:

istio_requests_total{destination_service_namespace="default",

destination_service_name="webservice"}

These all are predefined metrics that should be sufficient for most

monitoring cases, but Istio allows the addition of custom metrics as well.

Figure 7-10. Graph view of the number of requests to the mesh

Chapter 7 appliCation MetriCs

245

 Custom Metrics
Istio Mixer collects all the attributes and injects them into Prometheus,

but there are scenarios when the metrics need to be recalculated to make

sense. Mixer allows the addition of configuration to do this. As stated

earlier in the chapter, one can configure the instance and handler and add

rules to add metrics to Prometheus.

Let’s create a scenario to double all the requests to the webapp service.

The instance configuration can be found in Listing 7-1.

Listing 7-1. Requestdouble-instance.yaml Configuration

apiVersion: config.istio.io/v1alpha2

kind: instance

metadata:

 name: requestdouble

 namespace: istio-system

spec:

 compiledTemplate: metric

 params:

 value: "2"

 dimensions:

 source: source.workload.name | "unknown"

 destination: destination.workload.name | "unknown"

This configuration simply gets metrics from the mesh and reports each

metric value times, in this case 2. Two new dimensions specific to this

instance have been introduced that are further handled in the handler in

Listing 7-2.

Chapter 7 appliCation MetriCs

246

Listing 7-2. Requestdouble-handler.yaml Configuration

apiVersion: config.istio.io/v1alpha2

kind: handler

metadata:

 name: doublehandler

 namespace: istio-system

spec:

 compiledAdapter: prometheus

 params:

 metrics:

 - name: doublerequest_count # Prometheus metric name

 instance_name: requestdouble.instance.istio-system

 kind: COUNTER

 label_names:

 - source

 - destination

The previous configuration simply pushes the metrics to Prometheus

from the stated instance_name. It also accommodates the two new

dimensions and propagates them as labels in Prometheus. Connecting the

handler with an instance is defined by the rule shown in Listing 7-3.

Listing 7-3. Requestdouble-rule.yaml Configuration

apiVersion: config.istio.io/v1alpha2

kind: rule

metadata:

 name: requestdouble-prometheus

 namespace: istio-system

spec:

 actions:

 - handler: doublehandler

 instances: [requestdouble]

Chapter 7 appliCation MetriCs

247

This records all requests two times in Prometheus. The output of the

metric in Prometheus is in Figure 7-11.

Figure 7-11. All requests counted twice in istio_doublerequest_count
metric

Let’s tweak the rule to connect an instance and handler only for the

web service. Listing 7-4 shows the addition of match.

Chapter 7 appliCation MetriCs

248

Listing 7-4. Requestdouble-rule.yaml Configuration

apiVersion: config.istio.io/v1alpha2

kind: rule

metadata:

 name: requestdouble-prometheus

 namespace: istio-system

spec:

 match: match(destination.service.name, "webservice")

 actions:

 - handler: doublehandler

 instances: [requestdouble]

Now the request count increases for only one service, as shown in

Figure 7-12.

Figure 7-12. Request count increasing twice for only the web service

Chapter 7 appliCation MetriCs

249

Now we have the metrics collected on our end. Though we are able

to see the metrics, it becomes difficult to visualize different metrics at the

same time. Prometheus supports Grafana to allow the visualization part.

Let’s see Grafana in action.

 Grafana
Grafana is an open source platform to visualize, analyze, and monitor

metrics. It supports data import from multiple sources and allows analysis

on a single platform. In our case, we will limit ourselves to data captured

from Prometheus.

Grafana can be seen as a UI visualization tool that uses data from

Prometheus and sends alerts as and when required. Figure 7-13 shows the

metrics flowing from Istio to Grafana. Let’s start by setting up Grafana to

use our Prometheus server.

 Installation
Similar to Prometheus, Grafana comes preconfigured with Istio set up

already. We saw in Chapter 3 that Grafana comes with a demo setup, and

we also viewed the Grafana dashboard. Here we will put Grafana to use by

setting up new dashboards and alerts.

Figure 7-13. Data flowing from Istio to Grafana

Chapter 7 appliCation MetriCs

250

Istio Grafana is preconfigured to fetch data from the Prometheus

service running in the mesh. The data store of Grafana can be configured

to switch from SQLite to MySQL, Redis, or Postgres by making changes in

the configuration.

Grafana can be installed using a Helm chart with a custom configuration.

Let’s set up a separate Grafana configuration with a Helm chart.

helm install --name grafana --tiller-namespace kube-system

stable/grafana

Custom configurations can be done here, providing a separate

database connection, credentials, alert management, etc. Once Grafana is

set up, we can set up a data source in Grafana.

Let’s try to access the default Grafana dashboard available in the mesh,

as shown in Figure 7-14.

Grafana is accessible to us and ready to use. Let’s take a look at the

dashboard.

Figure 7-14. Accessing the Grafana dashboard in the mesh

Chapter 7 appliCation MetriCs

251

 Grafana Dashboard
Grafana has a set of preconfigured dashboards available that can be used

out of the box. Accessing the Istio preconfigured dashboard directly to

view the performance of the Istio mesh is shown in Figure 7-15.

As stated, this Grafana configuration is preconfigured to read metrics

from the preconfigured Prometheus data source, which is shown in

Figure 7-16. Additional data sources can also be added in Grafana to create

new dashboards.

Figure 7-15. Preconfigured Istio mesh dashboard

Chapter 7 appliCation MetriCs

252

Let’s create a new dashboard to monitor the recently configured

RequestDouble metrics. We will create a visual showing the rate of

requests to webapp-deployment-8, as shown in Figure 7-17.

Figure 7-16. Grafana preconfigured Prometheus data source

Figure 7-17. New dashboard with graph to monitor the request rate

Chapter 7 appliCation MetriCs

253

Saving the dashboard creates a view of the request rate on this specific

destination. Let’s assume this service may be impacted if it crosses the

three-request threshold. To prepare the infrastructure and the team, we’ll

set up Alert to go out before the threshold is reached.

 Grafana Alert
Grafana provides a simple mechanism to alert stakeholders when the

metrics crosses a specific threshold. Let’s set up an alert when the requests

rate to webapp-deployment-v8 crosses the threshold 2.5. Before we start,

let’s set up the channel for alerting. Grafana allows a fair set of channels to

send notifications. They include the following:

• HipChat

• OpsGenie

• Sensu

• Threema Gateway

• Prometheus Alertmanager

• Discord, Email

• VictorOps

• Google Hangouts Chat

• Kafka REST Proxy

• LINE

• Pushover

• Webhook

• DingDing

• PagerDuty

Chapter 7 appliCation MetriCs

254

• Slack

• Microsoft Teams

• Telegram

Let’s set up a webhook as an example. We will push an alert to this link:

https://jsonblob.com/api/jsonBlob/0d0ef717-d0a0-11e9-8538-

43dbd386b327

Refer to Figure 7-18 to see how to add a webhook on Grafana.

Figure 7-18. Adding a new webhook channel

Chapter 7 appliCation MetriCs

255

Any notification sent is visible via the link shared earlier. Now let’s set

up an alert. Edit the panel we created in the previous step, as in Figure 7- 19.

Visit the Alert tab and set up an alert to go out when the request

threshold crosses 2.5 requests, as shown in Figure 7-20.

Figure 7-19. Editing the RequestDouble rate panel

Chapter 7 appliCation MetriCs

256

Let’s use siege to make multiple requests to the front-end service.

siege -c40 -r10 "http://192.168.99.160:31380"

Within seconds Grafana starts showing an alert, as shown in Figure 7- 21.

Figure 7-20. Creating the alert based on a condition with a custom
message

Chapter 7 appliCation MetriCs

257

The webhook receives data with details, as shown in Listing 7-5.

Listing 7-5. Response Received on the Webhook

{

 "evalMatches": [{

 "value": 107.19741952834556,

 "metric": "{destination=\"webapp-deployment-8\",

instance=\"172.17.0.6:42422\", job=\"istio-mesh\",

source=\"frontend-deployment\"}",

 "tags": {

 "destination": "webapp-deployment-8",

 "instance": "172.17.0.6:42422",

 "job": "istio-mesh",

 "source": "frontend-deployment"

 }

 }],

Figure 7-21. RequestDouble dashboard showing the threshold being
crossed

Chapter 7 appliCation MetriCs

258

 "message": "Requests threshold of web-deployment-8 reaching

threshold, action required",

 "ruleId": 1,

 "ruleName": "RequestDouble Rate alert",

 "ruleUrl": "http://localhost:3000/d/hpc70ncWk/

requestdouble-dashboard?fullscreen\u0026edit\

u0026tab=alert\u0026panelId=2\u0026orgId=1",

 "state": "alerting",

 "title": "[Alerting] RequestDouble Rate alert"

}

 Summary
In this chapter, we covered monitoring using Prometheus and how to set

up custom metrics. We gave you a glimpse into how PromQL can help

in data filtering, but still it showed one metric at a time. We integrated

Grafana with Prometheus and created a new dashboard visualizing

multiple metrics. We worked on configuring alerts in Grafana and

integrated a channel to send those alerts. In the next chapter, we will work

on collecting logs from distributed services and tracing calls to analyze any

challenges in the system.

Chapter 7 appliCation MetriCs

259© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_8

CHAPTER 8

Logs and Tracing
In the previous chapter, we worked with a few of the observability features

offered by Istio. We were able to capture application metrics, but metrics

are just one dimension of observability. Observability is about gathering

data in all possible dimensions. During application outages, looking

at various aspects of observability helps developers understand the

application behavior in order to perform incident analysis. There are many

tools that can help achieve this objective. However, it is important to know

the cost it takes to add a behavior. The operations team should be able to

configure tools of their choice without needing developers. In this chapter,

we will see how seamlessly we can capture additional behaviors such

as request tracing and application logs. We will also work with the Istio

plug-and-play model that provides a uniform mechanism for capturing

additional application behavior.

 Distributed Tracing
In a microservices application, a request is often served, in part, by

multiple applications deployed in the cluster. Distributed tracing is the

process of tracking a request flow across different applications. Traces

often describe application behavior by showing the request and the

response and the latencies, at a moment in time. The operations team

often used traces to determine which services are causing performance

issues for the application. There are many solutions for distributed tracing

260

such as Zipkin, Jagger, Skywalking, and so on. The Istio service mesh can

work with all of them. Traces are often generated by the Envoy proxy.

These traces are then sent to the tracer back end.

Distributed tracing relies on an additional set of HTTP headers. These

are widely known as b3 request headers. These headers build a request

context that is used to identify the parent request and then propagate from

one system to another. The Envoy proxy can generate these headers for

every outgoing request. But for every incoming request, the headers must

be propagated to the subrequests. If this is not done properly, then Envoy

will generate new headers, and thus the spans will not correlate with one

another.

In summary, the following set of headers must be propagated from an

incoming request to all outgoing subrequests:

• x-request-id

• x-b3-traceid

• x-b3-spanid

• x-b3-parentspanid

• x-b3-sampled

• x-b3-flags

There are language-specific OpenTracing libraries that can help to

achieve the required header propagation. Details of OpenTracing are

beyond the scope of the book. Refer to one of the previously mentioned

libraries to learn more.

Before we proceed, we will need to deploy a tracer application to our

Kubernetes cluster. In this chapter, we are going to work with Jagger, an

open source distributed tracing application developed at Uber. Jagger

is built upon the concepts outlined by Dapper and OpenZipkin. For our

Chapter 8 Logs and traCing

261

purposes, we will deploy Jagger using the Jagger operator (https://

github.com/jaegertracing/jaeger-operator). Kubernetes has an

operator extension that can be used to package and deploy applications on

a Kubernetes cluster. As a first step, we need to install the Jagger operator

by executing the following commands:

$ git clone https://github.com/jaegertracing/jaeger-operator.git

$ kubectl create namespace observability

namespace/observability created

$ kubectl create -f jaeger-operator/deploy/crds/jaegertracing_

v1_jaeger_crd.yaml

serviceaccount/jaeger-operator created

$ kubectl create -f jaeger-operator/deploy/service_account.yaml

serviceaccount/jaeger-operator created

$ kubectl create -f jaeger-operator/deploy/role.yaml

clusterrole.rbac.authorization.k8s.io/jaeger-operator created

$ kubectl create -f jaeger-operator/deploy/role_binding.yaml

clusterrolebinding.rbac.authorization.k8s.io/jaeger-operator

created

$ kubectl create -f jaeger-operator/deploy/operator.yaml

deployment.apps/jaeger-operator created

These executed commands deploy the operator in the observability

namespace. Details of the Kubernetes operator are beyond the scope of the

book. Refer to the Kubernetes documentation to learn more.

We can verify the operator as shown here:

$ kubectl get all -n observability

NAME READY STATUS

RESTARTS AGE

pod/jaeger-operator-5574c4fb9-4vn5q 1/1 Running

0 2m4s

Chapter 8 Logs and traCing

https://github.com/jaegertracing/jaeger-operator
https://github.com/jaegertracing/jaeger-operator

262

NAME READY UP-TO-DATE

AVAILABLE AGE

deployment.apps/jaeger-operator 1/1 1

1 2m4s

NAME DESIRED CURRENT

READY AGE

replicaset.apps/jaeger-operator- 5574c4fb9 1 1

1 2m4s

The Jagger operator is now available for our Kubernetes cluster. It is

used to deploy a Jagger instance. We will deploy the simplest possible

configuration, namely, the default AllInOne Jagger package configured

with in-memory storage. The “all-in-one” image deploys an agent,

collector, query, ingester, and Jaeger UI in a single pod. This can be done

by using the following configuration:

apiVersion: jaegertracing.io/v1

kind: Jaeger

metadata:

 name: simplest

Apply this configuration to our Kubernetes cluster using this:

$kubectl apply -f jagger.yaml

Let’s now check if the Jagger installation is working fine. We can first

check our cluster for the deployed services, as shown here:

$kubectl get all

Chapter 8 Logs and traCing

263

NAME READY

STATUS RESTARTS AGE

pod/frontend-deployment-c9c975b4-p8z2t 2/2

Running 38 35d

pod/simplest-56c7bd47bf- z7cnx 0/1

ContainerCreating 0 16s

pod/webapp-deployment-6.2-654c5fd8f9-mrc22 2/2

Running 140 43d

NAME TYPE CLUSTER- IP

EXTERNAL-IP PORT(S) AGE

service/simplest-agent ClusterIP None

<none> 5775/TCP,5778/TCP,6831/TCP,6832/TCP 16s

service/simplest- collector ClusterIP 10.152.183.169

<none> 9411/TCP,14250/TCP,14267/TCP,14268/TCP 16s

service/simplest-collector-headless ClusterIP None

<none> 9411/TCP,14250/TCP,14267/TCP,14268/TCP 17s

service/simplest-query ClusterIP 10.152.183.25

<none> 16686/TCP 16s

We can see that all the components that were deployed are running.

Let’s now open the UI by looking up the NodePort address of the simplest-

query service. See Figure 8-1.

Chapter 8 Logs and traCing

264

We have deployed Jagger using in-memory mode only. this is good
enough for testing purposes. Jagger provides configuration options
to deploy it in production (with a persistent store). refer to the Jagger
documentation to learn more.

Once Jagger is available, the Istio service mesh needs to refer to it.

There are a couple of ways to accomplish this.

• If we are installing the service mesh, we can provide the

Jagger address in the variable global.tracer.zipkin.

address=jagger-FQDN:16686.

• In an existing installation, we need to edit the

configuration and specify the trace_zipkin_url

variable. Let’s edit our configuration by using the

following command:

$ kubectl -n istio-system edit deployment istio-

telemetry

Figure 8-1. Jagger UI

Chapter 8 Logs and traCing

265

We now have the correct infrastructure in place. Next, we need to

instruct the sidecar to start generating the traces. The Envoy proxy can

be configured to sample a subset of all the received requests. This can be

done in one of these ways:

• Set the pilot.traceSampling variable as part of the

Istio installation.

• Set the PILOT_TRACE_SAMPLING variable to an existing

installation by using the following command:

$ kubectl -n istio-system edit deploy istio-pilot

After this, Envoy will generate request spans and send them to the

Jagger server. We can validate this by executing requests for our front-end

Java application.

$ for i in {1..500}; do curl http://10.152.183.230/;echo "; done

Let’s now look up the Jagger UI and search for the previously executed

requests. All requests will have a span for both the front-end and webapp

applications. See Figure 8-2.

Figure 8-2. Jagger traces

Chapter 8 Logs and traCing

266

As shown in Figure 8-2, Jagger provides a histogram of all the executed

requests. It shows the time taken as well as the applications invoked

when processing the request. We can click individual traces and look at

individual application latencies and timelines in detail.

 Application Logs
Istio does not provide any support for managing the logs generated by

applications running in our Kubernetes cluster. This is a big challenge in

large deployments, as logs generated for each of our applications remain

on the container running the application. Let’s look back at the example

we developed in Chapter 3. We created a front-end application in Java

and a web service back end in Python. We deployed two instances of the

back end and one instance of the front-end application in our cluster. We

can execute requests against our front end, which will invoke the back

end. To debug the behavior, we need to look at the application logs. This

is accomplished by performing log lookup for each container using this

command:

$ kubectl logs pod/frontend-deployment-c9c975b4-p8z2t -c frontend

2019-08-26 13:52:42.032 INFO 1 --- [main] istio.

IstioFrontendApplication : Starting IstioFrontend

Application v0.0.1-SNAPSHOT on frontend- deployment- c9c975b4-

p8z2t with PID 1 (/app.war started by root in /)

2019-08-26 13:52:42.039 INFO 1 --- [main] istio.

IstioFrontendApplication : No active profile set,

falling back to default profiles: default

2019-08-26 13:53:01.243 INFO 1 --- [main]

o.s.b.w.embedded.tomcat.TomcatWebServer : Tomcat initialized

with port(s): 8080 (http)

2019-08-26 13:53:01.471 INFO 1 --- [main] o.apache.

catalina.core.StandardService : Starting service [Tomcat]

Chapter 8 Logs and traCing

267

2019-08-26 13:53:01.471 INFO 1 --- [main] org.

apache.catalina.core.StandardEngine : Starting Servlet engine:

[Apache Tomcat/9.0.19]

This is quite cumbersome and error prone as we need to look up

each container. Moreover, as containers get restarted, we lose the

information in application logs. Logging contains the most verbose

state of the system, and teams must be able to refer to the logs to track,

verify, and diagnose the state of an application. Thus, we can say that the

handling of application logs is not good enough, and we need a better

solution to do so.

Besides the application logs, an application can also create access logs.

Traditionally we have seen this in our front-end proxy, where an Apache

HTTP server is creating the access.log file. The logging contains the

request received by our application and the response for it. This is quite

useful information. Now, if we look at the Istio service mesh, all requests

are outed via the Envoy sidecar. The sidecar thus keeps track of what

request-response it has received. We can configure the Envoy proxy to

print these logs or create a log file. But this will not help us, as a container

restart will lose all this information.

Kubernetes describes a cluster-level logging approach that leverages

a logging back-end application like ELK, Splunk, Stackdriver, and so on.

The approach leverages the sidecar pattern used by the service mesh. The

complete solution for the application logs looks like the following:

• The application deployed in the cluster needs to write

logs to a file. The log file is created at a location created

by volume-mount.

• We run a second container mounted with the exported

volume. The containers will run a fluentd process that

can perform log parsing.

Chapter 8 Logs and traCing

268

• The sidecar container then reads the logs and sends

them to the appropriate back end. See Figure 8-3.

Looking at the previous solution, the configuration for our front-end

application looks as follows:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: frontend-deployment

############### OMITTED FOR BREVITY

 containers:

 - name: frontend

 image: frontend-app:1.0

 imagePullPolicy: Never

 env:

 - name: LOG_PATH

 value: /var/log

 volumeMounts:

 - name: varlog

 mountPath: /var/log

############### OMITTED FOR BREVITY

 - name: log-agent

 image: k8s.gcr.io/fluentd-gcp:1.30

Figure 8-3. Kubernetes logging

Chapter 8 Logs and traCing

269

 env:

 - name: FLUENTD_ARGS

 value: -c /etc/fluentd-config/fluentd.conf

 volumeMounts:

 - name: varlog

 mountPath: /var/log

 - name: config-volume

 mountPath: /etc/fluentd-config

############### OMITTED FOR BREVITY

In the previous code, we have done the following:

• We have added the /var/log volume to our front-end

Spring Boot container. The path has been exported to

the LOG_PATH variable. The variable instructs Spring

Boot to create the spring.log file at the /var/log path.

• Next we have a log-agent container in our pod.

The container runs the fluentd process with the

configuration file /etc/fluentd-config/fluentd.conf.

The following fluentd.conf file reads the logs generated by our

application and sends them to the ELK aggregator:

<source>

 type tail

 format /^\[[^]* (?<time>[^\]]*)\] \[(?<level>[^\]]*)\]

(?<message>.*)$/

 time_format %b %d %H:%M:%S %Y

 path /var/log/spring.log

 pos_file /var/log/agent/spring.log.pos

 tag hostname.system

</source>

Chapter 8 Logs and traCing

270

<match *.**>

 type forward

<server>...</server>

<!--removed for Brevity -->

</match>

Before we can apply the previous configuration, we need to deploy the

fluentd aggregator. This could be done by using the Kubernetes operator.

The details of configuring fluentd are beyond the scope of the book. Refer

to https://github.com/vmware/kube-fluentd-operator for more details.

Lastly, we need to set up the fluentd aggregator. The fluentd

aggregator needs to send data to the ELK stack. It needs to run with the

following sample configuration:

<match **>

 type elasticsearch

 log_level info

 host elasticsearch

 port 9200

 logstash_format true

 buffer_chunk_limit 2M

 buffer_queue_limit 8

 flush_interval 5s

 num_threads 2

 </match>

If the previous configuration works, we will see our application logs

in the ELK stack. Now the next step is to send the access logs generated

by Istio to the ELK instance. In the next section, we will look at the Mixer

extension, which can be used to send the required logs.

Chapter 8 Logs and traCing

https://github.com/vmware/kube-fluentd-operator

271

 Mixer
Istio captures all telemetry using an extensible Mixer subsystem. The

subsystem is quite flexible and allows a plug-and-play approach for

different monitoring and alerting systems. This abstraction enables the

operations team to alter their application monitoring approach without

needing any development changes. Istio Mixer is deployed with a

number of adapters. Each of these adapters submits the required data to

a monitoring system such as Prometheus, StatsD, etc. The Envoy sidecar

invokes Mixer for every request and thus captures all data via the adapters.

Since Envoy is invoking Mixer for every request it receives, it may sound

logical to have the Mixer component embedded in the sidecar. But the

approach of having a separate Mixer component has the following benefits:

• Mixer is an Istio-built component; thus, it is more

aligned with the Istio design principles. On the other

hand, Envoy is a proxy service by Lyft. This inherent

difference makes Mixer more extensible to the

complete approach.

• The approach makes the system more fault-tolerant.

Mixer has many external dependencies and thus is

more prone to networking failures. On the other hand,

Envoy can’t tolerate failures. It must keep operating

even if the Mixer dependencies are unavailable.

• The approach of having separate Mixer and Envoy

components makes the complete ecosystem more

secure. Mixer integrates with various external systems.

Thus, it can have many security vulnerabilities. But

these issues get boxed at the Mixer level. Each Envoy

instance can be configured to have a very narrow

scope of interaction, thus limiting the impact of

potential attacks.

Chapter 8 Logs and traCing

272

• Istio deploys a sidecar for each and every instance;

thus, the sidecar must be as light as possible. Keeping

all third-party adaptations separate from the sidecar

makes the sidecar more agile.

Mixer makes the Istio system more flexible, but it also increases the

complexity of the system. The Mixer currently supports the following three

use cases:

• Precondition checking

• Quota management, such as API limits

• Telemetry reporting such as logs and requests

Istio provides a variety of adapters that can be configured with Mixer.

We can try to extend our logging example from the previous section. We

were able to send our application logs in an ELK instance. We now need

to send the access logs. Let’s now try to achieve this with Mixer. Before we

proceed, invoke the following command to get a list of available adapters:

$ kubectl get crd -listio=mixer-adapter

NAME CREATED AT

adapters.config.istio.io 2019-07-14T07:46:10Z

bypasses.config.istio.io 2019-07-14T07:45:59Z

circonuses.config.istio.io 2019-07-14T07:45:59Z

deniers.config.istio.io 2019-07-14T07:46:00Z

fluentds.config.istio.io 2019-07-14T07:46:00Z

Kubernetes envs.config.istio.io 2019-07-14T07:46:00Z

listcheckers.config.istio.io 2019-07-14T07:46:00Z

memquotas.config.istio.io 2019-07-14T07:46:01Z

noops.config.istio.io 2019-07-14T07:46:01Z

opas.config.istio.io 2019-07-14T07:46:02Z

prometheuses.config.istio.io 2019-07-14T07:46:02Z

rbacs.config.istio.io 2019-07-14T07:46:03Z

redisquotas.config.istio.io 2019-07-14T07:46:03Z

Chapter 8 Logs and traCing

273

servicecontrols.config.istio.io 2019-07-14T07:46:04Z

signalfxs.config.istio.io 2019-07-14T07:46:04Z

solarwindses.config.istio.io 2019-07-14T07:46:04Z

stackdrivers.config.istio.io 2019-07-14T07:46:05Z

statsds.config.istio.io 2019-07-14T07:46:05Z

stdios.config.istio.io 2019-07-14T07:46:05Z

istio 1.2 comes with a rich set adapters like Zipkin, statsd,
stackdriver, CloudWatch, etc. the complete list of adapters can be
accessed at https://istio.io/docs/reference/config/
policy-and-telemetry/adapters/.

Now that we know there are various adapters available, we will try to

configure them for our applications. Each of the available adapters can be

configured using the components shown in Figure 8-4.

 Handler
A handler describes how the adapter needs to be invoked. It provides the

necessary options that can used to configure the behavior of the associated

adapter. The list of available handlers depends on the adapters deployed

in the service mesh. Also, we need to refer to the adapter documentation

Figure 8-4. Adapter components

Chapter 8 Logs and traCing

https://istio.io/docs/reference/config/policy-and-telemetry/adapters/
https://istio.io/docs/reference/config/policy-and-telemetry/adapters/

274

to know what configuration options are available. As an example let’s look

at the fluentds.config.istio.io adapter. The adapter is used to send

access logs to the fluentd aggregator demon.

apiVersion: config.istio.io/v1alpha2

kind: handler

metadata:

 name: fluentdhandler

 namespace: istio-system

spec:

 compiledAdapter: fluentd

 params:

 address: "fluentd-aggregator-host:port"

Note that we have not described the log format, which we did for our

application logs.

 Instance
An instance defines what data we need to capture for a request. The data is

represented in the form of a set of attributes. The attribute is represented

as a name and a type. The type defines the kind of data that the attribute

holds. Thus, we can say an attribute describes a single property of a

request. For example, an attribute can be used to specify the HTTP

response code or each of the HTTP headers. For every request, the Envoy

sidecar sends the associated attributes to the Mixer subsystem. The Envoy

sidecar generates these attributes by using the available environment/

request/response values.

Chapter 8 Logs and traCing

275

istio has a common set of attributes that are available in all requests.
the list of these attributes is available at https://istio.
io/docs/reference/config/policy-and-telemetry/
attribute-vocabulary/.

Adapters cannot understand any kind of data. The data understood

by an adapter is compiled in four templates. Each template has a set of

properties that can be captured by the adapter. Each adapter has a list

of templates that can be used to send the data. Thus, an instance can be

defined as a mapping of attributes, sent by the sidecar, into a template of

the associated adapter. The following command shows the list of available

templates:

$ kubectl get crd -listio=mixer-instance

NAME CREATED AT

apikeys.config.istio.io 2019-07-14T07:46:06Z

authorizations.config.istio.io 2019-07-14T07:46:06Z

checknothings.config.istio.io 2019-07-14T07:46:06Z

edges.config.istio.io 2019-07-14T07:46:07Z

instances.config.istio.io 2019-07-14T07:46:11Z

Kubernetes es.config.istio.io 2019-07-14T07:46:06Z

listentries.config.istio.io 2019-07-14T07:46:07Z

logentries.config.istio.io 2019-07-14T07:46:07Z

metrics.config.istio.io 2019-07-14T07:46:08Z

quotas.config.istio.io 2019-07-14T07:46:08Z

reportnothings.config.istio.io 2019-07-14T07:46:08Z

servicecontrolreports.config.istio.io 2019-07-14T07:46:08Z

tracespans.config.istio.io 2019-07-14T07:46:09Z

Chapter 8 Logs and traCing

https://istio.io/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://istio.io/docs/reference/config/policy-and-telemetry/attribute-vocabulary/
https://istio.io/docs/reference/config/policy-and-telemetry/attribute-vocabulary/

276

We can determine existing instances with the previous templates using

the following commands:

$ kubectl get logentries.config.istio.io --all-namespaces

NAMESPACE NAME AGE

istio-system accesslog 41d

istio-system tcpaccesslog 41d

We can look at the accesslog definition to know which details

are captured by it:

$ kubectl get logentries.config.istio.io accesslog -n istio-

system -o yaml

apiVersion: config.istio.io/v1alpha2

kind: logentry

metadata:

 // REMOVED FOR BREVITY

spec:

 monitored_resource_type: '"global"'

 severity: '"Info"'

 timestamp: request.time

 variables:

 apiClaims: request.auth.raw_claims | ""

 apiKey: request.api_key | request.headers["x-api-key"] | ""

 destinationApp: destination.labels["app"] | ""

 destinationIp: destination.ip | ip("0.0.0.0")

 destinationName: destination.name | ""

 latency: response.duration | "0ms"

 method: request.method | ""

 protocol: request.scheme | context.protocol | "http"

 receivedBytes: request.total_size | 0

 // REMOVED for brevity

Chapter 8 Logs and traCing

277

The previous log entry captures the complete set of request-response

attributes. The template also assigns default values for missing attributes.

The previous entry is a precompiled instance. But in case it is not available,

we can add an instance using the following YAML configuration:

 apiVersion: config.istio.io/v1alpha2

kind: instance

metadata:

 name: myaccesslog

 namespace: istio-system

spec:

 compiledTemplate: logentry

 params:

 severity: '"info"'

 timestamp: request.time

 variables:

 source: source.labels["app"] | source.workload.name |

"unknown"

 user: source.user | "unknown"

 destination: destination.labels["app"] | destination.

workload.name | "unknown"

 responseCode: response.code | 0

 responseSize: response.size | 0

 latency: response.duration | "0ms"

 monitored_resource_type: '"UNSPECIFIED"'

Chapter 8 Logs and traCing

278

 Rules
A rule combines the deployed handlers with the deployed instances.

It matches a request for the specified condition before invoking the

associated instances. A rule must specify fully qualified names of the

handlers and the instances. If all of them are deployed in the same

namespace, then the rule can use short names. The following rule sends

the accesslog and myaccesslog logs to the fluentd handler created

earlier:

apiVersion: config.istio.io/v1alpha2

kind: rule

metadata:

 name: fluentdrule

 namespace: istio-system

spec:

 match: "true"

 actions:

 - handler: fluentdhandler

 instances: [myaccesslog, accesslog]

Now we can deploy all these components using the following

command:

$ kubectl apply -f fluentd-adapter.yaml

Next, let’s access our service using the curl command. This will

generate the logs and send them to the ELK instance. Let’s validate this by

doing a lookup in Kibana.

Chapter 8 Logs and traCing

279

The previous example was used as a simple stepping-stone. Istio can

be extended for other use cases as well.

• Using StatsD to build stats and send them to Icinga/

Nargios

• Validating for quota-like API limits

 Summary
In this chapter, we looked at the observability features offered by

Istio. We started by capturing request traces to determine application

performance. Istio allows us to use the tracing solution of our choice.

Next we wanted to capture application-level logs. We realized that

Istio does not offer a solution for application logging. Nevertheless, we

can extend our Kubernetes cluster to have a logging solution for our

deployed applications. The solution needs to work without any additional

development effort. To that end, we deployed an ELK instance and routed

application logs using the Sidecar pattern. The next aim was to extend the

logging solution to include the logs generated by Istio. During the journey,

we worked with the Mixer component to enable sidecar logs ingestion. In

summary, we worked with Istio’s extensibility feature, which can be used

interface it with third-party systems.

Chapter 8 Logs and traCing

281© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_9

CHAPTER 9

Policies and Rules
Application security is challenge in a microservice architecture.

Developers build business process microservices in various languages.

All these applications must be secured with the proper authentication

and authorization. Most enterprises have one way of doing authentication

and authorization. In this chapter, we will discuss the security features

provided in Istio. Previously we saw that every Istio feature is driven by

the Envoy proxy. Security is no exception to this. Istio provides security

features using the Envoy proxy. It thus offloads the authentication and

authorization logic from the business services.

 Authentication
Authentication is the process of establishing the user’s identity for

a received request. But in a distributed architecture, a single user

request spans multiple subrequests across different applications. It

is easier to validate the original request for user identity, but each

of the subrequests must also establish the identity of the user. This

is often accomplished by using token-based authentication such as

SSO, OAuth, and so on. Furthermore, distributed architectures are

prone to network vulnerabilities. In such architectures, applications

communicate across a network that none of them controls. The

network can have adversaries that can forge, copy, replay, alter, destroy,

282

and delay responses. To work effectively, applications must be able

to trust the communication exchange. Istio supports all the previous

requirements using various authentication mechanisms.

 Transport Authentication
In microservices, architecture applications are prone to network attacks.

Applications can safeguard against these attacks by implementing the TLS

protocol for their communication. The protocol aims to provide privacy

and data integrity between two or more communicating applications.

But it is expensive and complex for each service to implement TLS

communication. The Istio service mesh offloads this cost by supporting

the TLS exchange using the Envoy proxy.

The TLS protocol works on the concepts of public key infrastructure

(PKI). PKI states that there is a private key that defines an identity. Each

private key also has a public key. The public key is specified in the certificate

issued to the application. Applications communicate over the network by

encrypting requests using their private key and decrypting the response

using the other service’s public key. To work successfully, the public key/

certificate needs to be signed by a trusted party (a certificate authority). Istio

implements the PKI logic by using two components: Citadel and Node-

Agent. Citadel takes the role of certificate authority. It is responsible for

issuing certificates. The process of issuing a certificate is as follows:

 1. The Istio node agent generates a private key and a

certificate-signing request (CSR).

 2. The Istio node agent sends the CSR with its keys to

Citadel for signing.

 3. Citadel validates the credentials associated with the

CSR and signs the CSR to generate the certificate.

 4. The node agent sends both the certificate received

from Citadel and the private key to the Envoy proxy.

Chapter 9 poliCies and rules

283

The previous process is repeated at periodic intervals for key and

certificate rotation. Now each sidecar has a certificate-key pair, so they can

perform TLS communication using the following steps:

 1. The client-side Envoy starts a mutual TLS

handshake with the server- side Envoy proxy.

 2. During the handshake, the client-side Envoy proxy

does a secure naming check to verify that the

service account presented in the server certificate is

authorized to run the target service.

 3. The client-side Envoy proxy and the server-side

Envoy proxy establish a mutual TLS connection, and

Istio forwards the traffic from the client- side Envoy

proxy to the server-side Envoy proxy.

After authorization, the server-side Envoy proxy forwards the traffic to

the server service through local TCP connections.

This process, as shown in Figure 9-1, mandates TLS communication

for all interactions. It is challenging to implement the process for the

entire application estate. Inside the cluster, Istio provides a cost-effective

solution. It is often regarded as a best practice to have mtls mode

enabled in the service mesh. But if the services are communicating with

applications deployed outside the service mesh, then implementing the

handshake becomes a major roadblock. Thus, Istio provides a permissive

mode, which allows services to accept both plain-text traffic and mutual

TLS traffic at the same time. This greatly simplifies the service mesh

onboarding process.

Chapter 9 poliCies and rules

284

Istio mutual TLS authentication is configured by creating a policy.

The policy enforces the type of exchange supported by the application.

The policy can be created at various levels. Once created, the policy is

applicable to all the services deployed under the specified level. If there are

policies at more than one level, then Istio applies the most specific policy.

• Mesh: This is a global policy impacting the entire

service mesh.

• Namespace: This policy impacts services running in a

specific namespace.

• Service: This policy impacts a specific service only.

Figure 9-1. Citadel CA

Chapter 9 poliCies and rules

285

The mesh policy is already deployed in Istio. The policy shows the

configuration bundled with an Istio installation.

$ kubectl get meshpolicies.authentication.istio.io -o yaml

apiVersion: v1

items:

- apiVersion: authentication.istio.io/v1alpha1

 kind: MeshPolicy

 metadata:

 ## REMOVED for BREVITY

 generation: 1

 labels:

 app: security

 chart: security

 heritage: Tiller

 release: istio

 name: default

 spec:

 peers:

 - mtls:

 mode: PERMISSIVE

kind: List

metadata:

 resourceVersion: ""

 selfLink: ""

We can see that mtls is set to PERMISSIVE mode. Therefore, we have

been able to do curl commands from outside the mesh. We can now

configure STRICT mode for our webapp. In the following code, we have

configured the web service to accept only mtls-based requests:

apiVersion: "authentication.istio.io/v1alpha1"

kind: "Policy"

Chapter 9 poliCies and rules

286

metadata:

 name: "strict-policy"

spec:

 targets:

 - name: webservice

 peers:

 - mtls:

 mode: null

Let’s deploy the policy and execute our curl commands from outside

the mesh. We need the IP of the web service. (You can determine this by

using kubectl.)

$curl http://10.152.183.230/

curl: (56) Recv failure: Connection reset by peer

In the previous curl command, we are trying a plain-text request,

which is dropped by the Envoy proxy. After doing the previous steps, we

will notice that the pod starts failing. This is because the liveness probe

requests from the Kubernetes server start failing, and the pod is marked as

failed. See Figure 9-2.

As a first step, we must fix the requests from the Kubernetes server.

This can be done by having checks on ports other than the application

port. This will bypass them from the Envoy proxy. Alternatively, we can

configure ProbeRewrite for the checks. This will send the check requests

Figure 9-2. Failing pod due to mtls

Chapter 9 poliCies and rules

287

to Pilot-Agent, which will send them to the application containers.

Before we can accomplish this, we need to enable ProbeRewrite using the

following command:

$ kubectl get cm istio-sidecar-injector -n istio-system -o yaml

| sed -e "s/ rewriteAppHTTPProbe: false/ rewriteAppHTTPProbe:

true/" | kubectl apply -f -

configmap/istio-sidecar-injector configured

After this, we need to configure the rewriteAppHTTPProbers

annotation for our deployment.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp-deployment-6.0

 ## REMOVED for BREVITY

 template:

 metadata:

 labels:

 app: webapp

 version: v6.0

 annotations:

 sidecar.istio.io/rewriteAppHTTPProbers: "true"

 spec:

 containers:

 - name: webapp

 ## REMOVED for BREVITY

Chapter 9 poliCies and rules

288

Now the pod should not fail any longer. The pods are running fine,

but we cannot run the curl command from outside the mesh. Services

running in the mesh have the key-certificate pair set up, so we can try a

curl command from our front-end pod.

frontend-deployment-78d98b75f4-rwkbm:/# curl http://

webservice/

curl: (56) Recv failure: Connection reset by peer

The request still fails with the same error message as the mtls

exchange has not happened. Let’s understand what is going under the

hood. Previously we enabled the application server to enforce mtls. Now,

we need to instruct the clients to perform the mtls handshake. This is done

by configuring a destination rule.

apiVersion: "networking.istio.io/v1alpha3"

kind: "DestinationRule"

metadata:

 name: "wb-rule"

 namespace: "default"

spec:

 host: webservice

 trafficPolicy:

 tls:

 mode: ISTIO_MUTUAL

In Chapter 4, we used a destination rule with a virtual service to

define subsets. Here, in the previous configuration, we have instructed

the Envoy sidecar to perform an mtls handshake for the web service

destination. Now execute the request again. We can see that it works

as expected.

Chapter 9 poliCies and rules

289

In the previous example, we have enabled policies at the service

level; alternatively, we can enable policies at the mesh or namespace

level. This would make it applicable to all services running under the

configured scope. Applying such a policy would ask for specific service

rules to override it.

 User Authentication
Istio provides OAuth token-based authentication. Every request is

accompanied with an OAuth token. Before responding to the request,

the Envoy proxy validates the token with the configured OpenID

provider. Then the token is sent in JSON Web Token (JWT) format. Istio

authentication is performed as per the following steps:

 1. Make an initial request to the authorization server

to exchange credentials and generate a token. The

generated JWT is associated with a set of specific

user roles and permissions.

 2. Each subsequent request must specify the token,

allowing the user to access authorized routes,

services, and resources that are permitted with

that token.

The Envoy proxy validates the token. It also replicates the token on

each of the subrequests. See Figure 9-3.

Chapter 9 poliCies and rules

290

JWt is an open standard (rFC 7519) that defines a compact and
self-contained way to securely transmit information between parties
as a Json object. this information can be verified and trusted as it
is digitally signed. the encrypted token can be used to specify user
roles and permissions associated with it. thus, it is most commonly
used to specify user authorization.

Before we proceed, we need to have an OpenID provider. Istio allows

us to work with many providers such as Auth0, Google Auth, and so on. In

this chapter, we are going to work with KeyCloak (http://KeyCloak.org).

We have a deployed a KeyCloak instance on one of our workstations. See

Figure 9-4.

Figure 9-3. JWT-based authentication

Chapter 9 poliCies and rules

http://keycloak.org

291

Now, we need to add users in KeyCloak. These users will have access to

our Kubernetes application. To do so, we need to first select/add a realm in

KeyCloak. A realm, in KeyCloak, can have clients specified by an ID-secret

pair. The clients can be equated to different applications in an ecosystem.

In turn, each of these applications has users. This is mapped by creating

different users for each client. Each of the created users can have different

attributes/privileges. The previous description is a 50,000-foot view of the

KeyCloak security provider. Details of KeyCloak are beyond the scope of

the book. Please refer to the KeyCloak documentation to learn more.

The following are the steps taken to add users to KeyCloak. We can skip

the section if we already have users set up in our OpenID provider.

 1. Log in to the KeyCloak admin console using the

admin account.

 2. The Master drop-down menu shows existing realms;

click Add Realm and create a K8s-dev realm.

 3. Now select the K9s-dev realm and click Users to

open the user list page.

Figure 9-4. KeyCloak

Chapter 9 poliCies and rules

292

 4. Open the Add User page. Enter a name for the

username and click Save.

 5. While on the User page, click the Credentials tab to

set a temporary password for the new user. Type a

new password and confirm it.

In our current example, we created a K8s-dev realm. The realm

contains a client ID for the web service and front-end applications. Both

these clients have a user mapped to it. At this point, we haven’t added any

additional privileges to these users. See Figure 9-5.

After performing the previous configuration, we will get back details

of the OpenID endpoints. These endpoints are used to perform user

authentication and token validation. The following are a few important

endpoints that we will use:

Figure 9-5. KeyCloak configuration

Chapter 9 poliCies and rules

293

issuer "http://172.18.0.1:8181/auth/realms/k8s- dev"

authorization_endpoint "http://172.18.0.1:8181/auth/realms/

k8s-dev/protocol/OpenID -connect/

auth"

token_endpoint "http://172.18.0.1:8181/auth/realms/k8s-

dev/protocol/OpenID -connect/token"

jwks_uri "http://172.18.0.1:8181/auth/realms/k8s- dev/

protocol/OpenID -connect/certs"

Now we will configure Istio user authentication by using the

previously provided endpoints. We will create a policy as shown in the

previous section.

apiVersion: "authentication.istio.io/v1alpha1"

kind: "Policy"

metadata:

 name: "user-auth"

spec:

 targets:

 - name: webservice

 origins:

 - jwt:

 issuer: http://172.18.0.1:8181/auth/realms/k8s-dev

 jwksUri: http://172.18.0.1:8181/auth/realms/k8s-dev/

protocol/OpenID -connect/certs

 trigger_rules:

 - excluded_paths:

 - exact: /health

 principalBinding: USE_ORIGIN

Chapter 9 poliCies and rules

294

In the previous configuration, we have done the following:

 1. We configured the JWT settings to point to our k8s-

dev realm.

 2. Now, there is a possibility of two security principals

in our proxy. One is from the mtls configuration,

and the other is from the user-identity token. In

such cases, we configure the binding principal from

the user token.

 3. We have excluded the /heath URL from the

authentication as this is used by Kubernetes for a

liveness check. If we block this path, then the pod

will start failing, as seen when we enabled mtls.

The JWT token authentication can be enabled or disabled for a specific

path. Also, we can add multiple JWT blocks to handle different paths. If all

JWTs are disabled for a request path, authentication also passes as if there

is none defined. Now let’s test our configuration by executing these curl

commands:

 $curl -v http://10.152.183.230/

< HTTP/1.1 401 Unauthorized

< content-length: 29

< content-type: text/plain

< date: Thu, 05 Sep 2019 08:50:03 GMT

< server: istio-envoy

< x-envoy-decorator-operation: webservice.default.svc.cluster.

local:80/*
<

Origin authentication failed.

Chapter 9 poliCies and rules

295

The service returned 401 error code. To make it work, we need to add

a JWT to the request. Let’s first generate one by sending an OAuth request.

We will generate it using Postman, but you can use any other suitable

method as well. The aim is to have a JWT value that can be passed in the

authorization header.

We can use Postman in the following manner:

 1. Select the Authorization tab in Postman, and set the

type to OAuth 2.0.

 2. Click Get New Access Token. This will open a new

form where we need to fill in the values from our

OpenID configuration.

 3. After positioning the correct values, click Request

Token. See Figure 9-6.

Figure 9-6. JWT token

Chapter 9 poliCies and rules

296

It then asks for login credentials. On successful login, it sends back a

token. We need to copy the value and send it in the authentication headers.

$curl --header "Authorization: Bearer $TOKEN" -v

http://10.152.183.230/

> GET / HTTP/1.1

> Host: 10.152.183.230

> User-Agent: curl/7.58.0

> Accept: */*
> Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiw

ia2lkIiA6ICJpejZyRi1RQUw4STVlNFRDcVdaSE9SLWpLN1A2UjVEUnR2d2Zs

Zk5MSnZVIn0.eyJqdGkiOiI4NzYyOGQ4Ni04MTg3LTQ1ZGEtOWRiMi1iZGIyN

ThkYzk5MGMiLCJleHAiOjE1Njc2MTkyMDcsIm5iZiI6MCwiaWF0IjoxNTY3Nj

E4OTA3LCJpc3MiOiJodHRwOi8vMTcyLjE4LjAuMTo4MTgxL2F1dGgvcmVhbG1

zL2s4cy1kZXYiLCJhdWQiOiJhY2NvdW50Iiwic3ViIjoiNmY3MTNlMDMtOWYy

NC00MmMyLTgzMDktZWI2ZGY0NmZiNzU1IiwidHlwIjoiQmVhcmVyIiwiYXpwI

joid2Vic2VydmljZS11c2VyIiwiYXV0aF90aW1lIjoxNTY3NjE4MDQyLCJzZX

NzaW9uX3N0YXRlIjoiYzNhOTk1NWMtYTA5YS00NGFlLWE3NzEtMzM3OTE0OTR

jZTg1IiwiYWNyIjoiMCIsImFsbG93ZWQtb3JpZ2lucyI6WyIqIl0sInJlYWxt

X2FjY2VzcyI6eyJyb2xlcyI6WyJvZmZsaW5lX2FjY2VzcyIsInVtYV9hdXRob

3JpemF0aW9uIl19LCJyZXNvdXJjZV9hY2Nlc3MiOnsid2Vic2VydmljZS11c2

VyIjp7InJvbGVzIjpbInVzZXIiXX0sImFjY291bnQiOnsicm9sZXMiOlsibWF

uYWdlLWFjY291bnQiLCJtYW5hZ2UtYWNjb3VudC1saW5rcyIsInZpZXctcHJv

ZmlsZSJdfX0sInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZW1haWwiLCJlbWFpb

F92ZXJpZmllZCI6ZmFsc2UsInByZWZlcnJlZF91c2VybmFtZSI6InJhaHVsIi

wiZW1haWwiOiJyYWh1bEBrOHMuY29tIn0.aHrwRFT2jG0FFBEhNA-bbaY- NxG

IGGDBqn9XxqvHUJLIagnjhkTZGioH44kog_A_LT9IeGj2bMeOBeb0NQn4K1a-

c66EpQa4bwt9kcsFfcSKb1Z1dtOhp8tg7jjST93220dq9h9SqHdrMbhJ_eL0r

dOKs5VE8DiOOONaP1OkQj4B5Ya58VMuIEAeajgOsSivRRKZlseXp-kr2rPlS2

fbPmGFPCfxZl_OEygGaiKWPyQ79DvI_ecEDKxUmg4iLtp86ieVWcu6H_X6ETH

mdk9QInWTXI4ORHygd9loY0BoDFtVG9K3STPv9Cn6eDwn6jHCuyyEJ9V0k-

2OXqqopF-ggA

>

Chapter 9 poliCies and rules

297

< HTTP/1.1 200 OK

< content-type: text/html; charset=utf-8

< content-length: 62

< server: istio-envoy

< date: Wed, 04 Sep 2019 17:44:50 GMT

< x-envoy-upstream-service-time: 3

< x-envoy-decorator-operation: webservice.default.svc.cluster.

local:80/*
<

* Connection #0 to host 10.152.183.230 left intact

[6.0]Welcome user! current time is 2019-09-05 17:44:50.140684

 Authorization
In the previous section, we accomplished authentication. This means that

we have established the identity of the user. But all users are not allowed

to access all parts of the application. The process of controlling access to

the only the allowed parts is known as authorization. Roles-based access

control (RBAC) is often used to limit the users to the functions that are

applicable to them. Users must not be allowed to perform operations

beyond their realm. Istio runs an RBAC engine in the Envoy proxy. The

proxy gets the applicable RBAC policies from Pilot. It compares the JWT

in the request against the configured authorization policies. As a result, it

either allows or denies the request.

Istio by default disables the roles-based access control. As a first

step, we need to enable RBAC for Istio. This can be done by applying the

following configuration:

apiVersion: "rbac.istio.io/v1alpha1"

kind: ClusterRbacConfig

metadata:

 name: default

Chapter 9 poliCies and rules

298

spec:

 mode: 'ON_WITH_INCLUSION'

 inclusion:

 namespaces: ["default"]

The previous configuration enables RBAC control for the “default”

namespace. It is important to note that ClusterRbacConfig is a singleton

cluster-scoped object, named default. There are other values for the

mode that can be used to fine-tune RBAC:

• OFF: Istio authorization is disabled.

• ON: Istio authorization is enabled for all services in

the mesh.

• ON_WITH_INCLUSION: Istio authorization is enabled

only for services and namespaces specified in the

inclusion field.

• ON_WITH_EXCLUSION: Istio authorization is enabled

for all services in the mesh except the services and

namespaces specified in the exclusion field.

We can try to access the service using the curl command, but it fails

with a 403 response.

$ curl --header "Authorization: Bearer $TOKEN" -v

http://10.152.183.230/

< HTTP/1.1 403 Forbidden

< content-length: 19

< content-type: text/plain

RBAC: access denied

Chapter 9 poliCies and rules

299

Once RBAC is enabled, we need to define roles/permissions.

Permissions can be defined at a service level. They can also be fine-tuned

for a path, an HTTP method, and request headers. These permissions are

defined using the ServiceRole configuration.

apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRole

metadata:

 name: http-viewer

spec:

 rules:

 - services: ["webservice"]

 methods: ["GET"]

The previous configuration defined an http-viewer role for

accessing webservice. The defined role needs to be assigned to a user.

The assignment can be done for a user or a user identified by attributes

of its token. Alternatively, it can be left as anonymous access as well. In

applications, we may want to allow a GET request so that users can view

the data. But the POST request needs a role-based authorization. So, let’s

define one more role for performing updates.

apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRole

metadata:

 name: http-update-webservice

spec:

 rules:

 - services: ["webservice"]

 methods: ["POST"]

Chapter 9 poliCies and rules

300

We have added the update role for the POST method, but it can be

limited using the URL path. Now we need to assign the http-viewer rights

to everyone and only assign http-update-webservice to authenticated

users. This is done by configuring ServiceRoleBinding.

apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRoleBinding

metadata:

 name: bind-http-viewer

spec:

 subjects:

 - user: "*"

 roleRef:

 kind: ServiceRole

 name: "http-viewer"

The previous binding assigns the http-viewer role to all users.

Alternatively, we can validate the user principal and assign a corresponding

role to it. This is accomplished in the following configuration:

apiVersion: "rbac.istio.io/v1alpha1"

kind: ServiceRoleBinding

metadata:

 name: bind-http-update

spec:

 subjects:

 - properties:

 request.auth.claims[scope]: "webservice"

 roleRef:

 kind: ServiceRole

 name: "http-update-webservice"

Chapter 9 poliCies and rules

301

The previous binding assigns the http-update-webservice role to

requests having jwt with a webservice scope. The request.auth.claims

is used to read different parts of the JWT. Apply the previous ServiceRole

and ServiceRoleBinding configurations. Now we can try the curl

command. It should work as expected.

 Rules
In the previous section, we enforced policies for authentication and

authorization. But policies can also be used to enforce application rules.

This is quite useful for the operations team, which can create rules to

manage resource utilization or control application black/whitelisting, and

so on. It is important to note that these requirements are based on runtime

behavior and thus are quite diverse. It is a good idea to implement these

changing needs using a rule engine instead of developing custom code.

Istio supports rule validation using the Mixer component. Previously we

configured the Mixer component to work with third-party extensions like

Jagger. The Mixer consists of three parts.

• Handler: Defines the adapter configuration

• Instance: Defines the attributes that need to be

captured for a request

• Rule: Associates a handler with instances that can send

the required data

The Envoy proxy sends requests to the Istio Pilot. The Pilot invokes

Mixer, which captures data as defined in the instance configuration and

sends it to the handler. Previously, the handler was capturing data in

external systems. Alternatively, the handler can perform a Boolean check

for the received request. The Envoy proxy can allow or deny a request

Chapter 9 poliCies and rules

302

based on the check response. Like most other features, Istio provides a

disablePolicyChecks flag to toggle a rules check. Let’s first enable it using

the following command:

$ kubectl get cm istio -n istio-system -o yaml | sed -e

"s/ disablePolicyChecks: true/ disablePolicyChecks: false/" |

kubectl apply -f - configmap/istio configured

In the following example, we will configure a whitelisting rule.

Basically we want to allow a webapp to be accessed from our front-end

service only. Any other source should not be allowed. To do this, we need

to configure a listchecker handler with a listentry template.

apiVersion: config.istio.io/v1alpha2

kind: handler

metadata:

 name: whitelist

spec:

 compiledAdapter: listchecker

 params:

 overrides: ["frontend"]

 blacklist: true

apiVersion: config.istio.io/v1alpha2

kind: instance

metadata:

 name: appsource

spec:

 compiledTemplate: listentry

 params:

 value: source.labels["app"]

Chapter 9 poliCies and rules

303

apiVersion: config.istio.io/v1alpha2

kind: rule

metadata:

 name: checksrc

spec:

 match: destination.labels["app"] == "webapp"

 actions:

 - handler: whitelist

 instances: [appsource]

We can now execute our curl commands, which will fail with the

following error:

$curl -v http://10.152.183.230/

> GET / HTTP/1.1

> Host: 10.152.183.146

> User-Agent: curl/7.58.0

> Accept: */*
>

* Empty reply from server

* Connection #0 to host 10.152.183.

curl: (52) Empty reply from server

But if we try to do a curl to our front-end service, we will get the

expected response. In the previous code, we implemented whitelisting,

and it can be toggled to blacklisting by changing the blacklist attribute

of the handler. So far, we have worked with application whitelisting. Istio

bundles a couple of handlers that can be used to perform diverse checks

such as quota management, simple denials, and so on.

Chapter 9 poliCies and rules

304

 Summary
In this chapter, we worked with the security features of Istio. We looked at

the two kinds of authentication offered by Istio. Transport authentication

is implemented using a mutual TLS mode for all service communication.

This makes it mandatory for a server and client to have a private key and

certificate pair. Istio implements PKI logic, which simplifies the mtls

handshake in a service mesh. Istio supports a PERMISSIVE mode to offer

plain-text interactions. This simplifies interactions with services deployed

outside the service mesh. Istio provides user authentication using an

OAuth-based token in JWT format. Next, we discussed authorization using

Istio RBAC. The RBAC can be used to build fine-grained permissions for a

service, path, HTTP method, and request attributes. Lastly, we discussed

the Istio rule engine, which can be used to enforce checks such as

blacklisting, request quotas, etc.

Chapter 9 poliCies and rules

305© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5_10

CHAPTER 10

Troubleshooting
Troubleshooting issues in an Istio service mesh is quite complex. There

are many components that are working together to deliver the required

behavior, and each of these systems has its own nuances. It is quite

impossible to account for all conditions. Thus, during an incident, the

troubleshooting process may feel like looking for a needle in a haystack.

In this chapter, we will introduce some tools we can use to troubleshoot

service-mesh issues. The commands discussed in this chapter are

applicable to a bare-metal Kubernetes installation. It is important to

know what configuration we are looking-for. It may require slight variant

commands in a cloud based cluster.

 Configmaps
Istio has many features driven by corresponding feature flags. We

have seen these flags in policy checks, request tracing, and so on. The

configuration flags are the first place to determine how a feature is

configured. It can answer a broad set of questions such as the following:

• What configuration is used for the envoy proxy?

• How is the gateway working?

• Is Istio’s distributed tracing enabled, and which tracing

provider is configured?

306

The flags are part of the Istio configuration defined using the

Kubernetes configmaps. Specifically, Istio is driven by two configmaps.

• istio: This defines the configuration for the Istio

pilot, Mixer, Tracing, Prometheus, Grafana, and so on.

Configuration options for each of the component are

prefixed by the component name.

• istio-sidecar-injector: This defines the

configuration for the Istio sidecar, including the

location of the Pilot, Kubernetes api-server, etc.

We can get these configmaps using the following commands:

$kubectl -n istio-system get cm istio -o jsonpath="{@.data.mesh}"

disablePolicyChecks: false

enableTracing: true

accessLogFile: "/dev/stdout"

#REMOVED for BREVITY

$kubectl -n istio-system get cm istio-sidecar-injector -o

jsonpath="{@.data.config}"

policy: enabled

alwaysInjectSelector:

 []

template: |-

 rewriteAppHTTPProbe: {{ valueOrDefault .Values.sidecarInjector

Webhook.rewriteAppHTTPProbe false }}

 {{- if or (not .Values.istio_cni.enabled) .Values.global.

proxy.enableCoreDump }}

 initContainers:

#REMOVED for BREVITY

Chapter 10 troubleshooting

307

Next we can determine how the sidecar is injected. Istio supports

automatic injection, provided it is configured for a namespace. We can list

all the namespaces for the automatic istion-sidecar using the following

command:

$kubectl get namespace -L istio-injection

NAME STATUS AGE ISTIO-INJECTION

default Active 221d enabled

istio-system Active 60d disabled

kube-node-lease Active 75d

kube-public Active 221d

kube-system Active 221d

 Proxy
Istio applies most of the features using the Envoy proxy. The Istio proxy

connects with the Istio pilot to get the latest configuration. Thus, it is

imperative to know whether the Envoy proxy is in sync with the latest

policies available in the pilot. istioctl proxy-status is a useful

command to get the status of all the proxies.

$ istioctl proxy-status

PROXY CDS

LDS EDS RDS PILOT VERSION

istio-ingress-6458b8c98f-7ks48.istio-system SYNCED

SYNCED SYNCED NOT SENT istio-pilot- 75bdf98789-n2kqh 1.1.2

istio-ingressgateway-7d6874b48f-qxhn5.istio-system SYNCED

SYNCED SYNCED SYNCED istio-pilot- 75bdf98789-n2kqh 1.1.2

productpage-v1-6c886ff494-hm7zk.default SYNCED

SYNCED SYNCED STALE istio-pilot- 75bdf98789-n2kqh 1.1.2

ratings-v1-5d9ff497bb-gslng.default SYNCED

SYNCED SYNCED SYNCED istio-pilot- 75bdf98789-n2kqh 1.1.2

Chapter 10 troubleshooting

308

webservice-v1-55d4c455db-zjj2m.default SYNCED

SYNCED SYNCED SYNCED istio-pilot- 75bdf98789-n2kqh 1.1.2

webservice-v2-686bbb668-99j76.default SYNCED

SYNCED SYNCED SYNCED istio-pilot- 75bdf98789-tfdvh 1.1.2

webservice-v3-7b9b5fdfd6-4r52s.default SYNCED

SYNCED SYNCED SYNCED istio-pilot- 75bdf98789-n2kqh 1

All the running proxies will be in one of the following states:

• SYNCED: The means the sidecar is updated with all the

changes.

• STALE: This means there are changes, but the sidecar

has not picked these changes.

• NOT SENT: This means there are no changes.

If a proxy is missing in the list, it is not connected to the Istio pilot. We

can find out a proxy configuration using the following command:

$ istioctl proxy-config bootstrap -n istio-egressgateway-

9b7866bf5-8p5rt.istio-system

{

 "bootstrap": {

 "node": {

 "id": "router~172.30.86.14~ istio-egressgateway-

9b7866bf5-8p5rt -system~istio-system.svc.cluster.

local",

 "cluster": "istio-ingressgateway",

 "metadata": {

 "POD_NAME": " istio-egressgateway-

9b7866bf5-8p5rt ",

 "istio": "sidecar"

 },

Chapter 10 troubleshooting

309

 "buildVersion": "0/1.8.0 //RELEASE"

 },

REMOVED for BREVITY

}

Lastly, we can investigate the logs of the proxy to find out how it is

behaving. Proxy logs can be accessed using the logs commands.

$kubectl logs pod/frontend-deployment-78d98b75f4-rwkbm istio-

proxy

[2019-09-15T20:17:00.310Z] "GET / HTTP/2" 204 - 154 0 226 100

"10.0.35.28"

"" "cc21d9b0-cf5c-432b-8c7e-98aeb7988cd2" ""

"tcp://10.0.2.1:8080"

[2019-09-15T20:17:01.102Z] "GET / HTTP/2" 204 - 154 0 226 100

"10.0.35.28"

"" "cc21d9b0-tfdvh-432b-n2kqh-75bdf98789" ""

"tcp://10.0.2.1:8080"

 Routes
Traffic routing is one of the most important features of Istio. You learned

about traffic routing in Chapters 4 and 5. There will be situations when a

virtual service will not work, and the associated destination rule may also

fail. We can start troubleshooting traffic routes by determining the ports

that the Istio sidecar is listening on.

$ istioctl proxy-config listeners istio-ingressgateway-

75ddf64567-jtl68.istio-system

ADDRESS PORT TYPE

0.0.0.0 15090 HTTP

Chapter 10 troubleshooting

310

The previous command summarizes the ports the proxy is listening on.

To get details of how the proxy is set up for traffic on a particular port, we

need more details. This can be done using the following command:

$ istioctl proxy-config listeners istio-egressgateway- 9b7866bf5-

8p5rt.istio-system -o json --address 0.0.0.0 --port 15090

[

.

 {

 "address": {

 "socketAddress": {

 "address": "0.0.0.0",

 "portValue": 15090

 }

 },

.

]

The previous command shows a route name that is used for the

specified port. We can find out which hosts are resolved for the route

with this:

$ istioctl proxy-config routes frontend-v1-6549877cc8-67cc8

--name 8080 -o json

[

 {

 "name": "8080",

 "virtualHosts": [

 {

 "name": "webservice.default.svc.cluster.

local:8080",

 "domains": [

 "webservice.default.svc.cluster.local",

Chapter 10 troubleshooting

311

 "webservice.default.svc.cluster.

local:8080",

 "webservice",

 "webservice:8080",

 "webservice.default.svc.cluster",

 "webservice.default.svc.cluster:8080",

REMOVED for BREVITY

],

 "routes": [

 {

 "match": {

 "prefix": "/"

 },

 "route": {

 "cluster": "outbound|8080||web

service.default.svc.cluster.local",

 "timeout": "0.000s"

 },

...

We can see that different web service domains and IP addresses

are resolved to an outbound address. The resolved outbound address

is configured to cluster locations, which can be determined using the

following command:

$ istioctl proxy-config cluster frontend-v1-6549877cc8-

67cc8 --fqdn webservice.default.svc.cluster.local -o json

[

 {

 "name": "outbound|8080||webservice.default.svc.cluster.

local",

 "type": "EDS",

Chapter 10 troubleshooting

312

 "edsClusterConfig": {

 "edsConfig": {

 "ads": {}

 },

 "serviceName": "outbound|8080||webservice.default.

svc.cluster.local"

 },

 "connectTimeout": "1.000s",

 "circuitBreakers": {

 "thresholds": [

 {}

]

 }

 }

]

Lastly, we can validate location endpoints for the cluster locations.

$ istioctl proxy-config endpoints frontend-v1-6549877cc8-67cc8

--cluster "outbound|8080||webservice.default.svc.cluster.local"

ENDPOINT STATUS OUTLIER CHECK

CLUSTER

172.17.0.17:8080 HEALTHY OK

outbound|8080||webservice.default.svc.cluster.local

172.17.0.18:8080 HEALTHY OK

outbound|8080||webservice.default.svc.cluster.local

172.17.0.5:8080 HEALTHY OK

outbound|8080||webservice.default.svc.cluster.local

Chapter 10 troubleshooting

313

Destination rules are also used to configure the mutual TLS

authentication on the client side. But sometimes the destination rule

will not work, and the handshake will fail with a 503 error code. In such

cases, we must check whether the destination rule is violating the existing

configuration.

$ istioctl authn tls-check istio-ingressgateway-75ddf64567-jtl68.

istio-system

HOST:PORT STATUS SERVER

CLIENT AUTHN POLICY DESTINATION RULE

grafana.istio-system.svc.cluster.local:3000 OK HTTP

HTTP grafana-ports-mtls- disabled/istio-system -

istio-citadel.istio-system.svc.cluster.local:8060 OK HTTP/mTLS

HTTP default/ -

istio-citadel.istio-system.svc.cluster.local:15014 OK HTTP/mTLS

HTTP default/ -

 Summary
In this chapter, we discussed commands to troubleshoot Istio issues.

We showed how to work with the Kubernetes cm command to find out

the Istio configuration details. Thereafter, we looked at the proxy logs

and checked the destination rules deployed in Istio. Istio is a complex

distributed application, and it is hard to understand every nuance. During

an incident, you can use the commands covered in this chapter to debug

the configuration for root-cause analysis.

Chapter 10 troubleshooting

315© Rahul Sharma, Avinash Singh 2020
R. Sharma and A. Singh, Getting Started with Istio Service Mesh,
https://doi.org/10.1007/978-1-4842-5458-5

Index

A, B
Application, Kubernetes

container creation, 18
deployment

configuration, 19–23
WebApp application

container, 19
Web Requests Handler, 18
YAML file, 20

Application logs, 266–270
Application monitoring, 233–235
Application setup, 195–201
Architecture, Istio

control plane, 104–106
data plane, 103, 104
mixer

adapters, 108, 109
attributes, 109, 110
citadel, 114
configuration

model, 110, 111
galley, 114
pilot, 111–113
platform-independent

component, 106
service logs, 106
topology, 107

Authentication
token-based process, 281
transport, 282
user, 289

Authorization, 297–301

C
Circuit breakers

cascading service, 219
and circuit breaker, 229–231
connection pool

HTTP/1.1, 222
HTTP/2, 223–228

pattern, 56
polyglot applications, 222
service recovery, 220, 221

Cloud infrastructure, 1
Cloud-native environment, 78
Cloud-native microservices, 54
Cluster Discovery Service (CDS), 87
Connection pool configuration, 148
Container Runtime Interface

(CRI), 9
Controller manager

endpoint controller, 4
node controller, 4
replication controller, 5

https://doi.org/10.1007/978-1-4842-5458-5

316

D
Destination rules

connection pool, 148–150
Kubernetes cluster, 146
load balancing, 151
outlier detection, 151–153
VirtualService components, 147

Distributed architecture, 54
Distributed tracing, 81

definition, 259
deployed services, 262
Envoy proxy, 260
HTTP headers, 260
Jagger operator, 261
NodePort address, 263
observability

namespace, 261
service mesh, 264–266

Docker installation
Linux, 13, 14
macOS, 15
windows, 15

E, F
Endpoint Discovery

Service (EDS), 87
Envoy configuration, 88–95
Envoy proxy, 307–309
External service access

attributes, 186
egress, 188–192
HTTP service, 187
mesh nodes, 184

pod network, 183
service entry, 185
sidecar proxy, 183

G
Grafana

dashboard, 251–253
data flow, 249
installation, 249, 250
stakeholders alert, 253–258
webhook channel, 254

H
HTTP filters, 86
Hystrix circuit breaker, 70

I
Istio CLI

authentication
policies, 124

deregister, 124
experimentation

authentication, 125
Grafana dashboard, 127
metrics, 128
VirtualService, 125, 126

Kubernetes configuration,
128–135

register, 125
validation, 135

Istio environment
architecture

INDEX

317

adapters, 108, 109
attributes, 109, 110
citadel, 114
components, 102, 103
configuration

model, 110, 111
control plane, 104–106
data plane

service, 103, 104
galley, 114
pilot, 111–113

features, 101
installation

GKE, 120
Helm, 115–118
verification, 120–122

service mesh, 99, 101, 102
services, 122
setting up, 118, 119
working, 123, 124

Istio gateway
ingress

configuration, 169
curl commands, 174
load balancer service, 169,

173
mesh, 172, 175
Minikube server, 173
sidecar proxies, 175
traffic routing, 170
virtual service, 171, 172
web service, 171
wget commands, 175

Istio Mixer, 236, 237

J
JSON Web Token (JWT), 289

K
Kubectl installation

Linux, 11
macOS, 12
windows, 12

Kubernetes (K8s)
architecture, 2, 3
autostopping

application, 41
behavior, 37
container creation, 38, 42
deployment, 30–32
framework, 82
master components

API server, 3
controller manager, 4, 5
scheduler, 4

status of deployment,
39, 40, 44, 45

terminology
deployment, 9
image, 9
Kubectl, 10
Namespace, 10
replicaset, 10
service, 10
statefulset, 10

worker
container registry, 8, 9
Kube-proxy, 5

Index

318

node agent, 5
pods, 6
runtime container, 7, 8

Kubernetes cluster, Set Up
Docker installation, 13
Java, 15
Kubectl installation, 11
Minikube dashboard, 17
Minikube installation, 12
Python, 15
Ubuntu terminal, 15
VirtualBox, 11
virtual machine, 16

Kubernetes logging, 268

L
Labels, 237
Language libraries

circuit breaker, 68–71
hands-on approach

Java IDE, 64
Maven project, 65
POM file, 66
REST controller, 67
service output, 68

service discovery
Eureka server, 72, 73
frameworks, 76
LoadBalancer

annotation, 75
service registry, 74

Listener Discovery Service (LDS), 87

Listener filters, 85
Load balancing, 151

deployment configuration,
202–204

least requests, 201
random node, 201
round-robin, 201
weightage, 201

M
Microservice architecture

administrator, 59
agility, 51, 52, 58
debugging, 61, 62
homogeneous, 60, 61
infinite bandwidth, 57, 58
infrastructure, 61
innovation, 52
language libraries, 62
maintainability, 53
monitoring, 61, 62
reliable network, 54, 55
scalability, 52, 53
secure network, 58
transport cost, 59
zero latency, 55–57

Microservices
application setup, 32–34
deployment, 34, 35, 37

Minikube installation
Linux, 12
macOS, 13
windows, 13

Kubernetes (K8s) (cont.)

INDEX

319

Mixer subsystem
adapters, 272, 273
benefits, 271
handler, 273, 274
instance, 274–277
plug and play approach, 271
rules, 278, 279
system monitoring, 271
use cases, 272
YAML configuration, 277

Monolith architectures
application design, 51
development teams, 49
functions, 48, 49
scaling issues, 50
steep learning, 50

N
Naming service ports, 142
Network filters, 85

O
openssl command, 177
Orchestration platform, 1
Outlier detection, 151–153

P, Q
Polygot environment, 78
Prometheus

custom metrics, 245–247, 249
dashboard

Istio mesh, 240, 241
limiting metrics, 243
mesh request, 244
PromQL, 242
siege request, 241, 242

installation, 238–240
metrics flow, 237

Public key infrastructure (PKI), 282

R
Resiliency, 231
Retry requests

cost of response time, 208
end user availability, 209
front-end service, 205
Istio fault injection, 211, 212
network layer, 205
service node, 207
VirtualService component,

207, 210, 211
Web App Service, 205, 206

Roles-based access control
(RBAC), 297

Route Discovery Service (RDS), 87
Rules, 301–303

S
Secret Discovery Service (SDS), 87
Secure Sockets Layer (SSL)

client’s certificate chain, 181, 182
HAProxy/Nginx, 176
-HHost header, 181

Index

320

HTTPS protocol, 180
Istio secret, 179
openssl command, 177
PASSTHROUGH mode, 182
pod location, 178, 179
Kubernetes secret, 181
TLS authentication, 181

Service-level security, 79, 80
Service mesh

analytics, 80, 81
definition, 77
protocol-agnostic, 78
sidecar pattern, 82
TLS security, 80
traffic control

mechanism, 78, 79
Service mesh, Istio

routing, 100, 101
service discovery, 100

Service resiliency, Istio
distributed system, 193, 194

Services
Kubernetes

clusterIP, 27
ExternalName type, 29, 30
interactions, 24
LoadBalancer type, 28, 29
NodePort, 27
pods access, 25–27
webapp, 24, 25

Sidecar pattern
authentication, 83
components

CDS, 87
EDS, 87
LDS, 87
RDS, 87
SDS, 87

envoy architecture
benefits, 84
cluster, 86
filters, 85
port listener, 85

load balancing, 83
routing, 83
service verification, 95–98

spring-cloud
dependencies, 71

T
Technical debt, 53
Timeout request, service

siege, delay injection, 213, 214,
217, 218

virtual service
configuration, 214–216
modification, 212

Tracing, 80
Transport authentication

certificate authority, 282
Citadel CA, 284
curl commands, 285, 286, 288
destination rule, 288
namespace level, 289
PKI, 282
policy, 284

Secure Sockets Layer (SSL) (cont.)

INDEX

321

rewriteAppHTTPProbers
annotation, 287

service mesh, 283
TLS communication, 282, 283

Troubleshooting
Configmaps, 305–307
routing, 309–311, 313

U
User authentication

Istio configuration, 293, 294
JWT, 290, 294, 295
KeyCloak, 291, 292
OAuth token, 289

V
Virtual service, Istio

canary release
definition, 163
deployment and

validation, 166–168

match method, 163, 165
component, 153
destination resolution, 145
DNS names, 139
Docker images, 140
forwarding, 154, 155
HTTP attributes lookup, 158, 159
naming service ports, 142
pod ports, 144–146
Python application, 139
rewrite, 156, 157
routing request, 137–141
single service, 154
version labels, 143, 144
webapp-deployment

command, 140
weighted distribution, 160–162

W, X, Y, Z
Weight-distributed

service, 160–162
wget commands, 175

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Quick Tour of Kubernetes
	K8s Architecture/Components
	Kubernetes Master
	Kubernetes Workers

	Kubernetes Terminology
	Set Up a Kubernetes Cluster
	Set Up VirtualBox
	Install Kubectl
	Linux Installation
	macOS Installation
	Windows Installation

	Set Up Minikube
	Linux Installation
	macOS Installation
	Windows Installation

	Set Up Docker
	Linux Installation
	macOS Installation
	Windows Installation

	Set Up Python
	Set Up Java

	Our First Kubernetes Cluster
	Run an Application on Kubernetes
	Application Details
	Deploy the Application
	Kubernetes Service
	Pods Accessing Services
	Services Exposed Publicly
	ClusterIP
	NodePort
	LoadBalancer
	ExternalName

	Kubernetes Is Self-Healing

	Add a Microservice
	Application Setup
	Release and Deployment

	Readiness Probes
	Summary

	Chapter 2: Introduction to the Service Mesh
	Microservice Architecture
	Agility
	Innovation
	Scalability
	Maintainability
	Challenges
	The Network Is Reliable
	Latency Is Zero
	Bandwidth Is Infinite
	The Network Is Secure
	Topology Doesn’t Change
	There Is One Administrator
	Transport Cost Is Zero
	The Network Is Homogeneous
	Infrastructure
	Monitoring and Debugging

	Language Libraries
	Hands-on Examples
	Enable the Circuit Breaker
	Enable Service Discovery

	Service Mesh
	Traffic Control
	Security
	Analytics

	Sidecar Pattern
	Envoy, the Sidecar Provider
	Configuring Envoy
	Verifying the Service

	Summary

	Chapter 3: Installing Istio
	Istio Service Mesh
	Istio Architecture
	Data Plane
	Control Plane
	Mixer
	Adapters
	Attributes
	Configuration Model

	Pilot
	Citadel
	Galley

	Setting Up Istio
	Installation Using Helm
	Download the Istio Release
	Install Helm
	Install Istio

	Demo Installation Without Helm
	GKE Installation
	Verifying the Installation
	Istio Services

	Working with Istio
	Using the Istio CLI
	authn
	deregister
	register
	experimental
	experimental auth
	experimental convert-ingress
	experimental dashboard grafana
	experimental metrics

	kube-inject
	proxy-config bootstrap|cluster|endpoint|listener|route
	validate

	Summary

	Chapter 4: Istio VirtualService
	Request Routing
	Kubernetes Practices
	Naming Service Ports
	Pods with Version Labels
	Declared Pod Ports

	Destination Rules
	Connection Pool
	Load Balancing
	Outlier Detection

	VirtualService
	Forwarding
	Rewrite
	HTTP Attributes Lookup
	Weighted Distribution

	Canary Releases
	Summary

	Chapter 5: Istio Gateway
	Ingress
	Secure Sockets Layer
	Configure istio-ingressgateway-certs
	Configure istio-ingressgateway-ca-certs

	External Service Access
	Service Entry
	Egress

	Summary

	Chapter 6: Service Resiliency
	Application Setup
	Load Balancing
	Retry Requests
	Timeout Requests
	Circuit Breaker
	Connection Pool Circuit Breaker
	HTTP/1.1 Connection Pool
	HTTP/2 Connection Pool

	Load Balancer Circuit Breaker

	Resiliency
	Summary

	Chapter 7: Application Metrics
	Application Monitoring
	Istio Mixer
	Prometheus
	Installation
	Prometheus Dashboard
	Custom Metrics

	Grafana
	Installation
	Grafana Dashboard
	Grafana Alert

	Summary

	Chapter 8: Logs and Tracing
	Distributed Tracing
	Application Logs
	Mixer
	Handler
	Instance
	Rules

	Summary

	Chapter 9: Policies and Rules
	Authentication
	Transport Authentication
	User Authentication

	Authorization
	Rules
	Summary

	Chapter 10: Troubleshooting
	Configmaps
	Proxy
	Routes
	Summary

	Index

